| 1 | //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides a simple and efficient mechanism for performing general |
| 10 | // tree-based pattern matches on the LLVM IR. The power of these routines is |
| 11 | // that it allows you to write concise patterns that are expressive and easy to |
| 12 | // understand. The other major advantage of this is that it allows you to |
| 13 | // trivially capture/bind elements in the pattern to variables. For example, |
| 14 | // you can do something like this: |
| 15 | // |
| 16 | // Value *Exp = ... |
| 17 | // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) |
| 18 | // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), |
| 19 | // m_And(m_Value(Y), m_ConstantInt(C2))))) { |
| 20 | // ... Pattern is matched and variables are bound ... |
| 21 | // } |
| 22 | // |
| 23 | // This is primarily useful to things like the instruction combiner, but can |
| 24 | // also be useful for static analysis tools or code generators. |
| 25 | // |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | |
| 28 | #ifndef LLVM_IR_PATTERNMATCH_H |
| 29 | #define LLVM_IR_PATTERNMATCH_H |
| 30 | |
| 31 | #include "llvm/ADT/APFloat.h" |
| 32 | #include "llvm/ADT/APInt.h" |
| 33 | #include "llvm/IR/Constant.h" |
| 34 | #include "llvm/IR/Constants.h" |
| 35 | #include "llvm/IR/DataLayout.h" |
| 36 | #include "llvm/IR/InstrTypes.h" |
| 37 | #include "llvm/IR/Instruction.h" |
| 38 | #include "llvm/IR/Instructions.h" |
| 39 | #include "llvm/IR/IntrinsicInst.h" |
| 40 | #include "llvm/IR/Intrinsics.h" |
| 41 | #include "llvm/IR/Operator.h" |
| 42 | #include "llvm/IR/Value.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include <cstdint> |
| 45 | |
| 46 | namespace llvm { |
| 47 | namespace PatternMatch { |
| 48 | |
| 49 | template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { |
| 50 | return P.match(V); |
| 51 | } |
| 52 | |
| 53 | template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { |
| 54 | return P.match(Mask); |
| 55 | } |
| 56 | |
| 57 | template <typename SubPattern_t> struct OneUse_match { |
| 58 | SubPattern_t SubPattern; |
| 59 | |
| 60 | OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| 61 | |
| 62 | template <typename OpTy> bool match(OpTy *V) const { |
| 63 | return V->hasOneUse() && SubPattern.match(V); |
| 64 | } |
| 65 | }; |
| 66 | |
| 67 | template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { |
| 68 | return SubPattern; |
| 69 | } |
| 70 | |
| 71 | template <typename SubPattern_t> struct AllowReassoc_match { |
| 72 | SubPattern_t SubPattern; |
| 73 | |
| 74 | AllowReassoc_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| 75 | |
| 76 | template <typename OpTy> bool match(OpTy *V) const { |
| 77 | auto *I = dyn_cast<FPMathOperator>(V); |
| 78 | return I && I->hasAllowReassoc() && SubPattern.match(I); |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | template <typename T> |
| 83 | inline AllowReassoc_match<T> m_AllowReassoc(const T &SubPattern) { |
| 84 | return SubPattern; |
| 85 | } |
| 86 | |
| 87 | template <typename Class> struct class_match { |
| 88 | template <typename ITy> bool match(ITy *V) const { return isa<Class>(V); } |
| 89 | }; |
| 90 | |
| 91 | /// Match an arbitrary value and ignore it. |
| 92 | inline class_match<Value> m_Value() { return class_match<Value>(); } |
| 93 | |
| 94 | /// Match an arbitrary unary operation and ignore it. |
| 95 | inline class_match<UnaryOperator> m_UnOp() { |
| 96 | return class_match<UnaryOperator>(); |
| 97 | } |
| 98 | |
| 99 | /// Match an arbitrary binary operation and ignore it. |
| 100 | inline class_match<BinaryOperator> m_BinOp() { |
| 101 | return class_match<BinaryOperator>(); |
| 102 | } |
| 103 | |
| 104 | /// Matches any compare instruction and ignore it. |
| 105 | inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } |
| 106 | |
| 107 | struct undef_match { |
| 108 | static bool check(const Value *V) { |
| 109 | if (isa<UndefValue>(Val: V)) |
| 110 | return true; |
| 111 | |
| 112 | const auto *CA = dyn_cast<ConstantAggregate>(Val: V); |
| 113 | if (!CA) |
| 114 | return false; |
| 115 | |
| 116 | SmallPtrSet<const ConstantAggregate *, 8> Seen; |
| 117 | SmallVector<const ConstantAggregate *, 8> Worklist; |
| 118 | |
| 119 | // Either UndefValue, PoisonValue, or an aggregate that only contains |
| 120 | // these is accepted by matcher. |
| 121 | // CheckValue returns false if CA cannot satisfy this constraint. |
| 122 | auto CheckValue = [&](const ConstantAggregate *CA) { |
| 123 | for (const Value *Op : CA->operand_values()) { |
| 124 | if (isa<UndefValue>(Val: Op)) |
| 125 | continue; |
| 126 | |
| 127 | const auto *CA = dyn_cast<ConstantAggregate>(Val: Op); |
| 128 | if (!CA) |
| 129 | return false; |
| 130 | if (Seen.insert(Ptr: CA).second) |
| 131 | Worklist.emplace_back(Args&: CA); |
| 132 | } |
| 133 | |
| 134 | return true; |
| 135 | }; |
| 136 | |
| 137 | if (!CheckValue(CA)) |
| 138 | return false; |
| 139 | |
| 140 | while (!Worklist.empty()) { |
| 141 | if (!CheckValue(Worklist.pop_back_val())) |
| 142 | return false; |
| 143 | } |
| 144 | return true; |
| 145 | } |
| 146 | template <typename ITy> bool match(ITy *V) const { return check(V); } |
| 147 | }; |
| 148 | |
| 149 | /// Match an arbitrary undef constant. This matches poison as well. |
| 150 | /// If this is an aggregate and contains a non-aggregate element that is |
| 151 | /// neither undef nor poison, the aggregate is not matched. |
| 152 | inline auto m_Undef() { return undef_match(); } |
| 153 | |
| 154 | /// Match an arbitrary UndefValue constant. |
| 155 | inline class_match<UndefValue> m_UndefValue() { |
| 156 | return class_match<UndefValue>(); |
| 157 | } |
| 158 | |
| 159 | /// Match an arbitrary poison constant. |
| 160 | inline class_match<PoisonValue> m_Poison() { |
| 161 | return class_match<PoisonValue>(); |
| 162 | } |
| 163 | |
| 164 | /// Match an arbitrary Constant and ignore it. |
| 165 | inline class_match<Constant> m_Constant() { return class_match<Constant>(); } |
| 166 | |
| 167 | /// Match an arbitrary ConstantInt and ignore it. |
| 168 | inline class_match<ConstantInt> m_ConstantInt() { |
| 169 | return class_match<ConstantInt>(); |
| 170 | } |
| 171 | |
| 172 | /// Match an arbitrary ConstantFP and ignore it. |
| 173 | inline class_match<ConstantFP> m_ConstantFP() { |
| 174 | return class_match<ConstantFP>(); |
| 175 | } |
| 176 | |
| 177 | struct constantexpr_match { |
| 178 | template <typename ITy> bool match(ITy *V) const { |
| 179 | auto *C = dyn_cast<Constant>(V); |
| 180 | return C && (isa<ConstantExpr>(C) || C->containsConstantExpression()); |
| 181 | } |
| 182 | }; |
| 183 | |
| 184 | /// Match a constant expression or a constant that contains a constant |
| 185 | /// expression. |
| 186 | inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); } |
| 187 | |
| 188 | /// Match an arbitrary basic block value and ignore it. |
| 189 | inline class_match<BasicBlock> m_BasicBlock() { |
| 190 | return class_match<BasicBlock>(); |
| 191 | } |
| 192 | |
| 193 | /// Inverting matcher |
| 194 | template <typename Ty> struct match_unless { |
| 195 | Ty M; |
| 196 | |
| 197 | match_unless(const Ty &Matcher) : M(Matcher) {} |
| 198 | |
| 199 | template <typename ITy> bool match(ITy *V) const { return !M.match(V); } |
| 200 | }; |
| 201 | |
| 202 | /// Match if the inner matcher does *NOT* match. |
| 203 | template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { |
| 204 | return match_unless<Ty>(M); |
| 205 | } |
| 206 | |
| 207 | /// Matching combinators |
| 208 | template <typename LTy, typename RTy> struct match_combine_or { |
| 209 | LTy L; |
| 210 | RTy R; |
| 211 | |
| 212 | match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| 213 | |
| 214 | template <typename ITy> bool match(ITy *V) const { |
| 215 | if (L.match(V)) |
| 216 | return true; |
| 217 | if (R.match(V)) |
| 218 | return true; |
| 219 | return false; |
| 220 | } |
| 221 | }; |
| 222 | |
| 223 | template <typename LTy, typename RTy> struct match_combine_and { |
| 224 | LTy L; |
| 225 | RTy R; |
| 226 | |
| 227 | match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| 228 | |
| 229 | template <typename ITy> bool match(ITy *V) const { |
| 230 | if (L.match(V)) |
| 231 | if (R.match(V)) |
| 232 | return true; |
| 233 | return false; |
| 234 | } |
| 235 | }; |
| 236 | |
| 237 | /// Combine two pattern matchers matching L || R |
| 238 | template <typename LTy, typename RTy> |
| 239 | inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { |
| 240 | return match_combine_or<LTy, RTy>(L, R); |
| 241 | } |
| 242 | |
| 243 | /// Combine two pattern matchers matching L && R |
| 244 | template <typename LTy, typename RTy> |
| 245 | inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { |
| 246 | return match_combine_and<LTy, RTy>(L, R); |
| 247 | } |
| 248 | |
| 249 | struct apint_match { |
| 250 | const APInt *&Res; |
| 251 | bool AllowPoison; |
| 252 | |
| 253 | apint_match(const APInt *&Res, bool AllowPoison) |
| 254 | : Res(Res), AllowPoison(AllowPoison) {} |
| 255 | |
| 256 | template <typename ITy> bool match(ITy *V) const { |
| 257 | if (auto *CI = dyn_cast<ConstantInt>(V)) { |
| 258 | Res = &CI->getValue(); |
| 259 | return true; |
| 260 | } |
| 261 | if (V->getType()->isVectorTy()) |
| 262 | if (const auto *C = dyn_cast<Constant>(V)) |
| 263 | if (auto *CI = |
| 264 | dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison))) { |
| 265 | Res = &CI->getValue(); |
| 266 | return true; |
| 267 | } |
| 268 | return false; |
| 269 | } |
| 270 | }; |
| 271 | // Either constexpr if or renaming ConstantFP::getValueAPF to |
| 272 | // ConstantFP::getValue is needed to do it via single template |
| 273 | // function for both apint/apfloat. |
| 274 | struct apfloat_match { |
| 275 | const APFloat *&Res; |
| 276 | bool AllowPoison; |
| 277 | |
| 278 | apfloat_match(const APFloat *&Res, bool AllowPoison) |
| 279 | : Res(Res), AllowPoison(AllowPoison) {} |
| 280 | |
| 281 | template <typename ITy> bool match(ITy *V) const { |
| 282 | if (auto *CI = dyn_cast<ConstantFP>(V)) { |
| 283 | Res = &CI->getValueAPF(); |
| 284 | return true; |
| 285 | } |
| 286 | if (V->getType()->isVectorTy()) |
| 287 | if (const auto *C = dyn_cast<Constant>(V)) |
| 288 | if (auto *CI = |
| 289 | dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowPoison))) { |
| 290 | Res = &CI->getValueAPF(); |
| 291 | return true; |
| 292 | } |
| 293 | return false; |
| 294 | } |
| 295 | }; |
| 296 | |
| 297 | /// Match a ConstantInt or splatted ConstantVector, binding the |
| 298 | /// specified pointer to the contained APInt. |
| 299 | inline apint_match m_APInt(const APInt *&Res) { |
| 300 | // Forbid poison by default to maintain previous behavior. |
| 301 | return apint_match(Res, /* AllowPoison */ false); |
| 302 | } |
| 303 | |
| 304 | /// Match APInt while allowing poison in splat vector constants. |
| 305 | inline apint_match m_APIntAllowPoison(const APInt *&Res) { |
| 306 | return apint_match(Res, /* AllowPoison */ true); |
| 307 | } |
| 308 | |
| 309 | /// Match APInt while forbidding poison in splat vector constants. |
| 310 | inline apint_match m_APIntForbidPoison(const APInt *&Res) { |
| 311 | return apint_match(Res, /* AllowPoison */ false); |
| 312 | } |
| 313 | |
| 314 | /// Match a ConstantFP or splatted ConstantVector, binding the |
| 315 | /// specified pointer to the contained APFloat. |
| 316 | inline apfloat_match m_APFloat(const APFloat *&Res) { |
| 317 | // Forbid undefs by default to maintain previous behavior. |
| 318 | return apfloat_match(Res, /* AllowPoison */ false); |
| 319 | } |
| 320 | |
| 321 | /// Match APFloat while allowing poison in splat vector constants. |
| 322 | inline apfloat_match m_APFloatAllowPoison(const APFloat *&Res) { |
| 323 | return apfloat_match(Res, /* AllowPoison */ true); |
| 324 | } |
| 325 | |
| 326 | /// Match APFloat while forbidding poison in splat vector constants. |
| 327 | inline apfloat_match m_APFloatForbidPoison(const APFloat *&Res) { |
| 328 | return apfloat_match(Res, /* AllowPoison */ false); |
| 329 | } |
| 330 | |
| 331 | template <int64_t Val> struct constantint_match { |
| 332 | template <typename ITy> bool match(ITy *V) const { |
| 333 | if (const auto *CI = dyn_cast<ConstantInt>(V)) { |
| 334 | const APInt &CIV = CI->getValue(); |
| 335 | if (Val >= 0) |
| 336 | return CIV == static_cast<uint64_t>(Val); |
| 337 | // If Val is negative, and CI is shorter than it, truncate to the right |
| 338 | // number of bits. If it is larger, then we have to sign extend. Just |
| 339 | // compare their negated values. |
| 340 | return -CIV == -Val; |
| 341 | } |
| 342 | return false; |
| 343 | } |
| 344 | }; |
| 345 | |
| 346 | /// Match a ConstantInt with a specific value. |
| 347 | template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { |
| 348 | return constantint_match<Val>(); |
| 349 | } |
| 350 | |
| 351 | /// This helper class is used to match constant scalars, vector splats, |
| 352 | /// and fixed width vectors that satisfy a specified predicate. |
| 353 | /// For fixed width vector constants, poison elements are ignored if AllowPoison |
| 354 | /// is true. |
| 355 | template <typename Predicate, typename ConstantVal, bool AllowPoison> |
| 356 | struct cstval_pred_ty : public Predicate { |
| 357 | const Constant **Res = nullptr; |
| 358 | template <typename ITy> bool match_impl(ITy *V) const { |
| 359 | if (const auto *CV = dyn_cast<ConstantVal>(V)) |
| 360 | return this->isValue(CV->getValue()); |
| 361 | if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { |
| 362 | if (const auto *C = dyn_cast<Constant>(V)) { |
| 363 | if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) |
| 364 | return this->isValue(CV->getValue()); |
| 365 | |
| 366 | // Number of elements of a scalable vector unknown at compile time |
| 367 | auto *FVTy = dyn_cast<FixedVectorType>(VTy); |
| 368 | if (!FVTy) |
| 369 | return false; |
| 370 | |
| 371 | // Non-splat vector constant: check each element for a match. |
| 372 | unsigned NumElts = FVTy->getNumElements(); |
| 373 | assert(NumElts != 0 && "Constant vector with no elements?" ); |
| 374 | bool HasNonPoisonElements = false; |
| 375 | for (unsigned i = 0; i != NumElts; ++i) { |
| 376 | Constant *Elt = C->getAggregateElement(i); |
| 377 | if (!Elt) |
| 378 | return false; |
| 379 | if (AllowPoison && isa<PoisonValue>(Val: Elt)) |
| 380 | continue; |
| 381 | auto *CV = dyn_cast<ConstantVal>(Elt); |
| 382 | if (!CV || !this->isValue(CV->getValue())) |
| 383 | return false; |
| 384 | HasNonPoisonElements = true; |
| 385 | } |
| 386 | return HasNonPoisonElements; |
| 387 | } |
| 388 | } |
| 389 | return false; |
| 390 | } |
| 391 | |
| 392 | template <typename ITy> bool match(ITy *V) const { |
| 393 | if (this->match_impl(V)) { |
| 394 | if (Res) |
| 395 | *Res = cast<Constant>(V); |
| 396 | return true; |
| 397 | } |
| 398 | return false; |
| 399 | } |
| 400 | }; |
| 401 | |
| 402 | /// specialization of cstval_pred_ty for ConstantInt |
| 403 | template <typename Predicate, bool AllowPoison = true> |
| 404 | using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt, AllowPoison>; |
| 405 | |
| 406 | /// specialization of cstval_pred_ty for ConstantFP |
| 407 | template <typename Predicate> |
| 408 | using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP, |
| 409 | /*AllowPoison=*/true>; |
| 410 | |
| 411 | /// This helper class is used to match scalar and vector constants that |
| 412 | /// satisfy a specified predicate, and bind them to an APInt. |
| 413 | template <typename Predicate> struct api_pred_ty : public Predicate { |
| 414 | const APInt *&Res; |
| 415 | |
| 416 | api_pred_ty(const APInt *&R) : Res(R) {} |
| 417 | |
| 418 | template <typename ITy> bool match(ITy *V) const { |
| 419 | if (const auto *CI = dyn_cast<ConstantInt>(V)) |
| 420 | if (this->isValue(CI->getValue())) { |
| 421 | Res = &CI->getValue(); |
| 422 | return true; |
| 423 | } |
| 424 | if (V->getType()->isVectorTy()) |
| 425 | if (const auto *C = dyn_cast<Constant>(V)) |
| 426 | if (auto *CI = dyn_cast_or_null<ConstantInt>( |
| 427 | C->getSplatValue(/*AllowPoison=*/true))) |
| 428 | if (this->isValue(CI->getValue())) { |
| 429 | Res = &CI->getValue(); |
| 430 | return true; |
| 431 | } |
| 432 | |
| 433 | return false; |
| 434 | } |
| 435 | }; |
| 436 | |
| 437 | /// This helper class is used to match scalar and vector constants that |
| 438 | /// satisfy a specified predicate, and bind them to an APFloat. |
| 439 | /// Poison is allowed in splat vector constants. |
| 440 | template <typename Predicate> struct apf_pred_ty : public Predicate { |
| 441 | const APFloat *&Res; |
| 442 | |
| 443 | apf_pred_ty(const APFloat *&R) : Res(R) {} |
| 444 | |
| 445 | template <typename ITy> bool match(ITy *V) const { |
| 446 | if (const auto *CI = dyn_cast<ConstantFP>(V)) |
| 447 | if (this->isValue(CI->getValue())) { |
| 448 | Res = &CI->getValue(); |
| 449 | return true; |
| 450 | } |
| 451 | if (V->getType()->isVectorTy()) |
| 452 | if (const auto *C = dyn_cast<Constant>(V)) |
| 453 | if (auto *CI = dyn_cast_or_null<ConstantFP>( |
| 454 | C->getSplatValue(/* AllowPoison */ true))) |
| 455 | if (this->isValue(CI->getValue())) { |
| 456 | Res = &CI->getValue(); |
| 457 | return true; |
| 458 | } |
| 459 | |
| 460 | return false; |
| 461 | } |
| 462 | }; |
| 463 | |
| 464 | /////////////////////////////////////////////////////////////////////////////// |
| 465 | // |
| 466 | // Encapsulate constant value queries for use in templated predicate matchers. |
| 467 | // This allows checking if constants match using compound predicates and works |
| 468 | // with vector constants, possibly with relaxed constraints. For example, ignore |
| 469 | // undef values. |
| 470 | // |
| 471 | /////////////////////////////////////////////////////////////////////////////// |
| 472 | |
| 473 | template <typename APTy> struct custom_checkfn { |
| 474 | function_ref<bool(const APTy &)> CheckFn; |
| 475 | bool isValue(const APTy &C) const { return CheckFn(C); } |
| 476 | }; |
| 477 | |
| 478 | /// Match an integer or vector where CheckFn(ele) for each element is true. |
| 479 | /// For vectors, poison elements are assumed to match. |
| 480 | inline cst_pred_ty<custom_checkfn<APInt>> |
| 481 | m_CheckedInt(function_ref<bool(const APInt &)> CheckFn) { |
| 482 | return cst_pred_ty<custom_checkfn<APInt>>{{.CheckFn: CheckFn}}; |
| 483 | } |
| 484 | |
| 485 | inline cst_pred_ty<custom_checkfn<APInt>> |
| 486 | m_CheckedInt(const Constant *&V, function_ref<bool(const APInt &)> CheckFn) { |
| 487 | return cst_pred_ty<custom_checkfn<APInt>>{{.CheckFn: CheckFn}, .Res: &V}; |
| 488 | } |
| 489 | |
| 490 | /// Match a float or vector where CheckFn(ele) for each element is true. |
| 491 | /// For vectors, poison elements are assumed to match. |
| 492 | inline cstfp_pred_ty<custom_checkfn<APFloat>> |
| 493 | m_CheckedFp(function_ref<bool(const APFloat &)> CheckFn) { |
| 494 | return cstfp_pred_ty<custom_checkfn<APFloat>>{{.CheckFn: CheckFn}}; |
| 495 | } |
| 496 | |
| 497 | inline cstfp_pred_ty<custom_checkfn<APFloat>> |
| 498 | m_CheckedFp(const Constant *&V, function_ref<bool(const APFloat &)> CheckFn) { |
| 499 | return cstfp_pred_ty<custom_checkfn<APFloat>>{{.CheckFn: CheckFn}, .Res: &V}; |
| 500 | } |
| 501 | |
| 502 | struct is_any_apint { |
| 503 | bool isValue(const APInt &C) const { return true; } |
| 504 | }; |
| 505 | /// Match an integer or vector with any integral constant. |
| 506 | /// For vectors, this includes constants with undefined elements. |
| 507 | inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { |
| 508 | return cst_pred_ty<is_any_apint>(); |
| 509 | } |
| 510 | |
| 511 | struct is_shifted_mask { |
| 512 | bool isValue(const APInt &C) const { return C.isShiftedMask(); } |
| 513 | }; |
| 514 | |
| 515 | inline cst_pred_ty<is_shifted_mask> m_ShiftedMask() { |
| 516 | return cst_pred_ty<is_shifted_mask>(); |
| 517 | } |
| 518 | |
| 519 | struct is_all_ones { |
| 520 | bool isValue(const APInt &C) const { return C.isAllOnes(); } |
| 521 | }; |
| 522 | /// Match an integer or vector with all bits set. |
| 523 | /// For vectors, this includes constants with undefined elements. |
| 524 | inline cst_pred_ty<is_all_ones> m_AllOnes() { |
| 525 | return cst_pred_ty<is_all_ones>(); |
| 526 | } |
| 527 | |
| 528 | inline cst_pred_ty<is_all_ones, false> m_AllOnesForbidPoison() { |
| 529 | return cst_pred_ty<is_all_ones, false>(); |
| 530 | } |
| 531 | |
| 532 | struct is_maxsignedvalue { |
| 533 | bool isValue(const APInt &C) const { return C.isMaxSignedValue(); } |
| 534 | }; |
| 535 | /// Match an integer or vector with values having all bits except for the high |
| 536 | /// bit set (0x7f...). |
| 537 | /// For vectors, this includes constants with undefined elements. |
| 538 | inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { |
| 539 | return cst_pred_ty<is_maxsignedvalue>(); |
| 540 | } |
| 541 | inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { |
| 542 | return V; |
| 543 | } |
| 544 | |
| 545 | struct is_negative { |
| 546 | bool isValue(const APInt &C) const { return C.isNegative(); } |
| 547 | }; |
| 548 | /// Match an integer or vector of negative values. |
| 549 | /// For vectors, this includes constants with undefined elements. |
| 550 | inline cst_pred_ty<is_negative> m_Negative() { |
| 551 | return cst_pred_ty<is_negative>(); |
| 552 | } |
| 553 | inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; } |
| 554 | |
| 555 | struct is_nonnegative { |
| 556 | bool isValue(const APInt &C) const { return C.isNonNegative(); } |
| 557 | }; |
| 558 | /// Match an integer or vector of non-negative values. |
| 559 | /// For vectors, this includes constants with undefined elements. |
| 560 | inline cst_pred_ty<is_nonnegative> m_NonNegative() { |
| 561 | return cst_pred_ty<is_nonnegative>(); |
| 562 | } |
| 563 | inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; } |
| 564 | |
| 565 | struct is_strictlypositive { |
| 566 | bool isValue(const APInt &C) const { return C.isStrictlyPositive(); } |
| 567 | }; |
| 568 | /// Match an integer or vector of strictly positive values. |
| 569 | /// For vectors, this includes constants with undefined elements. |
| 570 | inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { |
| 571 | return cst_pred_ty<is_strictlypositive>(); |
| 572 | } |
| 573 | inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { |
| 574 | return V; |
| 575 | } |
| 576 | |
| 577 | struct is_nonpositive { |
| 578 | bool isValue(const APInt &C) const { return C.isNonPositive(); } |
| 579 | }; |
| 580 | /// Match an integer or vector of non-positive values. |
| 581 | /// For vectors, this includes constants with undefined elements. |
| 582 | inline cst_pred_ty<is_nonpositive> m_NonPositive() { |
| 583 | return cst_pred_ty<is_nonpositive>(); |
| 584 | } |
| 585 | inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; } |
| 586 | |
| 587 | struct is_one { |
| 588 | bool isValue(const APInt &C) const { return C.isOne(); } |
| 589 | }; |
| 590 | /// Match an integer 1 or a vector with all elements equal to 1. |
| 591 | /// For vectors, this includes constants with undefined elements. |
| 592 | inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } |
| 593 | |
| 594 | struct is_zero_int { |
| 595 | bool isValue(const APInt &C) const { return C.isZero(); } |
| 596 | }; |
| 597 | /// Match an integer 0 or a vector with all elements equal to 0. |
| 598 | /// For vectors, this includes constants with undefined elements. |
| 599 | inline cst_pred_ty<is_zero_int> m_ZeroInt() { |
| 600 | return cst_pred_ty<is_zero_int>(); |
| 601 | } |
| 602 | |
| 603 | struct is_zero { |
| 604 | template <typename ITy> bool match(ITy *V) const { |
| 605 | auto *C = dyn_cast<Constant>(V); |
| 606 | // FIXME: this should be able to do something for scalable vectors |
| 607 | return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); |
| 608 | } |
| 609 | }; |
| 610 | /// Match any null constant or a vector with all elements equal to 0. |
| 611 | /// For vectors, this includes constants with undefined elements. |
| 612 | inline is_zero m_Zero() { return is_zero(); } |
| 613 | |
| 614 | struct is_power2 { |
| 615 | bool isValue(const APInt &C) const { return C.isPowerOf2(); } |
| 616 | }; |
| 617 | /// Match an integer or vector power-of-2. |
| 618 | /// For vectors, this includes constants with undefined elements. |
| 619 | inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } |
| 620 | inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } |
| 621 | |
| 622 | struct is_negated_power2 { |
| 623 | bool isValue(const APInt &C) const { return C.isNegatedPowerOf2(); } |
| 624 | }; |
| 625 | /// Match a integer or vector negated power-of-2. |
| 626 | /// For vectors, this includes constants with undefined elements. |
| 627 | inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { |
| 628 | return cst_pred_ty<is_negated_power2>(); |
| 629 | } |
| 630 | inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { |
| 631 | return V; |
| 632 | } |
| 633 | |
| 634 | struct is_negated_power2_or_zero { |
| 635 | bool isValue(const APInt &C) const { return !C || C.isNegatedPowerOf2(); } |
| 636 | }; |
| 637 | /// Match a integer or vector negated power-of-2. |
| 638 | /// For vectors, this includes constants with undefined elements. |
| 639 | inline cst_pred_ty<is_negated_power2_or_zero> m_NegatedPower2OrZero() { |
| 640 | return cst_pred_ty<is_negated_power2_or_zero>(); |
| 641 | } |
| 642 | inline api_pred_ty<is_negated_power2_or_zero> |
| 643 | m_NegatedPower2OrZero(const APInt *&V) { |
| 644 | return V; |
| 645 | } |
| 646 | |
| 647 | struct is_power2_or_zero { |
| 648 | bool isValue(const APInt &C) const { return !C || C.isPowerOf2(); } |
| 649 | }; |
| 650 | /// Match an integer or vector of 0 or power-of-2 values. |
| 651 | /// For vectors, this includes constants with undefined elements. |
| 652 | inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { |
| 653 | return cst_pred_ty<is_power2_or_zero>(); |
| 654 | } |
| 655 | inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { |
| 656 | return V; |
| 657 | } |
| 658 | |
| 659 | struct is_sign_mask { |
| 660 | bool isValue(const APInt &C) const { return C.isSignMask(); } |
| 661 | }; |
| 662 | /// Match an integer or vector with only the sign bit(s) set. |
| 663 | /// For vectors, this includes constants with undefined elements. |
| 664 | inline cst_pred_ty<is_sign_mask> m_SignMask() { |
| 665 | return cst_pred_ty<is_sign_mask>(); |
| 666 | } |
| 667 | |
| 668 | struct is_lowbit_mask { |
| 669 | bool isValue(const APInt &C) const { return C.isMask(); } |
| 670 | }; |
| 671 | /// Match an integer or vector with only the low bit(s) set. |
| 672 | /// For vectors, this includes constants with undefined elements. |
| 673 | inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { |
| 674 | return cst_pred_ty<is_lowbit_mask>(); |
| 675 | } |
| 676 | inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; } |
| 677 | |
| 678 | struct is_lowbit_mask_or_zero { |
| 679 | bool isValue(const APInt &C) const { return !C || C.isMask(); } |
| 680 | }; |
| 681 | /// Match an integer or vector with only the low bit(s) set. |
| 682 | /// For vectors, this includes constants with undefined elements. |
| 683 | inline cst_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero() { |
| 684 | return cst_pred_ty<is_lowbit_mask_or_zero>(); |
| 685 | } |
| 686 | inline api_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero(const APInt *&V) { |
| 687 | return V; |
| 688 | } |
| 689 | |
| 690 | struct icmp_pred_with_threshold { |
| 691 | CmpPredicate Pred; |
| 692 | const APInt *Thr; |
| 693 | bool isValue(const APInt &C) const { |
| 694 | return ICmpInst::compare(LHS: C, RHS: *Thr, Pred); |
| 695 | } |
| 696 | }; |
| 697 | /// Match an integer or vector with every element comparing 'pred' (eg/ne/...) |
| 698 | /// to Threshold. For vectors, this includes constants with undefined elements. |
| 699 | inline cst_pred_ty<icmp_pred_with_threshold> |
| 700 | m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { |
| 701 | cst_pred_ty<icmp_pred_with_threshold> P; |
| 702 | P.Pred = Predicate; |
| 703 | P.Thr = &Threshold; |
| 704 | return P; |
| 705 | } |
| 706 | |
| 707 | struct is_nan { |
| 708 | bool isValue(const APFloat &C) const { return C.isNaN(); } |
| 709 | }; |
| 710 | /// Match an arbitrary NaN constant. This includes quiet and signalling nans. |
| 711 | /// For vectors, this includes constants with undefined elements. |
| 712 | inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); } |
| 713 | |
| 714 | struct is_nonnan { |
| 715 | bool isValue(const APFloat &C) const { return !C.isNaN(); } |
| 716 | }; |
| 717 | /// Match a non-NaN FP constant. |
| 718 | /// For vectors, this includes constants with undefined elements. |
| 719 | inline cstfp_pred_ty<is_nonnan> m_NonNaN() { |
| 720 | return cstfp_pred_ty<is_nonnan>(); |
| 721 | } |
| 722 | |
| 723 | struct is_inf { |
| 724 | bool isValue(const APFloat &C) const { return C.isInfinity(); } |
| 725 | }; |
| 726 | /// Match a positive or negative infinity FP constant. |
| 727 | /// For vectors, this includes constants with undefined elements. |
| 728 | inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); } |
| 729 | |
| 730 | struct is_noninf { |
| 731 | bool isValue(const APFloat &C) const { return !C.isInfinity(); } |
| 732 | }; |
| 733 | /// Match a non-infinity FP constant, i.e. finite or NaN. |
| 734 | /// For vectors, this includes constants with undefined elements. |
| 735 | inline cstfp_pred_ty<is_noninf> m_NonInf() { |
| 736 | return cstfp_pred_ty<is_noninf>(); |
| 737 | } |
| 738 | |
| 739 | struct is_finite { |
| 740 | bool isValue(const APFloat &C) const { return C.isFinite(); } |
| 741 | }; |
| 742 | /// Match a finite FP constant, i.e. not infinity or NaN. |
| 743 | /// For vectors, this includes constants with undefined elements. |
| 744 | inline cstfp_pred_ty<is_finite> m_Finite() { |
| 745 | return cstfp_pred_ty<is_finite>(); |
| 746 | } |
| 747 | inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; } |
| 748 | |
| 749 | struct is_finitenonzero { |
| 750 | bool isValue(const APFloat &C) const { return C.isFiniteNonZero(); } |
| 751 | }; |
| 752 | /// Match a finite non-zero FP constant. |
| 753 | /// For vectors, this includes constants with undefined elements. |
| 754 | inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { |
| 755 | return cstfp_pred_ty<is_finitenonzero>(); |
| 756 | } |
| 757 | inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { |
| 758 | return V; |
| 759 | } |
| 760 | |
| 761 | struct is_any_zero_fp { |
| 762 | bool isValue(const APFloat &C) const { return C.isZero(); } |
| 763 | }; |
| 764 | /// Match a floating-point negative zero or positive zero. |
| 765 | /// For vectors, this includes constants with undefined elements. |
| 766 | inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { |
| 767 | return cstfp_pred_ty<is_any_zero_fp>(); |
| 768 | } |
| 769 | |
| 770 | struct is_pos_zero_fp { |
| 771 | bool isValue(const APFloat &C) const { return C.isPosZero(); } |
| 772 | }; |
| 773 | /// Match a floating-point positive zero. |
| 774 | /// For vectors, this includes constants with undefined elements. |
| 775 | inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { |
| 776 | return cstfp_pred_ty<is_pos_zero_fp>(); |
| 777 | } |
| 778 | |
| 779 | struct is_neg_zero_fp { |
| 780 | bool isValue(const APFloat &C) const { return C.isNegZero(); } |
| 781 | }; |
| 782 | /// Match a floating-point negative zero. |
| 783 | /// For vectors, this includes constants with undefined elements. |
| 784 | inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { |
| 785 | return cstfp_pred_ty<is_neg_zero_fp>(); |
| 786 | } |
| 787 | |
| 788 | struct is_non_zero_fp { |
| 789 | bool isValue(const APFloat &C) const { return C.isNonZero(); } |
| 790 | }; |
| 791 | /// Match a floating-point non-zero. |
| 792 | /// For vectors, this includes constants with undefined elements. |
| 793 | inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { |
| 794 | return cstfp_pred_ty<is_non_zero_fp>(); |
| 795 | } |
| 796 | |
| 797 | struct is_non_zero_not_denormal_fp { |
| 798 | bool isValue(const APFloat &C) const { |
| 799 | return !C.isDenormal() && C.isNonZero(); |
| 800 | } |
| 801 | }; |
| 802 | |
| 803 | /// Match a floating-point non-zero that is not a denormal. |
| 804 | /// For vectors, this includes constants with undefined elements. |
| 805 | inline cstfp_pred_ty<is_non_zero_not_denormal_fp> m_NonZeroNotDenormalFP() { |
| 806 | return cstfp_pred_ty<is_non_zero_not_denormal_fp>(); |
| 807 | } |
| 808 | |
| 809 | /////////////////////////////////////////////////////////////////////////////// |
| 810 | |
| 811 | template <typename Class> struct bind_ty { |
| 812 | Class *&VR; |
| 813 | |
| 814 | bind_ty(Class *&V) : VR(V) {} |
| 815 | |
| 816 | template <typename ITy> bool match(ITy *V) const { |
| 817 | if (auto *CV = dyn_cast<Class>(V)) { |
| 818 | VR = CV; |
| 819 | return true; |
| 820 | } |
| 821 | return false; |
| 822 | } |
| 823 | }; |
| 824 | |
| 825 | /// Match a value, capturing it if we match. |
| 826 | inline bind_ty<Value> m_Value(Value *&V) { return V; } |
| 827 | inline bind_ty<const Value> m_Value(const Value *&V) { return V; } |
| 828 | |
| 829 | /// Match an instruction, capturing it if we match. |
| 830 | inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } |
| 831 | /// Match a unary operator, capturing it if we match. |
| 832 | inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } |
| 833 | /// Match a binary operator, capturing it if we match. |
| 834 | inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } |
| 835 | /// Match a with overflow intrinsic, capturing it if we match. |
| 836 | inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { |
| 837 | return I; |
| 838 | } |
| 839 | inline bind_ty<const WithOverflowInst> |
| 840 | m_WithOverflowInst(const WithOverflowInst *&I) { |
| 841 | return I; |
| 842 | } |
| 843 | |
| 844 | /// Match an UndefValue, capturing the value if we match. |
| 845 | inline bind_ty<UndefValue> m_UndefValue(UndefValue *&U) { return U; } |
| 846 | |
| 847 | /// Match a Constant, capturing the value if we match. |
| 848 | inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } |
| 849 | |
| 850 | /// Match a ConstantInt, capturing the value if we match. |
| 851 | inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } |
| 852 | |
| 853 | /// Match a ConstantFP, capturing the value if we match. |
| 854 | inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } |
| 855 | |
| 856 | /// Match a ConstantExpr, capturing the value if we match. |
| 857 | inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; } |
| 858 | |
| 859 | /// Match a basic block value, capturing it if we match. |
| 860 | inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } |
| 861 | inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { |
| 862 | return V; |
| 863 | } |
| 864 | |
| 865 | // TODO: Remove once UseConstant{Int,FP}ForScalableSplat is enabled by default, |
| 866 | // and use m_Unless(m_ConstantExpr). |
| 867 | struct immconstant_ty { |
| 868 | template <typename ITy> static bool isImmConstant(ITy *V) { |
| 869 | if (auto *CV = dyn_cast<Constant>(V)) { |
| 870 | if (!isa<ConstantExpr>(CV) && !CV->containsConstantExpression()) |
| 871 | return true; |
| 872 | |
| 873 | if (CV->getType()->isVectorTy()) { |
| 874 | if (auto *Splat = CV->getSplatValue(/*AllowPoison=*/true)) { |
| 875 | if (!isa<ConstantExpr>(Splat) && |
| 876 | !Splat->containsConstantExpression()) { |
| 877 | return true; |
| 878 | } |
| 879 | } |
| 880 | } |
| 881 | } |
| 882 | return false; |
| 883 | } |
| 884 | }; |
| 885 | |
| 886 | struct match_immconstant_ty : immconstant_ty { |
| 887 | template <typename ITy> bool match(ITy *V) const { return isImmConstant(V); } |
| 888 | }; |
| 889 | |
| 890 | /// Match an arbitrary immediate Constant and ignore it. |
| 891 | inline match_immconstant_ty m_ImmConstant() { return match_immconstant_ty(); } |
| 892 | |
| 893 | struct bind_immconstant_ty : immconstant_ty { |
| 894 | Constant *&VR; |
| 895 | |
| 896 | bind_immconstant_ty(Constant *&V) : VR(V) {} |
| 897 | |
| 898 | template <typename ITy> bool match(ITy *V) const { |
| 899 | if (isImmConstant(V)) { |
| 900 | VR = cast<Constant>(V); |
| 901 | return true; |
| 902 | } |
| 903 | return false; |
| 904 | } |
| 905 | }; |
| 906 | |
| 907 | /// Match an immediate Constant, capturing the value if we match. |
| 908 | inline bind_immconstant_ty m_ImmConstant(Constant *&C) { |
| 909 | return bind_immconstant_ty(C); |
| 910 | } |
| 911 | |
| 912 | /// Match a specified Value*. |
| 913 | struct specificval_ty { |
| 914 | const Value *Val; |
| 915 | |
| 916 | specificval_ty(const Value *V) : Val(V) {} |
| 917 | |
| 918 | template <typename ITy> bool match(ITy *V) const { return V == Val; } |
| 919 | }; |
| 920 | |
| 921 | /// Match if we have a specific specified value. |
| 922 | inline specificval_ty m_Specific(const Value *V) { return V; } |
| 923 | |
| 924 | /// Stores a reference to the Value *, not the Value * itself, |
| 925 | /// thus can be used in commutative matchers. |
| 926 | template <typename Class> struct deferredval_ty { |
| 927 | Class *const &Val; |
| 928 | |
| 929 | deferredval_ty(Class *const &V) : Val(V) {} |
| 930 | |
| 931 | template <typename ITy> bool match(ITy *const V) const { return V == Val; } |
| 932 | }; |
| 933 | |
| 934 | /// Like m_Specific(), but works if the specific value to match is determined |
| 935 | /// as part of the same match() expression. For example: |
| 936 | /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will |
| 937 | /// bind X before the pattern match starts. |
| 938 | /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against |
| 939 | /// whichever value m_Value(X) populated. |
| 940 | inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } |
| 941 | inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { |
| 942 | return V; |
| 943 | } |
| 944 | |
| 945 | /// Match a specified floating point value or vector of all elements of |
| 946 | /// that value. |
| 947 | struct specific_fpval { |
| 948 | double Val; |
| 949 | |
| 950 | specific_fpval(double V) : Val(V) {} |
| 951 | |
| 952 | template <typename ITy> bool match(ITy *V) const { |
| 953 | if (const auto *CFP = dyn_cast<ConstantFP>(V)) |
| 954 | return CFP->isExactlyValue(Val); |
| 955 | if (V->getType()->isVectorTy()) |
| 956 | if (const auto *C = dyn_cast<Constant>(V)) |
| 957 | if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
| 958 | return CFP->isExactlyValue(Val); |
| 959 | return false; |
| 960 | } |
| 961 | }; |
| 962 | |
| 963 | /// Match a specific floating point value or vector with all elements |
| 964 | /// equal to the value. |
| 965 | inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } |
| 966 | |
| 967 | /// Match a float 1.0 or vector with all elements equal to 1.0. |
| 968 | inline specific_fpval m_FPOne() { return m_SpecificFP(V: 1.0); } |
| 969 | |
| 970 | struct bind_const_intval_ty { |
| 971 | uint64_t &VR; |
| 972 | |
| 973 | bind_const_intval_ty(uint64_t &V) : VR(V) {} |
| 974 | |
| 975 | template <typename ITy> bool match(ITy *V) const { |
| 976 | if (const auto *CV = dyn_cast<ConstantInt>(V)) |
| 977 | if (CV->getValue().ule(UINT64_MAX)) { |
| 978 | VR = CV->getZExtValue(); |
| 979 | return true; |
| 980 | } |
| 981 | return false; |
| 982 | } |
| 983 | }; |
| 984 | |
| 985 | /// Match a specified integer value or vector of all elements of that |
| 986 | /// value. |
| 987 | template <bool AllowPoison> struct specific_intval { |
| 988 | const APInt &Val; |
| 989 | |
| 990 | specific_intval(const APInt &V) : Val(V) {} |
| 991 | |
| 992 | template <typename ITy> bool match(ITy *V) const { |
| 993 | const auto *CI = dyn_cast<ConstantInt>(V); |
| 994 | if (!CI && V->getType()->isVectorTy()) |
| 995 | if (const auto *C = dyn_cast<Constant>(V)) |
| 996 | CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison)); |
| 997 | |
| 998 | return CI && APInt::isSameValue(I1: CI->getValue(), I2: Val); |
| 999 | } |
| 1000 | }; |
| 1001 | |
| 1002 | template <bool AllowPoison> struct specific_intval64 { |
| 1003 | uint64_t Val; |
| 1004 | |
| 1005 | specific_intval64(uint64_t V) : Val(V) {} |
| 1006 | |
| 1007 | template <typename ITy> bool match(ITy *V) const { |
| 1008 | const auto *CI = dyn_cast<ConstantInt>(V); |
| 1009 | if (!CI && V->getType()->isVectorTy()) |
| 1010 | if (const auto *C = dyn_cast<Constant>(V)) |
| 1011 | CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison)); |
| 1012 | |
| 1013 | return CI && CI->getValue() == Val; |
| 1014 | } |
| 1015 | }; |
| 1016 | |
| 1017 | /// Match a specific integer value or vector with all elements equal to |
| 1018 | /// the value. |
| 1019 | inline specific_intval<false> m_SpecificInt(const APInt &V) { |
| 1020 | return specific_intval<false>(V); |
| 1021 | } |
| 1022 | |
| 1023 | inline specific_intval64<false> m_SpecificInt(uint64_t V) { |
| 1024 | return specific_intval64<false>(V); |
| 1025 | } |
| 1026 | |
| 1027 | inline specific_intval<true> m_SpecificIntAllowPoison(const APInt &V) { |
| 1028 | return specific_intval<true>(V); |
| 1029 | } |
| 1030 | |
| 1031 | inline specific_intval64<true> m_SpecificIntAllowPoison(uint64_t V) { |
| 1032 | return specific_intval64<true>(V); |
| 1033 | } |
| 1034 | |
| 1035 | /// Match a ConstantInt and bind to its value. This does not match |
| 1036 | /// ConstantInts wider than 64-bits. |
| 1037 | inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } |
| 1038 | |
| 1039 | /// Match a specified basic block value. |
| 1040 | struct specific_bbval { |
| 1041 | BasicBlock *Val; |
| 1042 | |
| 1043 | specific_bbval(BasicBlock *Val) : Val(Val) {} |
| 1044 | |
| 1045 | template <typename ITy> bool match(ITy *V) const { |
| 1046 | const auto *BB = dyn_cast<BasicBlock>(V); |
| 1047 | return BB && BB == Val; |
| 1048 | } |
| 1049 | }; |
| 1050 | |
| 1051 | /// Match a specific basic block value. |
| 1052 | inline specific_bbval m_SpecificBB(BasicBlock *BB) { |
| 1053 | return specific_bbval(BB); |
| 1054 | } |
| 1055 | |
| 1056 | /// A commutative-friendly version of m_Specific(). |
| 1057 | inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { |
| 1058 | return BB; |
| 1059 | } |
| 1060 | inline deferredval_ty<const BasicBlock> |
| 1061 | m_Deferred(const BasicBlock *const &BB) { |
| 1062 | return BB; |
| 1063 | } |
| 1064 | |
| 1065 | //===----------------------------------------------------------------------===// |
| 1066 | // Matcher for any binary operator. |
| 1067 | // |
| 1068 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
| 1069 | struct AnyBinaryOp_match { |
| 1070 | LHS_t L; |
| 1071 | RHS_t R; |
| 1072 | |
| 1073 | // The evaluation order is always stable, regardless of Commutability. |
| 1074 | // The LHS is always matched first. |
| 1075 | AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 1076 | |
| 1077 | template <typename OpTy> bool match(OpTy *V) const { |
| 1078 | if (auto *I = dyn_cast<BinaryOperator>(V)) |
| 1079 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| 1080 | (Commutable && L.match(I->getOperand(1)) && |
| 1081 | R.match(I->getOperand(0))); |
| 1082 | return false; |
| 1083 | } |
| 1084 | }; |
| 1085 | |
| 1086 | template <typename LHS, typename RHS> |
| 1087 | inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { |
| 1088 | return AnyBinaryOp_match<LHS, RHS>(L, R); |
| 1089 | } |
| 1090 | |
| 1091 | //===----------------------------------------------------------------------===// |
| 1092 | // Matcher for any unary operator. |
| 1093 | // TODO fuse unary, binary matcher into n-ary matcher |
| 1094 | // |
| 1095 | template <typename OP_t> struct AnyUnaryOp_match { |
| 1096 | OP_t X; |
| 1097 | |
| 1098 | AnyUnaryOp_match(const OP_t &X) : X(X) {} |
| 1099 | |
| 1100 | template <typename OpTy> bool match(OpTy *V) const { |
| 1101 | if (auto *I = dyn_cast<UnaryOperator>(V)) |
| 1102 | return X.match(I->getOperand(0)); |
| 1103 | return false; |
| 1104 | } |
| 1105 | }; |
| 1106 | |
| 1107 | template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { |
| 1108 | return AnyUnaryOp_match<OP_t>(X); |
| 1109 | } |
| 1110 | |
| 1111 | //===----------------------------------------------------------------------===// |
| 1112 | // Matchers for specific binary operators. |
| 1113 | // |
| 1114 | |
| 1115 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
| 1116 | bool Commutable = false> |
| 1117 | struct BinaryOp_match { |
| 1118 | LHS_t L; |
| 1119 | RHS_t R; |
| 1120 | |
| 1121 | // The evaluation order is always stable, regardless of Commutability. |
| 1122 | // The LHS is always matched first. |
| 1123 | BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 1124 | |
| 1125 | template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) const { |
| 1126 | if (V->getValueID() == Value::InstructionVal + Opc) { |
| 1127 | auto *I = cast<BinaryOperator>(V); |
| 1128 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| 1129 | (Commutable && L.match(I->getOperand(1)) && |
| 1130 | R.match(I->getOperand(0))); |
| 1131 | } |
| 1132 | return false; |
| 1133 | } |
| 1134 | |
| 1135 | template <typename OpTy> bool match(OpTy *V) const { |
| 1136 | return match(Opcode, V); |
| 1137 | } |
| 1138 | }; |
| 1139 | |
| 1140 | template <typename LHS, typename RHS> |
| 1141 | inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, |
| 1142 | const RHS &R) { |
| 1143 | return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); |
| 1144 | } |
| 1145 | |
| 1146 | template <typename LHS, typename RHS> |
| 1147 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, |
| 1148 | const RHS &R) { |
| 1149 | return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); |
| 1150 | } |
| 1151 | |
| 1152 | template <typename LHS, typename RHS> |
| 1153 | inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, |
| 1154 | const RHS &R) { |
| 1155 | return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); |
| 1156 | } |
| 1157 | |
| 1158 | template <typename LHS, typename RHS> |
| 1159 | inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, |
| 1160 | const RHS &R) { |
| 1161 | return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); |
| 1162 | } |
| 1163 | |
| 1164 | template <typename Op_t> struct FNeg_match { |
| 1165 | Op_t X; |
| 1166 | |
| 1167 | FNeg_match(const Op_t &Op) : X(Op) {} |
| 1168 | template <typename OpTy> bool match(OpTy *V) const { |
| 1169 | auto *FPMO = dyn_cast<FPMathOperator>(V); |
| 1170 | if (!FPMO) |
| 1171 | return false; |
| 1172 | |
| 1173 | if (FPMO->getOpcode() == Instruction::FNeg) |
| 1174 | return X.match(FPMO->getOperand(0)); |
| 1175 | |
| 1176 | if (FPMO->getOpcode() == Instruction::FSub) { |
| 1177 | if (FPMO->hasNoSignedZeros()) { |
| 1178 | // With 'nsz', any zero goes. |
| 1179 | if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) |
| 1180 | return false; |
| 1181 | } else { |
| 1182 | // Without 'nsz', we need fsub -0.0, X exactly. |
| 1183 | if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) |
| 1184 | return false; |
| 1185 | } |
| 1186 | |
| 1187 | return X.match(FPMO->getOperand(1)); |
| 1188 | } |
| 1189 | |
| 1190 | return false; |
| 1191 | } |
| 1192 | }; |
| 1193 | |
| 1194 | /// Match 'fneg X' as 'fsub -0.0, X'. |
| 1195 | template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) { |
| 1196 | return FNeg_match<OpTy>(X); |
| 1197 | } |
| 1198 | |
| 1199 | /// Match 'fneg X' as 'fsub +-0.0, X'. |
| 1200 | template <typename RHS> |
| 1201 | inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> |
| 1202 | m_FNegNSZ(const RHS &X) { |
| 1203 | return m_FSub(m_AnyZeroFP(), X); |
| 1204 | } |
| 1205 | |
| 1206 | template <typename LHS, typename RHS> |
| 1207 | inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, |
| 1208 | const RHS &R) { |
| 1209 | return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); |
| 1210 | } |
| 1211 | |
| 1212 | template <typename LHS, typename RHS> |
| 1213 | inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, |
| 1214 | const RHS &R) { |
| 1215 | return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); |
| 1216 | } |
| 1217 | |
| 1218 | template <typename LHS, typename RHS> |
| 1219 | inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, |
| 1220 | const RHS &R) { |
| 1221 | return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); |
| 1222 | } |
| 1223 | |
| 1224 | template <typename LHS, typename RHS> |
| 1225 | inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, |
| 1226 | const RHS &R) { |
| 1227 | return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); |
| 1228 | } |
| 1229 | |
| 1230 | template <typename LHS, typename RHS> |
| 1231 | inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, |
| 1232 | const RHS &R) { |
| 1233 | return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); |
| 1234 | } |
| 1235 | |
| 1236 | template <typename LHS, typename RHS> |
| 1237 | inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, |
| 1238 | const RHS &R) { |
| 1239 | return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); |
| 1240 | } |
| 1241 | |
| 1242 | template <typename LHS, typename RHS> |
| 1243 | inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, |
| 1244 | const RHS &R) { |
| 1245 | return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); |
| 1246 | } |
| 1247 | |
| 1248 | template <typename LHS, typename RHS> |
| 1249 | inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, |
| 1250 | const RHS &R) { |
| 1251 | return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); |
| 1252 | } |
| 1253 | |
| 1254 | template <typename LHS, typename RHS> |
| 1255 | inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, |
| 1256 | const RHS &R) { |
| 1257 | return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); |
| 1258 | } |
| 1259 | |
| 1260 | template <typename LHS, typename RHS> |
| 1261 | inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, |
| 1262 | const RHS &R) { |
| 1263 | return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); |
| 1264 | } |
| 1265 | |
| 1266 | template <typename LHS, typename RHS> |
| 1267 | inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, |
| 1268 | const RHS &R) { |
| 1269 | return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); |
| 1270 | } |
| 1271 | |
| 1272 | template <typename LHS, typename RHS> |
| 1273 | inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, |
| 1274 | const RHS &R) { |
| 1275 | return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); |
| 1276 | } |
| 1277 | |
| 1278 | template <typename LHS, typename RHS> |
| 1279 | inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, |
| 1280 | const RHS &R) { |
| 1281 | return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); |
| 1282 | } |
| 1283 | |
| 1284 | template <typename LHS, typename RHS> |
| 1285 | inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, |
| 1286 | const RHS &R) { |
| 1287 | return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); |
| 1288 | } |
| 1289 | |
| 1290 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
| 1291 | unsigned WrapFlags = 0, bool Commutable = false> |
| 1292 | struct OverflowingBinaryOp_match { |
| 1293 | LHS_t L; |
| 1294 | RHS_t R; |
| 1295 | |
| 1296 | OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) |
| 1297 | : L(LHS), R(RHS) {} |
| 1298 | |
| 1299 | template <typename OpTy> bool match(OpTy *V) const { |
| 1300 | if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { |
| 1301 | if (Op->getOpcode() != Opcode) |
| 1302 | return false; |
| 1303 | if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && |
| 1304 | !Op->hasNoUnsignedWrap()) |
| 1305 | return false; |
| 1306 | if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && |
| 1307 | !Op->hasNoSignedWrap()) |
| 1308 | return false; |
| 1309 | return (L.match(Op->getOperand(0)) && R.match(Op->getOperand(1))) || |
| 1310 | (Commutable && L.match(Op->getOperand(1)) && |
| 1311 | R.match(Op->getOperand(0))); |
| 1312 | } |
| 1313 | return false; |
| 1314 | } |
| 1315 | }; |
| 1316 | |
| 1317 | template <typename LHS, typename RHS> |
| 1318 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 1319 | OverflowingBinaryOperator::NoSignedWrap> |
| 1320 | m_NSWAdd(const LHS &L, const RHS &R) { |
| 1321 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 1322 | OverflowingBinaryOperator::NoSignedWrap>(L, |
| 1323 | R); |
| 1324 | } |
| 1325 | template <typename LHS, typename RHS> |
| 1326 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 1327 | OverflowingBinaryOperator::NoSignedWrap, true> |
| 1328 | m_c_NSWAdd(const LHS &L, const RHS &R) { |
| 1329 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 1330 | OverflowingBinaryOperator::NoSignedWrap, |
| 1331 | true>(L, R); |
| 1332 | } |
| 1333 | template <typename LHS, typename RHS> |
| 1334 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 1335 | OverflowingBinaryOperator::NoSignedWrap> |
| 1336 | m_NSWSub(const LHS &L, const RHS &R) { |
| 1337 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 1338 | OverflowingBinaryOperator::NoSignedWrap>(L, |
| 1339 | R); |
| 1340 | } |
| 1341 | template <typename LHS, typename RHS> |
| 1342 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 1343 | OverflowingBinaryOperator::NoSignedWrap> |
| 1344 | m_NSWMul(const LHS &L, const RHS &R) { |
| 1345 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 1346 | OverflowingBinaryOperator::NoSignedWrap>(L, |
| 1347 | R); |
| 1348 | } |
| 1349 | template <typename LHS, typename RHS> |
| 1350 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 1351 | OverflowingBinaryOperator::NoSignedWrap> |
| 1352 | m_NSWShl(const LHS &L, const RHS &R) { |
| 1353 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 1354 | OverflowingBinaryOperator::NoSignedWrap>(L, |
| 1355 | R); |
| 1356 | } |
| 1357 | |
| 1358 | template <typename LHS, typename RHS> |
| 1359 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 1360 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 1361 | m_NUWAdd(const LHS &L, const RHS &R) { |
| 1362 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 1363 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 1364 | L, R); |
| 1365 | } |
| 1366 | |
| 1367 | template <typename LHS, typename RHS> |
| 1368 | inline OverflowingBinaryOp_match< |
| 1369 | LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true> |
| 1370 | m_c_NUWAdd(const LHS &L, const RHS &R) { |
| 1371 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 1372 | OverflowingBinaryOperator::NoUnsignedWrap, |
| 1373 | true>(L, R); |
| 1374 | } |
| 1375 | |
| 1376 | template <typename LHS, typename RHS> |
| 1377 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 1378 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 1379 | m_NUWSub(const LHS &L, const RHS &R) { |
| 1380 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 1381 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 1382 | L, R); |
| 1383 | } |
| 1384 | template <typename LHS, typename RHS> |
| 1385 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 1386 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 1387 | m_NUWMul(const LHS &L, const RHS &R) { |
| 1388 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 1389 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 1390 | L, R); |
| 1391 | } |
| 1392 | template <typename LHS, typename RHS> |
| 1393 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 1394 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 1395 | m_NUWShl(const LHS &L, const RHS &R) { |
| 1396 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 1397 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 1398 | L, R); |
| 1399 | } |
| 1400 | |
| 1401 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
| 1402 | struct SpecificBinaryOp_match |
| 1403 | : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> { |
| 1404 | unsigned Opcode; |
| 1405 | |
| 1406 | SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS) |
| 1407 | : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {} |
| 1408 | |
| 1409 | template <typename OpTy> bool match(OpTy *V) const { |
| 1410 | return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V); |
| 1411 | } |
| 1412 | }; |
| 1413 | |
| 1414 | /// Matches a specific opcode. |
| 1415 | template <typename LHS, typename RHS> |
| 1416 | inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L, |
| 1417 | const RHS &R) { |
| 1418 | return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R); |
| 1419 | } |
| 1420 | |
| 1421 | template <typename LHS, typename RHS, bool Commutable = false> |
| 1422 | struct DisjointOr_match { |
| 1423 | LHS L; |
| 1424 | RHS R; |
| 1425 | |
| 1426 | DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {} |
| 1427 | |
| 1428 | template <typename OpTy> bool match(OpTy *V) const { |
| 1429 | if (auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { |
| 1430 | assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint" ); |
| 1431 | if (!PDI->isDisjoint()) |
| 1432 | return false; |
| 1433 | return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) || |
| 1434 | (Commutable && L.match(PDI->getOperand(1)) && |
| 1435 | R.match(PDI->getOperand(0))); |
| 1436 | } |
| 1437 | return false; |
| 1438 | } |
| 1439 | }; |
| 1440 | |
| 1441 | template <typename LHS, typename RHS> |
| 1442 | inline DisjointOr_match<LHS, RHS> m_DisjointOr(const LHS &L, const RHS &R) { |
| 1443 | return DisjointOr_match<LHS, RHS>(L, R); |
| 1444 | } |
| 1445 | |
| 1446 | template <typename LHS, typename RHS> |
| 1447 | inline DisjointOr_match<LHS, RHS, true> m_c_DisjointOr(const LHS &L, |
| 1448 | const RHS &R) { |
| 1449 | return DisjointOr_match<LHS, RHS, true>(L, R); |
| 1450 | } |
| 1451 | |
| 1452 | /// Match either "add" or "or disjoint". |
| 1453 | template <typename LHS, typename RHS> |
| 1454 | inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Add>, |
| 1455 | DisjointOr_match<LHS, RHS>> |
| 1456 | m_AddLike(const LHS &L, const RHS &R) { |
| 1457 | return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R)); |
| 1458 | } |
| 1459 | |
| 1460 | /// Match either "add nsw" or "or disjoint" |
| 1461 | template <typename LHS, typename RHS> |
| 1462 | inline match_combine_or< |
| 1463 | OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 1464 | OverflowingBinaryOperator::NoSignedWrap>, |
| 1465 | DisjointOr_match<LHS, RHS>> |
| 1466 | m_NSWAddLike(const LHS &L, const RHS &R) { |
| 1467 | return m_CombineOr(m_NSWAdd(L, R), m_DisjointOr(L, R)); |
| 1468 | } |
| 1469 | |
| 1470 | /// Match either "add nuw" or "or disjoint" |
| 1471 | template <typename LHS, typename RHS> |
| 1472 | inline match_combine_or< |
| 1473 | OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 1474 | OverflowingBinaryOperator::NoUnsignedWrap>, |
| 1475 | DisjointOr_match<LHS, RHS>> |
| 1476 | m_NUWAddLike(const LHS &L, const RHS &R) { |
| 1477 | return m_CombineOr(m_NUWAdd(L, R), m_DisjointOr(L, R)); |
| 1478 | } |
| 1479 | |
| 1480 | template <typename LHS, typename RHS> |
| 1481 | struct XorLike_match { |
| 1482 | LHS L; |
| 1483 | RHS R; |
| 1484 | |
| 1485 | XorLike_match(const LHS &L, const RHS &R) : L(L), R(R) {} |
| 1486 | |
| 1487 | template <typename OpTy> bool match(OpTy *V) const { |
| 1488 | if (auto *Op = dyn_cast<BinaryOperator>(V)) { |
| 1489 | if (Op->getOpcode() == Instruction::Sub && Op->hasNoUnsignedWrap() && |
| 1490 | PatternMatch::match(Op->getOperand(0), m_LowBitMask())) |
| 1491 | ; // Pass |
| 1492 | else if (Op->getOpcode() != Instruction::Xor) |
| 1493 | return false; |
| 1494 | return (L.match(Op->getOperand(0)) && R.match(Op->getOperand(1))) || |
| 1495 | (L.match(Op->getOperand(1)) && R.match(Op->getOperand(0))); |
| 1496 | } |
| 1497 | return false; |
| 1498 | } |
| 1499 | }; |
| 1500 | |
| 1501 | /// Match either `(xor L, R)`, `(xor R, L)` or `(sub nuw R, L)` iff `R.isMask()` |
| 1502 | /// Only commutative matcher as the `sub` will need to swap the L and R. |
| 1503 | template <typename LHS, typename RHS> |
| 1504 | inline auto m_c_XorLike(const LHS &L, const RHS &R) { |
| 1505 | return XorLike_match<LHS, RHS>(L, R); |
| 1506 | } |
| 1507 | |
| 1508 | //===----------------------------------------------------------------------===// |
| 1509 | // Class that matches a group of binary opcodes. |
| 1510 | // |
| 1511 | template <typename LHS_t, typename RHS_t, typename Predicate, |
| 1512 | bool Commutable = false> |
| 1513 | struct BinOpPred_match : Predicate { |
| 1514 | LHS_t L; |
| 1515 | RHS_t R; |
| 1516 | |
| 1517 | BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 1518 | |
| 1519 | template <typename OpTy> bool match(OpTy *V) const { |
| 1520 | if (auto *I = dyn_cast<Instruction>(V)) |
| 1521 | return this->isOpType(I->getOpcode()) && |
| 1522 | ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| 1523 | (Commutable && L.match(I->getOperand(1)) && |
| 1524 | R.match(I->getOperand(0)))); |
| 1525 | return false; |
| 1526 | } |
| 1527 | }; |
| 1528 | |
| 1529 | struct is_shift_op { |
| 1530 | bool isOpType(unsigned Opcode) const { return Instruction::isShift(Opcode); } |
| 1531 | }; |
| 1532 | |
| 1533 | struct is_right_shift_op { |
| 1534 | bool isOpType(unsigned Opcode) const { |
| 1535 | return Opcode == Instruction::LShr || Opcode == Instruction::AShr; |
| 1536 | } |
| 1537 | }; |
| 1538 | |
| 1539 | struct is_logical_shift_op { |
| 1540 | bool isOpType(unsigned Opcode) const { |
| 1541 | return Opcode == Instruction::LShr || Opcode == Instruction::Shl; |
| 1542 | } |
| 1543 | }; |
| 1544 | |
| 1545 | struct is_bitwiselogic_op { |
| 1546 | bool isOpType(unsigned Opcode) const { |
| 1547 | return Instruction::isBitwiseLogicOp(Opcode); |
| 1548 | } |
| 1549 | }; |
| 1550 | |
| 1551 | struct is_idiv_op { |
| 1552 | bool isOpType(unsigned Opcode) const { |
| 1553 | return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; |
| 1554 | } |
| 1555 | }; |
| 1556 | |
| 1557 | struct is_irem_op { |
| 1558 | bool isOpType(unsigned Opcode) const { |
| 1559 | return Opcode == Instruction::SRem || Opcode == Instruction::URem; |
| 1560 | } |
| 1561 | }; |
| 1562 | |
| 1563 | /// Matches shift operations. |
| 1564 | template <typename LHS, typename RHS> |
| 1565 | inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, |
| 1566 | const RHS &R) { |
| 1567 | return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); |
| 1568 | } |
| 1569 | |
| 1570 | /// Matches logical shift operations. |
| 1571 | template <typename LHS, typename RHS> |
| 1572 | inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, |
| 1573 | const RHS &R) { |
| 1574 | return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); |
| 1575 | } |
| 1576 | |
| 1577 | /// Matches logical shift operations. |
| 1578 | template <typename LHS, typename RHS> |
| 1579 | inline BinOpPred_match<LHS, RHS, is_logical_shift_op> |
| 1580 | m_LogicalShift(const LHS &L, const RHS &R) { |
| 1581 | return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); |
| 1582 | } |
| 1583 | |
| 1584 | /// Matches bitwise logic operations. |
| 1585 | template <typename LHS, typename RHS> |
| 1586 | inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> |
| 1587 | m_BitwiseLogic(const LHS &L, const RHS &R) { |
| 1588 | return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); |
| 1589 | } |
| 1590 | |
| 1591 | /// Matches bitwise logic operations in either order. |
| 1592 | template <typename LHS, typename RHS> |
| 1593 | inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true> |
| 1594 | m_c_BitwiseLogic(const LHS &L, const RHS &R) { |
| 1595 | return BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true>(L, R); |
| 1596 | } |
| 1597 | |
| 1598 | /// Matches integer division operations. |
| 1599 | template <typename LHS, typename RHS> |
| 1600 | inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, |
| 1601 | const RHS &R) { |
| 1602 | return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); |
| 1603 | } |
| 1604 | |
| 1605 | /// Matches integer remainder operations. |
| 1606 | template <typename LHS, typename RHS> |
| 1607 | inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, |
| 1608 | const RHS &R) { |
| 1609 | return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); |
| 1610 | } |
| 1611 | |
| 1612 | //===----------------------------------------------------------------------===// |
| 1613 | // Class that matches exact binary ops. |
| 1614 | // |
| 1615 | template <typename SubPattern_t> struct Exact_match { |
| 1616 | SubPattern_t SubPattern; |
| 1617 | |
| 1618 | Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| 1619 | |
| 1620 | template <typename OpTy> bool match(OpTy *V) const { |
| 1621 | if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) |
| 1622 | return PEO->isExact() && SubPattern.match(V); |
| 1623 | return false; |
| 1624 | } |
| 1625 | }; |
| 1626 | |
| 1627 | template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { |
| 1628 | return SubPattern; |
| 1629 | } |
| 1630 | |
| 1631 | //===----------------------------------------------------------------------===// |
| 1632 | // Matchers for CmpInst classes |
| 1633 | // |
| 1634 | |
| 1635 | template <typename LHS_t, typename RHS_t, typename Class, |
| 1636 | bool Commutable = false> |
| 1637 | struct CmpClass_match { |
| 1638 | CmpPredicate *Predicate; |
| 1639 | LHS_t L; |
| 1640 | RHS_t R; |
| 1641 | |
| 1642 | // The evaluation order is always stable, regardless of Commutability. |
| 1643 | // The LHS is always matched first. |
| 1644 | CmpClass_match(CmpPredicate &Pred, const LHS_t &LHS, const RHS_t &RHS) |
| 1645 | : Predicate(&Pred), L(LHS), R(RHS) {} |
| 1646 | CmpClass_match(const LHS_t &LHS, const RHS_t &RHS) |
| 1647 | : Predicate(nullptr), L(LHS), R(RHS) {} |
| 1648 | |
| 1649 | template <typename OpTy> bool match(OpTy *V) const { |
| 1650 | if (auto *I = dyn_cast<Class>(V)) { |
| 1651 | if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { |
| 1652 | if (Predicate) |
| 1653 | *Predicate = CmpPredicate::get(Cmp: I); |
| 1654 | return true; |
| 1655 | } |
| 1656 | if (Commutable && L.match(I->getOperand(1)) && |
| 1657 | R.match(I->getOperand(0))) { |
| 1658 | if (Predicate) |
| 1659 | *Predicate = CmpPredicate::getSwapped(I); |
| 1660 | return true; |
| 1661 | } |
| 1662 | } |
| 1663 | return false; |
| 1664 | } |
| 1665 | }; |
| 1666 | |
| 1667 | template <typename LHS, typename RHS> |
| 1668 | inline CmpClass_match<LHS, RHS, CmpInst> m_Cmp(CmpPredicate &Pred, const LHS &L, |
| 1669 | const RHS &R) { |
| 1670 | return CmpClass_match<LHS, RHS, CmpInst>(Pred, L, R); |
| 1671 | } |
| 1672 | |
| 1673 | template <typename LHS, typename RHS> |
| 1674 | inline CmpClass_match<LHS, RHS, ICmpInst> m_ICmp(CmpPredicate &Pred, |
| 1675 | const LHS &L, const RHS &R) { |
| 1676 | return CmpClass_match<LHS, RHS, ICmpInst>(Pred, L, R); |
| 1677 | } |
| 1678 | |
| 1679 | template <typename LHS, typename RHS> |
| 1680 | inline CmpClass_match<LHS, RHS, FCmpInst> m_FCmp(CmpPredicate &Pred, |
| 1681 | const LHS &L, const RHS &R) { |
| 1682 | return CmpClass_match<LHS, RHS, FCmpInst>(Pred, L, R); |
| 1683 | } |
| 1684 | |
| 1685 | template <typename LHS, typename RHS> |
| 1686 | inline CmpClass_match<LHS, RHS, CmpInst> m_Cmp(const LHS &L, const RHS &R) { |
| 1687 | return CmpClass_match<LHS, RHS, CmpInst>(L, R); |
| 1688 | } |
| 1689 | |
| 1690 | template <typename LHS, typename RHS> |
| 1691 | inline CmpClass_match<LHS, RHS, ICmpInst> m_ICmp(const LHS &L, const RHS &R) { |
| 1692 | return CmpClass_match<LHS, RHS, ICmpInst>(L, R); |
| 1693 | } |
| 1694 | |
| 1695 | template <typename LHS, typename RHS> |
| 1696 | inline CmpClass_match<LHS, RHS, FCmpInst> m_FCmp(const LHS &L, const RHS &R) { |
| 1697 | return CmpClass_match<LHS, RHS, FCmpInst>(L, R); |
| 1698 | } |
| 1699 | |
| 1700 | // Same as CmpClass, but instead of saving Pred as out output variable, match a |
| 1701 | // specific input pred for equality. |
| 1702 | template <typename LHS_t, typename RHS_t, typename Class, |
| 1703 | bool Commutable = false> |
| 1704 | struct SpecificCmpClass_match { |
| 1705 | const CmpPredicate Predicate; |
| 1706 | LHS_t L; |
| 1707 | RHS_t R; |
| 1708 | |
| 1709 | SpecificCmpClass_match(CmpPredicate Pred, const LHS_t &LHS, const RHS_t &RHS) |
| 1710 | : Predicate(Pred), L(LHS), R(RHS) {} |
| 1711 | |
| 1712 | template <typename OpTy> bool match(OpTy *V) const { |
| 1713 | if (auto *I = dyn_cast<Class>(V)) { |
| 1714 | if (CmpPredicate::getMatching(A: CmpPredicate::get(Cmp: I), B: Predicate) && |
| 1715 | L.match(I->getOperand(0)) && R.match(I->getOperand(1))) |
| 1716 | return true; |
| 1717 | if constexpr (Commutable) { |
| 1718 | if (CmpPredicate::getMatching(A: CmpPredicate::get(Cmp: I), |
| 1719 | B: CmpPredicate::getSwapped(P: Predicate)) && |
| 1720 | L.match(I->getOperand(1)) && R.match(I->getOperand(0))) |
| 1721 | return true; |
| 1722 | } |
| 1723 | } |
| 1724 | |
| 1725 | return false; |
| 1726 | } |
| 1727 | }; |
| 1728 | |
| 1729 | template <typename LHS, typename RHS> |
| 1730 | inline SpecificCmpClass_match<LHS, RHS, CmpInst> |
| 1731 | m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R) { |
| 1732 | return SpecificCmpClass_match<LHS, RHS, CmpInst>(MatchPred, L, R); |
| 1733 | } |
| 1734 | |
| 1735 | template <typename LHS, typename RHS> |
| 1736 | inline SpecificCmpClass_match<LHS, RHS, ICmpInst> |
| 1737 | m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R) { |
| 1738 | return SpecificCmpClass_match<LHS, RHS, ICmpInst>(MatchPred, L, R); |
| 1739 | } |
| 1740 | |
| 1741 | template <typename LHS, typename RHS> |
| 1742 | inline SpecificCmpClass_match<LHS, RHS, ICmpInst, true> |
| 1743 | m_c_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R) { |
| 1744 | return SpecificCmpClass_match<LHS, RHS, ICmpInst, true>(MatchPred, L, R); |
| 1745 | } |
| 1746 | |
| 1747 | template <typename LHS, typename RHS> |
| 1748 | inline SpecificCmpClass_match<LHS, RHS, FCmpInst> |
| 1749 | m_SpecificFCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R) { |
| 1750 | return SpecificCmpClass_match<LHS, RHS, FCmpInst>(MatchPred, L, R); |
| 1751 | } |
| 1752 | |
| 1753 | //===----------------------------------------------------------------------===// |
| 1754 | // Matchers for instructions with a given opcode and number of operands. |
| 1755 | // |
| 1756 | |
| 1757 | /// Matches instructions with Opcode and three operands. |
| 1758 | template <typename T0, unsigned Opcode> struct OneOps_match { |
| 1759 | T0 Op1; |
| 1760 | |
| 1761 | OneOps_match(const T0 &Op1) : Op1(Op1) {} |
| 1762 | |
| 1763 | template <typename OpTy> bool match(OpTy *V) const { |
| 1764 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 1765 | auto *I = cast<Instruction>(V); |
| 1766 | return Op1.match(I->getOperand(0)); |
| 1767 | } |
| 1768 | return false; |
| 1769 | } |
| 1770 | }; |
| 1771 | |
| 1772 | /// Matches instructions with Opcode and three operands. |
| 1773 | template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { |
| 1774 | T0 Op1; |
| 1775 | T1 Op2; |
| 1776 | |
| 1777 | TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} |
| 1778 | |
| 1779 | template <typename OpTy> bool match(OpTy *V) const { |
| 1780 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 1781 | auto *I = cast<Instruction>(V); |
| 1782 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); |
| 1783 | } |
| 1784 | return false; |
| 1785 | } |
| 1786 | }; |
| 1787 | |
| 1788 | /// Matches instructions with Opcode and three operands. |
| 1789 | template <typename T0, typename T1, typename T2, unsigned Opcode, |
| 1790 | bool CommutableOp2Op3 = false> |
| 1791 | struct ThreeOps_match { |
| 1792 | T0 Op1; |
| 1793 | T1 Op2; |
| 1794 | T2 Op3; |
| 1795 | |
| 1796 | ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) |
| 1797 | : Op1(Op1), Op2(Op2), Op3(Op3) {} |
| 1798 | |
| 1799 | template <typename OpTy> bool match(OpTy *V) const { |
| 1800 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 1801 | auto *I = cast<Instruction>(V); |
| 1802 | if (!Op1.match(I->getOperand(0))) |
| 1803 | return false; |
| 1804 | if (Op2.match(I->getOperand(1)) && Op3.match(I->getOperand(2))) |
| 1805 | return true; |
| 1806 | return CommutableOp2Op3 && Op2.match(I->getOperand(2)) && |
| 1807 | Op3.match(I->getOperand(1)); |
| 1808 | } |
| 1809 | return false; |
| 1810 | } |
| 1811 | }; |
| 1812 | |
| 1813 | /// Matches instructions with Opcode and any number of operands |
| 1814 | template <unsigned Opcode, typename... OperandTypes> struct AnyOps_match { |
| 1815 | std::tuple<OperandTypes...> Operands; |
| 1816 | |
| 1817 | AnyOps_match(const OperandTypes &...Ops) : Operands(Ops...) {} |
| 1818 | |
| 1819 | // Operand matching works by recursively calling match_operands, matching the |
| 1820 | // operands left to right. The first version is called for each operand but |
| 1821 | // the last, for which the second version is called. The second version of |
| 1822 | // match_operands is also used to match each individual operand. |
| 1823 | template <int Idx, int Last> |
| 1824 | std::enable_if_t<Idx != Last, bool> |
| 1825 | match_operands(const Instruction *I) const { |
| 1826 | return match_operands<Idx, Idx>(I) && match_operands<Idx + 1, Last>(I); |
| 1827 | } |
| 1828 | |
| 1829 | template <int Idx, int Last> |
| 1830 | std::enable_if_t<Idx == Last, bool> |
| 1831 | match_operands(const Instruction *I) const { |
| 1832 | return std::get<Idx>(Operands).match(I->getOperand(i: Idx)); |
| 1833 | } |
| 1834 | |
| 1835 | template <typename OpTy> bool match(OpTy *V) const { |
| 1836 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 1837 | auto *I = cast<Instruction>(V); |
| 1838 | return I->getNumOperands() == sizeof...(OperandTypes) && |
| 1839 | match_operands<0, sizeof...(OperandTypes) - 1>(I); |
| 1840 | } |
| 1841 | return false; |
| 1842 | } |
| 1843 | }; |
| 1844 | |
| 1845 | /// Matches SelectInst. |
| 1846 | template <typename Cond, typename LHS, typename RHS> |
| 1847 | inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> |
| 1848 | m_Select(const Cond &C, const LHS &L, const RHS &R) { |
| 1849 | return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); |
| 1850 | } |
| 1851 | |
| 1852 | /// This matches a select of two constants, e.g.: |
| 1853 | /// m_SelectCst<-1, 0>(m_Value(V)) |
| 1854 | template <int64_t L, int64_t R, typename Cond> |
| 1855 | inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, |
| 1856 | Instruction::Select> |
| 1857 | m_SelectCst(const Cond &C) { |
| 1858 | return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); |
| 1859 | } |
| 1860 | |
| 1861 | /// Match Select(C, LHS, RHS) or Select(C, RHS, LHS) |
| 1862 | template <typename LHS, typename RHS> |
| 1863 | inline ThreeOps_match<decltype(m_Value()), LHS, RHS, Instruction::Select, true> |
| 1864 | m_c_Select(const LHS &L, const RHS &R) { |
| 1865 | return ThreeOps_match<decltype(m_Value()), LHS, RHS, Instruction::Select, |
| 1866 | true>(m_Value(), L, R); |
| 1867 | } |
| 1868 | |
| 1869 | /// Matches FreezeInst. |
| 1870 | template <typename OpTy> |
| 1871 | inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { |
| 1872 | return OneOps_match<OpTy, Instruction::Freeze>(Op); |
| 1873 | } |
| 1874 | |
| 1875 | /// Matches InsertElementInst. |
| 1876 | template <typename Val_t, typename Elt_t, typename Idx_t> |
| 1877 | inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> |
| 1878 | m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { |
| 1879 | return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( |
| 1880 | Val, Elt, Idx); |
| 1881 | } |
| 1882 | |
| 1883 | /// Matches ExtractElementInst. |
| 1884 | template <typename Val_t, typename Idx_t> |
| 1885 | inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> |
| 1886 | (const Val_t &Val, const Idx_t &Idx) { |
| 1887 | return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); |
| 1888 | } |
| 1889 | |
| 1890 | /// Matches shuffle. |
| 1891 | template <typename T0, typename T1, typename T2> struct Shuffle_match { |
| 1892 | T0 Op1; |
| 1893 | T1 Op2; |
| 1894 | T2 Mask; |
| 1895 | |
| 1896 | Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) |
| 1897 | : Op1(Op1), Op2(Op2), Mask(Mask) {} |
| 1898 | |
| 1899 | template <typename OpTy> bool match(OpTy *V) const { |
| 1900 | if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { |
| 1901 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
| 1902 | Mask.match(I->getShuffleMask()); |
| 1903 | } |
| 1904 | return false; |
| 1905 | } |
| 1906 | }; |
| 1907 | |
| 1908 | struct m_Mask { |
| 1909 | ArrayRef<int> &MaskRef; |
| 1910 | m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} |
| 1911 | bool match(ArrayRef<int> Mask) const { |
| 1912 | MaskRef = Mask; |
| 1913 | return true; |
| 1914 | } |
| 1915 | }; |
| 1916 | |
| 1917 | struct m_ZeroMask { |
| 1918 | bool match(ArrayRef<int> Mask) const { |
| 1919 | return all_of(Range&: Mask, P: [](int Elem) { return Elem == 0 || Elem == -1; }); |
| 1920 | } |
| 1921 | }; |
| 1922 | |
| 1923 | struct m_SpecificMask { |
| 1924 | ArrayRef<int> Val; |
| 1925 | m_SpecificMask(ArrayRef<int> Val) : Val(Val) {} |
| 1926 | bool match(ArrayRef<int> Mask) const { return Val == Mask; } |
| 1927 | }; |
| 1928 | |
| 1929 | struct m_SplatOrPoisonMask { |
| 1930 | int &SplatIndex; |
| 1931 | m_SplatOrPoisonMask(int &SplatIndex) : SplatIndex(SplatIndex) {} |
| 1932 | bool match(ArrayRef<int> Mask) const { |
| 1933 | const auto *First = find_if(Range&: Mask, P: [](int Elem) { return Elem != -1; }); |
| 1934 | if (First == Mask.end()) |
| 1935 | return false; |
| 1936 | SplatIndex = *First; |
| 1937 | return all_of(Range&: Mask, |
| 1938 | P: [First](int Elem) { return Elem == *First || Elem == -1; }); |
| 1939 | } |
| 1940 | }; |
| 1941 | |
| 1942 | template <typename PointerOpTy, typename OffsetOpTy> struct PtrAdd_match { |
| 1943 | PointerOpTy PointerOp; |
| 1944 | OffsetOpTy OffsetOp; |
| 1945 | |
| 1946 | PtrAdd_match(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) |
| 1947 | : PointerOp(PointerOp), OffsetOp(OffsetOp) {} |
| 1948 | |
| 1949 | template <typename OpTy> bool match(OpTy *V) const { |
| 1950 | auto *GEP = dyn_cast<GEPOperator>(V); |
| 1951 | return GEP && GEP->getSourceElementType()->isIntegerTy(8) && |
| 1952 | PointerOp.match(GEP->getPointerOperand()) && |
| 1953 | OffsetOp.match(GEP->idx_begin()->get()); |
| 1954 | } |
| 1955 | }; |
| 1956 | |
| 1957 | /// Matches ShuffleVectorInst independently of mask value. |
| 1958 | template <typename V1_t, typename V2_t> |
| 1959 | inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> |
| 1960 | m_Shuffle(const V1_t &v1, const V2_t &v2) { |
| 1961 | return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); |
| 1962 | } |
| 1963 | |
| 1964 | template <typename V1_t, typename V2_t, typename Mask_t> |
| 1965 | inline Shuffle_match<V1_t, V2_t, Mask_t> |
| 1966 | m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { |
| 1967 | return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); |
| 1968 | } |
| 1969 | |
| 1970 | /// Matches LoadInst. |
| 1971 | template <typename OpTy> |
| 1972 | inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { |
| 1973 | return OneOps_match<OpTy, Instruction::Load>(Op); |
| 1974 | } |
| 1975 | |
| 1976 | /// Matches StoreInst. |
| 1977 | template <typename ValueOpTy, typename PointerOpTy> |
| 1978 | inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> |
| 1979 | m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { |
| 1980 | return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, |
| 1981 | PointerOp); |
| 1982 | } |
| 1983 | |
| 1984 | /// Matches GetElementPtrInst. |
| 1985 | template <typename... OperandTypes> |
| 1986 | inline auto m_GEP(const OperandTypes &...Ops) { |
| 1987 | return AnyOps_match<Instruction::GetElementPtr, OperandTypes...>(Ops...); |
| 1988 | } |
| 1989 | |
| 1990 | /// Matches GEP with i8 source element type |
| 1991 | template <typename PointerOpTy, typename OffsetOpTy> |
| 1992 | inline PtrAdd_match<PointerOpTy, OffsetOpTy> |
| 1993 | m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) { |
| 1994 | return PtrAdd_match<PointerOpTy, OffsetOpTy>(PointerOp, OffsetOp); |
| 1995 | } |
| 1996 | |
| 1997 | //===----------------------------------------------------------------------===// |
| 1998 | // Matchers for CastInst classes |
| 1999 | // |
| 2000 | |
| 2001 | template <typename Op_t, unsigned Opcode> struct CastOperator_match { |
| 2002 | Op_t Op; |
| 2003 | |
| 2004 | CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| 2005 | |
| 2006 | template <typename OpTy> bool match(OpTy *V) const { |
| 2007 | if (auto *O = dyn_cast<Operator>(V)) |
| 2008 | return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); |
| 2009 | return false; |
| 2010 | } |
| 2011 | }; |
| 2012 | |
| 2013 | template <typename Op_t, typename Class> struct CastInst_match { |
| 2014 | Op_t Op; |
| 2015 | |
| 2016 | CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| 2017 | |
| 2018 | template <typename OpTy> bool match(OpTy *V) const { |
| 2019 | if (auto *I = dyn_cast<Class>(V)) |
| 2020 | return Op.match(I->getOperand(0)); |
| 2021 | return false; |
| 2022 | } |
| 2023 | }; |
| 2024 | |
| 2025 | template <typename Op_t> struct PtrToIntSameSize_match { |
| 2026 | const DataLayout &DL; |
| 2027 | Op_t Op; |
| 2028 | |
| 2029 | PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch) |
| 2030 | : DL(DL), Op(OpMatch) {} |
| 2031 | |
| 2032 | template <typename OpTy> bool match(OpTy *V) const { |
| 2033 | if (auto *O = dyn_cast<Operator>(V)) |
| 2034 | return O->getOpcode() == Instruction::PtrToInt && |
| 2035 | DL.getTypeSizeInBits(Ty: O->getType()) == |
| 2036 | DL.getTypeSizeInBits(Ty: O->getOperand(0)->getType()) && |
| 2037 | Op.match(O->getOperand(0)); |
| 2038 | return false; |
| 2039 | } |
| 2040 | }; |
| 2041 | |
| 2042 | template <typename Op_t> struct NNegZExt_match { |
| 2043 | Op_t Op; |
| 2044 | |
| 2045 | NNegZExt_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| 2046 | |
| 2047 | template <typename OpTy> bool match(OpTy *V) const { |
| 2048 | if (auto *I = dyn_cast<ZExtInst>(V)) |
| 2049 | return I->hasNonNeg() && Op.match(I->getOperand(0)); |
| 2050 | return false; |
| 2051 | } |
| 2052 | }; |
| 2053 | |
| 2054 | template <typename Op_t, unsigned WrapFlags = 0> struct NoWrapTrunc_match { |
| 2055 | Op_t Op; |
| 2056 | |
| 2057 | NoWrapTrunc_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| 2058 | |
| 2059 | template <typename OpTy> bool match(OpTy *V) const { |
| 2060 | if (auto *I = dyn_cast<TruncInst>(V)) |
| 2061 | return (I->getNoWrapKind() & WrapFlags) == WrapFlags && |
| 2062 | Op.match(I->getOperand(0)); |
| 2063 | return false; |
| 2064 | } |
| 2065 | }; |
| 2066 | |
| 2067 | /// Matches BitCast. |
| 2068 | template <typename OpTy> |
| 2069 | inline CastOperator_match<OpTy, Instruction::BitCast> |
| 2070 | m_BitCast(const OpTy &Op) { |
| 2071 | return CastOperator_match<OpTy, Instruction::BitCast>(Op); |
| 2072 | } |
| 2073 | |
| 2074 | template <typename Op_t> struct ElementWiseBitCast_match { |
| 2075 | Op_t Op; |
| 2076 | |
| 2077 | ElementWiseBitCast_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| 2078 | |
| 2079 | template <typename OpTy> bool match(OpTy *V) const { |
| 2080 | auto *I = dyn_cast<BitCastInst>(V); |
| 2081 | if (!I) |
| 2082 | return false; |
| 2083 | Type *SrcType = I->getSrcTy(); |
| 2084 | Type *DstType = I->getType(); |
| 2085 | // Make sure the bitcast doesn't change between scalar and vector and |
| 2086 | // doesn't change the number of vector elements. |
| 2087 | if (SrcType->isVectorTy() != DstType->isVectorTy()) |
| 2088 | return false; |
| 2089 | if (VectorType *SrcVecTy = dyn_cast<VectorType>(Val: SrcType); |
| 2090 | SrcVecTy && SrcVecTy->getElementCount() != |
| 2091 | cast<VectorType>(Val: DstType)->getElementCount()) |
| 2092 | return false; |
| 2093 | return Op.match(I->getOperand(0)); |
| 2094 | } |
| 2095 | }; |
| 2096 | |
| 2097 | template <typename OpTy> |
| 2098 | inline ElementWiseBitCast_match<OpTy> m_ElementWiseBitCast(const OpTy &Op) { |
| 2099 | return ElementWiseBitCast_match<OpTy>(Op); |
| 2100 | } |
| 2101 | |
| 2102 | /// Matches PtrToInt. |
| 2103 | template <typename OpTy> |
| 2104 | inline CastOperator_match<OpTy, Instruction::PtrToInt> |
| 2105 | m_PtrToInt(const OpTy &Op) { |
| 2106 | return CastOperator_match<OpTy, Instruction::PtrToInt>(Op); |
| 2107 | } |
| 2108 | |
| 2109 | template <typename OpTy> |
| 2110 | inline PtrToIntSameSize_match<OpTy> m_PtrToIntSameSize(const DataLayout &DL, |
| 2111 | const OpTy &Op) { |
| 2112 | return PtrToIntSameSize_match<OpTy>(DL, Op); |
| 2113 | } |
| 2114 | |
| 2115 | /// Matches IntToPtr. |
| 2116 | template <typename OpTy> |
| 2117 | inline CastOperator_match<OpTy, Instruction::IntToPtr> |
| 2118 | m_IntToPtr(const OpTy &Op) { |
| 2119 | return CastOperator_match<OpTy, Instruction::IntToPtr>(Op); |
| 2120 | } |
| 2121 | |
| 2122 | /// Matches any cast or self. Used to ignore casts. |
| 2123 | template <typename OpTy> |
| 2124 | inline match_combine_or<CastInst_match<OpTy, CastInst>, OpTy> |
| 2125 | m_CastOrSelf(const OpTy &Op) { |
| 2126 | return m_CombineOr(CastInst_match<OpTy, CastInst>(Op), Op); |
| 2127 | } |
| 2128 | |
| 2129 | /// Matches Trunc. |
| 2130 | template <typename OpTy> |
| 2131 | inline CastInst_match<OpTy, TruncInst> m_Trunc(const OpTy &Op) { |
| 2132 | return CastInst_match<OpTy, TruncInst>(Op); |
| 2133 | } |
| 2134 | |
| 2135 | /// Matches trunc nuw. |
| 2136 | template <typename OpTy> |
| 2137 | inline NoWrapTrunc_match<OpTy, TruncInst::NoUnsignedWrap> |
| 2138 | m_NUWTrunc(const OpTy &Op) { |
| 2139 | return NoWrapTrunc_match<OpTy, TruncInst::NoUnsignedWrap>(Op); |
| 2140 | } |
| 2141 | |
| 2142 | /// Matches trunc nsw. |
| 2143 | template <typename OpTy> |
| 2144 | inline NoWrapTrunc_match<OpTy, TruncInst::NoSignedWrap> |
| 2145 | m_NSWTrunc(const OpTy &Op) { |
| 2146 | return NoWrapTrunc_match<OpTy, TruncInst::NoSignedWrap>(Op); |
| 2147 | } |
| 2148 | |
| 2149 | template <typename OpTy> |
| 2150 | inline match_combine_or<CastInst_match<OpTy, TruncInst>, OpTy> |
| 2151 | m_TruncOrSelf(const OpTy &Op) { |
| 2152 | return m_CombineOr(m_Trunc(Op), Op); |
| 2153 | } |
| 2154 | |
| 2155 | /// Matches SExt. |
| 2156 | template <typename OpTy> |
| 2157 | inline CastInst_match<OpTy, SExtInst> m_SExt(const OpTy &Op) { |
| 2158 | return CastInst_match<OpTy, SExtInst>(Op); |
| 2159 | } |
| 2160 | |
| 2161 | /// Matches ZExt. |
| 2162 | template <typename OpTy> |
| 2163 | inline CastInst_match<OpTy, ZExtInst> m_ZExt(const OpTy &Op) { |
| 2164 | return CastInst_match<OpTy, ZExtInst>(Op); |
| 2165 | } |
| 2166 | |
| 2167 | template <typename OpTy> |
| 2168 | inline NNegZExt_match<OpTy> m_NNegZExt(const OpTy &Op) { |
| 2169 | return NNegZExt_match<OpTy>(Op); |
| 2170 | } |
| 2171 | |
| 2172 | template <typename OpTy> |
| 2173 | inline match_combine_or<CastInst_match<OpTy, ZExtInst>, OpTy> |
| 2174 | m_ZExtOrSelf(const OpTy &Op) { |
| 2175 | return m_CombineOr(m_ZExt(Op), Op); |
| 2176 | } |
| 2177 | |
| 2178 | template <typename OpTy> |
| 2179 | inline match_combine_or<CastInst_match<OpTy, SExtInst>, OpTy> |
| 2180 | m_SExtOrSelf(const OpTy &Op) { |
| 2181 | return m_CombineOr(m_SExt(Op), Op); |
| 2182 | } |
| 2183 | |
| 2184 | /// Match either "sext" or "zext nneg". |
| 2185 | template <typename OpTy> |
| 2186 | inline match_combine_or<CastInst_match<OpTy, SExtInst>, NNegZExt_match<OpTy>> |
| 2187 | m_SExtLike(const OpTy &Op) { |
| 2188 | return m_CombineOr(m_SExt(Op), m_NNegZExt(Op)); |
| 2189 | } |
| 2190 | |
| 2191 | template <typename OpTy> |
| 2192 | inline match_combine_or<CastInst_match<OpTy, ZExtInst>, |
| 2193 | CastInst_match<OpTy, SExtInst>> |
| 2194 | m_ZExtOrSExt(const OpTy &Op) { |
| 2195 | return m_CombineOr(m_ZExt(Op), m_SExt(Op)); |
| 2196 | } |
| 2197 | |
| 2198 | template <typename OpTy> |
| 2199 | inline match_combine_or<match_combine_or<CastInst_match<OpTy, ZExtInst>, |
| 2200 | CastInst_match<OpTy, SExtInst>>, |
| 2201 | OpTy> |
| 2202 | m_ZExtOrSExtOrSelf(const OpTy &Op) { |
| 2203 | return m_CombineOr(m_ZExtOrSExt(Op), Op); |
| 2204 | } |
| 2205 | |
| 2206 | template <typename OpTy> |
| 2207 | inline CastInst_match<OpTy, UIToFPInst> m_UIToFP(const OpTy &Op) { |
| 2208 | return CastInst_match<OpTy, UIToFPInst>(Op); |
| 2209 | } |
| 2210 | |
| 2211 | template <typename OpTy> |
| 2212 | inline CastInst_match<OpTy, SIToFPInst> m_SIToFP(const OpTy &Op) { |
| 2213 | return CastInst_match<OpTy, SIToFPInst>(Op); |
| 2214 | } |
| 2215 | |
| 2216 | template <typename OpTy> |
| 2217 | inline CastInst_match<OpTy, FPToUIInst> m_FPToUI(const OpTy &Op) { |
| 2218 | return CastInst_match<OpTy, FPToUIInst>(Op); |
| 2219 | } |
| 2220 | |
| 2221 | template <typename OpTy> |
| 2222 | inline CastInst_match<OpTy, FPToSIInst> m_FPToSI(const OpTy &Op) { |
| 2223 | return CastInst_match<OpTy, FPToSIInst>(Op); |
| 2224 | } |
| 2225 | |
| 2226 | template <typename OpTy> |
| 2227 | inline CastInst_match<OpTy, FPTruncInst> m_FPTrunc(const OpTy &Op) { |
| 2228 | return CastInst_match<OpTy, FPTruncInst>(Op); |
| 2229 | } |
| 2230 | |
| 2231 | template <typename OpTy> |
| 2232 | inline CastInst_match<OpTy, FPExtInst> m_FPExt(const OpTy &Op) { |
| 2233 | return CastInst_match<OpTy, FPExtInst>(Op); |
| 2234 | } |
| 2235 | |
| 2236 | //===----------------------------------------------------------------------===// |
| 2237 | // Matchers for control flow. |
| 2238 | // |
| 2239 | |
| 2240 | struct br_match { |
| 2241 | BasicBlock *&Succ; |
| 2242 | |
| 2243 | br_match(BasicBlock *&Succ) : Succ(Succ) {} |
| 2244 | |
| 2245 | template <typename OpTy> bool match(OpTy *V) const { |
| 2246 | if (auto *BI = dyn_cast<BranchInst>(V)) |
| 2247 | if (BI->isUnconditional()) { |
| 2248 | Succ = BI->getSuccessor(0); |
| 2249 | return true; |
| 2250 | } |
| 2251 | return false; |
| 2252 | } |
| 2253 | }; |
| 2254 | |
| 2255 | inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } |
| 2256 | |
| 2257 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
| 2258 | struct brc_match { |
| 2259 | Cond_t Cond; |
| 2260 | TrueBlock_t T; |
| 2261 | FalseBlock_t F; |
| 2262 | |
| 2263 | brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) |
| 2264 | : Cond(C), T(t), F(f) {} |
| 2265 | |
| 2266 | template <typename OpTy> bool match(OpTy *V) const { |
| 2267 | if (auto *BI = dyn_cast<BranchInst>(V)) |
| 2268 | if (BI->isConditional() && Cond.match(BI->getCondition())) |
| 2269 | return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); |
| 2270 | return false; |
| 2271 | } |
| 2272 | }; |
| 2273 | |
| 2274 | template <typename Cond_t> |
| 2275 | inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> |
| 2276 | m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { |
| 2277 | return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( |
| 2278 | C, m_BasicBlock(V&: T), m_BasicBlock(V&: F)); |
| 2279 | } |
| 2280 | |
| 2281 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
| 2282 | inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> |
| 2283 | m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { |
| 2284 | return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); |
| 2285 | } |
| 2286 | |
| 2287 | //===----------------------------------------------------------------------===// |
| 2288 | // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). |
| 2289 | // |
| 2290 | |
| 2291 | template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, |
| 2292 | bool Commutable = false> |
| 2293 | struct MaxMin_match { |
| 2294 | using PredType = Pred_t; |
| 2295 | LHS_t L; |
| 2296 | RHS_t R; |
| 2297 | |
| 2298 | // The evaluation order is always stable, regardless of Commutability. |
| 2299 | // The LHS is always matched first. |
| 2300 | MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 2301 | |
| 2302 | template <typename OpTy> bool match(OpTy *V) const { |
| 2303 | if (auto *II = dyn_cast<IntrinsicInst>(V)) { |
| 2304 | Intrinsic::ID IID = II->getIntrinsicID(); |
| 2305 | if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || |
| 2306 | (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || |
| 2307 | (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || |
| 2308 | (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { |
| 2309 | Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); |
| 2310 | return (L.match(LHS) && R.match(RHS)) || |
| 2311 | (Commutable && L.match(RHS) && R.match(LHS)); |
| 2312 | } |
| 2313 | } |
| 2314 | // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". |
| 2315 | auto *SI = dyn_cast<SelectInst>(V); |
| 2316 | if (!SI) |
| 2317 | return false; |
| 2318 | auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); |
| 2319 | if (!Cmp) |
| 2320 | return false; |
| 2321 | // At this point we have a select conditioned on a comparison. Check that |
| 2322 | // it is the values returned by the select that are being compared. |
| 2323 | auto *TrueVal = SI->getTrueValue(); |
| 2324 | auto *FalseVal = SI->getFalseValue(); |
| 2325 | auto *LHS = Cmp->getOperand(0); |
| 2326 | auto *RHS = Cmp->getOperand(1); |
| 2327 | if ((TrueVal != LHS || FalseVal != RHS) && |
| 2328 | (TrueVal != RHS || FalseVal != LHS)) |
| 2329 | return false; |
| 2330 | typename CmpInst_t::Predicate Pred = |
| 2331 | LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
| 2332 | // Does "(x pred y) ? x : y" represent the desired max/min operation? |
| 2333 | if (!Pred_t::match(Pred)) |
| 2334 | return false; |
| 2335 | // It does! Bind the operands. |
| 2336 | return (L.match(LHS) && R.match(RHS)) || |
| 2337 | (Commutable && L.match(RHS) && R.match(LHS)); |
| 2338 | } |
| 2339 | }; |
| 2340 | |
| 2341 | /// Helper class for identifying signed max predicates. |
| 2342 | struct smax_pred_ty { |
| 2343 | static bool match(ICmpInst::Predicate Pred) { |
| 2344 | return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
| 2345 | } |
| 2346 | }; |
| 2347 | |
| 2348 | /// Helper class for identifying signed min predicates. |
| 2349 | struct smin_pred_ty { |
| 2350 | static bool match(ICmpInst::Predicate Pred) { |
| 2351 | return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; |
| 2352 | } |
| 2353 | }; |
| 2354 | |
| 2355 | /// Helper class for identifying unsigned max predicates. |
| 2356 | struct umax_pred_ty { |
| 2357 | static bool match(ICmpInst::Predicate Pred) { |
| 2358 | return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; |
| 2359 | } |
| 2360 | }; |
| 2361 | |
| 2362 | /// Helper class for identifying unsigned min predicates. |
| 2363 | struct umin_pred_ty { |
| 2364 | static bool match(ICmpInst::Predicate Pred) { |
| 2365 | return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; |
| 2366 | } |
| 2367 | }; |
| 2368 | |
| 2369 | /// Helper class for identifying ordered max predicates. |
| 2370 | struct ofmax_pred_ty { |
| 2371 | static bool match(FCmpInst::Predicate Pred) { |
| 2372 | return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; |
| 2373 | } |
| 2374 | }; |
| 2375 | |
| 2376 | /// Helper class for identifying ordered min predicates. |
| 2377 | struct ofmin_pred_ty { |
| 2378 | static bool match(FCmpInst::Predicate Pred) { |
| 2379 | return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; |
| 2380 | } |
| 2381 | }; |
| 2382 | |
| 2383 | /// Helper class for identifying unordered max predicates. |
| 2384 | struct ufmax_pred_ty { |
| 2385 | static bool match(FCmpInst::Predicate Pred) { |
| 2386 | return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; |
| 2387 | } |
| 2388 | }; |
| 2389 | |
| 2390 | /// Helper class for identifying unordered min predicates. |
| 2391 | struct ufmin_pred_ty { |
| 2392 | static bool match(FCmpInst::Predicate Pred) { |
| 2393 | return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; |
| 2394 | } |
| 2395 | }; |
| 2396 | |
| 2397 | template <typename LHS, typename RHS> |
| 2398 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, |
| 2399 | const RHS &R) { |
| 2400 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); |
| 2401 | } |
| 2402 | |
| 2403 | template <typename LHS, typename RHS> |
| 2404 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, |
| 2405 | const RHS &R) { |
| 2406 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); |
| 2407 | } |
| 2408 | |
| 2409 | template <typename LHS, typename RHS> |
| 2410 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, |
| 2411 | const RHS &R) { |
| 2412 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); |
| 2413 | } |
| 2414 | |
| 2415 | template <typename LHS, typename RHS> |
| 2416 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, |
| 2417 | const RHS &R) { |
| 2418 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); |
| 2419 | } |
| 2420 | |
| 2421 | template <typename LHS, typename RHS> |
| 2422 | inline match_combine_or< |
| 2423 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, |
| 2424 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, |
| 2425 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, |
| 2426 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> |
| 2427 | m_MaxOrMin(const LHS &L, const RHS &R) { |
| 2428 | return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), |
| 2429 | m_CombineOr(m_UMax(L, R), m_UMin(L, R))); |
| 2430 | } |
| 2431 | |
| 2432 | /// Match an 'ordered' floating point maximum function. |
| 2433 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 2434 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 2435 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
| 2436 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 2437 | /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. |
| 2438 | /// |
| 2439 | /// max(L, R) iff L and R are not NaN |
| 2440 | /// m_OrdFMax(L, R) = R iff L or R are NaN |
| 2441 | template <typename LHS, typename RHS> |
| 2442 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, |
| 2443 | const RHS &R) { |
| 2444 | return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); |
| 2445 | } |
| 2446 | |
| 2447 | /// Match an 'ordered' floating point minimum function. |
| 2448 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 2449 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 2450 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
| 2451 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 2452 | /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. |
| 2453 | /// |
| 2454 | /// min(L, R) iff L and R are not NaN |
| 2455 | /// m_OrdFMin(L, R) = R iff L or R are NaN |
| 2456 | template <typename LHS, typename RHS> |
| 2457 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, |
| 2458 | const RHS &R) { |
| 2459 | return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); |
| 2460 | } |
| 2461 | |
| 2462 | /// Match an 'unordered' floating point maximum function. |
| 2463 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 2464 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 2465 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
| 2466 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 2467 | /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. |
| 2468 | /// |
| 2469 | /// max(L, R) iff L and R are not NaN |
| 2470 | /// m_UnordFMax(L, R) = L iff L or R are NaN |
| 2471 | template <typename LHS, typename RHS> |
| 2472 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> |
| 2473 | m_UnordFMax(const LHS &L, const RHS &R) { |
| 2474 | return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); |
| 2475 | } |
| 2476 | |
| 2477 | /// Match an 'unordered' floating point minimum function. |
| 2478 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 2479 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 2480 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
| 2481 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 2482 | /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. |
| 2483 | /// |
| 2484 | /// min(L, R) iff L and R are not NaN |
| 2485 | /// m_UnordFMin(L, R) = L iff L or R are NaN |
| 2486 | template <typename LHS, typename RHS> |
| 2487 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> |
| 2488 | m_UnordFMin(const LHS &L, const RHS &R) { |
| 2489 | return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); |
| 2490 | } |
| 2491 | |
| 2492 | /// Match an 'ordered' or 'unordered' floating point maximum function. |
| 2493 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 2494 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 2495 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
| 2496 | /// semantics. |
| 2497 | template <typename LHS, typename RHS> |
| 2498 | inline match_combine_or<MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>, |
| 2499 | MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>> |
| 2500 | m_OrdOrUnordFMax(const LHS &L, const RHS &R) { |
| 2501 | return m_CombineOr(MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R), |
| 2502 | MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R)); |
| 2503 | } |
| 2504 | |
| 2505 | /// Match an 'ordered' or 'unordered' floating point minimum function. |
| 2506 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 2507 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 2508 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
| 2509 | /// semantics. |
| 2510 | template <typename LHS, typename RHS> |
| 2511 | inline match_combine_or<MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>, |
| 2512 | MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>> |
| 2513 | m_OrdOrUnordFMin(const LHS &L, const RHS &R) { |
| 2514 | return m_CombineOr(MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R), |
| 2515 | MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R)); |
| 2516 | } |
| 2517 | |
| 2518 | /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. |
| 2519 | /// NOTE: we first match the 'Not' (by matching '-1'), |
| 2520 | /// and only then match the inner matcher! |
| 2521 | template <typename ValTy> |
| 2522 | inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true> |
| 2523 | m_Not(const ValTy &V) { |
| 2524 | return m_c_Xor(m_AllOnes(), V); |
| 2525 | } |
| 2526 | |
| 2527 | template <typename ValTy> |
| 2528 | inline BinaryOp_match<cst_pred_ty<is_all_ones, false>, ValTy, Instruction::Xor, |
| 2529 | true> |
| 2530 | m_NotForbidPoison(const ValTy &V) { |
| 2531 | return m_c_Xor(m_AllOnesForbidPoison(), V); |
| 2532 | } |
| 2533 | |
| 2534 | //===----------------------------------------------------------------------===// |
| 2535 | // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b |
| 2536 | // Note that S might be matched to other instructions than AddInst. |
| 2537 | // |
| 2538 | |
| 2539 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
| 2540 | struct UAddWithOverflow_match { |
| 2541 | LHS_t L; |
| 2542 | RHS_t R; |
| 2543 | Sum_t S; |
| 2544 | |
| 2545 | UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) |
| 2546 | : L(L), R(R), S(S) {} |
| 2547 | |
| 2548 | template <typename OpTy> bool match(OpTy *V) const { |
| 2549 | Value *ICmpLHS, *ICmpRHS; |
| 2550 | CmpPredicate Pred; |
| 2551 | if (!m_ICmp(Pred, L: m_Value(V&: ICmpLHS), R: m_Value(V&: ICmpRHS)).match(V)) |
| 2552 | return false; |
| 2553 | |
| 2554 | Value *AddLHS, *AddRHS; |
| 2555 | auto AddExpr = m_Add(L: m_Value(V&: AddLHS), R: m_Value(V&: AddRHS)); |
| 2556 | |
| 2557 | // (a + b) u< a, (a + b) u< b |
| 2558 | if (Pred == ICmpInst::ICMP_ULT) |
| 2559 | if (AddExpr.match(V: ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) |
| 2560 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
| 2561 | |
| 2562 | // a >u (a + b), b >u (a + b) |
| 2563 | if (Pred == ICmpInst::ICMP_UGT) |
| 2564 | if (AddExpr.match(V: ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) |
| 2565 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
| 2566 | |
| 2567 | Value *Op1; |
| 2568 | auto XorExpr = m_OneUse(SubPattern: m_Not(V: m_Value(V&: Op1))); |
| 2569 | // (~a) <u b |
| 2570 | if (Pred == ICmpInst::ICMP_ULT) { |
| 2571 | if (XorExpr.match(V: ICmpLHS)) |
| 2572 | return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); |
| 2573 | } |
| 2574 | // b > u (~a) |
| 2575 | if (Pred == ICmpInst::ICMP_UGT) { |
| 2576 | if (XorExpr.match(V: ICmpRHS)) |
| 2577 | return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); |
| 2578 | } |
| 2579 | |
| 2580 | // Match special-case for increment-by-1. |
| 2581 | if (Pred == ICmpInst::ICMP_EQ) { |
| 2582 | // (a + 1) == 0 |
| 2583 | // (1 + a) == 0 |
| 2584 | if (AddExpr.match(V: ICmpLHS) && m_ZeroInt().match(V: ICmpRHS) && |
| 2585 | (m_One().match(V: AddLHS) || m_One().match(V: AddRHS))) |
| 2586 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
| 2587 | // 0 == (a + 1) |
| 2588 | // 0 == (1 + a) |
| 2589 | if (m_ZeroInt().match(V: ICmpLHS) && AddExpr.match(V: ICmpRHS) && |
| 2590 | (m_One().match(V: AddLHS) || m_One().match(V: AddRHS))) |
| 2591 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
| 2592 | } |
| 2593 | |
| 2594 | return false; |
| 2595 | } |
| 2596 | }; |
| 2597 | |
| 2598 | /// Match an icmp instruction checking for unsigned overflow on addition. |
| 2599 | /// |
| 2600 | /// S is matched to the addition whose result is being checked for overflow, and |
| 2601 | /// L and R are matched to the LHS and RHS of S. |
| 2602 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
| 2603 | UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> |
| 2604 | m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { |
| 2605 | return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); |
| 2606 | } |
| 2607 | |
| 2608 | template <typename Opnd_t> struct Argument_match { |
| 2609 | unsigned OpI; |
| 2610 | Opnd_t Val; |
| 2611 | |
| 2612 | Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} |
| 2613 | |
| 2614 | template <typename OpTy> bool match(OpTy *V) const { |
| 2615 | // FIXME: Should likely be switched to use `CallBase`. |
| 2616 | if (const auto *CI = dyn_cast<CallInst>(V)) |
| 2617 | return Val.match(CI->getArgOperand(OpI)); |
| 2618 | return false; |
| 2619 | } |
| 2620 | }; |
| 2621 | |
| 2622 | /// Match an argument. |
| 2623 | template <unsigned OpI, typename Opnd_t> |
| 2624 | inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { |
| 2625 | return Argument_match<Opnd_t>(OpI, Op); |
| 2626 | } |
| 2627 | |
| 2628 | /// Intrinsic matchers. |
| 2629 | struct IntrinsicID_match { |
| 2630 | unsigned ID; |
| 2631 | |
| 2632 | IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} |
| 2633 | |
| 2634 | template <typename OpTy> bool match(OpTy *V) const { |
| 2635 | if (const auto *CI = dyn_cast<CallInst>(V)) |
| 2636 | if (const auto *F = CI->getCalledFunction()) |
| 2637 | return F->getIntrinsicID() == ID; |
| 2638 | return false; |
| 2639 | } |
| 2640 | }; |
| 2641 | |
| 2642 | /// Intrinsic matches are combinations of ID matchers, and argument |
| 2643 | /// matchers. Higher arity matcher are defined recursively in terms of and-ing |
| 2644 | /// them with lower arity matchers. Here's some convenient typedefs for up to |
| 2645 | /// several arguments, and more can be added as needed |
| 2646 | template <typename T0 = void, typename T1 = void, typename T2 = void, |
| 2647 | typename T3 = void, typename T4 = void, typename T5 = void, |
| 2648 | typename T6 = void, typename T7 = void, typename T8 = void, |
| 2649 | typename T9 = void, typename T10 = void> |
| 2650 | struct m_Intrinsic_Ty; |
| 2651 | template <typename T0> struct m_Intrinsic_Ty<T0> { |
| 2652 | using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; |
| 2653 | }; |
| 2654 | template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { |
| 2655 | using Ty = |
| 2656 | match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; |
| 2657 | }; |
| 2658 | template <typename T0, typename T1, typename T2> |
| 2659 | struct m_Intrinsic_Ty<T0, T1, T2> { |
| 2660 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, |
| 2661 | Argument_match<T2>>; |
| 2662 | }; |
| 2663 | template <typename T0, typename T1, typename T2, typename T3> |
| 2664 | struct m_Intrinsic_Ty<T0, T1, T2, T3> { |
| 2665 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, |
| 2666 | Argument_match<T3>>; |
| 2667 | }; |
| 2668 | |
| 2669 | template <typename T0, typename T1, typename T2, typename T3, typename T4> |
| 2670 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { |
| 2671 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, |
| 2672 | Argument_match<T4>>; |
| 2673 | }; |
| 2674 | |
| 2675 | template <typename T0, typename T1, typename T2, typename T3, typename T4, |
| 2676 | typename T5> |
| 2677 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { |
| 2678 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, |
| 2679 | Argument_match<T5>>; |
| 2680 | }; |
| 2681 | |
| 2682 | /// Match intrinsic calls like this: |
| 2683 | /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) |
| 2684 | template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { |
| 2685 | return IntrinsicID_match(IntrID); |
| 2686 | } |
| 2687 | |
| 2688 | /// Matches MaskedLoad Intrinsic. |
| 2689 | template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> |
| 2690 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty |
| 2691 | m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, |
| 2692 | const Opnd3 &Op3) { |
| 2693 | return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); |
| 2694 | } |
| 2695 | |
| 2696 | /// Matches MaskedGather Intrinsic. |
| 2697 | template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> |
| 2698 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty |
| 2699 | m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, |
| 2700 | const Opnd3 &Op3) { |
| 2701 | return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3); |
| 2702 | } |
| 2703 | |
| 2704 | template <Intrinsic::ID IntrID, typename T0> |
| 2705 | inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { |
| 2706 | return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); |
| 2707 | } |
| 2708 | |
| 2709 | template <Intrinsic::ID IntrID, typename T0, typename T1> |
| 2710 | inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, |
| 2711 | const T1 &Op1) { |
| 2712 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); |
| 2713 | } |
| 2714 | |
| 2715 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> |
| 2716 | inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty |
| 2717 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { |
| 2718 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); |
| 2719 | } |
| 2720 | |
| 2721 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
| 2722 | typename T3> |
| 2723 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty |
| 2724 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { |
| 2725 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); |
| 2726 | } |
| 2727 | |
| 2728 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
| 2729 | typename T3, typename T4> |
| 2730 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty |
| 2731 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
| 2732 | const T4 &Op4) { |
| 2733 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), |
| 2734 | m_Argument<4>(Op4)); |
| 2735 | } |
| 2736 | |
| 2737 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
| 2738 | typename T3, typename T4, typename T5> |
| 2739 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty |
| 2740 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
| 2741 | const T4 &Op4, const T5 &Op5) { |
| 2742 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), |
| 2743 | m_Argument<5>(Op5)); |
| 2744 | } |
| 2745 | |
| 2746 | // Helper intrinsic matching specializations. |
| 2747 | template <typename Opnd0> |
| 2748 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { |
| 2749 | return m_Intrinsic<Intrinsic::bitreverse>(Op0); |
| 2750 | } |
| 2751 | |
| 2752 | template <typename Opnd0> |
| 2753 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { |
| 2754 | return m_Intrinsic<Intrinsic::bswap>(Op0); |
| 2755 | } |
| 2756 | |
| 2757 | template <typename Opnd0> |
| 2758 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { |
| 2759 | return m_Intrinsic<Intrinsic::fabs>(Op0); |
| 2760 | } |
| 2761 | |
| 2762 | template <typename Opnd0> |
| 2763 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { |
| 2764 | return m_Intrinsic<Intrinsic::canonicalize>(Op0); |
| 2765 | } |
| 2766 | |
| 2767 | template <typename Opnd0, typename Opnd1> |
| 2768 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMinNum(const Opnd0 &Op0, |
| 2769 | const Opnd1 &Op1) { |
| 2770 | return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); |
| 2771 | } |
| 2772 | |
| 2773 | template <typename Opnd0, typename Opnd1> |
| 2774 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMinimum(const Opnd0 &Op0, |
| 2775 | const Opnd1 &Op1) { |
| 2776 | return m_Intrinsic<Intrinsic::minimum>(Op0, Op1); |
| 2777 | } |
| 2778 | |
| 2779 | template <typename Opnd0, typename Opnd1> |
| 2780 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty |
| 2781 | m_FMinimumNum(const Opnd0 &Op0, const Opnd1 &Op1) { |
| 2782 | return m_Intrinsic<Intrinsic::minimumnum>(Op0, Op1); |
| 2783 | } |
| 2784 | |
| 2785 | template <typename Opnd0, typename Opnd1> |
| 2786 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMaxNum(const Opnd0 &Op0, |
| 2787 | const Opnd1 &Op1) { |
| 2788 | return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); |
| 2789 | } |
| 2790 | |
| 2791 | template <typename Opnd0, typename Opnd1> |
| 2792 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMaximum(const Opnd0 &Op0, |
| 2793 | const Opnd1 &Op1) { |
| 2794 | return m_Intrinsic<Intrinsic::maximum>(Op0, Op1); |
| 2795 | } |
| 2796 | |
| 2797 | template <typename Opnd0, typename Opnd1> |
| 2798 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty |
| 2799 | m_FMaximumNum(const Opnd0 &Op0, const Opnd1 &Op1) { |
| 2800 | return m_Intrinsic<Intrinsic::maximumnum>(Op0, Op1); |
| 2801 | } |
| 2802 | |
| 2803 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
| 2804 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
| 2805 | m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
| 2806 | return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); |
| 2807 | } |
| 2808 | |
| 2809 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
| 2810 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
| 2811 | m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
| 2812 | return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); |
| 2813 | } |
| 2814 | |
| 2815 | template <typename Opnd0> |
| 2816 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) { |
| 2817 | return m_Intrinsic<Intrinsic::sqrt>(Op0); |
| 2818 | } |
| 2819 | |
| 2820 | template <typename Opnd0, typename Opnd1> |
| 2821 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0, |
| 2822 | const Opnd1 &Op1) { |
| 2823 | return m_Intrinsic<Intrinsic::copysign>(Op0, Op1); |
| 2824 | } |
| 2825 | |
| 2826 | template <typename Opnd0> |
| 2827 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) { |
| 2828 | return m_Intrinsic<Intrinsic::vector_reverse>(Op0); |
| 2829 | } |
| 2830 | |
| 2831 | //===----------------------------------------------------------------------===// |
| 2832 | // Matchers for two-operands operators with the operators in either order |
| 2833 | // |
| 2834 | |
| 2835 | /// Matches a BinaryOperator with LHS and RHS in either order. |
| 2836 | template <typename LHS, typename RHS> |
| 2837 | inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { |
| 2838 | return AnyBinaryOp_match<LHS, RHS, true>(L, R); |
| 2839 | } |
| 2840 | |
| 2841 | /// Matches an ICmp with a predicate over LHS and RHS in either order. |
| 2842 | /// Swaps the predicate if operands are commuted. |
| 2843 | template <typename LHS, typename RHS> |
| 2844 | inline CmpClass_match<LHS, RHS, ICmpInst, true> |
| 2845 | m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R) { |
| 2846 | return CmpClass_match<LHS, RHS, ICmpInst, true>(Pred, L, R); |
| 2847 | } |
| 2848 | |
| 2849 | template <typename LHS, typename RHS> |
| 2850 | inline CmpClass_match<LHS, RHS, ICmpInst, true> m_c_ICmp(const LHS &L, |
| 2851 | const RHS &R) { |
| 2852 | return CmpClass_match<LHS, RHS, ICmpInst, true>(L, R); |
| 2853 | } |
| 2854 | |
| 2855 | /// Matches a specific opcode with LHS and RHS in either order. |
| 2856 | template <typename LHS, typename RHS> |
| 2857 | inline SpecificBinaryOp_match<LHS, RHS, true> |
| 2858 | m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { |
| 2859 | return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R); |
| 2860 | } |
| 2861 | |
| 2862 | /// Matches a Add with LHS and RHS in either order. |
| 2863 | template <typename LHS, typename RHS> |
| 2864 | inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, |
| 2865 | const RHS &R) { |
| 2866 | return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); |
| 2867 | } |
| 2868 | |
| 2869 | /// Matches a Mul with LHS and RHS in either order. |
| 2870 | template <typename LHS, typename RHS> |
| 2871 | inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, |
| 2872 | const RHS &R) { |
| 2873 | return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); |
| 2874 | } |
| 2875 | |
| 2876 | /// Matches an And with LHS and RHS in either order. |
| 2877 | template <typename LHS, typename RHS> |
| 2878 | inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, |
| 2879 | const RHS &R) { |
| 2880 | return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); |
| 2881 | } |
| 2882 | |
| 2883 | /// Matches an Or with LHS and RHS in either order. |
| 2884 | template <typename LHS, typename RHS> |
| 2885 | inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, |
| 2886 | const RHS &R) { |
| 2887 | return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
| 2888 | } |
| 2889 | |
| 2890 | /// Matches an Xor with LHS and RHS in either order. |
| 2891 | template <typename LHS, typename RHS> |
| 2892 | inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, |
| 2893 | const RHS &R) { |
| 2894 | return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); |
| 2895 | } |
| 2896 | |
| 2897 | /// Matches a 'Neg' as 'sub 0, V'. |
| 2898 | template <typename ValTy> |
| 2899 | inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> |
| 2900 | m_Neg(const ValTy &V) { |
| 2901 | return m_Sub(m_ZeroInt(), V); |
| 2902 | } |
| 2903 | |
| 2904 | /// Matches a 'Neg' as 'sub nsw 0, V'. |
| 2905 | template <typename ValTy> |
| 2906 | inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, |
| 2907 | Instruction::Sub, |
| 2908 | OverflowingBinaryOperator::NoSignedWrap> |
| 2909 | m_NSWNeg(const ValTy &V) { |
| 2910 | return m_NSWSub(m_ZeroInt(), V); |
| 2911 | } |
| 2912 | |
| 2913 | /// Matches an SMin with LHS and RHS in either order. |
| 2914 | template <typename LHS, typename RHS> |
| 2915 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> |
| 2916 | m_c_SMin(const LHS &L, const RHS &R) { |
| 2917 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); |
| 2918 | } |
| 2919 | /// Matches an SMax with LHS and RHS in either order. |
| 2920 | template <typename LHS, typename RHS> |
| 2921 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> |
| 2922 | m_c_SMax(const LHS &L, const RHS &R) { |
| 2923 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); |
| 2924 | } |
| 2925 | /// Matches a UMin with LHS and RHS in either order. |
| 2926 | template <typename LHS, typename RHS> |
| 2927 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> |
| 2928 | m_c_UMin(const LHS &L, const RHS &R) { |
| 2929 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); |
| 2930 | } |
| 2931 | /// Matches a UMax with LHS and RHS in either order. |
| 2932 | template <typename LHS, typename RHS> |
| 2933 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> |
| 2934 | m_c_UMax(const LHS &L, const RHS &R) { |
| 2935 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); |
| 2936 | } |
| 2937 | |
| 2938 | template <typename LHS, typename RHS> |
| 2939 | inline match_combine_or< |
| 2940 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, |
| 2941 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, |
| 2942 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, |
| 2943 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> |
| 2944 | m_c_MaxOrMin(const LHS &L, const RHS &R) { |
| 2945 | return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), |
| 2946 | m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); |
| 2947 | } |
| 2948 | |
| 2949 | template <Intrinsic::ID IntrID, typename T0, typename T1> |
| 2950 | inline match_combine_or<typename m_Intrinsic_Ty<T0, T1>::Ty, |
| 2951 | typename m_Intrinsic_Ty<T1, T0>::Ty> |
| 2952 | m_c_Intrinsic(const T0 &Op0, const T1 &Op1) { |
| 2953 | return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1), |
| 2954 | m_Intrinsic<IntrID>(Op1, Op0)); |
| 2955 | } |
| 2956 | |
| 2957 | /// Matches FAdd with LHS and RHS in either order. |
| 2958 | template <typename LHS, typename RHS> |
| 2959 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> |
| 2960 | m_c_FAdd(const LHS &L, const RHS &R) { |
| 2961 | return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); |
| 2962 | } |
| 2963 | |
| 2964 | /// Matches FMul with LHS and RHS in either order. |
| 2965 | template <typename LHS, typename RHS> |
| 2966 | inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> |
| 2967 | m_c_FMul(const LHS &L, const RHS &R) { |
| 2968 | return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); |
| 2969 | } |
| 2970 | |
| 2971 | template <typename Opnd_t> struct Signum_match { |
| 2972 | Opnd_t Val; |
| 2973 | Signum_match(const Opnd_t &V) : Val(V) {} |
| 2974 | |
| 2975 | template <typename OpTy> bool match(OpTy *V) const { |
| 2976 | unsigned TypeSize = V->getType()->getScalarSizeInBits(); |
| 2977 | if (TypeSize == 0) |
| 2978 | return false; |
| 2979 | |
| 2980 | unsigned ShiftWidth = TypeSize - 1; |
| 2981 | Value *Op; |
| 2982 | |
| 2983 | // This is the representation of signum we match: |
| 2984 | // |
| 2985 | // signum(x) == (x >> 63) | (-x >>u 63) |
| 2986 | // |
| 2987 | // An i1 value is its own signum, so it's correct to match |
| 2988 | // |
| 2989 | // signum(x) == (x >> 0) | (-x >>u 0) |
| 2990 | // |
| 2991 | // for i1 values. |
| 2992 | |
| 2993 | auto LHS = m_AShr(L: m_Value(V&: Op), R: m_SpecificInt(V: ShiftWidth)); |
| 2994 | auto RHS = m_LShr(L: m_Neg(V: m_Deferred(V: Op)), R: m_SpecificInt(V: ShiftWidth)); |
| 2995 | auto Signum = m_c_Or(L: LHS, R: RHS); |
| 2996 | |
| 2997 | return Signum.match(V) && Val.match(Op); |
| 2998 | } |
| 2999 | }; |
| 3000 | |
| 3001 | /// Matches a signum pattern. |
| 3002 | /// |
| 3003 | /// signum(x) = |
| 3004 | /// x > 0 -> 1 |
| 3005 | /// x == 0 -> 0 |
| 3006 | /// x < 0 -> -1 |
| 3007 | template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { |
| 3008 | return Signum_match<Val_t>(V); |
| 3009 | } |
| 3010 | |
| 3011 | template <int Ind, typename Opnd_t> struct { |
| 3012 | Opnd_t ; |
| 3013 | (const Opnd_t &V) : Val(V) {} |
| 3014 | |
| 3015 | template <typename OpTy> bool (OpTy *V) const { |
| 3016 | if (auto *I = dyn_cast<ExtractValueInst>(V)) { |
| 3017 | // If Ind is -1, don't inspect indices |
| 3018 | if (Ind != -1 && |
| 3019 | !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) |
| 3020 | return false; |
| 3021 | return Val.match(I->getAggregateOperand()); |
| 3022 | } |
| 3023 | return false; |
| 3024 | } |
| 3025 | }; |
| 3026 | |
| 3027 | /// Match a single index ExtractValue instruction. |
| 3028 | /// For example m_ExtractValue<1>(...) |
| 3029 | template <int Ind, typename Val_t> |
| 3030 | inline ExtractValue_match<Ind, Val_t> (const Val_t &V) { |
| 3031 | return ExtractValue_match<Ind, Val_t>(V); |
| 3032 | } |
| 3033 | |
| 3034 | /// Match an ExtractValue instruction with any index. |
| 3035 | /// For example m_ExtractValue(...) |
| 3036 | template <typename Val_t> |
| 3037 | inline ExtractValue_match<-1, Val_t> (const Val_t &V) { |
| 3038 | return ExtractValue_match<-1, Val_t>(V); |
| 3039 | } |
| 3040 | |
| 3041 | /// Matcher for a single index InsertValue instruction. |
| 3042 | template <int Ind, typename T0, typename T1> struct InsertValue_match { |
| 3043 | T0 Op0; |
| 3044 | T1 Op1; |
| 3045 | |
| 3046 | InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} |
| 3047 | |
| 3048 | template <typename OpTy> bool match(OpTy *V) const { |
| 3049 | if (auto *I = dyn_cast<InsertValueInst>(V)) { |
| 3050 | return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && |
| 3051 | I->getNumIndices() == 1 && Ind == I->getIndices()[0]; |
| 3052 | } |
| 3053 | return false; |
| 3054 | } |
| 3055 | }; |
| 3056 | |
| 3057 | /// Matches a single index InsertValue instruction. |
| 3058 | template <int Ind, typename Val_t, typename Elt_t> |
| 3059 | inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, |
| 3060 | const Elt_t &Elt) { |
| 3061 | return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); |
| 3062 | } |
| 3063 | |
| 3064 | /// Matches a call to `llvm.vscale()`. |
| 3065 | inline IntrinsicID_match m_VScale() { return m_Intrinsic<Intrinsic::vscale>(); } |
| 3066 | |
| 3067 | template <typename Opnd0, typename Opnd1> |
| 3068 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty |
| 3069 | m_Interleave2(const Opnd0 &Op0, const Opnd1 &Op1) { |
| 3070 | return m_Intrinsic<Intrinsic::vector_interleave2>(Op0, Op1); |
| 3071 | } |
| 3072 | |
| 3073 | template <typename Opnd> |
| 3074 | inline typename m_Intrinsic_Ty<Opnd>::Ty m_Deinterleave2(const Opnd &Op) { |
| 3075 | return m_Intrinsic<Intrinsic::vector_deinterleave2>(Op); |
| 3076 | } |
| 3077 | |
| 3078 | template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false> |
| 3079 | struct LogicalOp_match { |
| 3080 | LHS L; |
| 3081 | RHS R; |
| 3082 | |
| 3083 | LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} |
| 3084 | |
| 3085 | template <typename T> bool match(T *V) const { |
| 3086 | auto *I = dyn_cast<Instruction>(V); |
| 3087 | if (!I || !I->getType()->isIntOrIntVectorTy(1)) |
| 3088 | return false; |
| 3089 | |
| 3090 | if (I->getOpcode() == Opcode) { |
| 3091 | auto *Op0 = I->getOperand(0); |
| 3092 | auto *Op1 = I->getOperand(1); |
| 3093 | return (L.match(Op0) && R.match(Op1)) || |
| 3094 | (Commutable && L.match(Op1) && R.match(Op0)); |
| 3095 | } |
| 3096 | |
| 3097 | if (auto *Select = dyn_cast<SelectInst>(I)) { |
| 3098 | auto *Cond = Select->getCondition(); |
| 3099 | auto *TVal = Select->getTrueValue(); |
| 3100 | auto *FVal = Select->getFalseValue(); |
| 3101 | |
| 3102 | // Don't match a scalar select of bool vectors. |
| 3103 | // Transforms expect a single type for operands if this matches. |
| 3104 | if (Cond->getType() != Select->getType()) |
| 3105 | return false; |
| 3106 | |
| 3107 | if (Opcode == Instruction::And) { |
| 3108 | auto *C = dyn_cast<Constant>(FVal); |
| 3109 | if (C && C->isNullValue()) |
| 3110 | return (L.match(Cond) && R.match(TVal)) || |
| 3111 | (Commutable && L.match(TVal) && R.match(Cond)); |
| 3112 | } else { |
| 3113 | assert(Opcode == Instruction::Or); |
| 3114 | auto *C = dyn_cast<Constant>(TVal); |
| 3115 | if (C && C->isOneValue()) |
| 3116 | return (L.match(Cond) && R.match(FVal)) || |
| 3117 | (Commutable && L.match(FVal) && R.match(Cond)); |
| 3118 | } |
| 3119 | } |
| 3120 | |
| 3121 | return false; |
| 3122 | } |
| 3123 | }; |
| 3124 | |
| 3125 | /// Matches L && R either in the form of L & R or L ? R : false. |
| 3126 | /// Note that the latter form is poison-blocking. |
| 3127 | template <typename LHS, typename RHS> |
| 3128 | inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L, |
| 3129 | const RHS &R) { |
| 3130 | return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); |
| 3131 | } |
| 3132 | |
| 3133 | /// Matches L && R where L and R are arbitrary values. |
| 3134 | inline auto m_LogicalAnd() { return m_LogicalAnd(L: m_Value(), R: m_Value()); } |
| 3135 | |
| 3136 | /// Matches L && R with LHS and RHS in either order. |
| 3137 | template <typename LHS, typename RHS> |
| 3138 | inline LogicalOp_match<LHS, RHS, Instruction::And, true> |
| 3139 | m_c_LogicalAnd(const LHS &L, const RHS &R) { |
| 3140 | return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R); |
| 3141 | } |
| 3142 | |
| 3143 | /// Matches L || R either in the form of L | R or L ? true : R. |
| 3144 | /// Note that the latter form is poison-blocking. |
| 3145 | template <typename LHS, typename RHS> |
| 3146 | inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L, |
| 3147 | const RHS &R) { |
| 3148 | return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); |
| 3149 | } |
| 3150 | |
| 3151 | /// Matches L || R where L and R are arbitrary values. |
| 3152 | inline auto m_LogicalOr() { return m_LogicalOr(L: m_Value(), R: m_Value()); } |
| 3153 | |
| 3154 | /// Matches L || R with LHS and RHS in either order. |
| 3155 | template <typename LHS, typename RHS> |
| 3156 | inline LogicalOp_match<LHS, RHS, Instruction::Or, true> |
| 3157 | m_c_LogicalOr(const LHS &L, const RHS &R) { |
| 3158 | return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
| 3159 | } |
| 3160 | |
| 3161 | /// Matches either L && R or L || R, |
| 3162 | /// either one being in the either binary or logical form. |
| 3163 | /// Note that the latter form is poison-blocking. |
| 3164 | template <typename LHS, typename RHS, bool Commutable = false> |
| 3165 | inline auto m_LogicalOp(const LHS &L, const RHS &R) { |
| 3166 | return m_CombineOr( |
| 3167 | LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R), |
| 3168 | LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R)); |
| 3169 | } |
| 3170 | |
| 3171 | /// Matches either L && R or L || R where L and R are arbitrary values. |
| 3172 | inline auto m_LogicalOp() { return m_LogicalOp(L: m_Value(), R: m_Value()); } |
| 3173 | |
| 3174 | /// Matches either L && R or L || R with LHS and RHS in either order. |
| 3175 | template <typename LHS, typename RHS> |
| 3176 | inline auto m_c_LogicalOp(const LHS &L, const RHS &R) { |
| 3177 | return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R); |
| 3178 | } |
| 3179 | |
| 3180 | } // end namespace PatternMatch |
| 3181 | } // end namespace llvm |
| 3182 | |
| 3183 | #endif // LLVM_IR_PATTERNMATCH_H |
| 3184 | |