1 | ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This file provides the interface for the sampled PGO profile loader base |
11 | /// implementation. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
16 | #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
17 | |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/ADT/DenseSet.h" |
21 | #include "llvm/ADT/IntrusiveRefCntPtr.h" |
22 | #include "llvm/ADT/SmallPtrSet.h" |
23 | #include "llvm/ADT/SmallSet.h" |
24 | #include "llvm/ADT/SmallVector.h" |
25 | #include "llvm/Analysis/LazyCallGraph.h" |
26 | #include "llvm/Analysis/LoopInfo.h" |
27 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
28 | #include "llvm/Analysis/PostDominators.h" |
29 | #include "llvm/IR/BasicBlock.h" |
30 | #include "llvm/IR/CFG.h" |
31 | #include "llvm/IR/DebugInfoMetadata.h" |
32 | #include "llvm/IR/DebugLoc.h" |
33 | #include "llvm/IR/Dominators.h" |
34 | #include "llvm/IR/Function.h" |
35 | #include "llvm/IR/Instruction.h" |
36 | #include "llvm/IR/Instructions.h" |
37 | #include "llvm/IR/Module.h" |
38 | #include "llvm/IR/PseudoProbe.h" |
39 | #include "llvm/ProfileData/SampleProf.h" |
40 | #include "llvm/ProfileData/SampleProfReader.h" |
41 | #include "llvm/Support/CommandLine.h" |
42 | #include "llvm/Support/GenericDomTree.h" |
43 | #include "llvm/Support/raw_ostream.h" |
44 | #include "llvm/Transforms/Utils/SampleProfileInference.h" |
45 | #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" |
46 | |
47 | namespace llvm { |
48 | using namespace sampleprof; |
49 | using namespace sampleprofutil; |
50 | using ProfileCount = Function::ProfileCount; |
51 | |
52 | namespace vfs { |
53 | class FileSystem; |
54 | } // namespace vfs |
55 | |
56 | #define DEBUG_TYPE "sample-profile-impl" |
57 | |
58 | namespace afdo_detail { |
59 | |
60 | template <typename BlockT> struct IRTraits; |
61 | template <> struct IRTraits<BasicBlock> { |
62 | using InstructionT = Instruction; |
63 | using BasicBlockT = BasicBlock; |
64 | using FunctionT = Function; |
65 | using BlockFrequencyInfoT = BlockFrequencyInfo; |
66 | using LoopT = Loop; |
67 | using LoopInfoPtrT = std::unique_ptr<LoopInfo>; |
68 | using DominatorTreePtrT = std::unique_ptr<DominatorTree>; |
69 | using PostDominatorTreeT = PostDominatorTree; |
70 | using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>; |
71 | using = OptimizationRemarkEmitter; |
72 | using = OptimizationRemarkAnalysis; |
73 | using PredRangeT = pred_range; |
74 | using SuccRangeT = succ_range; |
75 | static Function &getFunction(Function &F) { return F; } |
76 | static const BasicBlock *getEntryBB(const Function *F) { |
77 | return &F->getEntryBlock(); |
78 | } |
79 | static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); } |
80 | static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); } |
81 | }; |
82 | |
83 | } // end namespace afdo_detail |
84 | |
85 | // This class serves sample counts correlation for SampleProfileLoader by |
86 | // analyzing pseudo probes and their function descriptors injected by |
87 | // SampleProfileProber. |
88 | class PseudoProbeManager { |
89 | DenseMap<uint64_t, PseudoProbeDescriptor> GUIDToProbeDescMap; |
90 | |
91 | public: |
92 | PseudoProbeManager(const Module &M) { |
93 | if (NamedMDNode *FuncInfo = |
94 | M.getNamedMetadata(Name: PseudoProbeDescMetadataName)) { |
95 | for (const auto *Operand : FuncInfo->operands()) { |
96 | const auto *MD = cast<MDNode>(Val: Operand); |
97 | auto GUID = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: 0)) |
98 | ->getZExtValue(); |
99 | auto Hash = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: 1)) |
100 | ->getZExtValue(); |
101 | GUIDToProbeDescMap.try_emplace(Key: GUID, Args: PseudoProbeDescriptor(GUID, Hash)); |
102 | } |
103 | } |
104 | } |
105 | |
106 | const PseudoProbeDescriptor *getDesc(uint64_t GUID) const { |
107 | auto I = GUIDToProbeDescMap.find(Val: GUID); |
108 | return I == GUIDToProbeDescMap.end() ? nullptr : &I->second; |
109 | } |
110 | |
111 | const PseudoProbeDescriptor *getDesc(StringRef FProfileName) const { |
112 | return getDesc(GUID: Function::getGUIDAssumingExternalLinkage(GlobalName: FProfileName)); |
113 | } |
114 | |
115 | const PseudoProbeDescriptor *getDesc(const Function &F) const { |
116 | return getDesc(GUID: Function::getGUIDAssumingExternalLinkage( |
117 | GlobalName: FunctionSamples::getCanonicalFnName(F))); |
118 | } |
119 | |
120 | bool profileIsHashMismatched(const PseudoProbeDescriptor &FuncDesc, |
121 | const FunctionSamples &Samples) const { |
122 | return FuncDesc.getFunctionHash() != Samples.getFunctionHash(); |
123 | } |
124 | |
125 | bool moduleIsProbed(const Module &M) const { |
126 | return M.getNamedMetadata(Name: PseudoProbeDescMetadataName); |
127 | } |
128 | |
129 | bool profileIsValid(const Function &F, const FunctionSamples &Samples) const { |
130 | const auto *Desc = getDesc(F); |
131 | bool IsAvailableExternallyLinkage = |
132 | GlobalValue::isAvailableExternallyLinkage(Linkage: F.getLinkage()); |
133 | // Always check the function attribute to determine checksum mismatch for |
134 | // `available_externally` functions even if their desc are available. This |
135 | // is because the desc is computed based on the original internal function |
136 | // and it's substituted by the `available_externally` function during link |
137 | // time. However, when unstable IR or ODR violation issue occurs, the |
138 | // definitions of the same function across different translation units could |
139 | // be different and result in different checksums. So we should use the |
140 | // state from the new (available_externally) function, which is saved in its |
141 | // attribute. |
142 | // TODO: If the function's profile only exists as nested inlinee profile in |
143 | // a different module, we don't have the attr mismatch state(unknown), we |
144 | // need to fix it later. |
145 | if (IsAvailableExternallyLinkage || !Desc) |
146 | return !F.hasFnAttribute(Kind: "profile-checksum-mismatch" ); |
147 | |
148 | return Desc && !profileIsHashMismatched(FuncDesc: *Desc, Samples); |
149 | } |
150 | }; |
151 | |
152 | |
153 | |
154 | extern cl::opt<bool> SampleProfileUseProfi; |
155 | |
156 | static inline bool skipProfileForFunction(const Function &F) { |
157 | return F.isDeclaration() || !F.hasFnAttribute(Kind: "use-sample-profile" ); |
158 | } |
159 | |
160 | static inline void |
161 | buildTopDownFuncOrder(LazyCallGraph &CG, |
162 | std::vector<Function *> &FunctionOrderList) { |
163 | CG.buildRefSCCs(); |
164 | for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) { |
165 | for (LazyCallGraph::SCC &C : RC) { |
166 | for (LazyCallGraph::Node &N : C) { |
167 | Function &F = N.getFunction(); |
168 | if (!skipProfileForFunction(F)) |
169 | FunctionOrderList.push_back(x: &F); |
170 | } |
171 | } |
172 | } |
173 | std::reverse(first: FunctionOrderList.begin(), last: FunctionOrderList.end()); |
174 | } |
175 | |
176 | template <typename FT> class SampleProfileLoaderBaseImpl { |
177 | public: |
178 | SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName, |
179 | IntrusiveRefCntPtr<vfs::FileSystem> FS) |
180 | : Filename(Name), RemappingFilename(RemapName), FS(std::move(FS)) {} |
181 | void dump() { Reader->dump(); } |
182 | |
183 | using NodeRef = typename GraphTraits<FT *>::NodeRef; |
184 | using BT = std::remove_pointer_t<NodeRef>; |
185 | using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT; |
186 | using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT; |
187 | using BlockFrequencyInfoT = |
188 | typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT; |
189 | using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT; |
190 | using LoopT = typename afdo_detail::IRTraits<BT>::LoopT; |
191 | using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT; |
192 | using DominatorTreePtrT = |
193 | typename afdo_detail::IRTraits<BT>::DominatorTreePtrT; |
194 | using PostDominatorTreePtrT = |
195 | typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT; |
196 | using PostDominatorTreeT = |
197 | typename afdo_detail::IRTraits<BT>::PostDominatorTreeT; |
198 | using = |
199 | typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT; |
200 | using = |
201 | typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT; |
202 | using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT; |
203 | using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT; |
204 | |
205 | using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>; |
206 | using EquivalenceClassMap = |
207 | DenseMap<const BasicBlockT *, const BasicBlockT *>; |
208 | using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>; |
209 | using EdgeWeightMap = DenseMap<Edge, uint64_t>; |
210 | using BlockEdgeMap = |
211 | DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>; |
212 | |
213 | protected: |
214 | ~SampleProfileLoaderBaseImpl() = default; |
215 | friend class SampleCoverageTracker; |
216 | |
217 | Function &getFunction(FunctionT &F) { |
218 | return afdo_detail::IRTraits<BT>::getFunction(F); |
219 | } |
220 | const BasicBlockT *getEntryBB(const FunctionT *F) { |
221 | return afdo_detail::IRTraits<BT>::getEntryBB(F); |
222 | } |
223 | PredRangeT getPredecessors(BasicBlockT *BB) { |
224 | return afdo_detail::IRTraits<BT>::getPredecessors(BB); |
225 | } |
226 | SuccRangeT getSuccessors(BasicBlockT *BB) { |
227 | return afdo_detail::IRTraits<BT>::getSuccessors(BB); |
228 | } |
229 | |
230 | unsigned getFunctionLoc(FunctionT &Func); |
231 | virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst); |
232 | ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst); |
233 | virtual ErrorOr<uint64_t> getProbeWeight(const InstructionT &Inst); |
234 | ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB); |
235 | mutable DenseMap<const DILocation *, const FunctionSamples *> |
236 | DILocation2SampleMap; |
237 | virtual const FunctionSamples * |
238 | findFunctionSamples(const InstructionT &I) const; |
239 | void printEdgeWeight(raw_ostream &OS, Edge E); |
240 | void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const; |
241 | void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB); |
242 | bool computeBlockWeights(FunctionT &F); |
243 | void findEquivalenceClasses(FunctionT &F); |
244 | void findEquivalencesFor(BasicBlockT *BB1, |
245 | ArrayRef<BasicBlockT *> Descendants, |
246 | PostDominatorTreeT *DomTree); |
247 | void propagateWeights(FunctionT &F); |
248 | void applyProfi(FunctionT &F, BlockEdgeMap &Successors, |
249 | BlockWeightMap &SampleBlockWeights, |
250 | BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights); |
251 | uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); |
252 | void buildEdges(FunctionT &F); |
253 | bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount); |
254 | void clearFunctionData(bool ResetDT = true); |
255 | void computeDominanceAndLoopInfo(FunctionT &F); |
256 | bool |
257 | computeAndPropagateWeights(FunctionT &F, |
258 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
259 | void initWeightPropagation(FunctionT &F, |
260 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
261 | void |
262 | finalizeWeightPropagation(FunctionT &F, |
263 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
264 | void emitCoverageRemarks(FunctionT &F); |
265 | |
266 | /// Map basic blocks to their computed weights. |
267 | /// |
268 | /// The weight of a basic block is defined to be the maximum |
269 | /// of all the instruction weights in that block. |
270 | BlockWeightMap BlockWeights; |
271 | |
272 | /// Map edges to their computed weights. |
273 | /// |
274 | /// Edge weights are computed by propagating basic block weights in |
275 | /// SampleProfile::propagateWeights. |
276 | EdgeWeightMap EdgeWeights; |
277 | |
278 | /// Set of visited blocks during propagation. |
279 | SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks; |
280 | |
281 | /// Set of visited edges during propagation. |
282 | SmallSet<Edge, 32> VisitedEdges; |
283 | |
284 | /// Equivalence classes for block weights. |
285 | /// |
286 | /// Two blocks BB1 and BB2 are in the same equivalence class if they |
287 | /// dominate and post-dominate each other, and they are in the same loop |
288 | /// nest. When this happens, the two blocks are guaranteed to execute |
289 | /// the same number of times. |
290 | EquivalenceClassMap EquivalenceClass; |
291 | |
292 | /// Dominance, post-dominance and loop information. |
293 | DominatorTreePtrT DT; |
294 | PostDominatorTreePtrT PDT; |
295 | LoopInfoPtrT LI; |
296 | |
297 | /// Predecessors for each basic block in the CFG. |
298 | BlockEdgeMap Predecessors; |
299 | |
300 | /// Successors for each basic block in the CFG. |
301 | BlockEdgeMap Successors; |
302 | |
303 | /// Profile coverage tracker. |
304 | SampleCoverageTracker CoverageTracker; |
305 | |
306 | /// Profile reader object. |
307 | std::unique_ptr<SampleProfileReader> Reader; |
308 | |
309 | /// Synthetic samples created by duplicating the samples of inlined functions |
310 | /// from the original profile as if they were top level sample profiles. |
311 | /// Use std::map because insertion may happen while its content is referenced. |
312 | std::map<SampleContext, FunctionSamples> OutlineFunctionSamples; |
313 | |
314 | // A pseudo probe helper to correlate the imported sample counts. |
315 | std::unique_ptr<PseudoProbeManager> ProbeManager; |
316 | |
317 | /// Samples collected for the body of this function. |
318 | FunctionSamples *Samples = nullptr; |
319 | |
320 | /// Name of the profile file to load. |
321 | std::string Filename; |
322 | |
323 | /// Name of the profile remapping file to load. |
324 | std::string RemappingFilename; |
325 | |
326 | /// VirtualFileSystem to load profile files from. |
327 | IntrusiveRefCntPtr<vfs::FileSystem> FS; |
328 | |
329 | /// Profile Summary Info computed from sample profile. |
330 | ProfileSummaryInfo *PSI = nullptr; |
331 | |
332 | /// Optimization Remark Emitter used to emit diagnostic remarks. |
333 | OptRemarkEmitterT *ORE = nullptr; |
334 | }; |
335 | |
336 | /// Clear all the per-function data used to load samples and propagate weights. |
337 | template <typename BT> |
338 | void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) { |
339 | BlockWeights.clear(); |
340 | EdgeWeights.clear(); |
341 | VisitedBlocks.clear(); |
342 | VisitedEdges.clear(); |
343 | EquivalenceClass.clear(); |
344 | if (ResetDT) { |
345 | DT = nullptr; |
346 | PDT = nullptr; |
347 | LI = nullptr; |
348 | } |
349 | Predecessors.clear(); |
350 | Successors.clear(); |
351 | CoverageTracker.clear(); |
352 | } |
353 | |
354 | #ifndef NDEBUG |
355 | /// Print the weight of edge \p E on stream \p OS. |
356 | /// |
357 | /// \param OS Stream to emit the output to. |
358 | /// \param E Edge to print. |
359 | template <typename BT> |
360 | void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) { |
361 | OS << "weight[" << E.first->getName() << "->" << E.second->getName() |
362 | << "]: " << EdgeWeights[E] << "\n" ; |
363 | } |
364 | |
365 | /// Print the equivalence class of block \p BB on stream \p OS. |
366 | /// |
367 | /// \param OS Stream to emit the output to. |
368 | /// \param BB Block to print. |
369 | template <typename BT> |
370 | void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence( |
371 | raw_ostream &OS, const BasicBlockT *BB) { |
372 | const BasicBlockT *Equiv = EquivalenceClass[BB]; |
373 | OS << "equivalence[" << BB->getName() |
374 | << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE" ) << "\n" ; |
375 | } |
376 | |
377 | /// Print the weight of block \p BB on stream \p OS. |
378 | /// |
379 | /// \param OS Stream to emit the output to. |
380 | /// \param BB Block to print. |
381 | template <typename BT> |
382 | void SampleProfileLoaderBaseImpl<BT>::printBlockWeight( |
383 | raw_ostream &OS, const BasicBlockT *BB) const { |
384 | const auto &I = BlockWeights.find(BB); |
385 | uint64_t W = (I == BlockWeights.end() ? 0 : I->second); |
386 | OS << "weight[" << BB->getName() << "]: " << W << "\n" ; |
387 | } |
388 | #endif |
389 | |
390 | /// Get the weight for an instruction. |
391 | /// |
392 | /// The "weight" of an instruction \p Inst is the number of samples |
393 | /// collected on that instruction at runtime. To retrieve it, we |
394 | /// need to compute the line number of \p Inst relative to the start of its |
395 | /// function. We use HeaderLineno to compute the offset. We then |
396 | /// look up the samples collected for \p Inst using BodySamples. |
397 | /// |
398 | /// \param Inst Instruction to query. |
399 | /// |
400 | /// \returns the weight of \p Inst. |
401 | template <typename BT> |
402 | ErrorOr<uint64_t> |
403 | SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) { |
404 | if (FunctionSamples::ProfileIsProbeBased) |
405 | return getProbeWeight(Inst); |
406 | return getInstWeightImpl(Inst); |
407 | } |
408 | |
409 | template <typename BT> |
410 | ErrorOr<uint64_t> |
411 | SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) { |
412 | const FunctionSamples *FS = findFunctionSamples(I: Inst); |
413 | if (!FS) |
414 | return std::error_code(); |
415 | |
416 | const DebugLoc &DLoc = Inst.getDebugLoc(); |
417 | if (!DLoc) |
418 | return std::error_code(); |
419 | |
420 | const DILocation *DIL = DLoc; |
421 | uint32_t LineOffset = FunctionSamples::getOffset(DIL); |
422 | uint32_t Discriminator; |
423 | if (EnableFSDiscriminator) |
424 | Discriminator = DIL->getDiscriminator(); |
425 | else |
426 | Discriminator = DIL->getBaseDiscriminator(); |
427 | |
428 | ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); |
429 | if (R) { |
430 | bool FirstMark = |
431 | CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, Samples: R.get()); |
432 | if (FirstMark) { |
433 | ORE->emit([&]() { |
434 | OptRemarkAnalysisT (DEBUG_TYPE, "AppliedSamples" , &Inst); |
435 | Remark << "Applied " << ore::NV("NumSamples" , *R); |
436 | Remark << " samples from profile (offset: " ; |
437 | Remark << ore::NV("LineOffset" , LineOffset); |
438 | if (Discriminator) { |
439 | Remark << "." ; |
440 | Remark << ore::NV("Discriminator" , Discriminator); |
441 | } |
442 | Remark << ")" ; |
443 | return Remark; |
444 | }); |
445 | } |
446 | LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." << Discriminator << ":" |
447 | << Inst << " (line offset: " << LineOffset << "." |
448 | << Discriminator << " - weight: " << R.get() << ")\n" ); |
449 | } |
450 | return R; |
451 | } |
452 | |
453 | template <typename BT> |
454 | ErrorOr<uint64_t> |
455 | SampleProfileLoaderBaseImpl<BT>::getProbeWeight(const InstructionT &Inst) { |
456 | assert(FunctionSamples::ProfileIsProbeBased && |
457 | "Profile is not pseudo probe based" ); |
458 | std::optional<PseudoProbe> Probe = extractProbe(Inst); |
459 | // Ignore the non-probe instruction. If none of the instruction in the BB is |
460 | // probe, we choose to infer the BB's weight. |
461 | if (!Probe) |
462 | return std::error_code(); |
463 | |
464 | const FunctionSamples *FS = findFunctionSamples(I: Inst); |
465 | if (!FS) { |
466 | // If we can't find the function samples for a probe, it could be due to the |
467 | // probe is later optimized away or the inlining context is mismatced. We |
468 | // treat it as unknown, leaving it to profile inference instead of forcing a |
469 | // zero count. |
470 | return std::error_code(); |
471 | } |
472 | |
473 | auto R = FS->findSamplesAt(LineOffset: Probe->Id, Discriminator: Probe->Discriminator); |
474 | if (R) { |
475 | uint64_t Samples = R.get() * Probe->Factor; |
476 | bool FirstMark = CoverageTracker.markSamplesUsed(FS, LineOffset: Probe->Id, Discriminator: 0, Samples); |
477 | if (FirstMark) { |
478 | ORE->emit([&]() { |
479 | OptRemarkAnalysisT (DEBUG_TYPE, "AppliedSamples" , &Inst); |
480 | Remark << "Applied " << ore::NV("NumSamples" , Samples); |
481 | Remark << " samples from profile (ProbeId=" ; |
482 | Remark << ore::NV("ProbeId" , Probe->Id); |
483 | if (Probe->Discriminator) { |
484 | Remark << "." ; |
485 | Remark << ore::NV("Discriminator" , Probe->Discriminator); |
486 | } |
487 | Remark << ", Factor=" ; |
488 | Remark << ore::NV("Factor" , Probe->Factor); |
489 | Remark << ", OriginalSamples=" ; |
490 | Remark << ore::NV("OriginalSamples" , R.get()); |
491 | Remark << ")" ; |
492 | return Remark; |
493 | }); |
494 | } |
495 | LLVM_DEBUG({dbgs() << " " << Probe->Id; |
496 | if (Probe->Discriminator) |
497 | dbgs() << "." << Probe->Discriminator; |
498 | dbgs() << ":" << Inst << " - weight: " << R.get() |
499 | << " - factor: " << format("%0.2f" , Probe->Factor) << ")\n" ;}); |
500 | return Samples; |
501 | } |
502 | return R; |
503 | } |
504 | |
505 | /// Compute the weight of a basic block. |
506 | /// |
507 | /// The weight of basic block \p BB is the maximum weight of all the |
508 | /// instructions in BB. |
509 | /// |
510 | /// \param BB The basic block to query. |
511 | /// |
512 | /// \returns the weight for \p BB. |
513 | template <typename BT> |
514 | ErrorOr<uint64_t> |
515 | SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) { |
516 | uint64_t Max = 0; |
517 | bool HasWeight = false; |
518 | for (auto &I : *BB) { |
519 | const ErrorOr<uint64_t> &R = getInstWeight(Inst: I); |
520 | if (R) { |
521 | Max = std::max(a: Max, b: R.get()); |
522 | HasWeight = true; |
523 | } |
524 | } |
525 | return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); |
526 | } |
527 | |
528 | /// Compute and store the weights of every basic block. |
529 | /// |
530 | /// This populates the BlockWeights map by computing |
531 | /// the weights of every basic block in the CFG. |
532 | /// |
533 | /// \param F The function to query. |
534 | template <typename BT> |
535 | bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) { |
536 | bool Changed = false; |
537 | LLVM_DEBUG(dbgs() << "Block weights\n" ); |
538 | for (const auto &BB : F) { |
539 | ErrorOr<uint64_t> Weight = getBlockWeight(BB: &BB); |
540 | if (Weight) { |
541 | BlockWeights[&BB] = Weight.get(); |
542 | VisitedBlocks.insert(&BB); |
543 | Changed = true; |
544 | } |
545 | LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); |
546 | } |
547 | |
548 | return Changed; |
549 | } |
550 | |
551 | /// Get the FunctionSamples for an instruction. |
552 | /// |
553 | /// The FunctionSamples of an instruction \p Inst is the inlined instance |
554 | /// in which that instruction is coming from. We traverse the inline stack |
555 | /// of that instruction, and match it with the tree nodes in the profile. |
556 | /// |
557 | /// \param Inst Instruction to query. |
558 | /// |
559 | /// \returns the FunctionSamples pointer to the inlined instance. |
560 | template <typename BT> |
561 | const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples( |
562 | const InstructionT &Inst) const { |
563 | const DILocation *DIL = Inst.getDebugLoc(); |
564 | if (!DIL) |
565 | return Samples; |
566 | |
567 | auto it = DILocation2SampleMap.try_emplace(Key: DIL, Args: nullptr); |
568 | if (it.second) { |
569 | it.first->second = Samples->findFunctionSamples(DIL, Remapper: Reader->getRemapper()); |
570 | } |
571 | return it.first->second; |
572 | } |
573 | |
574 | /// Find equivalence classes for the given block. |
575 | /// |
576 | /// This finds all the blocks that are guaranteed to execute the same |
577 | /// number of times as \p BB1. To do this, it traverses all the |
578 | /// descendants of \p BB1 in the dominator or post-dominator tree. |
579 | /// |
580 | /// A block BB2 will be in the same equivalence class as \p BB1 if |
581 | /// the following holds: |
582 | /// |
583 | /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 |
584 | /// is a descendant of \p BB1 in the dominator tree, then BB2 should |
585 | /// dominate BB1 in the post-dominator tree. |
586 | /// |
587 | /// 2- Both BB2 and \p BB1 must be in the same loop. |
588 | /// |
589 | /// For every block BB2 that meets those two requirements, we set BB2's |
590 | /// equivalence class to \p BB1. |
591 | /// |
592 | /// \param BB1 Block to check. |
593 | /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. |
594 | /// \param DomTree Opposite dominator tree. If \p Descendants is filled |
595 | /// with blocks from \p BB1's dominator tree, then |
596 | /// this is the post-dominator tree, and vice versa. |
597 | template <typename BT> |
598 | void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor( |
599 | BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants, |
600 | PostDominatorTreeT *DomTree) { |
601 | const BasicBlockT *EC = EquivalenceClass[BB1]; |
602 | uint64_t Weight = BlockWeights[EC]; |
603 | for (const auto *BB2 : Descendants) { |
604 | bool IsDomParent = DomTree->dominates(BB2, BB1); |
605 | bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); |
606 | if (BB1 != BB2 && IsDomParent && IsInSameLoop) { |
607 | EquivalenceClass[BB2] = EC; |
608 | // If BB2 is visited, then the entire EC should be marked as visited. |
609 | if (VisitedBlocks.count(BB2)) { |
610 | VisitedBlocks.insert(EC); |
611 | } |
612 | |
613 | // If BB2 is heavier than BB1, make BB2 have the same weight |
614 | // as BB1. |
615 | // |
616 | // Note that we don't worry about the opposite situation here |
617 | // (when BB2 is lighter than BB1). We will deal with this |
618 | // during the propagation phase. Right now, we just want to |
619 | // make sure that BB1 has the largest weight of all the |
620 | // members of its equivalence set. |
621 | Weight = std::max(Weight, BlockWeights[BB2]); |
622 | } |
623 | } |
624 | const BasicBlockT *EntryBB = getEntryBB(F: EC->getParent()); |
625 | if (EC == EntryBB) { |
626 | BlockWeights[EC] = Samples->getHeadSamples() + 1; |
627 | } else { |
628 | BlockWeights[EC] = Weight; |
629 | } |
630 | } |
631 | |
632 | /// Find equivalence classes. |
633 | /// |
634 | /// Since samples may be missing from blocks, we can fill in the gaps by setting |
635 | /// the weights of all the blocks in the same equivalence class to the same |
636 | /// weight. To compute the concept of equivalence, we use dominance and loop |
637 | /// information. Two blocks B1 and B2 are in the same equivalence class if B1 |
638 | /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
639 | /// |
640 | /// \param F The function to query. |
641 | template <typename BT> |
642 | void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) { |
643 | SmallVector<BasicBlockT *, 8> DominatedBBs; |
644 | LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n" ); |
645 | // Find equivalence sets based on dominance and post-dominance information. |
646 | for (auto &BB : F) { |
647 | BasicBlockT *BB1 = &BB; |
648 | |
649 | // Compute BB1's equivalence class once. |
650 | // By default, blocks are in their own equivalence class. |
651 | auto [It, Inserted] = EquivalenceClass.try_emplace(BB1, BB1); |
652 | if (!Inserted) { |
653 | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
654 | continue; |
655 | } |
656 | |
657 | // Traverse all the blocks dominated by BB1. We are looking for |
658 | // every basic block BB2 such that: |
659 | // |
660 | // 1- BB1 dominates BB2. |
661 | // 2- BB2 post-dominates BB1. |
662 | // 3- BB1 and BB2 are in the same loop nest. |
663 | // |
664 | // If all those conditions hold, it means that BB2 is executed |
665 | // as many times as BB1, so they are placed in the same equivalence |
666 | // class by making BB2's equivalence class be BB1. |
667 | DominatedBBs.clear(); |
668 | DT->getDescendants(BB1, DominatedBBs); |
669 | findEquivalencesFor(BB1, Descendants: DominatedBBs, DomTree: &*PDT); |
670 | |
671 | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
672 | } |
673 | |
674 | // Assign weights to equivalence classes. |
675 | // |
676 | // All the basic blocks in the same equivalence class will execute |
677 | // the same number of times. Since we know that the head block in |
678 | // each equivalence class has the largest weight, assign that weight |
679 | // to all the blocks in that equivalence class. |
680 | LLVM_DEBUG( |
681 | dbgs() << "\nAssign the same weight to all blocks in the same class\n" ); |
682 | for (auto &BI : F) { |
683 | const BasicBlockT *BB = &BI; |
684 | const BasicBlockT *EquivBB = EquivalenceClass[BB]; |
685 | if (BB != EquivBB) |
686 | BlockWeights[BB] = BlockWeights[EquivBB]; |
687 | LLVM_DEBUG(printBlockWeight(dbgs(), BB)); |
688 | } |
689 | } |
690 | |
691 | /// Visit the given edge to decide if it has a valid weight. |
692 | /// |
693 | /// If \p E has not been visited before, we copy to \p UnknownEdge |
694 | /// and increment the count of unknown edges. |
695 | /// |
696 | /// \param E Edge to visit. |
697 | /// \param NumUnknownEdges Current number of unknown edges. |
698 | /// \param UnknownEdge Set if E has not been visited before. |
699 | /// |
700 | /// \returns E's weight, if known. Otherwise, return 0. |
701 | template <typename BT> |
702 | uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E, |
703 | unsigned *NumUnknownEdges, |
704 | Edge *UnknownEdge) { |
705 | if (!VisitedEdges.count(E)) { |
706 | (*NumUnknownEdges)++; |
707 | *UnknownEdge = E; |
708 | return 0; |
709 | } |
710 | |
711 | return EdgeWeights[E]; |
712 | } |
713 | |
714 | /// Propagate weights through incoming/outgoing edges. |
715 | /// |
716 | /// If the weight of a basic block is known, and there is only one edge |
717 | /// with an unknown weight, we can calculate the weight of that edge. |
718 | /// |
719 | /// Similarly, if all the edges have a known count, we can calculate the |
720 | /// count of the basic block, if needed. |
721 | /// |
722 | /// \param F Function to process. |
723 | /// \param UpdateBlockCount Whether we should update basic block counts that |
724 | /// has already been annotated. |
725 | /// |
726 | /// \returns True if new weights were assigned to edges or blocks. |
727 | template <typename BT> |
728 | bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges( |
729 | FunctionT &F, bool UpdateBlockCount) { |
730 | bool Changed = false; |
731 | LLVM_DEBUG(dbgs() << "\nPropagation through edges\n" ); |
732 | for (const auto &BI : F) { |
733 | const BasicBlockT *BB = &BI; |
734 | const BasicBlockT *EC = EquivalenceClass[BB]; |
735 | |
736 | // Visit all the predecessor and successor edges to determine |
737 | // which ones have a weight assigned already. Note that it doesn't |
738 | // matter that we only keep track of a single unknown edge. The |
739 | // only case we are interested in handling is when only a single |
740 | // edge is unknown (see setEdgeOrBlockWeight). |
741 | for (unsigned i = 0; i < 2; i++) { |
742 | uint64_t TotalWeight = 0; |
743 | unsigned NumUnknownEdges = 0, NumTotalEdges = 0; |
744 | Edge UnknownEdge, SelfReferentialEdge, SingleEdge; |
745 | |
746 | if (i == 0) { |
747 | // First, visit all predecessor edges. |
748 | auto &Preds = Predecessors[BB]; |
749 | NumTotalEdges = Preds.size(); |
750 | for (auto *Pred : Preds) { |
751 | Edge E = std::make_pair(Pred, BB); |
752 | TotalWeight += visitEdge(E, NumUnknownEdges: &NumUnknownEdges, UnknownEdge: &UnknownEdge); |
753 | if (E.first == E.second) |
754 | SelfReferentialEdge = E; |
755 | } |
756 | if (NumTotalEdges == 1) { |
757 | SingleEdge = std::make_pair(Predecessors[BB][0], BB); |
758 | } |
759 | } else { |
760 | // On the second round, visit all successor edges. |
761 | auto &Succs = Successors[BB]; |
762 | NumTotalEdges = Succs.size(); |
763 | for (auto *Succ : Succs) { |
764 | Edge E = std::make_pair(BB, Succ); |
765 | TotalWeight += visitEdge(E, NumUnknownEdges: &NumUnknownEdges, UnknownEdge: &UnknownEdge); |
766 | } |
767 | if (NumTotalEdges == 1) { |
768 | SingleEdge = std::make_pair(BB, Successors[BB][0]); |
769 | } |
770 | } |
771 | |
772 | // After visiting all the edges, there are three cases that we |
773 | // can handle immediately: |
774 | // |
775 | // - All the edge weights are known (i.e., NumUnknownEdges == 0). |
776 | // In this case, we simply check that the sum of all the edges |
777 | // is the same as BB's weight. If not, we change BB's weight |
778 | // to match. Additionally, if BB had not been visited before, |
779 | // we mark it visited. |
780 | // |
781 | // - Only one edge is unknown and BB has already been visited. |
782 | // In this case, we can compute the weight of the edge by |
783 | // subtracting the total block weight from all the known |
784 | // edge weights. If the edges weight more than BB, then the |
785 | // edge of the last remaining edge is set to zero. |
786 | // |
787 | // - There exists a self-referential edge and the weight of BB is |
788 | // known. In this case, this edge can be based on BB's weight. |
789 | // We add up all the other known edges and set the weight on |
790 | // the self-referential edge as we did in the previous case. |
791 | // |
792 | // In any other case, we must continue iterating. Eventually, |
793 | // all edges will get a weight, or iteration will stop when |
794 | // it reaches SampleProfileMaxPropagateIterations. |
795 | if (NumUnknownEdges <= 1) { |
796 | uint64_t &BBWeight = BlockWeights[EC]; |
797 | if (NumUnknownEdges == 0) { |
798 | if (!VisitedBlocks.count(EC)) { |
799 | // If we already know the weight of all edges, the weight of the |
800 | // basic block can be computed. It should be no larger than the sum |
801 | // of all edge weights. |
802 | if (TotalWeight > BBWeight) { |
803 | BBWeight = TotalWeight; |
804 | Changed = true; |
805 | LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() |
806 | << " known. Set weight for block: " ; |
807 | printBlockWeight(dbgs(), BB);); |
808 | } |
809 | } else if (NumTotalEdges == 1 && |
810 | EdgeWeights[SingleEdge] < BlockWeights[EC]) { |
811 | // If there is only one edge for the visited basic block, use the |
812 | // block weight to adjust edge weight if edge weight is smaller. |
813 | EdgeWeights[SingleEdge] = BlockWeights[EC]; |
814 | Changed = true; |
815 | } |
816 | } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { |
817 | // If there is a single unknown edge and the block has been |
818 | // visited, then we can compute E's weight. |
819 | if (BBWeight >= TotalWeight) |
820 | EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; |
821 | else |
822 | EdgeWeights[UnknownEdge] = 0; |
823 | const BasicBlockT *OtherEC; |
824 | if (i == 0) |
825 | OtherEC = EquivalenceClass[UnknownEdge.first]; |
826 | else |
827 | OtherEC = EquivalenceClass[UnknownEdge.second]; |
828 | // Edge weights should never exceed the BB weights it connects. |
829 | if (VisitedBlocks.count(OtherEC) && |
830 | EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) |
831 | EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; |
832 | VisitedEdges.insert(UnknownEdge); |
833 | Changed = true; |
834 | LLVM_DEBUG(dbgs() << "Set weight for edge: " ; |
835 | printEdgeWeight(dbgs(), UnknownEdge)); |
836 | } |
837 | } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { |
838 | // If a block Weights 0, all its in/out edges should weight 0. |
839 | if (i == 0) { |
840 | for (auto *Pred : Predecessors[BB]) { |
841 | Edge E = std::make_pair(Pred, BB); |
842 | EdgeWeights[E] = 0; |
843 | VisitedEdges.insert(E); |
844 | } |
845 | } else { |
846 | for (auto *Succ : Successors[BB]) { |
847 | Edge E = std::make_pair(BB, Succ); |
848 | EdgeWeights[E] = 0; |
849 | VisitedEdges.insert(E); |
850 | } |
851 | } |
852 | } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { |
853 | uint64_t &BBWeight = BlockWeights[BB]; |
854 | // We have a self-referential edge and the weight of BB is known. |
855 | if (BBWeight >= TotalWeight) |
856 | EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; |
857 | else |
858 | EdgeWeights[SelfReferentialEdge] = 0; |
859 | VisitedEdges.insert(SelfReferentialEdge); |
860 | Changed = true; |
861 | LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: " ; |
862 | printEdgeWeight(dbgs(), SelfReferentialEdge)); |
863 | } |
864 | if (UpdateBlockCount && TotalWeight > 0 && |
865 | VisitedBlocks.insert(EC).second) { |
866 | BlockWeights[EC] = TotalWeight; |
867 | Changed = true; |
868 | } |
869 | } |
870 | } |
871 | |
872 | return Changed; |
873 | } |
874 | |
875 | /// Build in/out edge lists for each basic block in the CFG. |
876 | /// |
877 | /// We are interested in unique edges. If a block B1 has multiple |
878 | /// edges to another block B2, we only add a single B1->B2 edge. |
879 | template <typename BT> |
880 | void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) { |
881 | for (auto &BI : F) { |
882 | BasicBlockT *B1 = &BI; |
883 | |
884 | // Add predecessors for B1. |
885 | SmallPtrSet<BasicBlockT *, 16> Visited; |
886 | auto &Preds = Predecessors[B1]; |
887 | if (!Preds.empty()) |
888 | llvm_unreachable("Found a stale predecessors list in a basic block." ); |
889 | for (auto *B2 : getPredecessors(BB: B1)) |
890 | if (Visited.insert(B2).second) |
891 | Preds.push_back(B2); |
892 | |
893 | // Add successors for B1. |
894 | Visited.clear(); |
895 | auto &Succs = Successors[B1]; |
896 | if (!Succs.empty()) |
897 | llvm_unreachable("Found a stale successors list in a basic block." ); |
898 | for (auto *B2 : getSuccessors(BB: B1)) |
899 | if (Visited.insert(B2).second) |
900 | Succs.push_back(B2); |
901 | } |
902 | } |
903 | |
904 | /// Propagate weights into edges |
905 | /// |
906 | /// The following rules are applied to every block BB in the CFG: |
907 | /// |
908 | /// - If BB has a single predecessor/successor, then the weight |
909 | /// of that edge is the weight of the block. |
910 | /// |
911 | /// - If all incoming or outgoing edges are known except one, and the |
912 | /// weight of the block is already known, the weight of the unknown |
913 | /// edge will be the weight of the block minus the sum of all the known |
914 | /// edges. If the sum of all the known edges is larger than BB's weight, |
915 | /// we set the unknown edge weight to zero. |
916 | /// |
917 | /// - If there is a self-referential edge, and the weight of the block is |
918 | /// known, the weight for that edge is set to the weight of the block |
919 | /// minus the weight of the other incoming edges to that block (if |
920 | /// known). |
921 | template <typename BT> |
922 | void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) { |
923 | // Flow-based profile inference is only usable with BasicBlock instantiation |
924 | // of SampleProfileLoaderBaseImpl. |
925 | if (SampleProfileUseProfi) { |
926 | // Prepare block sample counts for inference. |
927 | BlockWeightMap SampleBlockWeights; |
928 | for (const auto &BI : F) { |
929 | ErrorOr<uint64_t> Weight = getBlockWeight(BB: &BI); |
930 | if (Weight) |
931 | SampleBlockWeights[&BI] = Weight.get(); |
932 | } |
933 | // Fill in BlockWeights and EdgeWeights using an inference algorithm. |
934 | applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights); |
935 | } else { |
936 | bool Changed = true; |
937 | unsigned I = 0; |
938 | |
939 | // If BB weight is larger than its corresponding loop's header BB weight, |
940 | // use the BB weight to replace the loop header BB weight. |
941 | for (auto &BI : F) { |
942 | BasicBlockT *BB = &BI; |
943 | LoopT *L = LI->getLoopFor(BB); |
944 | if (!L) { |
945 | continue; |
946 | } |
947 | BasicBlockT * = L->getHeader(); |
948 | if (Header && BlockWeights[BB] > BlockWeights[Header]) { |
949 | BlockWeights[Header] = BlockWeights[BB]; |
950 | } |
951 | } |
952 | |
953 | // Propagate until we converge or we go past the iteration limit. |
954 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
955 | Changed = propagateThroughEdges(F, UpdateBlockCount: false); |
956 | } |
957 | |
958 | // The first propagation propagates BB counts from annotated BBs to unknown |
959 | // BBs. The 2nd propagation pass resets edges weights, and use all BB |
960 | // weights to propagate edge weights. |
961 | VisitedEdges.clear(); |
962 | Changed = true; |
963 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
964 | Changed = propagateThroughEdges(F, UpdateBlockCount: false); |
965 | } |
966 | |
967 | // The 3rd propagation pass allows adjust annotated BB weights that are |
968 | // obviously wrong. |
969 | Changed = true; |
970 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
971 | Changed = propagateThroughEdges(F, UpdateBlockCount: true); |
972 | } |
973 | } |
974 | } |
975 | |
976 | template <typename FT> |
977 | void SampleProfileLoaderBaseImpl<FT>::applyProfi( |
978 | FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights, |
979 | BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) { |
980 | auto Infer = SampleProfileInference<FT>(F, Successors, SampleBlockWeights); |
981 | Infer.apply(BlockWeights, EdgeWeights); |
982 | } |
983 | |
984 | /// Generate branch weight metadata for all branches in \p F. |
985 | /// |
986 | /// Branch weights are computed out of instruction samples using a |
987 | /// propagation heuristic. Propagation proceeds in 3 phases: |
988 | /// |
989 | /// 1- Assignment of block weights. All the basic blocks in the function |
990 | /// are initial assigned the same weight as their most frequently |
991 | /// executed instruction. |
992 | /// |
993 | /// 2- Creation of equivalence classes. Since samples may be missing from |
994 | /// blocks, we can fill in the gaps by setting the weights of all the |
995 | /// blocks in the same equivalence class to the same weight. To compute |
996 | /// the concept of equivalence, we use dominance and loop information. |
997 | /// Two blocks B1 and B2 are in the same equivalence class if B1 |
998 | /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
999 | /// |
1000 | /// 3- Propagation of block weights into edges. This uses a simple |
1001 | /// propagation heuristic. The following rules are applied to every |
1002 | /// block BB in the CFG: |
1003 | /// |
1004 | /// - If BB has a single predecessor/successor, then the weight |
1005 | /// of that edge is the weight of the block. |
1006 | /// |
1007 | /// - If all the edges are known except one, and the weight of the |
1008 | /// block is already known, the weight of the unknown edge will |
1009 | /// be the weight of the block minus the sum of all the known |
1010 | /// edges. If the sum of all the known edges is larger than BB's weight, |
1011 | /// we set the unknown edge weight to zero. |
1012 | /// |
1013 | /// - If there is a self-referential edge, and the weight of the block is |
1014 | /// known, the weight for that edge is set to the weight of the block |
1015 | /// minus the weight of the other incoming edges to that block (if |
1016 | /// known). |
1017 | /// |
1018 | /// Since this propagation is not guaranteed to finalize for every CFG, we |
1019 | /// only allow it to proceed for a limited number of iterations (controlled |
1020 | /// by -sample-profile-max-propagate-iterations). |
1021 | /// |
1022 | /// FIXME: Try to replace this propagation heuristic with a scheme |
1023 | /// that is guaranteed to finalize. A work-list approach similar to |
1024 | /// the standard value propagation algorithm used by SSA-CCP might |
1025 | /// work here. |
1026 | /// |
1027 | /// \param F The function to query. |
1028 | /// |
1029 | /// \returns true if \p F was modified. Returns false, otherwise. |
1030 | template <typename BT> |
1031 | bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights( |
1032 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
1033 | bool Changed = (InlinedGUIDs.size() != 0); |
1034 | |
1035 | // Compute basic block weights. |
1036 | Changed |= computeBlockWeights(F); |
1037 | |
1038 | if (Changed) { |
1039 | // Initialize propagation. |
1040 | initWeightPropagation(F, InlinedGUIDs); |
1041 | |
1042 | // Propagate weights to all edges. |
1043 | propagateWeights(F); |
1044 | |
1045 | // Post-process propagated weights. |
1046 | finalizeWeightPropagation(F, InlinedGUIDs); |
1047 | } |
1048 | |
1049 | return Changed; |
1050 | } |
1051 | |
1052 | template <typename BT> |
1053 | void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation( |
1054 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
1055 | // Add an entry count to the function using the samples gathered at the |
1056 | // function entry. |
1057 | // Sets the GUIDs that are inlined in the profiled binary. This is used |
1058 | // for ThinLink to make correct liveness analysis, and also make the IR |
1059 | // match the profiled binary before annotation. |
1060 | getFunction(F).setEntryCount( |
1061 | ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), |
1062 | &InlinedGUIDs); |
1063 | |
1064 | if (!SampleProfileUseProfi) { |
1065 | // Compute dominance and loop info needed for propagation. |
1066 | computeDominanceAndLoopInfo(F); |
1067 | |
1068 | // Find equivalence classes. |
1069 | findEquivalenceClasses(F); |
1070 | } |
1071 | |
1072 | // Before propagation starts, build, for each block, a list of |
1073 | // unique predecessors and successors. This is necessary to handle |
1074 | // identical edges in multiway branches. Since we visit all blocks and all |
1075 | // edges of the CFG, it is cleaner to build these lists once at the start |
1076 | // of the pass. |
1077 | buildEdges(F); |
1078 | } |
1079 | |
1080 | template <typename BT> |
1081 | void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation( |
1082 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
1083 | // If we utilize a flow-based count inference, then we trust the computed |
1084 | // counts and set the entry count as computed by the algorithm. This is |
1085 | // primarily done to sync the counts produced by profi and BFI inference, |
1086 | // which uses the entry count for mass propagation. |
1087 | // If profi produces a zero-value for the entry count, we fallback to |
1088 | // Samples->getHeadSamples() + 1 to avoid functions with zero count. |
1089 | if (SampleProfileUseProfi) { |
1090 | const BasicBlockT *EntryBB = getEntryBB(F: &F); |
1091 | ErrorOr<uint64_t> EntryWeight = getBlockWeight(BB: EntryBB); |
1092 | if (BlockWeights[EntryBB] > 0) { |
1093 | getFunction(F).setEntryCount( |
1094 | ProfileCount(BlockWeights[EntryBB], Function::PCT_Real), |
1095 | &InlinedGUIDs); |
1096 | } |
1097 | } |
1098 | } |
1099 | |
1100 | template <typename BT> |
1101 | void SampleProfileLoaderBaseImpl<BT>::(FunctionT &F) { |
1102 | // If coverage checking was requested, compute it now. |
1103 | const Function &Func = getFunction(F); |
1104 | if (SampleProfileRecordCoverage) { |
1105 | unsigned Used = CoverageTracker.countUsedRecords(FS: Samples, PSI); |
1106 | unsigned Total = CoverageTracker.countBodyRecords(FS: Samples, PSI); |
1107 | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
1108 | if (Coverage < SampleProfileRecordCoverage) { |
1109 | Func.getContext().diagnose(DI: DiagnosticInfoSampleProfile( |
1110 | Func.getSubprogram()->getFilename(), getFunctionLoc(Func&: F), |
1111 | Twine(Used) + " of " + Twine(Total) + " available profile records (" + |
1112 | Twine(Coverage) + "%) were applied" , |
1113 | DS_Warning)); |
1114 | } |
1115 | } |
1116 | |
1117 | if (SampleProfileSampleCoverage) { |
1118 | uint64_t Used = CoverageTracker.getTotalUsedSamples(); |
1119 | uint64_t Total = CoverageTracker.countBodySamples(FS: Samples, PSI); |
1120 | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
1121 | if (Coverage < SampleProfileSampleCoverage) { |
1122 | Func.getContext().diagnose(DI: DiagnosticInfoSampleProfile( |
1123 | Func.getSubprogram()->getFilename(), getFunctionLoc(Func&: F), |
1124 | Twine(Used) + " of " + Twine(Total) + " available profile samples (" + |
1125 | Twine(Coverage) + "%) were applied" , |
1126 | DS_Warning)); |
1127 | } |
1128 | } |
1129 | } |
1130 | |
1131 | /// Get the line number for the function header. |
1132 | /// |
1133 | /// This looks up function \p F in the current compilation unit and |
1134 | /// retrieves the line number where the function is defined. This is |
1135 | /// line 0 for all the samples read from the profile file. Every line |
1136 | /// number is relative to this line. |
1137 | /// |
1138 | /// \param F Function object to query. |
1139 | /// |
1140 | /// \returns the line number where \p F is defined. If it returns 0, |
1141 | /// it means that there is no debug information available for \p F. |
1142 | template <typename BT> |
1143 | unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) { |
1144 | const Function &Func = getFunction(F); |
1145 | if (DISubprogram *S = Func.getSubprogram()) |
1146 | return S->getLine(); |
1147 | |
1148 | if (NoWarnSampleUnused) |
1149 | return 0; |
1150 | |
1151 | // If the start of \p F is missing, emit a diagnostic to inform the user |
1152 | // about the missed opportunity. |
1153 | Func.getContext().diagnose(DI: DiagnosticInfoSampleProfile( |
1154 | "No debug information found in function " + Func.getName() + |
1155 | ": Function profile not used" , |
1156 | DS_Warning)); |
1157 | return 0; |
1158 | } |
1159 | |
1160 | #undef DEBUG_TYPE |
1161 | |
1162 | } // namespace llvm |
1163 | #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
1164 | |