| 1 | //===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Analysis/ConstraintSystem.h" |
| 10 | #include "llvm/ADT/SmallVector.h" |
| 11 | #include "llvm/ADT/StringExtras.h" |
| 12 | #include "llvm/IR/Value.h" |
| 13 | #include "llvm/Support/Debug.h" |
| 14 | #include "llvm/Support/MathExtras.h" |
| 15 | |
| 16 | #include <string> |
| 17 | |
| 18 | using namespace llvm; |
| 19 | |
| 20 | #define DEBUG_TYPE "constraint-system" |
| 21 | |
| 22 | bool ConstraintSystem::eliminateUsingFM() { |
| 23 | // Implementation of Fourier–Motzkin elimination, with some tricks from the |
| 24 | // paper Pugh, William. "The Omega test: a fast and practical integer |
| 25 | // programming algorithm for dependence |
| 26 | // analysis." |
| 27 | // Supercomputing'91: Proceedings of the 1991 ACM/ |
| 28 | // IEEE conference on Supercomputing. IEEE, 1991. |
| 29 | assert(!Constraints.empty() && |
| 30 | "should only be called for non-empty constraint systems" ); |
| 31 | |
| 32 | unsigned LastIdx = NumVariables - 1; |
| 33 | |
| 34 | // First, either remove the variable in place if it is 0 or add the row to |
| 35 | // RemainingRows and remove it from the system. |
| 36 | SmallVector<SmallVector<Entry, 8>, 4> RemainingRows; |
| 37 | for (unsigned R1 = 0; R1 < Constraints.size();) { |
| 38 | SmallVector<Entry, 8> &Row1 = Constraints[R1]; |
| 39 | if (getLastCoefficient(Row: Row1, Id: LastIdx) == 0) { |
| 40 | if (Row1.size() > 0 && Row1.back().Id == LastIdx) |
| 41 | Row1.pop_back(); |
| 42 | R1++; |
| 43 | } else { |
| 44 | std::swap(LHS&: Constraints[R1], RHS&: Constraints.back()); |
| 45 | RemainingRows.push_back(Elt: std::move(Constraints.back())); |
| 46 | Constraints.pop_back(); |
| 47 | } |
| 48 | } |
| 49 | |
| 50 | // Process rows where the variable is != 0. |
| 51 | unsigned NumRemainingConstraints = RemainingRows.size(); |
| 52 | for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) { |
| 53 | // FIXME do not use copy |
| 54 | for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) { |
| 55 | // Examples of constraints stored as {Constant, Coeff_x, Coeff_y} |
| 56 | // R1: 0 >= 1 * x + (-2) * y => { 0, 1, -2 } |
| 57 | // R2: 3 >= 2 * x + 3 * y => { 3, 2, 3 } |
| 58 | // LastIdx = 2 (tracking coefficient of y) |
| 59 | // UpperLast: 3 |
| 60 | // LowerLast: -2 |
| 61 | int64_t UpperLast = getLastCoefficient(Row: RemainingRows[R2], Id: LastIdx); |
| 62 | int64_t LowerLast = getLastCoefficient(Row: RemainingRows[R1], Id: LastIdx); |
| 63 | assert( |
| 64 | UpperLast != 0 && LowerLast != 0 && |
| 65 | "RemainingRows should only contain rows where the variable is != 0" ); |
| 66 | |
| 67 | if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0)) |
| 68 | continue; |
| 69 | |
| 70 | unsigned LowerR = R1; |
| 71 | unsigned UpperR = R2; |
| 72 | if (UpperLast < 0) { |
| 73 | std::swap(a&: LowerR, b&: UpperR); |
| 74 | std::swap(a&: LowerLast, b&: UpperLast); |
| 75 | } |
| 76 | |
| 77 | SmallVector<Entry, 8> NR; |
| 78 | unsigned IdxUpper = 0; |
| 79 | unsigned IdxLower = 0; |
| 80 | auto &LowerRow = RemainingRows[LowerR]; |
| 81 | auto &UpperRow = RemainingRows[UpperR]; |
| 82 | // Update constant and coefficients of both constraints. |
| 83 | // Stops until every coefficient is updated or overflows. |
| 84 | while (true) { |
| 85 | if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size()) |
| 86 | break; |
| 87 | int64_t M1, M2, N; |
| 88 | // Starts with index 0 and updates every coefficients. |
| 89 | int64_t UpperV = 0; |
| 90 | int64_t LowerV = 0; |
| 91 | uint16_t CurrentId = std::numeric_limits<uint16_t>::max(); |
| 92 | if (IdxUpper < UpperRow.size()) { |
| 93 | CurrentId = std::min(a: UpperRow[IdxUpper].Id, b: CurrentId); |
| 94 | } |
| 95 | if (IdxLower < LowerRow.size()) { |
| 96 | CurrentId = std::min(a: LowerRow[IdxLower].Id, b: CurrentId); |
| 97 | } |
| 98 | |
| 99 | if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) { |
| 100 | UpperV = UpperRow[IdxUpper].Coefficient; |
| 101 | IdxUpper++; |
| 102 | } |
| 103 | |
| 104 | if (MulOverflow(X: UpperV, Y: -1 * LowerLast, Result&: M1)) |
| 105 | return false; |
| 106 | if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) { |
| 107 | LowerV = LowerRow[IdxLower].Coefficient; |
| 108 | IdxLower++; |
| 109 | } |
| 110 | |
| 111 | if (MulOverflow(X: LowerV, Y: UpperLast, Result&: M2)) |
| 112 | return false; |
| 113 | // This algorithm is a variant of sparse Gaussian elimination. |
| 114 | // |
| 115 | // The new coefficient for CurrentId is |
| 116 | // N = UpperV * (-1) * LowerLast + LowerV * UpperLast |
| 117 | // |
| 118 | // UpperRow: { 3, 2, 3 }, LowerLast: -2 |
| 119 | // LowerRow: { 0, 1, -2 }, UpperLast: 3 |
| 120 | // |
| 121 | // After multiplication: |
| 122 | // UpperRow: { 6, 4, 6 } |
| 123 | // LowerRow: { 0, 3, -6 } |
| 124 | // |
| 125 | // Eliminates y after addition: |
| 126 | // N: { 6, 7, 0 } => 6 >= 7 * x |
| 127 | if (AddOverflow(X: M1, Y: M2, Result&: N)) |
| 128 | return false; |
| 129 | // Skip variable that is completely eliminated. |
| 130 | if (N == 0) |
| 131 | continue; |
| 132 | NR.emplace_back(Args&: N, Args&: CurrentId); |
| 133 | } |
| 134 | if (NR.empty()) |
| 135 | continue; |
| 136 | Constraints.push_back(Elt: std::move(NR)); |
| 137 | // Give up if the new system gets too big. |
| 138 | if (Constraints.size() > 500) |
| 139 | return false; |
| 140 | } |
| 141 | } |
| 142 | NumVariables -= 1; |
| 143 | |
| 144 | return true; |
| 145 | } |
| 146 | |
| 147 | bool ConstraintSystem::mayHaveSolutionImpl() { |
| 148 | while (!Constraints.empty() && NumVariables > 1) { |
| 149 | if (!eliminateUsingFM()) |
| 150 | return true; |
| 151 | } |
| 152 | |
| 153 | if (Constraints.empty() || NumVariables > 1) |
| 154 | return true; |
| 155 | |
| 156 | return all_of(Range&: Constraints, P: [](auto &R) { |
| 157 | if (R.empty()) |
| 158 | return true; |
| 159 | if (R[0].Id == 0) |
| 160 | return R[0].Coefficient >= 0; |
| 161 | return true; |
| 162 | }); |
| 163 | } |
| 164 | |
| 165 | SmallVector<std::string> ConstraintSystem::getVarNamesList() const { |
| 166 | SmallVector<std::string> Names(Value2Index.size(), "" ); |
| 167 | #ifndef NDEBUG |
| 168 | for (auto &[V, Index] : Value2Index) { |
| 169 | std::string OperandName; |
| 170 | if (V->getName().empty()) |
| 171 | OperandName = V->getNameOrAsOperand(); |
| 172 | else |
| 173 | OperandName = std::string("%" ) + V->getName().str(); |
| 174 | Names[Index - 1] = OperandName; |
| 175 | } |
| 176 | #endif |
| 177 | return Names; |
| 178 | } |
| 179 | |
| 180 | void ConstraintSystem::dump() const { |
| 181 | #ifndef NDEBUG |
| 182 | if (Constraints.empty()) |
| 183 | return; |
| 184 | SmallVector<std::string> Names = getVarNamesList(); |
| 185 | for (const auto &Row : Constraints) { |
| 186 | SmallVector<std::string, 16> Parts; |
| 187 | for (const Entry &E : Row) { |
| 188 | if (E.Id >= NumVariables) |
| 189 | break; |
| 190 | if (E.Id == 0) |
| 191 | continue; |
| 192 | std::string Coefficient; |
| 193 | if (E.Coefficient != 1) |
| 194 | Coefficient = std::to_string(E.Coefficient) + " * " ; |
| 195 | Parts.push_back(Coefficient + Names[E.Id - 1]); |
| 196 | } |
| 197 | // assert(!Parts.empty() && "need to have at least some parts"); |
| 198 | int64_t ConstPart = 0; |
| 199 | if (Row[0].Id == 0) |
| 200 | ConstPart = Row[0].Coefficient; |
| 201 | LLVM_DEBUG(dbgs() << join(Parts, std::string(" + " )) |
| 202 | << " <= " << std::to_string(ConstPart) << "\n" ); |
| 203 | } |
| 204 | #endif |
| 205 | } |
| 206 | |
| 207 | bool ConstraintSystem::mayHaveSolution() { |
| 208 | LLVM_DEBUG(dbgs() << "---\n" ); |
| 209 | LLVM_DEBUG(dump()); |
| 210 | bool HasSolution = mayHaveSolutionImpl(); |
| 211 | LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat" ) << "\n" ); |
| 212 | return HasSolution; |
| 213 | } |
| 214 | |
| 215 | bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const { |
| 216 | // If all variable coefficients are 0, we have 'C >= 0'. If the constant is >= |
| 217 | // 0, R is always true, regardless of the system. |
| 218 | if (all_of(Range: ArrayRef(R).drop_front(N: 1), P: [](int64_t C) { return C == 0; })) |
| 219 | return R[0] >= 0; |
| 220 | |
| 221 | // If there is no solution with the negation of R added to the system, the |
| 222 | // condition must hold based on the existing constraints. |
| 223 | R = ConstraintSystem::negate(R); |
| 224 | if (R.empty()) |
| 225 | return false; |
| 226 | |
| 227 | auto NewSystem = *this; |
| 228 | NewSystem.addVariableRow(R); |
| 229 | return !NewSystem.mayHaveSolution(); |
| 230 | } |
| 231 | |