| 1 | //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Analysis/LazyCallGraph.h" |
| 10 | |
| 11 | #include "llvm/ADT/ArrayRef.h" |
| 12 | #include "llvm/ADT/STLExtras.h" |
| 13 | #include "llvm/ADT/Sequence.h" |
| 14 | #include "llvm/ADT/SmallPtrSet.h" |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "llvm/ADT/iterator_range.h" |
| 17 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 18 | #include "llvm/IR/Constants.h" |
| 19 | #include "llvm/IR/Function.h" |
| 20 | #include "llvm/IR/GlobalVariable.h" |
| 21 | #include "llvm/IR/InstIterator.h" |
| 22 | #include "llvm/IR/Instruction.h" |
| 23 | #include "llvm/IR/Module.h" |
| 24 | #include "llvm/IR/PassManager.h" |
| 25 | #include "llvm/Support/Casting.h" |
| 26 | #include "llvm/Support/Compiler.h" |
| 27 | #include "llvm/Support/Debug.h" |
| 28 | #include "llvm/Support/GraphWriter.h" |
| 29 | #include "llvm/Support/raw_ostream.h" |
| 30 | #include <algorithm> |
| 31 | |
| 32 | #ifdef EXPENSIVE_CHECKS |
| 33 | #include "llvm/ADT/ScopeExit.h" |
| 34 | #endif |
| 35 | |
| 36 | using namespace llvm; |
| 37 | |
| 38 | #define DEBUG_TYPE "lcg" |
| 39 | |
| 40 | template struct LLVM_EXPORT_TEMPLATE Any::TypeId<const LazyCallGraph::SCC *>; |
| 41 | |
| 42 | void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, |
| 43 | Edge::Kind EK) { |
| 44 | EdgeIndexMap.try_emplace(Key: &TargetN, Args: Edges.size()); |
| 45 | Edges.emplace_back(Args&: TargetN, Args&: EK); |
| 46 | } |
| 47 | |
| 48 | void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { |
| 49 | Edges[EdgeIndexMap.find(Val: &TargetN)->second].setKind(EK); |
| 50 | } |
| 51 | |
| 52 | bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { |
| 53 | auto IndexMapI = EdgeIndexMap.find(Val: &TargetN); |
| 54 | if (IndexMapI == EdgeIndexMap.end()) |
| 55 | return false; |
| 56 | |
| 57 | Edges[IndexMapI->second] = Edge(); |
| 58 | EdgeIndexMap.erase(I: IndexMapI); |
| 59 | return true; |
| 60 | } |
| 61 | |
| 62 | static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, |
| 63 | DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, |
| 64 | LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { |
| 65 | if (!EdgeIndexMap.try_emplace(Key: &N, Args: Edges.size()).second) |
| 66 | return; |
| 67 | |
| 68 | LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n" ); |
| 69 | Edges.emplace_back(Args: LazyCallGraph::Edge(N, EK)); |
| 70 | } |
| 71 | |
| 72 | LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { |
| 73 | assert(!Edges && "Must not have already populated the edges for this node!" ); |
| 74 | |
| 75 | LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName() |
| 76 | << "' to the graph.\n" ); |
| 77 | |
| 78 | Edges = EdgeSequence(); |
| 79 | |
| 80 | SmallVector<Constant *, 16> Worklist; |
| 81 | SmallPtrSet<Function *, 4> Callees; |
| 82 | SmallPtrSet<Constant *, 16> Visited; |
| 83 | |
| 84 | // Find all the potential call graph edges in this function. We track both |
| 85 | // actual call edges and indirect references to functions. The direct calls |
| 86 | // are trivially added, but to accumulate the latter we walk the instructions |
| 87 | // and add every operand which is a constant to the worklist to process |
| 88 | // afterward. |
| 89 | // |
| 90 | // Note that we consider *any* function with a definition to be a viable |
| 91 | // edge. Even if the function's definition is subject to replacement by |
| 92 | // some other module (say, a weak definition) there may still be |
| 93 | // optimizations which essentially speculate based on the definition and |
| 94 | // a way to check that the specific definition is in fact the one being |
| 95 | // used. For example, this could be done by moving the weak definition to |
| 96 | // a strong (internal) definition and making the weak definition be an |
| 97 | // alias. Then a test of the address of the weak function against the new |
| 98 | // strong definition's address would be an effective way to determine the |
| 99 | // safety of optimizing a direct call edge. |
| 100 | for (BasicBlock &BB : *F) |
| 101 | for (Instruction &I : BB) { |
| 102 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) |
| 103 | if (Function *Callee = CB->getCalledFunction()) |
| 104 | if (!Callee->isDeclaration()) |
| 105 | if (Callees.insert(Ptr: Callee).second) { |
| 106 | Visited.insert(Ptr: Callee); |
| 107 | addEdge(Edges&: Edges->Edges, EdgeIndexMap&: Edges->EdgeIndexMap, N&: G->get(F&: *Callee), |
| 108 | EK: LazyCallGraph::Edge::Call); |
| 109 | } |
| 110 | |
| 111 | for (Value *Op : I.operand_values()) |
| 112 | if (Constant *C = dyn_cast<Constant>(Val: Op)) |
| 113 | if (Visited.insert(Ptr: C).second) |
| 114 | Worklist.push_back(Elt: C); |
| 115 | } |
| 116 | |
| 117 | // We've collected all the constant (and thus potentially function or |
| 118 | // function containing) operands to all the instructions in the function. |
| 119 | // Process them (recursively) collecting every function found. |
| 120 | visitReferences(Worklist, Visited, Callback: [&](Function &F) { |
| 121 | addEdge(Edges&: Edges->Edges, EdgeIndexMap&: Edges->EdgeIndexMap, N&: G->get(F), |
| 122 | EK: LazyCallGraph::Edge::Ref); |
| 123 | }); |
| 124 | |
| 125 | // Add implicit reference edges to any defined libcall functions (if we |
| 126 | // haven't found an explicit edge). |
| 127 | for (auto *F : G->LibFunctions) |
| 128 | if (!Visited.count(Ptr: F)) |
| 129 | addEdge(Edges&: Edges->Edges, EdgeIndexMap&: Edges->EdgeIndexMap, N&: G->get(F&: *F), |
| 130 | EK: LazyCallGraph::Edge::Ref); |
| 131 | |
| 132 | return *Edges; |
| 133 | } |
| 134 | |
| 135 | void LazyCallGraph::Node::replaceFunction(Function &NewF) { |
| 136 | assert(F != &NewF && "Must not replace a function with itself!" ); |
| 137 | F = &NewF; |
| 138 | } |
| 139 | |
| 140 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 141 | LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { |
| 142 | dbgs() << *this << '\n'; |
| 143 | } |
| 144 | #endif |
| 145 | |
| 146 | static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { |
| 147 | LibFunc LF; |
| 148 | |
| 149 | // Either this is a normal library function or a "vectorizable" |
| 150 | // function. Not using the VFDatabase here because this query |
| 151 | // is related only to libraries handled via the TLI. |
| 152 | return TLI.getLibFunc(FDecl: F, F&: LF) || |
| 153 | TLI.isKnownVectorFunctionInLibrary(F: F.getName()); |
| 154 | } |
| 155 | |
| 156 | LazyCallGraph::LazyCallGraph( |
| 157 | Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { |
| 158 | LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() |
| 159 | << "\n" ); |
| 160 | for (Function &F : M) { |
| 161 | if (F.isDeclaration()) |
| 162 | continue; |
| 163 | // If this function is a known lib function to LLVM then we want to |
| 164 | // synthesize reference edges to it to model the fact that LLVM can turn |
| 165 | // arbitrary code into a library function call. |
| 166 | if (isKnownLibFunction(F, TLI&: GetTLI(F))) |
| 167 | LibFunctions.insert(X: &F); |
| 168 | |
| 169 | if (F.hasLocalLinkage()) |
| 170 | continue; |
| 171 | |
| 172 | // External linkage defined functions have edges to them from other |
| 173 | // modules. |
| 174 | LLVM_DEBUG(dbgs() << " Adding '" << F.getName() |
| 175 | << "' to entry set of the graph.\n" ); |
| 176 | addEdge(Edges&: EntryEdges.Edges, EdgeIndexMap&: EntryEdges.EdgeIndexMap, N&: get(F), EK: Edge::Ref); |
| 177 | } |
| 178 | |
| 179 | // Externally visible aliases of internal functions are also viable entry |
| 180 | // edges to the module. |
| 181 | for (auto &A : M.aliases()) { |
| 182 | if (A.hasLocalLinkage()) |
| 183 | continue; |
| 184 | if (Function* F = dyn_cast<Function>(Val: A.getAliasee())) { |
| 185 | LLVM_DEBUG(dbgs() << " Adding '" << F->getName() |
| 186 | << "' with alias '" << A.getName() |
| 187 | << "' to entry set of the graph.\n" ); |
| 188 | addEdge(Edges&: EntryEdges.Edges, EdgeIndexMap&: EntryEdges.EdgeIndexMap, N&: get(F&: *F), EK: Edge::Ref); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | // Now add entry nodes for functions reachable via initializers to globals. |
| 193 | SmallVector<Constant *, 16> Worklist; |
| 194 | SmallPtrSet<Constant *, 16> Visited; |
| 195 | for (GlobalVariable &GV : M.globals()) |
| 196 | if (GV.hasInitializer()) |
| 197 | if (Visited.insert(Ptr: GV.getInitializer()).second) |
| 198 | Worklist.push_back(Elt: GV.getInitializer()); |
| 199 | |
| 200 | LLVM_DEBUG( |
| 201 | dbgs() << " Adding functions referenced by global initializers to the " |
| 202 | "entry set.\n" ); |
| 203 | visitReferences(Worklist, Visited, Callback: [&](Function &F) { |
| 204 | addEdge(Edges&: EntryEdges.Edges, EdgeIndexMap&: EntryEdges.EdgeIndexMap, N&: get(F), |
| 205 | EK: LazyCallGraph::Edge::Ref); |
| 206 | }); |
| 207 | } |
| 208 | |
| 209 | LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) |
| 210 | : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), |
| 211 | EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), |
| 212 | SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) { |
| 213 | updateGraphPtrs(); |
| 214 | } |
| 215 | |
| 216 | #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) |
| 217 | void LazyCallGraph::verify() { |
| 218 | for (RefSCC &RC : postorder_ref_sccs()) { |
| 219 | RC.verify(); |
| 220 | } |
| 221 | } |
| 222 | #endif |
| 223 | |
| 224 | bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA, |
| 225 | ModuleAnalysisManager::Invalidator &) { |
| 226 | // Check whether the analysis, all analyses on functions, or the function's |
| 227 | // CFG have been preserved. |
| 228 | auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>(); |
| 229 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()); |
| 230 | } |
| 231 | |
| 232 | LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { |
| 233 | BPA = std::move(G.BPA); |
| 234 | NodeMap = std::move(G.NodeMap); |
| 235 | EntryEdges = std::move(G.EntryEdges); |
| 236 | SCCBPA = std::move(G.SCCBPA); |
| 237 | SCCMap = std::move(G.SCCMap); |
| 238 | LibFunctions = std::move(G.LibFunctions); |
| 239 | updateGraphPtrs(); |
| 240 | return *this; |
| 241 | } |
| 242 | |
| 243 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 244 | LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { |
| 245 | dbgs() << *this << '\n'; |
| 246 | } |
| 247 | #endif |
| 248 | |
| 249 | #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) |
| 250 | void LazyCallGraph::SCC::verify() { |
| 251 | assert(OuterRefSCC && "Can't have a null RefSCC!" ); |
| 252 | assert(!Nodes.empty() && "Can't have an empty SCC!" ); |
| 253 | |
| 254 | for (Node *N : Nodes) { |
| 255 | assert(N && "Can't have a null node!" ); |
| 256 | assert(OuterRefSCC->G->lookupSCC(*N) == this && |
| 257 | "Node does not map to this SCC!" ); |
| 258 | assert(N->DFSNumber == -1 && |
| 259 | "Must set DFS numbers to -1 when adding a node to an SCC!" ); |
| 260 | assert(N->LowLink == -1 && |
| 261 | "Must set low link to -1 when adding a node to an SCC!" ); |
| 262 | for (Edge &E : **N) |
| 263 | assert(E.getNode().isPopulated() && "Can't have an unpopulated node!" ); |
| 264 | |
| 265 | #ifdef EXPENSIVE_CHECKS |
| 266 | // Verify that all nodes in this SCC can reach all other nodes. |
| 267 | SmallVector<Node *, 4> Worklist; |
| 268 | SmallPtrSet<Node *, 4> Visited; |
| 269 | Worklist.push_back(N); |
| 270 | while (!Worklist.empty()) { |
| 271 | Node *VisitingNode = Worklist.pop_back_val(); |
| 272 | if (!Visited.insert(VisitingNode).second) |
| 273 | continue; |
| 274 | for (Edge &E : (*VisitingNode)->calls()) |
| 275 | Worklist.push_back(&E.getNode()); |
| 276 | } |
| 277 | for (Node *NodeToVisit : Nodes) { |
| 278 | assert(Visited.contains(NodeToVisit) && |
| 279 | "Cannot reach all nodes within SCC" ); |
| 280 | } |
| 281 | #endif |
| 282 | } |
| 283 | } |
| 284 | #endif |
| 285 | |
| 286 | bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { |
| 287 | if (this == &C) |
| 288 | return false; |
| 289 | |
| 290 | for (Node &N : *this) |
| 291 | for (Edge &E : N->calls()) |
| 292 | if (OuterRefSCC->G->lookupSCC(N&: E.getNode()) == &C) |
| 293 | return true; |
| 294 | |
| 295 | // No edges found. |
| 296 | return false; |
| 297 | } |
| 298 | |
| 299 | bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { |
| 300 | if (this == &TargetC) |
| 301 | return false; |
| 302 | |
| 303 | LazyCallGraph &G = *OuterRefSCC->G; |
| 304 | |
| 305 | // Start with this SCC. |
| 306 | SmallPtrSet<const SCC *, 16> Visited = {this}; |
| 307 | SmallVector<const SCC *, 16> Worklist = {this}; |
| 308 | |
| 309 | // Walk down the graph until we run out of edges or find a path to TargetC. |
| 310 | do { |
| 311 | const SCC &C = *Worklist.pop_back_val(); |
| 312 | for (Node &N : C) |
| 313 | for (Edge &E : N->calls()) { |
| 314 | SCC *CalleeC = G.lookupSCC(N&: E.getNode()); |
| 315 | if (!CalleeC) |
| 316 | continue; |
| 317 | |
| 318 | // If the callee's SCC is the TargetC, we're done. |
| 319 | if (CalleeC == &TargetC) |
| 320 | return true; |
| 321 | |
| 322 | // If this is the first time we've reached this SCC, put it on the |
| 323 | // worklist to recurse through. |
| 324 | if (Visited.insert(Ptr: CalleeC).second) |
| 325 | Worklist.push_back(Elt: CalleeC); |
| 326 | } |
| 327 | } while (!Worklist.empty()); |
| 328 | |
| 329 | // No paths found. |
| 330 | return false; |
| 331 | } |
| 332 | |
| 333 | LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} |
| 334 | |
| 335 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 336 | LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { |
| 337 | dbgs() << *this << '\n'; |
| 338 | } |
| 339 | #endif |
| 340 | |
| 341 | #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) |
| 342 | void LazyCallGraph::RefSCC::verify() { |
| 343 | assert(G && "Can't have a null graph!" ); |
| 344 | assert(!SCCs.empty() && "Can't have an empty SCC!" ); |
| 345 | |
| 346 | // Verify basic properties of the SCCs. |
| 347 | SmallPtrSet<SCC *, 4> SCCSet; |
| 348 | for (SCC *C : SCCs) { |
| 349 | assert(C && "Can't have a null SCC!" ); |
| 350 | C->verify(); |
| 351 | assert(&C->getOuterRefSCC() == this && |
| 352 | "SCC doesn't think it is inside this RefSCC!" ); |
| 353 | bool Inserted = SCCSet.insert(C).second; |
| 354 | assert(Inserted && "Found a duplicate SCC!" ); |
| 355 | auto IndexIt = SCCIndices.find(C); |
| 356 | assert(IndexIt != SCCIndices.end() && |
| 357 | "Found an SCC that doesn't have an index!" ); |
| 358 | } |
| 359 | |
| 360 | // Check that our indices map correctly. |
| 361 | for (auto [C, I] : SCCIndices) { |
| 362 | assert(C && "Can't have a null SCC in the indices!" ); |
| 363 | assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!" ); |
| 364 | assert(SCCs[I] == C && "Index doesn't point to SCC!" ); |
| 365 | } |
| 366 | |
| 367 | // Check that the SCCs are in fact in post-order. |
| 368 | for (int I = 0, Size = SCCs.size(); I < Size; ++I) { |
| 369 | SCC &SourceSCC = *SCCs[I]; |
| 370 | for (Node &N : SourceSCC) |
| 371 | for (Edge &E : *N) { |
| 372 | if (!E.isCall()) |
| 373 | continue; |
| 374 | SCC &TargetSCC = *G->lookupSCC(E.getNode()); |
| 375 | if (&TargetSCC.getOuterRefSCC() == this) { |
| 376 | assert(SCCIndices.find(&TargetSCC)->second <= I && |
| 377 | "Edge between SCCs violates post-order relationship." ); |
| 378 | continue; |
| 379 | } |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | #ifdef EXPENSIVE_CHECKS |
| 384 | // Verify that all nodes in this RefSCC can reach all other nodes. |
| 385 | SmallVector<Node *> Nodes; |
| 386 | for (SCC *C : SCCs) { |
| 387 | for (Node &N : *C) |
| 388 | Nodes.push_back(&N); |
| 389 | } |
| 390 | for (Node *N : Nodes) { |
| 391 | SmallVector<Node *, 4> Worklist; |
| 392 | SmallPtrSet<Node *, 4> Visited; |
| 393 | Worklist.push_back(N); |
| 394 | while (!Worklist.empty()) { |
| 395 | Node *VisitingNode = Worklist.pop_back_val(); |
| 396 | if (!Visited.insert(VisitingNode).second) |
| 397 | continue; |
| 398 | for (Edge &E : **VisitingNode) |
| 399 | Worklist.push_back(&E.getNode()); |
| 400 | } |
| 401 | for (Node *NodeToVisit : Nodes) { |
| 402 | assert(Visited.contains(NodeToVisit) && |
| 403 | "Cannot reach all nodes within RefSCC" ); |
| 404 | } |
| 405 | } |
| 406 | #endif |
| 407 | } |
| 408 | #endif |
| 409 | |
| 410 | bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const { |
| 411 | if (&RC == this) |
| 412 | return false; |
| 413 | |
| 414 | // Search all edges to see if this is a parent. |
| 415 | for (SCC &C : *this) |
| 416 | for (Node &N : C) |
| 417 | for (Edge &E : *N) |
| 418 | if (G->lookupRefSCC(N&: E.getNode()) == &RC) |
| 419 | return true; |
| 420 | |
| 421 | return false; |
| 422 | } |
| 423 | |
| 424 | bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const { |
| 425 | if (&RC == this) |
| 426 | return false; |
| 427 | |
| 428 | // For each descendant of this RefSCC, see if one of its children is the |
| 429 | // argument. If not, add that descendant to the worklist and continue |
| 430 | // searching. |
| 431 | SmallVector<const RefSCC *, 4> Worklist; |
| 432 | SmallPtrSet<const RefSCC *, 4> Visited; |
| 433 | Worklist.push_back(Elt: this); |
| 434 | Visited.insert(Ptr: this); |
| 435 | do { |
| 436 | const RefSCC &DescendantRC = *Worklist.pop_back_val(); |
| 437 | for (SCC &C : DescendantRC) |
| 438 | for (Node &N : C) |
| 439 | for (Edge &E : *N) { |
| 440 | auto *ChildRC = G->lookupRefSCC(N&: E.getNode()); |
| 441 | if (ChildRC == &RC) |
| 442 | return true; |
| 443 | if (!ChildRC || !Visited.insert(Ptr: ChildRC).second) |
| 444 | continue; |
| 445 | Worklist.push_back(Elt: ChildRC); |
| 446 | } |
| 447 | } while (!Worklist.empty()); |
| 448 | |
| 449 | return false; |
| 450 | } |
| 451 | |
| 452 | /// Generic helper that updates a postorder sequence of SCCs for a potentially |
| 453 | /// cycle-introducing edge insertion. |
| 454 | /// |
| 455 | /// A postorder sequence of SCCs of a directed graph has one fundamental |
| 456 | /// property: all deges in the DAG of SCCs point "up" the sequence. That is, |
| 457 | /// all edges in the SCC DAG point to prior SCCs in the sequence. |
| 458 | /// |
| 459 | /// This routine both updates a postorder sequence and uses that sequence to |
| 460 | /// compute the set of SCCs connected into a cycle. It should only be called to |
| 461 | /// insert a "downward" edge which will require changing the sequence to |
| 462 | /// restore it to a postorder. |
| 463 | /// |
| 464 | /// When inserting an edge from an earlier SCC to a later SCC in some postorder |
| 465 | /// sequence, all of the SCCs which may be impacted are in the closed range of |
| 466 | /// those two within the postorder sequence. The algorithm used here to restore |
| 467 | /// the state is as follows: |
| 468 | /// |
| 469 | /// 1) Starting from the source SCC, construct a set of SCCs which reach the |
| 470 | /// source SCC consisting of just the source SCC. Then scan toward the |
| 471 | /// target SCC in postorder and for each SCC, if it has an edge to an SCC |
| 472 | /// in the set, add it to the set. Otherwise, the source SCC is not |
| 473 | /// a successor, move it in the postorder sequence to immediately before |
| 474 | /// the source SCC, shifting the source SCC and all SCCs in the set one |
| 475 | /// position toward the target SCC. Stop scanning after processing the |
| 476 | /// target SCC. |
| 477 | /// 2) If the source SCC is now past the target SCC in the postorder sequence, |
| 478 | /// and thus the new edge will flow toward the start, we are done. |
| 479 | /// 3) Otherwise, starting from the target SCC, walk all edges which reach an |
| 480 | /// SCC between the source and the target, and add them to the set of |
| 481 | /// connected SCCs, then recurse through them. Once a complete set of the |
| 482 | /// SCCs the target connects to is known, hoist the remaining SCCs between |
| 483 | /// the source and the target to be above the target. Note that there is no |
| 484 | /// need to process the source SCC, it is already known to connect. |
| 485 | /// 4) At this point, all of the SCCs in the closed range between the source |
| 486 | /// SCC and the target SCC in the postorder sequence are connected, |
| 487 | /// including the target SCC and the source SCC. Inserting the edge from |
| 488 | /// the source SCC to the target SCC will form a cycle out of precisely |
| 489 | /// these SCCs. Thus we can merge all of the SCCs in this closed range into |
| 490 | /// a single SCC. |
| 491 | /// |
| 492 | /// This process has various important properties: |
| 493 | /// - Only mutates the SCCs when adding the edge actually changes the SCC |
| 494 | /// structure. |
| 495 | /// - Never mutates SCCs which are unaffected by the change. |
| 496 | /// - Updates the postorder sequence to correctly satisfy the postorder |
| 497 | /// constraint after the edge is inserted. |
| 498 | /// - Only reorders SCCs in the closed postorder sequence from the source to |
| 499 | /// the target, so easy to bound how much has changed even in the ordering. |
| 500 | /// - Big-O is the number of edges in the closed postorder range of SCCs from |
| 501 | /// source to target. |
| 502 | /// |
| 503 | /// This helper routine, in addition to updating the postorder sequence itself |
| 504 | /// will also update a map from SCCs to indices within that sequence. |
| 505 | /// |
| 506 | /// The sequence and the map must operate on pointers to the SCC type. |
| 507 | /// |
| 508 | /// Two callbacks must be provided. The first computes the subset of SCCs in |
| 509 | /// the postorder closed range from the source to the target which connect to |
| 510 | /// the source SCC via some (transitive) set of edges. The second computes the |
| 511 | /// subset of the same range which the target SCC connects to via some |
| 512 | /// (transitive) set of edges. Both callbacks should populate the set argument |
| 513 | /// provided. |
| 514 | template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, |
| 515 | typename ComputeSourceConnectedSetCallableT, |
| 516 | typename ComputeTargetConnectedSetCallableT> |
| 517 | static iterator_range<typename PostorderSequenceT::iterator> |
| 518 | updatePostorderSequenceForEdgeInsertion( |
| 519 | SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, |
| 520 | SCCIndexMapT &SCCIndices, |
| 521 | ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, |
| 522 | ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { |
| 523 | int SourceIdx = SCCIndices[&SourceSCC]; |
| 524 | int TargetIdx = SCCIndices[&TargetSCC]; |
| 525 | assert(SourceIdx < TargetIdx && "Cannot have equal indices here!" ); |
| 526 | |
| 527 | SmallPtrSet<SCCT *, 4> ConnectedSet; |
| 528 | |
| 529 | // Compute the SCCs which (transitively) reach the source. |
| 530 | ComputeSourceConnectedSet(ConnectedSet); |
| 531 | |
| 532 | // Partition the SCCs in this part of the port-order sequence so only SCCs |
| 533 | // connecting to the source remain between it and the target. This is |
| 534 | // a benign partition as it preserves postorder. |
| 535 | auto SourceI = std::stable_partition( |
| 536 | SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, |
| 537 | [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); |
| 538 | for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I) |
| 539 | SCCIndices.find(SCCs[I])->second = I; |
| 540 | |
| 541 | // If the target doesn't connect to the source, then we've corrected the |
| 542 | // post-order and there are no cycles formed. |
| 543 | if (!ConnectedSet.count(&TargetSCC)) { |
| 544 | assert(SourceI > (SCCs.begin() + SourceIdx) && |
| 545 | "Must have moved the source to fix the post-order." ); |
| 546 | assert(*std::prev(SourceI) == &TargetSCC && |
| 547 | "Last SCC to move should have bene the target." ); |
| 548 | |
| 549 | // Return an empty range at the target SCC indicating there is nothing to |
| 550 | // merge. |
| 551 | return make_range(std::prev(SourceI), std::prev(SourceI)); |
| 552 | } |
| 553 | |
| 554 | assert(SCCs[TargetIdx] == &TargetSCC && |
| 555 | "Should not have moved target if connected!" ); |
| 556 | SourceIdx = SourceI - SCCs.begin(); |
| 557 | assert(SCCs[SourceIdx] == &SourceSCC && |
| 558 | "Bad updated index computation for the source SCC!" ); |
| 559 | |
| 560 | // See whether there are any remaining intervening SCCs between the source |
| 561 | // and target. If so we need to make sure they all are reachable form the |
| 562 | // target. |
| 563 | if (SourceIdx + 1 < TargetIdx) { |
| 564 | ConnectedSet.clear(); |
| 565 | ComputeTargetConnectedSet(ConnectedSet); |
| 566 | |
| 567 | // Partition SCCs so that only SCCs reached from the target remain between |
| 568 | // the source and the target. This preserves postorder. |
| 569 | auto TargetI = std::stable_partition( |
| 570 | SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, |
| 571 | [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); |
| 572 | for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I) |
| 573 | SCCIndices.find(SCCs[I])->second = I; |
| 574 | TargetIdx = std::prev(TargetI) - SCCs.begin(); |
| 575 | assert(SCCs[TargetIdx] == &TargetSCC && |
| 576 | "Should always end with the target!" ); |
| 577 | } |
| 578 | |
| 579 | // At this point, we know that connecting source to target forms a cycle |
| 580 | // because target connects back to source, and we know that all the SCCs |
| 581 | // between the source and target in the postorder sequence participate in that |
| 582 | // cycle. |
| 583 | return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); |
| 584 | } |
| 585 | |
| 586 | bool LazyCallGraph::RefSCC::switchInternalEdgeToCall( |
| 587 | Node &SourceN, Node &TargetN, |
| 588 | function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { |
| 589 | assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!" ); |
| 590 | SmallVector<SCC *, 1> DeletedSCCs; |
| 591 | |
| 592 | #ifdef EXPENSIVE_CHECKS |
| 593 | verify(); |
| 594 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 595 | #endif |
| 596 | |
| 597 | SCC &SourceSCC = *G->lookupSCC(N&: SourceN); |
| 598 | SCC &TargetSCC = *G->lookupSCC(N&: TargetN); |
| 599 | |
| 600 | // If the two nodes are already part of the same SCC, we're also done as |
| 601 | // we've just added more connectivity. |
| 602 | if (&SourceSCC == &TargetSCC) { |
| 603 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
| 604 | return false; // No new cycle. |
| 605 | } |
| 606 | |
| 607 | // At this point we leverage the postorder list of SCCs to detect when the |
| 608 | // insertion of an edge changes the SCC structure in any way. |
| 609 | // |
| 610 | // First and foremost, we can eliminate the need for any changes when the |
| 611 | // edge is toward the beginning of the postorder sequence because all edges |
| 612 | // flow in that direction already. Thus adding a new one cannot form a cycle. |
| 613 | int SourceIdx = SCCIndices[&SourceSCC]; |
| 614 | int TargetIdx = SCCIndices[&TargetSCC]; |
| 615 | if (TargetIdx < SourceIdx) { |
| 616 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
| 617 | return false; // No new cycle. |
| 618 | } |
| 619 | |
| 620 | // Compute the SCCs which (transitively) reach the source. |
| 621 | auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { |
| 622 | #ifdef EXPENSIVE_CHECKS |
| 623 | // Check that the RefSCC is still valid before computing this as the |
| 624 | // results will be nonsensical of we've broken its invariants. |
| 625 | verify(); |
| 626 | #endif |
| 627 | ConnectedSet.insert(Ptr: &SourceSCC); |
| 628 | auto IsConnected = [&](SCC &C) { |
| 629 | for (Node &N : C) |
| 630 | for (Edge &E : N->calls()) |
| 631 | if (ConnectedSet.count(Ptr: G->lookupSCC(N&: E.getNode()))) |
| 632 | return true; |
| 633 | |
| 634 | return false; |
| 635 | }; |
| 636 | |
| 637 | for (SCC *C : |
| 638 | make_range(x: SCCs.begin() + SourceIdx + 1, y: SCCs.begin() + TargetIdx + 1)) |
| 639 | if (IsConnected(*C)) |
| 640 | ConnectedSet.insert(Ptr: C); |
| 641 | }; |
| 642 | |
| 643 | // Use a normal worklist to find which SCCs the target connects to. We still |
| 644 | // bound the search based on the range in the postorder list we care about, |
| 645 | // but because this is forward connectivity we just "recurse" through the |
| 646 | // edges. |
| 647 | auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { |
| 648 | #ifdef EXPENSIVE_CHECKS |
| 649 | // Check that the RefSCC is still valid before computing this as the |
| 650 | // results will be nonsensical of we've broken its invariants. |
| 651 | verify(); |
| 652 | #endif |
| 653 | ConnectedSet.insert(Ptr: &TargetSCC); |
| 654 | SmallVector<SCC *, 4> Worklist; |
| 655 | Worklist.push_back(Elt: &TargetSCC); |
| 656 | do { |
| 657 | SCC &C = *Worklist.pop_back_val(); |
| 658 | for (Node &N : C) |
| 659 | for (Edge &E : *N) { |
| 660 | if (!E.isCall()) |
| 661 | continue; |
| 662 | SCC &EdgeC = *G->lookupSCC(N&: E.getNode()); |
| 663 | if (&EdgeC.getOuterRefSCC() != this) |
| 664 | // Not in this RefSCC... |
| 665 | continue; |
| 666 | if (SCCIndices.find(Val: &EdgeC)->second <= SourceIdx) |
| 667 | // Not in the postorder sequence between source and target. |
| 668 | continue; |
| 669 | |
| 670 | if (ConnectedSet.insert(Ptr: &EdgeC).second) |
| 671 | Worklist.push_back(Elt: &EdgeC); |
| 672 | } |
| 673 | } while (!Worklist.empty()); |
| 674 | }; |
| 675 | |
| 676 | // Use a generic helper to update the postorder sequence of SCCs and return |
| 677 | // a range of any SCCs connected into a cycle by inserting this edge. This |
| 678 | // routine will also take care of updating the indices into the postorder |
| 679 | // sequence. |
| 680 | auto MergeRange = updatePostorderSequenceForEdgeInsertion( |
| 681 | SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, |
| 682 | ComputeTargetConnectedSet); |
| 683 | |
| 684 | // Run the user's callback on the merged SCCs before we actually merge them. |
| 685 | if (MergeCB) |
| 686 | MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end())); |
| 687 | |
| 688 | // If the merge range is empty, then adding the edge didn't actually form any |
| 689 | // new cycles. We're done. |
| 690 | if (MergeRange.empty()) { |
| 691 | // Now that the SCC structure is finalized, flip the kind to call. |
| 692 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
| 693 | return false; // No new cycle. |
| 694 | } |
| 695 | |
| 696 | #ifdef EXPENSIVE_CHECKS |
| 697 | // Before merging, check that the RefSCC remains valid after all the |
| 698 | // postorder updates. |
| 699 | verify(); |
| 700 | #endif |
| 701 | |
| 702 | // Otherwise we need to merge all the SCCs in the cycle into a single result |
| 703 | // SCC. |
| 704 | // |
| 705 | // NB: We merge into the target because all of these functions were already |
| 706 | // reachable from the target, meaning any SCC-wide properties deduced about it |
| 707 | // other than the set of functions within it will not have changed. |
| 708 | for (SCC *C : MergeRange) { |
| 709 | assert(C != &TargetSCC && |
| 710 | "We merge *into* the target and shouldn't process it here!" ); |
| 711 | SCCIndices.erase(Val: C); |
| 712 | TargetSCC.Nodes.append(in_start: C->Nodes.begin(), in_end: C->Nodes.end()); |
| 713 | for (Node *N : C->Nodes) |
| 714 | G->SCCMap[N] = &TargetSCC; |
| 715 | C->clear(); |
| 716 | DeletedSCCs.push_back(Elt: C); |
| 717 | } |
| 718 | |
| 719 | // Erase the merged SCCs from the list and update the indices of the |
| 720 | // remaining SCCs. |
| 721 | int IndexOffset = MergeRange.end() - MergeRange.begin(); |
| 722 | auto EraseEnd = SCCs.erase(CS: MergeRange.begin(), CE: MergeRange.end()); |
| 723 | for (SCC *C : make_range(x: EraseEnd, y: SCCs.end())) |
| 724 | SCCIndices[C] -= IndexOffset; |
| 725 | |
| 726 | // Now that the SCC structure is finalized, flip the kind to call. |
| 727 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
| 728 | |
| 729 | // And we're done, but we did form a new cycle. |
| 730 | return true; |
| 731 | } |
| 732 | |
| 733 | void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, |
| 734 | Node &TargetN) { |
| 735 | assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!" ); |
| 736 | |
| 737 | #ifdef EXPENSIVE_CHECKS |
| 738 | verify(); |
| 739 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 740 | #endif |
| 741 | |
| 742 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
| 743 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC." ); |
| 744 | assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && |
| 745 | "Source and Target must be in separate SCCs for this to be trivial!" ); |
| 746 | |
| 747 | // Set the edge kind. |
| 748 | SourceN->setEdgeKind(TargetN, EK: Edge::Ref); |
| 749 | } |
| 750 | |
| 751 | iterator_range<LazyCallGraph::RefSCC::iterator> |
| 752 | LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { |
| 753 | assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!" ); |
| 754 | |
| 755 | #ifdef EXPENSIVE_CHECKS |
| 756 | verify(); |
| 757 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 758 | #endif |
| 759 | |
| 760 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
| 761 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC." ); |
| 762 | |
| 763 | SCC &TargetSCC = *G->lookupSCC(N&: TargetN); |
| 764 | assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " |
| 765 | "the same SCC to require the " |
| 766 | "full CG update." ); |
| 767 | |
| 768 | // Set the edge kind. |
| 769 | SourceN->setEdgeKind(TargetN, EK: Edge::Ref); |
| 770 | |
| 771 | // Otherwise we are removing a call edge from a single SCC. This may break |
| 772 | // the cycle. In order to compute the new set of SCCs, we need to do a small |
| 773 | // DFS over the nodes within the SCC to form any sub-cycles that remain as |
| 774 | // distinct SCCs and compute a postorder over the resulting SCCs. |
| 775 | // |
| 776 | // However, we specially handle the target node. The target node is known to |
| 777 | // reach all other nodes in the original SCC by definition. This means that |
| 778 | // we want the old SCC to be replaced with an SCC containing that node as it |
| 779 | // will be the root of whatever SCC DAG results from the DFS. Assumptions |
| 780 | // about an SCC such as the set of functions called will continue to hold, |
| 781 | // etc. |
| 782 | |
| 783 | SCC &OldSCC = TargetSCC; |
| 784 | SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; |
| 785 | SmallVector<Node *, 16> PendingSCCStack; |
| 786 | SmallVector<SCC *, 4> NewSCCs; |
| 787 | |
| 788 | // Prepare the nodes for a fresh DFS. |
| 789 | SmallVector<Node *, 16> Worklist; |
| 790 | Worklist.swap(RHS&: OldSCC.Nodes); |
| 791 | for (Node *N : Worklist) { |
| 792 | N->DFSNumber = N->LowLink = 0; |
| 793 | G->SCCMap.erase(Val: N); |
| 794 | } |
| 795 | |
| 796 | // Force the target node to be in the old SCC. This also enables us to take |
| 797 | // a very significant short-cut in the standard Tarjan walk to re-form SCCs |
| 798 | // below: whenever we build an edge that reaches the target node, we know |
| 799 | // that the target node eventually connects back to all other nodes in our |
| 800 | // walk. As a consequence, we can detect and handle participants in that |
| 801 | // cycle without walking all the edges that form this connection, and instead |
| 802 | // by relying on the fundamental guarantee coming into this operation (all |
| 803 | // nodes are reachable from the target due to previously forming an SCC). |
| 804 | TargetN.DFSNumber = TargetN.LowLink = -1; |
| 805 | OldSCC.Nodes.push_back(Elt: &TargetN); |
| 806 | G->SCCMap[&TargetN] = &OldSCC; |
| 807 | |
| 808 | // Scan down the stack and DFS across the call edges. |
| 809 | for (Node *RootN : Worklist) { |
| 810 | assert(DFSStack.empty() && |
| 811 | "Cannot begin a new root with a non-empty DFS stack!" ); |
| 812 | assert(PendingSCCStack.empty() && |
| 813 | "Cannot begin a new root with pending nodes for an SCC!" ); |
| 814 | |
| 815 | // Skip any nodes we've already reached in the DFS. |
| 816 | if (RootN->DFSNumber != 0) { |
| 817 | assert(RootN->DFSNumber == -1 && |
| 818 | "Shouldn't have any mid-DFS root nodes!" ); |
| 819 | continue; |
| 820 | } |
| 821 | |
| 822 | RootN->DFSNumber = RootN->LowLink = 1; |
| 823 | int NextDFSNumber = 2; |
| 824 | |
| 825 | DFSStack.emplace_back(Args&: RootN, Args: (*RootN)->call_begin()); |
| 826 | do { |
| 827 | auto [N, I] = DFSStack.pop_back_val(); |
| 828 | auto E = (*N)->call_end(); |
| 829 | while (I != E) { |
| 830 | Node &ChildN = I->getNode(); |
| 831 | if (ChildN.DFSNumber == 0) { |
| 832 | // We haven't yet visited this child, so descend, pushing the current |
| 833 | // node onto the stack. |
| 834 | DFSStack.emplace_back(Args&: N, Args&: I); |
| 835 | |
| 836 | assert(!G->SCCMap.count(&ChildN) && |
| 837 | "Found a node with 0 DFS number but already in an SCC!" ); |
| 838 | ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; |
| 839 | N = &ChildN; |
| 840 | I = (*N)->call_begin(); |
| 841 | E = (*N)->call_end(); |
| 842 | continue; |
| 843 | } |
| 844 | |
| 845 | // Check for the child already being part of some component. |
| 846 | if (ChildN.DFSNumber == -1) { |
| 847 | if (G->lookupSCC(N&: ChildN) == &OldSCC) { |
| 848 | // If the child is part of the old SCC, we know that it can reach |
| 849 | // every other node, so we have formed a cycle. Pull the entire DFS |
| 850 | // and pending stacks into it. See the comment above about setting |
| 851 | // up the old SCC for why we do this. |
| 852 | int OldSize = OldSCC.size(); |
| 853 | OldSCC.Nodes.push_back(Elt: N); |
| 854 | OldSCC.Nodes.append(in_start: PendingSCCStack.begin(), in_end: PendingSCCStack.end()); |
| 855 | PendingSCCStack.clear(); |
| 856 | while (!DFSStack.empty()) |
| 857 | OldSCC.Nodes.push_back(Elt: DFSStack.pop_back_val().first); |
| 858 | for (Node &N : drop_begin(RangeOrContainer&: OldSCC, N: OldSize)) { |
| 859 | N.DFSNumber = N.LowLink = -1; |
| 860 | G->SCCMap[&N] = &OldSCC; |
| 861 | } |
| 862 | N = nullptr; |
| 863 | break; |
| 864 | } |
| 865 | |
| 866 | // If the child has already been added to some child component, it |
| 867 | // couldn't impact the low-link of this parent because it isn't |
| 868 | // connected, and thus its low-link isn't relevant so skip it. |
| 869 | ++I; |
| 870 | continue; |
| 871 | } |
| 872 | |
| 873 | // Track the lowest linked child as the lowest link for this node. |
| 874 | assert(ChildN.LowLink > 0 && "Must have a positive low-link number!" ); |
| 875 | if (ChildN.LowLink < N->LowLink) |
| 876 | N->LowLink = ChildN.LowLink; |
| 877 | |
| 878 | // Move to the next edge. |
| 879 | ++I; |
| 880 | } |
| 881 | if (!N) |
| 882 | // Cleared the DFS early, start another round. |
| 883 | break; |
| 884 | |
| 885 | // We've finished processing N and its descendants, put it on our pending |
| 886 | // SCC stack to eventually get merged into an SCC of nodes. |
| 887 | PendingSCCStack.push_back(Elt: N); |
| 888 | |
| 889 | // If this node is linked to some lower entry, continue walking up the |
| 890 | // stack. |
| 891 | if (N->LowLink != N->DFSNumber) |
| 892 | continue; |
| 893 | |
| 894 | // Otherwise, we've completed an SCC. Append it to our post order list of |
| 895 | // SCCs. |
| 896 | int RootDFSNumber = N->DFSNumber; |
| 897 | // Find the range of the node stack by walking down until we pass the |
| 898 | // root DFS number. |
| 899 | auto SCCNodes = make_range( |
| 900 | x: PendingSCCStack.rbegin(), |
| 901 | y: find_if(Range: reverse(C&: PendingSCCStack), P: [RootDFSNumber](const Node *N) { |
| 902 | return N->DFSNumber < RootDFSNumber; |
| 903 | })); |
| 904 | |
| 905 | // Form a new SCC out of these nodes and then clear them off our pending |
| 906 | // stack. |
| 907 | NewSCCs.push_back(Elt: G->createSCC(Args&: *this, Args&: SCCNodes)); |
| 908 | for (Node &N : *NewSCCs.back()) { |
| 909 | N.DFSNumber = N.LowLink = -1; |
| 910 | G->SCCMap[&N] = NewSCCs.back(); |
| 911 | } |
| 912 | PendingSCCStack.erase(CS: SCCNodes.end().base(), CE: PendingSCCStack.end()); |
| 913 | } while (!DFSStack.empty()); |
| 914 | } |
| 915 | |
| 916 | // Insert the remaining SCCs before the old one. The old SCC can reach all |
| 917 | // other SCCs we form because it contains the target node of the removed edge |
| 918 | // of the old SCC. This means that we will have edges into all the new SCCs, |
| 919 | // which means the old one must come last for postorder. |
| 920 | int OldIdx = SCCIndices[&OldSCC]; |
| 921 | SCCs.insert(I: SCCs.begin() + OldIdx, From: NewSCCs.begin(), To: NewSCCs.end()); |
| 922 | |
| 923 | // Update the mapping from SCC* to index to use the new SCC*s, and remove the |
| 924 | // old SCC from the mapping. |
| 925 | for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) |
| 926 | SCCIndices[SCCs[Idx]] = Idx; |
| 927 | |
| 928 | return make_range(x: SCCs.begin() + OldIdx, |
| 929 | y: SCCs.begin() + OldIdx + NewSCCs.size()); |
| 930 | } |
| 931 | |
| 932 | void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, |
| 933 | Node &TargetN) { |
| 934 | assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!" ); |
| 935 | |
| 936 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
| 937 | assert(G->lookupRefSCC(TargetN) != this && |
| 938 | "Target must not be in this RefSCC." ); |
| 939 | #ifdef EXPENSIVE_CHECKS |
| 940 | assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && |
| 941 | "Target must be a descendant of the Source." ); |
| 942 | #endif |
| 943 | |
| 944 | // Edges between RefSCCs are the same regardless of call or ref, so we can |
| 945 | // just flip the edge here. |
| 946 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
| 947 | |
| 948 | #ifdef EXPENSIVE_CHECKS |
| 949 | verify(); |
| 950 | #endif |
| 951 | } |
| 952 | |
| 953 | void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, |
| 954 | Node &TargetN) { |
| 955 | assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!" ); |
| 956 | |
| 957 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
| 958 | assert(G->lookupRefSCC(TargetN) != this && |
| 959 | "Target must not be in this RefSCC." ); |
| 960 | #ifdef EXPENSIVE_CHECKS |
| 961 | assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && |
| 962 | "Target must be a descendant of the Source." ); |
| 963 | #endif |
| 964 | |
| 965 | // Edges between RefSCCs are the same regardless of call or ref, so we can |
| 966 | // just flip the edge here. |
| 967 | SourceN->setEdgeKind(TargetN, EK: Edge::Ref); |
| 968 | |
| 969 | #ifdef EXPENSIVE_CHECKS |
| 970 | verify(); |
| 971 | #endif |
| 972 | } |
| 973 | |
| 974 | void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, |
| 975 | Node &TargetN) { |
| 976 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
| 977 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC." ); |
| 978 | |
| 979 | SourceN->insertEdgeInternal(TargetN, EK: Edge::Ref); |
| 980 | |
| 981 | #ifdef EXPENSIVE_CHECKS |
| 982 | verify(); |
| 983 | #endif |
| 984 | } |
| 985 | |
| 986 | void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, |
| 987 | Edge::Kind EK) { |
| 988 | // First insert it into the caller. |
| 989 | SourceN->insertEdgeInternal(TargetN, EK); |
| 990 | |
| 991 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
| 992 | |
| 993 | assert(G->lookupRefSCC(TargetN) != this && |
| 994 | "Target must not be in this RefSCC." ); |
| 995 | #ifdef EXPENSIVE_CHECKS |
| 996 | assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && |
| 997 | "Target must be a descendant of the Source." ); |
| 998 | #endif |
| 999 | |
| 1000 | #ifdef EXPENSIVE_CHECKS |
| 1001 | verify(); |
| 1002 | #endif |
| 1003 | } |
| 1004 | |
| 1005 | SmallVector<LazyCallGraph::RefSCC *, 1> |
| 1006 | LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { |
| 1007 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC." ); |
| 1008 | RefSCC &SourceC = *G->lookupRefSCC(N&: SourceN); |
| 1009 | assert(&SourceC != this && "Source must not be in this RefSCC." ); |
| 1010 | #ifdef EXPENSIVE_CHECKS |
| 1011 | assert(SourceC.isDescendantOf(*this) && |
| 1012 | "Source must be a descendant of the Target." ); |
| 1013 | #endif |
| 1014 | |
| 1015 | SmallVector<RefSCC *, 1> DeletedRefSCCs; |
| 1016 | |
| 1017 | #ifdef EXPENSIVE_CHECKS |
| 1018 | verify(); |
| 1019 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 1020 | #endif |
| 1021 | |
| 1022 | int SourceIdx = G->RefSCCIndices[&SourceC]; |
| 1023 | int TargetIdx = G->RefSCCIndices[this]; |
| 1024 | assert(SourceIdx < TargetIdx && |
| 1025 | "Postorder list doesn't see edge as incoming!" ); |
| 1026 | |
| 1027 | // Compute the RefSCCs which (transitively) reach the source. We do this by |
| 1028 | // working backwards from the source using the parent set in each RefSCC, |
| 1029 | // skipping any RefSCCs that don't fall in the postorder range. This has the |
| 1030 | // advantage of walking the sparser parent edge (in high fan-out graphs) but |
| 1031 | // more importantly this removes examining all forward edges in all RefSCCs |
| 1032 | // within the postorder range which aren't in fact connected. Only connected |
| 1033 | // RefSCCs (and their edges) are visited here. |
| 1034 | auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { |
| 1035 | Set.insert(Ptr: &SourceC); |
| 1036 | auto IsConnected = [&](RefSCC &RC) { |
| 1037 | for (SCC &C : RC) |
| 1038 | for (Node &N : C) |
| 1039 | for (Edge &E : *N) |
| 1040 | if (Set.count(Ptr: G->lookupRefSCC(N&: E.getNode()))) |
| 1041 | return true; |
| 1042 | |
| 1043 | return false; |
| 1044 | }; |
| 1045 | |
| 1046 | for (RefSCC *C : make_range(x: G->PostOrderRefSCCs.begin() + SourceIdx + 1, |
| 1047 | y: G->PostOrderRefSCCs.begin() + TargetIdx + 1)) |
| 1048 | if (IsConnected(*C)) |
| 1049 | Set.insert(Ptr: C); |
| 1050 | }; |
| 1051 | |
| 1052 | // Use a normal worklist to find which SCCs the target connects to. We still |
| 1053 | // bound the search based on the range in the postorder list we care about, |
| 1054 | // but because this is forward connectivity we just "recurse" through the |
| 1055 | // edges. |
| 1056 | auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { |
| 1057 | Set.insert(Ptr: this); |
| 1058 | SmallVector<RefSCC *, 4> Worklist; |
| 1059 | Worklist.push_back(Elt: this); |
| 1060 | do { |
| 1061 | RefSCC &RC = *Worklist.pop_back_val(); |
| 1062 | for (SCC &C : RC) |
| 1063 | for (Node &N : C) |
| 1064 | for (Edge &E : *N) { |
| 1065 | RefSCC &EdgeRC = *G->lookupRefSCC(N&: E.getNode()); |
| 1066 | if (G->getRefSCCIndex(RC&: EdgeRC) <= SourceIdx) |
| 1067 | // Not in the postorder sequence between source and target. |
| 1068 | continue; |
| 1069 | |
| 1070 | if (Set.insert(Ptr: &EdgeRC).second) |
| 1071 | Worklist.push_back(Elt: &EdgeRC); |
| 1072 | } |
| 1073 | } while (!Worklist.empty()); |
| 1074 | }; |
| 1075 | |
| 1076 | // Use a generic helper to update the postorder sequence of RefSCCs and return |
| 1077 | // a range of any RefSCCs connected into a cycle by inserting this edge. This |
| 1078 | // routine will also take care of updating the indices into the postorder |
| 1079 | // sequence. |
| 1080 | iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = |
| 1081 | updatePostorderSequenceForEdgeInsertion( |
| 1082 | SourceSCC&: SourceC, TargetSCC&: *this, SCCs&: G->PostOrderRefSCCs, SCCIndices&: G->RefSCCIndices, |
| 1083 | ComputeSourceConnectedSet, ComputeTargetConnectedSet); |
| 1084 | |
| 1085 | // Build a set, so we can do fast tests for whether a RefSCC will end up as |
| 1086 | // part of the merged RefSCC. |
| 1087 | SmallPtrSet<RefSCC *, 16> MergeSet(llvm::from_range, MergeRange); |
| 1088 | |
| 1089 | // This RefSCC will always be part of that set, so just insert it here. |
| 1090 | MergeSet.insert(Ptr: this); |
| 1091 | |
| 1092 | // Now that we have identified all the SCCs which need to be merged into |
| 1093 | // a connected set with the inserted edge, merge all of them into this SCC. |
| 1094 | SmallVector<SCC *, 16> MergedSCCs; |
| 1095 | int SCCIndex = 0; |
| 1096 | for (RefSCC *RC : MergeRange) { |
| 1097 | assert(RC != this && "We're merging into the target RefSCC, so it " |
| 1098 | "shouldn't be in the range." ); |
| 1099 | |
| 1100 | // Walk the inner SCCs to update their up-pointer and walk all the edges to |
| 1101 | // update any parent sets. |
| 1102 | // FIXME: We should try to find a way to avoid this (rather expensive) edge |
| 1103 | // walk by updating the parent sets in some other manner. |
| 1104 | for (SCC &InnerC : *RC) { |
| 1105 | InnerC.OuterRefSCC = this; |
| 1106 | SCCIndices[&InnerC] = SCCIndex++; |
| 1107 | for (Node &N : InnerC) |
| 1108 | G->SCCMap[&N] = &InnerC; |
| 1109 | } |
| 1110 | |
| 1111 | // Now merge in the SCCs. We can actually move here so try to reuse storage |
| 1112 | // the first time through. |
| 1113 | if (MergedSCCs.empty()) |
| 1114 | MergedSCCs = std::move(RC->SCCs); |
| 1115 | else |
| 1116 | MergedSCCs.append(in_start: RC->SCCs.begin(), in_end: RC->SCCs.end()); |
| 1117 | RC->SCCs.clear(); |
| 1118 | DeletedRefSCCs.push_back(Elt: RC); |
| 1119 | } |
| 1120 | |
| 1121 | // Append our original SCCs to the merged list and move it into place. |
| 1122 | for (SCC &InnerC : *this) |
| 1123 | SCCIndices[&InnerC] = SCCIndex++; |
| 1124 | MergedSCCs.append(in_start: SCCs.begin(), in_end: SCCs.end()); |
| 1125 | SCCs = std::move(MergedSCCs); |
| 1126 | |
| 1127 | // Remove the merged away RefSCCs from the post order sequence. |
| 1128 | for (RefSCC *RC : MergeRange) |
| 1129 | G->RefSCCIndices.erase(Val: RC); |
| 1130 | int IndexOffset = MergeRange.end() - MergeRange.begin(); |
| 1131 | auto EraseEnd = |
| 1132 | G->PostOrderRefSCCs.erase(CS: MergeRange.begin(), CE: MergeRange.end()); |
| 1133 | for (RefSCC *RC : make_range(x: EraseEnd, y: G->PostOrderRefSCCs.end())) |
| 1134 | G->RefSCCIndices[RC] -= IndexOffset; |
| 1135 | |
| 1136 | // At this point we have a merged RefSCC with a post-order SCCs list, just |
| 1137 | // connect the nodes to form the new edge. |
| 1138 | SourceN->insertEdgeInternal(TargetN, EK: Edge::Ref); |
| 1139 | |
| 1140 | // We return the list of SCCs which were merged so that callers can |
| 1141 | // invalidate any data they have associated with those SCCs. Note that these |
| 1142 | // SCCs are no longer in an interesting state (they are totally empty) but |
| 1143 | // the pointers will remain stable for the life of the graph itself. |
| 1144 | return DeletedRefSCCs; |
| 1145 | } |
| 1146 | |
| 1147 | void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { |
| 1148 | assert(G->lookupRefSCC(SourceN) == this && |
| 1149 | "The source must be a member of this RefSCC." ); |
| 1150 | assert(G->lookupRefSCC(TargetN) != this && |
| 1151 | "The target must not be a member of this RefSCC" ); |
| 1152 | |
| 1153 | #ifdef EXPENSIVE_CHECKS |
| 1154 | verify(); |
| 1155 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
| 1156 | #endif |
| 1157 | |
| 1158 | // First remove it from the node. |
| 1159 | bool Removed = SourceN->removeEdgeInternal(TargetN); |
| 1160 | (void)Removed; |
| 1161 | assert(Removed && "Target not in the edge set for this caller?" ); |
| 1162 | } |
| 1163 | |
| 1164 | SmallVector<LazyCallGraph::RefSCC *, 1> |
| 1165 | LazyCallGraph::RefSCC::removeInternalRefEdges( |
| 1166 | ArrayRef<std::pair<Node *, Node *>> Edges) { |
| 1167 | // We return a list of the resulting *new* RefSCCs in post-order. |
| 1168 | SmallVector<RefSCC *, 1> Result; |
| 1169 | |
| 1170 | #ifdef EXPENSIVE_CHECKS |
| 1171 | // Verify the RefSCC is valid to start with and that either we return an empty |
| 1172 | // list of result RefSCCs and this RefSCC remains valid, or we return new |
| 1173 | // RefSCCs and this RefSCC is dead. |
| 1174 | verify(); |
| 1175 | auto VerifyOnExit = make_scope_exit([&]() { |
| 1176 | // If we didn't replace our RefSCC with new ones, check that this one |
| 1177 | // remains valid. |
| 1178 | if (G) |
| 1179 | verify(); |
| 1180 | }); |
| 1181 | #endif |
| 1182 | |
| 1183 | // First remove the actual edges. |
| 1184 | for (auto [SourceN, TargetN] : Edges) { |
| 1185 | assert(!(**SourceN)[*TargetN].isCall() && |
| 1186 | "Cannot remove a call edge, it must first be made a ref edge" ); |
| 1187 | |
| 1188 | bool Removed = (*SourceN)->removeEdgeInternal(TargetN&: *TargetN); |
| 1189 | (void)Removed; |
| 1190 | assert(Removed && "Target not in the edge set for this caller?" ); |
| 1191 | } |
| 1192 | |
| 1193 | // Direct self references don't impact the ref graph at all. |
| 1194 | // If all targets are in the same SCC as the source, because no call edges |
| 1195 | // were removed there is no RefSCC structure change. |
| 1196 | if (llvm::all_of(Range&: Edges, P: [&](std::pair<Node *, Node *> E) { |
| 1197 | return E.first == E.second || |
| 1198 | G->lookupSCC(N&: *E.first) == G->lookupSCC(N&: *E.second); |
| 1199 | })) |
| 1200 | return Result; |
| 1201 | |
| 1202 | // We build somewhat synthetic new RefSCCs by providing a postorder mapping |
| 1203 | // for each inner SCC. We store these inside the low-link field of the nodes |
| 1204 | // rather than associated with SCCs because this saves a round-trip through |
| 1205 | // the node->SCC map and in the common case, SCCs are small. We will verify |
| 1206 | // that we always give the same number to every node in the SCC such that |
| 1207 | // these are equivalent. |
| 1208 | int PostOrderNumber = 0; |
| 1209 | |
| 1210 | // Reset all the other nodes to prepare for a DFS over them, and add them to |
| 1211 | // our worklist. |
| 1212 | SmallVector<Node *, 8> Worklist; |
| 1213 | for (SCC *C : SCCs) { |
| 1214 | for (Node &N : *C) |
| 1215 | N.DFSNumber = N.LowLink = 0; |
| 1216 | |
| 1217 | Worklist.append(in_start: C->Nodes.begin(), in_end: C->Nodes.end()); |
| 1218 | } |
| 1219 | |
| 1220 | // Track the number of nodes in this RefSCC so that we can quickly recognize |
| 1221 | // an important special case of the edge removal not breaking the cycle of |
| 1222 | // this RefSCC. |
| 1223 | const int NumRefSCCNodes = Worklist.size(); |
| 1224 | |
| 1225 | SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; |
| 1226 | SmallVector<Node *, 4> PendingRefSCCStack; |
| 1227 | do { |
| 1228 | assert(DFSStack.empty() && |
| 1229 | "Cannot begin a new root with a non-empty DFS stack!" ); |
| 1230 | assert(PendingRefSCCStack.empty() && |
| 1231 | "Cannot begin a new root with pending nodes for an SCC!" ); |
| 1232 | |
| 1233 | Node *RootN = Worklist.pop_back_val(); |
| 1234 | // Skip any nodes we've already reached in the DFS. |
| 1235 | if (RootN->DFSNumber != 0) { |
| 1236 | assert(RootN->DFSNumber == -1 && |
| 1237 | "Shouldn't have any mid-DFS root nodes!" ); |
| 1238 | continue; |
| 1239 | } |
| 1240 | |
| 1241 | RootN->DFSNumber = RootN->LowLink = 1; |
| 1242 | int NextDFSNumber = 2; |
| 1243 | |
| 1244 | DFSStack.emplace_back(Args&: RootN, Args: (*RootN)->begin()); |
| 1245 | do { |
| 1246 | auto [N, I] = DFSStack.pop_back_val(); |
| 1247 | auto E = (*N)->end(); |
| 1248 | |
| 1249 | assert(N->DFSNumber != 0 && "We should always assign a DFS number " |
| 1250 | "before processing a node." ); |
| 1251 | |
| 1252 | while (I != E) { |
| 1253 | Node &ChildN = I->getNode(); |
| 1254 | if (ChildN.DFSNumber == 0) { |
| 1255 | // Mark that we should start at this child when next this node is the |
| 1256 | // top of the stack. We don't start at the next child to ensure this |
| 1257 | // child's lowlink is reflected. |
| 1258 | DFSStack.emplace_back(Args&: N, Args&: I); |
| 1259 | |
| 1260 | // Continue, resetting to the child node. |
| 1261 | ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; |
| 1262 | N = &ChildN; |
| 1263 | I = ChildN->begin(); |
| 1264 | E = ChildN->end(); |
| 1265 | continue; |
| 1266 | } |
| 1267 | if (ChildN.DFSNumber == -1) { |
| 1268 | // If this child isn't currently in this RefSCC, no need to process |
| 1269 | // it. |
| 1270 | ++I; |
| 1271 | continue; |
| 1272 | } |
| 1273 | |
| 1274 | // Track the lowest link of the children, if any are still in the stack. |
| 1275 | // Any child not on the stack will have a LowLink of -1. |
| 1276 | assert(ChildN.LowLink != 0 && |
| 1277 | "Low-link must not be zero with a non-zero DFS number." ); |
| 1278 | if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) |
| 1279 | N->LowLink = ChildN.LowLink; |
| 1280 | ++I; |
| 1281 | } |
| 1282 | |
| 1283 | // We've finished processing N and its descendants, put it on our pending |
| 1284 | // stack to eventually get merged into a RefSCC. |
| 1285 | PendingRefSCCStack.push_back(Elt: N); |
| 1286 | |
| 1287 | // If this node is linked to some lower entry, continue walking up the |
| 1288 | // stack. |
| 1289 | if (N->LowLink != N->DFSNumber) { |
| 1290 | assert(!DFSStack.empty() && |
| 1291 | "We never found a viable root for a RefSCC to pop off!" ); |
| 1292 | continue; |
| 1293 | } |
| 1294 | |
| 1295 | // Otherwise, form a new RefSCC from the top of the pending node stack. |
| 1296 | int RefSCCNumber = PostOrderNumber++; |
| 1297 | int RootDFSNumber = N->DFSNumber; |
| 1298 | |
| 1299 | // Find the range of the node stack by walking down until we pass the |
| 1300 | // root DFS number. Update the DFS numbers and low link numbers in the |
| 1301 | // process to avoid re-walking this list where possible. |
| 1302 | auto StackRI = find_if(Range: reverse(C&: PendingRefSCCStack), P: [&](Node *N) { |
| 1303 | if (N->DFSNumber < RootDFSNumber) |
| 1304 | // We've found the bottom. |
| 1305 | return true; |
| 1306 | |
| 1307 | // Update this node and keep scanning. |
| 1308 | N->DFSNumber = -1; |
| 1309 | // Save the post-order number in the lowlink field so that we can use |
| 1310 | // it to map SCCs into new RefSCCs after we finish the DFS. |
| 1311 | N->LowLink = RefSCCNumber; |
| 1312 | return false; |
| 1313 | }); |
| 1314 | auto RefSCCNodes = make_range(x: StackRI.base(), y: PendingRefSCCStack.end()); |
| 1315 | |
| 1316 | // If we find a cycle containing all nodes originally in this RefSCC then |
| 1317 | // the removal hasn't changed the structure at all. This is an important |
| 1318 | // special case, and we can directly exit the entire routine more |
| 1319 | // efficiently as soon as we discover it. |
| 1320 | if (llvm::size(Range&: RefSCCNodes) == NumRefSCCNodes) { |
| 1321 | // Clear out the low link field as we won't need it. |
| 1322 | for (Node *N : RefSCCNodes) |
| 1323 | N->LowLink = -1; |
| 1324 | // Return the empty result immediately. |
| 1325 | return Result; |
| 1326 | } |
| 1327 | |
| 1328 | // We've already marked the nodes internally with the RefSCC number so |
| 1329 | // just clear them off the stack and continue. |
| 1330 | PendingRefSCCStack.erase(CS: RefSCCNodes.begin(), CE: PendingRefSCCStack.end()); |
| 1331 | } while (!DFSStack.empty()); |
| 1332 | |
| 1333 | assert(DFSStack.empty() && "Didn't flush the entire DFS stack!" ); |
| 1334 | assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!" ); |
| 1335 | } while (!Worklist.empty()); |
| 1336 | |
| 1337 | assert(PostOrderNumber > 1 && |
| 1338 | "Should never finish the DFS when the existing RefSCC remains valid!" ); |
| 1339 | |
| 1340 | // Otherwise we create a collection of new RefSCC nodes and build |
| 1341 | // a radix-sort style map from postorder number to these new RefSCCs. We then |
| 1342 | // append SCCs to each of these RefSCCs in the order they occurred in the |
| 1343 | // original SCCs container. |
| 1344 | for (int I = 0; I < PostOrderNumber; ++I) |
| 1345 | Result.push_back(Elt: G->createRefSCC(Args&: *G)); |
| 1346 | |
| 1347 | // Insert the resulting postorder sequence into the global graph postorder |
| 1348 | // sequence before the current RefSCC in that sequence, and then remove the |
| 1349 | // current one. |
| 1350 | // |
| 1351 | // FIXME: It'd be nice to change the APIs so that we returned an iterator |
| 1352 | // range over the global postorder sequence and generally use that sequence |
| 1353 | // rather than building a separate result vector here. |
| 1354 | int Idx = G->getRefSCCIndex(RC&: *this); |
| 1355 | G->PostOrderRefSCCs.erase(CI: G->PostOrderRefSCCs.begin() + Idx); |
| 1356 | G->PostOrderRefSCCs.insert(I: G->PostOrderRefSCCs.begin() + Idx, From: Result.begin(), |
| 1357 | To: Result.end()); |
| 1358 | for (int I : seq<int>(Begin: Idx, End: G->PostOrderRefSCCs.size())) |
| 1359 | G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I; |
| 1360 | |
| 1361 | for (SCC *C : SCCs) { |
| 1362 | // We store the SCC number in the node's low-link field above. |
| 1363 | int SCCNumber = C->begin()->LowLink; |
| 1364 | // Clear out all the SCC's node's low-link fields now that we're done |
| 1365 | // using them as side-storage. |
| 1366 | for (Node &N : *C) { |
| 1367 | assert(N.LowLink == SCCNumber && |
| 1368 | "Cannot have different numbers for nodes in the same SCC!" ); |
| 1369 | N.LowLink = -1; |
| 1370 | } |
| 1371 | |
| 1372 | RefSCC &RC = *Result[SCCNumber]; |
| 1373 | int SCCIndex = RC.SCCs.size(); |
| 1374 | RC.SCCs.push_back(Elt: C); |
| 1375 | RC.SCCIndices[C] = SCCIndex; |
| 1376 | C->OuterRefSCC = &RC; |
| 1377 | } |
| 1378 | |
| 1379 | // Now that we've moved things into the new RefSCCs, clear out our current |
| 1380 | // one. |
| 1381 | G = nullptr; |
| 1382 | SCCs.clear(); |
| 1383 | SCCIndices.clear(); |
| 1384 | |
| 1385 | #ifdef EXPENSIVE_CHECKS |
| 1386 | // Verify the new RefSCCs we've built. |
| 1387 | for (RefSCC *RC : Result) |
| 1388 | RC->verify(); |
| 1389 | #endif |
| 1390 | |
| 1391 | // Return the new list of SCCs. |
| 1392 | return Result; |
| 1393 | } |
| 1394 | |
| 1395 | void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, |
| 1396 | Node &TargetN) { |
| 1397 | #ifdef EXPENSIVE_CHECKS |
| 1398 | auto ExitVerifier = make_scope_exit([this] { verify(); }); |
| 1399 | |
| 1400 | // Check that we aren't breaking some invariants of the SCC graph. Note that |
| 1401 | // this is quadratic in the number of edges in the call graph! |
| 1402 | SCC &SourceC = *G->lookupSCC(SourceN); |
| 1403 | SCC &TargetC = *G->lookupSCC(TargetN); |
| 1404 | if (&SourceC != &TargetC) |
| 1405 | assert(SourceC.isAncestorOf(TargetC) && |
| 1406 | "Call edge is not trivial in the SCC graph!" ); |
| 1407 | #endif |
| 1408 | |
| 1409 | // First insert it into the source or find the existing edge. |
| 1410 | auto [Iterator, Inserted] = |
| 1411 | SourceN->EdgeIndexMap.try_emplace(Key: &TargetN, Args: SourceN->Edges.size()); |
| 1412 | if (!Inserted) { |
| 1413 | // Already an edge, just update it. |
| 1414 | Edge &E = SourceN->Edges[Iterator->second]; |
| 1415 | if (E.isCall()) |
| 1416 | return; // Nothing to do! |
| 1417 | E.setKind(Edge::Call); |
| 1418 | } else { |
| 1419 | // Create the new edge. |
| 1420 | SourceN->Edges.emplace_back(Args&: TargetN, Args: Edge::Call); |
| 1421 | } |
| 1422 | } |
| 1423 | |
| 1424 | void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { |
| 1425 | #ifdef EXPENSIVE_CHECKS |
| 1426 | auto ExitVerifier = make_scope_exit([this] { verify(); }); |
| 1427 | |
| 1428 | // Check that we aren't breaking some invariants of the RefSCC graph. |
| 1429 | RefSCC &SourceRC = *G->lookupRefSCC(SourceN); |
| 1430 | RefSCC &TargetRC = *G->lookupRefSCC(TargetN); |
| 1431 | if (&SourceRC != &TargetRC) |
| 1432 | assert(SourceRC.isAncestorOf(TargetRC) && |
| 1433 | "Ref edge is not trivial in the RefSCC graph!" ); |
| 1434 | #endif |
| 1435 | |
| 1436 | // First insert it into the source or find the existing edge. |
| 1437 | auto [Iterator, Inserted] = |
| 1438 | SourceN->EdgeIndexMap.try_emplace(Key: &TargetN, Args: SourceN->Edges.size()); |
| 1439 | (void)Iterator; |
| 1440 | if (!Inserted) |
| 1441 | // Already an edge, we're done. |
| 1442 | return; |
| 1443 | |
| 1444 | // Create the new edge. |
| 1445 | SourceN->Edges.emplace_back(Args&: TargetN, Args: Edge::Ref); |
| 1446 | } |
| 1447 | |
| 1448 | void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { |
| 1449 | Function &OldF = N.getFunction(); |
| 1450 | |
| 1451 | #ifdef EXPENSIVE_CHECKS |
| 1452 | auto ExitVerifier = make_scope_exit([this] { verify(); }); |
| 1453 | |
| 1454 | assert(G->lookupRefSCC(N) == this && |
| 1455 | "Cannot replace the function of a node outside this RefSCC." ); |
| 1456 | |
| 1457 | assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && |
| 1458 | "Must not have already walked the new function!'" ); |
| 1459 | |
| 1460 | // It is important that this replacement not introduce graph changes so we |
| 1461 | // insist that the caller has already removed every use of the original |
| 1462 | // function and that all uses of the new function correspond to existing |
| 1463 | // edges in the graph. The common and expected way to use this is when |
| 1464 | // replacing the function itself in the IR without changing the call graph |
| 1465 | // shape and just updating the analysis based on that. |
| 1466 | assert(&OldF != &NewF && "Cannot replace a function with itself!" ); |
| 1467 | assert(OldF.use_empty() && |
| 1468 | "Must have moved all uses from the old function to the new!" ); |
| 1469 | #endif |
| 1470 | |
| 1471 | N.replaceFunction(NewF); |
| 1472 | |
| 1473 | // Update various call graph maps. |
| 1474 | G->NodeMap.erase(Val: &OldF); |
| 1475 | G->NodeMap[&NewF] = &N; |
| 1476 | |
| 1477 | // Update lib functions. |
| 1478 | if (G->isLibFunction(F&: OldF)) { |
| 1479 | G->LibFunctions.remove(X: &OldF); |
| 1480 | G->LibFunctions.insert(X: &NewF); |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { |
| 1485 | assert(SCCMap.empty() && |
| 1486 | "This method cannot be called after SCCs have been formed!" ); |
| 1487 | |
| 1488 | return SourceN->insertEdgeInternal(TargetN, EK); |
| 1489 | } |
| 1490 | |
| 1491 | void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { |
| 1492 | assert(SCCMap.empty() && |
| 1493 | "This method cannot be called after SCCs have been formed!" ); |
| 1494 | |
| 1495 | bool Removed = SourceN->removeEdgeInternal(TargetN); |
| 1496 | (void)Removed; |
| 1497 | assert(Removed && "Target not in the edge set for this caller?" ); |
| 1498 | } |
| 1499 | |
| 1500 | void LazyCallGraph::markDeadFunction(Function &F) { |
| 1501 | // FIXME: This is unnecessarily restrictive. We should be able to remove |
| 1502 | // functions which recursively call themselves. |
| 1503 | assert(F.hasZeroLiveUses() && |
| 1504 | "This routine should only be called on trivially dead functions!" ); |
| 1505 | |
| 1506 | // We shouldn't remove library functions as they are never really dead while |
| 1507 | // the call graph is in use -- every function definition refers to them. |
| 1508 | assert(!isLibFunction(F) && |
| 1509 | "Must not remove lib functions from the call graph!" ); |
| 1510 | |
| 1511 | auto NI = NodeMap.find(Val: &F); |
| 1512 | assert(NI != NodeMap.end() && "Removed function should be known!" ); |
| 1513 | |
| 1514 | Node &N = *NI->second; |
| 1515 | |
| 1516 | // Remove all call edges out of dead function. |
| 1517 | for (Edge E : *N) { |
| 1518 | if (E.isCall()) |
| 1519 | N->setEdgeKind(TargetN&: E.getNode(), EK: Edge::Ref); |
| 1520 | } |
| 1521 | } |
| 1522 | |
| 1523 | void LazyCallGraph::removeDeadFunctions(ArrayRef<Function *> DeadFs) { |
| 1524 | if (DeadFs.empty()) |
| 1525 | return; |
| 1526 | |
| 1527 | // Group dead functions by the RefSCC they're in. |
| 1528 | DenseMap<RefSCC *, SmallVector<Node *, 1>> RCs; |
| 1529 | for (Function *DeadF : DeadFs) { |
| 1530 | Node *N = lookup(F: *DeadF); |
| 1531 | #ifndef NDEBUG |
| 1532 | for (Edge &E : **N) { |
| 1533 | assert(!E.isCall() && |
| 1534 | "dead function shouldn't have any outgoing call edges" ); |
| 1535 | } |
| 1536 | #endif |
| 1537 | RefSCC *RC = lookupRefSCC(N&: *N); |
| 1538 | RCs[RC].push_back(Elt: N); |
| 1539 | } |
| 1540 | // Remove outgoing edges from all dead functions. Dead functions should |
| 1541 | // already have had their call edges removed in markDeadFunction(), so we only |
| 1542 | // need to worry about spurious ref edges. |
| 1543 | for (auto [RC, DeadNs] : RCs) { |
| 1544 | SmallVector<std::pair<Node *, Node *>> InternalEdgesToRemove; |
| 1545 | for (Node *DeadN : DeadNs) { |
| 1546 | for (Edge &E : **DeadN) { |
| 1547 | if (lookupRefSCC(N&: E.getNode()) == RC) |
| 1548 | InternalEdgesToRemove.push_back(Elt: {DeadN, &E.getNode()}); |
| 1549 | else |
| 1550 | RC->removeOutgoingEdge(SourceN&: *DeadN, TargetN&: E.getNode()); |
| 1551 | } |
| 1552 | } |
| 1553 | // We ignore the returned RefSCCs since at this point we're done with CGSCC |
| 1554 | // iteration and don't need to add it to any worklists. |
| 1555 | (void)RC->removeInternalRefEdges(Edges: InternalEdgesToRemove); |
| 1556 | for (Node *DeadN : DeadNs) { |
| 1557 | RefSCC *DeadRC = lookupRefSCC(N&: *DeadN); |
| 1558 | assert(DeadRC->size() == 1); |
| 1559 | assert(DeadRC->begin()->size() == 1); |
| 1560 | DeadRC->clear(); |
| 1561 | DeadRC->G = nullptr; |
| 1562 | } |
| 1563 | } |
| 1564 | // Clean up data structures. |
| 1565 | for (Function *DeadF : DeadFs) { |
| 1566 | Node &N = *lookup(F: *DeadF); |
| 1567 | |
| 1568 | EntryEdges.removeEdgeInternal(TargetN&: N); |
| 1569 | SCCMap.erase(I: SCCMap.find(Val: &N)); |
| 1570 | NodeMap.erase(I: NodeMap.find(Val: DeadF)); |
| 1571 | |
| 1572 | N.clear(); |
| 1573 | N.G = nullptr; |
| 1574 | N.F = nullptr; |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | // Gets the Edge::Kind from one function to another by looking at the function's |
| 1579 | // instructions. Asserts if there is no edge. |
| 1580 | // Useful for determining what type of edge should exist between functions when |
| 1581 | // the edge hasn't been created yet. |
| 1582 | static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction, |
| 1583 | Function &NewFunction) { |
| 1584 | // In release builds, assume that if there are no direct calls to the new |
| 1585 | // function, then there is a ref edge. In debug builds, keep track of |
| 1586 | // references to assert that there is actually a ref edge if there is no call |
| 1587 | // edge. |
| 1588 | #ifndef NDEBUG |
| 1589 | SmallVector<Constant *, 16> Worklist; |
| 1590 | SmallPtrSet<Constant *, 16> Visited; |
| 1591 | #endif |
| 1592 | |
| 1593 | for (Instruction &I : instructions(F&: OriginalFunction)) { |
| 1594 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) { |
| 1595 | if (Function *Callee = CB->getCalledFunction()) { |
| 1596 | if (Callee == &NewFunction) |
| 1597 | return LazyCallGraph::Edge::Kind::Call; |
| 1598 | } |
| 1599 | } |
| 1600 | #ifndef NDEBUG |
| 1601 | for (Value *Op : I.operand_values()) { |
| 1602 | if (Constant *C = dyn_cast<Constant>(Op)) { |
| 1603 | if (Visited.insert(C).second) |
| 1604 | Worklist.push_back(C); |
| 1605 | } |
| 1606 | } |
| 1607 | #endif |
| 1608 | } |
| 1609 | |
| 1610 | #ifndef NDEBUG |
| 1611 | bool FoundNewFunction = false; |
| 1612 | LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) { |
| 1613 | if (&F == &NewFunction) |
| 1614 | FoundNewFunction = true; |
| 1615 | }); |
| 1616 | assert(FoundNewFunction && "No edge from original function to new function" ); |
| 1617 | #endif |
| 1618 | |
| 1619 | return LazyCallGraph::Edge::Kind::Ref; |
| 1620 | } |
| 1621 | |
| 1622 | void LazyCallGraph::addSplitFunction(Function &OriginalFunction, |
| 1623 | Function &NewFunction) { |
| 1624 | assert(lookup(OriginalFunction) && |
| 1625 | "Original function's node should already exist" ); |
| 1626 | Node &OriginalN = get(F&: OriginalFunction); |
| 1627 | SCC *OriginalC = lookupSCC(N&: OriginalN); |
| 1628 | RefSCC *OriginalRC = lookupRefSCC(N&: OriginalN); |
| 1629 | |
| 1630 | #ifdef EXPENSIVE_CHECKS |
| 1631 | OriginalRC->verify(); |
| 1632 | auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); }); |
| 1633 | #endif |
| 1634 | |
| 1635 | assert(!lookup(NewFunction) && |
| 1636 | "New function's node should not already exist" ); |
| 1637 | Node &NewN = initNode(F&: NewFunction); |
| 1638 | |
| 1639 | Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction); |
| 1640 | |
| 1641 | SCC *NewC = nullptr; |
| 1642 | for (Edge &E : *NewN) { |
| 1643 | Node &EN = E.getNode(); |
| 1644 | if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(N&: EN) == OriginalC) { |
| 1645 | // If the edge to the new function is a call edge and there is a call edge |
| 1646 | // from the new function to any function in the original function's SCC, |
| 1647 | // it is in the same SCC (and RefSCC) as the original function. |
| 1648 | NewC = OriginalC; |
| 1649 | NewC->Nodes.push_back(Elt: &NewN); |
| 1650 | break; |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | if (!NewC) { |
| 1655 | for (Edge &E : *NewN) { |
| 1656 | Node &EN = E.getNode(); |
| 1657 | if (lookupRefSCC(N&: EN) == OriginalRC) { |
| 1658 | // If there is any edge from the new function to any function in the |
| 1659 | // original function's RefSCC, it is in the same RefSCC as the original |
| 1660 | // function but a new SCC. |
| 1661 | RefSCC *NewRC = OriginalRC; |
| 1662 | NewC = createSCC(Args&: *NewRC, Args: SmallVector<Node *, 1>({&NewN})); |
| 1663 | |
| 1664 | // The new function's SCC is not the same as the original function's |
| 1665 | // SCC, since that case was handled earlier. If the edge from the |
| 1666 | // original function to the new function was a call edge, then we need |
| 1667 | // to insert the newly created function's SCC before the original |
| 1668 | // function's SCC. Otherwise, either the new SCC comes after the |
| 1669 | // original function's SCC, or it doesn't matter, and in both cases we |
| 1670 | // can add it to the very end. |
| 1671 | int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC] |
| 1672 | : NewRC->SCCIndices.size(); |
| 1673 | NewRC->SCCs.insert(I: NewRC->SCCs.begin() + InsertIndex, Elt: NewC); |
| 1674 | for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I) |
| 1675 | NewRC->SCCIndices[NewRC->SCCs[I]] = I; |
| 1676 | |
| 1677 | break; |
| 1678 | } |
| 1679 | } |
| 1680 | } |
| 1681 | |
| 1682 | if (!NewC) { |
| 1683 | // We didn't find any edges back to the original function's RefSCC, so the |
| 1684 | // new function belongs in a new RefSCC. The new RefSCC goes before the |
| 1685 | // original function's RefSCC. |
| 1686 | RefSCC *NewRC = createRefSCC(Args&: *this); |
| 1687 | NewC = createSCC(Args&: *NewRC, Args: SmallVector<Node *, 1>({&NewN})); |
| 1688 | NewRC->SCCIndices[NewC] = 0; |
| 1689 | NewRC->SCCs.push_back(Elt: NewC); |
| 1690 | auto OriginalRCIndex = RefSCCIndices.find(Val: OriginalRC)->second; |
| 1691 | PostOrderRefSCCs.insert(I: PostOrderRefSCCs.begin() + OriginalRCIndex, Elt: NewRC); |
| 1692 | for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) |
| 1693 | RefSCCIndices[PostOrderRefSCCs[I]] = I; |
| 1694 | } |
| 1695 | |
| 1696 | SCCMap[&NewN] = NewC; |
| 1697 | |
| 1698 | OriginalN->insertEdgeInternal(TargetN&: NewN, EK); |
| 1699 | } |
| 1700 | |
| 1701 | void LazyCallGraph::addSplitRefRecursiveFunctions( |
| 1702 | Function &OriginalFunction, ArrayRef<Function *> NewFunctions) { |
| 1703 | assert(!NewFunctions.empty() && "Can't add zero functions" ); |
| 1704 | assert(lookup(OriginalFunction) && |
| 1705 | "Original function's node should already exist" ); |
| 1706 | Node &OriginalN = get(F&: OriginalFunction); |
| 1707 | RefSCC *OriginalRC = lookupRefSCC(N&: OriginalN); |
| 1708 | |
| 1709 | #ifdef EXPENSIVE_CHECKS |
| 1710 | OriginalRC->verify(); |
| 1711 | auto VerifyOnExit = make_scope_exit([&]() { |
| 1712 | OriginalRC->verify(); |
| 1713 | for (Function *NewFunction : NewFunctions) |
| 1714 | lookupRefSCC(get(*NewFunction))->verify(); |
| 1715 | }); |
| 1716 | #endif |
| 1717 | |
| 1718 | bool ExistsRefToOriginalRefSCC = false; |
| 1719 | |
| 1720 | for (Function *NewFunction : NewFunctions) { |
| 1721 | Node &NewN = initNode(F&: *NewFunction); |
| 1722 | |
| 1723 | OriginalN->insertEdgeInternal(TargetN&: NewN, EK: Edge::Kind::Ref); |
| 1724 | |
| 1725 | // Check if there is any edge from any new function back to any function in |
| 1726 | // the original function's RefSCC. |
| 1727 | for (Edge &E : *NewN) { |
| 1728 | if (lookupRefSCC(N&: E.getNode()) == OriginalRC) { |
| 1729 | ExistsRefToOriginalRefSCC = true; |
| 1730 | break; |
| 1731 | } |
| 1732 | } |
| 1733 | } |
| 1734 | |
| 1735 | RefSCC *NewRC; |
| 1736 | if (ExistsRefToOriginalRefSCC) { |
| 1737 | // If there is any edge from any new function to any function in the |
| 1738 | // original function's RefSCC, all new functions will be in the same RefSCC |
| 1739 | // as the original function. |
| 1740 | NewRC = OriginalRC; |
| 1741 | } else { |
| 1742 | // Otherwise the new functions are in their own RefSCC. |
| 1743 | NewRC = createRefSCC(Args&: *this); |
| 1744 | // The new RefSCC goes before the original function's RefSCC in postorder |
| 1745 | // since there are only edges from the original function's RefSCC to the new |
| 1746 | // RefSCC. |
| 1747 | auto OriginalRCIndex = RefSCCIndices.find(Val: OriginalRC)->second; |
| 1748 | PostOrderRefSCCs.insert(I: PostOrderRefSCCs.begin() + OriginalRCIndex, Elt: NewRC); |
| 1749 | for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) |
| 1750 | RefSCCIndices[PostOrderRefSCCs[I]] = I; |
| 1751 | } |
| 1752 | |
| 1753 | for (Function *NewFunction : NewFunctions) { |
| 1754 | Node &NewN = get(F&: *NewFunction); |
| 1755 | // Each new function is in its own new SCC. The original function can only |
| 1756 | // have a ref edge to new functions, and no other existing functions can |
| 1757 | // have references to new functions. Each new function only has a ref edge |
| 1758 | // to the other new functions. |
| 1759 | SCC *NewC = createSCC(Args&: *NewRC, Args: SmallVector<Node *, 1>({&NewN})); |
| 1760 | // The new SCCs are either sibling SCCs or parent SCCs to all other existing |
| 1761 | // SCCs in the RefSCC. Either way, they can go at the back of the postorder |
| 1762 | // SCC list. |
| 1763 | auto Index = NewRC->SCCIndices.size(); |
| 1764 | NewRC->SCCIndices[NewC] = Index; |
| 1765 | NewRC->SCCs.push_back(Elt: NewC); |
| 1766 | SCCMap[&NewN] = NewC; |
| 1767 | } |
| 1768 | |
| 1769 | #ifndef NDEBUG |
| 1770 | for (Function *F1 : NewFunctions) { |
| 1771 | assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref && |
| 1772 | "Expected ref edges from original function to every new function" ); |
| 1773 | Node &N1 = get(*F1); |
| 1774 | for (Function *F2 : NewFunctions) { |
| 1775 | if (F1 == F2) |
| 1776 | continue; |
| 1777 | Node &N2 = get(*F2); |
| 1778 | assert(!N1->lookup(N2)->isCall() && |
| 1779 | "Edges between new functions must be ref edges" ); |
| 1780 | } |
| 1781 | } |
| 1782 | #endif |
| 1783 | } |
| 1784 | |
| 1785 | LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { |
| 1786 | return *new (MappedN = BPA.Allocate()) Node(*this, F); |
| 1787 | } |
| 1788 | |
| 1789 | void LazyCallGraph::updateGraphPtrs() { |
| 1790 | // Walk the node map to update their graph pointers. While this iterates in |
| 1791 | // an unstable order, the order has no effect, so it remains correct. |
| 1792 | for (auto &FunctionNodePair : NodeMap) |
| 1793 | FunctionNodePair.second->G = this; |
| 1794 | |
| 1795 | for (auto *RC : PostOrderRefSCCs) |
| 1796 | RC->G = this; |
| 1797 | } |
| 1798 | |
| 1799 | LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) { |
| 1800 | Node &N = get(F); |
| 1801 | N.DFSNumber = N.LowLink = -1; |
| 1802 | N.populate(); |
| 1803 | NodeMap[&F] = &N; |
| 1804 | return N; |
| 1805 | } |
| 1806 | |
| 1807 | template <typename RootsT, typename GetBeginT, typename GetEndT, |
| 1808 | typename GetNodeT, typename FormSCCCallbackT> |
| 1809 | void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, |
| 1810 | GetEndT &&GetEnd, GetNodeT &&GetNode, |
| 1811 | FormSCCCallbackT &&FormSCC) { |
| 1812 | using EdgeItT = decltype(GetBegin(std::declval<Node &>())); |
| 1813 | |
| 1814 | SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; |
| 1815 | SmallVector<Node *, 16> PendingSCCStack; |
| 1816 | |
| 1817 | // Scan down the stack and DFS across the call edges. |
| 1818 | for (Node *RootN : Roots) { |
| 1819 | assert(DFSStack.empty() && |
| 1820 | "Cannot begin a new root with a non-empty DFS stack!" ); |
| 1821 | assert(PendingSCCStack.empty() && |
| 1822 | "Cannot begin a new root with pending nodes for an SCC!" ); |
| 1823 | |
| 1824 | // Skip any nodes we've already reached in the DFS. |
| 1825 | if (RootN->DFSNumber != 0) { |
| 1826 | assert(RootN->DFSNumber == -1 && |
| 1827 | "Shouldn't have any mid-DFS root nodes!" ); |
| 1828 | continue; |
| 1829 | } |
| 1830 | |
| 1831 | RootN->DFSNumber = RootN->LowLink = 1; |
| 1832 | int NextDFSNumber = 2; |
| 1833 | |
| 1834 | DFSStack.emplace_back(RootN, GetBegin(*RootN)); |
| 1835 | do { |
| 1836 | auto [N, I] = DFSStack.pop_back_val(); |
| 1837 | auto E = GetEnd(*N); |
| 1838 | while (I != E) { |
| 1839 | Node &ChildN = GetNode(I); |
| 1840 | if (ChildN.DFSNumber == 0) { |
| 1841 | // We haven't yet visited this child, so descend, pushing the current |
| 1842 | // node onto the stack. |
| 1843 | DFSStack.emplace_back(N, I); |
| 1844 | |
| 1845 | ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; |
| 1846 | N = &ChildN; |
| 1847 | I = GetBegin(*N); |
| 1848 | E = GetEnd(*N); |
| 1849 | continue; |
| 1850 | } |
| 1851 | |
| 1852 | // If the child has already been added to some child component, it |
| 1853 | // couldn't impact the low-link of this parent because it isn't |
| 1854 | // connected, and thus its low-link isn't relevant so skip it. |
| 1855 | if (ChildN.DFSNumber == -1) { |
| 1856 | ++I; |
| 1857 | continue; |
| 1858 | } |
| 1859 | |
| 1860 | // Track the lowest linked child as the lowest link for this node. |
| 1861 | assert(ChildN.LowLink > 0 && "Must have a positive low-link number!" ); |
| 1862 | if (ChildN.LowLink < N->LowLink) |
| 1863 | N->LowLink = ChildN.LowLink; |
| 1864 | |
| 1865 | // Move to the next edge. |
| 1866 | ++I; |
| 1867 | } |
| 1868 | |
| 1869 | // We've finished processing N and its descendants, put it on our pending |
| 1870 | // SCC stack to eventually get merged into an SCC of nodes. |
| 1871 | PendingSCCStack.push_back(Elt: N); |
| 1872 | |
| 1873 | // If this node is linked to some lower entry, continue walking up the |
| 1874 | // stack. |
| 1875 | if (N->LowLink != N->DFSNumber) |
| 1876 | continue; |
| 1877 | |
| 1878 | // Otherwise, we've completed an SCC. Append it to our post order list of |
| 1879 | // SCCs. |
| 1880 | int RootDFSNumber = N->DFSNumber; |
| 1881 | // Find the range of the node stack by walking down until we pass the |
| 1882 | // root DFS number. |
| 1883 | auto SCCNodes = make_range( |
| 1884 | PendingSCCStack.rbegin(), |
| 1885 | find_if(reverse(C&: PendingSCCStack), [RootDFSNumber](const Node *N) { |
| 1886 | return N->DFSNumber < RootDFSNumber; |
| 1887 | })); |
| 1888 | // Form a new SCC out of these nodes and then clear them off our pending |
| 1889 | // stack. |
| 1890 | FormSCC(SCCNodes); |
| 1891 | PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); |
| 1892 | } while (!DFSStack.empty()); |
| 1893 | } |
| 1894 | } |
| 1895 | |
| 1896 | /// Build the internal SCCs for a RefSCC from a sequence of nodes. |
| 1897 | /// |
| 1898 | /// Appends the SCCs to the provided vector and updates the map with their |
| 1899 | /// indices. Both the vector and map must be empty when passed into this |
| 1900 | /// routine. |
| 1901 | void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { |
| 1902 | assert(RC.SCCs.empty() && "Already built SCCs!" ); |
| 1903 | assert(RC.SCCIndices.empty() && "Already mapped SCC indices!" ); |
| 1904 | |
| 1905 | for (Node *N : Nodes) { |
| 1906 | assert(N->LowLink >= (*Nodes.begin())->LowLink && |
| 1907 | "We cannot have a low link in an SCC lower than its root on the " |
| 1908 | "stack!" ); |
| 1909 | |
| 1910 | // This node will go into the next RefSCC, clear out its DFS and low link |
| 1911 | // as we scan. |
| 1912 | N->DFSNumber = N->LowLink = 0; |
| 1913 | } |
| 1914 | |
| 1915 | // Each RefSCC contains a DAG of the call SCCs. To build these, we do |
| 1916 | // a direct walk of the call edges using Tarjan's algorithm. We reuse the |
| 1917 | // internal storage as we won't need it for the outer graph's DFS any longer. |
| 1918 | buildGenericSCCs( |
| 1919 | Roots&: Nodes, GetBegin: [](Node &N) { return N->call_begin(); }, |
| 1920 | GetEnd: [](Node &N) { return N->call_end(); }, |
| 1921 | GetNode: [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, |
| 1922 | FormSCC: [this, &RC](node_stack_range Nodes) { |
| 1923 | RC.SCCs.push_back(Elt: createSCC(Args&: RC, Args&: Nodes)); |
| 1924 | for (Node &N : *RC.SCCs.back()) { |
| 1925 | N.DFSNumber = N.LowLink = -1; |
| 1926 | SCCMap[&N] = RC.SCCs.back(); |
| 1927 | } |
| 1928 | }); |
| 1929 | |
| 1930 | // Wire up the SCC indices. |
| 1931 | for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I) |
| 1932 | RC.SCCIndices[RC.SCCs[I]] = I; |
| 1933 | } |
| 1934 | |
| 1935 | void LazyCallGraph::buildRefSCCs() { |
| 1936 | if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) |
| 1937 | // RefSCCs are either non-existent or already built! |
| 1938 | return; |
| 1939 | |
| 1940 | assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!" ); |
| 1941 | |
| 1942 | SmallVector<Node *, 16> Roots; |
| 1943 | for (Edge &E : *this) |
| 1944 | Roots.push_back(Elt: &E.getNode()); |
| 1945 | |
| 1946 | // The roots will be iterated in order. |
| 1947 | buildGenericSCCs( |
| 1948 | Roots, |
| 1949 | GetBegin: [](Node &N) { |
| 1950 | // We need to populate each node as we begin to walk its edges. |
| 1951 | N.populate(); |
| 1952 | return N->begin(); |
| 1953 | }, |
| 1954 | GetEnd: [](Node &N) { return N->end(); }, |
| 1955 | GetNode: [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, |
| 1956 | FormSCC: [this](node_stack_range Nodes) { |
| 1957 | RefSCC *NewRC = createRefSCC(Args&: *this); |
| 1958 | buildSCCs(RC&: *NewRC, Nodes); |
| 1959 | |
| 1960 | // Push the new node into the postorder list and remember its position |
| 1961 | // in the index map. |
| 1962 | bool Inserted = |
| 1963 | RefSCCIndices.try_emplace(Key: NewRC, Args: PostOrderRefSCCs.size()).second; |
| 1964 | (void)Inserted; |
| 1965 | assert(Inserted && "Cannot already have this RefSCC in the index map!" ); |
| 1966 | PostOrderRefSCCs.push_back(Elt: NewRC); |
| 1967 | #ifdef EXPENSIVE_CHECKS |
| 1968 | NewRC->verify(); |
| 1969 | #endif |
| 1970 | }); |
| 1971 | } |
| 1972 | |
| 1973 | void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist, |
| 1974 | SmallPtrSetImpl<Constant *> &Visited, |
| 1975 | function_ref<void(Function &)> Callback) { |
| 1976 | while (!Worklist.empty()) { |
| 1977 | Constant *C = Worklist.pop_back_val(); |
| 1978 | |
| 1979 | if (Function *F = dyn_cast<Function>(Val: C)) { |
| 1980 | if (!F->isDeclaration()) |
| 1981 | Callback(*F); |
| 1982 | continue; |
| 1983 | } |
| 1984 | |
| 1985 | // blockaddresses are weird and don't participate in the call graph anyway, |
| 1986 | // skip them. |
| 1987 | if (isa<BlockAddress>(Val: C)) |
| 1988 | continue; |
| 1989 | |
| 1990 | for (Value *Op : C->operand_values()) |
| 1991 | if (Visited.insert(Ptr: cast<Constant>(Val: Op)).second) |
| 1992 | Worklist.push_back(Elt: cast<Constant>(Val: Op)); |
| 1993 | } |
| 1994 | } |
| 1995 | |
| 1996 | AnalysisKey LazyCallGraphAnalysis::Key; |
| 1997 | |
| 1998 | LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} |
| 1999 | |
| 2000 | static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { |
| 2001 | OS << " Edges in function: " << N.getFunction().getName() << "\n" ; |
| 2002 | for (LazyCallGraph::Edge &E : N.populate()) |
| 2003 | OS << " " << (E.isCall() ? "call" : "ref " ) << " -> " |
| 2004 | << E.getFunction().getName() << "\n" ; |
| 2005 | |
| 2006 | OS << "\n" ; |
| 2007 | } |
| 2008 | |
| 2009 | static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { |
| 2010 | OS << " SCC with " << C.size() << " functions:\n" ; |
| 2011 | |
| 2012 | for (LazyCallGraph::Node &N : C) |
| 2013 | OS << " " << N.getFunction().getName() << "\n" ; |
| 2014 | } |
| 2015 | |
| 2016 | static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { |
| 2017 | OS << " RefSCC with " << C.size() << " call SCCs:\n" ; |
| 2018 | |
| 2019 | for (LazyCallGraph::SCC &InnerC : C) |
| 2020 | printSCC(OS, C&: InnerC); |
| 2021 | |
| 2022 | OS << "\n" ; |
| 2023 | } |
| 2024 | |
| 2025 | PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, |
| 2026 | ModuleAnalysisManager &AM) { |
| 2027 | LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(IR&: M); |
| 2028 | |
| 2029 | OS << "Printing the call graph for module: " << M.getModuleIdentifier() |
| 2030 | << "\n\n" ; |
| 2031 | |
| 2032 | for (Function &F : M) |
| 2033 | printNode(OS, N&: G.get(F)); |
| 2034 | |
| 2035 | G.buildRefSCCs(); |
| 2036 | for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) |
| 2037 | printRefSCC(OS, C); |
| 2038 | |
| 2039 | return PreservedAnalyses::all(); |
| 2040 | } |
| 2041 | |
| 2042 | LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) |
| 2043 | : OS(OS) {} |
| 2044 | |
| 2045 | static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { |
| 2046 | std::string Name = |
| 2047 | "\"" + DOT::EscapeString(Label: std::string(N.getFunction().getName())) + "\"" ; |
| 2048 | |
| 2049 | for (LazyCallGraph::Edge &E : N.populate()) { |
| 2050 | OS << " " << Name << " -> \"" |
| 2051 | << DOT::EscapeString(Label: std::string(E.getFunction().getName())) << "\"" ; |
| 2052 | if (!E.isCall()) // It is a ref edge. |
| 2053 | OS << " [style=dashed,label=\"ref\"]" ; |
| 2054 | OS << ";\n" ; |
| 2055 | } |
| 2056 | |
| 2057 | OS << "\n" ; |
| 2058 | } |
| 2059 | |
| 2060 | PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, |
| 2061 | ModuleAnalysisManager &AM) { |
| 2062 | LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(IR&: M); |
| 2063 | |
| 2064 | OS << "digraph \"" << DOT::EscapeString(Label: M.getModuleIdentifier()) << "\" {\n" ; |
| 2065 | |
| 2066 | for (Function &F : M) |
| 2067 | printNodeDOT(OS, N&: G.get(F)); |
| 2068 | |
| 2069 | OS << "}\n" ; |
| 2070 | |
| 2071 | return PreservedAnalyses::all(); |
| 2072 | } |
| 2073 | |