| 1 | //===- Loads.cpp - Local load analysis ------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines simple local analyses for load instructions. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Analysis/Loads.h" |
| 14 | #include "llvm/Analysis/AliasAnalysis.h" |
| 15 | #include "llvm/Analysis/AssumeBundleQueries.h" |
| 16 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
| 17 | #include "llvm/Analysis/LoopInfo.h" |
| 18 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 19 | #include "llvm/Analysis/MemoryLocation.h" |
| 20 | #include "llvm/Analysis/ScalarEvolution.h" |
| 21 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 22 | #include "llvm/Analysis/ValueTracking.h" |
| 23 | #include "llvm/IR/DataLayout.h" |
| 24 | #include "llvm/IR/IntrinsicInst.h" |
| 25 | #include "llvm/IR/Operator.h" |
| 26 | |
| 27 | using namespace llvm; |
| 28 | |
| 29 | static bool isAligned(const Value *Base, Align Alignment, |
| 30 | const DataLayout &DL) { |
| 31 | return Base->getPointerAlignment(DL) >= Alignment; |
| 32 | } |
| 33 | |
| 34 | /// Test if V is always a pointer to allocated and suitably aligned memory for |
| 35 | /// a simple load or store. |
| 36 | static bool isDereferenceableAndAlignedPointer( |
| 37 | const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, |
| 38 | const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, |
| 39 | const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited, |
| 40 | unsigned MaxDepth) { |
| 41 | assert(V->getType()->isPointerTy() && "Base must be pointer" ); |
| 42 | |
| 43 | // Recursion limit. |
| 44 | if (MaxDepth-- == 0) |
| 45 | return false; |
| 46 | |
| 47 | // Already visited? Bail out, we've likely hit unreachable code. |
| 48 | if (!Visited.insert(Ptr: V).second) |
| 49 | return false; |
| 50 | |
| 51 | // Note that it is not safe to speculate into a malloc'd region because |
| 52 | // malloc may return null. |
| 53 | |
| 54 | // For GEPs, determine if the indexing lands within the allocated object. |
| 55 | if (const GEPOperator *GEP = dyn_cast<GEPOperator>(Val: V)) { |
| 56 | const Value *Base = GEP->getPointerOperand(); |
| 57 | |
| 58 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: GEP->getType()), 0); |
| 59 | if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || |
| 60 | !Offset.urem(RHS: APInt(Offset.getBitWidth(), Alignment.value())) |
| 61 | .isMinValue()) |
| 62 | return false; |
| 63 | |
| 64 | // If the base pointer is dereferenceable for Offset+Size bytes, then the |
| 65 | // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base |
| 66 | // pointer is aligned to Align bytes, and the Offset is divisible by Align |
| 67 | // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also |
| 68 | // aligned to Align bytes. |
| 69 | |
| 70 | // Offset and Size may have different bit widths if we have visited an |
| 71 | // addrspacecast, so we can't do arithmetic directly on the APInt values. |
| 72 | return isDereferenceableAndAlignedPointer( |
| 73 | V: Base, Alignment, Size: Offset + Size.sextOrTrunc(width: Offset.getBitWidth()), DL, |
| 74 | CtxI, AC, DT, TLI, Visited, MaxDepth); |
| 75 | } |
| 76 | |
| 77 | // bitcast instructions are no-ops as far as dereferenceability is concerned. |
| 78 | if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(Val: V)) { |
| 79 | if (BC->getSrcTy()->isPointerTy()) |
| 80 | return isDereferenceableAndAlignedPointer( |
| 81 | V: BC->getOperand(i_nocapture: 0), Alignment, Size, DL, CtxI, AC, DT, TLI, |
| 82 | Visited, MaxDepth); |
| 83 | } |
| 84 | |
| 85 | // Recurse into both hands of select. |
| 86 | if (const SelectInst *Sel = dyn_cast<SelectInst>(Val: V)) { |
| 87 | return isDereferenceableAndAlignedPointer(V: Sel->getTrueValue(), Alignment, |
| 88 | Size, DL, CtxI, AC, DT, TLI, |
| 89 | Visited, MaxDepth) && |
| 90 | isDereferenceableAndAlignedPointer(V: Sel->getFalseValue(), Alignment, |
| 91 | Size, DL, CtxI, AC, DT, TLI, |
| 92 | Visited, MaxDepth); |
| 93 | } |
| 94 | |
| 95 | auto IsKnownDeref = [&]() { |
| 96 | bool CheckForNonNull, CheckForFreed; |
| 97 | if (!Size.ule(RHS: V->getPointerDereferenceableBytes(DL, CanBeNull&: CheckForNonNull, |
| 98 | CanBeFreed&: CheckForFreed)) || |
| 99 | CheckForFreed) |
| 100 | return false; |
| 101 | if (CheckForNonNull && |
| 102 | !isKnownNonZero(V, Q: SimplifyQuery(DL, DT, AC, CtxI))) |
| 103 | return false; |
| 104 | // When using something like !dereferenceable on a load, the |
| 105 | // dereferenceability may only be valid on a specific control-flow path. |
| 106 | // If the instruction doesn't dominate the context instruction, we're |
| 107 | // asking about dereferenceability under the assumption that the |
| 108 | // instruction has been speculated to the point of the context instruction, |
| 109 | // in which case we don't know if the dereferenceability info still holds. |
| 110 | // We don't bother handling allocas here, as they aren't speculatable |
| 111 | // anyway. |
| 112 | auto *I = dyn_cast<Instruction>(Val: V); |
| 113 | if (I && !isa<AllocaInst>(Val: I)) |
| 114 | return CtxI && isValidAssumeForContext(I, CxtI: CtxI, DT); |
| 115 | return true; |
| 116 | }; |
| 117 | if (IsKnownDeref()) { |
| 118 | // As we recursed through GEPs to get here, we've incrementally checked |
| 119 | // that each step advanced by a multiple of the alignment. If our base is |
| 120 | // properly aligned, then the original offset accessed must also be. |
| 121 | return isAligned(Base: V, Alignment, DL); |
| 122 | } |
| 123 | |
| 124 | /// TODO refactor this function to be able to search independently for |
| 125 | /// Dereferencability and Alignment requirements. |
| 126 | |
| 127 | |
| 128 | if (const auto *Call = dyn_cast<CallBase>(Val: V)) { |
| 129 | if (auto *RP = getArgumentAliasingToReturnedPointer(Call, MustPreserveNullness: true)) |
| 130 | return isDereferenceableAndAlignedPointer(V: RP, Alignment, Size, DL, CtxI, |
| 131 | AC, DT, TLI, Visited, MaxDepth); |
| 132 | |
| 133 | // If we have a call we can't recurse through, check to see if this is an |
| 134 | // allocation function for which we can establish an minimum object size. |
| 135 | // Such a minimum object size is analogous to a deref_or_null attribute in |
| 136 | // that we still need to prove the result non-null at point of use. |
| 137 | // NOTE: We can only use the object size as a base fact as we a) need to |
| 138 | // prove alignment too, and b) don't want the compile time impact of a |
| 139 | // separate recursive walk. |
| 140 | ObjectSizeOpts Opts; |
| 141 | // TODO: It may be okay to round to align, but that would imply that |
| 142 | // accessing slightly out of bounds was legal, and we're currently |
| 143 | // inconsistent about that. For the moment, be conservative. |
| 144 | Opts.RoundToAlign = false; |
| 145 | Opts.NullIsUnknownSize = true; |
| 146 | uint64_t ObjSize; |
| 147 | if (getObjectSize(Ptr: V, Size&: ObjSize, DL, TLI, Opts)) { |
| 148 | APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); |
| 149 | if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(RHS: Size) && |
| 150 | isKnownNonZero(V, Q: SimplifyQuery(DL, DT, AC, CtxI)) && |
| 151 | !V->canBeFreed()) { |
| 152 | // As we recursed through GEPs to get here, we've incrementally |
| 153 | // checked that each step advanced by a multiple of the alignment. If |
| 154 | // our base is properly aligned, then the original offset accessed |
| 155 | // must also be. |
| 156 | return isAligned(Base: V, Alignment, DL); |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | // For gc.relocate, look through relocations |
| 162 | if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(Val: V)) |
| 163 | return isDereferenceableAndAlignedPointer(V: RelocateInst->getDerivedPtr(), |
| 164 | Alignment, Size, DL, CtxI, AC, DT, |
| 165 | TLI, Visited, MaxDepth); |
| 166 | |
| 167 | if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(Val: V)) |
| 168 | return isDereferenceableAndAlignedPointer(V: ASC->getOperand(i_nocapture: 0), Alignment, |
| 169 | Size, DL, CtxI, AC, DT, TLI, |
| 170 | Visited, MaxDepth); |
| 171 | |
| 172 | // Dereferenceable information from assumptions is only valid if the value |
| 173 | // cannot be freed between the assumption and use. For now just use the |
| 174 | // information for values that cannot be freed in the function. |
| 175 | // TODO: More precisely check if the pointer can be freed between assumption |
| 176 | // and use. |
| 177 | if (CtxI && AC && !V->canBeFreed()) { |
| 178 | /// Look through assumes to see if both dereferencability and alignment can |
| 179 | /// be proven by an assume if needed. |
| 180 | RetainedKnowledge AlignRK; |
| 181 | RetainedKnowledge DerefRK; |
| 182 | bool IsAligned = V->getPointerAlignment(DL) >= Alignment; |
| 183 | if (getKnowledgeForValue( |
| 184 | V, AttrKinds: {Attribute::Dereferenceable, Attribute::Alignment}, AC&: *AC, |
| 185 | Filter: [&](RetainedKnowledge RK, Instruction *Assume, auto) { |
| 186 | if (!isValidAssumeForContext(I: Assume, CxtI: CtxI, DT)) |
| 187 | return false; |
| 188 | if (RK.AttrKind == Attribute::Alignment) |
| 189 | AlignRK = std::max(a: AlignRK, b: RK); |
| 190 | if (RK.AttrKind == Attribute::Dereferenceable) |
| 191 | DerefRK = std::max(a: DerefRK, b: RK); |
| 192 | IsAligned |= AlignRK && AlignRK.ArgValue >= Alignment.value(); |
| 193 | if (IsAligned && DerefRK && |
| 194 | DerefRK.ArgValue >= Size.getZExtValue()) |
| 195 | return true; // We have found what we needed so we stop looking |
| 196 | return false; // Other assumes may have better information. so |
| 197 | // keep looking |
| 198 | })) |
| 199 | return true; |
| 200 | } |
| 201 | |
| 202 | // If we don't know, assume the worst. |
| 203 | return false; |
| 204 | } |
| 205 | |
| 206 | bool llvm::isDereferenceableAndAlignedPointer( |
| 207 | const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, |
| 208 | const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, |
| 209 | const TargetLibraryInfo *TLI) { |
| 210 | // Note: At the moment, Size can be zero. This ends up being interpreted as |
| 211 | // a query of whether [Base, V] is dereferenceable and V is aligned (since |
| 212 | // that's what the implementation happened to do). It's unclear if this is |
| 213 | // the desired semantic, but at least SelectionDAG does exercise this case. |
| 214 | |
| 215 | SmallPtrSet<const Value *, 32> Visited; |
| 216 | return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, |
| 217 | DT, TLI, Visited, MaxDepth: 16); |
| 218 | } |
| 219 | |
| 220 | bool llvm::isDereferenceableAndAlignedPointer( |
| 221 | const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, |
| 222 | const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, |
| 223 | const TargetLibraryInfo *TLI) { |
| 224 | // For unsized types or scalable vectors we don't know exactly how many bytes |
| 225 | // are dereferenced, so bail out. |
| 226 | if (!Ty->isSized() || Ty->isScalableTy()) |
| 227 | return false; |
| 228 | |
| 229 | // When dereferenceability information is provided by a dereferenceable |
| 230 | // attribute, we know exactly how many bytes are dereferenceable. If we can |
| 231 | // determine the exact offset to the attributed variable, we can use that |
| 232 | // information here. |
| 233 | |
| 234 | APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), |
| 235 | DL.getTypeStoreSize(Ty)); |
| 236 | return isDereferenceableAndAlignedPointer(V, Alignment, Size: AccessSize, DL, CtxI, |
| 237 | AC, DT, TLI); |
| 238 | } |
| 239 | |
| 240 | bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, |
| 241 | const DataLayout &DL, |
| 242 | const Instruction *CtxI, |
| 243 | AssumptionCache *AC, |
| 244 | const DominatorTree *DT, |
| 245 | const TargetLibraryInfo *TLI) { |
| 246 | return isDereferenceableAndAlignedPointer(V, Ty, Alignment: Align(1), DL, CtxI, AC, DT, |
| 247 | TLI); |
| 248 | } |
| 249 | |
| 250 | /// Test if A and B will obviously have the same value. |
| 251 | /// |
| 252 | /// This includes recognizing that %t0 and %t1 will have the same |
| 253 | /// value in code like this: |
| 254 | /// \code |
| 255 | /// %t0 = getelementptr \@a, 0, 3 |
| 256 | /// store i32 0, i32* %t0 |
| 257 | /// %t1 = getelementptr \@a, 0, 3 |
| 258 | /// %t2 = load i32* %t1 |
| 259 | /// \endcode |
| 260 | /// |
| 261 | static bool AreEquivalentAddressValues(const Value *A, const Value *B) { |
| 262 | // Test if the values are trivially equivalent. |
| 263 | if (A == B) |
| 264 | return true; |
| 265 | |
| 266 | // Test if the values come from identical arithmetic instructions. |
| 267 | // Use isIdenticalToWhenDefined instead of isIdenticalTo because |
| 268 | // this function is only used when one address use dominates the |
| 269 | // other, which means that they'll always either have the same |
| 270 | // value or one of them will have an undefined value. |
| 271 | if (isa<BinaryOperator>(Val: A) || isa<CastInst>(Val: A) || isa<PHINode>(Val: A) || |
| 272 | isa<GetElementPtrInst>(Val: A)) |
| 273 | if (const Instruction *BI = dyn_cast<Instruction>(Val: B)) |
| 274 | if (cast<Instruction>(Val: A)->isIdenticalToWhenDefined(I: BI)) |
| 275 | return true; |
| 276 | |
| 277 | // Otherwise they may not be equivalent. |
| 278 | return false; |
| 279 | } |
| 280 | |
| 281 | bool llvm::isDereferenceableAndAlignedInLoop( |
| 282 | LoadInst *LI, Loop *L, ScalarEvolution &SE, DominatorTree &DT, |
| 283 | AssumptionCache *AC, SmallVectorImpl<const SCEVPredicate *> *Predicates) { |
| 284 | const Align Alignment = LI->getAlign(); |
| 285 | auto &DL = LI->getDataLayout(); |
| 286 | Value *Ptr = LI->getPointerOperand(); |
| 287 | APInt EltSize(DL.getIndexTypeSizeInBits(Ty: Ptr->getType()), |
| 288 | DL.getTypeStoreSize(Ty: LI->getType()).getFixedValue()); |
| 289 | |
| 290 | // If given a uniform (i.e. non-varying) address, see if we can prove the |
| 291 | // access is safe within the loop w/o needing predication. |
| 292 | if (L->isLoopInvariant(V: Ptr)) |
| 293 | return isDereferenceableAndAlignedPointer( |
| 294 | V: Ptr, Alignment, Size: EltSize, DL, CtxI: &*L->getHeader()->getFirstNonPHIIt(), AC, |
| 295 | DT: &DT); |
| 296 | |
| 297 | const SCEV *PtrScev = SE.getSCEV(V: Ptr); |
| 298 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: PtrScev); |
| 299 | |
| 300 | // Check to see if we have a repeating access pattern and it's possible |
| 301 | // to prove all accesses are well aligned. |
| 302 | if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) |
| 303 | return false; |
| 304 | |
| 305 | auto *Step = dyn_cast<SCEVConstant>(Val: AddRec->getStepRecurrence(SE)); |
| 306 | if (!Step) |
| 307 | return false; |
| 308 | |
| 309 | // For the moment, restrict ourselves to the case where the access size is a |
| 310 | // multiple of the requested alignment and the base is aligned. |
| 311 | // TODO: generalize if a case found which warrants |
| 312 | if (EltSize.urem(RHS: Alignment.value()) != 0) |
| 313 | return false; |
| 314 | |
| 315 | // TODO: Handle overlapping accesses. |
| 316 | if (EltSize.ugt(RHS: Step->getAPInt().abs())) |
| 317 | return false; |
| 318 | |
| 319 | const SCEV *MaxBECount = |
| 320 | Predicates ? SE.getPredicatedConstantMaxBackedgeTakenCount(L, Predicates&: *Predicates) |
| 321 | : SE.getConstantMaxBackedgeTakenCount(L); |
| 322 | const SCEV *BECount = Predicates |
| 323 | ? SE.getPredicatedBackedgeTakenCount(L, Predicates&: *Predicates) |
| 324 | : SE.getBackedgeTakenCount(L); |
| 325 | if (isa<SCEVCouldNotCompute>(Val: MaxBECount)) |
| 326 | return false; |
| 327 | |
| 328 | const auto &[AccessStart, AccessEnd] = getStartAndEndForAccess( |
| 329 | Lp: L, PtrExpr: PtrScev, AccessTy: LI->getType(), BTC: BECount, MaxBTC: MaxBECount, SE: &SE, PointerBounds: nullptr); |
| 330 | if (isa<SCEVCouldNotCompute>(Val: AccessStart) || |
| 331 | isa<SCEVCouldNotCompute>(Val: AccessEnd)) |
| 332 | return false; |
| 333 | |
| 334 | // Try to get the access size. |
| 335 | const SCEV *PtrDiff = SE.getMinusSCEV(LHS: AccessEnd, RHS: AccessStart); |
| 336 | if (isa<SCEVCouldNotCompute>(Val: PtrDiff)) |
| 337 | return false; |
| 338 | APInt MaxPtrDiff = SE.getUnsignedRangeMax(S: PtrDiff); |
| 339 | |
| 340 | Value *Base = nullptr; |
| 341 | APInt AccessSize; |
| 342 | if (const SCEVUnknown *NewBase = dyn_cast<SCEVUnknown>(Val: AccessStart)) { |
| 343 | Base = NewBase->getValue(); |
| 344 | AccessSize = MaxPtrDiff; |
| 345 | } else if (auto *MinAdd = dyn_cast<SCEVAddExpr>(Val: AccessStart)) { |
| 346 | if (MinAdd->getNumOperands() != 2) |
| 347 | return false; |
| 348 | |
| 349 | const auto *Offset = dyn_cast<SCEVConstant>(Val: MinAdd->getOperand(i: 0)); |
| 350 | const auto *NewBase = dyn_cast<SCEVUnknown>(Val: MinAdd->getOperand(i: 1)); |
| 351 | if (!Offset || !NewBase) |
| 352 | return false; |
| 353 | |
| 354 | // The following code below assumes the offset is unsigned, but GEP |
| 355 | // offsets are treated as signed so we can end up with a signed value |
| 356 | // here too. For example, suppose the initial PHI value is (i8 255), |
| 357 | // the offset will be treated as (i8 -1) and sign-extended to (i64 -1). |
| 358 | if (Offset->getAPInt().isNegative()) |
| 359 | return false; |
| 360 | |
| 361 | // For the moment, restrict ourselves to the case where the offset is a |
| 362 | // multiple of the requested alignment and the base is aligned. |
| 363 | // TODO: generalize if a case found which warrants |
| 364 | if (Offset->getAPInt().urem(RHS: Alignment.value()) != 0) |
| 365 | return false; |
| 366 | |
| 367 | AccessSize = MaxPtrDiff + Offset->getAPInt(); |
| 368 | Base = NewBase->getValue(); |
| 369 | } else |
| 370 | return false; |
| 371 | |
| 372 | Instruction * = &*L->getHeader()->getFirstNonPHIIt(); |
| 373 | return isDereferenceableAndAlignedPointer(V: Base, Alignment, Size: AccessSize, DL, |
| 374 | CtxI: HeaderFirstNonPHI, AC, DT: &DT); |
| 375 | } |
| 376 | |
| 377 | static bool suppressSpeculativeLoadForSanitizers(const Instruction &CtxI) { |
| 378 | const Function &F = *CtxI.getFunction(); |
| 379 | // Speculative load may create a race that did not exist in the source. |
| 380 | return F.hasFnAttribute(Kind: Attribute::SanitizeThread) || |
| 381 | // Speculative load may load data from dirty regions. |
| 382 | F.hasFnAttribute(Kind: Attribute::SanitizeAddress) || |
| 383 | F.hasFnAttribute(Kind: Attribute::SanitizeHWAddress); |
| 384 | } |
| 385 | |
| 386 | bool llvm::mustSuppressSpeculation(const LoadInst &LI) { |
| 387 | return !LI.isUnordered() || suppressSpeculativeLoadForSanitizers(CtxI: LI); |
| 388 | } |
| 389 | |
| 390 | /// Check if executing a load of this pointer value cannot trap. |
| 391 | /// |
| 392 | /// If DT and ScanFrom are specified this method performs context-sensitive |
| 393 | /// analysis and returns true if it is safe to load immediately before ScanFrom. |
| 394 | /// |
| 395 | /// If it is not obviously safe to load from the specified pointer, we do |
| 396 | /// a quick local scan of the basic block containing \c ScanFrom, to determine |
| 397 | /// if the address is already accessed. |
| 398 | /// |
| 399 | /// This uses the pointee type to determine how many bytes need to be safe to |
| 400 | /// load from the pointer. |
| 401 | bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size, |
| 402 | const DataLayout &DL, |
| 403 | Instruction *ScanFrom, |
| 404 | AssumptionCache *AC, |
| 405 | const DominatorTree *DT, |
| 406 | const TargetLibraryInfo *TLI) { |
| 407 | // If DT is not specified we can't make context-sensitive query |
| 408 | const Instruction* CtxI = DT ? ScanFrom : nullptr; |
| 409 | if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT, |
| 410 | TLI)) { |
| 411 | // With sanitizers `Dereferenceable` is not always enough for unconditional |
| 412 | // load. |
| 413 | if (!ScanFrom || !suppressSpeculativeLoadForSanitizers(CtxI: *ScanFrom)) |
| 414 | return true; |
| 415 | } |
| 416 | |
| 417 | if (!ScanFrom) |
| 418 | return false; |
| 419 | |
| 420 | if (Size.getBitWidth() > 64) |
| 421 | return false; |
| 422 | const TypeSize LoadSize = TypeSize::getFixed(ExactSize: Size.getZExtValue()); |
| 423 | |
| 424 | // Otherwise, be a little bit aggressive by scanning the local block where we |
| 425 | // want to check to see if the pointer is already being loaded or stored |
| 426 | // from/to. If so, the previous load or store would have already trapped, |
| 427 | // so there is no harm doing an extra load (also, CSE will later eliminate |
| 428 | // the load entirely). |
| 429 | BasicBlock::iterator BBI = ScanFrom->getIterator(), |
| 430 | E = ScanFrom->getParent()->begin(); |
| 431 | |
| 432 | // We can at least always strip pointer casts even though we can't use the |
| 433 | // base here. |
| 434 | V = V->stripPointerCasts(); |
| 435 | |
| 436 | while (BBI != E) { |
| 437 | --BBI; |
| 438 | |
| 439 | // If we see a free or a call which may write to memory (i.e. which might do |
| 440 | // a free) the pointer could be marked invalid. |
| 441 | if (isa<CallInst>(Val: BBI) && BBI->mayWriteToMemory() && |
| 442 | !isa<LifetimeIntrinsic>(Val: BBI)) |
| 443 | return false; |
| 444 | |
| 445 | Value *AccessedPtr; |
| 446 | Type *AccessedTy; |
| 447 | Align AccessedAlign; |
| 448 | if (LoadInst *LI = dyn_cast<LoadInst>(Val&: BBI)) { |
| 449 | // Ignore volatile loads. The execution of a volatile load cannot |
| 450 | // be used to prove an address is backed by regular memory; it can, |
| 451 | // for example, point to an MMIO register. |
| 452 | if (LI->isVolatile()) |
| 453 | continue; |
| 454 | AccessedPtr = LI->getPointerOperand(); |
| 455 | AccessedTy = LI->getType(); |
| 456 | AccessedAlign = LI->getAlign(); |
| 457 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val&: BBI)) { |
| 458 | // Ignore volatile stores (see comment for loads). |
| 459 | if (SI->isVolatile()) |
| 460 | continue; |
| 461 | AccessedPtr = SI->getPointerOperand(); |
| 462 | AccessedTy = SI->getValueOperand()->getType(); |
| 463 | AccessedAlign = SI->getAlign(); |
| 464 | } else |
| 465 | continue; |
| 466 | |
| 467 | if (AccessedAlign < Alignment) |
| 468 | continue; |
| 469 | |
| 470 | // Handle trivial cases. |
| 471 | if (AccessedPtr == V && |
| 472 | TypeSize::isKnownLE(LHS: LoadSize, RHS: DL.getTypeStoreSize(Ty: AccessedTy))) |
| 473 | return true; |
| 474 | |
| 475 | if (AreEquivalentAddressValues(A: AccessedPtr->stripPointerCasts(), B: V) && |
| 476 | TypeSize::isKnownLE(LHS: LoadSize, RHS: DL.getTypeStoreSize(Ty: AccessedTy))) |
| 477 | return true; |
| 478 | } |
| 479 | return false; |
| 480 | } |
| 481 | |
| 482 | bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, |
| 483 | const DataLayout &DL, |
| 484 | Instruction *ScanFrom, |
| 485 | AssumptionCache *AC, |
| 486 | const DominatorTree *DT, |
| 487 | const TargetLibraryInfo *TLI) { |
| 488 | TypeSize TySize = DL.getTypeStoreSize(Ty); |
| 489 | if (TySize.isScalable()) |
| 490 | return false; |
| 491 | APInt Size(DL.getIndexTypeSizeInBits(Ty: V->getType()), TySize.getFixedValue()); |
| 492 | return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT, |
| 493 | TLI); |
| 494 | } |
| 495 | |
| 496 | /// DefMaxInstsToScan - the default number of maximum instructions |
| 497 | /// to scan in the block, used by FindAvailableLoadedValue(). |
| 498 | /// FindAvailableLoadedValue() was introduced in r60148, to improve jump |
| 499 | /// threading in part by eliminating partially redundant loads. |
| 500 | /// At that point, the value of MaxInstsToScan was already set to '6' |
| 501 | /// without documented explanation. |
| 502 | cl::opt<unsigned> |
| 503 | llvm::DefMaxInstsToScan("available-load-scan-limit" , cl::init(Val: 6), cl::Hidden, |
| 504 | cl::desc("Use this to specify the default maximum number of instructions " |
| 505 | "to scan backward from a given instruction, when searching for " |
| 506 | "available loaded value" )); |
| 507 | |
| 508 | Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, |
| 509 | BasicBlock::iterator &ScanFrom, |
| 510 | unsigned MaxInstsToScan, |
| 511 | BatchAAResults *AA, bool *IsLoad, |
| 512 | unsigned *NumScanedInst) { |
| 513 | // Don't CSE load that is volatile or anything stronger than unordered. |
| 514 | if (!Load->isUnordered()) |
| 515 | return nullptr; |
| 516 | |
| 517 | MemoryLocation Loc = MemoryLocation::get(LI: Load); |
| 518 | return findAvailablePtrLoadStore(Loc, AccessTy: Load->getType(), AtLeastAtomic: Load->isAtomic(), |
| 519 | ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoadCSE: IsLoad, |
| 520 | NumScanedInst); |
| 521 | } |
| 522 | |
| 523 | // Check if the load and the store have the same base, constant offsets and |
| 524 | // non-overlapping access ranges. |
| 525 | static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr, |
| 526 | Type *LoadTy, |
| 527 | const Value *StorePtr, |
| 528 | Type *StoreTy, |
| 529 | const DataLayout &DL) { |
| 530 | APInt LoadOffset(DL.getIndexTypeSizeInBits(Ty: LoadPtr->getType()), 0); |
| 531 | APInt StoreOffset(DL.getIndexTypeSizeInBits(Ty: StorePtr->getType()), 0); |
| 532 | const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( |
| 533 | DL, Offset&: LoadOffset, /* AllowNonInbounds */ false); |
| 534 | const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( |
| 535 | DL, Offset&: StoreOffset, /* AllowNonInbounds */ false); |
| 536 | if (LoadBase != StoreBase) |
| 537 | return false; |
| 538 | auto LoadAccessSize = LocationSize::precise(Value: DL.getTypeStoreSize(Ty: LoadTy)); |
| 539 | auto StoreAccessSize = LocationSize::precise(Value: DL.getTypeStoreSize(Ty: StoreTy)); |
| 540 | ConstantRange LoadRange(LoadOffset, |
| 541 | LoadOffset + LoadAccessSize.toRaw()); |
| 542 | ConstantRange StoreRange(StoreOffset, |
| 543 | StoreOffset + StoreAccessSize.toRaw()); |
| 544 | return LoadRange.intersectWith(CR: StoreRange).isEmptySet(); |
| 545 | } |
| 546 | |
| 547 | static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr, |
| 548 | Type *AccessTy, bool AtLeastAtomic, |
| 549 | const DataLayout &DL, bool *IsLoadCSE) { |
| 550 | // If this is a load of Ptr, the loaded value is available. |
| 551 | // (This is true even if the load is volatile or atomic, although |
| 552 | // those cases are unlikely.) |
| 553 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
| 554 | // We can value forward from an atomic to a non-atomic, but not the |
| 555 | // other way around. |
| 556 | if (LI->isAtomic() < AtLeastAtomic) |
| 557 | return nullptr; |
| 558 | |
| 559 | Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); |
| 560 | if (!AreEquivalentAddressValues(A: LoadPtr, B: Ptr)) |
| 561 | return nullptr; |
| 562 | |
| 563 | if (CastInst::isBitOrNoopPointerCastable(SrcTy: LI->getType(), DestTy: AccessTy, DL)) { |
| 564 | if (IsLoadCSE) |
| 565 | *IsLoadCSE = true; |
| 566 | return LI; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | // If this is a store through Ptr, the value is available! |
| 571 | // (This is true even if the store is volatile or atomic, although |
| 572 | // those cases are unlikely.) |
| 573 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 574 | // We can value forward from an atomic to a non-atomic, but not the |
| 575 | // other way around. |
| 576 | if (SI->isAtomic() < AtLeastAtomic) |
| 577 | return nullptr; |
| 578 | |
| 579 | Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); |
| 580 | if (!AreEquivalentAddressValues(A: StorePtr, B: Ptr)) |
| 581 | return nullptr; |
| 582 | |
| 583 | if (IsLoadCSE) |
| 584 | *IsLoadCSE = false; |
| 585 | |
| 586 | Value *Val = SI->getValueOperand(); |
| 587 | if (CastInst::isBitOrNoopPointerCastable(SrcTy: Val->getType(), DestTy: AccessTy, DL)) |
| 588 | return Val; |
| 589 | |
| 590 | TypeSize StoreSize = DL.getTypeSizeInBits(Ty: Val->getType()); |
| 591 | TypeSize LoadSize = DL.getTypeSizeInBits(Ty: AccessTy); |
| 592 | if (TypeSize::isKnownLE(LHS: LoadSize, RHS: StoreSize)) |
| 593 | if (auto *C = dyn_cast<Constant>(Val)) |
| 594 | return ConstantFoldLoadFromConst(C, Ty: AccessTy, DL); |
| 595 | } |
| 596 | |
| 597 | if (auto *MSI = dyn_cast<MemSetInst>(Val: Inst)) { |
| 598 | // Don't forward from (non-atomic) memset to atomic load. |
| 599 | if (AtLeastAtomic) |
| 600 | return nullptr; |
| 601 | |
| 602 | // Only handle constant memsets. |
| 603 | auto *Val = dyn_cast<ConstantInt>(Val: MSI->getValue()); |
| 604 | auto *Len = dyn_cast<ConstantInt>(Val: MSI->getLength()); |
| 605 | if (!Val || !Len) |
| 606 | return nullptr; |
| 607 | |
| 608 | // TODO: Handle offsets. |
| 609 | Value *Dst = MSI->getDest(); |
| 610 | if (!AreEquivalentAddressValues(A: Dst, B: Ptr)) |
| 611 | return nullptr; |
| 612 | |
| 613 | if (IsLoadCSE) |
| 614 | *IsLoadCSE = false; |
| 615 | |
| 616 | TypeSize LoadTypeSize = DL.getTypeSizeInBits(Ty: AccessTy); |
| 617 | if (LoadTypeSize.isScalable()) |
| 618 | return nullptr; |
| 619 | |
| 620 | // Make sure the read bytes are contained in the memset. |
| 621 | uint64_t LoadSize = LoadTypeSize.getFixedValue(); |
| 622 | if ((Len->getValue() * 8).ult(RHS: LoadSize)) |
| 623 | return nullptr; |
| 624 | |
| 625 | APInt Splat = LoadSize >= 8 ? APInt::getSplat(NewLen: LoadSize, V: Val->getValue()) |
| 626 | : Val->getValue().trunc(width: LoadSize); |
| 627 | ConstantInt *SplatC = ConstantInt::get(Context&: MSI->getContext(), V: Splat); |
| 628 | if (CastInst::isBitOrNoopPointerCastable(SrcTy: SplatC->getType(), DestTy: AccessTy, DL)) |
| 629 | return SplatC; |
| 630 | |
| 631 | return nullptr; |
| 632 | } |
| 633 | |
| 634 | return nullptr; |
| 635 | } |
| 636 | |
| 637 | Value *llvm::findAvailablePtrLoadStore( |
| 638 | const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, |
| 639 | BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, |
| 640 | BatchAAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { |
| 641 | if (MaxInstsToScan == 0) |
| 642 | MaxInstsToScan = ~0U; |
| 643 | |
| 644 | const DataLayout &DL = ScanBB->getDataLayout(); |
| 645 | const Value *StrippedPtr = Loc.Ptr->stripPointerCasts(); |
| 646 | |
| 647 | while (ScanFrom != ScanBB->begin()) { |
| 648 | // We must ignore debug info directives when counting (otherwise they |
| 649 | // would affect codegen). |
| 650 | Instruction *Inst = &*--ScanFrom; |
| 651 | if (Inst->isDebugOrPseudoInst()) |
| 652 | continue; |
| 653 | |
| 654 | // Restore ScanFrom to expected value in case next test succeeds |
| 655 | ScanFrom++; |
| 656 | |
| 657 | if (NumScanedInst) |
| 658 | ++(*NumScanedInst); |
| 659 | |
| 660 | // Don't scan huge blocks. |
| 661 | if (MaxInstsToScan-- == 0) |
| 662 | return nullptr; |
| 663 | |
| 664 | --ScanFrom; |
| 665 | |
| 666 | if (Value *Available = getAvailableLoadStore(Inst, Ptr: StrippedPtr, AccessTy, |
| 667 | AtLeastAtomic, DL, IsLoadCSE)) |
| 668 | return Available; |
| 669 | |
| 670 | // Try to get the store size for the type. |
| 671 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 672 | Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); |
| 673 | |
| 674 | // If both StrippedPtr and StorePtr reach all the way to an alloca or |
| 675 | // global and they are different, ignore the store. This is a trivial form |
| 676 | // of alias analysis that is important for reg2mem'd code. |
| 677 | if ((isa<AllocaInst>(Val: StrippedPtr) || isa<GlobalVariable>(Val: StrippedPtr)) && |
| 678 | (isa<AllocaInst>(Val: StorePtr) || isa<GlobalVariable>(Val: StorePtr)) && |
| 679 | StrippedPtr != StorePtr) |
| 680 | continue; |
| 681 | |
| 682 | if (!AA) { |
| 683 | // When AA isn't available, but if the load and the store have the same |
| 684 | // base, constant offsets and non-overlapping access ranges, ignore the |
| 685 | // store. This is a simple form of alias analysis that is used by the |
| 686 | // inliner. FIXME: use BasicAA if possible. |
| 687 | if (areNonOverlapSameBaseLoadAndStore( |
| 688 | LoadPtr: Loc.Ptr, LoadTy: AccessTy, StorePtr: SI->getPointerOperand(), |
| 689 | StoreTy: SI->getValueOperand()->getType(), DL)) |
| 690 | continue; |
| 691 | } else { |
| 692 | // If we have alias analysis and it says the store won't modify the |
| 693 | // loaded value, ignore the store. |
| 694 | if (!isModSet(MRI: AA->getModRefInfo(I: SI, OptLoc: Loc))) |
| 695 | continue; |
| 696 | } |
| 697 | |
| 698 | // Otherwise the store that may or may not alias the pointer, bail out. |
| 699 | ++ScanFrom; |
| 700 | return nullptr; |
| 701 | } |
| 702 | |
| 703 | // If this is some other instruction that may clobber Ptr, bail out. |
| 704 | if (Inst->mayWriteToMemory()) { |
| 705 | // If alias analysis claims that it really won't modify the load, |
| 706 | // ignore it. |
| 707 | if (AA && !isModSet(MRI: AA->getModRefInfo(I: Inst, OptLoc: Loc))) |
| 708 | continue; |
| 709 | |
| 710 | // May modify the pointer, bail out. |
| 711 | ++ScanFrom; |
| 712 | return nullptr; |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | // Got to the start of the block, we didn't find it, but are done for this |
| 717 | // block. |
| 718 | return nullptr; |
| 719 | } |
| 720 | |
| 721 | Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BatchAAResults &AA, |
| 722 | bool *IsLoadCSE, |
| 723 | unsigned MaxInstsToScan) { |
| 724 | const DataLayout &DL = Load->getDataLayout(); |
| 725 | Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); |
| 726 | BasicBlock *ScanBB = Load->getParent(); |
| 727 | Type *AccessTy = Load->getType(); |
| 728 | bool AtLeastAtomic = Load->isAtomic(); |
| 729 | |
| 730 | if (!Load->isUnordered()) |
| 731 | return nullptr; |
| 732 | |
| 733 | // Try to find an available value first, and delay expensive alias analysis |
| 734 | // queries until later. |
| 735 | Value *Available = nullptr; |
| 736 | SmallVector<Instruction *> MustNotAliasInsts; |
| 737 | for (Instruction &Inst : make_range(x: ++Load->getReverseIterator(), |
| 738 | y: ScanBB->rend())) { |
| 739 | if (Inst.isDebugOrPseudoInst()) |
| 740 | continue; |
| 741 | |
| 742 | if (MaxInstsToScan-- == 0) |
| 743 | return nullptr; |
| 744 | |
| 745 | Available = getAvailableLoadStore(Inst: &Inst, Ptr: StrippedPtr, AccessTy, |
| 746 | AtLeastAtomic, DL, IsLoadCSE); |
| 747 | if (Available) |
| 748 | break; |
| 749 | |
| 750 | if (Inst.mayWriteToMemory()) |
| 751 | MustNotAliasInsts.push_back(Elt: &Inst); |
| 752 | } |
| 753 | |
| 754 | // If we found an available value, ensure that the instructions in between |
| 755 | // did not modify the memory location. |
| 756 | if (Available) { |
| 757 | MemoryLocation Loc = MemoryLocation::get(LI: Load); |
| 758 | for (Instruction *Inst : MustNotAliasInsts) |
| 759 | if (isModSet(MRI: AA.getModRefInfo(I: Inst, OptLoc: Loc))) |
| 760 | return nullptr; |
| 761 | } |
| 762 | |
| 763 | return Available; |
| 764 | } |
| 765 | |
| 766 | // Returns true if a use is either in an ICmp/PtrToInt or a Phi/Select that only |
| 767 | // feeds into them. |
| 768 | static bool isPointerUseReplacable(const Use &U) { |
| 769 | unsigned Limit = 40; |
| 770 | SmallVector<const User *> Worklist({U.getUser()}); |
| 771 | SmallPtrSet<const User *, 8> Visited; |
| 772 | |
| 773 | while (!Worklist.empty() && --Limit) { |
| 774 | auto *User = Worklist.pop_back_val(); |
| 775 | if (!Visited.insert(Ptr: User).second) |
| 776 | continue; |
| 777 | if (isa<ICmpInst, PtrToIntInst>(Val: User)) |
| 778 | continue; |
| 779 | if (isa<PHINode, SelectInst>(Val: User)) |
| 780 | Worklist.append(in_start: User->user_begin(), in_end: User->user_end()); |
| 781 | else |
| 782 | return false; |
| 783 | } |
| 784 | |
| 785 | return Limit != 0; |
| 786 | } |
| 787 | |
| 788 | // Returns true if `To` is a null pointer, constant dereferenceable pointer or |
| 789 | // both pointers have the same underlying objects. |
| 790 | static bool isPointerAlwaysReplaceable(const Value *From, const Value *To, |
| 791 | const DataLayout &DL) { |
| 792 | // This is not strictly correct, but we do it for now to retain important |
| 793 | // optimizations. |
| 794 | if (isa<ConstantPointerNull>(Val: To)) |
| 795 | return true; |
| 796 | if (isa<Constant>(Val: To) && |
| 797 | isDereferenceablePointer(V: To, Ty: Type::getInt8Ty(C&: To->getContext()), DL)) |
| 798 | return true; |
| 799 | return getUnderlyingObjectAggressive(V: From) == |
| 800 | getUnderlyingObjectAggressive(V: To); |
| 801 | } |
| 802 | |
| 803 | bool llvm::canReplacePointersInUseIfEqual(const Use &U, const Value *To, |
| 804 | const DataLayout &DL) { |
| 805 | assert(U->getType() == To->getType() && "values must have matching types" ); |
| 806 | // Not a pointer, just return true. |
| 807 | if (!To->getType()->isPointerTy()) |
| 808 | return true; |
| 809 | |
| 810 | if (isPointerAlwaysReplaceable(From: &*U, To, DL)) |
| 811 | return true; |
| 812 | return isPointerUseReplacable(U); |
| 813 | } |
| 814 | |
| 815 | bool llvm::canReplacePointersIfEqual(const Value *From, const Value *To, |
| 816 | const DataLayout &DL) { |
| 817 | assert(From->getType() == To->getType() && "values must have matching types" ); |
| 818 | // Not a pointer, just return true. |
| 819 | if (!From->getType()->isPointerTy()) |
| 820 | return true; |
| 821 | |
| 822 | return isPointerAlwaysReplaceable(From, To, DL); |
| 823 | } |
| 824 | |
| 825 | bool llvm::isDereferenceableReadOnlyLoop( |
| 826 | Loop *L, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, |
| 827 | SmallVectorImpl<const SCEVPredicate *> *Predicates) { |
| 828 | for (BasicBlock *BB : L->blocks()) { |
| 829 | for (Instruction &I : *BB) { |
| 830 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) { |
| 831 | if (!isDereferenceableAndAlignedInLoop(LI, L, SE&: *SE, DT&: *DT, AC, Predicates)) |
| 832 | return false; |
| 833 | } else if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow()) |
| 834 | return false; |
| 835 | } |
| 836 | } |
| 837 | return true; |
| 838 | } |
| 839 | |