| 1 | //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements an analysis that determines, for a given memory |
| 10 | // operation, what preceding memory operations it depends on. It builds on |
| 11 | // alias analysis information, and tries to provide a lazy, caching interface to |
| 12 | // a common kind of alias information query. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/STLExtras.h" |
| 19 | #include "llvm/ADT/SmallPtrSet.h" |
| 20 | #include "llvm/ADT/SmallVector.h" |
| 21 | #include "llvm/ADT/Statistic.h" |
| 22 | #include "llvm/Analysis/AliasAnalysis.h" |
| 23 | #include "llvm/Analysis/AssumptionCache.h" |
| 24 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 25 | #include "llvm/Analysis/MemoryLocation.h" |
| 26 | #include "llvm/Analysis/PHITransAddr.h" |
| 27 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 28 | #include "llvm/Analysis/ValueTracking.h" |
| 29 | #include "llvm/IR/BasicBlock.h" |
| 30 | #include "llvm/IR/Dominators.h" |
| 31 | #include "llvm/IR/Function.h" |
| 32 | #include "llvm/IR/InstrTypes.h" |
| 33 | #include "llvm/IR/Instruction.h" |
| 34 | #include "llvm/IR/Instructions.h" |
| 35 | #include "llvm/IR/IntrinsicInst.h" |
| 36 | #include "llvm/IR/LLVMContext.h" |
| 37 | #include "llvm/IR/Metadata.h" |
| 38 | #include "llvm/IR/Module.h" |
| 39 | #include "llvm/IR/PredIteratorCache.h" |
| 40 | #include "llvm/IR/Type.h" |
| 41 | #include "llvm/IR/Use.h" |
| 42 | #include "llvm/IR/Value.h" |
| 43 | #include "llvm/InitializePasses.h" |
| 44 | #include "llvm/Pass.h" |
| 45 | #include "llvm/Support/AtomicOrdering.h" |
| 46 | #include "llvm/Support/Casting.h" |
| 47 | #include "llvm/Support/CommandLine.h" |
| 48 | #include "llvm/Support/Compiler.h" |
| 49 | #include "llvm/Support/Debug.h" |
| 50 | #include <algorithm> |
| 51 | #include <cassert> |
| 52 | #include <iterator> |
| 53 | #include <utility> |
| 54 | |
| 55 | using namespace llvm; |
| 56 | |
| 57 | #define DEBUG_TYPE "memdep" |
| 58 | |
| 59 | STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses" ); |
| 60 | STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses" ); |
| 61 | STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses" ); |
| 62 | |
| 63 | STATISTIC(NumCacheNonLocalPtr, |
| 64 | "Number of fully cached non-local ptr responses" ); |
| 65 | STATISTIC(NumCacheDirtyNonLocalPtr, |
| 66 | "Number of cached, but dirty, non-local ptr responses" ); |
| 67 | STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses" ); |
| 68 | STATISTIC(NumCacheCompleteNonLocalPtr, |
| 69 | "Number of block queries that were completely cached" ); |
| 70 | |
| 71 | // Limit for the number of instructions to scan in a block. |
| 72 | |
| 73 | static cl::opt<unsigned> BlockScanLimit( |
| 74 | "memdep-block-scan-limit" , cl::Hidden, cl::init(Val: 100), |
| 75 | cl::desc("The number of instructions to scan in a block in memory " |
| 76 | "dependency analysis (default = 100)" )); |
| 77 | |
| 78 | static cl::opt<unsigned> |
| 79 | BlockNumberLimit("memdep-block-number-limit" , cl::Hidden, cl::init(Val: 200), |
| 80 | cl::desc("The number of blocks to scan during memory " |
| 81 | "dependency analysis (default = 200)" )); |
| 82 | |
| 83 | // Limit on the number of memdep results to process. |
| 84 | static const unsigned int NumResultsLimit = 100; |
| 85 | |
| 86 | /// This is a helper function that removes Val from 'Inst's set in ReverseMap. |
| 87 | /// |
| 88 | /// If the set becomes empty, remove Inst's entry. |
| 89 | template <typename KeyTy> |
| 90 | static void |
| 91 | RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, |
| 92 | Instruction *Inst, KeyTy Val) { |
| 93 | typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = |
| 94 | ReverseMap.find(Inst); |
| 95 | assert(InstIt != ReverseMap.end() && "Reverse map out of sync?" ); |
| 96 | bool Found = InstIt->second.erase(Val); |
| 97 | assert(Found && "Invalid reverse map!" ); |
| 98 | (void)Found; |
| 99 | if (InstIt->second.empty()) |
| 100 | ReverseMap.erase(InstIt); |
| 101 | } |
| 102 | |
| 103 | /// If the given instruction references a specific memory location, fill in Loc |
| 104 | /// with the details, otherwise set Loc.Ptr to null. |
| 105 | /// |
| 106 | /// Returns a ModRefInfo value describing the general behavior of the |
| 107 | /// instruction. |
| 108 | static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, |
| 109 | const TargetLibraryInfo &TLI) { |
| 110 | if (const LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
| 111 | if (LI->isUnordered()) { |
| 112 | Loc = MemoryLocation::get(LI); |
| 113 | return ModRefInfo::Ref; |
| 114 | } |
| 115 | if (LI->getOrdering() == AtomicOrdering::Monotonic) { |
| 116 | Loc = MemoryLocation::get(LI); |
| 117 | return ModRefInfo::ModRef; |
| 118 | } |
| 119 | Loc = MemoryLocation(); |
| 120 | return ModRefInfo::ModRef; |
| 121 | } |
| 122 | |
| 123 | if (const StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 124 | if (SI->isUnordered()) { |
| 125 | Loc = MemoryLocation::get(SI); |
| 126 | return ModRefInfo::Mod; |
| 127 | } |
| 128 | if (SI->getOrdering() == AtomicOrdering::Monotonic) { |
| 129 | Loc = MemoryLocation::get(SI); |
| 130 | return ModRefInfo::ModRef; |
| 131 | } |
| 132 | Loc = MemoryLocation(); |
| 133 | return ModRefInfo::ModRef; |
| 134 | } |
| 135 | |
| 136 | if (const VAArgInst *V = dyn_cast<VAArgInst>(Val: Inst)) { |
| 137 | Loc = MemoryLocation::get(VI: V); |
| 138 | return ModRefInfo::ModRef; |
| 139 | } |
| 140 | |
| 141 | if (const CallBase *CB = dyn_cast<CallBase>(Val: Inst)) { |
| 142 | if (Value *FreedOp = getFreedOperand(CB, TLI: &TLI)) { |
| 143 | // calls to free() deallocate the entire structure |
| 144 | Loc = MemoryLocation::getAfter(Ptr: FreedOp); |
| 145 | return ModRefInfo::Mod; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Inst)) { |
| 150 | switch (II->getIntrinsicID()) { |
| 151 | case Intrinsic::lifetime_start: |
| 152 | case Intrinsic::lifetime_end: |
| 153 | case Intrinsic::invariant_start: |
| 154 | Loc = MemoryLocation::getForArgument(Call: II, ArgIdx: 1, TLI); |
| 155 | // These intrinsics don't really modify the memory, but returning Mod |
| 156 | // will allow them to be handled conservatively. |
| 157 | return ModRefInfo::Mod; |
| 158 | case Intrinsic::invariant_end: |
| 159 | Loc = MemoryLocation::getForArgument(Call: II, ArgIdx: 2, TLI); |
| 160 | // These intrinsics don't really modify the memory, but returning Mod |
| 161 | // will allow them to be handled conservatively. |
| 162 | return ModRefInfo::Mod; |
| 163 | case Intrinsic::masked_load: |
| 164 | Loc = MemoryLocation::getForArgument(Call: II, ArgIdx: 0, TLI); |
| 165 | return ModRefInfo::Ref; |
| 166 | case Intrinsic::masked_store: |
| 167 | Loc = MemoryLocation::getForArgument(Call: II, ArgIdx: 1, TLI); |
| 168 | return ModRefInfo::Mod; |
| 169 | default: |
| 170 | break; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | // Otherwise, just do the coarse-grained thing that always works. |
| 175 | if (Inst->mayWriteToMemory()) |
| 176 | return ModRefInfo::ModRef; |
| 177 | if (Inst->mayReadFromMemory()) |
| 178 | return ModRefInfo::Ref; |
| 179 | return ModRefInfo::NoModRef; |
| 180 | } |
| 181 | |
| 182 | /// Private helper for finding the local dependencies of a call site. |
| 183 | MemDepResult MemoryDependenceResults::getCallDependencyFrom( |
| 184 | CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, |
| 185 | BasicBlock *BB) { |
| 186 | unsigned Limit = getDefaultBlockScanLimit(); |
| 187 | |
| 188 | // Walk backwards through the block, looking for dependencies. |
| 189 | while (ScanIt != BB->begin()) { |
| 190 | Instruction *Inst = &*--ScanIt; |
| 191 | |
| 192 | // Limit the amount of scanning we do so we don't end up with quadratic |
| 193 | // running time on extreme testcases. |
| 194 | --Limit; |
| 195 | if (!Limit) |
| 196 | return MemDepResult::getUnknown(); |
| 197 | |
| 198 | // If this inst is a memory op, get the pointer it accessed |
| 199 | MemoryLocation Loc; |
| 200 | ModRefInfo MR = GetLocation(Inst, Loc, TLI); |
| 201 | if (Loc.Ptr) { |
| 202 | // A simple instruction. |
| 203 | if (isModOrRefSet(MRI: AA.getModRefInfo(I: Call, OptLoc: Loc))) |
| 204 | return MemDepResult::getClobber(Inst); |
| 205 | continue; |
| 206 | } |
| 207 | |
| 208 | if (auto *CallB = dyn_cast<CallBase>(Val: Inst)) { |
| 209 | // If these two calls do not interfere, look past it. |
| 210 | if (isNoModRef(MRI: AA.getModRefInfo(I: Call, Call: CallB))) { |
| 211 | // If the two calls are the same, return Inst as a Def, so that |
| 212 | // Call can be found redundant and eliminated. |
| 213 | if (isReadOnlyCall && !isModSet(MRI: MR) && |
| 214 | Call->isIdenticalToWhenDefined(I: CallB)) |
| 215 | return MemDepResult::getDef(Inst); |
| 216 | |
| 217 | // Otherwise if the two calls don't interact (e.g. CallB is readnone) |
| 218 | // keep scanning. |
| 219 | continue; |
| 220 | } else |
| 221 | return MemDepResult::getClobber(Inst); |
| 222 | } |
| 223 | |
| 224 | // If we could not obtain a pointer for the instruction and the instruction |
| 225 | // touches memory then assume that this is a dependency. |
| 226 | if (isModOrRefSet(MRI: MR)) |
| 227 | return MemDepResult::getClobber(Inst); |
| 228 | } |
| 229 | |
| 230 | // No dependence found. If this is the entry block of the function, it is |
| 231 | // unknown, otherwise it is non-local. |
| 232 | if (BB != &BB->getParent()->getEntryBlock()) |
| 233 | return MemDepResult::getNonLocal(); |
| 234 | return MemDepResult::getNonFuncLocal(); |
| 235 | } |
| 236 | |
| 237 | MemDepResult MemoryDependenceResults::getPointerDependencyFrom( |
| 238 | const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, |
| 239 | BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, |
| 240 | BatchAAResults &BatchAA) { |
| 241 | MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); |
| 242 | if (QueryInst != nullptr) { |
| 243 | if (auto *LI = dyn_cast<LoadInst>(Val: QueryInst)) { |
| 244 | InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); |
| 245 | |
| 246 | if (InvariantGroupDependency.isDef()) |
| 247 | return InvariantGroupDependency; |
| 248 | } |
| 249 | } |
| 250 | MemDepResult SimpleDep = getSimplePointerDependencyFrom( |
| 251 | MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA); |
| 252 | if (SimpleDep.isDef()) |
| 253 | return SimpleDep; |
| 254 | // Non-local invariant group dependency indicates there is non local Def |
| 255 | // (it only returns nonLocal if it finds nonLocal def), which is better than |
| 256 | // local clobber and everything else. |
| 257 | if (InvariantGroupDependency.isNonLocal()) |
| 258 | return InvariantGroupDependency; |
| 259 | |
| 260 | assert(InvariantGroupDependency.isUnknown() && |
| 261 | "InvariantGroupDependency should be only unknown at this point" ); |
| 262 | return SimpleDep; |
| 263 | } |
| 264 | |
| 265 | MemDepResult MemoryDependenceResults::getPointerDependencyFrom( |
| 266 | const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, |
| 267 | BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { |
| 268 | BatchAAResults BatchAA(AA, &EEA); |
| 269 | return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, |
| 270 | BatchAA); |
| 271 | } |
| 272 | |
| 273 | MemDepResult |
| 274 | MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, |
| 275 | BasicBlock *BB) { |
| 276 | |
| 277 | if (!LI->hasMetadata(KindID: LLVMContext::MD_invariant_group)) |
| 278 | return MemDepResult::getUnknown(); |
| 279 | |
| 280 | // Take the ptr operand after all casts and geps 0. This way we can search |
| 281 | // cast graph down only. |
| 282 | Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); |
| 283 | |
| 284 | // It's is not safe to walk the use list of global value, because function |
| 285 | // passes aren't allowed to look outside their functions. |
| 286 | // FIXME: this could be fixed by filtering instructions from outside |
| 287 | // of current function. |
| 288 | if (isa<GlobalValue>(Val: LoadOperand)) |
| 289 | return MemDepResult::getUnknown(); |
| 290 | |
| 291 | Instruction *ClosestDependency = nullptr; |
| 292 | // Order of instructions in uses list is unpredictible. In order to always |
| 293 | // get the same result, we will look for the closest dominance. |
| 294 | auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { |
| 295 | assert(Other && "Must call it with not null instruction" ); |
| 296 | if (Best == nullptr || DT.dominates(Def: Best, User: Other)) |
| 297 | return Other; |
| 298 | return Best; |
| 299 | }; |
| 300 | |
| 301 | for (const Use &Us : LoadOperand->uses()) { |
| 302 | auto *U = dyn_cast<Instruction>(Val: Us.getUser()); |
| 303 | if (!U || U == LI || !DT.dominates(Def: U, User: LI)) |
| 304 | continue; |
| 305 | |
| 306 | // If we hit load/store with the same invariant.group metadata (and the |
| 307 | // same pointer operand) we can assume that value pointed by pointer |
| 308 | // operand didn't change. |
| 309 | if ((isa<LoadInst>(Val: U) || |
| 310 | (isa<StoreInst>(Val: U) && |
| 311 | cast<StoreInst>(Val: U)->getPointerOperand() == LoadOperand)) && |
| 312 | U->hasMetadata(KindID: LLVMContext::MD_invariant_group)) |
| 313 | ClosestDependency = GetClosestDependency(ClosestDependency, U); |
| 314 | } |
| 315 | |
| 316 | if (!ClosestDependency) |
| 317 | return MemDepResult::getUnknown(); |
| 318 | if (ClosestDependency->getParent() == BB) |
| 319 | return MemDepResult::getDef(Inst: ClosestDependency); |
| 320 | // Def(U) can't be returned here because it is non-local. If local |
| 321 | // dependency won't be found then return nonLocal counting that the |
| 322 | // user will call getNonLocalPointerDependency, which will return cached |
| 323 | // result. |
| 324 | NonLocalDefsCache.try_emplace( |
| 325 | Key: LI, Args: NonLocalDepResult(ClosestDependency->getParent(), |
| 326 | MemDepResult::getDef(Inst: ClosestDependency), nullptr)); |
| 327 | ReverseNonLocalDefsCache[ClosestDependency].insert(Ptr: LI); |
| 328 | return MemDepResult::getNonLocal(); |
| 329 | } |
| 330 | |
| 331 | // Check if SI that may alias with MemLoc can be safely skipped. This is |
| 332 | // possible in case if SI can only must alias or no alias with MemLoc (no |
| 333 | // partial overlapping possible) and it writes the same value that MemLoc |
| 334 | // contains now (it was loaded before this store and was not modified in |
| 335 | // between). |
| 336 | static bool canSkipClobberingStore(const StoreInst *SI, |
| 337 | const MemoryLocation &MemLoc, |
| 338 | Align MemLocAlign, BatchAAResults &BatchAA, |
| 339 | unsigned ScanLimit) { |
| 340 | if (!MemLoc.Size.hasValue()) |
| 341 | return false; |
| 342 | if (MemoryLocation::get(SI).Size != MemLoc.Size) |
| 343 | return false; |
| 344 | if (MemLoc.Size.isScalable()) |
| 345 | return false; |
| 346 | if (std::min(a: MemLocAlign, b: SI->getAlign()).value() < |
| 347 | MemLoc.Size.getValue().getKnownMinValue()) |
| 348 | return false; |
| 349 | |
| 350 | auto *LI = dyn_cast<LoadInst>(Val: SI->getValueOperand()); |
| 351 | if (!LI || LI->getParent() != SI->getParent()) |
| 352 | return false; |
| 353 | if (BatchAA.alias(LocA: MemoryLocation::get(LI), LocB: MemLoc) != AliasResult::MustAlias) |
| 354 | return false; |
| 355 | unsigned NumVisitedInsts = 0; |
| 356 | for (const Instruction *I = LI; I != SI; I = I->getNextNonDebugInstruction()) |
| 357 | if (++NumVisitedInsts > ScanLimit || |
| 358 | isModSet(MRI: BatchAA.getModRefInfo(I, OptLoc: MemLoc))) |
| 359 | return false; |
| 360 | |
| 361 | return true; |
| 362 | } |
| 363 | |
| 364 | MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( |
| 365 | const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, |
| 366 | BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, |
| 367 | BatchAAResults &BatchAA) { |
| 368 | bool isInvariantLoad = false; |
| 369 | Align MemLocAlign = |
| 370 | MemLoc.Ptr->getPointerAlignment(DL: BB->getDataLayout()); |
| 371 | |
| 372 | unsigned DefaultLimit = getDefaultBlockScanLimit(); |
| 373 | if (!Limit) |
| 374 | Limit = &DefaultLimit; |
| 375 | |
| 376 | // We must be careful with atomic accesses, as they may allow another thread |
| 377 | // to touch this location, clobbering it. We are conservative: if the |
| 378 | // QueryInst is not a simple (non-atomic) memory access, we automatically |
| 379 | // return getClobber. |
| 380 | // If it is simple, we know based on the results of |
| 381 | // "Compiler testing via a theory of sound optimisations in the C11/C++11 |
| 382 | // memory model" in PLDI 2013, that a non-atomic location can only be |
| 383 | // clobbered between a pair of a release and an acquire action, with no |
| 384 | // access to the location in between. |
| 385 | // Here is an example for giving the general intuition behind this rule. |
| 386 | // In the following code: |
| 387 | // store x 0; |
| 388 | // release action; [1] |
| 389 | // acquire action; [4] |
| 390 | // %val = load x; |
| 391 | // It is unsafe to replace %val by 0 because another thread may be running: |
| 392 | // acquire action; [2] |
| 393 | // store x 42; |
| 394 | // release action; [3] |
| 395 | // with synchronization from 1 to 2 and from 3 to 4, resulting in %val |
| 396 | // being 42. A key property of this program however is that if either |
| 397 | // 1 or 4 were missing, there would be a race between the store of 42 |
| 398 | // either the store of 0 or the load (making the whole program racy). |
| 399 | // The paper mentioned above shows that the same property is respected |
| 400 | // by every program that can detect any optimization of that kind: either |
| 401 | // it is racy (undefined) or there is a release followed by an acquire |
| 402 | // between the pair of accesses under consideration. |
| 403 | |
| 404 | // If the load is invariant, we "know" that it doesn't alias *any* write. We |
| 405 | // do want to respect mustalias results since defs are useful for value |
| 406 | // forwarding, but any mayalias write can be assumed to be noalias. |
| 407 | // Arguably, this logic should be pushed inside AliasAnalysis itself. |
| 408 | if (isLoad && QueryInst) |
| 409 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: QueryInst)) { |
| 410 | if (LI->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
| 411 | isInvariantLoad = true; |
| 412 | MemLocAlign = LI->getAlign(); |
| 413 | } |
| 414 | |
| 415 | // True for volatile instruction. |
| 416 | // For Load/Store return true if atomic ordering is stronger than AO, |
| 417 | // for other instruction just true if it can read or write to memory. |
| 418 | auto isComplexForReordering = [](Instruction * I, AtomicOrdering AO)->bool { |
| 419 | if (I->isVolatile()) |
| 420 | return true; |
| 421 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) |
| 422 | return isStrongerThan(AO: LI->getOrdering(), Other: AO); |
| 423 | if (auto *SI = dyn_cast<StoreInst>(Val: I)) |
| 424 | return isStrongerThan(AO: SI->getOrdering(), Other: AO); |
| 425 | return I->mayReadOrWriteMemory(); |
| 426 | }; |
| 427 | |
| 428 | // Walk backwards through the basic block, looking for dependencies. |
| 429 | while (ScanIt != BB->begin()) { |
| 430 | Instruction *Inst = &*--ScanIt; |
| 431 | |
| 432 | // Limit the amount of scanning we do so we don't end up with quadratic |
| 433 | // running time on extreme testcases. |
| 434 | --*Limit; |
| 435 | if (!*Limit) |
| 436 | return MemDepResult::getUnknown(); |
| 437 | |
| 438 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Inst)) { |
| 439 | // If we reach a lifetime begin or end marker, then the query ends here |
| 440 | // because the value is undefined. |
| 441 | Intrinsic::ID ID = II->getIntrinsicID(); |
| 442 | switch (ID) { |
| 443 | case Intrinsic::lifetime_start: { |
| 444 | // FIXME: This only considers queries directly on the invariant-tagged |
| 445 | // pointer, not on query pointers that are indexed off of them. It'd |
| 446 | // be nice to handle that at some point (the right approach is to use |
| 447 | // GetPointerBaseWithConstantOffset). |
| 448 | MemoryLocation ArgLoc = MemoryLocation::getAfter(Ptr: II->getArgOperand(i: 1)); |
| 449 | if (BatchAA.isMustAlias(LocA: ArgLoc, LocB: MemLoc)) |
| 450 | return MemDepResult::getDef(Inst: II); |
| 451 | continue; |
| 452 | } |
| 453 | case Intrinsic::masked_load: |
| 454 | case Intrinsic::masked_store: { |
| 455 | MemoryLocation Loc; |
| 456 | /*ModRefInfo MR =*/ GetLocation(Inst: II, Loc, TLI); |
| 457 | AliasResult R = BatchAA.alias(LocA: Loc, LocB: MemLoc); |
| 458 | if (R == AliasResult::NoAlias) |
| 459 | continue; |
| 460 | if (R == AliasResult::MustAlias) |
| 461 | return MemDepResult::getDef(Inst: II); |
| 462 | if (ID == Intrinsic::masked_load) |
| 463 | continue; |
| 464 | return MemDepResult::getClobber(Inst: II); |
| 465 | } |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | // Values depend on loads if the pointers are must aliased. This means |
| 470 | // that a load depends on another must aliased load from the same value. |
| 471 | // One exception is atomic loads: a value can depend on an atomic load that |
| 472 | // it does not alias with when this atomic load indicates that another |
| 473 | // thread may be accessing the location. |
| 474 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
| 475 | // While volatile access cannot be eliminated, they do not have to clobber |
| 476 | // non-aliasing locations, as normal accesses, for example, can be safely |
| 477 | // reordered with volatile accesses. |
| 478 | if (LI->isVolatile()) { |
| 479 | if (!QueryInst) |
| 480 | // Original QueryInst *may* be volatile |
| 481 | return MemDepResult::getClobber(Inst: LI); |
| 482 | if (QueryInst->isVolatile()) |
| 483 | // Ordering required if QueryInst is itself volatile |
| 484 | return MemDepResult::getClobber(Inst: LI); |
| 485 | // Otherwise, volatile doesn't imply any special ordering |
| 486 | } |
| 487 | |
| 488 | // Atomic loads have complications involved. |
| 489 | // A Monotonic (or higher) load is OK if the query inst is itself not |
| 490 | // atomic. |
| 491 | // FIXME: This is overly conservative. |
| 492 | if (LI->isAtomic() && isStrongerThanUnordered(AO: LI->getOrdering())) { |
| 493 | if (!QueryInst || |
| 494 | isComplexForReordering(QueryInst, AtomicOrdering::NotAtomic)) |
| 495 | return MemDepResult::getClobber(Inst: LI); |
| 496 | if (LI->getOrdering() != AtomicOrdering::Monotonic) |
| 497 | return MemDepResult::getClobber(Inst: LI); |
| 498 | } |
| 499 | |
| 500 | MemoryLocation LoadLoc = MemoryLocation::get(LI); |
| 501 | |
| 502 | // If we found a pointer, check if it could be the same as our pointer. |
| 503 | AliasResult R = BatchAA.alias(LocA: LoadLoc, LocB: MemLoc); |
| 504 | |
| 505 | if (R == AliasResult::NoAlias) |
| 506 | continue; |
| 507 | |
| 508 | if (isLoad) { |
| 509 | // Must aliased loads are defs of each other. |
| 510 | if (R == AliasResult::MustAlias) |
| 511 | return MemDepResult::getDef(Inst); |
| 512 | |
| 513 | // If we have a partial alias, then return this as a clobber for the |
| 514 | // client to handle. |
| 515 | if (R == AliasResult::PartialAlias && R.hasOffset()) { |
| 516 | ClobberOffsets[LI] = R.getOffset(); |
| 517 | return MemDepResult::getClobber(Inst); |
| 518 | } |
| 519 | |
| 520 | // Random may-alias loads don't depend on each other without a |
| 521 | // dependence. |
| 522 | continue; |
| 523 | } |
| 524 | |
| 525 | // Stores don't alias loads from read-only memory. |
| 526 | if (!isModSet(MRI: BatchAA.getModRefInfoMask(Loc: LoadLoc))) |
| 527 | continue; |
| 528 | |
| 529 | // Stores depend on may/must aliased loads. |
| 530 | return MemDepResult::getDef(Inst); |
| 531 | } |
| 532 | |
| 533 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 534 | // Atomic stores have complications involved. |
| 535 | // A Monotonic store is OK if the query inst is itself not atomic. |
| 536 | // FIXME: This is overly conservative. |
| 537 | if (!SI->isUnordered() && SI->isAtomic()) { |
| 538 | if (!QueryInst || |
| 539 | isComplexForReordering(QueryInst, AtomicOrdering::Unordered)) |
| 540 | return MemDepResult::getClobber(Inst: SI); |
| 541 | // Ok, if we are here the guard above guarantee us that |
| 542 | // QueryInst is a non-atomic or unordered load/store. |
| 543 | // SI is atomic with monotonic or release semantic (seq_cst for store |
| 544 | // is actually a release semantic plus total order over other seq_cst |
| 545 | // instructions, as soon as QueryInst is not seq_cst we can consider it |
| 546 | // as simple release semantic). |
| 547 | // Monotonic and Release semantic allows re-ordering before store |
| 548 | // so we are safe to go further and check the aliasing. It will prohibit |
| 549 | // re-ordering in case locations are may or must alias. |
| 550 | } |
| 551 | |
| 552 | // While volatile access cannot be eliminated, they do not have to clobber |
| 553 | // non-aliasing locations, as normal accesses can for example be reordered |
| 554 | // with volatile accesses. |
| 555 | if (SI->isVolatile()) |
| 556 | if (!QueryInst || QueryInst->isVolatile()) |
| 557 | return MemDepResult::getClobber(Inst: SI); |
| 558 | |
| 559 | // If alias analysis can tell that this store is guaranteed to not modify |
| 560 | // the query pointer, ignore it. Use getModRefInfo to handle cases where |
| 561 | // the query pointer points to constant memory etc. |
| 562 | if (!isModOrRefSet(MRI: BatchAA.getModRefInfo(I: SI, OptLoc: MemLoc))) |
| 563 | continue; |
| 564 | |
| 565 | // Ok, this store might clobber the query pointer. Check to see if it is |
| 566 | // a must alias: in this case, we want to return this as a def. |
| 567 | // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. |
| 568 | MemoryLocation StoreLoc = MemoryLocation::get(SI); |
| 569 | |
| 570 | // If we found a pointer, check if it could be the same as our pointer. |
| 571 | AliasResult R = BatchAA.alias(LocA: StoreLoc, LocB: MemLoc); |
| 572 | |
| 573 | if (R == AliasResult::NoAlias) |
| 574 | continue; |
| 575 | if (R == AliasResult::MustAlias) |
| 576 | return MemDepResult::getDef(Inst); |
| 577 | if (isInvariantLoad) |
| 578 | continue; |
| 579 | if (canSkipClobberingStore(SI, MemLoc, MemLocAlign, BatchAA, ScanLimit: *Limit)) |
| 580 | continue; |
| 581 | return MemDepResult::getClobber(Inst); |
| 582 | } |
| 583 | |
| 584 | // If this is an allocation, and if we know that the accessed pointer is to |
| 585 | // the allocation, return Def. This means that there is no dependence and |
| 586 | // the access can be optimized based on that. For example, a load could |
| 587 | // turn into undef. Note that we can bypass the allocation itself when |
| 588 | // looking for a clobber in many cases; that's an alias property and is |
| 589 | // handled by BasicAA. |
| 590 | if (isa<AllocaInst>(Val: Inst) || isNoAliasCall(V: Inst)) { |
| 591 | const Value *AccessPtr = getUnderlyingObject(V: MemLoc.Ptr); |
| 592 | if (AccessPtr == Inst || BatchAA.isMustAlias(V1: Inst, V2: AccessPtr)) |
| 593 | return MemDepResult::getDef(Inst); |
| 594 | } |
| 595 | |
| 596 | // If we found a select instruction for MemLoc pointer, return it as Def |
| 597 | // dependency. |
| 598 | if (isa<SelectInst>(Val: Inst) && MemLoc.Ptr == Inst) |
| 599 | return MemDepResult::getDef(Inst); |
| 600 | |
| 601 | if (isInvariantLoad) |
| 602 | continue; |
| 603 | |
| 604 | // A release fence requires that all stores complete before it, but does |
| 605 | // not prevent the reordering of following loads or stores 'before' the |
| 606 | // fence. As a result, we look past it when finding a dependency for |
| 607 | // loads. DSE uses this to find preceding stores to delete and thus we |
| 608 | // can't bypass the fence if the query instruction is a store. |
| 609 | if (FenceInst *FI = dyn_cast<FenceInst>(Val: Inst)) |
| 610 | if (isLoad && FI->getOrdering() == AtomicOrdering::Release) |
| 611 | continue; |
| 612 | |
| 613 | // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. |
| 614 | switch (BatchAA.getModRefInfo(I: Inst, OptLoc: MemLoc)) { |
| 615 | case ModRefInfo::NoModRef: |
| 616 | // If the call has no effect on the queried pointer, just ignore it. |
| 617 | continue; |
| 618 | case ModRefInfo::Mod: |
| 619 | return MemDepResult::getClobber(Inst); |
| 620 | case ModRefInfo::Ref: |
| 621 | // If the call is known to never store to the pointer, and if this is a |
| 622 | // load query, we can safely ignore it (scan past it). |
| 623 | if (isLoad) |
| 624 | continue; |
| 625 | [[fallthrough]]; |
| 626 | default: |
| 627 | // Otherwise, there is a potential dependence. Return a clobber. |
| 628 | return MemDepResult::getClobber(Inst); |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | // No dependence found. If this is the entry block of the function, it is |
| 633 | // unknown, otherwise it is non-local. |
| 634 | if (BB != &BB->getParent()->getEntryBlock()) |
| 635 | return MemDepResult::getNonLocal(); |
| 636 | return MemDepResult::getNonFuncLocal(); |
| 637 | } |
| 638 | |
| 639 | MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { |
| 640 | ClobberOffsets.clear(); |
| 641 | Instruction *ScanPos = QueryInst; |
| 642 | |
| 643 | // Check for a cached result |
| 644 | MemDepResult &LocalCache = LocalDeps[QueryInst]; |
| 645 | |
| 646 | // If the cached entry is non-dirty, just return it. Note that this depends |
| 647 | // on MemDepResult's default constructing to 'dirty'. |
| 648 | if (!LocalCache.isDirty()) |
| 649 | return LocalCache; |
| 650 | |
| 651 | // Otherwise, if we have a dirty entry, we know we can start the scan at that |
| 652 | // instruction, which may save us some work. |
| 653 | if (Instruction *Inst = LocalCache.getInst()) { |
| 654 | ScanPos = Inst; |
| 655 | |
| 656 | RemoveFromReverseMap(ReverseMap&: ReverseLocalDeps, Inst, Val: QueryInst); |
| 657 | } |
| 658 | |
| 659 | BasicBlock *QueryParent = QueryInst->getParent(); |
| 660 | |
| 661 | // Do the scan. |
| 662 | if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { |
| 663 | // No dependence found. If this is the entry block of the function, it is |
| 664 | // unknown, otherwise it is non-local. |
| 665 | if (QueryParent != &QueryParent->getParent()->getEntryBlock()) |
| 666 | LocalCache = MemDepResult::getNonLocal(); |
| 667 | else |
| 668 | LocalCache = MemDepResult::getNonFuncLocal(); |
| 669 | } else { |
| 670 | MemoryLocation MemLoc; |
| 671 | ModRefInfo MR = GetLocation(Inst: QueryInst, Loc&: MemLoc, TLI); |
| 672 | if (MemLoc.Ptr) { |
| 673 | // If we can do a pointer scan, make it happen. |
| 674 | bool isLoad = !isModSet(MRI: MR); |
| 675 | if (auto *II = dyn_cast<IntrinsicInst>(Val: QueryInst)) |
| 676 | isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; |
| 677 | |
| 678 | LocalCache = |
| 679 | getPointerDependencyFrom(MemLoc, isLoad, ScanIt: ScanPos->getIterator(), |
| 680 | BB: QueryParent, QueryInst, Limit: nullptr); |
| 681 | } else if (auto *QueryCall = dyn_cast<CallBase>(Val: QueryInst)) { |
| 682 | bool isReadOnly = AA.onlyReadsMemory(Call: QueryCall); |
| 683 | LocalCache = getCallDependencyFrom(Call: QueryCall, isReadOnlyCall: isReadOnly, |
| 684 | ScanIt: ScanPos->getIterator(), BB: QueryParent); |
| 685 | } else |
| 686 | // Non-memory instruction. |
| 687 | LocalCache = MemDepResult::getUnknown(); |
| 688 | } |
| 689 | |
| 690 | // Remember the result! |
| 691 | if (Instruction *I = LocalCache.getInst()) |
| 692 | ReverseLocalDeps[I].insert(Ptr: QueryInst); |
| 693 | |
| 694 | return LocalCache; |
| 695 | } |
| 696 | |
| 697 | #ifndef NDEBUG |
| 698 | /// This method is used when -debug is specified to verify that cache arrays |
| 699 | /// are properly kept sorted. |
| 700 | static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, |
| 701 | int Count = -1) { |
| 702 | if (Count == -1) |
| 703 | Count = Cache.size(); |
| 704 | assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && |
| 705 | "Cache isn't sorted!" ); |
| 706 | } |
| 707 | #endif |
| 708 | |
| 709 | const MemoryDependenceResults::NonLocalDepInfo & |
| 710 | MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { |
| 711 | assert(getDependency(QueryCall).isNonLocal() && |
| 712 | "getNonLocalCallDependency should only be used on calls with " |
| 713 | "non-local deps!" ); |
| 714 | PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall]; |
| 715 | NonLocalDepInfo &Cache = CacheP.first; |
| 716 | |
| 717 | // This is the set of blocks that need to be recomputed. In the cached case, |
| 718 | // this can happen due to instructions being deleted etc. In the uncached |
| 719 | // case, this starts out as the set of predecessors we care about. |
| 720 | SmallVector<BasicBlock *, 32> DirtyBlocks; |
| 721 | |
| 722 | if (!Cache.empty()) { |
| 723 | // Okay, we have a cache entry. If we know it is not dirty, just return it |
| 724 | // with no computation. |
| 725 | if (!CacheP.second) { |
| 726 | ++NumCacheNonLocal; |
| 727 | return Cache; |
| 728 | } |
| 729 | |
| 730 | // If we already have a partially computed set of results, scan them to |
| 731 | // determine what is dirty, seeding our initial DirtyBlocks worklist. |
| 732 | for (auto &Entry : Cache) |
| 733 | if (Entry.getResult().isDirty()) |
| 734 | DirtyBlocks.push_back(Elt: Entry.getBB()); |
| 735 | |
| 736 | // Sort the cache so that we can do fast binary search lookups below. |
| 737 | llvm::sort(C&: Cache); |
| 738 | |
| 739 | ++NumCacheDirtyNonLocal; |
| 740 | } else { |
| 741 | // Seed DirtyBlocks with each of the preds of QueryInst's block. |
| 742 | BasicBlock *QueryBB = QueryCall->getParent(); |
| 743 | append_range(C&: DirtyBlocks, R: PredCache.get(BB: QueryBB)); |
| 744 | ++NumUncacheNonLocal; |
| 745 | } |
| 746 | |
| 747 | // isReadonlyCall - If this is a read-only call, we can be more aggressive. |
| 748 | bool isReadonlyCall = AA.onlyReadsMemory(Call: QueryCall); |
| 749 | |
| 750 | SmallPtrSet<BasicBlock *, 32> Visited; |
| 751 | |
| 752 | unsigned NumSortedEntries = Cache.size(); |
| 753 | LLVM_DEBUG(AssertSorted(Cache)); |
| 754 | |
| 755 | // Iterate while we still have blocks to update. |
| 756 | while (!DirtyBlocks.empty()) { |
| 757 | BasicBlock *DirtyBB = DirtyBlocks.pop_back_val(); |
| 758 | |
| 759 | // Already processed this block? |
| 760 | if (!Visited.insert(Ptr: DirtyBB).second) |
| 761 | continue; |
| 762 | |
| 763 | // Do a binary search to see if we already have an entry for this block in |
| 764 | // the cache set. If so, find it. |
| 765 | LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); |
| 766 | NonLocalDepInfo::iterator Entry = |
| 767 | std::upper_bound(first: Cache.begin(), last: Cache.begin() + NumSortedEntries, |
| 768 | val: NonLocalDepEntry(DirtyBB)); |
| 769 | if (Entry != Cache.begin() && std::prev(x: Entry)->getBB() == DirtyBB) |
| 770 | --Entry; |
| 771 | |
| 772 | NonLocalDepEntry *ExistingResult = nullptr; |
| 773 | if (Entry != Cache.begin() + NumSortedEntries && |
| 774 | Entry->getBB() == DirtyBB) { |
| 775 | // If we already have an entry, and if it isn't already dirty, the block |
| 776 | // is done. |
| 777 | if (!Entry->getResult().isDirty()) |
| 778 | continue; |
| 779 | |
| 780 | // Otherwise, remember this slot so we can update the value. |
| 781 | ExistingResult = &*Entry; |
| 782 | } |
| 783 | |
| 784 | // If the dirty entry has a pointer, start scanning from it so we don't have |
| 785 | // to rescan the entire block. |
| 786 | BasicBlock::iterator ScanPos = DirtyBB->end(); |
| 787 | if (ExistingResult) { |
| 788 | if (Instruction *Inst = ExistingResult->getResult().getInst()) { |
| 789 | ScanPos = Inst->getIterator(); |
| 790 | // We're removing QueryInst's use of Inst. |
| 791 | RemoveFromReverseMap<Instruction *>(ReverseMap&: ReverseNonLocalDeps, Inst, |
| 792 | Val: QueryCall); |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | // Find out if this block has a local dependency for QueryInst. |
| 797 | MemDepResult Dep; |
| 798 | |
| 799 | if (ScanPos != DirtyBB->begin()) { |
| 800 | Dep = getCallDependencyFrom(Call: QueryCall, isReadOnlyCall: isReadonlyCall, ScanIt: ScanPos, BB: DirtyBB); |
| 801 | } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { |
| 802 | // No dependence found. If this is the entry block of the function, it is |
| 803 | // a clobber, otherwise it is unknown. |
| 804 | Dep = MemDepResult::getNonLocal(); |
| 805 | } else { |
| 806 | Dep = MemDepResult::getNonFuncLocal(); |
| 807 | } |
| 808 | |
| 809 | // If we had a dirty entry for the block, update it. Otherwise, just add |
| 810 | // a new entry. |
| 811 | if (ExistingResult) |
| 812 | ExistingResult->setResult(Dep); |
| 813 | else |
| 814 | Cache.push_back(x: NonLocalDepEntry(DirtyBB, Dep)); |
| 815 | |
| 816 | // If the block has a dependency (i.e. it isn't completely transparent to |
| 817 | // the value), remember the association! |
| 818 | if (!Dep.isNonLocal()) { |
| 819 | // Keep the ReverseNonLocalDeps map up to date so we can efficiently |
| 820 | // update this when we remove instructions. |
| 821 | if (Instruction *Inst = Dep.getInst()) |
| 822 | ReverseNonLocalDeps[Inst].insert(Ptr: QueryCall); |
| 823 | } else { |
| 824 | |
| 825 | // If the block *is* completely transparent to the load, we need to check |
| 826 | // the predecessors of this block. Add them to our worklist. |
| 827 | append_range(C&: DirtyBlocks, R: PredCache.get(BB: DirtyBB)); |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | return Cache; |
| 832 | } |
| 833 | |
| 834 | void MemoryDependenceResults::getNonLocalPointerDependency( |
| 835 | Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { |
| 836 | const MemoryLocation Loc = MemoryLocation::get(Inst: QueryInst); |
| 837 | bool isLoad = isa<LoadInst>(Val: QueryInst); |
| 838 | BasicBlock *FromBB = QueryInst->getParent(); |
| 839 | assert(FromBB); |
| 840 | |
| 841 | assert(Loc.Ptr->getType()->isPointerTy() && |
| 842 | "Can't get pointer deps of a non-pointer!" ); |
| 843 | Result.clear(); |
| 844 | { |
| 845 | // Check if there is cached Def with invariant.group. |
| 846 | auto NonLocalDefIt = NonLocalDefsCache.find(Val: QueryInst); |
| 847 | if (NonLocalDefIt != NonLocalDefsCache.end()) { |
| 848 | Result.push_back(Elt: NonLocalDefIt->second); |
| 849 | ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] |
| 850 | .erase(Ptr: QueryInst); |
| 851 | NonLocalDefsCache.erase(I: NonLocalDefIt); |
| 852 | return; |
| 853 | } |
| 854 | } |
| 855 | // This routine does not expect to deal with volatile instructions. |
| 856 | // Doing so would require piping through the QueryInst all the way through. |
| 857 | // TODO: volatiles can't be elided, but they can be reordered with other |
| 858 | // non-volatile accesses. |
| 859 | |
| 860 | // We currently give up on any instruction which is ordered, but we do handle |
| 861 | // atomic instructions which are unordered. |
| 862 | // TODO: Handle ordered instructions |
| 863 | auto isOrdered = [](Instruction *Inst) { |
| 864 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
| 865 | return !LI->isUnordered(); |
| 866 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 867 | return !SI->isUnordered(); |
| 868 | } |
| 869 | return false; |
| 870 | }; |
| 871 | if (QueryInst->isVolatile() || isOrdered(QueryInst)) { |
| 872 | Result.push_back(Elt: NonLocalDepResult(FromBB, MemDepResult::getUnknown(), |
| 873 | const_cast<Value *>(Loc.Ptr))); |
| 874 | return; |
| 875 | } |
| 876 | const DataLayout &DL = FromBB->getDataLayout(); |
| 877 | PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); |
| 878 | |
| 879 | // This is the set of blocks we've inspected, and the pointer we consider in |
| 880 | // each block. Because of critical edges, we currently bail out if querying |
| 881 | // a block with multiple different pointers. This can happen during PHI |
| 882 | // translation. |
| 883 | SmallDenseMap<BasicBlock *, Value *, 16> Visited; |
| 884 | if (getNonLocalPointerDepFromBB(QueryInst, Pointer: Address, Loc, isLoad, BB: FromBB, |
| 885 | Result, Visited, SkipFirstBlock: true)) |
| 886 | return; |
| 887 | Result.clear(); |
| 888 | Result.push_back(Elt: NonLocalDepResult(FromBB, MemDepResult::getUnknown(), |
| 889 | const_cast<Value *>(Loc.Ptr))); |
| 890 | } |
| 891 | |
| 892 | /// Compute the memdep value for BB with Pointer/PointeeSize using either |
| 893 | /// cached information in Cache or by doing a lookup (which may use dirty cache |
| 894 | /// info if available). |
| 895 | /// |
| 896 | /// If we do a lookup, add the result to the cache. |
| 897 | MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock( |
| 898 | Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, |
| 899 | BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries, |
| 900 | BatchAAResults &BatchAA) { |
| 901 | |
| 902 | bool isInvariantLoad = false; |
| 903 | |
| 904 | if (LoadInst *LI = dyn_cast_or_null<LoadInst>(Val: QueryInst)) |
| 905 | isInvariantLoad = LI->getMetadata(KindID: LLVMContext::MD_invariant_load); |
| 906 | |
| 907 | // Do a binary search to see if we already have an entry for this block in |
| 908 | // the cache set. If so, find it. |
| 909 | NonLocalDepInfo::iterator Entry = std::upper_bound( |
| 910 | first: Cache->begin(), last: Cache->begin() + NumSortedEntries, val: NonLocalDepEntry(BB)); |
| 911 | if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) |
| 912 | --Entry; |
| 913 | |
| 914 | NonLocalDepEntry *ExistingResult = nullptr; |
| 915 | if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) |
| 916 | ExistingResult = &*Entry; |
| 917 | |
| 918 | // Use cached result for invariant load only if there is no dependency for non |
| 919 | // invariant load. In this case invariant load can not have any dependency as |
| 920 | // well. |
| 921 | if (ExistingResult && isInvariantLoad && |
| 922 | !ExistingResult->getResult().isNonFuncLocal()) |
| 923 | ExistingResult = nullptr; |
| 924 | |
| 925 | // If we have a cached entry, and it is non-dirty, use it as the value for |
| 926 | // this dependency. |
| 927 | if (ExistingResult && !ExistingResult->getResult().isDirty()) { |
| 928 | ++NumCacheNonLocalPtr; |
| 929 | return ExistingResult->getResult(); |
| 930 | } |
| 931 | |
| 932 | // Otherwise, we have to scan for the value. If we have a dirty cache |
| 933 | // entry, start scanning from its position, otherwise we scan from the end |
| 934 | // of the block. |
| 935 | BasicBlock::iterator ScanPos = BB->end(); |
| 936 | if (ExistingResult && ExistingResult->getResult().getInst()) { |
| 937 | assert(ExistingResult->getResult().getInst()->getParent() == BB && |
| 938 | "Instruction invalidated?" ); |
| 939 | ++NumCacheDirtyNonLocalPtr; |
| 940 | ScanPos = ExistingResult->getResult().getInst()->getIterator(); |
| 941 | |
| 942 | // Eliminating the dirty entry from 'Cache', so update the reverse info. |
| 943 | ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); |
| 944 | RemoveFromReverseMap(ReverseMap&: ReverseNonLocalPtrDeps, Inst: &*ScanPos, Val: CacheKey); |
| 945 | } else { |
| 946 | ++NumUncacheNonLocalPtr; |
| 947 | } |
| 948 | |
| 949 | // Scan the block for the dependency. |
| 950 | MemDepResult Dep = getPointerDependencyFrom(MemLoc: Loc, isLoad, ScanIt: ScanPos, BB, |
| 951 | QueryInst, Limit: nullptr, BatchAA); |
| 952 | |
| 953 | // Don't cache results for invariant load. |
| 954 | if (isInvariantLoad) |
| 955 | return Dep; |
| 956 | |
| 957 | // If we had a dirty entry for the block, update it. Otherwise, just add |
| 958 | // a new entry. |
| 959 | if (ExistingResult) |
| 960 | ExistingResult->setResult(Dep); |
| 961 | else |
| 962 | Cache->push_back(x: NonLocalDepEntry(BB, Dep)); |
| 963 | |
| 964 | // If the block has a dependency (i.e. it isn't completely transparent to |
| 965 | // the value), remember the reverse association because we just added it |
| 966 | // to Cache! |
| 967 | if (!Dep.isLocal()) |
| 968 | return Dep; |
| 969 | |
| 970 | // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently |
| 971 | // update MemDep when we remove instructions. |
| 972 | Instruction *Inst = Dep.getInst(); |
| 973 | assert(Inst && "Didn't depend on anything?" ); |
| 974 | ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); |
| 975 | ReverseNonLocalPtrDeps[Inst].insert(Ptr: CacheKey); |
| 976 | return Dep; |
| 977 | } |
| 978 | |
| 979 | /// Sort the NonLocalDepInfo cache, given a certain number of elements in the |
| 980 | /// array that are already properly ordered. |
| 981 | /// |
| 982 | /// This is optimized for the case when only a few entries are added. |
| 983 | static void |
| 984 | SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, |
| 985 | unsigned NumSortedEntries) { |
| 986 | switch (Cache.size() - NumSortedEntries) { |
| 987 | case 0: |
| 988 | // done, no new entries. |
| 989 | break; |
| 990 | case 2: { |
| 991 | // Two new entries, insert the last one into place. |
| 992 | NonLocalDepEntry Val = Cache.back(); |
| 993 | Cache.pop_back(); |
| 994 | MemoryDependenceResults::NonLocalDepInfo::iterator Entry = |
| 995 | std::upper_bound(first: Cache.begin(), last: Cache.end() - 1, val: Val); |
| 996 | Cache.insert(position: Entry, x: Val); |
| 997 | [[fallthrough]]; |
| 998 | } |
| 999 | case 1: |
| 1000 | // One new entry, Just insert the new value at the appropriate position. |
| 1001 | if (Cache.size() != 1) { |
| 1002 | NonLocalDepEntry Val = Cache.back(); |
| 1003 | Cache.pop_back(); |
| 1004 | MemoryDependenceResults::NonLocalDepInfo::iterator Entry = |
| 1005 | llvm::upper_bound(Range&: Cache, Value&: Val); |
| 1006 | Cache.insert(position: Entry, x: Val); |
| 1007 | } |
| 1008 | break; |
| 1009 | default: |
| 1010 | // Added many values, do a full scale sort. |
| 1011 | llvm::sort(C&: Cache); |
| 1012 | break; |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | /// Perform a dependency query based on pointer/pointeesize starting at the end |
| 1017 | /// of StartBB. |
| 1018 | /// |
| 1019 | /// Add any clobber/def results to the results vector and keep track of which |
| 1020 | /// blocks are visited in 'Visited'. |
| 1021 | /// |
| 1022 | /// This has special behavior for the first block queries (when SkipFirstBlock |
| 1023 | /// is true). In this special case, it ignores the contents of the specified |
| 1024 | /// block and starts returning dependence info for its predecessors. |
| 1025 | /// |
| 1026 | /// This function returns true on success, or false to indicate that it could |
| 1027 | /// not compute dependence information for some reason. This should be treated |
| 1028 | /// as a clobber dependence on the first instruction in the predecessor block. |
| 1029 | bool MemoryDependenceResults::getNonLocalPointerDepFromBB( |
| 1030 | Instruction *QueryInst, const PHITransAddr &Pointer, |
| 1031 | const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, |
| 1032 | SmallVectorImpl<NonLocalDepResult> &Result, |
| 1033 | SmallDenseMap<BasicBlock *, Value *, 16> &Visited, bool SkipFirstBlock, |
| 1034 | bool IsIncomplete) { |
| 1035 | // Look up the cached info for Pointer. |
| 1036 | ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); |
| 1037 | |
| 1038 | // Set up a temporary NLPI value. If the map doesn't yet have an entry for |
| 1039 | // CacheKey, this value will be inserted as the associated value. Otherwise, |
| 1040 | // it'll be ignored, and we'll have to check to see if the cached size and |
| 1041 | // aa tags are consistent with the current query. |
| 1042 | NonLocalPointerInfo InitialNLPI; |
| 1043 | InitialNLPI.Size = Loc.Size; |
| 1044 | InitialNLPI.AATags = Loc.AATags; |
| 1045 | |
| 1046 | bool isInvariantLoad = false; |
| 1047 | if (LoadInst *LI = dyn_cast_or_null<LoadInst>(Val: QueryInst)) |
| 1048 | isInvariantLoad = LI->getMetadata(KindID: LLVMContext::MD_invariant_load); |
| 1049 | |
| 1050 | // Get the NLPI for CacheKey, inserting one into the map if it doesn't |
| 1051 | // already have one. |
| 1052 | std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = |
| 1053 | NonLocalPointerDeps.insert(KV: std::make_pair(x&: CacheKey, y&: InitialNLPI)); |
| 1054 | NonLocalPointerInfo *CacheInfo = &Pair.first->second; |
| 1055 | |
| 1056 | // If we already have a cache entry for this CacheKey, we may need to do some |
| 1057 | // work to reconcile the cache entry and the current query. |
| 1058 | // Invariant loads don't participate in caching. Thus no need to reconcile. |
| 1059 | if (!isInvariantLoad && !Pair.second) { |
| 1060 | if (CacheInfo->Size != Loc.Size) { |
| 1061 | // The query's Size is not equal to the cached one. Throw out the cached |
| 1062 | // data and proceed with the query with the new size. |
| 1063 | CacheInfo->Pair = BBSkipFirstBlockPair(); |
| 1064 | CacheInfo->Size = Loc.Size; |
| 1065 | for (auto &Entry : CacheInfo->NonLocalDeps) |
| 1066 | if (Instruction *Inst = Entry.getResult().getInst()) |
| 1067 | RemoveFromReverseMap(ReverseMap&: ReverseNonLocalPtrDeps, Inst, Val: CacheKey); |
| 1068 | CacheInfo->NonLocalDeps.clear(); |
| 1069 | // The cache is cleared (in the above line) so we will have lost |
| 1070 | // information about blocks we have already visited. We therefore must |
| 1071 | // assume that the cache information is incomplete. |
| 1072 | IsIncomplete = true; |
| 1073 | } |
| 1074 | |
| 1075 | // If the query's AATags are inconsistent with the cached one, |
| 1076 | // conservatively throw out the cached data and restart the query with |
| 1077 | // no tag if needed. |
| 1078 | if (CacheInfo->AATags != Loc.AATags) { |
| 1079 | if (CacheInfo->AATags) { |
| 1080 | CacheInfo->Pair = BBSkipFirstBlockPair(); |
| 1081 | CacheInfo->AATags = AAMDNodes(); |
| 1082 | for (auto &Entry : CacheInfo->NonLocalDeps) |
| 1083 | if (Instruction *Inst = Entry.getResult().getInst()) |
| 1084 | RemoveFromReverseMap(ReverseMap&: ReverseNonLocalPtrDeps, Inst, Val: CacheKey); |
| 1085 | CacheInfo->NonLocalDeps.clear(); |
| 1086 | // The cache is cleared (in the above line) so we will have lost |
| 1087 | // information about blocks we have already visited. We therefore must |
| 1088 | // assume that the cache information is incomplete. |
| 1089 | IsIncomplete = true; |
| 1090 | } |
| 1091 | if (Loc.AATags) |
| 1092 | return getNonLocalPointerDepFromBB( |
| 1093 | QueryInst, Pointer, Loc: Loc.getWithoutAATags(), isLoad, StartBB, Result, |
| 1094 | Visited, SkipFirstBlock, IsIncomplete); |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; |
| 1099 | |
| 1100 | // If we have valid cached information for exactly the block we are |
| 1101 | // investigating, just return it with no recomputation. |
| 1102 | // Don't use cached information for invariant loads since it is valid for |
| 1103 | // non-invariant loads only. |
| 1104 | if (!IsIncomplete && !isInvariantLoad && |
| 1105 | CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { |
| 1106 | // We have a fully cached result for this query then we can just return the |
| 1107 | // cached results and populate the visited set. However, we have to verify |
| 1108 | // that we don't already have conflicting results for these blocks. Check |
| 1109 | // to ensure that if a block in the results set is in the visited set that |
| 1110 | // it was for the same pointer query. |
| 1111 | if (!Visited.empty()) { |
| 1112 | for (auto &Entry : *Cache) { |
| 1113 | DenseMap<BasicBlock *, Value *>::iterator VI = |
| 1114 | Visited.find(Val: Entry.getBB()); |
| 1115 | if (VI == Visited.end() || VI->second == Pointer.getAddr()) |
| 1116 | continue; |
| 1117 | |
| 1118 | // We have a pointer mismatch in a block. Just return false, saying |
| 1119 | // that something was clobbered in this result. We could also do a |
| 1120 | // non-fully cached query, but there is little point in doing this. |
| 1121 | return false; |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | Value *Addr = Pointer.getAddr(); |
| 1126 | for (auto &Entry : *Cache) { |
| 1127 | Visited.insert(KV: std::make_pair(x: Entry.getBB(), y&: Addr)); |
| 1128 | if (Entry.getResult().isNonLocal()) { |
| 1129 | continue; |
| 1130 | } |
| 1131 | |
| 1132 | if (DT.isReachableFromEntry(A: Entry.getBB())) { |
| 1133 | Result.push_back( |
| 1134 | Elt: NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); |
| 1135 | } |
| 1136 | } |
| 1137 | ++NumCacheCompleteNonLocalPtr; |
| 1138 | return true; |
| 1139 | } |
| 1140 | |
| 1141 | // Otherwise, either this is a new block, a block with an invalid cache |
| 1142 | // pointer or one that we're about to invalidate by putting more info into |
| 1143 | // it than its valid cache info. If empty and not explicitly indicated as |
| 1144 | // incomplete, the result will be valid cache info, otherwise it isn't. |
| 1145 | // |
| 1146 | // Invariant loads don't affect cache in any way thus no need to update |
| 1147 | // CacheInfo as well. |
| 1148 | if (!isInvariantLoad) { |
| 1149 | if (!IsIncomplete && Cache->empty()) |
| 1150 | CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); |
| 1151 | else |
| 1152 | CacheInfo->Pair = BBSkipFirstBlockPair(); |
| 1153 | } |
| 1154 | |
| 1155 | SmallVector<BasicBlock *, 32> Worklist; |
| 1156 | Worklist.push_back(Elt: StartBB); |
| 1157 | |
| 1158 | // PredList used inside loop. |
| 1159 | SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; |
| 1160 | |
| 1161 | // Keep track of the entries that we know are sorted. Previously cached |
| 1162 | // entries will all be sorted. The entries we add we only sort on demand (we |
| 1163 | // don't insert every element into its sorted position). We know that we |
| 1164 | // won't get any reuse from currently inserted values, because we don't |
| 1165 | // revisit blocks after we insert info for them. |
| 1166 | unsigned NumSortedEntries = Cache->size(); |
| 1167 | unsigned WorklistEntries = BlockNumberLimit; |
| 1168 | bool GotWorklistLimit = false; |
| 1169 | LLVM_DEBUG(AssertSorted(*Cache)); |
| 1170 | |
| 1171 | BatchAAResults BatchAA(AA, &EEA); |
| 1172 | while (!Worklist.empty()) { |
| 1173 | BasicBlock *BB = Worklist.pop_back_val(); |
| 1174 | |
| 1175 | // If we do process a large number of blocks it becomes very expensive and |
| 1176 | // likely it isn't worth worrying about |
| 1177 | if (Result.size() > NumResultsLimit) { |
| 1178 | // Sort it now (if needed) so that recursive invocations of |
| 1179 | // getNonLocalPointerDepFromBB and other routines that could reuse the |
| 1180 | // cache value will only see properly sorted cache arrays. |
| 1181 | if (Cache && NumSortedEntries != Cache->size()) { |
| 1182 | SortNonLocalDepInfoCache(Cache&: *Cache, NumSortedEntries); |
| 1183 | } |
| 1184 | // Since we bail out, the "Cache" set won't contain all of the |
| 1185 | // results for the query. This is ok (we can still use it to accelerate |
| 1186 | // specific block queries) but we can't do the fastpath "return all |
| 1187 | // results from the set". Clear out the indicator for this. |
| 1188 | CacheInfo->Pair = BBSkipFirstBlockPair(); |
| 1189 | return false; |
| 1190 | } |
| 1191 | |
| 1192 | // Skip the first block if we have it. |
| 1193 | if (!SkipFirstBlock) { |
| 1194 | // Analyze the dependency of *Pointer in FromBB. See if we already have |
| 1195 | // been here. |
| 1196 | assert(Visited.count(BB) && "Should check 'visited' before adding to WL" ); |
| 1197 | |
| 1198 | // Get the dependency info for Pointer in BB. If we have cached |
| 1199 | // information, we will use it, otherwise we compute it. |
| 1200 | LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); |
| 1201 | MemDepResult Dep = getNonLocalInfoForBlock( |
| 1202 | QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA); |
| 1203 | |
| 1204 | // If we got a Def or Clobber, add this to the list of results. |
| 1205 | if (!Dep.isNonLocal()) { |
| 1206 | if (DT.isReachableFromEntry(A: BB)) { |
| 1207 | Result.push_back(Elt: NonLocalDepResult(BB, Dep, Pointer.getAddr())); |
| 1208 | continue; |
| 1209 | } |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | // If 'Pointer' is an instruction defined in this block, then we need to do |
| 1214 | // phi translation to change it into a value live in the predecessor block. |
| 1215 | // If not, we just add the predecessors to the worklist and scan them with |
| 1216 | // the same Pointer. |
| 1217 | if (!Pointer.needsPHITranslationFromBlock(BB)) { |
| 1218 | SkipFirstBlock = false; |
| 1219 | SmallVector<BasicBlock *, 16> NewBlocks; |
| 1220 | for (BasicBlock *Pred : PredCache.get(BB)) { |
| 1221 | // Verify that we haven't looked at this block yet. |
| 1222 | std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = |
| 1223 | Visited.insert(KV: std::make_pair(x&: Pred, y: Pointer.getAddr())); |
| 1224 | if (InsertRes.second) { |
| 1225 | // First time we've looked at *PI. |
| 1226 | NewBlocks.push_back(Elt: Pred); |
| 1227 | continue; |
| 1228 | } |
| 1229 | |
| 1230 | // If we have seen this block before, but it was with a different |
| 1231 | // pointer then we have a phi translation failure and we have to treat |
| 1232 | // this as a clobber. |
| 1233 | if (InsertRes.first->second != Pointer.getAddr()) { |
| 1234 | // Make sure to clean up the Visited map before continuing on to |
| 1235 | // PredTranslationFailure. |
| 1236 | for (auto *NewBlock : NewBlocks) |
| 1237 | Visited.erase(Val: NewBlock); |
| 1238 | goto PredTranslationFailure; |
| 1239 | } |
| 1240 | } |
| 1241 | if (NewBlocks.size() > WorklistEntries) { |
| 1242 | // Make sure to clean up the Visited map before continuing on to |
| 1243 | // PredTranslationFailure. |
| 1244 | for (auto *NewBlock : NewBlocks) |
| 1245 | Visited.erase(Val: NewBlock); |
| 1246 | GotWorklistLimit = true; |
| 1247 | goto PredTranslationFailure; |
| 1248 | } |
| 1249 | WorklistEntries -= NewBlocks.size(); |
| 1250 | Worklist.append(in_start: NewBlocks.begin(), in_end: NewBlocks.end()); |
| 1251 | continue; |
| 1252 | } |
| 1253 | |
| 1254 | // We do need to do phi translation, if we know ahead of time we can't phi |
| 1255 | // translate this value, don't even try. |
| 1256 | if (!Pointer.isPotentiallyPHITranslatable()) |
| 1257 | goto PredTranslationFailure; |
| 1258 | |
| 1259 | // We may have added values to the cache list before this PHI translation. |
| 1260 | // If so, we haven't done anything to ensure that the cache remains sorted. |
| 1261 | // Sort it now (if needed) so that recursive invocations of |
| 1262 | // getNonLocalPointerDepFromBB and other routines that could reuse the cache |
| 1263 | // value will only see properly sorted cache arrays. |
| 1264 | if (Cache && NumSortedEntries != Cache->size()) { |
| 1265 | SortNonLocalDepInfoCache(Cache&: *Cache, NumSortedEntries); |
| 1266 | NumSortedEntries = Cache->size(); |
| 1267 | } |
| 1268 | Cache = nullptr; |
| 1269 | |
| 1270 | PredList.clear(); |
| 1271 | for (BasicBlock *Pred : PredCache.get(BB)) { |
| 1272 | PredList.push_back(Elt: std::make_pair(x&: Pred, y: Pointer)); |
| 1273 | |
| 1274 | // Get the PHI translated pointer in this predecessor. This can fail if |
| 1275 | // not translatable, in which case the getAddr() returns null. |
| 1276 | PHITransAddr &PredPointer = PredList.back().second; |
| 1277 | Value *PredPtrVal = |
| 1278 | PredPointer.translateValue(CurBB: BB, PredBB: Pred, DT: &DT, /*MustDominate=*/false); |
| 1279 | |
| 1280 | // Check to see if we have already visited this pred block with another |
| 1281 | // pointer. If so, we can't do this lookup. This failure can occur |
| 1282 | // with PHI translation when a critical edge exists and the PHI node in |
| 1283 | // the successor translates to a pointer value different than the |
| 1284 | // pointer the block was first analyzed with. |
| 1285 | std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = |
| 1286 | Visited.insert(KV: std::make_pair(x&: Pred, y&: PredPtrVal)); |
| 1287 | |
| 1288 | if (!InsertRes.second) { |
| 1289 | // We found the pred; take it off the list of preds to visit. |
| 1290 | PredList.pop_back(); |
| 1291 | |
| 1292 | // If the predecessor was visited with PredPtr, then we already did |
| 1293 | // the analysis and can ignore it. |
| 1294 | if (InsertRes.first->second == PredPtrVal) |
| 1295 | continue; |
| 1296 | |
| 1297 | // Otherwise, the block was previously analyzed with a different |
| 1298 | // pointer. We can't represent the result of this case, so we just |
| 1299 | // treat this as a phi translation failure. |
| 1300 | |
| 1301 | // Make sure to clean up the Visited map before continuing on to |
| 1302 | // PredTranslationFailure. |
| 1303 | for (const auto &Pred : PredList) |
| 1304 | Visited.erase(Val: Pred.first); |
| 1305 | |
| 1306 | goto PredTranslationFailure; |
| 1307 | } |
| 1308 | } |
| 1309 | |
| 1310 | // Actually process results here; this need to be a separate loop to avoid |
| 1311 | // calling getNonLocalPointerDepFromBB for blocks we don't want to return |
| 1312 | // any results for. (getNonLocalPointerDepFromBB will modify our |
| 1313 | // datastructures in ways the code after the PredTranslationFailure label |
| 1314 | // doesn't expect.) |
| 1315 | for (auto &I : PredList) { |
| 1316 | BasicBlock *Pred = I.first; |
| 1317 | PHITransAddr &PredPointer = I.second; |
| 1318 | Value *PredPtrVal = PredPointer.getAddr(); |
| 1319 | |
| 1320 | bool CanTranslate = true; |
| 1321 | // If PHI translation was unable to find an available pointer in this |
| 1322 | // predecessor, then we have to assume that the pointer is clobbered in |
| 1323 | // that predecessor. We can still do PRE of the load, which would insert |
| 1324 | // a computation of the pointer in this predecessor. |
| 1325 | if (!PredPtrVal) |
| 1326 | CanTranslate = false; |
| 1327 | |
| 1328 | // FIXME: it is entirely possible that PHI translating will end up with |
| 1329 | // the same value. Consider PHI translating something like: |
| 1330 | // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* |
| 1331 | // to recurse here, pedantically speaking. |
| 1332 | |
| 1333 | // If getNonLocalPointerDepFromBB fails here, that means the cached |
| 1334 | // result conflicted with the Visited list; we have to conservatively |
| 1335 | // assume it is unknown, but this also does not block PRE of the load. |
| 1336 | if (!CanTranslate || |
| 1337 | !getNonLocalPointerDepFromBB(QueryInst, Pointer: PredPointer, |
| 1338 | Loc: Loc.getWithNewPtr(NewPtr: PredPtrVal), isLoad, |
| 1339 | StartBB: Pred, Result, Visited)) { |
| 1340 | // Add the entry to the Result list. |
| 1341 | NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); |
| 1342 | Result.push_back(Elt: Entry); |
| 1343 | |
| 1344 | // Since we had a phi translation failure, the cache for CacheKey won't |
| 1345 | // include all of the entries that we need to immediately satisfy future |
| 1346 | // queries. Mark this in NonLocalPointerDeps by setting the |
| 1347 | // BBSkipFirstBlockPair pointer to null. This requires reuse of the |
| 1348 | // cached value to do more work but not miss the phi trans failure. |
| 1349 | NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; |
| 1350 | NLPI.Pair = BBSkipFirstBlockPair(); |
| 1351 | continue; |
| 1352 | } |
| 1353 | } |
| 1354 | |
| 1355 | // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. |
| 1356 | CacheInfo = &NonLocalPointerDeps[CacheKey]; |
| 1357 | Cache = &CacheInfo->NonLocalDeps; |
| 1358 | NumSortedEntries = Cache->size(); |
| 1359 | |
| 1360 | // Since we did phi translation, the "Cache" set won't contain all of the |
| 1361 | // results for the query. This is ok (we can still use it to accelerate |
| 1362 | // specific block queries) but we can't do the fastpath "return all |
| 1363 | // results from the set" Clear out the indicator for this. |
| 1364 | CacheInfo->Pair = BBSkipFirstBlockPair(); |
| 1365 | SkipFirstBlock = false; |
| 1366 | continue; |
| 1367 | |
| 1368 | PredTranslationFailure: |
| 1369 | // The following code is "failure"; we can't produce a sane translation |
| 1370 | // for the given block. It assumes that we haven't modified any of |
| 1371 | // our datastructures while processing the current block. |
| 1372 | |
| 1373 | if (!Cache) { |
| 1374 | // Refresh the CacheInfo/Cache pointer if it got invalidated. |
| 1375 | CacheInfo = &NonLocalPointerDeps[CacheKey]; |
| 1376 | Cache = &CacheInfo->NonLocalDeps; |
| 1377 | NumSortedEntries = Cache->size(); |
| 1378 | } |
| 1379 | |
| 1380 | // Since we failed phi translation, the "Cache" set won't contain all of the |
| 1381 | // results for the query. This is ok (we can still use it to accelerate |
| 1382 | // specific block queries) but we can't do the fastpath "return all |
| 1383 | // results from the set". Clear out the indicator for this. |
| 1384 | CacheInfo->Pair = BBSkipFirstBlockPair(); |
| 1385 | |
| 1386 | // If *nothing* works, mark the pointer as unknown. |
| 1387 | // |
| 1388 | // If this is the magic first block, return this as a clobber of the whole |
| 1389 | // incoming value. Since we can't phi translate to one of the predecessors, |
| 1390 | // we have to bail out. |
| 1391 | if (SkipFirstBlock) |
| 1392 | return false; |
| 1393 | |
| 1394 | // Results of invariant loads are not cached thus no need to update cached |
| 1395 | // information. |
| 1396 | if (!isInvariantLoad) { |
| 1397 | for (NonLocalDepEntry &I : llvm::reverse(C&: *Cache)) { |
| 1398 | if (I.getBB() != BB) |
| 1399 | continue; |
| 1400 | |
| 1401 | assert((GotWorklistLimit || I.getResult().isNonLocal() || |
| 1402 | !DT.isReachableFromEntry(BB)) && |
| 1403 | "Should only be here with transparent block" ); |
| 1404 | |
| 1405 | I.setResult(MemDepResult::getUnknown()); |
| 1406 | |
| 1407 | |
| 1408 | break; |
| 1409 | } |
| 1410 | } |
| 1411 | (void)GotWorklistLimit; |
| 1412 | // Go ahead and report unknown dependence. |
| 1413 | Result.push_back( |
| 1414 | Elt: NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr())); |
| 1415 | } |
| 1416 | |
| 1417 | // Okay, we're done now. If we added new values to the cache, re-sort it. |
| 1418 | SortNonLocalDepInfoCache(Cache&: *Cache, NumSortedEntries); |
| 1419 | LLVM_DEBUG(AssertSorted(*Cache)); |
| 1420 | return true; |
| 1421 | } |
| 1422 | |
| 1423 | /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. |
| 1424 | void MemoryDependenceResults::removeCachedNonLocalPointerDependencies( |
| 1425 | ValueIsLoadPair P) { |
| 1426 | |
| 1427 | // Most of the time this cache is empty. |
| 1428 | if (!NonLocalDefsCache.empty()) { |
| 1429 | auto it = NonLocalDefsCache.find(Val: P.getPointer()); |
| 1430 | if (it != NonLocalDefsCache.end()) { |
| 1431 | RemoveFromReverseMap(ReverseMap&: ReverseNonLocalDefsCache, |
| 1432 | Inst: it->second.getResult().getInst(), Val: P.getPointer()); |
| 1433 | NonLocalDefsCache.erase(I: it); |
| 1434 | } |
| 1435 | |
| 1436 | if (auto *I = dyn_cast<Instruction>(Val: P.getPointer())) { |
| 1437 | auto toRemoveIt = ReverseNonLocalDefsCache.find(Val: I); |
| 1438 | if (toRemoveIt != ReverseNonLocalDefsCache.end()) { |
| 1439 | for (const auto *entry : toRemoveIt->second) |
| 1440 | NonLocalDefsCache.erase(Val: entry); |
| 1441 | ReverseNonLocalDefsCache.erase(I: toRemoveIt); |
| 1442 | } |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(Val: P); |
| 1447 | if (It == NonLocalPointerDeps.end()) |
| 1448 | return; |
| 1449 | |
| 1450 | // Remove all of the entries in the BB->val map. This involves removing |
| 1451 | // instructions from the reverse map. |
| 1452 | NonLocalDepInfo &PInfo = It->second.NonLocalDeps; |
| 1453 | |
| 1454 | for (const NonLocalDepEntry &DE : PInfo) { |
| 1455 | Instruction *Target = DE.getResult().getInst(); |
| 1456 | if (!Target) |
| 1457 | continue; // Ignore non-local dep results. |
| 1458 | assert(Target->getParent() == DE.getBB()); |
| 1459 | |
| 1460 | // Eliminating the dirty entry from 'Cache', so update the reverse info. |
| 1461 | RemoveFromReverseMap(ReverseMap&: ReverseNonLocalPtrDeps, Inst: Target, Val: P); |
| 1462 | } |
| 1463 | |
| 1464 | // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). |
| 1465 | NonLocalPointerDeps.erase(I: It); |
| 1466 | } |
| 1467 | |
| 1468 | void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { |
| 1469 | // If Ptr isn't really a pointer, just ignore it. |
| 1470 | if (!Ptr->getType()->isPointerTy()) |
| 1471 | return; |
| 1472 | // Flush store info for the pointer. |
| 1473 | removeCachedNonLocalPointerDependencies(P: ValueIsLoadPair(Ptr, false)); |
| 1474 | // Flush load info for the pointer. |
| 1475 | removeCachedNonLocalPointerDependencies(P: ValueIsLoadPair(Ptr, true)); |
| 1476 | } |
| 1477 | |
| 1478 | void MemoryDependenceResults::invalidateCachedPredecessors() { |
| 1479 | PredCache.clear(); |
| 1480 | } |
| 1481 | |
| 1482 | void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { |
| 1483 | EEA.removeInstruction(I: RemInst); |
| 1484 | |
| 1485 | // Walk through the Non-local dependencies, removing this one as the value |
| 1486 | // for any cached queries. |
| 1487 | NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(Val: RemInst); |
| 1488 | if (NLDI != NonLocalDepsMap.end()) { |
| 1489 | NonLocalDepInfo &BlockMap = NLDI->second.first; |
| 1490 | for (auto &Entry : BlockMap) |
| 1491 | if (Instruction *Inst = Entry.getResult().getInst()) |
| 1492 | RemoveFromReverseMap(ReverseMap&: ReverseNonLocalDeps, Inst, Val: RemInst); |
| 1493 | NonLocalDepsMap.erase(I: NLDI); |
| 1494 | } |
| 1495 | |
| 1496 | // If we have a cached local dependence query for this instruction, remove it. |
| 1497 | LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(Val: RemInst); |
| 1498 | if (LocalDepEntry != LocalDeps.end()) { |
| 1499 | // Remove us from DepInst's reverse set now that the local dep info is gone. |
| 1500 | if (Instruction *Inst = LocalDepEntry->second.getInst()) |
| 1501 | RemoveFromReverseMap(ReverseMap&: ReverseLocalDeps, Inst, Val: RemInst); |
| 1502 | |
| 1503 | // Remove this local dependency info. |
| 1504 | LocalDeps.erase(I: LocalDepEntry); |
| 1505 | } |
| 1506 | |
| 1507 | // If we have any cached dependencies on this instruction, remove |
| 1508 | // them. |
| 1509 | |
| 1510 | // If the instruction is a pointer, remove it from both the load info and the |
| 1511 | // store info. |
| 1512 | if (RemInst->getType()->isPointerTy()) { |
| 1513 | removeCachedNonLocalPointerDependencies(P: ValueIsLoadPair(RemInst, false)); |
| 1514 | removeCachedNonLocalPointerDependencies(P: ValueIsLoadPair(RemInst, true)); |
| 1515 | } else { |
| 1516 | // Otherwise, if the instructions is in the map directly, it must be a load. |
| 1517 | // Remove it. |
| 1518 | auto toRemoveIt = NonLocalDefsCache.find(Val: RemInst); |
| 1519 | if (toRemoveIt != NonLocalDefsCache.end()) { |
| 1520 | assert(isa<LoadInst>(RemInst) && |
| 1521 | "only load instructions should be added directly" ); |
| 1522 | const Instruction *DepV = toRemoveIt->second.getResult().getInst(); |
| 1523 | ReverseNonLocalDefsCache.find(Val: DepV)->second.erase(Ptr: RemInst); |
| 1524 | NonLocalDefsCache.erase(I: toRemoveIt); |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | // Loop over all of the things that depend on the instruction we're removing. |
| 1529 | SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; |
| 1530 | |
| 1531 | // If we find RemInst as a clobber or Def in any of the maps for other values, |
| 1532 | // we need to replace its entry with a dirty version of the instruction after |
| 1533 | // it. If RemInst is a terminator, we use a null dirty value. |
| 1534 | // |
| 1535 | // Using a dirty version of the instruction after RemInst saves having to scan |
| 1536 | // the entire block to get to this point. |
| 1537 | MemDepResult NewDirtyVal; |
| 1538 | if (!RemInst->isTerminator()) |
| 1539 | NewDirtyVal = MemDepResult::getDirty(Inst: &*++RemInst->getIterator()); |
| 1540 | |
| 1541 | ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(Val: RemInst); |
| 1542 | if (ReverseDepIt != ReverseLocalDeps.end()) { |
| 1543 | // RemInst can't be the terminator if it has local stuff depending on it. |
| 1544 | assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && |
| 1545 | "Nothing can locally depend on a terminator" ); |
| 1546 | |
| 1547 | for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { |
| 1548 | assert(InstDependingOnRemInst != RemInst && |
| 1549 | "Already removed our local dep info" ); |
| 1550 | |
| 1551 | LocalDeps[InstDependingOnRemInst] = NewDirtyVal; |
| 1552 | |
| 1553 | // Make sure to remember that new things depend on NewDepInst. |
| 1554 | assert(NewDirtyVal.getInst() && |
| 1555 | "There is no way something else can have " |
| 1556 | "a local dep on this if it is a terminator!" ); |
| 1557 | ReverseDepsToAdd.push_back( |
| 1558 | Elt: std::make_pair(x: NewDirtyVal.getInst(), y&: InstDependingOnRemInst)); |
| 1559 | } |
| 1560 | |
| 1561 | ReverseLocalDeps.erase(I: ReverseDepIt); |
| 1562 | |
| 1563 | // Add new reverse deps after scanning the set, to avoid invalidating the |
| 1564 | // 'ReverseDeps' reference. |
| 1565 | while (!ReverseDepsToAdd.empty()) { |
| 1566 | ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( |
| 1567 | Ptr: ReverseDepsToAdd.back().second); |
| 1568 | ReverseDepsToAdd.pop_back(); |
| 1569 | } |
| 1570 | } |
| 1571 | |
| 1572 | ReverseDepIt = ReverseNonLocalDeps.find(Val: RemInst); |
| 1573 | if (ReverseDepIt != ReverseNonLocalDeps.end()) { |
| 1574 | for (Instruction *I : ReverseDepIt->second) { |
| 1575 | assert(I != RemInst && "Already removed NonLocalDep info for RemInst" ); |
| 1576 | |
| 1577 | PerInstNLInfo &INLD = NonLocalDepsMap[I]; |
| 1578 | // The information is now dirty! |
| 1579 | INLD.second = true; |
| 1580 | |
| 1581 | for (auto &Entry : INLD.first) { |
| 1582 | if (Entry.getResult().getInst() != RemInst) |
| 1583 | continue; |
| 1584 | |
| 1585 | // Convert to a dirty entry for the subsequent instruction. |
| 1586 | Entry.setResult(NewDirtyVal); |
| 1587 | |
| 1588 | if (Instruction *NextI = NewDirtyVal.getInst()) |
| 1589 | ReverseDepsToAdd.push_back(Elt: std::make_pair(x&: NextI, y&: I)); |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | ReverseNonLocalDeps.erase(I: ReverseDepIt); |
| 1594 | |
| 1595 | // Add new reverse deps after scanning the set, to avoid invalidating 'Set' |
| 1596 | while (!ReverseDepsToAdd.empty()) { |
| 1597 | ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( |
| 1598 | Ptr: ReverseDepsToAdd.back().second); |
| 1599 | ReverseDepsToAdd.pop_back(); |
| 1600 | } |
| 1601 | } |
| 1602 | |
| 1603 | // If the instruction is in ReverseNonLocalPtrDeps then it appears as a |
| 1604 | // value in the NonLocalPointerDeps info. |
| 1605 | ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = |
| 1606 | ReverseNonLocalPtrDeps.find(Val: RemInst); |
| 1607 | if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { |
| 1608 | SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> |
| 1609 | ReversePtrDepsToAdd; |
| 1610 | |
| 1611 | for (ValueIsLoadPair P : ReversePtrDepIt->second) { |
| 1612 | assert(P.getPointer() != RemInst && |
| 1613 | "Already removed NonLocalPointerDeps info for RemInst" ); |
| 1614 | |
| 1615 | auto &NLPD = NonLocalPointerDeps[P]; |
| 1616 | |
| 1617 | NonLocalDepInfo &NLPDI = NLPD.NonLocalDeps; |
| 1618 | |
| 1619 | // The cache is not valid for any specific block anymore. |
| 1620 | NLPD.Pair = BBSkipFirstBlockPair(); |
| 1621 | |
| 1622 | // Update any entries for RemInst to use the instruction after it. |
| 1623 | for (auto &Entry : NLPDI) { |
| 1624 | if (Entry.getResult().getInst() != RemInst) |
| 1625 | continue; |
| 1626 | |
| 1627 | // Convert to a dirty entry for the subsequent instruction. |
| 1628 | Entry.setResult(NewDirtyVal); |
| 1629 | |
| 1630 | if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) |
| 1631 | ReversePtrDepsToAdd.push_back(Elt: std::make_pair(x&: NewDirtyInst, y&: P)); |
| 1632 | } |
| 1633 | |
| 1634 | // Re-sort the NonLocalDepInfo. Changing the dirty entry to its |
| 1635 | // subsequent value may invalidate the sortedness. |
| 1636 | llvm::sort(C&: NLPDI); |
| 1637 | } |
| 1638 | |
| 1639 | ReverseNonLocalPtrDeps.erase(I: ReversePtrDepIt); |
| 1640 | |
| 1641 | while (!ReversePtrDepsToAdd.empty()) { |
| 1642 | ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( |
| 1643 | Ptr: ReversePtrDepsToAdd.back().second); |
| 1644 | ReversePtrDepsToAdd.pop_back(); |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?" ); |
| 1649 | LLVM_DEBUG(verifyRemoved(RemInst)); |
| 1650 | } |
| 1651 | |
| 1652 | /// Verify that the specified instruction does not occur in our internal data |
| 1653 | /// structures. |
| 1654 | /// |
| 1655 | /// This function verifies by asserting in debug builds. |
| 1656 | void MemoryDependenceResults::verifyRemoved(Instruction *D) const { |
| 1657 | #ifndef NDEBUG |
| 1658 | for (const auto &DepKV : LocalDeps) { |
| 1659 | assert(DepKV.first != D && "Inst occurs in data structures" ); |
| 1660 | assert(DepKV.second.getInst() != D && "Inst occurs in data structures" ); |
| 1661 | } |
| 1662 | |
| 1663 | for (const auto &DepKV : NonLocalPointerDeps) { |
| 1664 | assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key" ); |
| 1665 | for (const auto &Entry : DepKV.second.NonLocalDeps) |
| 1666 | assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value" ); |
| 1667 | } |
| 1668 | |
| 1669 | for (const auto &DepKV : NonLocalDepsMap) { |
| 1670 | assert(DepKV.first != D && "Inst occurs in data structures" ); |
| 1671 | const PerInstNLInfo &INLD = DepKV.second; |
| 1672 | for (const auto &Entry : INLD.first) |
| 1673 | assert(Entry.getResult().getInst() != D && |
| 1674 | "Inst occurs in data structures" ); |
| 1675 | } |
| 1676 | |
| 1677 | for (const auto &DepKV : ReverseLocalDeps) { |
| 1678 | assert(DepKV.first != D && "Inst occurs in data structures" ); |
| 1679 | for (Instruction *Inst : DepKV.second) |
| 1680 | assert(Inst != D && "Inst occurs in data structures" ); |
| 1681 | } |
| 1682 | |
| 1683 | for (const auto &DepKV : ReverseNonLocalDeps) { |
| 1684 | assert(DepKV.first != D && "Inst occurs in data structures" ); |
| 1685 | for (Instruction *Inst : DepKV.second) |
| 1686 | assert(Inst != D && "Inst occurs in data structures" ); |
| 1687 | } |
| 1688 | |
| 1689 | for (const auto &DepKV : ReverseNonLocalPtrDeps) { |
| 1690 | assert(DepKV.first != D && "Inst occurs in rev NLPD map" ); |
| 1691 | |
| 1692 | for (ValueIsLoadPair P : DepKV.second) |
| 1693 | assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && |
| 1694 | "Inst occurs in ReverseNonLocalPtrDeps map" ); |
| 1695 | } |
| 1696 | #endif |
| 1697 | } |
| 1698 | |
| 1699 | AnalysisKey MemoryDependenceAnalysis::Key; |
| 1700 | |
| 1701 | MemoryDependenceAnalysis::MemoryDependenceAnalysis() |
| 1702 | : DefaultBlockScanLimit(BlockScanLimit) {} |
| 1703 | |
| 1704 | MemoryDependenceResults |
| 1705 | MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { |
| 1706 | auto &AA = AM.getResult<AAManager>(IR&: F); |
| 1707 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 1708 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 1709 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 1710 | return MemoryDependenceResults(AA, AC, TLI, DT, DefaultBlockScanLimit); |
| 1711 | } |
| 1712 | |
| 1713 | char MemoryDependenceWrapperPass::ID = 0; |
| 1714 | |
| 1715 | INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep" , |
| 1716 | "Memory Dependence Analysis" , false, true) |
| 1717 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 1718 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 1719 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 1720 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 1721 | INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep" , |
| 1722 | "Memory Dependence Analysis" , false, true) |
| 1723 | |
| 1724 | MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {} |
| 1725 | |
| 1726 | MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; |
| 1727 | |
| 1728 | void MemoryDependenceWrapperPass::releaseMemory() { |
| 1729 | MemDep.reset(); |
| 1730 | } |
| 1731 | |
| 1732 | void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 1733 | AU.setPreservesAll(); |
| 1734 | AU.addRequired<AssumptionCacheTracker>(); |
| 1735 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 1736 | AU.addRequiredTransitive<AAResultsWrapperPass>(); |
| 1737 | AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); |
| 1738 | } |
| 1739 | |
| 1740 | bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, |
| 1741 | FunctionAnalysisManager::Invalidator &Inv) { |
| 1742 | // Check whether our analysis is preserved. |
| 1743 | auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); |
| 1744 | if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) |
| 1745 | // If not, give up now. |
| 1746 | return true; |
| 1747 | |
| 1748 | // Check whether the analyses we depend on became invalid for any reason. |
| 1749 | if (Inv.invalidate<AAManager>(IR&: F, PA) || |
| 1750 | Inv.invalidate<AssumptionAnalysis>(IR&: F, PA) || |
| 1751 | Inv.invalidate<DominatorTreeAnalysis>(IR&: F, PA)) |
| 1752 | return true; |
| 1753 | |
| 1754 | // Otherwise this analysis result remains valid. |
| 1755 | return false; |
| 1756 | } |
| 1757 | |
| 1758 | unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { |
| 1759 | return DefaultBlockScanLimit; |
| 1760 | } |
| 1761 | |
| 1762 | bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { |
| 1763 | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 1764 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| 1765 | auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| 1766 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 1767 | MemDep.emplace(args&: AA, args&: AC, args&: TLI, args&: DT, args&: BlockScanLimit); |
| 1768 | return false; |
| 1769 | } |
| 1770 | |