| 1 | //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the MemorySSA class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Analysis/MemorySSA.h" |
| 14 | #include "llvm/ADT/DenseMap.h" |
| 15 | #include "llvm/ADT/DenseMapInfo.h" |
| 16 | #include "llvm/ADT/DenseSet.h" |
| 17 | #include "llvm/ADT/DepthFirstIterator.h" |
| 18 | #include "llvm/ADT/Hashing.h" |
| 19 | #include "llvm/ADT/STLExtras.h" |
| 20 | #include "llvm/ADT/SmallPtrSet.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/StringExtras.h" |
| 23 | #include "llvm/ADT/iterator.h" |
| 24 | #include "llvm/ADT/iterator_range.h" |
| 25 | #include "llvm/Analysis/AliasAnalysis.h" |
| 26 | #include "llvm/Analysis/CFGPrinter.h" |
| 27 | #include "llvm/Analysis/IteratedDominanceFrontier.h" |
| 28 | #include "llvm/Analysis/LoopInfo.h" |
| 29 | #include "llvm/Analysis/MemoryLocation.h" |
| 30 | #include "llvm/Config/llvm-config.h" |
| 31 | #include "llvm/IR/AssemblyAnnotationWriter.h" |
| 32 | #include "llvm/IR/BasicBlock.h" |
| 33 | #include "llvm/IR/Dominators.h" |
| 34 | #include "llvm/IR/Function.h" |
| 35 | #include "llvm/IR/Instruction.h" |
| 36 | #include "llvm/IR/Instructions.h" |
| 37 | #include "llvm/IR/IntrinsicInst.h" |
| 38 | #include "llvm/IR/LLVMContext.h" |
| 39 | #include "llvm/IR/Operator.h" |
| 40 | #include "llvm/IR/PassManager.h" |
| 41 | #include "llvm/IR/Use.h" |
| 42 | #include "llvm/InitializePasses.h" |
| 43 | #include "llvm/Pass.h" |
| 44 | #include "llvm/Support/AtomicOrdering.h" |
| 45 | #include "llvm/Support/Casting.h" |
| 46 | #include "llvm/Support/CommandLine.h" |
| 47 | #include "llvm/Support/Compiler.h" |
| 48 | #include "llvm/Support/Debug.h" |
| 49 | #include "llvm/Support/ErrorHandling.h" |
| 50 | #include "llvm/Support/FormattedStream.h" |
| 51 | #include "llvm/Support/GraphWriter.h" |
| 52 | #include "llvm/Support/raw_ostream.h" |
| 53 | #include <algorithm> |
| 54 | #include <cassert> |
| 55 | #include <iterator> |
| 56 | #include <memory> |
| 57 | #include <utility> |
| 58 | |
| 59 | using namespace llvm; |
| 60 | |
| 61 | #define DEBUG_TYPE "memoryssa" |
| 62 | |
| 63 | static cl::opt<std::string> |
| 64 | DotCFGMSSA("dot-cfg-mssa" , |
| 65 | cl::value_desc("file name for generated dot file" ), |
| 66 | cl::desc("file name for generated dot file" ), cl::init(Val: "" )); |
| 67 | |
| 68 | INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa" , "Memory SSA" , false, |
| 69 | true) |
| 70 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 71 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 72 | INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa" , "Memory SSA" , false, |
| 73 | true) |
| 74 | |
| 75 | static cl::opt<unsigned> MaxCheckLimit( |
| 76 | "memssa-check-limit" , cl::Hidden, cl::init(Val: 100), |
| 77 | cl::desc("The maximum number of stores/phis MemorySSA" |
| 78 | "will consider trying to walk past (default = 100)" )); |
| 79 | |
| 80 | // Always verify MemorySSA if expensive checking is enabled. |
| 81 | #ifdef EXPENSIVE_CHECKS |
| 82 | bool llvm::VerifyMemorySSA = true; |
| 83 | #else |
| 84 | bool llvm::VerifyMemorySSA = false; |
| 85 | #endif |
| 86 | |
| 87 | static cl::opt<bool, true> |
| 88 | VerifyMemorySSAX("verify-memoryssa" , cl::location(L&: VerifyMemorySSA), |
| 89 | cl::Hidden, cl::desc("Enable verification of MemorySSA." )); |
| 90 | |
| 91 | const static char LiveOnEntryStr[] = "liveOnEntry" ; |
| 92 | |
| 93 | namespace { |
| 94 | |
| 95 | /// An assembly annotator class to print Memory SSA information in |
| 96 | /// comments. |
| 97 | class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { |
| 98 | const MemorySSA *MSSA; |
| 99 | |
| 100 | public: |
| 101 | MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} |
| 102 | |
| 103 | void emitBasicBlockStartAnnot(const BasicBlock *BB, |
| 104 | formatted_raw_ostream &OS) override { |
| 105 | if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) |
| 106 | OS << "; " << *MA << "\n" ; |
| 107 | } |
| 108 | |
| 109 | void emitInstructionAnnot(const Instruction *I, |
| 110 | formatted_raw_ostream &OS) override { |
| 111 | if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) |
| 112 | OS << "; " << *MA << "\n" ; |
| 113 | } |
| 114 | }; |
| 115 | |
| 116 | /// An assembly annotator class to print Memory SSA information in |
| 117 | /// comments. |
| 118 | class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter { |
| 119 | MemorySSA *MSSA; |
| 120 | MemorySSAWalker *Walker; |
| 121 | BatchAAResults BAA; |
| 122 | |
| 123 | public: |
| 124 | MemorySSAWalkerAnnotatedWriter(MemorySSA *M) |
| 125 | : MSSA(M), Walker(M->getWalker()), BAA(M->getAA()) {} |
| 126 | |
| 127 | void emitBasicBlockStartAnnot(const BasicBlock *BB, |
| 128 | formatted_raw_ostream &OS) override { |
| 129 | if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) |
| 130 | OS << "; " << *MA << "\n" ; |
| 131 | } |
| 132 | |
| 133 | void emitInstructionAnnot(const Instruction *I, |
| 134 | formatted_raw_ostream &OS) override { |
| 135 | if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) { |
| 136 | MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA, AA&: BAA); |
| 137 | OS << "; " << *MA; |
| 138 | if (Clobber) { |
| 139 | OS << " - clobbered by " ; |
| 140 | if (MSSA->isLiveOnEntryDef(MA: Clobber)) |
| 141 | OS << LiveOnEntryStr; |
| 142 | else |
| 143 | OS << *Clobber; |
| 144 | } |
| 145 | OS << "\n" ; |
| 146 | } |
| 147 | } |
| 148 | }; |
| 149 | |
| 150 | } // namespace |
| 151 | |
| 152 | namespace { |
| 153 | |
| 154 | /// Our current alias analysis API differentiates heavily between calls and |
| 155 | /// non-calls, and functions called on one usually assert on the other. |
| 156 | /// This class encapsulates the distinction to simplify other code that wants |
| 157 | /// "Memory affecting instructions and related data" to use as a key. |
| 158 | /// For example, this class is used as a densemap key in the use optimizer. |
| 159 | class MemoryLocOrCall { |
| 160 | public: |
| 161 | bool IsCall = false; |
| 162 | |
| 163 | MemoryLocOrCall(MemoryUseOrDef *MUD) |
| 164 | : MemoryLocOrCall(MUD->getMemoryInst()) {} |
| 165 | MemoryLocOrCall(const MemoryUseOrDef *MUD) |
| 166 | : MemoryLocOrCall(MUD->getMemoryInst()) {} |
| 167 | |
| 168 | MemoryLocOrCall(Instruction *Inst) { |
| 169 | if (auto *C = dyn_cast<CallBase>(Val: Inst)) { |
| 170 | IsCall = true; |
| 171 | Call = C; |
| 172 | } else { |
| 173 | IsCall = false; |
| 174 | // There is no such thing as a memorylocation for a fence inst, and it is |
| 175 | // unique in that regard. |
| 176 | if (!isa<FenceInst>(Val: Inst)) |
| 177 | Loc = MemoryLocation::get(Inst); |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} |
| 182 | |
| 183 | const CallBase *getCall() const { |
| 184 | assert(IsCall); |
| 185 | return Call; |
| 186 | } |
| 187 | |
| 188 | MemoryLocation getLoc() const { |
| 189 | assert(!IsCall); |
| 190 | return Loc; |
| 191 | } |
| 192 | |
| 193 | bool operator==(const MemoryLocOrCall &Other) const { |
| 194 | if (IsCall != Other.IsCall) |
| 195 | return false; |
| 196 | |
| 197 | if (!IsCall) |
| 198 | return Loc == Other.Loc; |
| 199 | |
| 200 | if (Call->getCalledOperand() != Other.Call->getCalledOperand()) |
| 201 | return false; |
| 202 | |
| 203 | return Call->arg_size() == Other.Call->arg_size() && |
| 204 | std::equal(first1: Call->arg_begin(), last1: Call->arg_end(), |
| 205 | first2: Other.Call->arg_begin()); |
| 206 | } |
| 207 | |
| 208 | private: |
| 209 | union { |
| 210 | const CallBase *Call; |
| 211 | MemoryLocation Loc; |
| 212 | }; |
| 213 | }; |
| 214 | |
| 215 | } // end anonymous namespace |
| 216 | |
| 217 | namespace llvm { |
| 218 | |
| 219 | template <> struct DenseMapInfo<MemoryLocOrCall> { |
| 220 | static inline MemoryLocOrCall getEmptyKey() { |
| 221 | return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); |
| 222 | } |
| 223 | |
| 224 | static inline MemoryLocOrCall getTombstoneKey() { |
| 225 | return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); |
| 226 | } |
| 227 | |
| 228 | static unsigned getHashValue(const MemoryLocOrCall &MLOC) { |
| 229 | if (!MLOC.IsCall) |
| 230 | return hash_combine( |
| 231 | args: MLOC.IsCall, |
| 232 | args: DenseMapInfo<MemoryLocation>::getHashValue(Val: MLOC.getLoc())); |
| 233 | |
| 234 | hash_code hash = |
| 235 | hash_combine(args: MLOC.IsCall, args: DenseMapInfo<const Value *>::getHashValue( |
| 236 | PtrVal: MLOC.getCall()->getCalledOperand())); |
| 237 | |
| 238 | for (const Value *Arg : MLOC.getCall()->args()) |
| 239 | hash = hash_combine(args: hash, args: DenseMapInfo<const Value *>::getHashValue(PtrVal: Arg)); |
| 240 | return hash; |
| 241 | } |
| 242 | |
| 243 | static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { |
| 244 | return LHS == RHS; |
| 245 | } |
| 246 | }; |
| 247 | |
| 248 | } // end namespace llvm |
| 249 | |
| 250 | /// This does one-way checks to see if Use could theoretically be hoisted above |
| 251 | /// MayClobber. This will not check the other way around. |
| 252 | /// |
| 253 | /// This assumes that, for the purposes of MemorySSA, Use comes directly after |
| 254 | /// MayClobber, with no potentially clobbering operations in between them. |
| 255 | /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) |
| 256 | static bool areLoadsReorderable(const LoadInst *Use, |
| 257 | const LoadInst *MayClobber) { |
| 258 | bool VolatileUse = Use->isVolatile(); |
| 259 | bool VolatileClobber = MayClobber->isVolatile(); |
| 260 | // Volatile operations may never be reordered with other volatile operations. |
| 261 | if (VolatileUse && VolatileClobber) |
| 262 | return false; |
| 263 | // Otherwise, volatile doesn't matter here. From the language reference: |
| 264 | // 'optimizers may change the order of volatile operations relative to |
| 265 | // non-volatile operations.'" |
| 266 | |
| 267 | // If a load is seq_cst, it cannot be moved above other loads. If its ordering |
| 268 | // is weaker, it can be moved above other loads. We just need to be sure that |
| 269 | // MayClobber isn't an acquire load, because loads can't be moved above |
| 270 | // acquire loads. |
| 271 | // |
| 272 | // Note that this explicitly *does* allow the free reordering of monotonic (or |
| 273 | // weaker) loads of the same address. |
| 274 | bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; |
| 275 | bool MayClobberIsAcquire = isAtLeastOrStrongerThan(AO: MayClobber->getOrdering(), |
| 276 | Other: AtomicOrdering::Acquire); |
| 277 | return !(SeqCstUse || MayClobberIsAcquire); |
| 278 | } |
| 279 | |
| 280 | template <typename AliasAnalysisType> |
| 281 | static bool |
| 282 | instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, |
| 283 | const Instruction *UseInst, AliasAnalysisType &AA) { |
| 284 | Instruction *DefInst = MD->getMemoryInst(); |
| 285 | assert(DefInst && "Defining instruction not actually an instruction" ); |
| 286 | |
| 287 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: DefInst)) { |
| 288 | // These intrinsics will show up as affecting memory, but they are just |
| 289 | // markers, mostly. |
| 290 | // |
| 291 | // FIXME: We probably don't actually want MemorySSA to model these at all |
| 292 | // (including creating MemoryAccesses for them): we just end up inventing |
| 293 | // clobbers where they don't really exist at all. Please see D43269 for |
| 294 | // context. |
| 295 | switch (II->getIntrinsicID()) { |
| 296 | case Intrinsic::allow_runtime_check: |
| 297 | case Intrinsic::allow_ubsan_check: |
| 298 | case Intrinsic::invariant_start: |
| 299 | case Intrinsic::invariant_end: |
| 300 | case Intrinsic::assume: |
| 301 | case Intrinsic::experimental_noalias_scope_decl: |
| 302 | case Intrinsic::pseudoprobe: |
| 303 | return false; |
| 304 | case Intrinsic::dbg_declare: |
| 305 | case Intrinsic::dbg_label: |
| 306 | case Intrinsic::dbg_value: |
| 307 | llvm_unreachable("debuginfo shouldn't have associated defs!" ); |
| 308 | default: |
| 309 | break; |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | if (auto *CB = dyn_cast_or_null<CallBase>(Val: UseInst)) { |
| 314 | ModRefInfo I = AA.getModRefInfo(DefInst, CB); |
| 315 | return isModOrRefSet(MRI: I); |
| 316 | } |
| 317 | |
| 318 | if (auto *DefLoad = dyn_cast<LoadInst>(Val: DefInst)) |
| 319 | if (auto *UseLoad = dyn_cast_or_null<LoadInst>(Val: UseInst)) |
| 320 | return !areLoadsReorderable(Use: UseLoad, MayClobber: DefLoad); |
| 321 | |
| 322 | ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); |
| 323 | return isModSet(MRI: I); |
| 324 | } |
| 325 | |
| 326 | template <typename AliasAnalysisType> |
| 327 | static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, |
| 328 | const MemoryLocOrCall &UseMLOC, |
| 329 | AliasAnalysisType &AA) { |
| 330 | // FIXME: This is a temporary hack to allow a single instructionClobbersQuery |
| 331 | // to exist while MemoryLocOrCall is pushed through places. |
| 332 | if (UseMLOC.IsCall) |
| 333 | return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), |
| 334 | AA); |
| 335 | return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), |
| 336 | AA); |
| 337 | } |
| 338 | |
| 339 | // Return true when MD may alias MU, return false otherwise. |
| 340 | bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, |
| 341 | AliasAnalysis &AA) { |
| 342 | return instructionClobbersQuery(MD, MU, UseMLOC: MemoryLocOrCall(MU), AA); |
| 343 | } |
| 344 | |
| 345 | namespace { |
| 346 | |
| 347 | struct UpwardsMemoryQuery { |
| 348 | // True if our original query started off as a call |
| 349 | bool IsCall = false; |
| 350 | // The pointer location we started the query with. This will be empty if |
| 351 | // IsCall is true. |
| 352 | MemoryLocation StartingLoc; |
| 353 | // This is the instruction we were querying about. |
| 354 | const Instruction *Inst = nullptr; |
| 355 | // The MemoryAccess we actually got called with, used to test local domination |
| 356 | const MemoryAccess *OriginalAccess = nullptr; |
| 357 | bool SkipSelfAccess = false; |
| 358 | |
| 359 | UpwardsMemoryQuery() = default; |
| 360 | |
| 361 | UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) |
| 362 | : IsCall(isa<CallBase>(Val: Inst)), Inst(Inst), OriginalAccess(Access) { |
| 363 | if (!IsCall) |
| 364 | StartingLoc = MemoryLocation::get(Inst); |
| 365 | } |
| 366 | }; |
| 367 | |
| 368 | } // end anonymous namespace |
| 369 | |
| 370 | template <typename AliasAnalysisType> |
| 371 | static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, |
| 372 | const Instruction *I) { |
| 373 | // If the memory can't be changed, then loads of the memory can't be |
| 374 | // clobbered. |
| 375 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) { |
| 376 | return I->hasMetadata(KindID: LLVMContext::MD_invariant_load) || |
| 377 | !isModSet(AA.getModRefInfoMask(MemoryLocation::get(LI))); |
| 378 | } |
| 379 | return false; |
| 380 | } |
| 381 | |
| 382 | /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing |
| 383 | /// inbetween `Start` and `ClobberAt` can clobbers `Start`. |
| 384 | /// |
| 385 | /// This is meant to be as simple and self-contained as possible. Because it |
| 386 | /// uses no cache, etc., it can be relatively expensive. |
| 387 | /// |
| 388 | /// \param Start The MemoryAccess that we want to walk from. |
| 389 | /// \param ClobberAt A clobber for Start. |
| 390 | /// \param StartLoc The MemoryLocation for Start. |
| 391 | /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. |
| 392 | /// \param Query The UpwardsMemoryQuery we used for our search. |
| 393 | /// \param AA The AliasAnalysis we used for our search. |
| 394 | /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. |
| 395 | |
| 396 | LLVM_ATTRIBUTE_UNUSED static void |
| 397 | checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, |
| 398 | const MemoryLocation &StartLoc, const MemorySSA &MSSA, |
| 399 | const UpwardsMemoryQuery &Query, BatchAAResults &AA, |
| 400 | bool AllowImpreciseClobber = false) { |
| 401 | assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?" ); |
| 402 | |
| 403 | if (MSSA.isLiveOnEntryDef(MA: Start)) { |
| 404 | assert(MSSA.isLiveOnEntryDef(ClobberAt) && |
| 405 | "liveOnEntry must clobber itself" ); |
| 406 | return; |
| 407 | } |
| 408 | |
| 409 | bool FoundClobber = false; |
| 410 | DenseSet<ConstMemoryAccessPair> VisitedPhis; |
| 411 | SmallVector<ConstMemoryAccessPair, 8> Worklist; |
| 412 | Worklist.emplace_back(Args&: Start, Args: StartLoc); |
| 413 | // Walk all paths from Start to ClobberAt, while looking for clobbers. If one |
| 414 | // is found, complain. |
| 415 | while (!Worklist.empty()) { |
| 416 | auto MAP = Worklist.pop_back_val(); |
| 417 | // All we care about is that nothing from Start to ClobberAt clobbers Start. |
| 418 | // We learn nothing from revisiting nodes. |
| 419 | if (!VisitedPhis.insert(V: MAP).second) |
| 420 | continue; |
| 421 | |
| 422 | for (const auto *MA : def_chain(MA: MAP.first)) { |
| 423 | if (MA == ClobberAt) { |
| 424 | if (const auto *MD = dyn_cast<MemoryDef>(Val: MA)) { |
| 425 | // instructionClobbersQuery isn't essentially free, so don't use `|=`, |
| 426 | // since it won't let us short-circuit. |
| 427 | // |
| 428 | // Also, note that this can't be hoisted out of the `Worklist` loop, |
| 429 | // since MD may only act as a clobber for 1 of N MemoryLocations. |
| 430 | FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MA: MD); |
| 431 | if (!FoundClobber) { |
| 432 | if (instructionClobbersQuery(MD, UseLoc: MAP.second, UseInst: Query.Inst, AA)) |
| 433 | FoundClobber = true; |
| 434 | } |
| 435 | } |
| 436 | break; |
| 437 | } |
| 438 | |
| 439 | // We should never hit liveOnEntry, unless it's the clobber. |
| 440 | assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?" ); |
| 441 | |
| 442 | if (const auto *MD = dyn_cast<MemoryDef>(Val: MA)) { |
| 443 | // If Start is a Def, skip self. |
| 444 | if (MD == Start) |
| 445 | continue; |
| 446 | |
| 447 | assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && |
| 448 | "Found clobber before reaching ClobberAt!" ); |
| 449 | continue; |
| 450 | } |
| 451 | |
| 452 | if (const auto *MU = dyn_cast<MemoryUse>(Val: MA)) { |
| 453 | (void)MU; |
| 454 | assert (MU == Start && |
| 455 | "Can only find use in def chain if Start is a use" ); |
| 456 | continue; |
| 457 | } |
| 458 | |
| 459 | assert(isa<MemoryPhi>(MA)); |
| 460 | |
| 461 | // Add reachable phi predecessors |
| 462 | for (auto ItB = upward_defs_begin( |
| 463 | Pair: {const_cast<MemoryAccess *>(MA), MAP.second}, |
| 464 | DT&: MSSA.getDomTree()), |
| 465 | ItE = upward_defs_end(); |
| 466 | ItB != ItE; ++ItB) |
| 467 | if (MSSA.getDomTree().isReachableFromEntry(A: ItB.getPhiArgBlock())) |
| 468 | Worklist.emplace_back(Args: *ItB); |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | // If the verify is done following an optimization, it's possible that |
| 473 | // ClobberAt was a conservative clobbering, that we can now infer is not a |
| 474 | // true clobbering access. Don't fail the verify if that's the case. |
| 475 | // We do have accesses that claim they're optimized, but could be optimized |
| 476 | // further. Updating all these can be expensive, so allow it for now (FIXME). |
| 477 | if (AllowImpreciseClobber) |
| 478 | return; |
| 479 | |
| 480 | // If ClobberAt is a MemoryPhi, we can assume something above it acted as a |
| 481 | // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. |
| 482 | assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && |
| 483 | "ClobberAt never acted as a clobber" ); |
| 484 | } |
| 485 | |
| 486 | namespace { |
| 487 | |
| 488 | /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up |
| 489 | /// in one class. |
| 490 | class ClobberWalker { |
| 491 | /// Save a few bytes by using unsigned instead of size_t. |
| 492 | using ListIndex = unsigned; |
| 493 | |
| 494 | /// Represents a span of contiguous MemoryDefs, potentially ending in a |
| 495 | /// MemoryPhi. |
| 496 | struct DefPath { |
| 497 | MemoryLocation Loc; |
| 498 | // Note that, because we always walk in reverse, Last will always dominate |
| 499 | // First. Also note that First and Last are inclusive. |
| 500 | MemoryAccess *First; |
| 501 | MemoryAccess *Last; |
| 502 | std::optional<ListIndex> Previous; |
| 503 | |
| 504 | DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, |
| 505 | std::optional<ListIndex> Previous) |
| 506 | : Loc(Loc), First(First), Last(Last), Previous(Previous) {} |
| 507 | |
| 508 | DefPath(const MemoryLocation &Loc, MemoryAccess *Init, |
| 509 | std::optional<ListIndex> Previous) |
| 510 | : DefPath(Loc, Init, Init, Previous) {} |
| 511 | }; |
| 512 | |
| 513 | const MemorySSA &MSSA; |
| 514 | DominatorTree &DT; |
| 515 | BatchAAResults *AA; |
| 516 | UpwardsMemoryQuery *Query; |
| 517 | unsigned *UpwardWalkLimit; |
| 518 | |
| 519 | // Phi optimization bookkeeping: |
| 520 | // List of DefPath to process during the current phi optimization walk. |
| 521 | SmallVector<DefPath, 32> Paths; |
| 522 | // List of visited <Access, Location> pairs; we can skip paths already |
| 523 | // visited with the same memory location. |
| 524 | DenseSet<ConstMemoryAccessPair> VisitedPhis; |
| 525 | |
| 526 | /// Find the nearest def or phi that `From` can legally be optimized to. |
| 527 | const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { |
| 528 | assert(From->getNumOperands() && "Phi with no operands?" ); |
| 529 | |
| 530 | BasicBlock *BB = From->getBlock(); |
| 531 | MemoryAccess *Result = MSSA.getLiveOnEntryDef(); |
| 532 | DomTreeNode *Node = DT.getNode(BB); |
| 533 | while ((Node = Node->getIDom())) { |
| 534 | auto *Defs = MSSA.getBlockDefs(BB: Node->getBlock()); |
| 535 | if (Defs) |
| 536 | return &*Defs->rbegin(); |
| 537 | } |
| 538 | return Result; |
| 539 | } |
| 540 | |
| 541 | /// Result of calling walkToPhiOrClobber. |
| 542 | struct UpwardsWalkResult { |
| 543 | /// The "Result" of the walk. Either a clobber, the last thing we walked, or |
| 544 | /// both. Include alias info when clobber found. |
| 545 | MemoryAccess *Result; |
| 546 | bool IsKnownClobber; |
| 547 | }; |
| 548 | |
| 549 | /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. |
| 550 | /// This will update Desc.Last as it walks. It will (optionally) also stop at |
| 551 | /// StopAt. |
| 552 | /// |
| 553 | /// This does not test for whether StopAt is a clobber |
| 554 | UpwardsWalkResult |
| 555 | walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, |
| 556 | const MemoryAccess *SkipStopAt = nullptr) const { |
| 557 | assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world" ); |
| 558 | assert(UpwardWalkLimit && "Need a valid walk limit" ); |
| 559 | bool LimitAlreadyReached = false; |
| 560 | // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set |
| 561 | // it to 1. This will not do any alias() calls. It either returns in the |
| 562 | // first iteration in the loop below, or is set back to 0 if all def chains |
| 563 | // are free of MemoryDefs. |
| 564 | if (!*UpwardWalkLimit) { |
| 565 | *UpwardWalkLimit = 1; |
| 566 | LimitAlreadyReached = true; |
| 567 | } |
| 568 | |
| 569 | for (MemoryAccess *Current : def_chain(MA: Desc.Last)) { |
| 570 | Desc.Last = Current; |
| 571 | if (Current == StopAt || Current == SkipStopAt) |
| 572 | return {.Result: Current, .IsKnownClobber: false}; |
| 573 | |
| 574 | if (auto *MD = dyn_cast<MemoryDef>(Val: Current)) { |
| 575 | if (MSSA.isLiveOnEntryDef(MA: MD)) |
| 576 | return {.Result: MD, .IsKnownClobber: true}; |
| 577 | |
| 578 | if (!--*UpwardWalkLimit) |
| 579 | return {.Result: Current, .IsKnownClobber: true}; |
| 580 | |
| 581 | if (instructionClobbersQuery(MD, UseLoc: Desc.Loc, UseInst: Query->Inst, AA&: *AA)) |
| 582 | return {.Result: MD, .IsKnownClobber: true}; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | if (LimitAlreadyReached) |
| 587 | *UpwardWalkLimit = 0; |
| 588 | |
| 589 | assert(isa<MemoryPhi>(Desc.Last) && |
| 590 | "Ended at a non-clobber that's not a phi?" ); |
| 591 | return {.Result: Desc.Last, .IsKnownClobber: false}; |
| 592 | } |
| 593 | |
| 594 | void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, |
| 595 | ListIndex PriorNode) { |
| 596 | auto UpwardDefsBegin = upward_defs_begin(Pair: {Phi, Paths[PriorNode].Loc}, DT); |
| 597 | auto UpwardDefs = make_range(x: UpwardDefsBegin, y: upward_defs_end()); |
| 598 | for (const MemoryAccessPair &P : UpwardDefs) { |
| 599 | PausedSearches.push_back(Elt: Paths.size()); |
| 600 | Paths.emplace_back(Args: P.second, Args: P.first, Args&: PriorNode); |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | /// Represents a search that terminated after finding a clobber. This clobber |
| 605 | /// may or may not be present in the path of defs from LastNode..SearchStart, |
| 606 | /// since it may have been retrieved from cache. |
| 607 | struct TerminatedPath { |
| 608 | MemoryAccess *Clobber; |
| 609 | ListIndex LastNode; |
| 610 | }; |
| 611 | |
| 612 | /// Get an access that keeps us from optimizing to the given phi. |
| 613 | /// |
| 614 | /// PausedSearches is an array of indices into the Paths array. Its incoming |
| 615 | /// value is the indices of searches that stopped at the last phi optimization |
| 616 | /// target. It's left in an unspecified state. |
| 617 | /// |
| 618 | /// If this returns std::nullopt, NewPaused is a vector of searches that |
| 619 | /// terminated at StopWhere. Otherwise, NewPaused is left in an unspecified |
| 620 | /// state. |
| 621 | std::optional<TerminatedPath> |
| 622 | getBlockingAccess(const MemoryAccess *StopWhere, |
| 623 | SmallVectorImpl<ListIndex> &PausedSearches, |
| 624 | SmallVectorImpl<ListIndex> &NewPaused, |
| 625 | SmallVectorImpl<TerminatedPath> &Terminated) { |
| 626 | assert(!PausedSearches.empty() && "No searches to continue?" ); |
| 627 | |
| 628 | // BFS vs DFS really doesn't make a difference here, so just do a DFS with |
| 629 | // PausedSearches as our stack. |
| 630 | while (!PausedSearches.empty()) { |
| 631 | ListIndex PathIndex = PausedSearches.pop_back_val(); |
| 632 | DefPath &Node = Paths[PathIndex]; |
| 633 | |
| 634 | // If we've already visited this path with this MemoryLocation, we don't |
| 635 | // need to do so again. |
| 636 | // |
| 637 | // NOTE: That we just drop these paths on the ground makes caching |
| 638 | // behavior sporadic. e.g. given a diamond: |
| 639 | // A |
| 640 | // B C |
| 641 | // D |
| 642 | // |
| 643 | // ...If we walk D, B, A, C, we'll only cache the result of phi |
| 644 | // optimization for A, B, and D; C will be skipped because it dies here. |
| 645 | // This arguably isn't the worst thing ever, since: |
| 646 | // - We generally query things in a top-down order, so if we got below D |
| 647 | // without needing cache entries for {C, MemLoc}, then chances are |
| 648 | // that those cache entries would end up ultimately unused. |
| 649 | // - We still cache things for A, so C only needs to walk up a bit. |
| 650 | // If this behavior becomes problematic, we can fix without a ton of extra |
| 651 | // work. |
| 652 | if (!VisitedPhis.insert(V: {Node.Last, Node.Loc}).second) |
| 653 | continue; |
| 654 | |
| 655 | const MemoryAccess *SkipStopWhere = nullptr; |
| 656 | if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { |
| 657 | assert(isa<MemoryDef>(Query->OriginalAccess)); |
| 658 | SkipStopWhere = Query->OriginalAccess; |
| 659 | } |
| 660 | |
| 661 | UpwardsWalkResult Res = walkToPhiOrClobber(Desc&: Node, |
| 662 | /*StopAt=*/StopWhere, |
| 663 | /*SkipStopAt=*/SkipStopWhere); |
| 664 | if (Res.IsKnownClobber) { |
| 665 | assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); |
| 666 | |
| 667 | // If this wasn't a cache hit, we hit a clobber when walking. That's a |
| 668 | // failure. |
| 669 | TerminatedPath Term{.Clobber: Res.Result, .LastNode: PathIndex}; |
| 670 | if (!MSSA.dominates(A: Res.Result, B: StopWhere)) |
| 671 | return Term; |
| 672 | |
| 673 | // Otherwise, it's a valid thing to potentially optimize to. |
| 674 | Terminated.push_back(Elt: Term); |
| 675 | continue; |
| 676 | } |
| 677 | |
| 678 | if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { |
| 679 | // We've hit our target. Save this path off for if we want to continue |
| 680 | // walking. If we are in the mode of skipping the OriginalAccess, and |
| 681 | // we've reached back to the OriginalAccess, do not save path, we've |
| 682 | // just looped back to self. |
| 683 | if (Res.Result != SkipStopWhere) |
| 684 | NewPaused.push_back(Elt: PathIndex); |
| 685 | continue; |
| 686 | } |
| 687 | |
| 688 | assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber" ); |
| 689 | addSearches(Phi: cast<MemoryPhi>(Val: Res.Result), PausedSearches, PriorNode: PathIndex); |
| 690 | } |
| 691 | |
| 692 | return std::nullopt; |
| 693 | } |
| 694 | |
| 695 | template <typename T, typename Walker> |
| 696 | struct generic_def_path_iterator |
| 697 | : public iterator_facade_base<generic_def_path_iterator<T, Walker>, |
| 698 | std::forward_iterator_tag, T *> { |
| 699 | generic_def_path_iterator() = default; |
| 700 | generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} |
| 701 | |
| 702 | T &operator*() const { return curNode(); } |
| 703 | |
| 704 | generic_def_path_iterator &operator++() { |
| 705 | N = curNode().Previous; |
| 706 | return *this; |
| 707 | } |
| 708 | |
| 709 | bool operator==(const generic_def_path_iterator &O) const { |
| 710 | if (N.has_value() != O.N.has_value()) |
| 711 | return false; |
| 712 | return !N || *N == *O.N; |
| 713 | } |
| 714 | |
| 715 | private: |
| 716 | T &curNode() const { return W->Paths[*N]; } |
| 717 | |
| 718 | Walker *W = nullptr; |
| 719 | std::optional<ListIndex> N; |
| 720 | }; |
| 721 | |
| 722 | using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; |
| 723 | using const_def_path_iterator = |
| 724 | generic_def_path_iterator<const DefPath, const ClobberWalker>; |
| 725 | |
| 726 | iterator_range<def_path_iterator> def_path(ListIndex From) { |
| 727 | return make_range(x: def_path_iterator(this, From), y: def_path_iterator()); |
| 728 | } |
| 729 | |
| 730 | iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { |
| 731 | return make_range(x: const_def_path_iterator(this, From), |
| 732 | y: const_def_path_iterator()); |
| 733 | } |
| 734 | |
| 735 | struct OptznResult { |
| 736 | /// The path that contains our result. |
| 737 | TerminatedPath PrimaryClobber; |
| 738 | /// The paths that we can legally cache back from, but that aren't |
| 739 | /// necessarily the result of the Phi optimization. |
| 740 | SmallVector<TerminatedPath, 4> OtherClobbers; |
| 741 | }; |
| 742 | |
| 743 | ListIndex defPathIndex(const DefPath &N) const { |
| 744 | // The assert looks nicer if we don't need to do &N |
| 745 | const DefPath *NP = &N; |
| 746 | assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && |
| 747 | "Out of bounds DefPath!" ); |
| 748 | return NP - &Paths.front(); |
| 749 | } |
| 750 | |
| 751 | /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths |
| 752 | /// that act as legal clobbers. Note that this won't return *all* clobbers. |
| 753 | /// |
| 754 | /// Phi optimization algorithm tl;dr: |
| 755 | /// - Find the earliest def/phi, A, we can optimize to |
| 756 | /// - Find if all paths from the starting memory access ultimately reach A |
| 757 | /// - If not, optimization isn't possible. |
| 758 | /// - Otherwise, walk from A to another clobber or phi, A'. |
| 759 | /// - If A' is a def, we're done. |
| 760 | /// - If A' is a phi, try to optimize it. |
| 761 | /// |
| 762 | /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path |
| 763 | /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. |
| 764 | OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, |
| 765 | const MemoryLocation &Loc) { |
| 766 | assert(Paths.empty() && VisitedPhis.empty() && |
| 767 | "Reset the optimization state." ); |
| 768 | |
| 769 | Paths.emplace_back(Args: Loc, Args&: Start, Args&: Phi, Args: std::nullopt); |
| 770 | // Stores how many "valid" optimization nodes we had prior to calling |
| 771 | // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. |
| 772 | auto PriorPathsSize = Paths.size(); |
| 773 | |
| 774 | SmallVector<ListIndex, 16> PausedSearches; |
| 775 | SmallVector<ListIndex, 8> NewPaused; |
| 776 | SmallVector<TerminatedPath, 4> TerminatedPaths; |
| 777 | |
| 778 | addSearches(Phi, PausedSearches, PriorNode: 0); |
| 779 | |
| 780 | // Moves the TerminatedPath with the "most dominated" Clobber to the end of |
| 781 | // Paths. |
| 782 | auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { |
| 783 | assert(!Paths.empty() && "Need a path to move" ); |
| 784 | auto Dom = Paths.begin(); |
| 785 | for (auto I = std::next(x: Dom), E = Paths.end(); I != E; ++I) |
| 786 | if (!MSSA.dominates(A: I->Clobber, B: Dom->Clobber)) |
| 787 | Dom = I; |
| 788 | auto Last = Paths.end() - 1; |
| 789 | if (Last != Dom) |
| 790 | std::iter_swap(a: Last, b: Dom); |
| 791 | }; |
| 792 | |
| 793 | MemoryPhi *Current = Phi; |
| 794 | while (true) { |
| 795 | assert(!MSSA.isLiveOnEntryDef(Current) && |
| 796 | "liveOnEntry wasn't treated as a clobber?" ); |
| 797 | |
| 798 | const auto *Target = getWalkTarget(From: Current); |
| 799 | // If a TerminatedPath doesn't dominate Target, then it wasn't a legal |
| 800 | // optimization for the prior phi. |
| 801 | assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { |
| 802 | return MSSA.dominates(P.Clobber, Target); |
| 803 | })); |
| 804 | |
| 805 | // FIXME: This is broken, because the Blocker may be reported to be |
| 806 | // liveOnEntry, and we'll happily wait for that to disappear (read: never) |
| 807 | // For the moment, this is fine, since we do nothing with blocker info. |
| 808 | if (std::optional<TerminatedPath> Blocker = getBlockingAccess( |
| 809 | StopWhere: Target, PausedSearches, NewPaused, Terminated&: TerminatedPaths)) { |
| 810 | |
| 811 | // Find the node we started at. We can't search based on N->Last, since |
| 812 | // we may have gone around a loop with a different MemoryLocation. |
| 813 | auto Iter = find_if(Range: def_path(From: Blocker->LastNode), P: [&](const DefPath &N) { |
| 814 | return defPathIndex(N) < PriorPathsSize; |
| 815 | }); |
| 816 | assert(Iter != def_path_iterator()); |
| 817 | |
| 818 | DefPath &CurNode = *Iter; |
| 819 | assert(CurNode.Last == Current); |
| 820 | |
| 821 | // Two things: |
| 822 | // A. We can't reliably cache all of NewPaused back. Consider a case |
| 823 | // where we have two paths in NewPaused; one of which can't optimize |
| 824 | // above this phi, whereas the other can. If we cache the second path |
| 825 | // back, we'll end up with suboptimal cache entries. We can handle |
| 826 | // cases like this a bit better when we either try to find all |
| 827 | // clobbers that block phi optimization, or when our cache starts |
| 828 | // supporting unfinished searches. |
| 829 | // B. We can't reliably cache TerminatedPaths back here without doing |
| 830 | // extra checks; consider a case like: |
| 831 | // T |
| 832 | // / \ |
| 833 | // D C |
| 834 | // \ / |
| 835 | // S |
| 836 | // Where T is our target, C is a node with a clobber on it, D is a |
| 837 | // diamond (with a clobber *only* on the left or right node, N), and |
| 838 | // S is our start. Say we walk to D, through the node opposite N |
| 839 | // (read: ignoring the clobber), and see a cache entry in the top |
| 840 | // node of D. That cache entry gets put into TerminatedPaths. We then |
| 841 | // walk up to C (N is later in our worklist), find the clobber, and |
| 842 | // quit. If we append TerminatedPaths to OtherClobbers, we'll cache |
| 843 | // the bottom part of D to the cached clobber, ignoring the clobber |
| 844 | // in N. Again, this problem goes away if we start tracking all |
| 845 | // blockers for a given phi optimization. |
| 846 | TerminatedPath Result{.Clobber: CurNode.Last, .LastNode: defPathIndex(N: CurNode)}; |
| 847 | return {.PrimaryClobber: Result, .OtherClobbers: {}}; |
| 848 | } |
| 849 | |
| 850 | // If there's nothing left to search, then all paths led to valid clobbers |
| 851 | // that we got from our cache; pick the nearest to the start, and allow |
| 852 | // the rest to be cached back. |
| 853 | if (NewPaused.empty()) { |
| 854 | MoveDominatedPathToEnd(TerminatedPaths); |
| 855 | TerminatedPath Result = TerminatedPaths.pop_back_val(); |
| 856 | return {.PrimaryClobber: Result, .OtherClobbers: std::move(TerminatedPaths)}; |
| 857 | } |
| 858 | |
| 859 | MemoryAccess *DefChainEnd = nullptr; |
| 860 | SmallVector<TerminatedPath, 4> Clobbers; |
| 861 | for (ListIndex Paused : NewPaused) { |
| 862 | UpwardsWalkResult WR = walkToPhiOrClobber(Desc&: Paths[Paused]); |
| 863 | if (WR.IsKnownClobber) |
| 864 | Clobbers.push_back(Elt: {.Clobber: WR.Result, .LastNode: Paused}); |
| 865 | else |
| 866 | // Micro-opt: If we hit the end of the chain, save it. |
| 867 | DefChainEnd = WR.Result; |
| 868 | } |
| 869 | |
| 870 | if (!TerminatedPaths.empty()) { |
| 871 | // If we couldn't find the dominating phi/liveOnEntry in the above loop, |
| 872 | // do it now. |
| 873 | if (!DefChainEnd) |
| 874 | for (auto *MA : def_chain(MA: const_cast<MemoryAccess *>(Target))) |
| 875 | DefChainEnd = MA; |
| 876 | assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry" ); |
| 877 | |
| 878 | // If any of the terminated paths don't dominate the phi we'll try to |
| 879 | // optimize, we need to figure out what they are and quit. |
| 880 | const BasicBlock *ChainBB = DefChainEnd->getBlock(); |
| 881 | for (const TerminatedPath &TP : TerminatedPaths) { |
| 882 | // Because we know that DefChainEnd is as "high" as we can go, we |
| 883 | // don't need local dominance checks; BB dominance is sufficient. |
| 884 | if (DT.dominates(A: ChainBB, B: TP.Clobber->getBlock())) |
| 885 | Clobbers.push_back(Elt: TP); |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | // If we have clobbers in the def chain, find the one closest to Current |
| 890 | // and quit. |
| 891 | if (!Clobbers.empty()) { |
| 892 | MoveDominatedPathToEnd(Clobbers); |
| 893 | TerminatedPath Result = Clobbers.pop_back_val(); |
| 894 | return {.PrimaryClobber: Result, .OtherClobbers: std::move(Clobbers)}; |
| 895 | } |
| 896 | |
| 897 | assert(all_of(NewPaused, |
| 898 | [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); |
| 899 | |
| 900 | // Because liveOnEntry is a clobber, this must be a phi. |
| 901 | auto *DefChainPhi = cast<MemoryPhi>(Val: DefChainEnd); |
| 902 | |
| 903 | PriorPathsSize = Paths.size(); |
| 904 | PausedSearches.clear(); |
| 905 | for (ListIndex I : NewPaused) |
| 906 | addSearches(Phi: DefChainPhi, PausedSearches, PriorNode: I); |
| 907 | NewPaused.clear(); |
| 908 | |
| 909 | Current = DefChainPhi; |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | void verifyOptResult(const OptznResult &R) const { |
| 914 | assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { |
| 915 | return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); |
| 916 | })); |
| 917 | } |
| 918 | |
| 919 | void resetPhiOptznState() { |
| 920 | Paths.clear(); |
| 921 | VisitedPhis.clear(); |
| 922 | } |
| 923 | |
| 924 | public: |
| 925 | ClobberWalker(const MemorySSA &MSSA, DominatorTree &DT) |
| 926 | : MSSA(MSSA), DT(DT) {} |
| 927 | |
| 928 | /// Finds the nearest clobber for the given query, optimizing phis if |
| 929 | /// possible. |
| 930 | MemoryAccess *findClobber(BatchAAResults &BAA, MemoryAccess *Start, |
| 931 | UpwardsMemoryQuery &Q, unsigned &UpWalkLimit) { |
| 932 | AA = &BAA; |
| 933 | Query = &Q; |
| 934 | UpwardWalkLimit = &UpWalkLimit; |
| 935 | // Starting limit must be > 0. |
| 936 | if (!UpWalkLimit) |
| 937 | UpWalkLimit++; |
| 938 | |
| 939 | MemoryAccess *Current = Start; |
| 940 | // This walker pretends uses don't exist. If we're handed one, silently grab |
| 941 | // its def. (This has the nice side-effect of ensuring we never cache uses) |
| 942 | if (auto *MU = dyn_cast<MemoryUse>(Val: Start)) |
| 943 | Current = MU->getDefiningAccess(); |
| 944 | |
| 945 | DefPath FirstDesc(Q.StartingLoc, Current, Current, std::nullopt); |
| 946 | // Fast path for the overly-common case (no crazy phi optimization |
| 947 | // necessary) |
| 948 | UpwardsWalkResult WalkResult = walkToPhiOrClobber(Desc&: FirstDesc); |
| 949 | MemoryAccess *Result; |
| 950 | if (WalkResult.IsKnownClobber) { |
| 951 | Result = WalkResult.Result; |
| 952 | } else { |
| 953 | OptznResult OptRes = tryOptimizePhi(Phi: cast<MemoryPhi>(Val: FirstDesc.Last), |
| 954 | Start: Current, Loc: Q.StartingLoc); |
| 955 | verifyOptResult(R: OptRes); |
| 956 | resetPhiOptznState(); |
| 957 | Result = OptRes.PrimaryClobber.Clobber; |
| 958 | } |
| 959 | |
| 960 | #ifdef EXPENSIVE_CHECKS |
| 961 | if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) |
| 962 | checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, BAA); |
| 963 | #endif |
| 964 | return Result; |
| 965 | } |
| 966 | }; |
| 967 | |
| 968 | struct RenamePassData { |
| 969 | DomTreeNode *DTN; |
| 970 | DomTreeNode::const_iterator ChildIt; |
| 971 | MemoryAccess *IncomingVal; |
| 972 | |
| 973 | RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, |
| 974 | MemoryAccess *M) |
| 975 | : DTN(D), ChildIt(It), IncomingVal(M) {} |
| 976 | |
| 977 | void swap(RenamePassData &RHS) { |
| 978 | std::swap(a&: DTN, b&: RHS.DTN); |
| 979 | std::swap(a&: ChildIt, b&: RHS.ChildIt); |
| 980 | std::swap(a&: IncomingVal, b&: RHS.IncomingVal); |
| 981 | } |
| 982 | }; |
| 983 | |
| 984 | } // end anonymous namespace |
| 985 | |
| 986 | namespace llvm { |
| 987 | |
| 988 | class MemorySSA::ClobberWalkerBase { |
| 989 | ClobberWalker Walker; |
| 990 | MemorySSA *MSSA; |
| 991 | |
| 992 | public: |
| 993 | ClobberWalkerBase(MemorySSA *M, DominatorTree *D) : Walker(*M, *D), MSSA(M) {} |
| 994 | |
| 995 | MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, |
| 996 | const MemoryLocation &, |
| 997 | BatchAAResults &, unsigned &); |
| 998 | // Third argument (bool), defines whether the clobber search should skip the |
| 999 | // original queried access. If true, there will be a follow-up query searching |
| 1000 | // for a clobber access past "self". Note that the Optimized access is not |
| 1001 | // updated if a new clobber is found by this SkipSelf search. If this |
| 1002 | // additional query becomes heavily used we may decide to cache the result. |
| 1003 | // Walker instantiations will decide how to set the SkipSelf bool. |
| 1004 | MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, BatchAAResults &, |
| 1005 | unsigned &, bool, |
| 1006 | bool UseInvariantGroup = true); |
| 1007 | }; |
| 1008 | |
| 1009 | /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no |
| 1010 | /// longer does caching on its own, but the name has been retained for the |
| 1011 | /// moment. |
| 1012 | class MemorySSA::CachingWalker final : public MemorySSAWalker { |
| 1013 | ClobberWalkerBase *Walker; |
| 1014 | |
| 1015 | public: |
| 1016 | CachingWalker(MemorySSA *M, ClobberWalkerBase *W) |
| 1017 | : MemorySSAWalker(M), Walker(W) {} |
| 1018 | ~CachingWalker() override = default; |
| 1019 | |
| 1020 | using MemorySSAWalker::getClobberingMemoryAccess; |
| 1021 | |
| 1022 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA, |
| 1023 | unsigned &UWL) { |
| 1024 | return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false); |
| 1025 | } |
| 1026 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, |
| 1027 | const MemoryLocation &Loc, |
| 1028 | BatchAAResults &BAA, unsigned &UWL) { |
| 1029 | return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL); |
| 1030 | } |
| 1031 | // This method is not accessible outside of this file. |
| 1032 | MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup( |
| 1033 | MemoryAccess *MA, BatchAAResults &BAA, unsigned &UWL) { |
| 1034 | return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false, UseInvariantGroup: false); |
| 1035 | } |
| 1036 | |
| 1037 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, |
| 1038 | BatchAAResults &BAA) override { |
| 1039 | unsigned UpwardWalkLimit = MaxCheckLimit; |
| 1040 | return getClobberingMemoryAccess(MA, BAA, UWL&: UpwardWalkLimit); |
| 1041 | } |
| 1042 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, |
| 1043 | const MemoryLocation &Loc, |
| 1044 | BatchAAResults &BAA) override { |
| 1045 | unsigned UpwardWalkLimit = MaxCheckLimit; |
| 1046 | return getClobberingMemoryAccess(MA, Loc, BAA, UWL&: UpwardWalkLimit); |
| 1047 | } |
| 1048 | |
| 1049 | void invalidateInfo(MemoryAccess *MA) override { |
| 1050 | if (auto *MUD = dyn_cast<MemoryUseOrDef>(Val: MA)) |
| 1051 | MUD->resetOptimized(); |
| 1052 | } |
| 1053 | }; |
| 1054 | |
| 1055 | class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { |
| 1056 | ClobberWalkerBase *Walker; |
| 1057 | |
| 1058 | public: |
| 1059 | SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W) |
| 1060 | : MemorySSAWalker(M), Walker(W) {} |
| 1061 | ~SkipSelfWalker() override = default; |
| 1062 | |
| 1063 | using MemorySSAWalker::getClobberingMemoryAccess; |
| 1064 | |
| 1065 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA, |
| 1066 | unsigned &UWL) { |
| 1067 | return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, true); |
| 1068 | } |
| 1069 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, |
| 1070 | const MemoryLocation &Loc, |
| 1071 | BatchAAResults &BAA, unsigned &UWL) { |
| 1072 | return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL); |
| 1073 | } |
| 1074 | |
| 1075 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, |
| 1076 | BatchAAResults &BAA) override { |
| 1077 | unsigned UpwardWalkLimit = MaxCheckLimit; |
| 1078 | return getClobberingMemoryAccess(MA, BAA, UWL&: UpwardWalkLimit); |
| 1079 | } |
| 1080 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, |
| 1081 | const MemoryLocation &Loc, |
| 1082 | BatchAAResults &BAA) override { |
| 1083 | unsigned UpwardWalkLimit = MaxCheckLimit; |
| 1084 | return getClobberingMemoryAccess(MA, Loc, BAA, UWL&: UpwardWalkLimit); |
| 1085 | } |
| 1086 | |
| 1087 | void invalidateInfo(MemoryAccess *MA) override { |
| 1088 | if (auto *MUD = dyn_cast<MemoryUseOrDef>(Val: MA)) |
| 1089 | MUD->resetOptimized(); |
| 1090 | } |
| 1091 | }; |
| 1092 | |
| 1093 | } // end namespace llvm |
| 1094 | |
| 1095 | void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, |
| 1096 | bool RenameAllUses) { |
| 1097 | // Pass through values to our successors |
| 1098 | for (const BasicBlock *S : successors(BB)) { |
| 1099 | auto It = PerBlockAccesses.find(Val: S); |
| 1100 | // Rename the phi nodes in our successor block |
| 1101 | if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(Val: It->second->front())) |
| 1102 | continue; |
| 1103 | AccessList *Accesses = It->second.get(); |
| 1104 | auto *Phi = cast<MemoryPhi>(Val: &Accesses->front()); |
| 1105 | if (RenameAllUses) { |
| 1106 | bool ReplacementDone = false; |
| 1107 | for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) |
| 1108 | if (Phi->getIncomingBlock(I) == BB) { |
| 1109 | Phi->setIncomingValue(I, V: IncomingVal); |
| 1110 | ReplacementDone = true; |
| 1111 | } |
| 1112 | (void) ReplacementDone; |
| 1113 | assert(ReplacementDone && "Incomplete phi during partial rename" ); |
| 1114 | } else |
| 1115 | Phi->addIncoming(V: IncomingVal, BB); |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | /// Rename a single basic block into MemorySSA form. |
| 1120 | /// Uses the standard SSA renaming algorithm. |
| 1121 | /// \returns The new incoming value. |
| 1122 | MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, |
| 1123 | bool RenameAllUses) { |
| 1124 | auto It = PerBlockAccesses.find(Val: BB); |
| 1125 | // Skip most processing if the list is empty. |
| 1126 | if (It != PerBlockAccesses.end()) { |
| 1127 | AccessList *Accesses = It->second.get(); |
| 1128 | for (MemoryAccess &L : *Accesses) { |
| 1129 | if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(Val: &L)) { |
| 1130 | if (MUD->getDefiningAccess() == nullptr || RenameAllUses) |
| 1131 | MUD->setDefiningAccess(DMA: IncomingVal); |
| 1132 | if (isa<MemoryDef>(Val: &L)) |
| 1133 | IncomingVal = &L; |
| 1134 | } else { |
| 1135 | IncomingVal = &L; |
| 1136 | } |
| 1137 | } |
| 1138 | } |
| 1139 | return IncomingVal; |
| 1140 | } |
| 1141 | |
| 1142 | /// This is the standard SSA renaming algorithm. |
| 1143 | /// |
| 1144 | /// We walk the dominator tree in preorder, renaming accesses, and then filling |
| 1145 | /// in phi nodes in our successors. |
| 1146 | void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, |
| 1147 | SmallPtrSetImpl<BasicBlock *> &Visited, |
| 1148 | bool SkipVisited, bool RenameAllUses) { |
| 1149 | assert(Root && "Trying to rename accesses in an unreachable block" ); |
| 1150 | |
| 1151 | SmallVector<RenamePassData, 32> WorkStack; |
| 1152 | // Skip everything if we already renamed this block and we are skipping. |
| 1153 | // Note: You can't sink this into the if, because we need it to occur |
| 1154 | // regardless of whether we skip blocks or not. |
| 1155 | bool AlreadyVisited = !Visited.insert(Ptr: Root->getBlock()).second; |
| 1156 | if (SkipVisited && AlreadyVisited) |
| 1157 | return; |
| 1158 | |
| 1159 | IncomingVal = renameBlock(BB: Root->getBlock(), IncomingVal, RenameAllUses); |
| 1160 | renameSuccessorPhis(BB: Root->getBlock(), IncomingVal, RenameAllUses); |
| 1161 | WorkStack.push_back(Elt: {Root, Root->begin(), IncomingVal}); |
| 1162 | |
| 1163 | while (!WorkStack.empty()) { |
| 1164 | DomTreeNode *Node = WorkStack.back().DTN; |
| 1165 | DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; |
| 1166 | IncomingVal = WorkStack.back().IncomingVal; |
| 1167 | |
| 1168 | if (ChildIt == Node->end()) { |
| 1169 | WorkStack.pop_back(); |
| 1170 | } else { |
| 1171 | DomTreeNode *Child = *ChildIt; |
| 1172 | ++WorkStack.back().ChildIt; |
| 1173 | BasicBlock *BB = Child->getBlock(); |
| 1174 | // Note: You can't sink this into the if, because we need it to occur |
| 1175 | // regardless of whether we skip blocks or not. |
| 1176 | AlreadyVisited = !Visited.insert(Ptr: BB).second; |
| 1177 | if (SkipVisited && AlreadyVisited) { |
| 1178 | // We already visited this during our renaming, which can happen when |
| 1179 | // being asked to rename multiple blocks. Figure out the incoming val, |
| 1180 | // which is the last def. |
| 1181 | // Incoming value can only change if there is a block def, and in that |
| 1182 | // case, it's the last block def in the list. |
| 1183 | if (auto *BlockDefs = getWritableBlockDefs(BB)) |
| 1184 | IncomingVal = &*BlockDefs->rbegin(); |
| 1185 | } else |
| 1186 | IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); |
| 1187 | renameSuccessorPhis(BB, IncomingVal, RenameAllUses); |
| 1188 | WorkStack.push_back(Elt: {Child, Child->begin(), IncomingVal}); |
| 1189 | } |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | /// This handles unreachable block accesses by deleting phi nodes in |
| 1194 | /// unreachable blocks, and marking all other unreachable MemoryAccess's as |
| 1195 | /// being uses of the live on entry definition. |
| 1196 | void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { |
| 1197 | assert(!DT->isReachableFromEntry(BB) && |
| 1198 | "Reachable block found while handling unreachable blocks" ); |
| 1199 | |
| 1200 | // Make sure phi nodes in our reachable successors end up with a |
| 1201 | // LiveOnEntryDef for our incoming edge, even though our block is forward |
| 1202 | // unreachable. We could just disconnect these blocks from the CFG fully, |
| 1203 | // but we do not right now. |
| 1204 | for (const BasicBlock *S : successors(BB)) { |
| 1205 | if (!DT->isReachableFromEntry(A: S)) |
| 1206 | continue; |
| 1207 | auto It = PerBlockAccesses.find(Val: S); |
| 1208 | // Rename the phi nodes in our successor block |
| 1209 | if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(Val: It->second->front())) |
| 1210 | continue; |
| 1211 | AccessList *Accesses = It->second.get(); |
| 1212 | auto *Phi = cast<MemoryPhi>(Val: &Accesses->front()); |
| 1213 | Phi->addIncoming(V: LiveOnEntryDef.get(), BB); |
| 1214 | } |
| 1215 | |
| 1216 | auto It = PerBlockAccesses.find(Val: BB); |
| 1217 | if (It == PerBlockAccesses.end()) |
| 1218 | return; |
| 1219 | |
| 1220 | auto &Accesses = It->second; |
| 1221 | for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { |
| 1222 | auto Next = std::next(x: AI); |
| 1223 | // If we have a phi, just remove it. We are going to replace all |
| 1224 | // users with live on entry. |
| 1225 | if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(Val&: AI)) |
| 1226 | UseOrDef->setDefiningAccess(DMA: LiveOnEntryDef.get()); |
| 1227 | else |
| 1228 | Accesses->erase(where: AI); |
| 1229 | AI = Next; |
| 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) |
| 1234 | : DT(DT), F(&Func), LiveOnEntryDef(nullptr), Walker(nullptr), |
| 1235 | SkipWalker(nullptr) { |
| 1236 | // Build MemorySSA using a batch alias analysis. This reuses the internal |
| 1237 | // state that AA collects during an alias()/getModRefInfo() call. This is |
| 1238 | // safe because there are no CFG changes while building MemorySSA and can |
| 1239 | // significantly reduce the time spent by the compiler in AA, because we will |
| 1240 | // make queries about all the instructions in the Function. |
| 1241 | assert(AA && "No alias analysis?" ); |
| 1242 | BatchAAResults BatchAA(*AA); |
| 1243 | buildMemorySSA(BAA&: BatchAA, Blocks: iterator_range(F->begin(), F->end())); |
| 1244 | // Intentionally leave AA to nullptr while building so we don't accidentally |
| 1245 | // use non-batch AliasAnalysis. |
| 1246 | this->AA = AA; |
| 1247 | // Also create the walker here. |
| 1248 | getWalker(); |
| 1249 | } |
| 1250 | |
| 1251 | MemorySSA::MemorySSA(Loop &L, AliasAnalysis *AA, DominatorTree *DT) |
| 1252 | : DT(DT), L(&L), LiveOnEntryDef(nullptr), Walker(nullptr), |
| 1253 | SkipWalker(nullptr) { |
| 1254 | // Build MemorySSA using a batch alias analysis. This reuses the internal |
| 1255 | // state that AA collects during an alias()/getModRefInfo() call. This is |
| 1256 | // safe because there are no CFG changes while building MemorySSA and can |
| 1257 | // significantly reduce the time spent by the compiler in AA, because we will |
| 1258 | // make queries about all the instructions in the Function. |
| 1259 | assert(AA && "No alias analysis?" ); |
| 1260 | BatchAAResults BatchAA(*AA); |
| 1261 | buildMemorySSA( |
| 1262 | BAA&: BatchAA, Blocks: map_range(C: L.blocks(), F: [](const BasicBlock *BB) -> BasicBlock & { |
| 1263 | return *const_cast<BasicBlock *>(BB); |
| 1264 | })); |
| 1265 | // Intentionally leave AA to nullptr while building so we don't accidentally |
| 1266 | // use non-batch AliasAnalysis. |
| 1267 | this->AA = AA; |
| 1268 | // Also create the walker here. |
| 1269 | getWalker(); |
| 1270 | } |
| 1271 | |
| 1272 | MemorySSA::~MemorySSA() { |
| 1273 | // Drop all our references |
| 1274 | for (const auto &Pair : PerBlockAccesses) |
| 1275 | for (MemoryAccess &MA : *Pair.second) |
| 1276 | MA.dropAllReferences(); |
| 1277 | } |
| 1278 | |
| 1279 | MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { |
| 1280 | auto Res = PerBlockAccesses.try_emplace(Key: BB); |
| 1281 | |
| 1282 | if (Res.second) |
| 1283 | Res.first->second = std::make_unique<AccessList>(); |
| 1284 | return Res.first->second.get(); |
| 1285 | } |
| 1286 | |
| 1287 | MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { |
| 1288 | auto Res = PerBlockDefs.try_emplace(Key: BB); |
| 1289 | |
| 1290 | if (Res.second) |
| 1291 | Res.first->second = std::make_unique<DefsList>(); |
| 1292 | return Res.first->second.get(); |
| 1293 | } |
| 1294 | |
| 1295 | namespace llvm { |
| 1296 | |
| 1297 | /// This class is a batch walker of all MemoryUse's in the program, and points |
| 1298 | /// their defining access at the thing that actually clobbers them. Because it |
| 1299 | /// is a batch walker that touches everything, it does not operate like the |
| 1300 | /// other walkers. This walker is basically performing a top-down SSA renaming |
| 1301 | /// pass, where the version stack is used as the cache. This enables it to be |
| 1302 | /// significantly more time and memory efficient than using the regular walker, |
| 1303 | /// which is walking bottom-up. |
| 1304 | class MemorySSA::OptimizeUses { |
| 1305 | public: |
| 1306 | OptimizeUses(MemorySSA *MSSA, CachingWalker *Walker, BatchAAResults *BAA, |
| 1307 | DominatorTree *DT) |
| 1308 | : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} |
| 1309 | |
| 1310 | void optimizeUses(); |
| 1311 | |
| 1312 | private: |
| 1313 | /// This represents where a given memorylocation is in the stack. |
| 1314 | struct MemlocStackInfo { |
| 1315 | // This essentially is keeping track of versions of the stack. Whenever |
| 1316 | // the stack changes due to pushes or pops, these versions increase. |
| 1317 | unsigned long StackEpoch; |
| 1318 | unsigned long PopEpoch; |
| 1319 | // This is the lower bound of places on the stack to check. It is equal to |
| 1320 | // the place the last stack walk ended. |
| 1321 | // Note: Correctness depends on this being initialized to 0, which densemap |
| 1322 | // does |
| 1323 | unsigned long LowerBound; |
| 1324 | const BasicBlock *LowerBoundBlock; |
| 1325 | // This is where the last walk for this memory location ended. |
| 1326 | unsigned long LastKill; |
| 1327 | bool LastKillValid; |
| 1328 | }; |
| 1329 | |
| 1330 | void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, |
| 1331 | SmallVectorImpl<MemoryAccess *> &, |
| 1332 | DenseMap<MemoryLocOrCall, MemlocStackInfo> &); |
| 1333 | |
| 1334 | MemorySSA *MSSA; |
| 1335 | CachingWalker *Walker; |
| 1336 | BatchAAResults *AA; |
| 1337 | DominatorTree *DT; |
| 1338 | }; |
| 1339 | |
| 1340 | } // end namespace llvm |
| 1341 | |
| 1342 | /// Optimize the uses in a given block This is basically the SSA renaming |
| 1343 | /// algorithm, with one caveat: We are able to use a single stack for all |
| 1344 | /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is |
| 1345 | /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just |
| 1346 | /// going to be some position in that stack of possible ones. |
| 1347 | /// |
| 1348 | /// We track the stack positions that each MemoryLocation needs |
| 1349 | /// to check, and last ended at. This is because we only want to check the |
| 1350 | /// things that changed since last time. The same MemoryLocation should |
| 1351 | /// get clobbered by the same store (getModRefInfo does not use invariantness or |
| 1352 | /// things like this, and if they start, we can modify MemoryLocOrCall to |
| 1353 | /// include relevant data) |
| 1354 | void MemorySSA::OptimizeUses::optimizeUsesInBlock( |
| 1355 | const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, |
| 1356 | SmallVectorImpl<MemoryAccess *> &VersionStack, |
| 1357 | DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { |
| 1358 | |
| 1359 | /// If no accesses, nothing to do. |
| 1360 | MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); |
| 1361 | if (Accesses == nullptr) |
| 1362 | return; |
| 1363 | |
| 1364 | // Pop everything that doesn't dominate the current block off the stack, |
| 1365 | // increment the PopEpoch to account for this. |
| 1366 | while (true) { |
| 1367 | assert( |
| 1368 | !VersionStack.empty() && |
| 1369 | "Version stack should have liveOnEntry sentinel dominating everything" ); |
| 1370 | BasicBlock *BackBlock = VersionStack.back()->getBlock(); |
| 1371 | if (DT->dominates(A: BackBlock, B: BB)) |
| 1372 | break; |
| 1373 | while (VersionStack.back()->getBlock() == BackBlock) |
| 1374 | VersionStack.pop_back(); |
| 1375 | ++PopEpoch; |
| 1376 | } |
| 1377 | |
| 1378 | for (MemoryAccess &MA : *Accesses) { |
| 1379 | auto *MU = dyn_cast<MemoryUse>(Val: &MA); |
| 1380 | if (!MU) { |
| 1381 | VersionStack.push_back(Elt: &MA); |
| 1382 | ++StackEpoch; |
| 1383 | continue; |
| 1384 | } |
| 1385 | |
| 1386 | if (MU->isOptimized()) |
| 1387 | continue; |
| 1388 | |
| 1389 | MemoryLocOrCall UseMLOC(MU); |
| 1390 | auto &LocInfo = LocStackInfo[UseMLOC]; |
| 1391 | // If the pop epoch changed, it means we've removed stuff from top of |
| 1392 | // stack due to changing blocks. We may have to reset the lower bound or |
| 1393 | // last kill info. |
| 1394 | if (LocInfo.PopEpoch != PopEpoch) { |
| 1395 | LocInfo.PopEpoch = PopEpoch; |
| 1396 | LocInfo.StackEpoch = StackEpoch; |
| 1397 | // If the lower bound was in something that no longer dominates us, we |
| 1398 | // have to reset it. |
| 1399 | // We can't simply track stack size, because the stack may have had |
| 1400 | // pushes/pops in the meantime. |
| 1401 | // XXX: This is non-optimal, but only is slower cases with heavily |
| 1402 | // branching dominator trees. To get the optimal number of queries would |
| 1403 | // be to make lowerbound and lastkill a per-loc stack, and pop it until |
| 1404 | // the top of that stack dominates us. This does not seem worth it ATM. |
| 1405 | // A much cheaper optimization would be to always explore the deepest |
| 1406 | // branch of the dominator tree first. This will guarantee this resets on |
| 1407 | // the smallest set of blocks. |
| 1408 | if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && |
| 1409 | !DT->dominates(A: LocInfo.LowerBoundBlock, B: BB)) { |
| 1410 | // Reset the lower bound of things to check. |
| 1411 | // TODO: Some day we should be able to reset to last kill, rather than |
| 1412 | // 0. |
| 1413 | LocInfo.LowerBound = 0; |
| 1414 | LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); |
| 1415 | LocInfo.LastKillValid = false; |
| 1416 | } |
| 1417 | } else if (LocInfo.StackEpoch != StackEpoch) { |
| 1418 | // If all that has changed is the StackEpoch, we only have to check the |
| 1419 | // new things on the stack, because we've checked everything before. In |
| 1420 | // this case, the lower bound of things to check remains the same. |
| 1421 | LocInfo.PopEpoch = PopEpoch; |
| 1422 | LocInfo.StackEpoch = StackEpoch; |
| 1423 | } |
| 1424 | if (!LocInfo.LastKillValid) { |
| 1425 | LocInfo.LastKill = VersionStack.size() - 1; |
| 1426 | LocInfo.LastKillValid = true; |
| 1427 | } |
| 1428 | |
| 1429 | // At this point, we should have corrected last kill and LowerBound to be |
| 1430 | // in bounds. |
| 1431 | assert(LocInfo.LowerBound < VersionStack.size() && |
| 1432 | "Lower bound out of range" ); |
| 1433 | assert(LocInfo.LastKill < VersionStack.size() && |
| 1434 | "Last kill info out of range" ); |
| 1435 | // In any case, the new upper bound is the top of the stack. |
| 1436 | unsigned long UpperBound = VersionStack.size() - 1; |
| 1437 | |
| 1438 | if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { |
| 1439 | LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" |
| 1440 | << *(MU->getMemoryInst()) << ")" |
| 1441 | << " because there are " |
| 1442 | << UpperBound - LocInfo.LowerBound |
| 1443 | << " stores to disambiguate\n" ); |
| 1444 | // Because we did not walk, LastKill is no longer valid, as this may |
| 1445 | // have been a kill. |
| 1446 | LocInfo.LastKillValid = false; |
| 1447 | continue; |
| 1448 | } |
| 1449 | bool FoundClobberResult = false; |
| 1450 | unsigned UpwardWalkLimit = MaxCheckLimit; |
| 1451 | while (UpperBound > LocInfo.LowerBound) { |
| 1452 | if (isa<MemoryPhi>(Val: VersionStack[UpperBound])) { |
| 1453 | // For phis, use the walker, see where we ended up, go there. |
| 1454 | // The invariant.group handling in MemorySSA is ad-hoc and doesn't |
| 1455 | // support updates, so don't use it to optimize uses. |
| 1456 | MemoryAccess *Result = |
| 1457 | Walker->getClobberingMemoryAccessWithoutInvariantGroup( |
| 1458 | MA: MU, BAA&: *AA, UWL&: UpwardWalkLimit); |
| 1459 | // We are guaranteed to find it or something is wrong. |
| 1460 | while (VersionStack[UpperBound] != Result) { |
| 1461 | assert(UpperBound != 0); |
| 1462 | --UpperBound; |
| 1463 | } |
| 1464 | FoundClobberResult = true; |
| 1465 | break; |
| 1466 | } |
| 1467 | |
| 1468 | MemoryDef *MD = cast<MemoryDef>(Val: VersionStack[UpperBound]); |
| 1469 | if (instructionClobbersQuery(MD, MU, UseMLOC, AA&: *AA)) { |
| 1470 | FoundClobberResult = true; |
| 1471 | break; |
| 1472 | } |
| 1473 | --UpperBound; |
| 1474 | } |
| 1475 | |
| 1476 | // At the end of this loop, UpperBound is either a clobber, or lower bound |
| 1477 | // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. |
| 1478 | if (FoundClobberResult || UpperBound < LocInfo.LastKill) { |
| 1479 | MU->setDefiningAccess(DMA: VersionStack[UpperBound], Optimized: true); |
| 1480 | LocInfo.LastKill = UpperBound; |
| 1481 | } else { |
| 1482 | // Otherwise, we checked all the new ones, and now we know we can get to |
| 1483 | // LastKill. |
| 1484 | MU->setDefiningAccess(DMA: VersionStack[LocInfo.LastKill], Optimized: true); |
| 1485 | } |
| 1486 | LocInfo.LowerBound = VersionStack.size() - 1; |
| 1487 | LocInfo.LowerBoundBlock = BB; |
| 1488 | } |
| 1489 | } |
| 1490 | |
| 1491 | /// Optimize uses to point to their actual clobbering definitions. |
| 1492 | void MemorySSA::OptimizeUses::optimizeUses() { |
| 1493 | SmallVector<MemoryAccess *, 16> VersionStack; |
| 1494 | DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; |
| 1495 | VersionStack.push_back(Elt: MSSA->getLiveOnEntryDef()); |
| 1496 | |
| 1497 | unsigned long StackEpoch = 1; |
| 1498 | unsigned long PopEpoch = 1; |
| 1499 | // We perform a non-recursive top-down dominator tree walk. |
| 1500 | for (const auto *DomNode : depth_first(G: DT->getRootNode())) |
| 1501 | optimizeUsesInBlock(BB: DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, |
| 1502 | LocStackInfo); |
| 1503 | } |
| 1504 | |
| 1505 | void MemorySSA::placePHINodes( |
| 1506 | const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { |
| 1507 | // Determine where our MemoryPhi's should go |
| 1508 | ForwardIDFCalculator IDFs(*DT); |
| 1509 | IDFs.setDefiningBlocks(DefiningBlocks); |
| 1510 | SmallVector<BasicBlock *, 32> IDFBlocks; |
| 1511 | IDFs.calculate(IDFBlocks); |
| 1512 | |
| 1513 | // Now place MemoryPhi nodes. |
| 1514 | for (auto &BB : IDFBlocks) |
| 1515 | createMemoryPhi(BB); |
| 1516 | } |
| 1517 | |
| 1518 | template <typename IterT> |
| 1519 | void MemorySSA::buildMemorySSA(BatchAAResults &BAA, IterT Blocks) { |
| 1520 | // We create an access to represent "live on entry", for things like |
| 1521 | // arguments or users of globals, where the memory they use is defined before |
| 1522 | // the beginning of the function. We do not actually insert it into the IR. |
| 1523 | // We do not define a live on exit for the immediate uses, and thus our |
| 1524 | // semantics do *not* imply that something with no immediate uses can simply |
| 1525 | // be removed. |
| 1526 | BasicBlock &StartingPoint = *Blocks.begin(); |
| 1527 | LiveOnEntryDef.reset(p: new MemoryDef(StartingPoint.getContext(), nullptr, |
| 1528 | nullptr, &StartingPoint, NextID++)); |
| 1529 | |
| 1530 | // We maintain lists of memory accesses per-block, trading memory for time. We |
| 1531 | // could just look up the memory access for every possible instruction in the |
| 1532 | // stream. |
| 1533 | SmallPtrSet<BasicBlock *, 32> DefiningBlocks; |
| 1534 | // Go through each block, figure out where defs occur, and chain together all |
| 1535 | // the accesses. |
| 1536 | for (BasicBlock &B : Blocks) { |
| 1537 | bool InsertIntoDef = false; |
| 1538 | AccessList *Accesses = nullptr; |
| 1539 | DefsList *Defs = nullptr; |
| 1540 | for (Instruction &I : B) { |
| 1541 | MemoryUseOrDef *MUD = createNewAccess(I: &I, AAP: &BAA); |
| 1542 | if (!MUD) |
| 1543 | continue; |
| 1544 | |
| 1545 | if (!Accesses) |
| 1546 | Accesses = getOrCreateAccessList(BB: &B); |
| 1547 | Accesses->push_back(val: MUD); |
| 1548 | if (isa<MemoryDef>(Val: MUD)) { |
| 1549 | InsertIntoDef = true; |
| 1550 | if (!Defs) |
| 1551 | Defs = getOrCreateDefsList(BB: &B); |
| 1552 | Defs->push_back(Node&: *MUD); |
| 1553 | } |
| 1554 | } |
| 1555 | if (InsertIntoDef) |
| 1556 | DefiningBlocks.insert(Ptr: &B); |
| 1557 | } |
| 1558 | placePHINodes(DefiningBlocks); |
| 1559 | |
| 1560 | // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get |
| 1561 | // filled in with all blocks. |
| 1562 | SmallPtrSet<BasicBlock *, 16> Visited; |
| 1563 | if (L) { |
| 1564 | // Only building MemorySSA for a single loop. placePHINodes may have |
| 1565 | // inserted a MemoryPhi in the loop's preheader. As this is outside the |
| 1566 | // scope of the loop, set them to LiveOnEntry. |
| 1567 | if (auto *P = getMemoryAccess(BB: L->getLoopPreheader())) { |
| 1568 | for (Use &U : make_early_inc_range(Range: P->uses())) |
| 1569 | U.set(LiveOnEntryDef.get()); |
| 1570 | removeFromLists(P); |
| 1571 | } |
| 1572 | // Now rename accesses in the loop. Populate Visited with the exit blocks of |
| 1573 | // the loop, to limit the scope of the renaming. |
| 1574 | SmallVector<BasicBlock *> ExitBlocks; |
| 1575 | L->getExitBlocks(ExitBlocks); |
| 1576 | Visited.insert_range(R&: ExitBlocks); |
| 1577 | renamePass(Root: DT->getNode(BB: L->getLoopPreheader()), IncomingVal: LiveOnEntryDef.get(), |
| 1578 | Visited); |
| 1579 | } else { |
| 1580 | renamePass(Root: DT->getRootNode(), IncomingVal: LiveOnEntryDef.get(), Visited); |
| 1581 | } |
| 1582 | |
| 1583 | // Mark the uses in unreachable blocks as live on entry, so that they go |
| 1584 | // somewhere. |
| 1585 | for (auto &BB : Blocks) |
| 1586 | if (!Visited.count(Ptr: &BB)) |
| 1587 | markUnreachableAsLiveOnEntry(BB: &BB); |
| 1588 | } |
| 1589 | |
| 1590 | MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } |
| 1591 | |
| 1592 | MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { |
| 1593 | if (Walker) |
| 1594 | return Walker.get(); |
| 1595 | |
| 1596 | if (!WalkerBase) |
| 1597 | WalkerBase = std::make_unique<ClobberWalkerBase>(args: this, args&: DT); |
| 1598 | |
| 1599 | Walker = std::make_unique<CachingWalker>(args: this, args: WalkerBase.get()); |
| 1600 | return Walker.get(); |
| 1601 | } |
| 1602 | |
| 1603 | MemorySSAWalker *MemorySSA::getSkipSelfWalker() { |
| 1604 | if (SkipWalker) |
| 1605 | return SkipWalker.get(); |
| 1606 | |
| 1607 | if (!WalkerBase) |
| 1608 | WalkerBase = std::make_unique<ClobberWalkerBase>(args: this, args&: DT); |
| 1609 | |
| 1610 | SkipWalker = std::make_unique<SkipSelfWalker>(args: this, args: WalkerBase.get()); |
| 1611 | return SkipWalker.get(); |
| 1612 | } |
| 1613 | |
| 1614 | |
| 1615 | // This is a helper function used by the creation routines. It places NewAccess |
| 1616 | // into the access and defs lists for a given basic block, at the given |
| 1617 | // insertion point. |
| 1618 | void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, |
| 1619 | const BasicBlock *BB, |
| 1620 | InsertionPlace Point) { |
| 1621 | auto *Accesses = getOrCreateAccessList(BB); |
| 1622 | if (Point == Beginning) { |
| 1623 | // If it's a phi node, it goes first, otherwise, it goes after any phi |
| 1624 | // nodes. |
| 1625 | if (isa<MemoryPhi>(Val: NewAccess)) { |
| 1626 | Accesses->push_front(val: NewAccess); |
| 1627 | auto *Defs = getOrCreateDefsList(BB); |
| 1628 | Defs->push_front(Node&: *NewAccess); |
| 1629 | } else { |
| 1630 | auto AI = find_if_not( |
| 1631 | Range&: *Accesses, P: [](const MemoryAccess &MA) { return isa<MemoryPhi>(Val: MA); }); |
| 1632 | Accesses->insert(where: AI, New: NewAccess); |
| 1633 | if (!isa<MemoryUse>(Val: NewAccess)) { |
| 1634 | auto *Defs = getOrCreateDefsList(BB); |
| 1635 | auto DI = find_if_not( |
| 1636 | Range&: *Defs, P: [](const MemoryAccess &MA) { return isa<MemoryPhi>(Val: MA); }); |
| 1637 | Defs->insert(I: DI, Node&: *NewAccess); |
| 1638 | } |
| 1639 | } |
| 1640 | } else { |
| 1641 | Accesses->push_back(val: NewAccess); |
| 1642 | if (!isa<MemoryUse>(Val: NewAccess)) { |
| 1643 | auto *Defs = getOrCreateDefsList(BB); |
| 1644 | Defs->push_back(Node&: *NewAccess); |
| 1645 | } |
| 1646 | } |
| 1647 | BlockNumberingValid.erase(Ptr: BB); |
| 1648 | } |
| 1649 | |
| 1650 | void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, |
| 1651 | AccessList::iterator InsertPt) { |
| 1652 | auto *Accesses = getWritableBlockAccesses(BB); |
| 1653 | bool WasEnd = InsertPt == Accesses->end(); |
| 1654 | Accesses->insert(where: AccessList::iterator(InsertPt), New: What); |
| 1655 | if (!isa<MemoryUse>(Val: What)) { |
| 1656 | auto *Defs = getOrCreateDefsList(BB); |
| 1657 | // If we got asked to insert at the end, we have an easy job, just shove it |
| 1658 | // at the end. If we got asked to insert before an existing def, we also get |
| 1659 | // an iterator. If we got asked to insert before a use, we have to hunt for |
| 1660 | // the next def. |
| 1661 | if (WasEnd) { |
| 1662 | Defs->push_back(Node&: *What); |
| 1663 | } else if (isa<MemoryDef>(Val: InsertPt)) { |
| 1664 | Defs->insert(I: InsertPt->getDefsIterator(), Node&: *What); |
| 1665 | } else { |
| 1666 | while (InsertPt != Accesses->end() && !isa<MemoryDef>(Val: InsertPt)) |
| 1667 | ++InsertPt; |
| 1668 | // Either we found a def, or we are inserting at the end |
| 1669 | if (InsertPt == Accesses->end()) |
| 1670 | Defs->push_back(Node&: *What); |
| 1671 | else |
| 1672 | Defs->insert(I: InsertPt->getDefsIterator(), Node&: *What); |
| 1673 | } |
| 1674 | } |
| 1675 | BlockNumberingValid.erase(Ptr: BB); |
| 1676 | } |
| 1677 | |
| 1678 | void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { |
| 1679 | // Keep it in the lookup tables, remove from the lists |
| 1680 | removeFromLists(What, ShouldDelete: false); |
| 1681 | |
| 1682 | // Note that moving should implicitly invalidate the optimized state of a |
| 1683 | // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a |
| 1684 | // MemoryDef. |
| 1685 | if (auto *MD = dyn_cast<MemoryDef>(Val: What)) |
| 1686 | MD->resetOptimized(); |
| 1687 | What->setBlock(BB); |
| 1688 | } |
| 1689 | |
| 1690 | // Move What before Where in the IR. The end result is that What will belong to |
| 1691 | // the right lists and have the right Block set, but will not otherwise be |
| 1692 | // correct. It will not have the right defining access, and if it is a def, |
| 1693 | // things below it will not properly be updated. |
| 1694 | void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, |
| 1695 | AccessList::iterator Where) { |
| 1696 | prepareForMoveTo(What, BB); |
| 1697 | insertIntoListsBefore(What, BB, InsertPt: Where); |
| 1698 | } |
| 1699 | |
| 1700 | void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, |
| 1701 | InsertionPlace Point) { |
| 1702 | if (isa<MemoryPhi>(Val: What)) { |
| 1703 | assert(Point == Beginning && |
| 1704 | "Can only move a Phi at the beginning of the block" ); |
| 1705 | // Update lookup table entry |
| 1706 | ValueToMemoryAccess.erase(Val: What->getBlock()); |
| 1707 | bool Inserted = ValueToMemoryAccess.insert(KV: {BB, What}).second; |
| 1708 | (void)Inserted; |
| 1709 | assert(Inserted && "Cannot move a Phi to a block that already has one" ); |
| 1710 | } |
| 1711 | |
| 1712 | prepareForMoveTo(What, BB); |
| 1713 | insertIntoListsForBlock(NewAccess: What, BB, Point); |
| 1714 | } |
| 1715 | |
| 1716 | MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { |
| 1717 | assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB" ); |
| 1718 | MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); |
| 1719 | // Phi's always are placed at the front of the block. |
| 1720 | insertIntoListsForBlock(NewAccess: Phi, BB, Point: Beginning); |
| 1721 | ValueToMemoryAccess[BB] = Phi; |
| 1722 | return Phi; |
| 1723 | } |
| 1724 | |
| 1725 | MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, |
| 1726 | MemoryAccess *Definition, |
| 1727 | const MemoryUseOrDef *Template, |
| 1728 | bool CreationMustSucceed) { |
| 1729 | assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI" ); |
| 1730 | MemoryUseOrDef *NewAccess = createNewAccess(I, AAP: AA, Template); |
| 1731 | if (CreationMustSucceed) |
| 1732 | assert(NewAccess != nullptr && "Tried to create a memory access for a " |
| 1733 | "non-memory touching instruction" ); |
| 1734 | if (NewAccess) { |
| 1735 | assert((!Definition || !isa<MemoryUse>(Definition)) && |
| 1736 | "A use cannot be a defining access" ); |
| 1737 | NewAccess->setDefiningAccess(DMA: Definition); |
| 1738 | } |
| 1739 | return NewAccess; |
| 1740 | } |
| 1741 | |
| 1742 | // Return true if the instruction has ordering constraints. |
| 1743 | // Note specifically that this only considers stores and loads |
| 1744 | // because others are still considered ModRef by getModRefInfo. |
| 1745 | static inline bool isOrdered(const Instruction *I) { |
| 1746 | if (auto *SI = dyn_cast<StoreInst>(Val: I)) { |
| 1747 | if (!SI->isUnordered()) |
| 1748 | return true; |
| 1749 | } else if (auto *LI = dyn_cast<LoadInst>(Val: I)) { |
| 1750 | if (!LI->isUnordered()) |
| 1751 | return true; |
| 1752 | } |
| 1753 | return false; |
| 1754 | } |
| 1755 | |
| 1756 | /// Helper function to create new memory accesses |
| 1757 | template <typename AliasAnalysisType> |
| 1758 | MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, |
| 1759 | AliasAnalysisType *AAP, |
| 1760 | const MemoryUseOrDef *Template) { |
| 1761 | // The assume intrinsic has a control dependency which we model by claiming |
| 1762 | // that it writes arbitrarily. Debuginfo intrinsics may be considered |
| 1763 | // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory |
| 1764 | // dependencies here. |
| 1765 | // FIXME: Replace this special casing with a more accurate modelling of |
| 1766 | // assume's control dependency. |
| 1767 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 1768 | switch (II->getIntrinsicID()) { |
| 1769 | default: |
| 1770 | break; |
| 1771 | case Intrinsic::allow_runtime_check: |
| 1772 | case Intrinsic::allow_ubsan_check: |
| 1773 | case Intrinsic::assume: |
| 1774 | case Intrinsic::experimental_noalias_scope_decl: |
| 1775 | case Intrinsic::pseudoprobe: |
| 1776 | return nullptr; |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | // Using a nonstandard AA pipelines might leave us with unexpected modref |
| 1781 | // results for I, so add a check to not model instructions that may not read |
| 1782 | // from or write to memory. This is necessary for correctness. |
| 1783 | if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) |
| 1784 | return nullptr; |
| 1785 | |
| 1786 | bool Def, Use; |
| 1787 | if (Template) { |
| 1788 | Def = isa<MemoryDef>(Val: Template); |
| 1789 | Use = isa<MemoryUse>(Val: Template); |
| 1790 | #if !defined(NDEBUG) |
| 1791 | ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt); |
| 1792 | bool DefCheck, UseCheck; |
| 1793 | DefCheck = isModSet(ModRef) || isOrdered(I); |
| 1794 | UseCheck = isRefSet(ModRef); |
| 1795 | // Memory accesses should only be reduced and can not be increased since AA |
| 1796 | // just might return better results as a result of some transformations. |
| 1797 | assert((Def == DefCheck || !DefCheck) && |
| 1798 | "Memory accesses should only be reduced" ); |
| 1799 | if (!Def && Use != UseCheck) { |
| 1800 | // New Access should not have more power than template access |
| 1801 | assert(!UseCheck && "Invalid template" ); |
| 1802 | } |
| 1803 | #endif |
| 1804 | } else { |
| 1805 | // Find out what affect this instruction has on memory. |
| 1806 | ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt); |
| 1807 | // The isOrdered check is used to ensure that volatiles end up as defs |
| 1808 | // (atomics end up as ModRef right now anyway). Until we separate the |
| 1809 | // ordering chain from the memory chain, this enables people to see at least |
| 1810 | // some relative ordering to volatiles. Note that getClobberingMemoryAccess |
| 1811 | // will still give an answer that bypasses other volatile loads. TODO: |
| 1812 | // Separate memory aliasing and ordering into two different chains so that |
| 1813 | // we can precisely represent both "what memory will this read/write/is |
| 1814 | // clobbered by" and "what instructions can I move this past". |
| 1815 | Def = isModSet(MRI: ModRef) || isOrdered(I); |
| 1816 | Use = isRefSet(MRI: ModRef); |
| 1817 | } |
| 1818 | |
| 1819 | // It's possible for an instruction to not modify memory at all. During |
| 1820 | // construction, we ignore them. |
| 1821 | if (!Def && !Use) |
| 1822 | return nullptr; |
| 1823 | |
| 1824 | MemoryUseOrDef *MUD; |
| 1825 | if (Def) { |
| 1826 | MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); |
| 1827 | } else { |
| 1828 | MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); |
| 1829 | if (isUseTriviallyOptimizableToLiveOnEntry(*AAP, I)) { |
| 1830 | MemoryAccess *LiveOnEntry = getLiveOnEntryDef(); |
| 1831 | MUD->setOptimized(LiveOnEntry); |
| 1832 | } |
| 1833 | } |
| 1834 | ValueToMemoryAccess[I] = MUD; |
| 1835 | return MUD; |
| 1836 | } |
| 1837 | |
| 1838 | /// Properly remove \p MA from all of MemorySSA's lookup tables. |
| 1839 | void MemorySSA::removeFromLookups(MemoryAccess *MA) { |
| 1840 | assert(MA->use_empty() && |
| 1841 | "Trying to remove memory access that still has uses" ); |
| 1842 | BlockNumbering.erase(Val: MA); |
| 1843 | if (auto *MUD = dyn_cast<MemoryUseOrDef>(Val: MA)) |
| 1844 | MUD->setDefiningAccess(DMA: nullptr); |
| 1845 | // Invalidate our walker's cache if necessary |
| 1846 | if (!isa<MemoryUse>(Val: MA)) |
| 1847 | getWalker()->invalidateInfo(MA); |
| 1848 | |
| 1849 | Value *MemoryInst; |
| 1850 | if (const auto *MUD = dyn_cast<MemoryUseOrDef>(Val: MA)) |
| 1851 | MemoryInst = MUD->getMemoryInst(); |
| 1852 | else |
| 1853 | MemoryInst = MA->getBlock(); |
| 1854 | |
| 1855 | auto VMA = ValueToMemoryAccess.find(Val: MemoryInst); |
| 1856 | if (VMA->second == MA) |
| 1857 | ValueToMemoryAccess.erase(I: VMA); |
| 1858 | } |
| 1859 | |
| 1860 | /// Properly remove \p MA from all of MemorySSA's lists. |
| 1861 | /// |
| 1862 | /// Because of the way the intrusive list and use lists work, it is important to |
| 1863 | /// do removal in the right order. |
| 1864 | /// ShouldDelete defaults to true, and will cause the memory access to also be |
| 1865 | /// deleted, not just removed. |
| 1866 | void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { |
| 1867 | BasicBlock *BB = MA->getBlock(); |
| 1868 | // The access list owns the reference, so we erase it from the non-owning list |
| 1869 | // first. |
| 1870 | if (!isa<MemoryUse>(Val: MA)) { |
| 1871 | auto DefsIt = PerBlockDefs.find(Val: BB); |
| 1872 | std::unique_ptr<DefsList> &Defs = DefsIt->second; |
| 1873 | Defs->remove(N&: *MA); |
| 1874 | if (Defs->empty()) |
| 1875 | PerBlockDefs.erase(I: DefsIt); |
| 1876 | } |
| 1877 | |
| 1878 | // The erase call here will delete it. If we don't want it deleted, we call |
| 1879 | // remove instead. |
| 1880 | auto AccessIt = PerBlockAccesses.find(Val: BB); |
| 1881 | std::unique_ptr<AccessList> &Accesses = AccessIt->second; |
| 1882 | if (ShouldDelete) |
| 1883 | Accesses->erase(IT: MA); |
| 1884 | else |
| 1885 | Accesses->remove(IT: MA); |
| 1886 | |
| 1887 | if (Accesses->empty()) { |
| 1888 | PerBlockAccesses.erase(I: AccessIt); |
| 1889 | BlockNumberingValid.erase(Ptr: BB); |
| 1890 | } |
| 1891 | } |
| 1892 | |
| 1893 | void MemorySSA::print(raw_ostream &OS) const { |
| 1894 | MemorySSAAnnotatedWriter Writer(this); |
| 1895 | Function *F = this->F; |
| 1896 | if (L) |
| 1897 | F = L->getHeader()->getParent(); |
| 1898 | F->print(OS, AAW: &Writer); |
| 1899 | } |
| 1900 | |
| 1901 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1902 | LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } |
| 1903 | #endif |
| 1904 | |
| 1905 | void MemorySSA::verifyMemorySSA(VerificationLevel VL) const { |
| 1906 | #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) |
| 1907 | VL = VerificationLevel::Full; |
| 1908 | #endif |
| 1909 | |
| 1910 | #ifndef NDEBUG |
| 1911 | if (F) { |
| 1912 | auto Blocks = iterator_range(F->begin(), F->end()); |
| 1913 | verifyOrderingDominationAndDefUses(Blocks, VL); |
| 1914 | verifyDominationNumbers(Blocks); |
| 1915 | if (VL == VerificationLevel::Full) |
| 1916 | verifyPrevDefInPhis(Blocks); |
| 1917 | } else { |
| 1918 | assert(L && "must either have loop or function" ); |
| 1919 | auto Blocks = |
| 1920 | map_range(L->blocks(), [](const BasicBlock *BB) -> BasicBlock & { |
| 1921 | return *const_cast<BasicBlock *>(BB); |
| 1922 | }); |
| 1923 | verifyOrderingDominationAndDefUses(Blocks, VL); |
| 1924 | verifyDominationNumbers(Blocks); |
| 1925 | if (VL == VerificationLevel::Full) |
| 1926 | verifyPrevDefInPhis(Blocks); |
| 1927 | } |
| 1928 | #endif |
| 1929 | // Previously, the verification used to also verify that the clobberingAccess |
| 1930 | // cached by MemorySSA is the same as the clobberingAccess found at a later |
| 1931 | // query to AA. This does not hold true in general due to the current fragility |
| 1932 | // of BasicAA which has arbitrary caps on the things it analyzes before giving |
| 1933 | // up. As a result, transformations that are correct, will lead to BasicAA |
| 1934 | // returning different Alias answers before and after that transformation. |
| 1935 | // Invalidating MemorySSA is not an option, as the results in BasicAA can be so |
| 1936 | // random, in the worst case we'd need to rebuild MemorySSA from scratch after |
| 1937 | // every transformation, which defeats the purpose of using it. For such an |
| 1938 | // example, see test4 added in D51960. |
| 1939 | } |
| 1940 | |
| 1941 | template <typename IterT> |
| 1942 | void MemorySSA::verifyPrevDefInPhis(IterT Blocks) const { |
| 1943 | for (const BasicBlock &BB : Blocks) { |
| 1944 | if (MemoryPhi *Phi = getMemoryAccess(BB: &BB)) { |
| 1945 | for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { |
| 1946 | auto *Pred = Phi->getIncomingBlock(I); |
| 1947 | auto *IncAcc = Phi->getIncomingValue(I); |
| 1948 | // If Pred has no unreachable predecessors, get last def looking at |
| 1949 | // IDoms. If, while walkings IDoms, any of these has an unreachable |
| 1950 | // predecessor, then the incoming def can be any access. |
| 1951 | if (auto *DTNode = DT->getNode(BB: Pred)) { |
| 1952 | while (DTNode) { |
| 1953 | if (auto *DefList = getBlockDefs(BB: DTNode->getBlock())) { |
| 1954 | auto *LastAcc = &*(--DefList->end()); |
| 1955 | assert(LastAcc == IncAcc && |
| 1956 | "Incorrect incoming access into phi." ); |
| 1957 | (void)IncAcc; |
| 1958 | (void)LastAcc; |
| 1959 | break; |
| 1960 | } |
| 1961 | DTNode = DTNode->getIDom(); |
| 1962 | } |
| 1963 | } else { |
| 1964 | // If Pred has unreachable predecessors, but has at least a Def, the |
| 1965 | // incoming access can be the last Def in Pred, or it could have been |
| 1966 | // optimized to LoE. After an update, though, the LoE may have been |
| 1967 | // replaced by another access, so IncAcc may be any access. |
| 1968 | // If Pred has unreachable predecessors and no Defs, incoming access |
| 1969 | // should be LoE; However, after an update, it may be any access. |
| 1970 | } |
| 1971 | } |
| 1972 | } |
| 1973 | } |
| 1974 | } |
| 1975 | |
| 1976 | /// Verify that all of the blocks we believe to have valid domination numbers |
| 1977 | /// actually have valid domination numbers. |
| 1978 | template <typename IterT> |
| 1979 | void MemorySSA::verifyDominationNumbers(IterT Blocks) const { |
| 1980 | if (BlockNumberingValid.empty()) |
| 1981 | return; |
| 1982 | |
| 1983 | SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; |
| 1984 | for (const BasicBlock &BB : Blocks) { |
| 1985 | if (!ValidBlocks.count(Ptr: &BB)) |
| 1986 | continue; |
| 1987 | |
| 1988 | ValidBlocks.erase(Ptr: &BB); |
| 1989 | |
| 1990 | const AccessList *Accesses = getBlockAccesses(BB: &BB); |
| 1991 | // It's correct to say an empty block has valid numbering. |
| 1992 | if (!Accesses) |
| 1993 | continue; |
| 1994 | |
| 1995 | // Block numbering starts at 1. |
| 1996 | unsigned long LastNumber = 0; |
| 1997 | for (const MemoryAccess &MA : *Accesses) { |
| 1998 | auto ThisNumberIter = BlockNumbering.find(Val: &MA); |
| 1999 | assert(ThisNumberIter != BlockNumbering.end() && |
| 2000 | "MemoryAccess has no domination number in a valid block!" ); |
| 2001 | |
| 2002 | unsigned long ThisNumber = ThisNumberIter->second; |
| 2003 | assert(ThisNumber > LastNumber && |
| 2004 | "Domination numbers should be strictly increasing!" ); |
| 2005 | (void)LastNumber; |
| 2006 | LastNumber = ThisNumber; |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | assert(ValidBlocks.empty() && |
| 2011 | "All valid BasicBlocks should exist in F -- dangling pointers?" ); |
| 2012 | } |
| 2013 | |
| 2014 | /// Verify ordering: the order and existence of MemoryAccesses matches the |
| 2015 | /// order and existence of memory affecting instructions. |
| 2016 | /// Verify domination: each definition dominates all of its uses. |
| 2017 | /// Verify def-uses: the immediate use information - walk all the memory |
| 2018 | /// accesses and verifying that, for each use, it appears in the appropriate |
| 2019 | /// def's use list |
| 2020 | template <typename IterT> |
| 2021 | void MemorySSA::verifyOrderingDominationAndDefUses(IterT Blocks, |
| 2022 | VerificationLevel VL) const { |
| 2023 | // Walk all the blocks, comparing what the lookups think and what the access |
| 2024 | // lists think, as well as the order in the blocks vs the order in the access |
| 2025 | // lists. |
| 2026 | SmallVector<MemoryAccess *, 32> ActualAccesses; |
| 2027 | SmallVector<MemoryAccess *, 32> ActualDefs; |
| 2028 | for (BasicBlock &B : Blocks) { |
| 2029 | const AccessList *AL = getBlockAccesses(BB: &B); |
| 2030 | const auto *DL = getBlockDefs(BB: &B); |
| 2031 | MemoryPhi *Phi = getMemoryAccess(BB: &B); |
| 2032 | if (Phi) { |
| 2033 | // Verify ordering. |
| 2034 | ActualAccesses.push_back(Elt: Phi); |
| 2035 | ActualDefs.push_back(Elt: Phi); |
| 2036 | // Verify domination |
| 2037 | for (const Use &U : Phi->uses()) { |
| 2038 | assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses" ); |
| 2039 | (void)U; |
| 2040 | } |
| 2041 | // Verify def-uses for full verify. |
| 2042 | if (VL == VerificationLevel::Full) { |
| 2043 | assert(Phi->getNumOperands() == pred_size(&B) && |
| 2044 | "Incomplete MemoryPhi Node" ); |
| 2045 | for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { |
| 2046 | verifyUseInDefs(Phi->getIncomingValue(I), Phi); |
| 2047 | assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && |
| 2048 | "Incoming phi block not a block predecessor" ); |
| 2049 | } |
| 2050 | } |
| 2051 | } |
| 2052 | |
| 2053 | for (Instruction &I : B) { |
| 2054 | MemoryUseOrDef *MA = getMemoryAccess(I: &I); |
| 2055 | assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && |
| 2056 | "We have memory affecting instructions " |
| 2057 | "in this block but they are not in the " |
| 2058 | "access list or defs list" ); |
| 2059 | if (MA) { |
| 2060 | // Verify ordering. |
| 2061 | ActualAccesses.push_back(Elt: MA); |
| 2062 | if (MemoryAccess *MD = dyn_cast<MemoryDef>(Val: MA)) { |
| 2063 | // Verify ordering. |
| 2064 | ActualDefs.push_back(Elt: MA); |
| 2065 | // Verify domination. |
| 2066 | for (const Use &U : MD->uses()) { |
| 2067 | assert(dominates(MD, U) && |
| 2068 | "Memory Def does not dominate it's uses" ); |
| 2069 | (void)U; |
| 2070 | } |
| 2071 | } |
| 2072 | // Verify def-uses for full verify. |
| 2073 | if (VL == VerificationLevel::Full) |
| 2074 | verifyUseInDefs(MA->getDefiningAccess(), MA); |
| 2075 | } |
| 2076 | } |
| 2077 | // Either we hit the assert, really have no accesses, or we have both |
| 2078 | // accesses and an access list. Same with defs. |
| 2079 | if (!AL && !DL) |
| 2080 | continue; |
| 2081 | // Verify ordering. |
| 2082 | assert(AL->size() == ActualAccesses.size() && |
| 2083 | "We don't have the same number of accesses in the block as on the " |
| 2084 | "access list" ); |
| 2085 | assert((DL || ActualDefs.size() == 0) && |
| 2086 | "Either we should have a defs list, or we should have no defs" ); |
| 2087 | assert((!DL || DL->size() == ActualDefs.size()) && |
| 2088 | "We don't have the same number of defs in the block as on the " |
| 2089 | "def list" ); |
| 2090 | auto ALI = AL->begin(); |
| 2091 | auto AAI = ActualAccesses.begin(); |
| 2092 | while (ALI != AL->end() && AAI != ActualAccesses.end()) { |
| 2093 | assert(&*ALI == *AAI && "Not the same accesses in the same order" ); |
| 2094 | ++ALI; |
| 2095 | ++AAI; |
| 2096 | } |
| 2097 | ActualAccesses.clear(); |
| 2098 | if (DL) { |
| 2099 | auto DLI = DL->begin(); |
| 2100 | auto ADI = ActualDefs.begin(); |
| 2101 | while (DLI != DL->end() && ADI != ActualDefs.end()) { |
| 2102 | assert(&*DLI == *ADI && "Not the same defs in the same order" ); |
| 2103 | ++DLI; |
| 2104 | ++ADI; |
| 2105 | } |
| 2106 | } |
| 2107 | ActualDefs.clear(); |
| 2108 | } |
| 2109 | } |
| 2110 | |
| 2111 | /// Verify the def-use lists in MemorySSA, by verifying that \p Use |
| 2112 | /// appears in the use list of \p Def. |
| 2113 | void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { |
| 2114 | // The live on entry use may cause us to get a NULL def here |
| 2115 | if (!Def) |
| 2116 | assert(isLiveOnEntryDef(Use) && |
| 2117 | "Null def but use not point to live on entry def" ); |
| 2118 | else |
| 2119 | assert(is_contained(Def->users(), Use) && |
| 2120 | "Did not find use in def's use list" ); |
| 2121 | } |
| 2122 | |
| 2123 | /// Perform a local numbering on blocks so that instruction ordering can be |
| 2124 | /// determined in constant time. |
| 2125 | /// TODO: We currently just number in order. If we numbered by N, we could |
| 2126 | /// allow at least N-1 sequences of insertBefore or insertAfter (and at least |
| 2127 | /// log2(N) sequences of mixed before and after) without needing to invalidate |
| 2128 | /// the numbering. |
| 2129 | void MemorySSA::renumberBlock(const BasicBlock *B) const { |
| 2130 | // The pre-increment ensures the numbers really start at 1. |
| 2131 | unsigned long CurrentNumber = 0; |
| 2132 | const AccessList *AL = getBlockAccesses(BB: B); |
| 2133 | assert(AL != nullptr && "Asking to renumber an empty block" ); |
| 2134 | for (const auto &I : *AL) |
| 2135 | BlockNumbering[&I] = ++CurrentNumber; |
| 2136 | BlockNumberingValid.insert(Ptr: B); |
| 2137 | } |
| 2138 | |
| 2139 | /// Determine, for two memory accesses in the same block, |
| 2140 | /// whether \p Dominator dominates \p Dominatee. |
| 2141 | /// \returns True if \p Dominator dominates \p Dominatee. |
| 2142 | bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, |
| 2143 | const MemoryAccess *Dominatee) const { |
| 2144 | const BasicBlock *DominatorBlock = Dominator->getBlock(); |
| 2145 | |
| 2146 | assert((DominatorBlock == Dominatee->getBlock()) && |
| 2147 | "Asking for local domination when accesses are in different blocks!" ); |
| 2148 | // A node dominates itself. |
| 2149 | if (Dominatee == Dominator) |
| 2150 | return true; |
| 2151 | |
| 2152 | // When Dominatee is defined on function entry, it is not dominated by another |
| 2153 | // memory access. |
| 2154 | if (isLiveOnEntryDef(MA: Dominatee)) |
| 2155 | return false; |
| 2156 | |
| 2157 | // When Dominator is defined on function entry, it dominates the other memory |
| 2158 | // access. |
| 2159 | if (isLiveOnEntryDef(MA: Dominator)) |
| 2160 | return true; |
| 2161 | |
| 2162 | if (!BlockNumberingValid.count(Ptr: DominatorBlock)) |
| 2163 | renumberBlock(B: DominatorBlock); |
| 2164 | |
| 2165 | unsigned long DominatorNum = BlockNumbering.lookup(Val: Dominator); |
| 2166 | // All numbers start with 1 |
| 2167 | assert(DominatorNum != 0 && "Block was not numbered properly" ); |
| 2168 | unsigned long DominateeNum = BlockNumbering.lookup(Val: Dominatee); |
| 2169 | assert(DominateeNum != 0 && "Block was not numbered properly" ); |
| 2170 | return DominatorNum < DominateeNum; |
| 2171 | } |
| 2172 | |
| 2173 | bool MemorySSA::dominates(const MemoryAccess *Dominator, |
| 2174 | const MemoryAccess *Dominatee) const { |
| 2175 | if (Dominator == Dominatee) |
| 2176 | return true; |
| 2177 | |
| 2178 | if (isLiveOnEntryDef(MA: Dominatee)) |
| 2179 | return false; |
| 2180 | |
| 2181 | if (Dominator->getBlock() != Dominatee->getBlock()) |
| 2182 | return DT->dominates(A: Dominator->getBlock(), B: Dominatee->getBlock()); |
| 2183 | return locallyDominates(Dominator, Dominatee); |
| 2184 | } |
| 2185 | |
| 2186 | bool MemorySSA::dominates(const MemoryAccess *Dominator, |
| 2187 | const Use &Dominatee) const { |
| 2188 | if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Val: Dominatee.getUser())) { |
| 2189 | BasicBlock *UseBB = MP->getIncomingBlock(U: Dominatee); |
| 2190 | // The def must dominate the incoming block of the phi. |
| 2191 | if (UseBB != Dominator->getBlock()) |
| 2192 | return DT->dominates(A: Dominator->getBlock(), B: UseBB); |
| 2193 | // If the UseBB and the DefBB are the same, compare locally. |
| 2194 | return locallyDominates(Dominator, Dominatee: cast<MemoryAccess>(Val: Dominatee)); |
| 2195 | } |
| 2196 | // If it's not a PHI node use, the normal dominates can already handle it. |
| 2197 | return dominates(Dominator, Dominatee: cast<MemoryAccess>(Val: Dominatee.getUser())); |
| 2198 | } |
| 2199 | |
| 2200 | void MemorySSA::ensureOptimizedUses() { |
| 2201 | if (IsOptimized) |
| 2202 | return; |
| 2203 | |
| 2204 | BatchAAResults BatchAA(*AA); |
| 2205 | ClobberWalkerBase WalkerBase(this, DT); |
| 2206 | CachingWalker WalkerLocal(this, &WalkerBase); |
| 2207 | OptimizeUses(this, &WalkerLocal, &BatchAA, DT).optimizeUses(); |
| 2208 | IsOptimized = true; |
| 2209 | } |
| 2210 | |
| 2211 | void MemoryAccess::print(raw_ostream &OS) const { |
| 2212 | switch (getValueID()) { |
| 2213 | case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); |
| 2214 | case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); |
| 2215 | case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); |
| 2216 | } |
| 2217 | llvm_unreachable("invalid value id" ); |
| 2218 | } |
| 2219 | |
| 2220 | void MemoryDef::print(raw_ostream &OS) const { |
| 2221 | MemoryAccess *UO = getDefiningAccess(); |
| 2222 | |
| 2223 | auto printID = [&OS](MemoryAccess *A) { |
| 2224 | if (A && A->getID()) |
| 2225 | OS << A->getID(); |
| 2226 | else |
| 2227 | OS << LiveOnEntryStr; |
| 2228 | }; |
| 2229 | |
| 2230 | OS << getID() << " = MemoryDef(" ; |
| 2231 | printID(UO); |
| 2232 | OS << ")" ; |
| 2233 | |
| 2234 | if (isOptimized()) { |
| 2235 | OS << "->" ; |
| 2236 | printID(getOptimized()); |
| 2237 | } |
| 2238 | } |
| 2239 | |
| 2240 | void MemoryPhi::print(raw_ostream &OS) const { |
| 2241 | ListSeparator LS("," ); |
| 2242 | OS << getID() << " = MemoryPhi(" ; |
| 2243 | for (const auto &Op : operands()) { |
| 2244 | BasicBlock *BB = getIncomingBlock(U: Op); |
| 2245 | MemoryAccess *MA = cast<MemoryAccess>(Val: Op); |
| 2246 | |
| 2247 | OS << LS << '{'; |
| 2248 | if (BB->hasName()) |
| 2249 | OS << BB->getName(); |
| 2250 | else |
| 2251 | BB->printAsOperand(O&: OS, PrintType: false); |
| 2252 | OS << ','; |
| 2253 | if (unsigned ID = MA->getID()) |
| 2254 | OS << ID; |
| 2255 | else |
| 2256 | OS << LiveOnEntryStr; |
| 2257 | OS << '}'; |
| 2258 | } |
| 2259 | OS << ')'; |
| 2260 | } |
| 2261 | |
| 2262 | void MemoryUse::print(raw_ostream &OS) const { |
| 2263 | MemoryAccess *UO = getDefiningAccess(); |
| 2264 | OS << "MemoryUse(" ; |
| 2265 | if (UO && UO->getID()) |
| 2266 | OS << UO->getID(); |
| 2267 | else |
| 2268 | OS << LiveOnEntryStr; |
| 2269 | OS << ')'; |
| 2270 | } |
| 2271 | |
| 2272 | void MemoryAccess::dump() const { |
| 2273 | // Cannot completely remove virtual function even in release mode. |
| 2274 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2275 | print(dbgs()); |
| 2276 | dbgs() << "\n" ; |
| 2277 | #endif |
| 2278 | } |
| 2279 | |
| 2280 | class DOTFuncMSSAInfo { |
| 2281 | private: |
| 2282 | const Function &F; |
| 2283 | MemorySSAAnnotatedWriter MSSAWriter; |
| 2284 | |
| 2285 | public: |
| 2286 | DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) |
| 2287 | : F(F), MSSAWriter(&MSSA) {} |
| 2288 | |
| 2289 | const Function *getFunction() { return &F; } |
| 2290 | MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } |
| 2291 | }; |
| 2292 | |
| 2293 | namespace llvm { |
| 2294 | |
| 2295 | template <> |
| 2296 | struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { |
| 2297 | static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { |
| 2298 | return &(CFGInfo->getFunction()->getEntryBlock()); |
| 2299 | } |
| 2300 | |
| 2301 | // nodes_iterator/begin/end - Allow iteration over all nodes in the graph |
| 2302 | using nodes_iterator = pointer_iterator<Function::const_iterator>; |
| 2303 | |
| 2304 | static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { |
| 2305 | return nodes_iterator(CFGInfo->getFunction()->begin()); |
| 2306 | } |
| 2307 | |
| 2308 | static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { |
| 2309 | return nodes_iterator(CFGInfo->getFunction()->end()); |
| 2310 | } |
| 2311 | |
| 2312 | static size_t size(DOTFuncMSSAInfo *CFGInfo) { |
| 2313 | return CFGInfo->getFunction()->size(); |
| 2314 | } |
| 2315 | }; |
| 2316 | |
| 2317 | template <> |
| 2318 | struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { |
| 2319 | |
| 2320 | DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} |
| 2321 | |
| 2322 | static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { |
| 2323 | return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + |
| 2324 | "' function" ; |
| 2325 | } |
| 2326 | |
| 2327 | std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { |
| 2328 | return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( |
| 2329 | Node, nullptr, |
| 2330 | HandleBasicBlock: [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { |
| 2331 | BB.print(OS, AAW: &CFGInfo->getWriter(), ShouldPreserveUseListOrder: true, IsForDebug: true); |
| 2332 | }, |
| 2333 | HandleComment: [](std::string &S, unsigned &I, unsigned Idx) -> void { |
| 2334 | std::string Str = S.substr(pos: I, n: Idx - I); |
| 2335 | StringRef SR = Str; |
| 2336 | if (SR.count(Str: " = MemoryDef(" ) || SR.count(Str: " = MemoryPhi(" ) || |
| 2337 | SR.count(Str: "MemoryUse(" )) |
| 2338 | return; |
| 2339 | DOTGraphTraits<DOTFuncInfo *>::eraseComment(OutStr&: S, I, Idx); |
| 2340 | }); |
| 2341 | } |
| 2342 | |
| 2343 | static std::string getEdgeSourceLabel(const BasicBlock *Node, |
| 2344 | const_succ_iterator I) { |
| 2345 | return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); |
| 2346 | } |
| 2347 | |
| 2348 | /// Display the raw branch weights from PGO. |
| 2349 | std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, |
| 2350 | DOTFuncMSSAInfo *CFGInfo) { |
| 2351 | return "" ; |
| 2352 | } |
| 2353 | |
| 2354 | std::string getNodeAttributes(const BasicBlock *Node, |
| 2355 | DOTFuncMSSAInfo *CFGInfo) { |
| 2356 | return getNodeLabel(Node, CFGInfo).find(c: ';') != std::string::npos |
| 2357 | ? "style=filled, fillcolor=lightpink" |
| 2358 | : "" ; |
| 2359 | } |
| 2360 | }; |
| 2361 | |
| 2362 | } // namespace llvm |
| 2363 | |
| 2364 | AnalysisKey MemorySSAAnalysis::Key; |
| 2365 | |
| 2366 | MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, |
| 2367 | FunctionAnalysisManager &AM) { |
| 2368 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 2369 | auto &AA = AM.getResult<AAManager>(IR&: F); |
| 2370 | return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(args&: F, args: &AA, args: &DT)); |
| 2371 | } |
| 2372 | |
| 2373 | bool MemorySSAAnalysis::Result::invalidate( |
| 2374 | Function &F, const PreservedAnalyses &PA, |
| 2375 | FunctionAnalysisManager::Invalidator &Inv) { |
| 2376 | auto PAC = PA.getChecker<MemorySSAAnalysis>(); |
| 2377 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || |
| 2378 | Inv.invalidate<AAManager>(IR&: F, PA) || |
| 2379 | Inv.invalidate<DominatorTreeAnalysis>(IR&: F, PA); |
| 2380 | } |
| 2381 | |
| 2382 | PreservedAnalyses MemorySSAPrinterPass::run(Function &F, |
| 2383 | FunctionAnalysisManager &AM) { |
| 2384 | auto &MSSA = AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA(); |
| 2385 | if (EnsureOptimizedUses) |
| 2386 | MSSA.ensureOptimizedUses(); |
| 2387 | if (DotCFGMSSA != "" ) { |
| 2388 | DOTFuncMSSAInfo CFGInfo(F, MSSA); |
| 2389 | WriteGraph(G: &CFGInfo, Name: "" , ShortNames: false, Title: "MSSA" , Filename: DotCFGMSSA); |
| 2390 | } else { |
| 2391 | OS << "MemorySSA for function: " << F.getName() << "\n" ; |
| 2392 | MSSA.print(OS); |
| 2393 | } |
| 2394 | |
| 2395 | return PreservedAnalyses::all(); |
| 2396 | } |
| 2397 | |
| 2398 | PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F, |
| 2399 | FunctionAnalysisManager &AM) { |
| 2400 | auto &MSSA = AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA(); |
| 2401 | OS << "MemorySSA (walker) for function: " << F.getName() << "\n" ; |
| 2402 | MemorySSAWalkerAnnotatedWriter Writer(&MSSA); |
| 2403 | F.print(OS, AAW: &Writer); |
| 2404 | |
| 2405 | return PreservedAnalyses::all(); |
| 2406 | } |
| 2407 | |
| 2408 | PreservedAnalyses MemorySSAVerifierPass::run(Function &F, |
| 2409 | FunctionAnalysisManager &AM) { |
| 2410 | AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA().verifyMemorySSA(); |
| 2411 | |
| 2412 | return PreservedAnalyses::all(); |
| 2413 | } |
| 2414 | |
| 2415 | char MemorySSAWrapperPass::ID = 0; |
| 2416 | |
| 2417 | MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {} |
| 2418 | |
| 2419 | void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } |
| 2420 | |
| 2421 | void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 2422 | AU.setPreservesAll(); |
| 2423 | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); |
| 2424 | AU.addRequiredTransitive<AAResultsWrapperPass>(); |
| 2425 | } |
| 2426 | |
| 2427 | bool MemorySSAWrapperPass::runOnFunction(Function &F) { |
| 2428 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 2429 | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 2430 | MSSA.reset(p: new MemorySSA(F, &AA, &DT)); |
| 2431 | return false; |
| 2432 | } |
| 2433 | |
| 2434 | void MemorySSAWrapperPass::verifyAnalysis() const { |
| 2435 | if (VerifyMemorySSA) |
| 2436 | MSSA->verifyMemorySSA(); |
| 2437 | } |
| 2438 | |
| 2439 | void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { |
| 2440 | MSSA->print(OS); |
| 2441 | } |
| 2442 | |
| 2443 | MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} |
| 2444 | |
| 2445 | /// Walk the use-def chains starting at \p StartingAccess and find |
| 2446 | /// the MemoryAccess that actually clobbers Loc. |
| 2447 | /// |
| 2448 | /// \returns our clobbering memory access |
| 2449 | MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( |
| 2450 | MemoryAccess *StartingAccess, const MemoryLocation &Loc, |
| 2451 | BatchAAResults &BAA, unsigned &UpwardWalkLimit) { |
| 2452 | assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access" ); |
| 2453 | |
| 2454 | // If location is undefined, conservatively return starting access. |
| 2455 | if (Loc.Ptr == nullptr) |
| 2456 | return StartingAccess; |
| 2457 | |
| 2458 | Instruction *I = nullptr; |
| 2459 | if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(Val: StartingAccess)) { |
| 2460 | if (MSSA->isLiveOnEntryDef(MA: StartingUseOrDef)) |
| 2461 | return StartingUseOrDef; |
| 2462 | |
| 2463 | I = StartingUseOrDef->getMemoryInst(); |
| 2464 | |
| 2465 | // Conservatively, fences are always clobbers, so don't perform the walk if |
| 2466 | // we hit a fence. |
| 2467 | if (!isa<CallBase>(Val: I) && I->isFenceLike()) |
| 2468 | return StartingUseOrDef; |
| 2469 | } |
| 2470 | |
| 2471 | UpwardsMemoryQuery Q; |
| 2472 | Q.OriginalAccess = StartingAccess; |
| 2473 | Q.StartingLoc = Loc; |
| 2474 | Q.Inst = nullptr; |
| 2475 | Q.IsCall = false; |
| 2476 | |
| 2477 | // Unlike the other function, do not walk to the def of a def, because we are |
| 2478 | // handed something we already believe is the clobbering access. |
| 2479 | // We never set SkipSelf to true in Q in this method. |
| 2480 | MemoryAccess *Clobber = |
| 2481 | Walker.findClobber(BAA, Start: StartingAccess, Q, UpWalkLimit&: UpwardWalkLimit); |
| 2482 | LLVM_DEBUG({ |
| 2483 | dbgs() << "Clobber starting at access " << *StartingAccess << "\n" ; |
| 2484 | if (I) |
| 2485 | dbgs() << " for instruction " << *I << "\n" ; |
| 2486 | dbgs() << " is " << *Clobber << "\n" ; |
| 2487 | }); |
| 2488 | return Clobber; |
| 2489 | } |
| 2490 | |
| 2491 | static const Instruction * |
| 2492 | getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) { |
| 2493 | if (!I.hasMetadata(KindID: LLVMContext::MD_invariant_group) || I.isVolatile()) |
| 2494 | return nullptr; |
| 2495 | |
| 2496 | // We consider bitcasts and zero GEPs to be the same pointer value. Start by |
| 2497 | // stripping bitcasts and zero GEPs, then we will recursively look at loads |
| 2498 | // and stores through bitcasts and zero GEPs. |
| 2499 | Value *PointerOperand = getLoadStorePointerOperand(V: &I)->stripPointerCasts(); |
| 2500 | |
| 2501 | // It's not safe to walk the use list of a global value because function |
| 2502 | // passes aren't allowed to look outside their functions. |
| 2503 | // FIXME: this could be fixed by filtering instructions from outside of |
| 2504 | // current function. |
| 2505 | if (isa<Constant>(Val: PointerOperand)) |
| 2506 | return nullptr; |
| 2507 | |
| 2508 | const Instruction *MostDominatingInstruction = &I; |
| 2509 | |
| 2510 | for (const User *Us : PointerOperand->users()) { |
| 2511 | auto *U = dyn_cast<Instruction>(Val: Us); |
| 2512 | if (!U || U == &I || !DT.dominates(Def: U, User: MostDominatingInstruction)) |
| 2513 | continue; |
| 2514 | |
| 2515 | // If we hit a load/store with an invariant.group metadata and the same |
| 2516 | // pointer operand, we can assume that value pointed to by the pointer |
| 2517 | // operand didn't change. |
| 2518 | if (U->hasMetadata(KindID: LLVMContext::MD_invariant_group) && |
| 2519 | getLoadStorePointerOperand(V: U) == PointerOperand && !U->isVolatile()) { |
| 2520 | MostDominatingInstruction = U; |
| 2521 | } |
| 2522 | } |
| 2523 | |
| 2524 | return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction; |
| 2525 | } |
| 2526 | |
| 2527 | MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( |
| 2528 | MemoryAccess *MA, BatchAAResults &BAA, unsigned &UpwardWalkLimit, |
| 2529 | bool SkipSelf, bool UseInvariantGroup) { |
| 2530 | auto *StartingAccess = dyn_cast<MemoryUseOrDef>(Val: MA); |
| 2531 | // If this is a MemoryPhi, we can't do anything. |
| 2532 | if (!StartingAccess) |
| 2533 | return MA; |
| 2534 | |
| 2535 | if (UseInvariantGroup) { |
| 2536 | if (auto *I = getInvariantGroupClobberingInstruction( |
| 2537 | I&: *StartingAccess->getMemoryInst(), DT&: MSSA->getDomTree())) { |
| 2538 | assert(isa<LoadInst>(I) || isa<StoreInst>(I)); |
| 2539 | |
| 2540 | auto *ClobberMA = MSSA->getMemoryAccess(I); |
| 2541 | assert(ClobberMA); |
| 2542 | if (isa<MemoryUse>(Val: ClobberMA)) |
| 2543 | return ClobberMA->getDefiningAccess(); |
| 2544 | return ClobberMA; |
| 2545 | } |
| 2546 | } |
| 2547 | |
| 2548 | bool IsOptimized = false; |
| 2549 | |
| 2550 | // If this is an already optimized use or def, return the optimized result. |
| 2551 | // Note: Currently, we store the optimized def result in a separate field, |
| 2552 | // since we can't use the defining access. |
| 2553 | if (StartingAccess->isOptimized()) { |
| 2554 | if (!SkipSelf || !isa<MemoryDef>(Val: StartingAccess)) |
| 2555 | return StartingAccess->getOptimized(); |
| 2556 | IsOptimized = true; |
| 2557 | } |
| 2558 | |
| 2559 | const Instruction *I = StartingAccess->getMemoryInst(); |
| 2560 | // We can't sanely do anything with a fence, since they conservatively clobber |
| 2561 | // all memory, and have no locations to get pointers from to try to |
| 2562 | // disambiguate. |
| 2563 | if (!isa<CallBase>(Val: I) && I->isFenceLike()) |
| 2564 | return StartingAccess; |
| 2565 | |
| 2566 | UpwardsMemoryQuery Q(I, StartingAccess); |
| 2567 | |
| 2568 | if (isUseTriviallyOptimizableToLiveOnEntry(AA&: BAA, I)) { |
| 2569 | MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); |
| 2570 | StartingAccess->setOptimized(LiveOnEntry); |
| 2571 | return LiveOnEntry; |
| 2572 | } |
| 2573 | |
| 2574 | MemoryAccess *OptimizedAccess; |
| 2575 | if (!IsOptimized) { |
| 2576 | // Start with the thing we already think clobbers this location |
| 2577 | MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); |
| 2578 | |
| 2579 | // At this point, DefiningAccess may be the live on entry def. |
| 2580 | // If it is, we will not get a better result. |
| 2581 | if (MSSA->isLiveOnEntryDef(MA: DefiningAccess)) { |
| 2582 | StartingAccess->setOptimized(DefiningAccess); |
| 2583 | return DefiningAccess; |
| 2584 | } |
| 2585 | |
| 2586 | OptimizedAccess = |
| 2587 | Walker.findClobber(BAA, Start: DefiningAccess, Q, UpWalkLimit&: UpwardWalkLimit); |
| 2588 | StartingAccess->setOptimized(OptimizedAccess); |
| 2589 | } else |
| 2590 | OptimizedAccess = StartingAccess->getOptimized(); |
| 2591 | |
| 2592 | LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is " ); |
| 2593 | LLVM_DEBUG(dbgs() << *StartingAccess << "\n" ); |
| 2594 | LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is " ); |
| 2595 | LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n" ); |
| 2596 | |
| 2597 | MemoryAccess *Result; |
| 2598 | if (SkipSelf && isa<MemoryPhi>(Val: OptimizedAccess) && |
| 2599 | isa<MemoryDef>(Val: StartingAccess) && UpwardWalkLimit) { |
| 2600 | assert(isa<MemoryDef>(Q.OriginalAccess)); |
| 2601 | Q.SkipSelfAccess = true; |
| 2602 | Result = Walker.findClobber(BAA, Start: OptimizedAccess, Q, UpWalkLimit&: UpwardWalkLimit); |
| 2603 | } else |
| 2604 | Result = OptimizedAccess; |
| 2605 | |
| 2606 | LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); |
| 2607 | LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n" ); |
| 2608 | |
| 2609 | return Result; |
| 2610 | } |
| 2611 | |
| 2612 | MemoryAccess * |
| 2613 | DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA, |
| 2614 | BatchAAResults &) { |
| 2615 | if (auto *Use = dyn_cast<MemoryUseOrDef>(Val: MA)) |
| 2616 | return Use->getDefiningAccess(); |
| 2617 | return MA; |
| 2618 | } |
| 2619 | |
| 2620 | MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( |
| 2621 | MemoryAccess *StartingAccess, const MemoryLocation &, BatchAAResults &) { |
| 2622 | if (auto *Use = dyn_cast<MemoryUseOrDef>(Val: StartingAccess)) |
| 2623 | return Use->getDefiningAccess(); |
| 2624 | return StartingAccess; |
| 2625 | } |
| 2626 | |
| 2627 | void MemoryPhi::deleteMe(DerivedUser *Self) { |
| 2628 | delete static_cast<MemoryPhi *>(Self); |
| 2629 | } |
| 2630 | |
| 2631 | void MemoryDef::deleteMe(DerivedUser *Self) { |
| 2632 | delete static_cast<MemoryDef *>(Self); |
| 2633 | } |
| 2634 | |
| 2635 | void MemoryUse::deleteMe(DerivedUser *Self) { |
| 2636 | delete static_cast<MemoryUse *>(Self); |
| 2637 | } |
| 2638 | |
| 2639 | bool upward_defs_iterator::IsGuaranteedLoopInvariant(const Value *Ptr) const { |
| 2640 | auto IsGuaranteedLoopInvariantBase = [](const Value *Ptr) { |
| 2641 | Ptr = Ptr->stripPointerCasts(); |
| 2642 | if (!isa<Instruction>(Val: Ptr)) |
| 2643 | return true; |
| 2644 | return isa<AllocaInst>(Val: Ptr); |
| 2645 | }; |
| 2646 | |
| 2647 | Ptr = Ptr->stripPointerCasts(); |
| 2648 | if (auto *I = dyn_cast<Instruction>(Val: Ptr)) { |
| 2649 | if (I->getParent()->isEntryBlock()) |
| 2650 | return true; |
| 2651 | } |
| 2652 | if (auto *GEP = dyn_cast<GEPOperator>(Val: Ptr)) { |
| 2653 | return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && |
| 2654 | GEP->hasAllConstantIndices(); |
| 2655 | } |
| 2656 | return IsGuaranteedLoopInvariantBase(Ptr); |
| 2657 | } |
| 2658 | |