| 1 | //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Analysis/MustExecute.h" |
| 10 | #include "llvm/ADT/PostOrderIterator.h" |
| 11 | #include "llvm/ADT/StringExtras.h" |
| 12 | #include "llvm/Analysis/CFG.h" |
| 13 | #include "llvm/Analysis/InstructionSimplify.h" |
| 14 | #include "llvm/Analysis/LoopInfo.h" |
| 15 | #include "llvm/Analysis/PostDominators.h" |
| 16 | #include "llvm/Analysis/ValueTracking.h" |
| 17 | #include "llvm/IR/AssemblyAnnotationWriter.h" |
| 18 | #include "llvm/IR/Dominators.h" |
| 19 | #include "llvm/IR/InstIterator.h" |
| 20 | #include "llvm/IR/Module.h" |
| 21 | #include "llvm/IR/PassManager.h" |
| 22 | #include "llvm/Support/FormattedStream.h" |
| 23 | #include "llvm/Support/raw_ostream.h" |
| 24 | |
| 25 | using namespace llvm; |
| 26 | |
| 27 | #define DEBUG_TYPE "must-execute" |
| 28 | |
| 29 | const DenseMap<BasicBlock *, ColorVector> & |
| 30 | LoopSafetyInfo::getBlockColors() const { |
| 31 | return BlockColors; |
| 32 | } |
| 33 | |
| 34 | void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) { |
| 35 | ColorVector &ColorsForNewBlock = BlockColors[New]; |
| 36 | ColorVector &ColorsForOldBlock = BlockColors[Old]; |
| 37 | ColorsForNewBlock = ColorsForOldBlock; |
| 38 | } |
| 39 | |
| 40 | bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { |
| 41 | (void)BB; |
| 42 | return anyBlockMayThrow(); |
| 43 | } |
| 44 | |
| 45 | bool SimpleLoopSafetyInfo::anyBlockMayThrow() const { |
| 46 | return MayThrow; |
| 47 | } |
| 48 | |
| 49 | void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { |
| 50 | assert(CurLoop != nullptr && "CurLoop can't be null" ); |
| 51 | BasicBlock * = CurLoop->getHeader(); |
| 52 | // Iterate over header and compute safety info. |
| 53 | HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(BB: Header); |
| 54 | MayThrow = HeaderMayThrow; |
| 55 | // Iterate over loop instructions and compute safety info. |
| 56 | // Skip header as it has been computed and stored in HeaderMayThrow. |
| 57 | // The first block in loopinfo.Blocks is guaranteed to be the header. |
| 58 | assert(Header == *CurLoop->getBlocks().begin() && |
| 59 | "First block must be header" ); |
| 60 | for (const BasicBlock *BB : llvm::drop_begin(RangeOrContainer: CurLoop->blocks())) { |
| 61 | MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(BB); |
| 62 | if (MayThrow) |
| 63 | break; |
| 64 | } |
| 65 | |
| 66 | computeBlockColors(CurLoop); |
| 67 | } |
| 68 | |
| 69 | bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { |
| 70 | return ICF.hasICF(BB); |
| 71 | } |
| 72 | |
| 73 | bool ICFLoopSafetyInfo::anyBlockMayThrow() const { |
| 74 | return MayThrow; |
| 75 | } |
| 76 | |
| 77 | void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { |
| 78 | assert(CurLoop != nullptr && "CurLoop can't be null" ); |
| 79 | ICF.clear(); |
| 80 | MW.clear(); |
| 81 | MayThrow = false; |
| 82 | // Figure out the fact that at least one block may throw. |
| 83 | for (const auto &BB : CurLoop->blocks()) |
| 84 | if (ICF.hasICF(BB: &*BB)) { |
| 85 | MayThrow = true; |
| 86 | break; |
| 87 | } |
| 88 | computeBlockColors(CurLoop); |
| 89 | } |
| 90 | |
| 91 | void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst, |
| 92 | const BasicBlock *BB) { |
| 93 | ICF.insertInstructionTo(Inst, BB); |
| 94 | MW.insertInstructionTo(Inst, BB); |
| 95 | } |
| 96 | |
| 97 | void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) { |
| 98 | ICF.removeInstruction(Inst); |
| 99 | MW.removeInstruction(Inst); |
| 100 | } |
| 101 | |
| 102 | void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) { |
| 103 | // Compute funclet colors if we might sink/hoist in a function with a funclet |
| 104 | // personality routine. |
| 105 | Function *Fn = CurLoop->getHeader()->getParent(); |
| 106 | if (Fn->hasPersonalityFn()) |
| 107 | if (Constant *PersonalityFn = Fn->getPersonalityFn()) |
| 108 | if (isScopedEHPersonality(Pers: classifyEHPersonality(Pers: PersonalityFn))) |
| 109 | BlockColors = colorEHFunclets(F&: *Fn); |
| 110 | } |
| 111 | |
| 112 | /// Return true if we can prove that the given ExitBlock is not reached on the |
| 113 | /// first iteration of the given loop. That is, the backedge of the loop must |
| 114 | /// be executed before the ExitBlock is executed in any dynamic execution trace. |
| 115 | static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock, |
| 116 | const DominatorTree *DT, |
| 117 | const Loop *CurLoop) { |
| 118 | auto *CondExitBlock = ExitBlock->getSinglePredecessor(); |
| 119 | if (!CondExitBlock) |
| 120 | // expect unique exits |
| 121 | return false; |
| 122 | assert(CurLoop->contains(CondExitBlock) && "meaning of exit block" ); |
| 123 | auto *BI = dyn_cast<BranchInst>(Val: CondExitBlock->getTerminator()); |
| 124 | if (!BI || !BI->isConditional()) |
| 125 | return false; |
| 126 | // If condition is constant and false leads to ExitBlock then we always |
| 127 | // execute the true branch. |
| 128 | if (auto *Cond = dyn_cast<ConstantInt>(Val: BI->getCondition())) |
| 129 | return BI->getSuccessor(i: Cond->getZExtValue() ? 1 : 0) == ExitBlock; |
| 130 | auto *Cond = dyn_cast<CmpInst>(Val: BI->getCondition()); |
| 131 | if (!Cond) |
| 132 | return false; |
| 133 | // todo: this would be a lot more powerful if we used scev, but all the |
| 134 | // plumbing is currently missing to pass a pointer in from the pass |
| 135 | // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known |
| 136 | ICmpInst::Predicate Pred = Cond->getPredicate(); |
| 137 | auto *LHS = dyn_cast<PHINode>(Val: Cond->getOperand(i_nocapture: 0)); |
| 138 | auto *RHS = Cond->getOperand(i_nocapture: 1); |
| 139 | if (!LHS || LHS->getParent() != CurLoop->getHeader()) { |
| 140 | Pred = Cond->getSwappedPredicate(); |
| 141 | LHS = dyn_cast<PHINode>(Val: Cond->getOperand(i_nocapture: 1)); |
| 142 | RHS = Cond->getOperand(i_nocapture: 0); |
| 143 | if (!LHS || LHS->getParent() != CurLoop->getHeader()) |
| 144 | return false; |
| 145 | } |
| 146 | |
| 147 | auto DL = ExitBlock->getModule()->getDataLayout(); |
| 148 | auto *IVStart = LHS->getIncomingValueForBlock(BB: CurLoop->getLoopPreheader()); |
| 149 | auto *SimpleValOrNull = simplifyCmpInst( |
| 150 | Predicate: Pred, LHS: IVStart, RHS, Q: {DL, /*TLI*/ nullptr, DT, /*AC*/ nullptr, BI}); |
| 151 | auto *SimpleCst = dyn_cast_or_null<Constant>(Val: SimpleValOrNull); |
| 152 | if (!SimpleCst) |
| 153 | return false; |
| 154 | if (ExitBlock == BI->getSuccessor(i: 0)) |
| 155 | return SimpleCst->isZeroValue(); |
| 156 | assert(ExitBlock == BI->getSuccessor(1) && "implied by above" ); |
| 157 | return SimpleCst->isAllOnesValue(); |
| 158 | } |
| 159 | |
| 160 | /// Collect all blocks from \p CurLoop which lie on all possible paths from |
| 161 | /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set |
| 162 | /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty. |
| 163 | /// Note: It's possible that we encounter Irreducible control flow, due to |
| 164 | /// which, we may find that a few predecessors of \p BB are not a part of the |
| 165 | /// \p CurLoop. We only return Predecessors that are a part of \p CurLoop. |
| 166 | static void collectTransitivePredecessors( |
| 167 | const Loop *CurLoop, const BasicBlock *BB, |
| 168 | SmallPtrSetImpl<const BasicBlock *> &Predecessors) { |
| 169 | assert(Predecessors.empty() && "Garbage in predecessors set?" ); |
| 170 | assert(CurLoop->contains(BB) && "Should only be called for loop blocks!" ); |
| 171 | if (BB == CurLoop->getHeader()) |
| 172 | return; |
| 173 | SmallVector<const BasicBlock *, 4> WorkList; |
| 174 | for (const auto *Pred : predecessors(BB)) { |
| 175 | if (!CurLoop->contains(BB: Pred)) |
| 176 | continue; |
| 177 | Predecessors.insert(Ptr: Pred); |
| 178 | WorkList.push_back(Elt: Pred); |
| 179 | } |
| 180 | while (!WorkList.empty()) { |
| 181 | auto *Pred = WorkList.pop_back_val(); |
| 182 | assert(CurLoop->contains(Pred) && "Should only reach loop blocks!" ); |
| 183 | // We are not interested in backedges and we don't want to leave loop. |
| 184 | if (Pred == CurLoop->getHeader()) |
| 185 | continue; |
| 186 | // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all |
| 187 | // blocks of this inner loop, even those that are always executed AFTER the |
| 188 | // BB. It may make our analysis more conservative than it could be, see test |
| 189 | // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll. |
| 190 | // We can ignore backedge of all loops containing BB to get a sligtly more |
| 191 | // optimistic result. |
| 192 | for (const auto *PredPred : predecessors(BB: Pred)) |
| 193 | if (CurLoop->contains(BB: PredPred) && Predecessors.insert(Ptr: PredPred).second) |
| 194 | WorkList.push_back(Elt: PredPred); |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop, |
| 199 | const BasicBlock *BB, |
| 200 | const DominatorTree *DT) const { |
| 201 | assert(CurLoop->contains(BB) && "Should only be called for loop blocks!" ); |
| 202 | |
| 203 | // Fast path: header is always reached once the loop is entered. |
| 204 | if (BB == CurLoop->getHeader()) |
| 205 | return true; |
| 206 | |
| 207 | // Collect all transitive predecessors of BB in the same loop. This set will |
| 208 | // be a subset of the blocks within the loop. |
| 209 | SmallPtrSet<const BasicBlock *, 4> Predecessors; |
| 210 | collectTransitivePredecessors(CurLoop, BB, Predecessors); |
| 211 | |
| 212 | // Bail out if a latch block is part of the predecessor set. In this case |
| 213 | // we may take the backedge to the header and not execute other latch |
| 214 | // successors. |
| 215 | for (const BasicBlock *Pred : predecessors(BB: CurLoop->getHeader())) |
| 216 | // Predecessors only contains loop blocks, so we don't have to worry about |
| 217 | // preheader predecessors here. |
| 218 | if (Predecessors.contains(Ptr: Pred)) |
| 219 | return false; |
| 220 | |
| 221 | // Make sure that all successors of, all predecessors of BB which are not |
| 222 | // dominated by BB, are either: |
| 223 | // 1) BB, |
| 224 | // 2) Also predecessors of BB, |
| 225 | // 3) Exit blocks which are not taken on 1st iteration. |
| 226 | // Memoize blocks we've already checked. |
| 227 | SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors; |
| 228 | for (const auto *Pred : Predecessors) { |
| 229 | // Predecessor block may throw, so it has a side exit. |
| 230 | if (blockMayThrow(BB: Pred)) |
| 231 | return false; |
| 232 | |
| 233 | // BB dominates Pred, so if Pred runs, BB must run. |
| 234 | // This is true when Pred is a loop latch. |
| 235 | if (DT->dominates(A: BB, B: Pred)) |
| 236 | continue; |
| 237 | |
| 238 | for (const auto *Succ : successors(BB: Pred)) |
| 239 | if (CheckedSuccessors.insert(Ptr: Succ).second && |
| 240 | Succ != BB && !Predecessors.count(Ptr: Succ)) |
| 241 | // By discharging conditions that are not executed on the 1st iteration, |
| 242 | // we guarantee that *at least* on the first iteration all paths from |
| 243 | // header that *may* execute will lead us to the block of interest. So |
| 244 | // that if we had virtually peeled one iteration away, in this peeled |
| 245 | // iteration the set of predecessors would contain only paths from |
| 246 | // header to BB without any exiting edges that may execute. |
| 247 | // |
| 248 | // TODO: We only do it for exiting edges currently. We could use the |
| 249 | // same function to skip some of the edges within the loop if we know |
| 250 | // that they will not be taken on the 1st iteration. |
| 251 | // |
| 252 | // TODO: If we somehow know the number of iterations in loop, the same |
| 253 | // check may be done for any arbitrary N-th iteration as long as N is |
| 254 | // not greater than minimum number of iterations in this loop. |
| 255 | if (CurLoop->contains(BB: Succ) || |
| 256 | !CanProveNotTakenFirstIteration(ExitBlock: Succ, DT, CurLoop)) |
| 257 | return false; |
| 258 | } |
| 259 | |
| 260 | // All predecessors can only lead us to BB. |
| 261 | return true; |
| 262 | } |
| 263 | |
| 264 | /// Returns true if the instruction in a loop is guaranteed to execute at least |
| 265 | /// once. |
| 266 | bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, |
| 267 | const DominatorTree *DT, |
| 268 | const Loop *CurLoop) const { |
| 269 | // If the instruction is in the header block for the loop (which is very |
| 270 | // common), it is always guaranteed to dominate the exit blocks. Since this |
| 271 | // is a common case, and can save some work, check it now. |
| 272 | if (Inst.getParent() == CurLoop->getHeader()) |
| 273 | // If there's a throw in the header block, we can't guarantee we'll reach |
| 274 | // Inst unless we can prove that Inst comes before the potential implicit |
| 275 | // exit. At the moment, we use a (cheap) hack for the common case where |
| 276 | // the instruction of interest is the first one in the block. |
| 277 | return !HeaderMayThrow || |
| 278 | &*Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; |
| 279 | |
| 280 | // If there is a path from header to exit or latch that doesn't lead to our |
| 281 | // instruction's block, return false. |
| 282 | return allLoopPathsLeadToBlock(CurLoop, BB: Inst.getParent(), DT); |
| 283 | } |
| 284 | |
| 285 | bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, |
| 286 | const DominatorTree *DT, |
| 287 | const Loop *CurLoop) const { |
| 288 | return !ICF.isDominatedByICFIFromSameBlock(Insn: &Inst) && |
| 289 | allLoopPathsLeadToBlock(CurLoop, BB: Inst.getParent(), DT); |
| 290 | } |
| 291 | |
| 292 | bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB, |
| 293 | const Loop *CurLoop) const { |
| 294 | assert(CurLoop->contains(BB) && "Should only be called for loop blocks!" ); |
| 295 | |
| 296 | // Fast path: there are no instructions before header. |
| 297 | if (BB == CurLoop->getHeader()) |
| 298 | return true; |
| 299 | |
| 300 | // Collect all transitive predecessors of BB in the same loop. This set will |
| 301 | // be a subset of the blocks within the loop. |
| 302 | SmallPtrSet<const BasicBlock *, 4> Predecessors; |
| 303 | collectTransitivePredecessors(CurLoop, BB, Predecessors); |
| 304 | // Find if there any instruction in either predecessor that could write |
| 305 | // to memory. |
| 306 | for (const auto *Pred : Predecessors) |
| 307 | if (MW.mayWriteToMemory(BB: Pred)) |
| 308 | return false; |
| 309 | return true; |
| 310 | } |
| 311 | |
| 312 | bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I, |
| 313 | const Loop *CurLoop) const { |
| 314 | auto *BB = I.getParent(); |
| 315 | assert(CurLoop->contains(BB) && "Should only be called for loop blocks!" ); |
| 316 | return !MW.isDominatedByMemoryWriteFromSameBlock(Insn: &I) && |
| 317 | doesNotWriteMemoryBefore(BB, CurLoop); |
| 318 | } |
| 319 | |
| 320 | static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { |
| 321 | // TODO: merge these two routines. For the moment, we display the best |
| 322 | // result obtained by *either* implementation. This is a bit unfair since no |
| 323 | // caller actually gets the full power at the moment. |
| 324 | SimpleLoopSafetyInfo LSI; |
| 325 | LSI.computeLoopSafetyInfo(CurLoop: L); |
| 326 | return LSI.isGuaranteedToExecute(Inst: I, DT, CurLoop: L) || |
| 327 | isGuaranteedToExecuteForEveryIteration(I: &I, L); |
| 328 | } |
| 329 | |
| 330 | namespace { |
| 331 | /// An assembly annotator class to print must execute information in |
| 332 | /// comments. |
| 333 | class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { |
| 334 | DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; |
| 335 | |
| 336 | public: |
| 337 | MustExecuteAnnotatedWriter(const Function &F, |
| 338 | DominatorTree &DT, LoopInfo &LI) { |
| 339 | for (const auto &I: instructions(F)) { |
| 340 | Loop *L = LI.getLoopFor(BB: I.getParent()); |
| 341 | while (L) { |
| 342 | if (isMustExecuteIn(I, L, DT: &DT)) { |
| 343 | MustExec[&I].push_back(Elt: L); |
| 344 | } |
| 345 | L = L->getParentLoop(); |
| 346 | }; |
| 347 | } |
| 348 | } |
| 349 | MustExecuteAnnotatedWriter(const Module &M, |
| 350 | DominatorTree &DT, LoopInfo &LI) { |
| 351 | for (const auto &F : M) |
| 352 | for (const auto &I: instructions(F)) { |
| 353 | Loop *L = LI.getLoopFor(BB: I.getParent()); |
| 354 | while (L) { |
| 355 | if (isMustExecuteIn(I, L, DT: &DT)) { |
| 356 | MustExec[&I].push_back(Elt: L); |
| 357 | } |
| 358 | L = L->getParentLoop(); |
| 359 | }; |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | |
| 364 | void (const Value &V, formatted_raw_ostream &OS) override { |
| 365 | if (!MustExec.count(Val: &V)) |
| 366 | return; |
| 367 | |
| 368 | const auto &Loops = MustExec.lookup(Val: &V); |
| 369 | const auto NumLoops = Loops.size(); |
| 370 | if (NumLoops > 1) |
| 371 | OS << " ; (mustexec in " << NumLoops << " loops: " ; |
| 372 | else |
| 373 | OS << " ; (mustexec in: " ; |
| 374 | |
| 375 | ListSeparator LS; |
| 376 | for (const Loop *L : Loops) |
| 377 | OS << LS << L->getHeader()->getName(); |
| 378 | OS << ")" ; |
| 379 | } |
| 380 | }; |
| 381 | } // namespace |
| 382 | |
| 383 | /// Return true if \p L might be an endless loop. |
| 384 | static bool maybeEndlessLoop(const Loop &L) { |
| 385 | if (L.getHeader()->getParent()->hasFnAttribute(Kind: Attribute::WillReturn)) |
| 386 | return false; |
| 387 | // TODO: Actually try to prove it is not. |
| 388 | // TODO: If maybeEndlessLoop is going to be expensive, cache it. |
| 389 | return true; |
| 390 | } |
| 391 | |
| 392 | bool llvm::mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) { |
| 393 | if (!LI) |
| 394 | return false; |
| 395 | using RPOTraversal = ReversePostOrderTraversal<const Function *>; |
| 396 | RPOTraversal FuncRPOT(&F); |
| 397 | return containsIrreducibleCFG<const BasicBlock *, const RPOTraversal, |
| 398 | const LoopInfo>(RPOTraversal: FuncRPOT, LI: *LI); |
| 399 | } |
| 400 | |
| 401 | /// Lookup \p Key in \p Map and return the result, potentially after |
| 402 | /// initializing the optional through \p Fn(\p args). |
| 403 | template <typename K, typename V, typename FnTy, typename... ArgsTy> |
| 404 | static V getOrCreateCachedOptional(K Key, DenseMap<K, std::optional<V>> &Map, |
| 405 | FnTy &&Fn, ArgsTy &&...args) { |
| 406 | std::optional<V> &OptVal = Map[Key]; |
| 407 | if (!OptVal) |
| 408 | OptVal = Fn(std::forward<ArgsTy>(args)...); |
| 409 | return *OptVal; |
| 410 | } |
| 411 | |
| 412 | const BasicBlock * |
| 413 | MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) { |
| 414 | const LoopInfo *LI = LIGetter(*InitBB->getParent()); |
| 415 | const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent()); |
| 416 | |
| 417 | LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName() |
| 418 | << (LI ? " [LI]" : "" ) << (PDT ? " [PDT]" : "" )); |
| 419 | |
| 420 | const Function &F = *InitBB->getParent(); |
| 421 | const Loop *L = LI ? LI->getLoopFor(BB: InitBB) : nullptr; |
| 422 | const BasicBlock * = L ? L->getHeader() : InitBB; |
| 423 | bool WillReturnAndNoThrow = (F.hasFnAttribute(Kind: Attribute::WillReturn) || |
| 424 | (L && !maybeEndlessLoop(L: *L))) && |
| 425 | F.doesNotThrow(); |
| 426 | LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "" ) |
| 427 | << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "" ) |
| 428 | << "\n" ); |
| 429 | |
| 430 | // Determine the adjacent blocks in the given direction but exclude (self) |
| 431 | // loops under certain circumstances. |
| 432 | SmallVector<const BasicBlock *, 8> Worklist; |
| 433 | for (const BasicBlock *SuccBB : successors(BB: InitBB)) { |
| 434 | bool IsLatch = SuccBB == HeaderBB; |
| 435 | // Loop latches are ignored in forward propagation if the loop cannot be |
| 436 | // endless and may not throw: control has to go somewhere. |
| 437 | if (!WillReturnAndNoThrow || !IsLatch) |
| 438 | Worklist.push_back(Elt: SuccBB); |
| 439 | } |
| 440 | LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n" ); |
| 441 | |
| 442 | // If there are no other adjacent blocks, there is no join point. |
| 443 | if (Worklist.empty()) |
| 444 | return nullptr; |
| 445 | |
| 446 | // If there is one adjacent block, it is the join point. |
| 447 | if (Worklist.size() == 1) |
| 448 | return Worklist[0]; |
| 449 | |
| 450 | // Try to determine a join block through the help of the post-dominance |
| 451 | // tree. If no tree was provided, we perform simple pattern matching for one |
| 452 | // block conditionals and one block loops only. |
| 453 | const BasicBlock *JoinBB = nullptr; |
| 454 | if (PDT) |
| 455 | if (const auto *InitNode = PDT->getNode(BB: InitBB)) |
| 456 | if (const auto *IDomNode = InitNode->getIDom()) |
| 457 | JoinBB = IDomNode->getBlock(); |
| 458 | |
| 459 | if (!JoinBB && Worklist.size() == 2) { |
| 460 | const BasicBlock *Succ0 = Worklist[0]; |
| 461 | const BasicBlock *Succ1 = Worklist[1]; |
| 462 | const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor(); |
| 463 | const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor(); |
| 464 | if (Succ0UniqueSucc == InitBB) { |
| 465 | // InitBB -> Succ0 -> InitBB |
| 466 | // InitBB -> Succ1 = JoinBB |
| 467 | JoinBB = Succ1; |
| 468 | } else if (Succ1UniqueSucc == InitBB) { |
| 469 | // InitBB -> Succ1 -> InitBB |
| 470 | // InitBB -> Succ0 = JoinBB |
| 471 | JoinBB = Succ0; |
| 472 | } else if (Succ0 == Succ1UniqueSucc) { |
| 473 | // InitBB -> Succ0 = JoinBB |
| 474 | // InitBB -> Succ1 -> Succ0 = JoinBB |
| 475 | JoinBB = Succ0; |
| 476 | } else if (Succ1 == Succ0UniqueSucc) { |
| 477 | // InitBB -> Succ0 -> Succ1 = JoinBB |
| 478 | // InitBB -> Succ1 = JoinBB |
| 479 | JoinBB = Succ1; |
| 480 | } else if (Succ0UniqueSucc == Succ1UniqueSucc) { |
| 481 | // InitBB -> Succ0 -> JoinBB |
| 482 | // InitBB -> Succ1 -> JoinBB |
| 483 | JoinBB = Succ0UniqueSucc; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | if (!JoinBB && L) |
| 488 | JoinBB = L->getUniqueExitBlock(); |
| 489 | |
| 490 | if (!JoinBB) |
| 491 | return nullptr; |
| 492 | |
| 493 | LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n" ); |
| 494 | |
| 495 | // In forward direction we check if control will for sure reach JoinBB from |
| 496 | // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control |
| 497 | // are: infinite loops and instructions that do not necessarily transfer |
| 498 | // execution to their successor. To check for them we traverse the CFG from |
| 499 | // the adjacent blocks to the JoinBB, looking at all intermediate blocks. |
| 500 | |
| 501 | // If we know the function is "will-return" and "no-throw" there is no need |
| 502 | // for futher checks. |
| 503 | if (!F.hasFnAttribute(Kind: Attribute::WillReturn) || !F.doesNotThrow()) { |
| 504 | |
| 505 | auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) { |
| 506 | return isGuaranteedToTransferExecutionToSuccessor(BB); |
| 507 | }; |
| 508 | |
| 509 | SmallPtrSet<const BasicBlock *, 16> Visited; |
| 510 | while (!Worklist.empty()) { |
| 511 | const BasicBlock *ToBB = Worklist.pop_back_val(); |
| 512 | if (ToBB == JoinBB) |
| 513 | continue; |
| 514 | |
| 515 | // Make sure all loops in-between are finite. |
| 516 | if (!Visited.insert(Ptr: ToBB).second) { |
| 517 | if (!F.hasFnAttribute(Kind: Attribute::WillReturn)) { |
| 518 | if (!LI) |
| 519 | return nullptr; |
| 520 | |
| 521 | bool MayContainIrreducibleControl = getOrCreateCachedOptional( |
| 522 | Key: &F, Map&: IrreducibleControlMap, Fn&: mayContainIrreducibleControl, args: F, args&: LI); |
| 523 | if (MayContainIrreducibleControl) |
| 524 | return nullptr; |
| 525 | |
| 526 | const Loop *L = LI->getLoopFor(BB: ToBB); |
| 527 | if (L && maybeEndlessLoop(L: *L)) |
| 528 | return nullptr; |
| 529 | } |
| 530 | |
| 531 | continue; |
| 532 | } |
| 533 | |
| 534 | // Make sure the block has no instructions that could stop control |
| 535 | // transfer. |
| 536 | bool TransfersExecution = getOrCreateCachedOptional( |
| 537 | Key: ToBB, Map&: BlockTransferMap, Fn&: BlockTransfersExecutionToSuccessor, args&: ToBB); |
| 538 | if (!TransfersExecution) |
| 539 | return nullptr; |
| 540 | |
| 541 | append_range(C&: Worklist, R: successors(BB: ToBB)); |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n" ); |
| 546 | return JoinBB; |
| 547 | } |
| 548 | const BasicBlock * |
| 549 | MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) { |
| 550 | const LoopInfo *LI = LIGetter(*InitBB->getParent()); |
| 551 | const DominatorTree *DT = DTGetter(*InitBB->getParent()); |
| 552 | LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName() |
| 553 | << (LI ? " [LI]" : "" ) << (DT ? " [DT]" : "" )); |
| 554 | |
| 555 | // Try to determine a join block through the help of the dominance tree. If no |
| 556 | // tree was provided, we perform simple pattern matching for one block |
| 557 | // conditionals only. |
| 558 | if (DT) |
| 559 | if (const auto *InitNode = DT->getNode(BB: InitBB)) |
| 560 | if (const auto *IDomNode = InitNode->getIDom()) |
| 561 | return IDomNode->getBlock(); |
| 562 | |
| 563 | const Loop *L = LI ? LI->getLoopFor(BB: InitBB) : nullptr; |
| 564 | const BasicBlock * = L ? L->getHeader() : nullptr; |
| 565 | |
| 566 | // Determine the predecessor blocks but ignore backedges. |
| 567 | SmallVector<const BasicBlock *, 8> Worklist; |
| 568 | for (const BasicBlock *PredBB : predecessors(BB: InitBB)) { |
| 569 | bool IsBackedge = |
| 570 | (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(BB: PredBB)); |
| 571 | // Loop backedges are ignored in backwards propagation: control has to come |
| 572 | // from somewhere. |
| 573 | if (!IsBackedge) |
| 574 | Worklist.push_back(Elt: PredBB); |
| 575 | } |
| 576 | |
| 577 | // If there are no other predecessor blocks, there is no join point. |
| 578 | if (Worklist.empty()) |
| 579 | return nullptr; |
| 580 | |
| 581 | // If there is one predecessor block, it is the join point. |
| 582 | if (Worklist.size() == 1) |
| 583 | return Worklist[0]; |
| 584 | |
| 585 | const BasicBlock *JoinBB = nullptr; |
| 586 | if (Worklist.size() == 2) { |
| 587 | const BasicBlock *Pred0 = Worklist[0]; |
| 588 | const BasicBlock *Pred1 = Worklist[1]; |
| 589 | const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor(); |
| 590 | const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor(); |
| 591 | if (Pred0 == Pred1UniquePred) { |
| 592 | // InitBB <- Pred0 = JoinBB |
| 593 | // InitBB <- Pred1 <- Pred0 = JoinBB |
| 594 | JoinBB = Pred0; |
| 595 | } else if (Pred1 == Pred0UniquePred) { |
| 596 | // InitBB <- Pred0 <- Pred1 = JoinBB |
| 597 | // InitBB <- Pred1 = JoinBB |
| 598 | JoinBB = Pred1; |
| 599 | } else if (Pred0UniquePred == Pred1UniquePred) { |
| 600 | // InitBB <- Pred0 <- JoinBB |
| 601 | // InitBB <- Pred1 <- JoinBB |
| 602 | JoinBB = Pred0UniquePred; |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | if (!JoinBB && L) |
| 607 | JoinBB = L->getHeader(); |
| 608 | |
| 609 | // In backwards direction there is no need to show termination of previous |
| 610 | // instructions. If they do not terminate, the code afterward is dead, making |
| 611 | // any information/transformation correct anyway. |
| 612 | return JoinBB; |
| 613 | } |
| 614 | |
| 615 | const Instruction * |
| 616 | MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction( |
| 617 | MustBeExecutedIterator &It, const Instruction *PP) { |
| 618 | if (!PP) |
| 619 | return PP; |
| 620 | LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n" ); |
| 621 | |
| 622 | // If we explore only inside a given basic block we stop at terminators. |
| 623 | if (!ExploreInterBlock && PP->isTerminator()) { |
| 624 | LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n" ); |
| 625 | return nullptr; |
| 626 | } |
| 627 | |
| 628 | // If we do not traverse the call graph we check if we can make progress in |
| 629 | // the current function. First, check if the instruction is guaranteed to |
| 630 | // transfer execution to the successor. |
| 631 | bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(I: PP); |
| 632 | if (!TransfersExecution) |
| 633 | return nullptr; |
| 634 | |
| 635 | // If this is not a terminator we know that there is a single instruction |
| 636 | // after this one that is executed next if control is transfered. If not, |
| 637 | // we can try to go back to a call site we entered earlier. If none exists, we |
| 638 | // do not know any instruction that has to be executd next. |
| 639 | if (!PP->isTerminator()) { |
| 640 | const Instruction *NextPP = PP->getNextNode(); |
| 641 | LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n" ); |
| 642 | return NextPP; |
| 643 | } |
| 644 | |
| 645 | // Finally, we have to handle terminators, trivial ones first. |
| 646 | assert(PP->isTerminator() && "Expected a terminator!" ); |
| 647 | |
| 648 | // A terminator without a successor is not handled yet. |
| 649 | if (PP->getNumSuccessors() == 0) { |
| 650 | LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n" ); |
| 651 | return nullptr; |
| 652 | } |
| 653 | |
| 654 | // A terminator with a single successor, we will continue at the beginning of |
| 655 | // that one. |
| 656 | if (PP->getNumSuccessors() == 1) { |
| 657 | LLVM_DEBUG( |
| 658 | dbgs() << "\tUnconditional terminator, continue with successor\n" ); |
| 659 | return &PP->getSuccessor(Idx: 0)->front(); |
| 660 | } |
| 661 | |
| 662 | // Multiple successors mean we need to find the join point where control flow |
| 663 | // converges again. We use the findForwardJoinPoint helper function with |
| 664 | // information about the function and helper analyses, if available. |
| 665 | if (const BasicBlock *JoinBB = findForwardJoinPoint(InitBB: PP->getParent())) |
| 666 | return &JoinBB->front(); |
| 667 | |
| 668 | LLVM_DEBUG(dbgs() << "\tNo join point found\n" ); |
| 669 | return nullptr; |
| 670 | } |
| 671 | |
| 672 | const Instruction * |
| 673 | MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction( |
| 674 | MustBeExecutedIterator &It, const Instruction *PP) { |
| 675 | if (!PP) |
| 676 | return PP; |
| 677 | |
| 678 | bool IsFirst = !(PP->getPrevNode()); |
| 679 | LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP |
| 680 | << (IsFirst ? " [IsFirst]" : "" ) << "\n" ); |
| 681 | |
| 682 | // If we explore only inside a given basic block we stop at the first |
| 683 | // instruction. |
| 684 | if (!ExploreInterBlock && IsFirst) { |
| 685 | LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n" ); |
| 686 | return nullptr; |
| 687 | } |
| 688 | |
| 689 | // The block and function that contains the current position. |
| 690 | const BasicBlock *PPBlock = PP->getParent(); |
| 691 | |
| 692 | // If we are inside a block we know what instruction was executed before, the |
| 693 | // previous one. |
| 694 | if (!IsFirst) { |
| 695 | const Instruction *PrevPP = PP->getPrevNode(); |
| 696 | LLVM_DEBUG( |
| 697 | dbgs() << "\tIntermediate instruction, continue with previous\n" ); |
| 698 | // We did not enter a callee so we simply return the previous instruction. |
| 699 | return PrevPP; |
| 700 | } |
| 701 | |
| 702 | // Finally, we have to handle the case where the program point is the first in |
| 703 | // a block but not in the function. We use the findBackwardJoinPoint helper |
| 704 | // function with information about the function and helper analyses, if |
| 705 | // available. |
| 706 | if (const BasicBlock *JoinBB = findBackwardJoinPoint(InitBB: PPBlock)) |
| 707 | return &JoinBB->back(); |
| 708 | |
| 709 | LLVM_DEBUG(dbgs() << "\tNo join point found\n" ); |
| 710 | return nullptr; |
| 711 | } |
| 712 | |
| 713 | MustBeExecutedIterator::MustBeExecutedIterator( |
| 714 | MustBeExecutedContextExplorer &Explorer, const Instruction *I) |
| 715 | : Explorer(Explorer), CurInst(I) { |
| 716 | reset(I); |
| 717 | } |
| 718 | |
| 719 | void MustBeExecutedIterator::reset(const Instruction *I) { |
| 720 | Visited.clear(); |
| 721 | resetInstruction(I); |
| 722 | } |
| 723 | |
| 724 | void MustBeExecutedIterator::resetInstruction(const Instruction *I) { |
| 725 | CurInst = I; |
| 726 | Head = Tail = nullptr; |
| 727 | Visited.insert(V: {I, ExplorationDirection::FORWARD}); |
| 728 | Visited.insert(V: {I, ExplorationDirection::BACKWARD}); |
| 729 | if (Explorer.ExploreCFGForward) |
| 730 | Head = I; |
| 731 | if (Explorer.ExploreCFGBackward) |
| 732 | Tail = I; |
| 733 | } |
| 734 | |
| 735 | const Instruction *MustBeExecutedIterator::advance() { |
| 736 | assert(CurInst && "Cannot advance an end iterator!" ); |
| 737 | Head = Explorer.getMustBeExecutedNextInstruction(It&: *this, PP: Head); |
| 738 | if (Head && Visited.insert(V: {Head, ExplorationDirection ::FORWARD}).second) |
| 739 | return Head; |
| 740 | Head = nullptr; |
| 741 | |
| 742 | Tail = Explorer.getMustBeExecutedPrevInstruction(It&: *this, PP: Tail); |
| 743 | if (Tail && Visited.insert(V: {Tail, ExplorationDirection ::BACKWARD}).second) |
| 744 | return Tail; |
| 745 | Tail = nullptr; |
| 746 | return nullptr; |
| 747 | } |
| 748 | |
| 749 | PreservedAnalyses MustExecutePrinterPass::run(Function &F, |
| 750 | FunctionAnalysisManager &AM) { |
| 751 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
| 752 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 753 | |
| 754 | MustExecuteAnnotatedWriter Writer(F, DT, LI); |
| 755 | F.print(OS, AAW: &Writer); |
| 756 | return PreservedAnalyses::all(); |
| 757 | } |
| 758 | |
| 759 | PreservedAnalyses |
| 760 | MustBeExecutedContextPrinterPass::run(Module &M, ModuleAnalysisManager &AM) { |
| 761 | FunctionAnalysisManager &FAM = |
| 762 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 763 | GetterTy<const LoopInfo> LIGetter = [&](const Function &F) { |
| 764 | return &FAM.getResult<LoopAnalysis>(IR&: const_cast<Function &>(F)); |
| 765 | }; |
| 766 | GetterTy<const DominatorTree> DTGetter = [&](const Function &F) { |
| 767 | return &FAM.getResult<DominatorTreeAnalysis>(IR&: const_cast<Function &>(F)); |
| 768 | }; |
| 769 | GetterTy<const PostDominatorTree> PDTGetter = [&](const Function &F) { |
| 770 | return &FAM.getResult<PostDominatorTreeAnalysis>(IR&: const_cast<Function &>(F)); |
| 771 | }; |
| 772 | |
| 773 | MustBeExecutedContextExplorer Explorer( |
| 774 | /* ExploreInterBlock */ true, |
| 775 | /* ExploreCFGForward */ true, |
| 776 | /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter); |
| 777 | |
| 778 | for (Function &F : M) { |
| 779 | for (Instruction &I : instructions(F)) { |
| 780 | OS << "-- Explore context of: " << I << "\n" ; |
| 781 | for (const Instruction *CI : Explorer.range(PP: &I)) |
| 782 | OS << " [F: " << CI->getFunction()->getName() << "] " << *CI << "\n" ; |
| 783 | } |
| 784 | } |
| 785 | return PreservedAnalyses::all(); |
| 786 | } |
| 787 | |