| 1 | //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Analysis/PhiValues.h" |
| 10 | #include "llvm/ADT/SmallVector.h" |
| 11 | #include "llvm/IR/Instructions.h" |
| 12 | #include "llvm/InitializePasses.h" |
| 13 | |
| 14 | using namespace llvm; |
| 15 | |
| 16 | void PhiValues::PhiValuesCallbackVH::deleted() { |
| 17 | PV->invalidateValue(V: getValPtr()); |
| 18 | } |
| 19 | |
| 20 | void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) { |
| 21 | // We could potentially update the cached values we have with the new value, |
| 22 | // but it's simpler to just treat the old value as invalidated. |
| 23 | PV->invalidateValue(V: getValPtr()); |
| 24 | } |
| 25 | |
| 26 | bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA, |
| 27 | FunctionAnalysisManager::Invalidator &) { |
| 28 | // PhiValues is invalidated if it isn't preserved. |
| 29 | auto PAC = PA.getChecker<PhiValuesAnalysis>(); |
| 30 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()); |
| 31 | } |
| 32 | |
| 33 | // The goal here is to find all of the non-phi values reachable from this phi, |
| 34 | // and to do the same for all of the phis reachable from this phi, as doing so |
| 35 | // is necessary anyway in order to get the values for this phi. We do this using |
| 36 | // Tarjan's algorithm with Nuutila's improvements to find the strongly connected |
| 37 | // components of the phi graph rooted in this phi: |
| 38 | // * All phis in a strongly connected component will have the same reachable |
| 39 | // non-phi values. The SCC may not be the maximal subgraph for that set of |
| 40 | // reachable values, but finding out that isn't really necessary (it would |
| 41 | // only reduce the amount of memory needed to store the values). |
| 42 | // * Tarjan's algorithm completes components in a bottom-up manner, i.e. it |
| 43 | // never completes a component before the components reachable from it have |
| 44 | // been completed. This means that when we complete a component we have |
| 45 | // everything we need to collect the values reachable from that component. |
| 46 | // * We collect both the non-phi values reachable from each SCC, as that's what |
| 47 | // we're ultimately interested in, and all of the reachable values, i.e. |
| 48 | // including phis, as that makes invalidateValue easier. |
| 49 | void PhiValues::processPhi(const PHINode *Phi, |
| 50 | SmallVectorImpl<const PHINode *> &Stack) { |
| 51 | // Initialize the phi with the next depth number. |
| 52 | assert(DepthMap.lookup(Phi) == 0); |
| 53 | assert(NextDepthNumber != UINT_MAX); |
| 54 | unsigned int RootDepthNumber = ++NextDepthNumber; |
| 55 | DepthMap[Phi] = RootDepthNumber; |
| 56 | |
| 57 | // Recursively process the incoming phis of this phi. |
| 58 | TrackedValues.insert(V: PhiValuesCallbackVH(const_cast<PHINode *>(Phi), this)); |
| 59 | for (Value *PhiOp : Phi->incoming_values()) { |
| 60 | if (PHINode *PhiPhiOp = dyn_cast<PHINode>(Val: PhiOp)) { |
| 61 | // Recurse if the phi has not yet been visited. |
| 62 | unsigned int OpDepthNumber = DepthMap.lookup(Val: PhiPhiOp); |
| 63 | if (OpDepthNumber == 0) { |
| 64 | processPhi(Phi: PhiPhiOp, Stack); |
| 65 | OpDepthNumber = DepthMap.lookup(Val: PhiPhiOp); |
| 66 | assert(OpDepthNumber != 0); |
| 67 | } |
| 68 | // If the phi did not become part of a component then this phi and that |
| 69 | // phi are part of the same component, so adjust the depth number. |
| 70 | if (!ReachableMap.count(Val: OpDepthNumber)) { |
| 71 | unsigned &Depth = DepthMap[Phi]; |
| 72 | Depth = std::min(a: Depth, b: OpDepthNumber); |
| 73 | } |
| 74 | } else { |
| 75 | TrackedValues.insert(V: PhiValuesCallbackVH(PhiOp, this)); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | // Now that incoming phis have been handled, push this phi to the stack. |
| 80 | Stack.push_back(Elt: Phi); |
| 81 | |
| 82 | // If the depth number has not changed then we've finished collecting the phis |
| 83 | // of a strongly connected component. |
| 84 | if (DepthMap[Phi] == RootDepthNumber) { |
| 85 | // Collect the reachable values for this component. The phis of this |
| 86 | // component will be those on top of the depth stack with the same or |
| 87 | // greater depth number. |
| 88 | ConstValueSet &Reachable = ReachableMap[RootDepthNumber]; |
| 89 | while (true) { |
| 90 | const PHINode *ComponentPhi = Stack.pop_back_val(); |
| 91 | Reachable.insert(X: ComponentPhi); |
| 92 | |
| 93 | for (Value *Op : ComponentPhi->incoming_values()) { |
| 94 | if (PHINode *PhiOp = dyn_cast<PHINode>(Val: Op)) { |
| 95 | // If this phi is not part of the same component then that component |
| 96 | // is guaranteed to have been completed before this one. Therefore we |
| 97 | // can just add its reachable values to the reachable values of this |
| 98 | // component. |
| 99 | unsigned int OpDepthNumber = DepthMap[PhiOp]; |
| 100 | if (OpDepthNumber != RootDepthNumber) { |
| 101 | auto It = ReachableMap.find(Val: OpDepthNumber); |
| 102 | if (It != ReachableMap.end()) |
| 103 | Reachable.insert_range(R&: It->second); |
| 104 | } |
| 105 | } else |
| 106 | Reachable.insert(X: Op); |
| 107 | } |
| 108 | |
| 109 | if (Stack.empty()) |
| 110 | break; |
| 111 | |
| 112 | unsigned int &ComponentDepthNumber = DepthMap[Stack.back()]; |
| 113 | if (ComponentDepthNumber < RootDepthNumber) |
| 114 | break; |
| 115 | |
| 116 | ComponentDepthNumber = RootDepthNumber; |
| 117 | } |
| 118 | |
| 119 | // Filter out phis to get the non-phi reachable values. |
| 120 | ValueSet &NonPhi = NonPhiReachableMap[RootDepthNumber]; |
| 121 | for (const Value *V : Reachable) |
| 122 | if (!isa<PHINode>(Val: V)) |
| 123 | NonPhi.insert(X: const_cast<Value *>(V)); |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) { |
| 128 | unsigned int DepthNumber = DepthMap.lookup(Val: PN); |
| 129 | if (DepthNumber == 0) { |
| 130 | SmallVector<const PHINode *, 8> Stack; |
| 131 | processPhi(Phi: PN, Stack); |
| 132 | DepthNumber = DepthMap.lookup(Val: PN); |
| 133 | assert(Stack.empty()); |
| 134 | assert(DepthNumber != 0); |
| 135 | } |
| 136 | return NonPhiReachableMap[DepthNumber]; |
| 137 | } |
| 138 | |
| 139 | void PhiValues::invalidateValue(const Value *V) { |
| 140 | // Components that can reach V are invalid. |
| 141 | SmallVector<unsigned int, 8> InvalidComponents; |
| 142 | for (auto &Pair : ReachableMap) |
| 143 | if (Pair.second.count(key: V)) |
| 144 | InvalidComponents.push_back(Elt: Pair.first); |
| 145 | |
| 146 | for (unsigned int N : InvalidComponents) { |
| 147 | for (const Value *V : ReachableMap[N]) |
| 148 | if (const PHINode *PN = dyn_cast<PHINode>(Val: V)) |
| 149 | DepthMap.erase(Val: PN); |
| 150 | NonPhiReachableMap.erase(Val: N); |
| 151 | ReachableMap.erase(Val: N); |
| 152 | } |
| 153 | // This value is no longer tracked |
| 154 | auto It = TrackedValues.find_as(Val: V); |
| 155 | if (It != TrackedValues.end()) |
| 156 | TrackedValues.erase(I: It); |
| 157 | } |
| 158 | |
| 159 | void PhiValues::releaseMemory() { |
| 160 | DepthMap.clear(); |
| 161 | NonPhiReachableMap.clear(); |
| 162 | ReachableMap.clear(); |
| 163 | } |
| 164 | |
| 165 | void PhiValues::print(raw_ostream &OS) const { |
| 166 | // Iterate through the phi nodes of the function rather than iterating through |
| 167 | // DepthMap in order to get predictable ordering. |
| 168 | for (const BasicBlock &BB : F) { |
| 169 | for (const PHINode &PN : BB.phis()) { |
| 170 | OS << "PHI " ; |
| 171 | PN.printAsOperand(O&: OS, PrintType: false); |
| 172 | OS << " has values:\n" ; |
| 173 | unsigned int N = DepthMap.lookup(Val: &PN); |
| 174 | auto It = NonPhiReachableMap.find(Val: N); |
| 175 | if (It == NonPhiReachableMap.end()) |
| 176 | OS << " UNKNOWN\n" ; |
| 177 | else if (It->second.empty()) |
| 178 | OS << " NONE\n" ; |
| 179 | else |
| 180 | for (Value *V : It->second) |
| 181 | // Printing of an instruction prints two spaces at the start, so |
| 182 | // handle instructions and everything else slightly differently in |
| 183 | // order to get consistent indenting. |
| 184 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) |
| 185 | OS << *I << "\n" ; |
| 186 | else |
| 187 | OS << " " << *V << "\n" ; |
| 188 | } |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | AnalysisKey PhiValuesAnalysis::Key; |
| 193 | PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) { |
| 194 | return PhiValues(F); |
| 195 | } |
| 196 | |
| 197 | PreservedAnalyses PhiValuesPrinterPass::run(Function &F, |
| 198 | FunctionAnalysisManager &AM) { |
| 199 | OS << "PHI Values for function: " << F.getName() << "\n" ; |
| 200 | PhiValues &PI = AM.getResult<PhiValuesAnalysis>(IR&: F); |
| 201 | for (const BasicBlock &BB : F) |
| 202 | for (const PHINode &PN : BB.phis()) |
| 203 | PI.getValuesForPhi(PN: &PN); |
| 204 | PI.print(OS); |
| 205 | return PreservedAnalyses::all(); |
| 206 | } |
| 207 | |
| 208 | PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) {} |
| 209 | |
| 210 | bool PhiValuesWrapperPass::runOnFunction(Function &F) { |
| 211 | Result.reset(p: new PhiValues(F)); |
| 212 | return false; |
| 213 | } |
| 214 | |
| 215 | void PhiValuesWrapperPass::releaseMemory() { |
| 216 | Result->releaseMemory(); |
| 217 | } |
| 218 | |
| 219 | void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 220 | AU.setPreservesAll(); |
| 221 | } |
| 222 | |
| 223 | char PhiValuesWrapperPass::ID = 0; |
| 224 | |
| 225 | INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values" , "Phi Values Analysis" , false, |
| 226 | true) |
| 227 | |