| 1 | //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass tries to expand memcmp() calls into optimally-sized loads and |
| 10 | // compares for the target. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/CodeGen/ExpandMemCmp.h" |
| 15 | #include "llvm/ADT/Statistic.h" |
| 16 | #include "llvm/Analysis/ConstantFolding.h" |
| 17 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 18 | #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
| 19 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 20 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 21 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 22 | #include "llvm/Analysis/ValueTracking.h" |
| 23 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 24 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 25 | #include "llvm/IR/Dominators.h" |
| 26 | #include "llvm/IR/IRBuilder.h" |
| 27 | #include "llvm/IR/PatternMatch.h" |
| 28 | #include "llvm/InitializePasses.h" |
| 29 | #include "llvm/Target/TargetMachine.h" |
| 30 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 31 | #include "llvm/Transforms/Utils/Local.h" |
| 32 | #include "llvm/Transforms/Utils/SizeOpts.h" |
| 33 | #include <optional> |
| 34 | |
| 35 | using namespace llvm; |
| 36 | using namespace llvm::PatternMatch; |
| 37 | |
| 38 | namespace llvm { |
| 39 | class TargetLowering; |
| 40 | } |
| 41 | |
| 42 | #define DEBUG_TYPE "expand-memcmp" |
| 43 | |
| 44 | STATISTIC(NumMemCmpCalls, "Number of memcmp calls" ); |
| 45 | STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size" ); |
| 46 | STATISTIC(NumMemCmpGreaterThanMax, |
| 47 | "Number of memcmp calls with size greater than max size" ); |
| 48 | STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls" ); |
| 49 | |
| 50 | static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock( |
| 51 | "memcmp-num-loads-per-block" , cl::Hidden, cl::init(Val: 1), |
| 52 | cl::desc("The number of loads per basic block for inline expansion of " |
| 53 | "memcmp that is only being compared against zero." )); |
| 54 | |
| 55 | static cl::opt<unsigned> MaxLoadsPerMemcmp( |
| 56 | "max-loads-per-memcmp" , cl::Hidden, |
| 57 | cl::desc("Set maximum number of loads used in expanded memcmp" )); |
| 58 | |
| 59 | static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize( |
| 60 | "max-loads-per-memcmp-opt-size" , cl::Hidden, |
| 61 | cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz" )); |
| 62 | |
| 63 | namespace { |
| 64 | |
| 65 | |
| 66 | // This class provides helper functions to expand a memcmp library call into an |
| 67 | // inline expansion. |
| 68 | class MemCmpExpansion { |
| 69 | struct ResultBlock { |
| 70 | BasicBlock *BB = nullptr; |
| 71 | PHINode *PhiSrc1 = nullptr; |
| 72 | PHINode *PhiSrc2 = nullptr; |
| 73 | |
| 74 | ResultBlock() = default; |
| 75 | }; |
| 76 | |
| 77 | CallInst *const CI = nullptr; |
| 78 | ResultBlock ResBlock; |
| 79 | const uint64_t Size; |
| 80 | unsigned MaxLoadSize = 0; |
| 81 | uint64_t NumLoadsNonOneByte = 0; |
| 82 | const uint64_t NumLoadsPerBlockForZeroCmp; |
| 83 | std::vector<BasicBlock *> LoadCmpBlocks; |
| 84 | BasicBlock *EndBlock = nullptr; |
| 85 | PHINode *PhiRes = nullptr; |
| 86 | const bool IsUsedForZeroCmp; |
| 87 | const DataLayout &DL; |
| 88 | DomTreeUpdater *DTU = nullptr; |
| 89 | IRBuilder<> Builder; |
| 90 | // Represents the decomposition in blocks of the expansion. For example, |
| 91 | // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and |
| 92 | // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}. |
| 93 | struct LoadEntry { |
| 94 | LoadEntry(unsigned LoadSize, uint64_t Offset) |
| 95 | : LoadSize(LoadSize), Offset(Offset) { |
| 96 | } |
| 97 | |
| 98 | // The size of the load for this block, in bytes. |
| 99 | unsigned LoadSize; |
| 100 | // The offset of this load from the base pointer, in bytes. |
| 101 | uint64_t Offset; |
| 102 | }; |
| 103 | using LoadEntryVector = SmallVector<LoadEntry, 8>; |
| 104 | LoadEntryVector LoadSequence; |
| 105 | |
| 106 | void createLoadCmpBlocks(); |
| 107 | void createResultBlock(); |
| 108 | void setupResultBlockPHINodes(); |
| 109 | void setupEndBlockPHINodes(); |
| 110 | Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex); |
| 111 | void emitLoadCompareBlock(unsigned BlockIndex); |
| 112 | void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, |
| 113 | unsigned &LoadIndex); |
| 114 | void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes); |
| 115 | void emitMemCmpResultBlock(); |
| 116 | Value *getMemCmpExpansionZeroCase(); |
| 117 | Value *getMemCmpEqZeroOneBlock(); |
| 118 | Value *getMemCmpOneBlock(); |
| 119 | struct LoadPair { |
| 120 | Value *Lhs = nullptr; |
| 121 | Value *Rhs = nullptr; |
| 122 | }; |
| 123 | LoadPair getLoadPair(Type *LoadSizeType, Type *BSwapSizeType, |
| 124 | Type *CmpSizeType, unsigned OffsetBytes); |
| 125 | |
| 126 | static LoadEntryVector |
| 127 | computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, |
| 128 | unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte); |
| 129 | static LoadEntryVector |
| 130 | computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize, |
| 131 | unsigned MaxNumLoads, |
| 132 | unsigned &NumLoadsNonOneByte); |
| 133 | |
| 134 | static void optimiseLoadSequence( |
| 135 | LoadEntryVector &LoadSequence, |
| 136 | const TargetTransformInfo::MemCmpExpansionOptions &Options, |
| 137 | bool IsUsedForZeroCmp); |
| 138 | |
| 139 | public: |
| 140 | MemCmpExpansion(CallInst *CI, uint64_t Size, |
| 141 | const TargetTransformInfo::MemCmpExpansionOptions &Options, |
| 142 | const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout, |
| 143 | DomTreeUpdater *DTU); |
| 144 | |
| 145 | unsigned getNumBlocks(); |
| 146 | uint64_t getNumLoads() const { return LoadSequence.size(); } |
| 147 | |
| 148 | Value *getMemCmpExpansion(); |
| 149 | }; |
| 150 | |
| 151 | MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence( |
| 152 | uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, |
| 153 | const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) { |
| 154 | NumLoadsNonOneByte = 0; |
| 155 | LoadEntryVector LoadSequence; |
| 156 | uint64_t Offset = 0; |
| 157 | while (Size && !LoadSizes.empty()) { |
| 158 | const unsigned LoadSize = LoadSizes.front(); |
| 159 | const uint64_t NumLoadsForThisSize = Size / LoadSize; |
| 160 | if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) { |
| 161 | // Do not expand if the total number of loads is larger than what the |
| 162 | // target allows. Note that it's important that we exit before completing |
| 163 | // the expansion to avoid using a ton of memory to store the expansion for |
| 164 | // large sizes. |
| 165 | return {}; |
| 166 | } |
| 167 | if (NumLoadsForThisSize > 0) { |
| 168 | for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) { |
| 169 | LoadSequence.push_back(Elt: {LoadSize, Offset}); |
| 170 | Offset += LoadSize; |
| 171 | } |
| 172 | if (LoadSize > 1) |
| 173 | ++NumLoadsNonOneByte; |
| 174 | Size = Size % LoadSize; |
| 175 | } |
| 176 | LoadSizes = LoadSizes.drop_front(); |
| 177 | } |
| 178 | return LoadSequence; |
| 179 | } |
| 180 | |
| 181 | MemCmpExpansion::LoadEntryVector |
| 182 | MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size, |
| 183 | const unsigned MaxLoadSize, |
| 184 | const unsigned MaxNumLoads, |
| 185 | unsigned &NumLoadsNonOneByte) { |
| 186 | // These are already handled by the greedy approach. |
| 187 | if (Size < 2 || MaxLoadSize < 2) |
| 188 | return {}; |
| 189 | |
| 190 | // We try to do as many non-overlapping loads as possible starting from the |
| 191 | // beginning. |
| 192 | const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize; |
| 193 | assert(NumNonOverlappingLoads && "there must be at least one load" ); |
| 194 | // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with |
| 195 | // an overlapping load. |
| 196 | Size = Size - NumNonOverlappingLoads * MaxLoadSize; |
| 197 | // Bail if we do not need an overloapping store, this is already handled by |
| 198 | // the greedy approach. |
| 199 | if (Size == 0) |
| 200 | return {}; |
| 201 | // Bail if the number of loads (non-overlapping + potential overlapping one) |
| 202 | // is larger than the max allowed. |
| 203 | if ((NumNonOverlappingLoads + 1) > MaxNumLoads) |
| 204 | return {}; |
| 205 | |
| 206 | // Add non-overlapping loads. |
| 207 | LoadEntryVector LoadSequence; |
| 208 | uint64_t Offset = 0; |
| 209 | for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) { |
| 210 | LoadSequence.push_back(Elt: {MaxLoadSize, Offset}); |
| 211 | Offset += MaxLoadSize; |
| 212 | } |
| 213 | |
| 214 | // Add the last overlapping load. |
| 215 | assert(Size > 0 && Size < MaxLoadSize && "broken invariant" ); |
| 216 | LoadSequence.push_back(Elt: {MaxLoadSize, Offset - (MaxLoadSize - Size)}); |
| 217 | NumLoadsNonOneByte = 1; |
| 218 | return LoadSequence; |
| 219 | } |
| 220 | |
| 221 | void MemCmpExpansion::optimiseLoadSequence( |
| 222 | LoadEntryVector &LoadSequence, |
| 223 | const TargetTransformInfo::MemCmpExpansionOptions &Options, |
| 224 | bool IsUsedForZeroCmp) { |
| 225 | // This part of code attempts to optimize the LoadSequence by merging allowed |
| 226 | // subsequences into single loads of allowed sizes from |
| 227 | // `MemCmpExpansionOptions::AllowedTailExpansions`. If it is for zero |
| 228 | // comparison or if no allowed tail expansions are specified, we exit early. |
| 229 | if (IsUsedForZeroCmp || Options.AllowedTailExpansions.empty()) |
| 230 | return; |
| 231 | |
| 232 | while (LoadSequence.size() >= 2) { |
| 233 | auto Last = LoadSequence[LoadSequence.size() - 1]; |
| 234 | auto PreLast = LoadSequence[LoadSequence.size() - 2]; |
| 235 | |
| 236 | // Exit the loop if the two sequences are not contiguous |
| 237 | if (PreLast.Offset + PreLast.LoadSize != Last.Offset) |
| 238 | break; |
| 239 | |
| 240 | auto LoadSize = Last.LoadSize + PreLast.LoadSize; |
| 241 | if (find(Range: Options.AllowedTailExpansions, Val: LoadSize) == |
| 242 | Options.AllowedTailExpansions.end()) |
| 243 | break; |
| 244 | |
| 245 | // Remove the last two sequences and replace with the combined sequence |
| 246 | LoadSequence.pop_back(); |
| 247 | LoadSequence.pop_back(); |
| 248 | LoadSequence.emplace_back(Args&: PreLast.Offset, Args&: LoadSize); |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | // Initialize the basic block structure required for expansion of memcmp call |
| 253 | // with given maximum load size and memcmp size parameter. |
| 254 | // This structure includes: |
| 255 | // 1. A list of load compare blocks - LoadCmpBlocks. |
| 256 | // 2. An EndBlock, split from original instruction point, which is the block to |
| 257 | // return from. |
| 258 | // 3. ResultBlock, block to branch to for early exit when a |
| 259 | // LoadCmpBlock finds a difference. |
| 260 | MemCmpExpansion::MemCmpExpansion( |
| 261 | CallInst *const CI, uint64_t Size, |
| 262 | const TargetTransformInfo::MemCmpExpansionOptions &Options, |
| 263 | const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout, |
| 264 | DomTreeUpdater *DTU) |
| 265 | : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock), |
| 266 | IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU), |
| 267 | Builder(CI) { |
| 268 | assert(Size > 0 && "zero blocks" ); |
| 269 | // Scale the max size down if the target can load more bytes than we need. |
| 270 | llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes); |
| 271 | while (!LoadSizes.empty() && LoadSizes.front() > Size) { |
| 272 | LoadSizes = LoadSizes.drop_front(); |
| 273 | } |
| 274 | assert(!LoadSizes.empty() && "cannot load Size bytes" ); |
| 275 | MaxLoadSize = LoadSizes.front(); |
| 276 | // Compute the decomposition. |
| 277 | unsigned GreedyNumLoadsNonOneByte = 0; |
| 278 | LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, MaxNumLoads: Options.MaxNumLoads, |
| 279 | NumLoadsNonOneByte&: GreedyNumLoadsNonOneByte); |
| 280 | NumLoadsNonOneByte = GreedyNumLoadsNonOneByte; |
| 281 | assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant" ); |
| 282 | // If we allow overlapping loads and the load sequence is not already optimal, |
| 283 | // use overlapping loads. |
| 284 | if (Options.AllowOverlappingLoads && |
| 285 | (LoadSequence.empty() || LoadSequence.size() > 2)) { |
| 286 | unsigned OverlappingNumLoadsNonOneByte = 0; |
| 287 | auto OverlappingLoads = computeOverlappingLoadSequence( |
| 288 | Size, MaxLoadSize, MaxNumLoads: Options.MaxNumLoads, NumLoadsNonOneByte&: OverlappingNumLoadsNonOneByte); |
| 289 | if (!OverlappingLoads.empty() && |
| 290 | (LoadSequence.empty() || |
| 291 | OverlappingLoads.size() < LoadSequence.size())) { |
| 292 | LoadSequence = OverlappingLoads; |
| 293 | NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte; |
| 294 | } |
| 295 | } |
| 296 | assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant" ); |
| 297 | optimiseLoadSequence(LoadSequence, Options, IsUsedForZeroCmp); |
| 298 | } |
| 299 | |
| 300 | unsigned MemCmpExpansion::getNumBlocks() { |
| 301 | if (IsUsedForZeroCmp) |
| 302 | return getNumLoads() / NumLoadsPerBlockForZeroCmp + |
| 303 | (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0); |
| 304 | return getNumLoads(); |
| 305 | } |
| 306 | |
| 307 | void MemCmpExpansion::createLoadCmpBlocks() { |
| 308 | for (unsigned i = 0; i < getNumBlocks(); i++) { |
| 309 | BasicBlock *BB = BasicBlock::Create(Context&: CI->getContext(), Name: "loadbb" , |
| 310 | Parent: EndBlock->getParent(), InsertBefore: EndBlock); |
| 311 | LoadCmpBlocks.push_back(x: BB); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | void MemCmpExpansion::createResultBlock() { |
| 316 | ResBlock.BB = BasicBlock::Create(Context&: CI->getContext(), Name: "res_block" , |
| 317 | Parent: EndBlock->getParent(), InsertBefore: EndBlock); |
| 318 | } |
| 319 | |
| 320 | MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType, |
| 321 | Type *BSwapSizeType, |
| 322 | Type *CmpSizeType, |
| 323 | unsigned OffsetBytes) { |
| 324 | // Get the memory source at offset `OffsetBytes`. |
| 325 | Value *LhsSource = CI->getArgOperand(i: 0); |
| 326 | Value *RhsSource = CI->getArgOperand(i: 1); |
| 327 | Align LhsAlign = LhsSource->getPointerAlignment(DL); |
| 328 | Align RhsAlign = RhsSource->getPointerAlignment(DL); |
| 329 | if (OffsetBytes > 0) { |
| 330 | auto *ByteType = Type::getInt8Ty(C&: CI->getContext()); |
| 331 | LhsSource = Builder.CreateConstGEP1_64(Ty: ByteType, Ptr: LhsSource, Idx0: OffsetBytes); |
| 332 | RhsSource = Builder.CreateConstGEP1_64(Ty: ByteType, Ptr: RhsSource, Idx0: OffsetBytes); |
| 333 | LhsAlign = commonAlignment(A: LhsAlign, Offset: OffsetBytes); |
| 334 | RhsAlign = commonAlignment(A: RhsAlign, Offset: OffsetBytes); |
| 335 | } |
| 336 | |
| 337 | // Create a constant or a load from the source. |
| 338 | Value *Lhs = nullptr; |
| 339 | if (auto *C = dyn_cast<Constant>(Val: LhsSource)) |
| 340 | Lhs = ConstantFoldLoadFromConstPtr(C, Ty: LoadSizeType, DL); |
| 341 | if (!Lhs) |
| 342 | Lhs = Builder.CreateAlignedLoad(Ty: LoadSizeType, Ptr: LhsSource, Align: LhsAlign); |
| 343 | |
| 344 | Value *Rhs = nullptr; |
| 345 | if (auto *C = dyn_cast<Constant>(Val: RhsSource)) |
| 346 | Rhs = ConstantFoldLoadFromConstPtr(C, Ty: LoadSizeType, DL); |
| 347 | if (!Rhs) |
| 348 | Rhs = Builder.CreateAlignedLoad(Ty: LoadSizeType, Ptr: RhsSource, Align: RhsAlign); |
| 349 | |
| 350 | // Zero extend if Byte Swap intrinsic has different type |
| 351 | if (BSwapSizeType && LoadSizeType != BSwapSizeType) { |
| 352 | Lhs = Builder.CreateZExt(V: Lhs, DestTy: BSwapSizeType); |
| 353 | Rhs = Builder.CreateZExt(V: Rhs, DestTy: BSwapSizeType); |
| 354 | } |
| 355 | |
| 356 | // Swap bytes if required. |
| 357 | if (BSwapSizeType) { |
| 358 | Function *Bswap = Intrinsic::getOrInsertDeclaration( |
| 359 | M: CI->getModule(), id: Intrinsic::bswap, Tys: BSwapSizeType); |
| 360 | Lhs = Builder.CreateCall(Callee: Bswap, Args: Lhs); |
| 361 | Rhs = Builder.CreateCall(Callee: Bswap, Args: Rhs); |
| 362 | } |
| 363 | |
| 364 | // Zero extend if required. |
| 365 | if (CmpSizeType != nullptr && CmpSizeType != Lhs->getType()) { |
| 366 | Lhs = Builder.CreateZExt(V: Lhs, DestTy: CmpSizeType); |
| 367 | Rhs = Builder.CreateZExt(V: Rhs, DestTy: CmpSizeType); |
| 368 | } |
| 369 | return {.Lhs: Lhs, .Rhs: Rhs}; |
| 370 | } |
| 371 | |
| 372 | // This function creates the IR instructions for loading and comparing 1 byte. |
| 373 | // It loads 1 byte from each source of the memcmp parameters with the given |
| 374 | // GEPIndex. It then subtracts the two loaded values and adds this result to the |
| 375 | // final phi node for selecting the memcmp result. |
| 376 | void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex, |
| 377 | unsigned OffsetBytes) { |
| 378 | BasicBlock *BB = LoadCmpBlocks[BlockIndex]; |
| 379 | Builder.SetInsertPoint(BB); |
| 380 | const LoadPair Loads = |
| 381 | getLoadPair(LoadSizeType: Type::getInt8Ty(C&: CI->getContext()), BSwapSizeType: nullptr, |
| 382 | CmpSizeType: Type::getInt32Ty(C&: CI->getContext()), OffsetBytes); |
| 383 | Value *Diff = Builder.CreateSub(LHS: Loads.Lhs, RHS: Loads.Rhs); |
| 384 | |
| 385 | PhiRes->addIncoming(V: Diff, BB); |
| 386 | |
| 387 | if (BlockIndex < (LoadCmpBlocks.size() - 1)) { |
| 388 | // Early exit branch if difference found to EndBlock. Otherwise, continue to |
| 389 | // next LoadCmpBlock, |
| 390 | Value *Cmp = Builder.CreateICmp(P: ICmpInst::ICMP_NE, LHS: Diff, |
| 391 | RHS: ConstantInt::get(Ty: Diff->getType(), V: 0)); |
| 392 | BranchInst *CmpBr = |
| 393 | BranchInst::Create(IfTrue: EndBlock, IfFalse: LoadCmpBlocks[BlockIndex + 1], Cond: Cmp); |
| 394 | Builder.Insert(I: CmpBr); |
| 395 | if (DTU) |
| 396 | DTU->applyUpdates( |
| 397 | Updates: {{DominatorTree::Insert, BB, EndBlock}, |
| 398 | {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}}); |
| 399 | } else { |
| 400 | // The last block has an unconditional branch to EndBlock. |
| 401 | BranchInst *CmpBr = BranchInst::Create(IfTrue: EndBlock); |
| 402 | Builder.Insert(I: CmpBr); |
| 403 | if (DTU) |
| 404 | DTU->applyUpdates(Updates: {{DominatorTree::Insert, BB, EndBlock}}); |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | /// Generate an equality comparison for one or more pairs of loaded values. |
| 409 | /// This is used in the case where the memcmp() call is compared equal or not |
| 410 | /// equal to zero. |
| 411 | Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex, |
| 412 | unsigned &LoadIndex) { |
| 413 | assert(LoadIndex < getNumLoads() && |
| 414 | "getCompareLoadPairs() called with no remaining loads" ); |
| 415 | std::vector<Value *> XorList, OrList; |
| 416 | Value *Diff = nullptr; |
| 417 | |
| 418 | const unsigned NumLoads = |
| 419 | std::min(a: getNumLoads() - LoadIndex, b: NumLoadsPerBlockForZeroCmp); |
| 420 | |
| 421 | // For a single-block expansion, start inserting before the memcmp call. |
| 422 | if (LoadCmpBlocks.empty()) |
| 423 | Builder.SetInsertPoint(CI); |
| 424 | else |
| 425 | Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); |
| 426 | |
| 427 | Value *Cmp = nullptr; |
| 428 | // If we have multiple loads per block, we need to generate a composite |
| 429 | // comparison using xor+or. The type for the combinations is the largest load |
| 430 | // type. |
| 431 | IntegerType *const MaxLoadType = |
| 432 | NumLoads == 1 ? nullptr |
| 433 | : IntegerType::get(C&: CI->getContext(), NumBits: MaxLoadSize * 8); |
| 434 | |
| 435 | for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) { |
| 436 | const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex]; |
| 437 | const LoadPair Loads = getLoadPair( |
| 438 | LoadSizeType: IntegerType::get(C&: CI->getContext(), NumBits: CurLoadEntry.LoadSize * 8), BSwapSizeType: nullptr, |
| 439 | CmpSizeType: MaxLoadType, OffsetBytes: CurLoadEntry.Offset); |
| 440 | |
| 441 | if (NumLoads != 1) { |
| 442 | // If we have multiple loads per block, we need to generate a composite |
| 443 | // comparison using xor+or. |
| 444 | Diff = Builder.CreateXor(LHS: Loads.Lhs, RHS: Loads.Rhs); |
| 445 | Diff = Builder.CreateZExt(V: Diff, DestTy: MaxLoadType); |
| 446 | XorList.push_back(x: Diff); |
| 447 | } else { |
| 448 | // If there's only one load per block, we just compare the loaded values. |
| 449 | Cmp = Builder.CreateICmpNE(LHS: Loads.Lhs, RHS: Loads.Rhs); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { |
| 454 | std::vector<Value *> OutList; |
| 455 | for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { |
| 456 | Value *Or = Builder.CreateOr(LHS: InList[i], RHS: InList[i + 1]); |
| 457 | OutList.push_back(x: Or); |
| 458 | } |
| 459 | if (InList.size() % 2 != 0) |
| 460 | OutList.push_back(x: InList.back()); |
| 461 | return OutList; |
| 462 | }; |
| 463 | |
| 464 | if (!Cmp) { |
| 465 | // Pairwise OR the XOR results. |
| 466 | OrList = pairWiseOr(XorList); |
| 467 | |
| 468 | // Pairwise OR the OR results until one result left. |
| 469 | while (OrList.size() != 1) { |
| 470 | OrList = pairWiseOr(OrList); |
| 471 | } |
| 472 | |
| 473 | assert(Diff && "Failed to find comparison diff" ); |
| 474 | Cmp = Builder.CreateICmpNE(LHS: OrList[0], RHS: ConstantInt::get(Ty: Diff->getType(), V: 0)); |
| 475 | } |
| 476 | |
| 477 | return Cmp; |
| 478 | } |
| 479 | |
| 480 | void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, |
| 481 | unsigned &LoadIndex) { |
| 482 | Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex); |
| 483 | |
| 484 | BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) |
| 485 | ? EndBlock |
| 486 | : LoadCmpBlocks[BlockIndex + 1]; |
| 487 | // Early exit branch if difference found to ResultBlock. Otherwise, |
| 488 | // continue to next LoadCmpBlock or EndBlock. |
| 489 | BasicBlock *BB = Builder.GetInsertBlock(); |
| 490 | BranchInst *CmpBr = BranchInst::Create(IfTrue: ResBlock.BB, IfFalse: NextBB, Cond: Cmp); |
| 491 | Builder.Insert(I: CmpBr); |
| 492 | if (DTU) |
| 493 | DTU->applyUpdates(Updates: {{DominatorTree::Insert, BB, ResBlock.BB}, |
| 494 | {DominatorTree::Insert, BB, NextBB}}); |
| 495 | |
| 496 | // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 |
| 497 | // since early exit to ResultBlock was not taken (no difference was found in |
| 498 | // any of the bytes). |
| 499 | if (BlockIndex == LoadCmpBlocks.size() - 1) { |
| 500 | Value *Zero = ConstantInt::get(Ty: Type::getInt32Ty(C&: CI->getContext()), V: 0); |
| 501 | PhiRes->addIncoming(V: Zero, BB: LoadCmpBlocks[BlockIndex]); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | // This function creates the IR intructions for loading and comparing using the |
| 506 | // given LoadSize. It loads the number of bytes specified by LoadSize from each |
| 507 | // source of the memcmp parameters. It then does a subtract to see if there was |
| 508 | // a difference in the loaded values. If a difference is found, it branches |
| 509 | // with an early exit to the ResultBlock for calculating which source was |
| 510 | // larger. Otherwise, it falls through to the either the next LoadCmpBlock or |
| 511 | // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with |
| 512 | // a special case through emitLoadCompareByteBlock. The special handling can |
| 513 | // simply subtract the loaded values and add it to the result phi node. |
| 514 | void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) { |
| 515 | // There is one load per block in this case, BlockIndex == LoadIndex. |
| 516 | const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex]; |
| 517 | |
| 518 | if (CurLoadEntry.LoadSize == 1) { |
| 519 | MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, OffsetBytes: CurLoadEntry.Offset); |
| 520 | return; |
| 521 | } |
| 522 | |
| 523 | Type *LoadSizeType = |
| 524 | IntegerType::get(C&: CI->getContext(), NumBits: CurLoadEntry.LoadSize * 8); |
| 525 | Type *BSwapSizeType = |
| 526 | DL.isLittleEndian() |
| 527 | ? IntegerType::get(C&: CI->getContext(), |
| 528 | NumBits: PowerOf2Ceil(A: CurLoadEntry.LoadSize * 8)) |
| 529 | : nullptr; |
| 530 | Type *MaxLoadType = IntegerType::get( |
| 531 | C&: CI->getContext(), |
| 532 | NumBits: std::max(a: MaxLoadSize, b: (unsigned)PowerOf2Ceil(A: CurLoadEntry.LoadSize)) * 8); |
| 533 | assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type" ); |
| 534 | |
| 535 | Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); |
| 536 | |
| 537 | const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, CmpSizeType: MaxLoadType, |
| 538 | OffsetBytes: CurLoadEntry.Offset); |
| 539 | |
| 540 | // Add the loaded values to the phi nodes for calculating memcmp result only |
| 541 | // if result is not used in a zero equality. |
| 542 | if (!IsUsedForZeroCmp) { |
| 543 | ResBlock.PhiSrc1->addIncoming(V: Loads.Lhs, BB: LoadCmpBlocks[BlockIndex]); |
| 544 | ResBlock.PhiSrc2->addIncoming(V: Loads.Rhs, BB: LoadCmpBlocks[BlockIndex]); |
| 545 | } |
| 546 | |
| 547 | Value *Cmp = Builder.CreateICmp(P: ICmpInst::ICMP_EQ, LHS: Loads.Lhs, RHS: Loads.Rhs); |
| 548 | BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) |
| 549 | ? EndBlock |
| 550 | : LoadCmpBlocks[BlockIndex + 1]; |
| 551 | // Early exit branch if difference found to ResultBlock. Otherwise, continue |
| 552 | // to next LoadCmpBlock or EndBlock. |
| 553 | BasicBlock *BB = Builder.GetInsertBlock(); |
| 554 | BranchInst *CmpBr = BranchInst::Create(IfTrue: NextBB, IfFalse: ResBlock.BB, Cond: Cmp); |
| 555 | Builder.Insert(I: CmpBr); |
| 556 | if (DTU) |
| 557 | DTU->applyUpdates(Updates: {{DominatorTree::Insert, BB, NextBB}, |
| 558 | {DominatorTree::Insert, BB, ResBlock.BB}}); |
| 559 | |
| 560 | // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 |
| 561 | // since early exit to ResultBlock was not taken (no difference was found in |
| 562 | // any of the bytes). |
| 563 | if (BlockIndex == LoadCmpBlocks.size() - 1) { |
| 564 | Value *Zero = ConstantInt::get(Ty: Type::getInt32Ty(C&: CI->getContext()), V: 0); |
| 565 | PhiRes->addIncoming(V: Zero, BB: LoadCmpBlocks[BlockIndex]); |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | // This function populates the ResultBlock with a sequence to calculate the |
| 570 | // memcmp result. It compares the two loaded source values and returns -1 if |
| 571 | // src1 < src2 and 1 if src1 > src2. |
| 572 | void MemCmpExpansion::emitMemCmpResultBlock() { |
| 573 | // Special case: if memcmp result is used in a zero equality, result does not |
| 574 | // need to be calculated and can simply return 1. |
| 575 | if (IsUsedForZeroCmp) { |
| 576 | BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); |
| 577 | Builder.SetInsertPoint(TheBB: ResBlock.BB, IP: InsertPt); |
| 578 | Value *Res = ConstantInt::get(Ty: Type::getInt32Ty(C&: CI->getContext()), V: 1); |
| 579 | PhiRes->addIncoming(V: Res, BB: ResBlock.BB); |
| 580 | BranchInst *NewBr = BranchInst::Create(IfTrue: EndBlock); |
| 581 | Builder.Insert(I: NewBr); |
| 582 | if (DTU) |
| 583 | DTU->applyUpdates(Updates: {{DominatorTree::Insert, ResBlock.BB, EndBlock}}); |
| 584 | return; |
| 585 | } |
| 586 | BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); |
| 587 | Builder.SetInsertPoint(TheBB: ResBlock.BB, IP: InsertPt); |
| 588 | |
| 589 | Value *Cmp = Builder.CreateICmp(P: ICmpInst::ICMP_ULT, LHS: ResBlock.PhiSrc1, |
| 590 | RHS: ResBlock.PhiSrc2); |
| 591 | |
| 592 | Value *Res = |
| 593 | Builder.CreateSelect(C: Cmp, True: Constant::getAllOnesValue(Ty: Builder.getInt32Ty()), |
| 594 | False: ConstantInt::get(Ty: Builder.getInt32Ty(), V: 1)); |
| 595 | |
| 596 | PhiRes->addIncoming(V: Res, BB: ResBlock.BB); |
| 597 | BranchInst *NewBr = BranchInst::Create(IfTrue: EndBlock); |
| 598 | Builder.Insert(I: NewBr); |
| 599 | if (DTU) |
| 600 | DTU->applyUpdates(Updates: {{DominatorTree::Insert, ResBlock.BB, EndBlock}}); |
| 601 | } |
| 602 | |
| 603 | void MemCmpExpansion::setupResultBlockPHINodes() { |
| 604 | Type *MaxLoadType = IntegerType::get(C&: CI->getContext(), NumBits: MaxLoadSize * 8); |
| 605 | Builder.SetInsertPoint(ResBlock.BB); |
| 606 | // Note: this assumes one load per block. |
| 607 | ResBlock.PhiSrc1 = |
| 608 | Builder.CreatePHI(Ty: MaxLoadType, NumReservedValues: NumLoadsNonOneByte, Name: "phi.src1" ); |
| 609 | ResBlock.PhiSrc2 = |
| 610 | Builder.CreatePHI(Ty: MaxLoadType, NumReservedValues: NumLoadsNonOneByte, Name: "phi.src2" ); |
| 611 | } |
| 612 | |
| 613 | void MemCmpExpansion::setupEndBlockPHINodes() { |
| 614 | Builder.SetInsertPoint(TheBB: EndBlock, IP: EndBlock->begin()); |
| 615 | PhiRes = Builder.CreatePHI(Ty: Type::getInt32Ty(C&: CI->getContext()), NumReservedValues: 2, Name: "phi.res" ); |
| 616 | } |
| 617 | |
| 618 | Value *MemCmpExpansion::getMemCmpExpansionZeroCase() { |
| 619 | unsigned LoadIndex = 0; |
| 620 | // This loop populates each of the LoadCmpBlocks with the IR sequence to |
| 621 | // handle multiple loads per block. |
| 622 | for (unsigned I = 0; I < getNumBlocks(); ++I) { |
| 623 | emitLoadCompareBlockMultipleLoads(BlockIndex: I, LoadIndex); |
| 624 | } |
| 625 | |
| 626 | emitMemCmpResultBlock(); |
| 627 | return PhiRes; |
| 628 | } |
| 629 | |
| 630 | /// A memcmp expansion that compares equality with 0 and only has one block of |
| 631 | /// load and compare can bypass the compare, branch, and phi IR that is required |
| 632 | /// in the general case. |
| 633 | Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() { |
| 634 | unsigned LoadIndex = 0; |
| 635 | Value *Cmp = getCompareLoadPairs(BlockIndex: 0, LoadIndex); |
| 636 | assert(LoadIndex == getNumLoads() && "some entries were not consumed" ); |
| 637 | return Builder.CreateZExt(V: Cmp, DestTy: Type::getInt32Ty(C&: CI->getContext())); |
| 638 | } |
| 639 | |
| 640 | /// A memcmp expansion that only has one block of load and compare can bypass |
| 641 | /// the compare, branch, and phi IR that is required in the general case. |
| 642 | /// This function also analyses users of memcmp, and if there is only one user |
| 643 | /// from which we can conclude that only 2 out of 3 memcmp outcomes really |
| 644 | /// matter, then it generates more efficient code with only one comparison. |
| 645 | Value *MemCmpExpansion::getMemCmpOneBlock() { |
| 646 | bool NeedsBSwap = DL.isLittleEndian() && Size != 1; |
| 647 | Type *LoadSizeType = IntegerType::get(C&: CI->getContext(), NumBits: Size * 8); |
| 648 | Type *BSwapSizeType = |
| 649 | NeedsBSwap ? IntegerType::get(C&: CI->getContext(), NumBits: PowerOf2Ceil(A: Size * 8)) |
| 650 | : nullptr; |
| 651 | Type *MaxLoadType = |
| 652 | IntegerType::get(C&: CI->getContext(), |
| 653 | NumBits: std::max(a: MaxLoadSize, b: (unsigned)PowerOf2Ceil(A: Size)) * 8); |
| 654 | |
| 655 | // The i8 and i16 cases don't need compares. We zext the loaded values and |
| 656 | // subtract them to get the suitable negative, zero, or positive i32 result. |
| 657 | if (Size == 1 || Size == 2) { |
| 658 | const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, |
| 659 | CmpSizeType: Builder.getInt32Ty(), /*Offset*/ OffsetBytes: 0); |
| 660 | return Builder.CreateSub(LHS: Loads.Lhs, RHS: Loads.Rhs); |
| 661 | } |
| 662 | |
| 663 | const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, CmpSizeType: MaxLoadType, |
| 664 | /*Offset*/ OffsetBytes: 0); |
| 665 | |
| 666 | // If a user of memcmp cares only about two outcomes, for example: |
| 667 | // bool result = memcmp(a, b, NBYTES) > 0; |
| 668 | // We can generate more optimal code with a smaller number of operations |
| 669 | if (CI->hasOneUser()) { |
| 670 | auto *UI = cast<Instruction>(Val: *CI->user_begin()); |
| 671 | CmpPredicate Pred = ICmpInst::Predicate::BAD_ICMP_PREDICATE; |
| 672 | bool NeedsZExt = false; |
| 673 | // This is a special case because instead of checking if the result is less |
| 674 | // than zero: |
| 675 | // bool result = memcmp(a, b, NBYTES) < 0; |
| 676 | // Compiler is clever enough to generate the following code: |
| 677 | // bool result = memcmp(a, b, NBYTES) >> 31; |
| 678 | if (match(V: UI, |
| 679 | P: m_LShr(L: m_Value(), |
| 680 | R: m_SpecificInt(V: CI->getType()->getIntegerBitWidth() - 1)))) { |
| 681 | Pred = ICmpInst::ICMP_SLT; |
| 682 | NeedsZExt = true; |
| 683 | } else if (match(V: UI, P: m_SpecificICmp(MatchPred: ICmpInst::ICMP_SGT, L: m_Specific(V: CI), |
| 684 | R: m_AllOnes()))) { |
| 685 | // Adjust predicate as if it compared with 0. |
| 686 | Pred = ICmpInst::ICMP_SGE; |
| 687 | } else if (match(V: UI, P: m_SpecificICmp(MatchPred: ICmpInst::ICMP_SLT, L: m_Specific(V: CI), |
| 688 | R: m_One()))) { |
| 689 | // Adjust predicate as if it compared with 0. |
| 690 | Pred = ICmpInst::ICMP_SLE; |
| 691 | } else { |
| 692 | // In case of a successful match this call will set `Pred` variable |
| 693 | match(V: UI, P: m_ICmp(Pred, L: m_Specific(V: CI), R: m_Zero())); |
| 694 | } |
| 695 | // Generate new code and remove the original memcmp call and the user |
| 696 | if (ICmpInst::isSigned(predicate: Pred)) { |
| 697 | Value *Cmp = Builder.CreateICmp(P: ICmpInst::getUnsignedPredicate(Pred), |
| 698 | LHS: Loads.Lhs, RHS: Loads.Rhs); |
| 699 | auto *Result = NeedsZExt ? Builder.CreateZExt(V: Cmp, DestTy: UI->getType()) : Cmp; |
| 700 | UI->replaceAllUsesWith(V: Result); |
| 701 | UI->eraseFromParent(); |
| 702 | CI->eraseFromParent(); |
| 703 | return nullptr; |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | // The result of memcmp is negative, zero, or positive. |
| 708 | return Builder.CreateIntrinsic(RetTy: Builder.getInt32Ty(), ID: Intrinsic::ucmp, |
| 709 | Args: {Loads.Lhs, Loads.Rhs}); |
| 710 | } |
| 711 | |
| 712 | // This function expands the memcmp call into an inline expansion and returns |
| 713 | // the memcmp result. Returns nullptr if the memcmp is already replaced. |
| 714 | Value *MemCmpExpansion::getMemCmpExpansion() { |
| 715 | // Create the basic block framework for a multi-block expansion. |
| 716 | if (getNumBlocks() != 1) { |
| 717 | BasicBlock *StartBlock = CI->getParent(); |
| 718 | EndBlock = SplitBlock(Old: StartBlock, SplitPt: CI, DTU, /*LI=*/nullptr, |
| 719 | /*MSSAU=*/nullptr, BBName: "endblock" ); |
| 720 | setupEndBlockPHINodes(); |
| 721 | createResultBlock(); |
| 722 | |
| 723 | // If return value of memcmp is not used in a zero equality, we need to |
| 724 | // calculate which source was larger. The calculation requires the |
| 725 | // two loaded source values of each load compare block. |
| 726 | // These will be saved in the phi nodes created by setupResultBlockPHINodes. |
| 727 | if (!IsUsedForZeroCmp) setupResultBlockPHINodes(); |
| 728 | |
| 729 | // Create the number of required load compare basic blocks. |
| 730 | createLoadCmpBlocks(); |
| 731 | |
| 732 | // Update the terminator added by SplitBlock to branch to the first |
| 733 | // LoadCmpBlock. |
| 734 | StartBlock->getTerminator()->setSuccessor(Idx: 0, BB: LoadCmpBlocks[0]); |
| 735 | if (DTU) |
| 736 | DTU->applyUpdates(Updates: {{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]}, |
| 737 | {DominatorTree::Delete, StartBlock, EndBlock}}); |
| 738 | } |
| 739 | |
| 740 | Builder.SetCurrentDebugLocation(CI->getDebugLoc()); |
| 741 | |
| 742 | if (IsUsedForZeroCmp) |
| 743 | return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock() |
| 744 | : getMemCmpExpansionZeroCase(); |
| 745 | |
| 746 | if (getNumBlocks() == 1) |
| 747 | return getMemCmpOneBlock(); |
| 748 | |
| 749 | for (unsigned I = 0; I < getNumBlocks(); ++I) { |
| 750 | emitLoadCompareBlock(BlockIndex: I); |
| 751 | } |
| 752 | |
| 753 | emitMemCmpResultBlock(); |
| 754 | return PhiRes; |
| 755 | } |
| 756 | |
| 757 | // This function checks to see if an expansion of memcmp can be generated. |
| 758 | // It checks for constant compare size that is less than the max inline size. |
| 759 | // If an expansion cannot occur, returns false to leave as a library call. |
| 760 | // Otherwise, the library call is replaced with a new IR instruction sequence. |
| 761 | /// We want to transform: |
| 762 | /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) |
| 763 | /// To: |
| 764 | /// loadbb: |
| 765 | /// %0 = bitcast i32* %buffer2 to i8* |
| 766 | /// %1 = bitcast i32* %buffer1 to i8* |
| 767 | /// %2 = bitcast i8* %1 to i64* |
| 768 | /// %3 = bitcast i8* %0 to i64* |
| 769 | /// %4 = load i64, i64* %2 |
| 770 | /// %5 = load i64, i64* %3 |
| 771 | /// %6 = call i64 @llvm.bswap.i64(i64 %4) |
| 772 | /// %7 = call i64 @llvm.bswap.i64(i64 %5) |
| 773 | /// %8 = sub i64 %6, %7 |
| 774 | /// %9 = icmp ne i64 %8, 0 |
| 775 | /// br i1 %9, label %res_block, label %loadbb1 |
| 776 | /// res_block: ; preds = %loadbb2, |
| 777 | /// %loadbb1, %loadbb |
| 778 | /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] |
| 779 | /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] |
| 780 | /// %10 = icmp ult i64 %phi.src1, %phi.src2 |
| 781 | /// %11 = select i1 %10, i32 -1, i32 1 |
| 782 | /// br label %endblock |
| 783 | /// loadbb1: ; preds = %loadbb |
| 784 | /// %12 = bitcast i32* %buffer2 to i8* |
| 785 | /// %13 = bitcast i32* %buffer1 to i8* |
| 786 | /// %14 = bitcast i8* %13 to i32* |
| 787 | /// %15 = bitcast i8* %12 to i32* |
| 788 | /// %16 = getelementptr i32, i32* %14, i32 2 |
| 789 | /// %17 = getelementptr i32, i32* %15, i32 2 |
| 790 | /// %18 = load i32, i32* %16 |
| 791 | /// %19 = load i32, i32* %17 |
| 792 | /// %20 = call i32 @llvm.bswap.i32(i32 %18) |
| 793 | /// %21 = call i32 @llvm.bswap.i32(i32 %19) |
| 794 | /// %22 = zext i32 %20 to i64 |
| 795 | /// %23 = zext i32 %21 to i64 |
| 796 | /// %24 = sub i64 %22, %23 |
| 797 | /// %25 = icmp ne i64 %24, 0 |
| 798 | /// br i1 %25, label %res_block, label %loadbb2 |
| 799 | /// loadbb2: ; preds = %loadbb1 |
| 800 | /// %26 = bitcast i32* %buffer2 to i8* |
| 801 | /// %27 = bitcast i32* %buffer1 to i8* |
| 802 | /// %28 = bitcast i8* %27 to i16* |
| 803 | /// %29 = bitcast i8* %26 to i16* |
| 804 | /// %30 = getelementptr i16, i16* %28, i16 6 |
| 805 | /// %31 = getelementptr i16, i16* %29, i16 6 |
| 806 | /// %32 = load i16, i16* %30 |
| 807 | /// %33 = load i16, i16* %31 |
| 808 | /// %34 = call i16 @llvm.bswap.i16(i16 %32) |
| 809 | /// %35 = call i16 @llvm.bswap.i16(i16 %33) |
| 810 | /// %36 = zext i16 %34 to i64 |
| 811 | /// %37 = zext i16 %35 to i64 |
| 812 | /// %38 = sub i64 %36, %37 |
| 813 | /// %39 = icmp ne i64 %38, 0 |
| 814 | /// br i1 %39, label %res_block, label %loadbb3 |
| 815 | /// loadbb3: ; preds = %loadbb2 |
| 816 | /// %40 = bitcast i32* %buffer2 to i8* |
| 817 | /// %41 = bitcast i32* %buffer1 to i8* |
| 818 | /// %42 = getelementptr i8, i8* %41, i8 14 |
| 819 | /// %43 = getelementptr i8, i8* %40, i8 14 |
| 820 | /// %44 = load i8, i8* %42 |
| 821 | /// %45 = load i8, i8* %43 |
| 822 | /// %46 = zext i8 %44 to i32 |
| 823 | /// %47 = zext i8 %45 to i32 |
| 824 | /// %48 = sub i32 %46, %47 |
| 825 | /// br label %endblock |
| 826 | /// endblock: ; preds = %res_block, |
| 827 | /// %loadbb3 |
| 828 | /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] |
| 829 | /// ret i32 %phi.res |
| 830 | static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, |
| 831 | const TargetLowering *TLI, const DataLayout *DL, |
| 832 | ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, |
| 833 | DomTreeUpdater *DTU, const bool IsBCmp) { |
| 834 | NumMemCmpCalls++; |
| 835 | |
| 836 | // Early exit from expansion if -Oz. |
| 837 | if (CI->getFunction()->hasMinSize()) |
| 838 | return false; |
| 839 | |
| 840 | // Early exit from expansion if size is not a constant. |
| 841 | ConstantInt *SizeCast = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 2)); |
| 842 | if (!SizeCast) { |
| 843 | NumMemCmpNotConstant++; |
| 844 | return false; |
| 845 | } |
| 846 | const uint64_t SizeVal = SizeCast->getZExtValue(); |
| 847 | |
| 848 | if (SizeVal == 0) { |
| 849 | return false; |
| 850 | } |
| 851 | // TTI call to check if target would like to expand memcmp. Also, get the |
| 852 | // available load sizes. |
| 853 | const bool IsUsedForZeroCmp = |
| 854 | IsBCmp || isOnlyUsedInZeroEqualityComparison(CxtI: CI); |
| 855 | bool OptForSize = llvm::shouldOptimizeForSize(BB: CI->getParent(), PSI, BFI); |
| 856 | auto Options = TTI->enableMemCmpExpansion(OptSize: OptForSize, |
| 857 | IsZeroCmp: IsUsedForZeroCmp); |
| 858 | if (!Options) return false; |
| 859 | |
| 860 | if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences()) |
| 861 | Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock; |
| 862 | |
| 863 | if (OptForSize && |
| 864 | MaxLoadsPerMemcmpOptSize.getNumOccurrences()) |
| 865 | Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize; |
| 866 | |
| 867 | if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences()) |
| 868 | Options.MaxNumLoads = MaxLoadsPerMemcmp; |
| 869 | |
| 870 | MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU); |
| 871 | |
| 872 | // Don't expand if this will require more loads than desired by the target. |
| 873 | if (Expansion.getNumLoads() == 0) { |
| 874 | NumMemCmpGreaterThanMax++; |
| 875 | return false; |
| 876 | } |
| 877 | |
| 878 | NumMemCmpInlined++; |
| 879 | |
| 880 | if (Value *Res = Expansion.getMemCmpExpansion()) { |
| 881 | // Replace call with result of expansion and erase call. |
| 882 | CI->replaceAllUsesWith(V: Res); |
| 883 | CI->eraseFromParent(); |
| 884 | } |
| 885 | |
| 886 | return true; |
| 887 | } |
| 888 | |
| 889 | // Returns true if a change was made. |
| 890 | static bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, |
| 891 | const TargetTransformInfo *TTI, const TargetLowering *TL, |
| 892 | const DataLayout &DL, ProfileSummaryInfo *PSI, |
| 893 | BlockFrequencyInfo *BFI, DomTreeUpdater *DTU); |
| 894 | |
| 895 | static PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, |
| 896 | const TargetTransformInfo *TTI, |
| 897 | const TargetLowering *TL, |
| 898 | ProfileSummaryInfo *PSI, |
| 899 | BlockFrequencyInfo *BFI, DominatorTree *DT); |
| 900 | |
| 901 | class ExpandMemCmpLegacyPass : public FunctionPass { |
| 902 | public: |
| 903 | static char ID; |
| 904 | |
| 905 | ExpandMemCmpLegacyPass() : FunctionPass(ID) { |
| 906 | initializeExpandMemCmpLegacyPassPass(*PassRegistry::getPassRegistry()); |
| 907 | } |
| 908 | |
| 909 | bool runOnFunction(Function &F) override { |
| 910 | if (skipFunction(F)) return false; |
| 911 | |
| 912 | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| 913 | if (!TPC) { |
| 914 | return false; |
| 915 | } |
| 916 | const TargetLowering* TL = |
| 917 | TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering(); |
| 918 | |
| 919 | const TargetLibraryInfo *TLI = |
| 920 | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| 921 | const TargetTransformInfo *TTI = |
| 922 | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 923 | auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| 924 | auto *BFI = (PSI && PSI->hasProfileSummary()) ? |
| 925 | &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : |
| 926 | nullptr; |
| 927 | DominatorTree *DT = nullptr; |
| 928 | if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) |
| 929 | DT = &DTWP->getDomTree(); |
| 930 | auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT); |
| 931 | return !PA.areAllPreserved(); |
| 932 | } |
| 933 | |
| 934 | private: |
| 935 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 936 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 937 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 938 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| 939 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 940 | LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); |
| 941 | FunctionPass::getAnalysisUsage(AU); |
| 942 | } |
| 943 | }; |
| 944 | |
| 945 | bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, |
| 946 | const TargetTransformInfo *TTI, const TargetLowering *TL, |
| 947 | const DataLayout &DL, ProfileSummaryInfo *PSI, |
| 948 | BlockFrequencyInfo *BFI, DomTreeUpdater *DTU) { |
| 949 | for (Instruction &I : BB) { |
| 950 | CallInst *CI = dyn_cast<CallInst>(Val: &I); |
| 951 | if (!CI) { |
| 952 | continue; |
| 953 | } |
| 954 | LibFunc Func; |
| 955 | if (TLI->getLibFunc(CB: *CI, F&: Func) && |
| 956 | (Func == LibFunc_memcmp || Func == LibFunc_bcmp) && |
| 957 | expandMemCmp(CI, TTI, TLI: TL, DL: &DL, PSI, BFI, DTU, IsBCmp: Func == LibFunc_bcmp)) { |
| 958 | return true; |
| 959 | } |
| 960 | } |
| 961 | return false; |
| 962 | } |
| 963 | |
| 964 | PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, |
| 965 | const TargetTransformInfo *TTI, |
| 966 | const TargetLowering *TL, ProfileSummaryInfo *PSI, |
| 967 | BlockFrequencyInfo *BFI, DominatorTree *DT) { |
| 968 | std::optional<DomTreeUpdater> DTU; |
| 969 | if (DT) |
| 970 | DTU.emplace(args&: DT, args: DomTreeUpdater::UpdateStrategy::Lazy); |
| 971 | |
| 972 | const DataLayout& DL = F.getDataLayout(); |
| 973 | bool MadeChanges = false; |
| 974 | for (auto BBIt = F.begin(); BBIt != F.end();) { |
| 975 | if (runOnBlock(BB&: *BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU: DTU ? &*DTU : nullptr)) { |
| 976 | MadeChanges = true; |
| 977 | // If changes were made, restart the function from the beginning, since |
| 978 | // the structure of the function was changed. |
| 979 | BBIt = F.begin(); |
| 980 | } else { |
| 981 | ++BBIt; |
| 982 | } |
| 983 | } |
| 984 | if (MadeChanges) |
| 985 | for (BasicBlock &BB : F) |
| 986 | SimplifyInstructionsInBlock(BB: &BB); |
| 987 | if (!MadeChanges) |
| 988 | return PreservedAnalyses::all(); |
| 989 | PreservedAnalyses PA; |
| 990 | PA.preserve<DominatorTreeAnalysis>(); |
| 991 | return PA; |
| 992 | } |
| 993 | |
| 994 | } // namespace |
| 995 | |
| 996 | PreservedAnalyses ExpandMemCmpPass::run(Function &F, |
| 997 | FunctionAnalysisManager &FAM) { |
| 998 | const auto *TL = TM->getSubtargetImpl(F)->getTargetLowering(); |
| 999 | const auto &TLI = FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 1000 | const auto &TTI = FAM.getResult<TargetIRAnalysis>(IR&: F); |
| 1001 | auto *PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F) |
| 1002 | .getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
| 1003 | BlockFrequencyInfo *BFI = (PSI && PSI->hasProfileSummary()) |
| 1004 | ? &FAM.getResult<BlockFrequencyAnalysis>(IR&: F) |
| 1005 | : nullptr; |
| 1006 | auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(IR&: F); |
| 1007 | |
| 1008 | return runImpl(F, TLI: &TLI, TTI: &TTI, TL, PSI, BFI, DT); |
| 1009 | } |
| 1010 | |
| 1011 | char ExpandMemCmpLegacyPass::ID = 0; |
| 1012 | INITIALIZE_PASS_BEGIN(ExpandMemCmpLegacyPass, DEBUG_TYPE, |
| 1013 | "Expand memcmp() to load/stores" , false, false) |
| 1014 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 1015 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 1016 | INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) |
| 1017 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| 1018 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 1019 | INITIALIZE_PASS_END(ExpandMemCmpLegacyPass, DEBUG_TYPE, |
| 1020 | "Expand memcmp() to load/stores" , false, false) |
| 1021 | |
| 1022 | FunctionPass *llvm::createExpandMemCmpLegacyPass() { |
| 1023 | return new ExpandMemCmpLegacyPass(); |
| 1024 | } |
| 1025 | |