| 1 | //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file implements the RegBankSelect class. |
| 10 | //===----------------------------------------------------------------------===// |
| 11 | |
| 12 | #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" |
| 13 | #include "llvm/ADT/PostOrderIterator.h" |
| 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
| 17 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
| 18 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 19 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 20 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| 21 | #include "llvm/CodeGen/MachineFunction.h" |
| 22 | #include "llvm/CodeGen/MachineInstr.h" |
| 23 | #include "llvm/CodeGen/MachineOperand.h" |
| 24 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| 25 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 26 | #include "llvm/CodeGen/RegisterBank.h" |
| 27 | #include "llvm/CodeGen/RegisterBankInfo.h" |
| 28 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 29 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 30 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 31 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 32 | #include "llvm/Config/llvm-config.h" |
| 33 | #include "llvm/IR/Function.h" |
| 34 | #include "llvm/InitializePasses.h" |
| 35 | #include "llvm/Pass.h" |
| 36 | #include "llvm/Support/BlockFrequency.h" |
| 37 | #include "llvm/Support/CommandLine.h" |
| 38 | #include "llvm/Support/Compiler.h" |
| 39 | #include "llvm/Support/Debug.h" |
| 40 | #include "llvm/Support/ErrorHandling.h" |
| 41 | #include "llvm/Support/raw_ostream.h" |
| 42 | #include <algorithm> |
| 43 | #include <cassert> |
| 44 | #include <cstdint> |
| 45 | #include <limits> |
| 46 | #include <memory> |
| 47 | #include <utility> |
| 48 | |
| 49 | #define DEBUG_TYPE "regbankselect" |
| 50 | |
| 51 | using namespace llvm; |
| 52 | |
| 53 | static cl::opt<RegBankSelect::Mode> RegBankSelectMode( |
| 54 | cl::desc("Mode of the RegBankSelect pass" ), cl::Hidden, cl::Optional, |
| 55 | cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast" , |
| 56 | "Run the Fast mode (default mapping)" ), |
| 57 | clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy" , |
| 58 | "Use the Greedy mode (best local mapping)" ))); |
| 59 | |
| 60 | char RegBankSelect::ID = 0; |
| 61 | |
| 62 | INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, |
| 63 | "Assign register bank of generic virtual registers" , |
| 64 | false, false); |
| 65 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
| 66 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) |
| 67 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| 68 | INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, |
| 69 | "Assign register bank of generic virtual registers" , false, |
| 70 | false) |
| 71 | |
| 72 | RegBankSelect::RegBankSelect(Mode RunningMode) |
| 73 | : MachineFunctionPass(ID), OptMode(RunningMode) { |
| 74 | if (RegBankSelectMode.getNumOccurrences() != 0) { |
| 75 | OptMode = RegBankSelectMode; |
| 76 | if (RegBankSelectMode != RunningMode) |
| 77 | LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n" ); |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | void RegBankSelect::init(MachineFunction &MF) { |
| 82 | RBI = MF.getSubtarget().getRegBankInfo(); |
| 83 | assert(RBI && "Cannot work without RegisterBankInfo" ); |
| 84 | MRI = &MF.getRegInfo(); |
| 85 | TRI = MF.getSubtarget().getRegisterInfo(); |
| 86 | TPC = &getAnalysis<TargetPassConfig>(); |
| 87 | if (OptMode != Mode::Fast) { |
| 88 | MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); |
| 89 | MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
| 90 | } else { |
| 91 | MBFI = nullptr; |
| 92 | MBPI = nullptr; |
| 93 | } |
| 94 | MIRBuilder.setMF(MF); |
| 95 | MORE = std::make_unique<MachineOptimizationRemarkEmitter>(args&: MF, args&: MBFI); |
| 96 | } |
| 97 | |
| 98 | void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { |
| 99 | if (OptMode != Mode::Fast) { |
| 100 | // We could preserve the information from these two analysis but |
| 101 | // the APIs do not allow to do so yet. |
| 102 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
| 103 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
| 104 | } |
| 105 | AU.addRequired<TargetPassConfig>(); |
| 106 | getSelectionDAGFallbackAnalysisUsage(AU); |
| 107 | MachineFunctionPass::getAnalysisUsage(AU); |
| 108 | } |
| 109 | |
| 110 | bool RegBankSelect::assignmentMatch( |
| 111 | Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, |
| 112 | bool &OnlyAssign) const { |
| 113 | // By default we assume we will have to repair something. |
| 114 | OnlyAssign = false; |
| 115 | // Each part of a break down needs to end up in a different register. |
| 116 | // In other word, Reg assignment does not match. |
| 117 | if (ValMapping.NumBreakDowns != 1) |
| 118 | return false; |
| 119 | |
| 120 | const RegisterBank *CurRegBank = RBI->getRegBank(Reg, MRI: *MRI, TRI: *TRI); |
| 121 | const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; |
| 122 | // Reg is free of assignment, a simple assignment will make the |
| 123 | // register bank to match. |
| 124 | OnlyAssign = CurRegBank == nullptr; |
| 125 | LLVM_DEBUG(dbgs() << "Does assignment already match: " ; |
| 126 | if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none" ; |
| 127 | dbgs() << " against " ; |
| 128 | assert(DesiredRegBank && "The mapping must be valid" ); |
| 129 | dbgs() << *DesiredRegBank << '\n';); |
| 130 | return CurRegBank == DesiredRegBank; |
| 131 | } |
| 132 | |
| 133 | bool RegBankSelect::repairReg( |
| 134 | MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, |
| 135 | RegBankSelect::RepairingPlacement &RepairPt, |
| 136 | const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) { |
| 137 | |
| 138 | assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) && |
| 139 | "need new vreg for each breakdown" ); |
| 140 | |
| 141 | // An empty range of new register means no repairing. |
| 142 | assert(!NewVRegs.empty() && "We should not have to repair" ); |
| 143 | |
| 144 | MachineInstr *MI; |
| 145 | if (ValMapping.NumBreakDowns == 1) { |
| 146 | // Assume we are repairing a use and thus, the original reg will be |
| 147 | // the source of the repairing. |
| 148 | Register Src = MO.getReg(); |
| 149 | Register Dst = *NewVRegs.begin(); |
| 150 | |
| 151 | // If we repair a definition, swap the source and destination for |
| 152 | // the repairing. |
| 153 | if (MO.isDef()) |
| 154 | std::swap(a&: Src, b&: Dst); |
| 155 | |
| 156 | assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) && |
| 157 | "We are about to create several defs for Dst" ); |
| 158 | |
| 159 | // Build the instruction used to repair, then clone it at the right |
| 160 | // places. Avoiding buildCopy bypasses the check that Src and Dst have the |
| 161 | // same types because the type is a placeholder when this function is called. |
| 162 | MI = MIRBuilder.buildInstrNoInsert(Opcode: TargetOpcode::COPY) |
| 163 | .addDef(RegNo: Dst) |
| 164 | .addUse(RegNo: Src); |
| 165 | LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':' |
| 166 | << printRegClassOrBank(Src, *MRI, TRI) |
| 167 | << " to: " << printReg(Dst) << ':' |
| 168 | << printRegClassOrBank(Dst, *MRI, TRI) << '\n'); |
| 169 | } else { |
| 170 | // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT |
| 171 | // sequence. |
| 172 | assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported" ); |
| 173 | |
| 174 | LLT RegTy = MRI->getType(Reg: MO.getReg()); |
| 175 | if (MO.isDef()) { |
| 176 | unsigned MergeOp; |
| 177 | if (RegTy.isVector()) { |
| 178 | if (ValMapping.NumBreakDowns == RegTy.getNumElements()) |
| 179 | MergeOp = TargetOpcode::G_BUILD_VECTOR; |
| 180 | else { |
| 181 | assert( |
| 182 | (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns == |
| 183 | RegTy.getSizeInBits()) && |
| 184 | (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() == |
| 185 | 0) && |
| 186 | "don't understand this value breakdown" ); |
| 187 | |
| 188 | MergeOp = TargetOpcode::G_CONCAT_VECTORS; |
| 189 | } |
| 190 | } else |
| 191 | MergeOp = TargetOpcode::G_MERGE_VALUES; |
| 192 | |
| 193 | auto MergeBuilder = |
| 194 | MIRBuilder.buildInstrNoInsert(Opcode: MergeOp) |
| 195 | .addDef(RegNo: MO.getReg()); |
| 196 | |
| 197 | for (Register SrcReg : NewVRegs) |
| 198 | MergeBuilder.addUse(RegNo: SrcReg); |
| 199 | |
| 200 | MI = MergeBuilder; |
| 201 | } else { |
| 202 | MachineInstrBuilder UnMergeBuilder = |
| 203 | MIRBuilder.buildInstrNoInsert(Opcode: TargetOpcode::G_UNMERGE_VALUES); |
| 204 | for (Register DefReg : NewVRegs) |
| 205 | UnMergeBuilder.addDef(RegNo: DefReg); |
| 206 | |
| 207 | UnMergeBuilder.addUse(RegNo: MO.getReg()); |
| 208 | MI = UnMergeBuilder; |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | if (RepairPt.getNumInsertPoints() != 1) |
| 213 | report_fatal_error(reason: "need testcase to support multiple insertion points" ); |
| 214 | |
| 215 | // TODO: |
| 216 | // Check if MI is legal. if not, we need to legalize all the |
| 217 | // instructions we are going to insert. |
| 218 | std::unique_ptr<MachineInstr *[]> NewInstrs( |
| 219 | new MachineInstr *[RepairPt.getNumInsertPoints()]); |
| 220 | bool IsFirst = true; |
| 221 | unsigned Idx = 0; |
| 222 | for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { |
| 223 | MachineInstr *CurMI; |
| 224 | if (IsFirst) |
| 225 | CurMI = MI; |
| 226 | else |
| 227 | CurMI = MIRBuilder.getMF().CloneMachineInstr(Orig: MI); |
| 228 | InsertPt->insert(MI&: *CurMI); |
| 229 | NewInstrs[Idx++] = CurMI; |
| 230 | IsFirst = false; |
| 231 | } |
| 232 | // TODO: |
| 233 | // Legalize NewInstrs if need be. |
| 234 | return true; |
| 235 | } |
| 236 | |
| 237 | uint64_t RegBankSelect::getRepairCost( |
| 238 | const MachineOperand &MO, |
| 239 | const RegisterBankInfo::ValueMapping &ValMapping) const { |
| 240 | assert(MO.isReg() && "We should only repair register operand" ); |
| 241 | assert(ValMapping.NumBreakDowns && "Nothing to map??" ); |
| 242 | |
| 243 | bool = ValMapping.NumBreakDowns == 1; |
| 244 | const RegisterBank *CurRegBank = RBI->getRegBank(Reg: MO.getReg(), MRI: *MRI, TRI: *TRI); |
| 245 | // If MO does not have a register bank, we should have just been |
| 246 | // able to set one unless we have to break the value down. |
| 247 | assert(CurRegBank || MO.isDef()); |
| 248 | |
| 249 | // Def: Val <- NewDefs |
| 250 | // Same number of values: copy |
| 251 | // Different number: Val = build_sequence Defs1, Defs2, ... |
| 252 | // Use: NewSources <- Val. |
| 253 | // Same number of values: copy. |
| 254 | // Different number: Src1, Src2, ... = |
| 255 | // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... |
| 256 | // We should remember that this value is available somewhere else to |
| 257 | // coalesce the value. |
| 258 | |
| 259 | if (ValMapping.NumBreakDowns != 1) |
| 260 | return RBI->getBreakDownCost(ValMapping, CurBank: CurRegBank); |
| 261 | |
| 262 | if (IsSameNumOfValues) { |
| 263 | const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; |
| 264 | // If we repair a definition, swap the source and destination for |
| 265 | // the repairing. |
| 266 | if (MO.isDef()) |
| 267 | std::swap(a&: CurRegBank, b&: DesiredRegBank); |
| 268 | // TODO: It may be possible to actually avoid the copy. |
| 269 | // If we repair something where the source is defined by a copy |
| 270 | // and the source of that copy is on the right bank, we can reuse |
| 271 | // it for free. |
| 272 | // E.g., |
| 273 | // RegToRepair<BankA> = copy AlternativeSrc<BankB> |
| 274 | // = op RegToRepair<BankA> |
| 275 | // We can simply propagate AlternativeSrc instead of copying RegToRepair |
| 276 | // into a new virtual register. |
| 277 | // We would also need to propagate this information in the |
| 278 | // repairing placement. |
| 279 | unsigned Cost = RBI->copyCost(A: *DesiredRegBank, B: *CurRegBank, |
| 280 | Size: RBI->getSizeInBits(Reg: MO.getReg(), MRI: *MRI, TRI: *TRI)); |
| 281 | // TODO: use a dedicated constant for ImpossibleCost. |
| 282 | if (Cost != std::numeric_limits<unsigned>::max()) |
| 283 | return Cost; |
| 284 | // Return the legalization cost of that repairing. |
| 285 | } |
| 286 | return std::numeric_limits<unsigned>::max(); |
| 287 | } |
| 288 | |
| 289 | const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( |
| 290 | MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, |
| 291 | SmallVectorImpl<RepairingPlacement> &RepairPts) { |
| 292 | assert(!PossibleMappings.empty() && |
| 293 | "Do not know how to map this instruction" ); |
| 294 | |
| 295 | const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; |
| 296 | MappingCost Cost = MappingCost::ImpossibleCost(); |
| 297 | SmallVector<RepairingPlacement, 4> LocalRepairPts; |
| 298 | for (const RegisterBankInfo::InstructionMapping *CurMapping : |
| 299 | PossibleMappings) { |
| 300 | MappingCost CurCost = |
| 301 | computeMapping(MI, InstrMapping: *CurMapping, RepairPts&: LocalRepairPts, BestCost: &Cost); |
| 302 | if (CurCost < Cost) { |
| 303 | LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); |
| 304 | Cost = CurCost; |
| 305 | BestMapping = CurMapping; |
| 306 | RepairPts.clear(); |
| 307 | for (RepairingPlacement &RepairPt : LocalRepairPts) |
| 308 | RepairPts.emplace_back(Args: std::move(RepairPt)); |
| 309 | } |
| 310 | } |
| 311 | if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { |
| 312 | // If none of the mapping worked that means they are all impossible. |
| 313 | // Thus, pick the first one and set an impossible repairing point. |
| 314 | // It will trigger the failed isel mode. |
| 315 | BestMapping = *PossibleMappings.begin(); |
| 316 | RepairPts.emplace_back( |
| 317 | Args: RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); |
| 318 | } else |
| 319 | assert(BestMapping && "No suitable mapping for instruction" ); |
| 320 | return *BestMapping; |
| 321 | } |
| 322 | |
| 323 | void RegBankSelect::tryAvoidingSplit( |
| 324 | RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, |
| 325 | const RegisterBankInfo::ValueMapping &ValMapping) const { |
| 326 | const MachineInstr &MI = *MO.getParent(); |
| 327 | assert(RepairPt.hasSplit() && "We should not have to adjust for split" ); |
| 328 | // Splitting should only occur for PHIs or between terminators, |
| 329 | // because we only do local repairing. |
| 330 | assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?" ); |
| 331 | |
| 332 | assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && |
| 333 | "Repairing placement does not match operand" ); |
| 334 | |
| 335 | // If we need splitting for phis, that means it is because we |
| 336 | // could not find an insertion point before the terminators of |
| 337 | // the predecessor block for this argument. In other words, |
| 338 | // the input value is defined by one of the terminators. |
| 339 | assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?" ); |
| 340 | |
| 341 | // We split to repair the use of a phi or a terminator. |
| 342 | if (!MO.isDef()) { |
| 343 | if (MI.isTerminator()) { |
| 344 | assert(&MI != &(*MI.getParent()->getFirstTerminator()) && |
| 345 | "Need to split for the first terminator?!" ); |
| 346 | } else { |
| 347 | // For the PHI case, the split may not be actually required. |
| 348 | // In the copy case, a phi is already a copy on the incoming edge, |
| 349 | // therefore there is no need to split. |
| 350 | if (ValMapping.NumBreakDowns == 1) |
| 351 | // This is a already a copy, there is nothing to do. |
| 352 | RepairPt.switchTo(NewKind: RepairingPlacement::RepairingKind::Reassign); |
| 353 | } |
| 354 | return; |
| 355 | } |
| 356 | |
| 357 | // At this point, we need to repair a defintion of a terminator. |
| 358 | |
| 359 | // Technically we need to fix the def of MI on all outgoing |
| 360 | // edges of MI to keep the repairing local. In other words, we |
| 361 | // will create several definitions of the same register. This |
| 362 | // does not work for SSA unless that definition is a physical |
| 363 | // register. |
| 364 | // However, there are other cases where we can get away with |
| 365 | // that while still keeping the repairing local. |
| 366 | assert(MI.isTerminator() && MO.isDef() && |
| 367 | "This code is for the def of a terminator" ); |
| 368 | |
| 369 | // Since we use RPO traversal, if we need to repair a definition |
| 370 | // this means this definition could be: |
| 371 | // 1. Used by PHIs (i.e., this VReg has been visited as part of the |
| 372 | // uses of a phi.), or |
| 373 | // 2. Part of a target specific instruction (i.e., the target applied |
| 374 | // some register class constraints when creating the instruction.) |
| 375 | // If the constraints come for #2, the target said that another mapping |
| 376 | // is supported so we may just drop them. Indeed, if we do not change |
| 377 | // the number of registers holding that value, the uses will get fixed |
| 378 | // when we get to them. |
| 379 | // Uses in PHIs may have already been proceeded though. |
| 380 | // If the constraints come for #1, then, those are weak constraints and |
| 381 | // no actual uses may rely on them. However, the problem remains mainly |
| 382 | // the same as for #2. If the value stays in one register, we could |
| 383 | // just switch the register bank of the definition, but we would need to |
| 384 | // account for a repairing cost for each phi we silently change. |
| 385 | // |
| 386 | // In any case, if the value needs to be broken down into several |
| 387 | // registers, the repairing is not local anymore as we need to patch |
| 388 | // every uses to rebuild the value in just one register. |
| 389 | // |
| 390 | // To summarize: |
| 391 | // - If the value is in a physical register, we can do the split and |
| 392 | // fix locally. |
| 393 | // Otherwise if the value is in a virtual register: |
| 394 | // - If the value remains in one register, we do not have to split |
| 395 | // just switching the register bank would do, but we need to account |
| 396 | // in the repairing cost all the phi we changed. |
| 397 | // - If the value spans several registers, then we cannot do a local |
| 398 | // repairing. |
| 399 | |
| 400 | // Check if this is a physical or virtual register. |
| 401 | Register Reg = MO.getReg(); |
| 402 | if (Reg.isPhysical()) { |
| 403 | // We are going to split every outgoing edges. |
| 404 | // Check that this is possible. |
| 405 | // FIXME: The machine representation is currently broken |
| 406 | // since it also several terminators in one basic block. |
| 407 | // Because of that we would technically need a way to get |
| 408 | // the targets of just one terminator to know which edges |
| 409 | // we have to split. |
| 410 | // Assert that we do not hit the ill-formed representation. |
| 411 | |
| 412 | // If there are other terminators before that one, some of |
| 413 | // the outgoing edges may not be dominated by this definition. |
| 414 | assert(&MI == &(*MI.getParent()->getFirstTerminator()) && |
| 415 | "Do not know which outgoing edges are relevant" ); |
| 416 | const MachineInstr *Next = MI.getNextNode(); |
| 417 | assert((!Next || Next->isUnconditionalBranch()) && |
| 418 | "Do not know where each terminator ends up" ); |
| 419 | if (Next) |
| 420 | // If the next terminator uses Reg, this means we have |
| 421 | // to split right after MI and thus we need a way to ask |
| 422 | // which outgoing edges are affected. |
| 423 | assert(!Next->readsRegister(Reg, /*TRI=*/nullptr) && |
| 424 | "Need to split between terminators" ); |
| 425 | // We will split all the edges and repair there. |
| 426 | } else { |
| 427 | // This is a virtual register defined by a terminator. |
| 428 | if (ValMapping.NumBreakDowns == 1) { |
| 429 | // There is nothing to repair, but we may actually lie on |
| 430 | // the repairing cost because of the PHIs already proceeded |
| 431 | // as already stated. |
| 432 | // Though the code will be correct. |
| 433 | assert(false && "Repairing cost may not be accurate" ); |
| 434 | } else { |
| 435 | // We need to do non-local repairing. Basically, patch all |
| 436 | // the uses (i.e., phis) that we already proceeded. |
| 437 | // For now, just say this mapping is not possible. |
| 438 | RepairPt.switchTo(NewKind: RepairingPlacement::RepairingKind::Impossible); |
| 439 | } |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | RegBankSelect::MappingCost RegBankSelect::computeMapping( |
| 444 | MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, |
| 445 | SmallVectorImpl<RepairingPlacement> &RepairPts, |
| 446 | const RegBankSelect::MappingCost *BestCost) { |
| 447 | assert((MBFI || !BestCost) && "Costs comparison require MBFI" ); |
| 448 | |
| 449 | if (!InstrMapping.isValid()) |
| 450 | return MappingCost::ImpossibleCost(); |
| 451 | |
| 452 | // If mapped with InstrMapping, MI will have the recorded cost. |
| 453 | MappingCost Cost(MBFI ? MBFI->getBlockFreq(MBB: MI.getParent()) |
| 454 | : BlockFrequency(1)); |
| 455 | bool Saturated = Cost.addLocalCost(Cost: InstrMapping.getCost()); |
| 456 | assert(!Saturated && "Possible mapping saturated the cost" ); |
| 457 | LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); |
| 458 | LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); |
| 459 | RepairPts.clear(); |
| 460 | if (BestCost && Cost > *BestCost) { |
| 461 | LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n" ); |
| 462 | return Cost; |
| 463 | } |
| 464 | const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); |
| 465 | |
| 466 | // Moreover, to realize this mapping, the register bank of each operand must |
| 467 | // match this mapping. In other words, we may need to locally reassign the |
| 468 | // register banks. Account for that repairing cost as well. |
| 469 | // In this context, local means in the surrounding of MI. |
| 470 | for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); |
| 471 | OpIdx != EndOpIdx; ++OpIdx) { |
| 472 | const MachineOperand &MO = MI.getOperand(i: OpIdx); |
| 473 | if (!MO.isReg()) |
| 474 | continue; |
| 475 | Register Reg = MO.getReg(); |
| 476 | if (!Reg) |
| 477 | continue; |
| 478 | LLT Ty = MRI.getType(Reg); |
| 479 | if (!Ty.isValid()) |
| 480 | continue; |
| 481 | |
| 482 | LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); |
| 483 | const RegisterBankInfo::ValueMapping &ValMapping = |
| 484 | InstrMapping.getOperandMapping(i: OpIdx); |
| 485 | // If Reg is already properly mapped, this is free. |
| 486 | bool Assign; |
| 487 | if (assignmentMatch(Reg, ValMapping, OnlyAssign&: Assign)) { |
| 488 | LLVM_DEBUG(dbgs() << "=> is free (match).\n" ); |
| 489 | continue; |
| 490 | } |
| 491 | if (Assign) { |
| 492 | LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n" ); |
| 493 | RepairPts.emplace_back(Args: RepairingPlacement(MI, OpIdx, *TRI, *this, |
| 494 | RepairingPlacement::Reassign)); |
| 495 | continue; |
| 496 | } |
| 497 | |
| 498 | // Find the insertion point for the repairing code. |
| 499 | RepairPts.emplace_back( |
| 500 | Args: RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); |
| 501 | RepairingPlacement &RepairPt = RepairPts.back(); |
| 502 | |
| 503 | // If we need to split a basic block to materialize this insertion point, |
| 504 | // we may give a higher cost to this mapping. |
| 505 | // Nevertheless, we may get away with the split, so try that first. |
| 506 | if (RepairPt.hasSplit()) |
| 507 | tryAvoidingSplit(RepairPt, MO, ValMapping); |
| 508 | |
| 509 | // Check that the materialization of the repairing is possible. |
| 510 | if (!RepairPt.canMaterialize()) { |
| 511 | LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n" ); |
| 512 | return MappingCost::ImpossibleCost(); |
| 513 | } |
| 514 | |
| 515 | // Account for the split cost and repair cost. |
| 516 | // Unless the cost is already saturated or we do not care about the cost. |
| 517 | if (!BestCost || Saturated) |
| 518 | continue; |
| 519 | |
| 520 | // To get accurate information we need MBFI and MBPI. |
| 521 | // Thus, if we end up here this information should be here. |
| 522 | assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI" ); |
| 523 | |
| 524 | // FIXME: We will have to rework the repairing cost model. |
| 525 | // The repairing cost depends on the register bank that MO has. |
| 526 | // However, when we break down the value into different values, |
| 527 | // MO may not have a register bank while still needing repairing. |
| 528 | // For the fast mode, we don't compute the cost so that is fine, |
| 529 | // but still for the repairing code, we will have to make a choice. |
| 530 | // For the greedy mode, we should choose greedily what is the best |
| 531 | // choice based on the next use of MO. |
| 532 | |
| 533 | // Sums up the repairing cost of MO at each insertion point. |
| 534 | uint64_t RepairCost = getRepairCost(MO, ValMapping); |
| 535 | |
| 536 | // This is an impossible to repair cost. |
| 537 | if (RepairCost == std::numeric_limits<unsigned>::max()) |
| 538 | return MappingCost::ImpossibleCost(); |
| 539 | |
| 540 | // Bias used for splitting: 5%. |
| 541 | const uint64_t PercentageForBias = 5; |
| 542 | uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; |
| 543 | // We should not need more than a couple of instructions to repair |
| 544 | // an assignment. In other words, the computation should not |
| 545 | // overflow because the repairing cost is free of basic block |
| 546 | // frequency. |
| 547 | assert(((RepairCost < RepairCost * PercentageForBias) && |
| 548 | (RepairCost * PercentageForBias < |
| 549 | RepairCost * PercentageForBias + 99)) && |
| 550 | "Repairing involves more than a billion of instructions?!" ); |
| 551 | for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { |
| 552 | assert(InsertPt->canMaterialize() && "We should not have made it here" ); |
| 553 | // We will applied some basic block frequency and those uses uint64_t. |
| 554 | if (!InsertPt->isSplit()) |
| 555 | Saturated = Cost.addLocalCost(Cost: RepairCost); |
| 556 | else { |
| 557 | uint64_t CostForInsertPt = RepairCost; |
| 558 | // Again we shouldn't overflow here givent that |
| 559 | // CostForInsertPt is frequency free at this point. |
| 560 | assert(CostForInsertPt + Bias > CostForInsertPt && |
| 561 | "Repairing + split bias overflows" ); |
| 562 | CostForInsertPt += Bias; |
| 563 | uint64_t PtCost = InsertPt->frequency(P: *this) * CostForInsertPt; |
| 564 | // Check if we just overflowed. |
| 565 | if ((Saturated = PtCost < CostForInsertPt)) |
| 566 | Cost.saturate(); |
| 567 | else |
| 568 | Saturated = Cost.addNonLocalCost(Cost: PtCost); |
| 569 | } |
| 570 | |
| 571 | // Stop looking into what it takes to repair, this is already |
| 572 | // too expensive. |
| 573 | if (BestCost && Cost > *BestCost) { |
| 574 | LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n" ); |
| 575 | return Cost; |
| 576 | } |
| 577 | |
| 578 | // No need to accumulate more cost information. |
| 579 | // We need to still gather the repairing information though. |
| 580 | if (Saturated) |
| 581 | break; |
| 582 | } |
| 583 | } |
| 584 | LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n" ); |
| 585 | return Cost; |
| 586 | } |
| 587 | |
| 588 | bool RegBankSelect::applyMapping( |
| 589 | MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, |
| 590 | SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { |
| 591 | // OpdMapper will hold all the information needed for the rewriting. |
| 592 | RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); |
| 593 | |
| 594 | // First, place the repairing code. |
| 595 | for (RepairingPlacement &RepairPt : RepairPts) { |
| 596 | if (!RepairPt.canMaterialize() || |
| 597 | RepairPt.getKind() == RepairingPlacement::Impossible) |
| 598 | return false; |
| 599 | assert(RepairPt.getKind() != RepairingPlacement::None && |
| 600 | "This should not make its way in the list" ); |
| 601 | unsigned OpIdx = RepairPt.getOpIdx(); |
| 602 | MachineOperand &MO = MI.getOperand(i: OpIdx); |
| 603 | const RegisterBankInfo::ValueMapping &ValMapping = |
| 604 | InstrMapping.getOperandMapping(i: OpIdx); |
| 605 | Register Reg = MO.getReg(); |
| 606 | |
| 607 | switch (RepairPt.getKind()) { |
| 608 | case RepairingPlacement::Reassign: |
| 609 | assert(ValMapping.NumBreakDowns == 1 && |
| 610 | "Reassignment should only be for simple mapping" ); |
| 611 | MRI->setRegBank(Reg, RegBank: *ValMapping.BreakDown[0].RegBank); |
| 612 | break; |
| 613 | case RepairingPlacement::Insert: |
| 614 | // Don't insert additional instruction for debug instruction. |
| 615 | if (MI.isDebugInstr()) |
| 616 | break; |
| 617 | OpdMapper.createVRegs(OpIdx); |
| 618 | if (!repairReg(MO, ValMapping, RepairPt, NewVRegs: OpdMapper.getVRegs(OpIdx))) |
| 619 | return false; |
| 620 | break; |
| 621 | default: |
| 622 | llvm_unreachable("Other kind should not happen" ); |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | // Second, rewrite the instruction. |
| 627 | LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); |
| 628 | RBI->applyMapping(Builder&: MIRBuilder, OpdMapper); |
| 629 | |
| 630 | return true; |
| 631 | } |
| 632 | |
| 633 | bool RegBankSelect::assignInstr(MachineInstr &MI) { |
| 634 | LLVM_DEBUG(dbgs() << "Assign: " << MI); |
| 635 | |
| 636 | unsigned Opc = MI.getOpcode(); |
| 637 | if (isPreISelGenericOptimizationHint(Opcode: Opc)) { |
| 638 | assert((Opc == TargetOpcode::G_ASSERT_ZEXT || |
| 639 | Opc == TargetOpcode::G_ASSERT_SEXT || |
| 640 | Opc == TargetOpcode::G_ASSERT_ALIGN) && |
| 641 | "Unexpected hint opcode!" ); |
| 642 | // The only correct mapping for these is to always use the source register |
| 643 | // bank. |
| 644 | const RegisterBank *RB = |
| 645 | RBI->getRegBank(Reg: MI.getOperand(i: 1).getReg(), MRI: *MRI, TRI: *TRI); |
| 646 | // We can assume every instruction above this one has a selected register |
| 647 | // bank. |
| 648 | assert(RB && "Expected source register to have a register bank?" ); |
| 649 | LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n" ); |
| 650 | MRI->setRegBank(Reg: MI.getOperand(i: 0).getReg(), RegBank: *RB); |
| 651 | return true; |
| 652 | } |
| 653 | |
| 654 | // Remember the repairing placement for all the operands. |
| 655 | SmallVector<RepairingPlacement, 4> RepairPts; |
| 656 | |
| 657 | const RegisterBankInfo::InstructionMapping *BestMapping; |
| 658 | if (OptMode == RegBankSelect::Mode::Fast) { |
| 659 | BestMapping = &RBI->getInstrMapping(MI); |
| 660 | MappingCost DefaultCost = computeMapping(MI, InstrMapping: *BestMapping, RepairPts); |
| 661 | (void)DefaultCost; |
| 662 | if (DefaultCost == MappingCost::ImpossibleCost()) |
| 663 | return false; |
| 664 | } else { |
| 665 | RegisterBankInfo::InstructionMappings PossibleMappings = |
| 666 | RBI->getInstrPossibleMappings(MI); |
| 667 | if (PossibleMappings.empty()) |
| 668 | return false; |
| 669 | BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); |
| 670 | } |
| 671 | // Make sure the mapping is valid for MI. |
| 672 | assert(BestMapping->verify(MI) && "Invalid instruction mapping" ); |
| 673 | |
| 674 | LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); |
| 675 | |
| 676 | // After this call, MI may not be valid anymore. |
| 677 | // Do not use it. |
| 678 | return applyMapping(MI, InstrMapping: *BestMapping, RepairPts); |
| 679 | } |
| 680 | |
| 681 | bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) { |
| 682 | // Walk the function and assign register banks to all operands. |
| 683 | // Use a RPOT to make sure all registers are assigned before we choose |
| 684 | // the best mapping of the current instruction. |
| 685 | ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); |
| 686 | for (MachineBasicBlock *MBB : RPOT) { |
| 687 | // Set a sensible insertion point so that subsequent calls to |
| 688 | // MIRBuilder. |
| 689 | MIRBuilder.setMBB(*MBB); |
| 690 | SmallVector<MachineInstr *> WorkList( |
| 691 | make_pointer_range(Range: reverse(C: MBB->instrs()))); |
| 692 | |
| 693 | while (!WorkList.empty()) { |
| 694 | MachineInstr &MI = *WorkList.pop_back_val(); |
| 695 | |
| 696 | // Ignore target-specific post-isel instructions: they should use proper |
| 697 | // regclasses. |
| 698 | if (isTargetSpecificOpcode(Opcode: MI.getOpcode()) && !MI.isPreISelOpcode()) |
| 699 | continue; |
| 700 | |
| 701 | // Ignore inline asm instructions: they should use physical |
| 702 | // registers/regclasses |
| 703 | if (MI.isInlineAsm()) |
| 704 | continue; |
| 705 | |
| 706 | // Ignore IMPLICIT_DEF which must have a regclass. |
| 707 | if (MI.isImplicitDef()) |
| 708 | continue; |
| 709 | |
| 710 | if (!assignInstr(MI)) { |
| 711 | reportGISelFailure(MF, TPC: *TPC, MORE&: *MORE, PassName: "gisel-regbankselect" , |
| 712 | Msg: "unable to map instruction" , MI); |
| 713 | return false; |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | return true; |
| 719 | } |
| 720 | |
| 721 | bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const { |
| 722 | #ifndef NDEBUG |
| 723 | if (!DisableGISelLegalityCheck) { |
| 724 | if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { |
| 725 | reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect" , |
| 726 | "instruction is not legal" , *MI); |
| 727 | return false; |
| 728 | } |
| 729 | } |
| 730 | #endif |
| 731 | return true; |
| 732 | } |
| 733 | |
| 734 | bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { |
| 735 | // If the ISel pipeline failed, do not bother running that pass. |
| 736 | if (MF.getProperties().hasFailedISel()) |
| 737 | return false; |
| 738 | |
| 739 | LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); |
| 740 | const Function &F = MF.getFunction(); |
| 741 | Mode SaveOptMode = OptMode; |
| 742 | if (F.hasOptNone()) |
| 743 | OptMode = Mode::Fast; |
| 744 | init(MF); |
| 745 | |
| 746 | #ifndef NDEBUG |
| 747 | if (!checkFunctionIsLegal(MF)) |
| 748 | return false; |
| 749 | #endif |
| 750 | |
| 751 | assignRegisterBanks(MF); |
| 752 | |
| 753 | OptMode = SaveOptMode; |
| 754 | return false; |
| 755 | } |
| 756 | |
| 757 | //------------------------------------------------------------------------------ |
| 758 | // Helper Classes Implementation |
| 759 | //------------------------------------------------------------------------------ |
| 760 | RegBankSelect::RepairingPlacement::RepairingPlacement( |
| 761 | MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, |
| 762 | RepairingPlacement::RepairingKind Kind) |
| 763 | // Default is, we are going to insert code to repair OpIdx. |
| 764 | : Kind(Kind), OpIdx(OpIdx), |
| 765 | CanMaterialize(Kind != RepairingKind::Impossible), P(P) { |
| 766 | const MachineOperand &MO = MI.getOperand(i: OpIdx); |
| 767 | assert(MO.isReg() && "Trying to repair a non-reg operand" ); |
| 768 | |
| 769 | if (Kind != RepairingKind::Insert) |
| 770 | return; |
| 771 | |
| 772 | // Repairings for definitions happen after MI, uses happen before. |
| 773 | bool Before = !MO.isDef(); |
| 774 | |
| 775 | // Check if we are done with MI. |
| 776 | if (!MI.isPHI() && !MI.isTerminator()) { |
| 777 | addInsertPoint(MI, Before); |
| 778 | // We are done with the initialization. |
| 779 | return; |
| 780 | } |
| 781 | |
| 782 | // Now, look for the special cases. |
| 783 | if (MI.isPHI()) { |
| 784 | // - PHI must be the first instructions: |
| 785 | // * Before, we have to split the related incoming edge. |
| 786 | // * After, move the insertion point past the last phi. |
| 787 | if (!Before) { |
| 788 | MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); |
| 789 | if (It != MI.getParent()->end()) |
| 790 | addInsertPoint(MI&: *It, /*Before*/ true); |
| 791 | else |
| 792 | addInsertPoint(MI&: *(--It), /*Before*/ false); |
| 793 | return; |
| 794 | } |
| 795 | // We repair a use of a phi, we may need to split the related edge. |
| 796 | MachineBasicBlock &Pred = *MI.getOperand(i: OpIdx + 1).getMBB(); |
| 797 | // Check if we can move the insertion point prior to the |
| 798 | // terminators of the predecessor. |
| 799 | Register Reg = MO.getReg(); |
| 800 | MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); |
| 801 | for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) |
| 802 | if (It->modifiesRegister(Reg, TRI: &TRI)) { |
| 803 | // We cannot hoist the repairing code in the predecessor. |
| 804 | // Split the edge. |
| 805 | addInsertPoint(Src&: Pred, Dst&: *MI.getParent()); |
| 806 | return; |
| 807 | } |
| 808 | // At this point, we can insert in Pred. |
| 809 | |
| 810 | // - If It is invalid, Pred is empty and we can insert in Pred |
| 811 | // wherever we want. |
| 812 | // - If It is valid, It is the first non-terminator, insert after It. |
| 813 | if (It == Pred.end()) |
| 814 | addInsertPoint(MBB&: Pred, /*Beginning*/ false); |
| 815 | else |
| 816 | addInsertPoint(MI&: *It, /*Before*/ false); |
| 817 | } else { |
| 818 | // - Terminators must be the last instructions: |
| 819 | // * Before, move the insert point before the first terminator. |
| 820 | // * After, we have to split the outcoming edges. |
| 821 | if (Before) { |
| 822 | // Check whether Reg is defined by any terminator. |
| 823 | MachineBasicBlock::reverse_iterator It = MI; |
| 824 | auto REnd = MI.getParent()->rend(); |
| 825 | |
| 826 | for (; It != REnd && It->isTerminator(); ++It) { |
| 827 | assert(!It->modifiesRegister(MO.getReg(), &TRI) && |
| 828 | "copy insertion in middle of terminators not handled" ); |
| 829 | } |
| 830 | |
| 831 | if (It == REnd) { |
| 832 | addInsertPoint(MI&: *MI.getParent()->begin(), Before: true); |
| 833 | return; |
| 834 | } |
| 835 | |
| 836 | // We are sure to be right before the first terminator. |
| 837 | addInsertPoint(MI&: *It, /*Before*/ false); |
| 838 | return; |
| 839 | } |
| 840 | // Make sure Reg is not redefined by other terminators, otherwise |
| 841 | // we do not know how to split. |
| 842 | for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); |
| 843 | ++It != End;) |
| 844 | // The machine verifier should reject this kind of code. |
| 845 | assert(It->modifiesRegister(MO.getReg(), &TRI) && |
| 846 | "Do not know where to split" ); |
| 847 | // Split each outcoming edges. |
| 848 | MachineBasicBlock &Src = *MI.getParent(); |
| 849 | for (auto &Succ : Src.successors()) |
| 850 | addInsertPoint(MBB&: Src, Beginning: Succ); |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, |
| 855 | bool Before) { |
| 856 | addInsertPoint(Point&: *new InstrInsertPoint(MI, Before)); |
| 857 | } |
| 858 | |
| 859 | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, |
| 860 | bool Beginning) { |
| 861 | addInsertPoint(Point&: *new MBBInsertPoint(MBB, Beginning)); |
| 862 | } |
| 863 | |
| 864 | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, |
| 865 | MachineBasicBlock &Dst) { |
| 866 | addInsertPoint(Point&: *new EdgeInsertPoint(Src, Dst, P)); |
| 867 | } |
| 868 | |
| 869 | void RegBankSelect::RepairingPlacement::addInsertPoint( |
| 870 | RegBankSelect::InsertPoint &Point) { |
| 871 | CanMaterialize &= Point.canMaterialize(); |
| 872 | HasSplit |= Point.isSplit(); |
| 873 | InsertPoints.emplace_back(Args: &Point); |
| 874 | } |
| 875 | |
| 876 | RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, |
| 877 | bool Before) |
| 878 | : Instr(Instr), Before(Before) { |
| 879 | // Since we do not support splitting, we do not need to update |
| 880 | // liveness and such, so do not do anything with P. |
| 881 | assert((!Before || !Instr.isPHI()) && |
| 882 | "Splitting before phis requires more points" ); |
| 883 | assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && |
| 884 | "Splitting between phis does not make sense" ); |
| 885 | } |
| 886 | |
| 887 | void RegBankSelect::InstrInsertPoint::materialize() { |
| 888 | if (isSplit()) { |
| 889 | // Slice and return the beginning of the new block. |
| 890 | // If we need to split between the terminators, we theoritically |
| 891 | // need to know where the first and second set of terminators end |
| 892 | // to update the successors properly. |
| 893 | // Now, in pratice, we should have a maximum of 2 branch |
| 894 | // instructions; one conditional and one unconditional. Therefore |
| 895 | // we know how to update the successor by looking at the target of |
| 896 | // the unconditional branch. |
| 897 | // If we end up splitting at some point, then, we should update |
| 898 | // the liveness information and such. I.e., we would need to |
| 899 | // access P here. |
| 900 | // The machine verifier should actually make sure such cases |
| 901 | // cannot happen. |
| 902 | llvm_unreachable("Not yet implemented" ); |
| 903 | } |
| 904 | // Otherwise the insertion point is just the current or next |
| 905 | // instruction depending on Before. I.e., there is nothing to do |
| 906 | // here. |
| 907 | } |
| 908 | |
| 909 | bool RegBankSelect::InstrInsertPoint::isSplit() const { |
| 910 | // If the insertion point is after a terminator, we need to split. |
| 911 | if (!Before) |
| 912 | return Instr.isTerminator(); |
| 913 | // If we insert before an instruction that is after a terminator, |
| 914 | // we are still after a terminator. |
| 915 | return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); |
| 916 | } |
| 917 | |
| 918 | uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { |
| 919 | // Even if we need to split, because we insert between terminators, |
| 920 | // this split has actually the same frequency as the instruction. |
| 921 | const auto *MBFIWrapper = |
| 922 | P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>(); |
| 923 | if (!MBFIWrapper) |
| 924 | return 1; |
| 925 | return MBFIWrapper->getMBFI().getBlockFreq(MBB: Instr.getParent()).getFrequency(); |
| 926 | } |
| 927 | |
| 928 | uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { |
| 929 | const auto *MBFIWrapper = |
| 930 | P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>(); |
| 931 | if (!MBFIWrapper) |
| 932 | return 1; |
| 933 | return MBFIWrapper->getMBFI().getBlockFreq(MBB: &MBB).getFrequency(); |
| 934 | } |
| 935 | |
| 936 | void RegBankSelect::EdgeInsertPoint::materialize() { |
| 937 | // If we end up repairing twice at the same place before materializing the |
| 938 | // insertion point, we may think we have to split an edge twice. |
| 939 | // We should have a factory for the insert point such that identical points |
| 940 | // are the same instance. |
| 941 | assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && |
| 942 | "This point has already been split" ); |
| 943 | MachineBasicBlock *NewBB = Src.SplitCriticalEdge(Succ: DstOrSplit, P); |
| 944 | assert(NewBB && "Invalid call to materialize" ); |
| 945 | // We reuse the destination block to hold the information of the new block. |
| 946 | DstOrSplit = NewBB; |
| 947 | } |
| 948 | |
| 949 | uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { |
| 950 | const auto *MBFIWrapper = |
| 951 | P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>(); |
| 952 | if (!MBFIWrapper) |
| 953 | return 1; |
| 954 | const auto *MBFI = &MBFIWrapper->getMBFI(); |
| 955 | if (WasMaterialized) |
| 956 | return MBFI->getBlockFreq(MBB: DstOrSplit).getFrequency(); |
| 957 | |
| 958 | auto *MBPIWrapper = |
| 959 | P.getAnalysisIfAvailable<MachineBranchProbabilityInfoWrapperPass>(); |
| 960 | const MachineBranchProbabilityInfo *MBPI = |
| 961 | MBPIWrapper ? &MBPIWrapper->getMBPI() : nullptr; |
| 962 | if (!MBPI) |
| 963 | return 1; |
| 964 | // The basic block will be on the edge. |
| 965 | return (MBFI->getBlockFreq(MBB: &Src) * MBPI->getEdgeProbability(Src: &Src, Dst: DstOrSplit)) |
| 966 | .getFrequency(); |
| 967 | } |
| 968 | |
| 969 | bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { |
| 970 | // If this is not a critical edge, we should not have used this insert |
| 971 | // point. Indeed, either the successor or the predecessor should |
| 972 | // have do. |
| 973 | assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && |
| 974 | "Edge is not critical" ); |
| 975 | return Src.canSplitCriticalEdge(Succ: DstOrSplit); |
| 976 | } |
| 977 | |
| 978 | RegBankSelect::MappingCost::MappingCost(BlockFrequency LocalFreq) |
| 979 | : LocalFreq(LocalFreq.getFrequency()) {} |
| 980 | |
| 981 | bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { |
| 982 | // Check if this overflows. |
| 983 | if (LocalCost + Cost < LocalCost) { |
| 984 | saturate(); |
| 985 | return true; |
| 986 | } |
| 987 | LocalCost += Cost; |
| 988 | return isSaturated(); |
| 989 | } |
| 990 | |
| 991 | bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { |
| 992 | // Check if this overflows. |
| 993 | if (NonLocalCost + Cost < NonLocalCost) { |
| 994 | saturate(); |
| 995 | return true; |
| 996 | } |
| 997 | NonLocalCost += Cost; |
| 998 | return isSaturated(); |
| 999 | } |
| 1000 | |
| 1001 | bool RegBankSelect::MappingCost::isSaturated() const { |
| 1002 | return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && |
| 1003 | LocalFreq == UINT64_MAX; |
| 1004 | } |
| 1005 | |
| 1006 | void RegBankSelect::MappingCost::saturate() { |
| 1007 | *this = ImpossibleCost(); |
| 1008 | --LocalCost; |
| 1009 | } |
| 1010 | |
| 1011 | RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { |
| 1012 | return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); |
| 1013 | } |
| 1014 | |
| 1015 | bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { |
| 1016 | // Sort out the easy cases. |
| 1017 | if (*this == Cost) |
| 1018 | return false; |
| 1019 | // If one is impossible to realize the other is cheaper unless it is |
| 1020 | // impossible as well. |
| 1021 | if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) |
| 1022 | return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); |
| 1023 | // If one is saturated the other is cheaper, unless it is saturated |
| 1024 | // as well. |
| 1025 | if (isSaturated() || Cost.isSaturated()) |
| 1026 | return isSaturated() < Cost.isSaturated(); |
| 1027 | // At this point we know both costs hold sensible values. |
| 1028 | |
| 1029 | // If both values have a different base frequency, there is no much |
| 1030 | // we can do but to scale everything. |
| 1031 | // However, if they have the same base frequency we can avoid making |
| 1032 | // complicated computation. |
| 1033 | uint64_t ThisLocalAdjust; |
| 1034 | uint64_t OtherLocalAdjust; |
| 1035 | if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { |
| 1036 | |
| 1037 | // At this point, we know the local costs are comparable. |
| 1038 | // Do the case that do not involve potential overflow first. |
| 1039 | if (NonLocalCost == Cost.NonLocalCost) |
| 1040 | // Since the non-local costs do not discriminate on the result, |
| 1041 | // just compare the local costs. |
| 1042 | return LocalCost < Cost.LocalCost; |
| 1043 | |
| 1044 | // The base costs are comparable so we may only keep the relative |
| 1045 | // value to increase our chances of avoiding overflows. |
| 1046 | ThisLocalAdjust = 0; |
| 1047 | OtherLocalAdjust = 0; |
| 1048 | if (LocalCost < Cost.LocalCost) |
| 1049 | OtherLocalAdjust = Cost.LocalCost - LocalCost; |
| 1050 | else |
| 1051 | ThisLocalAdjust = LocalCost - Cost.LocalCost; |
| 1052 | } else { |
| 1053 | ThisLocalAdjust = LocalCost; |
| 1054 | OtherLocalAdjust = Cost.LocalCost; |
| 1055 | } |
| 1056 | |
| 1057 | // The non-local costs are comparable, just keep the relative value. |
| 1058 | uint64_t ThisNonLocalAdjust = 0; |
| 1059 | uint64_t OtherNonLocalAdjust = 0; |
| 1060 | if (NonLocalCost < Cost.NonLocalCost) |
| 1061 | OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; |
| 1062 | else |
| 1063 | ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; |
| 1064 | // Scale everything to make them comparable. |
| 1065 | uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; |
| 1066 | // Check for overflow on that operation. |
| 1067 | bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || |
| 1068 | ThisScaledCost < LocalFreq); |
| 1069 | uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; |
| 1070 | // Check for overflow on the last operation. |
| 1071 | bool OtherOverflows = |
| 1072 | OtherLocalAdjust && |
| 1073 | (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); |
| 1074 | // Add the non-local costs. |
| 1075 | ThisOverflows |= ThisNonLocalAdjust && |
| 1076 | ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; |
| 1077 | ThisScaledCost += ThisNonLocalAdjust; |
| 1078 | OtherOverflows |= OtherNonLocalAdjust && |
| 1079 | OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; |
| 1080 | OtherScaledCost += OtherNonLocalAdjust; |
| 1081 | // If both overflows, we cannot compare without additional |
| 1082 | // precision, e.g., APInt. Just give up on that case. |
| 1083 | if (ThisOverflows && OtherOverflows) |
| 1084 | return false; |
| 1085 | // If one overflows but not the other, we can still compare. |
| 1086 | if (ThisOverflows || OtherOverflows) |
| 1087 | return ThisOverflows < OtherOverflows; |
| 1088 | // Otherwise, just compare the values. |
| 1089 | return ThisScaledCost < OtherScaledCost; |
| 1090 | } |
| 1091 | |
| 1092 | bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { |
| 1093 | return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && |
| 1094 | LocalFreq == Cost.LocalFreq; |
| 1095 | } |
| 1096 | |
| 1097 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1098 | LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { |
| 1099 | print(dbgs()); |
| 1100 | dbgs() << '\n'; |
| 1101 | } |
| 1102 | #endif |
| 1103 | |
| 1104 | void RegBankSelect::MappingCost::print(raw_ostream &OS) const { |
| 1105 | if (*this == ImpossibleCost()) { |
| 1106 | OS << "impossible" ; |
| 1107 | return; |
| 1108 | } |
| 1109 | if (isSaturated()) { |
| 1110 | OS << "saturated" ; |
| 1111 | return; |
| 1112 | } |
| 1113 | OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; |
| 1114 | } |
| 1115 | |