1 | //===- IfConversion.cpp - Machine code if conversion pass -----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the machine instruction level if-conversion pass, which |
10 | // tries to convert conditional branches into predicated instructions. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "BranchFolding.h" |
15 | #include "llvm/ADT/STLExtras.h" |
16 | #include "llvm/ADT/ScopeExit.h" |
17 | #include "llvm/ADT/SmallSet.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/ADT/SparseSet.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/ADT/iterator_range.h" |
22 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
23 | #include "llvm/CodeGen/LivePhysRegs.h" |
24 | #include "llvm/CodeGen/MBFIWrapper.h" |
25 | #include "llvm/CodeGen/MachineBasicBlock.h" |
26 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
27 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
28 | #include "llvm/CodeGen/MachineFunction.h" |
29 | #include "llvm/CodeGen/MachineFunctionPass.h" |
30 | #include "llvm/CodeGen/MachineInstr.h" |
31 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
32 | #include "llvm/CodeGen/MachineOperand.h" |
33 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
34 | #include "llvm/CodeGen/TargetInstrInfo.h" |
35 | #include "llvm/CodeGen/TargetLowering.h" |
36 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
37 | #include "llvm/CodeGen/TargetSchedule.h" |
38 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
39 | #include "llvm/IR/DebugLoc.h" |
40 | #include "llvm/InitializePasses.h" |
41 | #include "llvm/Pass.h" |
42 | #include "llvm/Support/BranchProbability.h" |
43 | #include "llvm/Support/CommandLine.h" |
44 | #include "llvm/Support/Debug.h" |
45 | #include "llvm/Support/ErrorHandling.h" |
46 | #include "llvm/Support/raw_ostream.h" |
47 | #include <algorithm> |
48 | #include <cassert> |
49 | #include <functional> |
50 | #include <iterator> |
51 | #include <memory> |
52 | #include <utility> |
53 | #include <vector> |
54 | |
55 | using namespace llvm; |
56 | |
57 | #define DEBUG_TYPE "if-converter" |
58 | |
59 | // Hidden options for help debugging. |
60 | static cl::opt<int> IfCvtFnStart("ifcvt-fn-start" , cl::init(Val: -1), cl::Hidden); |
61 | static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop" , cl::init(Val: -1), cl::Hidden); |
62 | static cl::opt<int> IfCvtLimit("ifcvt-limit" , cl::init(Val: -1), cl::Hidden); |
63 | static cl::opt<bool> DisableSimple("disable-ifcvt-simple" , |
64 | cl::init(Val: false), cl::Hidden); |
65 | static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false" , |
66 | cl::init(Val: false), cl::Hidden); |
67 | static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle" , |
68 | cl::init(Val: false), cl::Hidden); |
69 | static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev" , |
70 | cl::init(Val: false), cl::Hidden); |
71 | static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false" , |
72 | cl::init(Val: false), cl::Hidden); |
73 | static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond" , |
74 | cl::init(Val: false), cl::Hidden); |
75 | static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond" , |
76 | cl::init(Val: false), cl::Hidden); |
77 | static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold" , |
78 | cl::init(Val: true), cl::Hidden); |
79 | |
80 | STATISTIC(NumSimple, "Number of simple if-conversions performed" ); |
81 | STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed" ); |
82 | STATISTIC(NumTriangle, "Number of triangle if-conversions performed" ); |
83 | STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed" ); |
84 | STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed" ); |
85 | STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed" ); |
86 | STATISTIC(NumDiamonds, "Number of diamond if-conversions performed" ); |
87 | STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed" ); |
88 | STATISTIC(NumIfConvBBs, "Number of if-converted blocks" ); |
89 | STATISTIC(NumDupBBs, "Number of duplicated blocks" ); |
90 | STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated" ); |
91 | |
92 | namespace { |
93 | |
94 | class IfConverter : public MachineFunctionPass { |
95 | enum IfcvtKind { |
96 | ICNotClassfied, // BB data valid, but not classified. |
97 | ICSimpleFalse, // Same as ICSimple, but on the false path. |
98 | ICSimple, // BB is entry of an one split, no rejoin sub-CFG. |
99 | ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. |
100 | ICTriangleRev, // Same as ICTriangle, but true path rev condition. |
101 | ICTriangleFalse, // Same as ICTriangle, but on the false path. |
102 | ICTriangle, // BB is entry of a triangle sub-CFG. |
103 | ICDiamond, // BB is entry of a diamond sub-CFG. |
104 | ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a |
105 | // common tail that can be shared. |
106 | }; |
107 | |
108 | /// One per MachineBasicBlock, this is used to cache the result |
109 | /// if-conversion feasibility analysis. This includes results from |
110 | /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its |
111 | /// classification, and common tail block of its successors (if it's a |
112 | /// diamond shape), its size, whether it's predicable, and whether any |
113 | /// instruction can clobber the 'would-be' predicate. |
114 | /// |
115 | /// IsDone - True if BB is not to be considered for ifcvt. |
116 | /// IsBeingAnalyzed - True if BB is currently being analyzed. |
117 | /// IsAnalyzed - True if BB has been analyzed (info is still valid). |
118 | /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. |
119 | /// IsBrAnalyzable - True if analyzeBranch() returns false. |
120 | /// HasFallThrough - True if BB has fallthrough to the following BB. |
121 | /// Note that BB may have a fallthrough if both |
122 | /// !HasFallThrough and !IsBrAnalyzable is true. Also note |
123 | /// that blockNeverFallThrough() can be used to prove that |
124 | /// there is no fall through. |
125 | /// IsUnpredicable - True if BB is known to be unpredicable. |
126 | /// ClobbersPred - True if BB could modify predicates (e.g. has |
127 | /// cmp, call, etc.) |
128 | /// NonPredSize - Number of non-predicated instructions. |
129 | /// ExtraCost - Extra cost for multi-cycle instructions. |
130 | /// ExtraCost2 - Some instructions are slower when predicated |
131 | /// BB - Corresponding MachineBasicBlock. |
132 | /// TrueBB / FalseBB- See analyzeBranch(), but note that FalseBB can be set |
133 | /// by AnalyzeBranches even if there is a fallthrough. So |
134 | /// it doesn't correspond exactly to the result from |
135 | /// TTI::analyzeBranch. |
136 | /// BrCond - Conditions for end of block conditional branches. |
137 | /// Predicate - Predicate used in the BB. |
138 | struct BBInfo { |
139 | bool IsDone : 1; |
140 | bool IsBeingAnalyzed : 1; |
141 | bool IsAnalyzed : 1; |
142 | bool IsEnqueued : 1; |
143 | bool IsBrAnalyzable : 1; |
144 | bool IsBrReversible : 1; |
145 | bool HasFallThrough : 1; |
146 | bool IsUnpredicable : 1; |
147 | bool CannotBeCopied : 1; |
148 | bool ClobbersPred : 1; |
149 | unsigned NonPredSize = 0; |
150 | unsigned = 0; |
151 | unsigned = 0; |
152 | MachineBasicBlock *BB = nullptr; |
153 | MachineBasicBlock *TrueBB = nullptr; |
154 | MachineBasicBlock *FalseBB = nullptr; |
155 | SmallVector<MachineOperand, 4> BrCond; |
156 | SmallVector<MachineOperand, 4> Predicate; |
157 | |
158 | BBInfo() : IsDone(false), IsBeingAnalyzed(false), |
159 | IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), |
160 | IsBrReversible(false), HasFallThrough(false), |
161 | IsUnpredicable(false), CannotBeCopied(false), |
162 | ClobbersPred(false) {} |
163 | }; |
164 | |
165 | /// Record information about pending if-conversions to attempt: |
166 | /// BBI - Corresponding BBInfo. |
167 | /// Kind - Type of block. See IfcvtKind. |
168 | /// NeedSubsumption - True if the to-be-predicated BB has already been |
169 | /// predicated. |
170 | /// NumDups - Number of instructions that would be duplicated due |
171 | /// to this if-conversion. (For diamonds, the number of |
172 | /// identical instructions at the beginnings of both |
173 | /// paths). |
174 | /// NumDups2 - For diamonds, the number of identical instructions |
175 | /// at the ends of both paths. |
176 | struct IfcvtToken { |
177 | BBInfo &BBI; |
178 | IfcvtKind Kind; |
179 | unsigned NumDups; |
180 | unsigned NumDups2; |
181 | bool NeedSubsumption : 1; |
182 | bool TClobbersPred : 1; |
183 | bool FClobbersPred : 1; |
184 | |
185 | IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, |
186 | bool tc = false, bool fc = false) |
187 | : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), |
188 | TClobbersPred(tc), FClobbersPred(fc) {} |
189 | }; |
190 | |
191 | /// Results of if-conversion feasibility analysis indexed by basic block |
192 | /// number. |
193 | std::vector<BBInfo> BBAnalysis; |
194 | TargetSchedModel SchedModel; |
195 | |
196 | const TargetLoweringBase *TLI = nullptr; |
197 | const TargetInstrInfo *TII = nullptr; |
198 | const TargetRegisterInfo *TRI = nullptr; |
199 | const MachineBranchProbabilityInfo *MBPI = nullptr; |
200 | MachineRegisterInfo *MRI = nullptr; |
201 | |
202 | LivePhysRegs Redefs; |
203 | |
204 | bool PreRegAlloc = true; |
205 | bool MadeChange = false; |
206 | int FnNum = -1; |
207 | std::function<bool(const MachineFunction &)> PredicateFtor; |
208 | |
209 | public: |
210 | static char ID; |
211 | |
212 | IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) |
213 | : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { |
214 | initializeIfConverterPass(*PassRegistry::getPassRegistry()); |
215 | } |
216 | |
217 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
218 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
219 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
220 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
221 | MachineFunctionPass::getAnalysisUsage(AU); |
222 | } |
223 | |
224 | bool runOnMachineFunction(MachineFunction &MF) override; |
225 | |
226 | MachineFunctionProperties getRequiredProperties() const override { |
227 | return MachineFunctionProperties().setNoVRegs(); |
228 | } |
229 | |
230 | private: |
231 | bool reverseBranchCondition(BBInfo &BBI) const; |
232 | bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, |
233 | BranchProbability Prediction) const; |
234 | bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, |
235 | bool FalseBranch, unsigned &Dups, |
236 | BranchProbability Prediction) const; |
237 | bool CountDuplicatedInstructions( |
238 | MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, |
239 | MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, |
240 | unsigned &Dups1, unsigned &Dups2, |
241 | MachineBasicBlock &TBB, MachineBasicBlock &FBB, |
242 | bool SkipUnconditionalBranches) const; |
243 | bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, |
244 | unsigned &Dups1, unsigned &Dups2, |
245 | BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; |
246 | bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, |
247 | unsigned &Dups1, unsigned &Dups2, |
248 | BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; |
249 | void AnalyzeBranches(BBInfo &BBI); |
250 | void ScanInstructions(BBInfo &BBI, |
251 | MachineBasicBlock::iterator &Begin, |
252 | MachineBasicBlock::iterator &End, |
253 | bool BranchUnpredicable = false) const; |
254 | bool RescanInstructions( |
255 | MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, |
256 | MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, |
257 | BBInfo &TrueBBI, BBInfo &FalseBBI) const; |
258 | void AnalyzeBlock(MachineBasicBlock &MBB, |
259 | std::vector<std::unique_ptr<IfcvtToken>> &Tokens); |
260 | bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, |
261 | bool isTriangle = false, bool RevBranch = false, |
262 | bool hasCommonTail = false); |
263 | void AnalyzeBlocks(MachineFunction &MF, |
264 | std::vector<std::unique_ptr<IfcvtToken>> &Tokens); |
265 | void InvalidatePreds(MachineBasicBlock &MBB); |
266 | bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); |
267 | bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); |
268 | bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, |
269 | unsigned NumDups1, unsigned NumDups2, |
270 | bool TClobbersPred, bool FClobbersPred, |
271 | bool RemoveBranch, bool MergeAddEdges); |
272 | bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, |
273 | unsigned NumDups1, unsigned NumDups2, |
274 | bool TClobbers, bool FClobbers); |
275 | bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, |
276 | unsigned NumDups1, unsigned NumDups2, |
277 | bool TClobbers, bool FClobbers); |
278 | void PredicateBlock(BBInfo &BBI, MachineBasicBlock::iterator E, |
279 | SmallVectorImpl<MachineOperand> &Cond, |
280 | SmallSet<MCRegister, 4> *LaterRedefs = nullptr); |
281 | void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, |
282 | SmallVectorImpl<MachineOperand> &Cond, |
283 | bool IgnoreBr = false); |
284 | void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); |
285 | |
286 | bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, |
287 | unsigned Cycle, unsigned , |
288 | BranchProbability Prediction) const { |
289 | return Cycle > 0 && TII->isProfitableToIfCvt(MBB&: BB, NumCycles: Cycle, ExtraPredCycles: Extra, |
290 | Probability: Prediction); |
291 | } |
292 | |
293 | bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo, |
294 | MachineBasicBlock &CommBB, unsigned Dups, |
295 | BranchProbability Prediction, bool Forked) const { |
296 | const MachineFunction &MF = *TBBInfo.BB->getParent(); |
297 | if (MF.getFunction().hasMinSize()) { |
298 | MachineBasicBlock::iterator TIB = TBBInfo.BB->begin(); |
299 | MachineBasicBlock::iterator FIB = FBBInfo.BB->begin(); |
300 | MachineBasicBlock::iterator TIE = TBBInfo.BB->end(); |
301 | MachineBasicBlock::iterator FIE = FBBInfo.BB->end(); |
302 | |
303 | unsigned Dups1 = 0, Dups2 = 0; |
304 | if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, |
305 | TBB&: *TBBInfo.BB, FBB&: *FBBInfo.BB, |
306 | /*SkipUnconditionalBranches*/ true)) |
307 | llvm_unreachable("should already have been checked by ValidDiamond" ); |
308 | |
309 | unsigned BranchBytes = 0; |
310 | unsigned CommonBytes = 0; |
311 | |
312 | // Count common instructions at the start of the true and false blocks. |
313 | for (auto &I : make_range(x: TBBInfo.BB->begin(), y: TIB)) { |
314 | LLVM_DEBUG(dbgs() << "Common inst: " << I); |
315 | CommonBytes += TII->getInstSizeInBytes(MI: I); |
316 | } |
317 | for (auto &I : make_range(x: FBBInfo.BB->begin(), y: FIB)) { |
318 | LLVM_DEBUG(dbgs() << "Common inst: " << I); |
319 | CommonBytes += TII->getInstSizeInBytes(MI: I); |
320 | } |
321 | |
322 | // Count instructions at the end of the true and false blocks, after |
323 | // the ones we plan to predicate. Analyzable branches will be removed |
324 | // (unless this is a forked diamond), and all other instructions are |
325 | // common between the two blocks. |
326 | for (auto &I : make_range(x: TIE, y: TBBInfo.BB->end())) { |
327 | if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) { |
328 | LLVM_DEBUG(dbgs() << "Saving branch: " << I); |
329 | BranchBytes += TII->predictBranchSizeForIfCvt(MI&: I); |
330 | } else { |
331 | LLVM_DEBUG(dbgs() << "Common inst: " << I); |
332 | CommonBytes += TII->getInstSizeInBytes(MI: I); |
333 | } |
334 | } |
335 | for (auto &I : make_range(x: FIE, y: FBBInfo.BB->end())) { |
336 | if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) { |
337 | LLVM_DEBUG(dbgs() << "Saving branch: " << I); |
338 | BranchBytes += TII->predictBranchSizeForIfCvt(MI&: I); |
339 | } else { |
340 | LLVM_DEBUG(dbgs() << "Common inst: " << I); |
341 | CommonBytes += TII->getInstSizeInBytes(MI: I); |
342 | } |
343 | } |
344 | for (auto &I : CommBB.terminators()) { |
345 | if (I.isBranch()) { |
346 | LLVM_DEBUG(dbgs() << "Saving branch: " << I); |
347 | BranchBytes += TII->predictBranchSizeForIfCvt(MI&: I); |
348 | } |
349 | } |
350 | |
351 | // The common instructions in one branch will be eliminated, halving |
352 | // their code size. |
353 | CommonBytes /= 2; |
354 | |
355 | // Count the instructions which we need to predicate. |
356 | unsigned NumPredicatedInstructions = 0; |
357 | for (auto &I : make_range(x: TIB, y: TIE)) { |
358 | if (!I.isDebugInstr()) { |
359 | LLVM_DEBUG(dbgs() << "Predicating: " << I); |
360 | NumPredicatedInstructions++; |
361 | } |
362 | } |
363 | for (auto &I : make_range(x: FIB, y: FIE)) { |
364 | if (!I.isDebugInstr()) { |
365 | LLVM_DEBUG(dbgs() << "Predicating: " << I); |
366 | NumPredicatedInstructions++; |
367 | } |
368 | } |
369 | |
370 | // Even though we're optimising for size at the expense of performance, |
371 | // avoid creating really long predicated blocks. |
372 | if (NumPredicatedInstructions > 15) |
373 | return false; |
374 | |
375 | // Some targets (e.g. Thumb2) need to insert extra instructions to |
376 | // start predicated blocks. |
377 | unsigned = TII->extraSizeToPredicateInstructions( |
378 | MF, NumInsts: NumPredicatedInstructions); |
379 | |
380 | LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes |
381 | << ", CommonBytes=" << CommonBytes |
382 | << ", NumPredicatedInstructions=" |
383 | << NumPredicatedInstructions |
384 | << ", ExtraPredicateBytes=" << ExtraPredicateBytes |
385 | << ")\n" ); |
386 | return (BranchBytes + CommonBytes) > ExtraPredicateBytes; |
387 | } else { |
388 | unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups; |
389 | unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups; |
390 | bool Res = TCycle > 0 && FCycle > 0 && |
391 | TII->isProfitableToIfCvt( |
392 | TMBB&: *TBBInfo.BB, NumTCycles: TCycle, ExtraTCycles: TBBInfo.ExtraCost2, FMBB&: *FBBInfo.BB, |
393 | NumFCycles: FCycle, ExtraFCycles: FBBInfo.ExtraCost2, Probability: Prediction); |
394 | LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle |
395 | << ", FCycle=" << FCycle |
396 | << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra=" |
397 | << FBBInfo.ExtraCost2 << ") = " << Res << "\n" ); |
398 | return Res; |
399 | } |
400 | } |
401 | |
402 | /// Returns true if Block ends without a terminator. |
403 | bool blockAlwaysFallThrough(BBInfo &BBI) const { |
404 | return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; |
405 | } |
406 | |
407 | /// Returns true if Block is known not to fallthrough to the following BB. |
408 | bool blockNeverFallThrough(BBInfo &BBI) const { |
409 | // Trust "HasFallThrough" if we could analyze branches. |
410 | if (BBI.IsBrAnalyzable) |
411 | return !BBI.HasFallThrough; |
412 | // If this is the last MBB in the function, or if the textual successor |
413 | // isn't in the successor list, then there is no fallthrough. |
414 | MachineFunction::iterator PI = BBI.BB->getIterator(); |
415 | MachineFunction::iterator I = std::next(x: PI); |
416 | if (I == BBI.BB->getParent()->end() || !PI->isSuccessor(MBB: &*I)) |
417 | return true; |
418 | // Could not prove that there is no fallthrough. |
419 | return false; |
420 | } |
421 | |
422 | /// Used to sort if-conversion candidates. |
423 | static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, |
424 | const std::unique_ptr<IfcvtToken> &C2) { |
425 | int Incr1 = (C1->Kind == ICDiamond) |
426 | ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; |
427 | int Incr2 = (C2->Kind == ICDiamond) |
428 | ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; |
429 | if (Incr1 > Incr2) |
430 | return true; |
431 | else if (Incr1 == Incr2) { |
432 | // Favors subsumption. |
433 | if (!C1->NeedSubsumption && C2->NeedSubsumption) |
434 | return true; |
435 | else if (C1->NeedSubsumption == C2->NeedSubsumption) { |
436 | // Favors diamond over triangle, etc. |
437 | if ((unsigned)C1->Kind < (unsigned)C2->Kind) |
438 | return true; |
439 | else if (C1->Kind == C2->Kind) |
440 | return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); |
441 | } |
442 | } |
443 | return false; |
444 | } |
445 | }; |
446 | |
447 | } // end anonymous namespace |
448 | |
449 | char IfConverter::ID = 0; |
450 | |
451 | char &llvm::IfConverterID = IfConverter::ID; |
452 | |
453 | INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter" , false, false) |
454 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) |
455 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
456 | INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter" , false, false) |
457 | |
458 | bool IfConverter::runOnMachineFunction(MachineFunction &MF) { |
459 | if (skipFunction(F: MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) |
460 | return false; |
461 | |
462 | const TargetSubtargetInfo &ST = MF.getSubtarget(); |
463 | TLI = ST.getTargetLowering(); |
464 | TII = ST.getInstrInfo(); |
465 | TRI = ST.getRegisterInfo(); |
466 | MBFIWrapper MBFI( |
467 | getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()); |
468 | MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
469 | ProfileSummaryInfo *PSI = |
470 | &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
471 | MRI = &MF.getRegInfo(); |
472 | SchedModel.init(TSInfo: &ST); |
473 | |
474 | if (!TII) return false; |
475 | |
476 | PreRegAlloc = MRI->isSSA(); |
477 | |
478 | bool BFChange = false; |
479 | if (!PreRegAlloc) { |
480 | // Tail merge tend to expose more if-conversion opportunities. |
481 | BranchFolder BF(true, false, MBFI, *MBPI, PSI); |
482 | BFChange = BF.OptimizeFunction(MF, tii: TII, tri: ST.getRegisterInfo()); |
483 | } |
484 | |
485 | LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" |
486 | << MF.getName() << "\'" ); |
487 | |
488 | if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { |
489 | LLVM_DEBUG(dbgs() << " skipped\n" ); |
490 | return false; |
491 | } |
492 | LLVM_DEBUG(dbgs() << "\n" ); |
493 | |
494 | MF.RenumberBlocks(); |
495 | BBAnalysis.resize(new_size: MF.getNumBlockIDs()); |
496 | |
497 | std::vector<std::unique_ptr<IfcvtToken>> Tokens; |
498 | MadeChange = false; |
499 | unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + |
500 | NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; |
501 | while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { |
502 | // Do an initial analysis for each basic block and find all the potential |
503 | // candidates to perform if-conversion. |
504 | bool Change = false; |
505 | AnalyzeBlocks(MF, Tokens); |
506 | while (!Tokens.empty()) { |
507 | std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); |
508 | Tokens.pop_back(); |
509 | BBInfo &BBI = Token->BBI; |
510 | IfcvtKind Kind = Token->Kind; |
511 | unsigned NumDups = Token->NumDups; |
512 | unsigned NumDups2 = Token->NumDups2; |
513 | |
514 | // If the block has been evicted out of the queue or it has already been |
515 | // marked dead (due to it being predicated), then skip it. |
516 | if (BBI.IsDone) |
517 | BBI.IsEnqueued = false; |
518 | if (!BBI.IsEnqueued) |
519 | continue; |
520 | |
521 | BBI.IsEnqueued = false; |
522 | |
523 | bool RetVal = false; |
524 | switch (Kind) { |
525 | default: llvm_unreachable("Unexpected!" ); |
526 | case ICSimple: |
527 | case ICSimpleFalse: { |
528 | bool isFalse = Kind == ICSimpleFalse; |
529 | if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; |
530 | LLVM_DEBUG(dbgs() << "Ifcvt (Simple" |
531 | << (Kind == ICSimpleFalse ? " false" : "" ) |
532 | << "): " << printMBBReference(*BBI.BB) << " (" |
533 | << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() |
534 | : BBI.TrueBB->getNumber()) |
535 | << ") " ); |
536 | RetVal = IfConvertSimple(BBI, Kind); |
537 | LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!" ) << "\n" ); |
538 | if (RetVal) { |
539 | if (isFalse) ++NumSimpleFalse; |
540 | else ++NumSimple; |
541 | } |
542 | break; |
543 | } |
544 | case ICTriangle: |
545 | case ICTriangleRev: |
546 | case ICTriangleFalse: |
547 | case ICTriangleFRev: { |
548 | bool isFalse = Kind == ICTriangleFalse; |
549 | bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); |
550 | if (DisableTriangle && !isFalse && !isRev) break; |
551 | if (DisableTriangleR && !isFalse && isRev) break; |
552 | if (DisableTriangleF && isFalse && !isRev) break; |
553 | LLVM_DEBUG(dbgs() << "Ifcvt (Triangle" ); |
554 | if (isFalse) |
555 | LLVM_DEBUG(dbgs() << " false" ); |
556 | if (isRev) |
557 | LLVM_DEBUG(dbgs() << " rev" ); |
558 | LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) |
559 | << " (T:" << BBI.TrueBB->getNumber() |
560 | << ",F:" << BBI.FalseBB->getNumber() << ") " ); |
561 | RetVal = IfConvertTriangle(BBI, Kind); |
562 | LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!" ) << "\n" ); |
563 | if (RetVal) { |
564 | if (isFalse) |
565 | ++NumTriangleFalse; |
566 | else if (isRev) |
567 | ++NumTriangleRev; |
568 | else |
569 | ++NumTriangle; |
570 | } |
571 | break; |
572 | } |
573 | case ICDiamond: |
574 | if (DisableDiamond) break; |
575 | LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) |
576 | << " (T:" << BBI.TrueBB->getNumber() |
577 | << ",F:" << BBI.FalseBB->getNumber() << ") " ); |
578 | RetVal = IfConvertDiamond(BBI, Kind, NumDups1: NumDups, NumDups2, |
579 | TClobbers: Token->TClobbersPred, |
580 | FClobbers: Token->FClobbersPred); |
581 | LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!" ) << "\n" ); |
582 | if (RetVal) ++NumDiamonds; |
583 | break; |
584 | case ICForkedDiamond: |
585 | if (DisableForkedDiamond) break; |
586 | LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " |
587 | << printMBBReference(*BBI.BB) |
588 | << " (T:" << BBI.TrueBB->getNumber() |
589 | << ",F:" << BBI.FalseBB->getNumber() << ") " ); |
590 | RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups1: NumDups, NumDups2, |
591 | TClobbers: Token->TClobbersPred, |
592 | FClobbers: Token->FClobbersPred); |
593 | LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!" ) << "\n" ); |
594 | if (RetVal) ++NumForkedDiamonds; |
595 | break; |
596 | } |
597 | |
598 | if (RetVal && MRI->tracksLiveness()) |
599 | recomputeLivenessFlags(MBB&: *BBI.BB); |
600 | |
601 | Change |= RetVal; |
602 | |
603 | NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + |
604 | NumTriangleFalse + NumTriangleFRev + NumDiamonds; |
605 | if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) |
606 | break; |
607 | } |
608 | |
609 | if (!Change) |
610 | break; |
611 | MadeChange |= Change; |
612 | } |
613 | |
614 | Tokens.clear(); |
615 | BBAnalysis.clear(); |
616 | |
617 | if (MadeChange && IfCvtBranchFold) { |
618 | BranchFolder BF(false, false, MBFI, *MBPI, PSI); |
619 | BF.OptimizeFunction(MF, tii: TII, tri: MF.getSubtarget().getRegisterInfo()); |
620 | } |
621 | |
622 | MadeChange |= BFChange; |
623 | return MadeChange; |
624 | } |
625 | |
626 | /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. |
627 | static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, |
628 | MachineBasicBlock *TrueBB) { |
629 | for (MachineBasicBlock *SuccBB : BB->successors()) { |
630 | if (SuccBB != TrueBB) |
631 | return SuccBB; |
632 | } |
633 | return nullptr; |
634 | } |
635 | |
636 | /// Reverse the condition of the end of the block branch. Swap block's 'true' |
637 | /// and 'false' successors. |
638 | bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { |
639 | DebugLoc dl; // FIXME: this is nowhere |
640 | if (!TII->reverseBranchCondition(Cond&: BBI.BrCond)) { |
641 | TII->removeBranch(MBB&: *BBI.BB); |
642 | TII->insertBranch(MBB&: *BBI.BB, TBB: BBI.FalseBB, FBB: BBI.TrueBB, Cond: BBI.BrCond, DL: dl); |
643 | std::swap(a&: BBI.TrueBB, b&: BBI.FalseBB); |
644 | return true; |
645 | } |
646 | return false; |
647 | } |
648 | |
649 | /// Returns the next block in the function blocks ordering. If it is the end, |
650 | /// returns NULL. |
651 | static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { |
652 | MachineFunction::iterator I = MBB.getIterator(); |
653 | MachineFunction::iterator E = MBB.getParent()->end(); |
654 | if (++I == E) |
655 | return nullptr; |
656 | return &*I; |
657 | } |
658 | |
659 | /// Returns true if the 'true' block (along with its predecessor) forms a valid |
660 | /// simple shape for ifcvt. It also returns the number of instructions that the |
661 | /// ifcvt would need to duplicate if performed in Dups. |
662 | bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, |
663 | BranchProbability Prediction) const { |
664 | Dups = 0; |
665 | if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) |
666 | return false; |
667 | |
668 | if (TrueBBI.IsBrAnalyzable) |
669 | return false; |
670 | |
671 | if (TrueBBI.BB->pred_size() > 1) { |
672 | if (TrueBBI.CannotBeCopied || |
673 | !TII->isProfitableToDupForIfCvt(MBB&: *TrueBBI.BB, NumCycles: TrueBBI.NonPredSize, |
674 | Probability: Prediction)) |
675 | return false; |
676 | Dups = TrueBBI.NonPredSize; |
677 | } |
678 | |
679 | return true; |
680 | } |
681 | |
682 | /// Returns true if the 'true' and 'false' blocks (along with their common |
683 | /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is |
684 | /// true, it checks if 'true' block's false branch branches to the 'false' block |
685 | /// rather than the other way around. It also returns the number of instructions |
686 | /// that the ifcvt would need to duplicate if performed in 'Dups'. |
687 | bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, |
688 | bool FalseBranch, unsigned &Dups, |
689 | BranchProbability Prediction) const { |
690 | Dups = 0; |
691 | if (TrueBBI.BB == FalseBBI.BB) |
692 | return false; |
693 | |
694 | if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) |
695 | return false; |
696 | |
697 | if (TrueBBI.BB->pred_size() > 1) { |
698 | if (TrueBBI.CannotBeCopied) |
699 | return false; |
700 | |
701 | unsigned Size = TrueBBI.NonPredSize; |
702 | if (TrueBBI.IsBrAnalyzable) { |
703 | if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) |
704 | // Ends with an unconditional branch. It will be removed. |
705 | --Size; |
706 | else { |
707 | MachineBasicBlock *FExit = FalseBranch |
708 | ? TrueBBI.TrueBB : TrueBBI.FalseBB; |
709 | if (FExit) |
710 | // Require a conditional branch |
711 | ++Size; |
712 | } |
713 | } |
714 | if (!TII->isProfitableToDupForIfCvt(MBB&: *TrueBBI.BB, NumCycles: Size, Probability: Prediction)) |
715 | return false; |
716 | Dups = Size; |
717 | } |
718 | |
719 | MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; |
720 | if (!TExit && blockAlwaysFallThrough(BBI&: TrueBBI)) { |
721 | MachineFunction::iterator I = TrueBBI.BB->getIterator(); |
722 | if (++I == TrueBBI.BB->getParent()->end()) |
723 | return false; |
724 | TExit = &*I; |
725 | } |
726 | return TExit && TExit == FalseBBI.BB; |
727 | } |
728 | |
729 | /// Count duplicated instructions and move the iterators to show where they |
730 | /// are. |
731 | /// @param TIB True Iterator Begin |
732 | /// @param FIB False Iterator Begin |
733 | /// These two iterators initially point to the first instruction of the two |
734 | /// blocks, and finally point to the first non-shared instruction. |
735 | /// @param TIE True Iterator End |
736 | /// @param FIE False Iterator End |
737 | /// These two iterators initially point to End() for the two blocks() and |
738 | /// finally point to the first shared instruction in the tail. |
739 | /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of |
740 | /// two blocks. |
741 | /// @param Dups1 count of duplicated instructions at the beginning of the 2 |
742 | /// blocks. |
743 | /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. |
744 | /// @param SkipUnconditionalBranches if true, Don't make sure that |
745 | /// unconditional branches at the end of the blocks are the same. True is |
746 | /// passed when the blocks are analyzable to allow for fallthrough to be |
747 | /// handled. |
748 | /// @return false if the shared portion prevents if conversion. |
749 | bool IfConverter::CountDuplicatedInstructions( |
750 | MachineBasicBlock::iterator &TIB, |
751 | MachineBasicBlock::iterator &FIB, |
752 | MachineBasicBlock::iterator &TIE, |
753 | MachineBasicBlock::iterator &FIE, |
754 | unsigned &Dups1, unsigned &Dups2, |
755 | MachineBasicBlock &TBB, MachineBasicBlock &FBB, |
756 | bool SkipUnconditionalBranches) const { |
757 | while (TIB != TIE && FIB != FIE) { |
758 | // Skip dbg_value instructions. These do not count. |
759 | TIB = skipDebugInstructionsForward(It: TIB, End: TIE, SkipPseudoOp: false); |
760 | FIB = skipDebugInstructionsForward(It: FIB, End: FIE, SkipPseudoOp: false); |
761 | if (TIB == TIE || FIB == FIE) |
762 | break; |
763 | if (!TIB->isIdenticalTo(Other: *FIB)) |
764 | break; |
765 | // A pred-clobbering instruction in the shared portion prevents |
766 | // if-conversion. |
767 | std::vector<MachineOperand> PredDefs; |
768 | if (TII->ClobbersPredicate(MI&: *TIB, Pred&: PredDefs, SkipDead: false)) |
769 | return false; |
770 | // If we get all the way to the branch instructions, don't count them. |
771 | if (!TIB->isBranch()) |
772 | ++Dups1; |
773 | ++TIB; |
774 | ++FIB; |
775 | } |
776 | |
777 | // Check for already containing all of the block. |
778 | if (TIB == TIE || FIB == FIE) |
779 | return true; |
780 | // Now, in preparation for counting duplicate instructions at the ends of the |
781 | // blocks, switch to reverse_iterators. Note that getReverse() returns an |
782 | // iterator that points to the same instruction, unlike std::reverse_iterator. |
783 | // We have to do our own shifting so that we get the same range. |
784 | MachineBasicBlock::reverse_iterator RTIE = std::next(x: TIE.getReverse()); |
785 | MachineBasicBlock::reverse_iterator RFIE = std::next(x: FIE.getReverse()); |
786 | const MachineBasicBlock::reverse_iterator RTIB = std::next(x: TIB.getReverse()); |
787 | const MachineBasicBlock::reverse_iterator RFIB = std::next(x: FIB.getReverse()); |
788 | |
789 | if (!TBB.succ_empty() || !FBB.succ_empty()) { |
790 | if (SkipUnconditionalBranches) { |
791 | while (RTIE != RTIB && RTIE->isUnconditionalBranch()) |
792 | ++RTIE; |
793 | while (RFIE != RFIB && RFIE->isUnconditionalBranch()) |
794 | ++RFIE; |
795 | } |
796 | } |
797 | |
798 | // Count duplicate instructions at the ends of the blocks. |
799 | while (RTIE != RTIB && RFIE != RFIB) { |
800 | // Skip dbg_value instructions. These do not count. |
801 | // Note that these are reverse iterators going forward. |
802 | RTIE = skipDebugInstructionsForward(It: RTIE, End: RTIB, SkipPseudoOp: false); |
803 | RFIE = skipDebugInstructionsForward(It: RFIE, End: RFIB, SkipPseudoOp: false); |
804 | if (RTIE == RTIB || RFIE == RFIB) |
805 | break; |
806 | if (!RTIE->isIdenticalTo(Other: *RFIE)) |
807 | break; |
808 | // We have to verify that any branch instructions are the same, and then we |
809 | // don't count them toward the # of duplicate instructions. |
810 | if (!RTIE->isBranch()) |
811 | ++Dups2; |
812 | ++RTIE; |
813 | ++RFIE; |
814 | } |
815 | TIE = std::next(x: RTIE.getReverse()); |
816 | FIE = std::next(x: RFIE.getReverse()); |
817 | return true; |
818 | } |
819 | |
820 | /// RescanInstructions - Run ScanInstructions on a pair of blocks. |
821 | /// @param TIB - True Iterator Begin, points to first non-shared instruction |
822 | /// @param FIB - False Iterator Begin, points to first non-shared instruction |
823 | /// @param TIE - True Iterator End, points past last non-shared instruction |
824 | /// @param FIE - False Iterator End, points past last non-shared instruction |
825 | /// @param TrueBBI - BBInfo to update for the true block. |
826 | /// @param FalseBBI - BBInfo to update for the false block. |
827 | /// @returns - false if either block cannot be predicated or if both blocks end |
828 | /// with a predicate-clobbering instruction. |
829 | bool IfConverter::RescanInstructions( |
830 | MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, |
831 | MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, |
832 | BBInfo &TrueBBI, BBInfo &FalseBBI) const { |
833 | bool BranchUnpredicable = true; |
834 | TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; |
835 | ScanInstructions(BBI&: TrueBBI, Begin&: TIB, End&: TIE, BranchUnpredicable); |
836 | if (TrueBBI.IsUnpredicable) |
837 | return false; |
838 | ScanInstructions(BBI&: FalseBBI, Begin&: FIB, End&: FIE, BranchUnpredicable); |
839 | if (FalseBBI.IsUnpredicable) |
840 | return false; |
841 | if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) |
842 | return false; |
843 | return true; |
844 | } |
845 | |
846 | #ifndef NDEBUG |
847 | static void verifySameBranchInstructions( |
848 | MachineBasicBlock *MBB1, |
849 | MachineBasicBlock *MBB2) { |
850 | const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); |
851 | const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); |
852 | MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); |
853 | MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); |
854 | while (E1 != B1 && E2 != B2) { |
855 | skipDebugInstructionsForward(E1, B1, false); |
856 | skipDebugInstructionsForward(E2, B2, false); |
857 | if (E1 == B1 && E2 == B2) |
858 | break; |
859 | |
860 | if (E1 == B1) { |
861 | assert(!E2->isBranch() && "Branch mis-match, one block is empty." ); |
862 | break; |
863 | } |
864 | if (E2 == B2) { |
865 | assert(!E1->isBranch() && "Branch mis-match, one block is empty." ); |
866 | break; |
867 | } |
868 | |
869 | if (E1->isBranch() || E2->isBranch()) |
870 | assert(E1->isIdenticalTo(*E2) && |
871 | "Branch mis-match, branch instructions don't match." ); |
872 | else |
873 | break; |
874 | ++E1; |
875 | ++E2; |
876 | } |
877 | } |
878 | #endif |
879 | |
880 | /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along |
881 | /// with their common predecessor) form a diamond if a common tail block is |
882 | /// extracted. |
883 | /// While not strictly a diamond, this pattern would form a diamond if |
884 | /// tail-merging had merged the shared tails. |
885 | /// EBB |
886 | /// _/ \_ |
887 | /// | | |
888 | /// TBB FBB |
889 | /// / \ / \ |
890 | /// FalseBB TrueBB FalseBB |
891 | /// Currently only handles analyzable branches. |
892 | /// Specifically excludes actual diamonds to avoid overlap. |
893 | bool IfConverter::ValidForkedDiamond( |
894 | BBInfo &TrueBBI, BBInfo &FalseBBI, |
895 | unsigned &Dups1, unsigned &Dups2, |
896 | BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { |
897 | Dups1 = Dups2 = 0; |
898 | if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || |
899 | FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) |
900 | return false; |
901 | |
902 | if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) |
903 | return false; |
904 | // Don't IfConvert blocks that can't be folded into their predecessor. |
905 | if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) |
906 | return false; |
907 | |
908 | // This function is specifically looking for conditional tails, as |
909 | // unconditional tails are already handled by the standard diamond case. |
910 | if (TrueBBI.BrCond.size() == 0 || |
911 | FalseBBI.BrCond.size() == 0) |
912 | return false; |
913 | |
914 | MachineBasicBlock *TT = TrueBBI.TrueBB; |
915 | MachineBasicBlock *TF = TrueBBI.FalseBB; |
916 | MachineBasicBlock *FT = FalseBBI.TrueBB; |
917 | MachineBasicBlock *FF = FalseBBI.FalseBB; |
918 | |
919 | if (!TT) |
920 | TT = getNextBlock(MBB&: *TrueBBI.BB); |
921 | if (!TF) |
922 | TF = getNextBlock(MBB&: *TrueBBI.BB); |
923 | if (!FT) |
924 | FT = getNextBlock(MBB&: *FalseBBI.BB); |
925 | if (!FF) |
926 | FF = getNextBlock(MBB&: *FalseBBI.BB); |
927 | |
928 | if (!TT || !TF) |
929 | return false; |
930 | |
931 | // Check successors. If they don't match, bail. |
932 | if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) |
933 | return false; |
934 | |
935 | bool FalseReversed = false; |
936 | if (TF == FT && TT == FF) { |
937 | // If the branches are opposing, but we can't reverse, don't do it. |
938 | if (!FalseBBI.IsBrReversible) |
939 | return false; |
940 | FalseReversed = true; |
941 | reverseBranchCondition(BBI&: FalseBBI); |
942 | } |
943 | auto UnReverseOnExit = make_scope_exit(F: [&]() { |
944 | if (FalseReversed) |
945 | reverseBranchCondition(BBI&: FalseBBI); |
946 | }); |
947 | |
948 | // Count duplicate instructions at the beginning of the true and false blocks. |
949 | MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); |
950 | MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); |
951 | MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); |
952 | MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); |
953 | if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, |
954 | TBB&: *TrueBBI.BB, FBB&: *FalseBBI.BB, |
955 | /* SkipUnconditionalBranches */ true)) |
956 | return false; |
957 | |
958 | TrueBBICalc.BB = TrueBBI.BB; |
959 | FalseBBICalc.BB = FalseBBI.BB; |
960 | TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; |
961 | FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; |
962 | if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBI&: TrueBBICalc, FalseBBI&: FalseBBICalc)) |
963 | return false; |
964 | |
965 | // The size is used to decide whether to if-convert, and the shared portions |
966 | // are subtracted off. Because of the subtraction, we just use the size that |
967 | // was calculated by the original ScanInstructions, as it is correct. |
968 | TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; |
969 | FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; |
970 | return true; |
971 | } |
972 | |
973 | /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along |
974 | /// with their common predecessor) forms a valid diamond shape for ifcvt. |
975 | bool IfConverter::ValidDiamond( |
976 | BBInfo &TrueBBI, BBInfo &FalseBBI, |
977 | unsigned &Dups1, unsigned &Dups2, |
978 | BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { |
979 | Dups1 = Dups2 = 0; |
980 | if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || |
981 | FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) |
982 | return false; |
983 | |
984 | // If the True and False BBs are equal we're dealing with a degenerate case |
985 | // that we don't treat as a diamond. |
986 | if (TrueBBI.BB == FalseBBI.BB) |
987 | return false; |
988 | |
989 | MachineBasicBlock *TT = TrueBBI.TrueBB; |
990 | MachineBasicBlock *FT = FalseBBI.TrueBB; |
991 | |
992 | if (!TT && blockAlwaysFallThrough(BBI&: TrueBBI)) |
993 | TT = getNextBlock(MBB&: *TrueBBI.BB); |
994 | if (!FT && blockAlwaysFallThrough(BBI&: FalseBBI)) |
995 | FT = getNextBlock(MBB&: *FalseBBI.BB); |
996 | if (TT != FT) |
997 | return false; |
998 | if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) |
999 | return false; |
1000 | if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) |
1001 | return false; |
1002 | |
1003 | // FIXME: Allow true block to have an early exit? |
1004 | if (TrueBBI.FalseBB || FalseBBI.FalseBB) |
1005 | return false; |
1006 | |
1007 | // Count duplicate instructions at the beginning and end of the true and |
1008 | // false blocks. |
1009 | // Skip unconditional branches only if we are considering an analyzable |
1010 | // diamond. Otherwise the branches must be the same. |
1011 | bool SkipUnconditionalBranches = |
1012 | TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; |
1013 | MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); |
1014 | MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); |
1015 | MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); |
1016 | MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); |
1017 | if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, |
1018 | TBB&: *TrueBBI.BB, FBB&: *FalseBBI.BB, |
1019 | SkipUnconditionalBranches)) |
1020 | return false; |
1021 | |
1022 | TrueBBICalc.BB = TrueBBI.BB; |
1023 | FalseBBICalc.BB = FalseBBI.BB; |
1024 | TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; |
1025 | FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; |
1026 | if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBI&: TrueBBICalc, FalseBBI&: FalseBBICalc)) |
1027 | return false; |
1028 | // The size is used to decide whether to if-convert, and the shared portions |
1029 | // are subtracted off. Because of the subtraction, we just use the size that |
1030 | // was calculated by the original ScanInstructions, as it is correct. |
1031 | TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; |
1032 | FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; |
1033 | return true; |
1034 | } |
1035 | |
1036 | /// AnalyzeBranches - Look at the branches at the end of a block to determine if |
1037 | /// the block is predicable. |
1038 | void IfConverter::AnalyzeBranches(BBInfo &BBI) { |
1039 | if (BBI.IsDone) |
1040 | return; |
1041 | |
1042 | BBI.TrueBB = BBI.FalseBB = nullptr; |
1043 | BBI.BrCond.clear(); |
1044 | BBI.IsBrAnalyzable = |
1045 | !TII->analyzeBranch(MBB&: *BBI.BB, TBB&: BBI.TrueBB, FBB&: BBI.FalseBB, Cond&: BBI.BrCond); |
1046 | if (!BBI.IsBrAnalyzable) { |
1047 | BBI.TrueBB = nullptr; |
1048 | BBI.FalseBB = nullptr; |
1049 | BBI.BrCond.clear(); |
1050 | } |
1051 | |
1052 | SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1053 | BBI.IsBrReversible = (RevCond.size() == 0) || |
1054 | !TII->reverseBranchCondition(Cond&: RevCond); |
1055 | BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; |
1056 | |
1057 | if (BBI.BrCond.size()) { |
1058 | // No false branch. This BB must end with a conditional branch and a |
1059 | // fallthrough. |
1060 | if (!BBI.FalseBB) |
1061 | BBI.FalseBB = findFalseBlock(BB: BBI.BB, TrueBB: BBI.TrueBB); |
1062 | if (!BBI.FalseBB) { |
1063 | // Malformed bcc? True and false blocks are the same? |
1064 | BBI.IsUnpredicable = true; |
1065 | } |
1066 | } |
1067 | } |
1068 | |
1069 | /// ScanInstructions - Scan all the instructions in the block to determine if |
1070 | /// the block is predicable. In most cases, that means all the instructions |
1071 | /// in the block are isPredicable(). Also checks if the block contains any |
1072 | /// instruction which can clobber a predicate (e.g. condition code register). |
1073 | /// If so, the block is not predicable unless it's the last instruction. |
1074 | void IfConverter::ScanInstructions(BBInfo &BBI, |
1075 | MachineBasicBlock::iterator &Begin, |
1076 | MachineBasicBlock::iterator &End, |
1077 | bool BranchUnpredicable) const { |
1078 | if (BBI.IsDone || BBI.IsUnpredicable) |
1079 | return; |
1080 | |
1081 | bool AlreadyPredicated = !BBI.Predicate.empty(); |
1082 | |
1083 | BBI.NonPredSize = 0; |
1084 | BBI.ExtraCost = 0; |
1085 | BBI.ExtraCost2 = 0; |
1086 | BBI.ClobbersPred = false; |
1087 | for (MachineInstr &MI : make_range(x: Begin, y: End)) { |
1088 | if (MI.isDebugInstr()) |
1089 | continue; |
1090 | |
1091 | // It's unsafe to duplicate convergent instructions in this context, so set |
1092 | // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the |
1093 | // following CFG, which is subject to our "simple" transformation. |
1094 | // |
1095 | // BB0 // if (c1) goto BB1; else goto BB2; |
1096 | // / \ |
1097 | // BB1 | |
1098 | // | BB2 // if (c2) goto TBB; else goto FBB; |
1099 | // | / | |
1100 | // | / | |
1101 | // TBB | |
1102 | // | | |
1103 | // | FBB |
1104 | // | |
1105 | // exit |
1106 | // |
1107 | // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd |
1108 | // be unconditional, and in BB2, they'd be predicated upon c2), and suppose |
1109 | // TBB contains a convergent instruction. This is safe iff doing so does |
1110 | // not add a control-flow dependency to the convergent instruction -- i.e., |
1111 | // it's safe iff the set of control flows that leads us to the convergent |
1112 | // instruction does not get smaller after the transformation. |
1113 | // |
1114 | // Originally we executed TBB if c1 || c2. After the transformation, there |
1115 | // are two copies of TBB's instructions. We get to the first if c1, and we |
1116 | // get to the second if !c1 && c2. |
1117 | // |
1118 | // There are clearly fewer ways to satisfy the condition "c1" than |
1119 | // "c1 || c2". Since we've shrunk the set of control flows which lead to |
1120 | // our convergent instruction, the transformation is unsafe. |
1121 | if (MI.isNotDuplicable() || MI.isConvergent()) |
1122 | BBI.CannotBeCopied = true; |
1123 | |
1124 | bool isPredicated = TII->isPredicated(MI); |
1125 | bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); |
1126 | |
1127 | if (BranchUnpredicable && MI.isBranch()) { |
1128 | BBI.IsUnpredicable = true; |
1129 | return; |
1130 | } |
1131 | |
1132 | // A conditional branch is not predicable, but it may be eliminated. |
1133 | if (isCondBr) |
1134 | continue; |
1135 | |
1136 | if (!isPredicated) { |
1137 | BBI.NonPredSize++; |
1138 | unsigned = TII->getPredicationCost(MI); |
1139 | unsigned NumCycles = SchedModel.computeInstrLatency(MI: &MI, UseDefaultDefLatency: false); |
1140 | if (NumCycles > 1) |
1141 | BBI.ExtraCost += NumCycles-1; |
1142 | BBI.ExtraCost2 += ExtraPredCost; |
1143 | } else if (!AlreadyPredicated) { |
1144 | // FIXME: This instruction is already predicated before the |
1145 | // if-conversion pass. It's probably something like a conditional move. |
1146 | // Mark this block unpredicable for now. |
1147 | BBI.IsUnpredicable = true; |
1148 | return; |
1149 | } |
1150 | |
1151 | if (BBI.ClobbersPred && !isPredicated) { |
1152 | // Predicate modification instruction should end the block (except for |
1153 | // already predicated instructions and end of block branches). |
1154 | // Predicate may have been modified, the subsequent (currently) |
1155 | // unpredicated instructions cannot be correctly predicated. |
1156 | BBI.IsUnpredicable = true; |
1157 | return; |
1158 | } |
1159 | |
1160 | // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are |
1161 | // still potentially predicable. |
1162 | std::vector<MachineOperand> PredDefs; |
1163 | if (TII->ClobbersPredicate(MI, Pred&: PredDefs, SkipDead: true)) |
1164 | BBI.ClobbersPred = true; |
1165 | |
1166 | if (!TII->isPredicable(MI)) { |
1167 | BBI.IsUnpredicable = true; |
1168 | return; |
1169 | } |
1170 | } |
1171 | } |
1172 | |
1173 | /// Determine if the block is a suitable candidate to be predicated by the |
1174 | /// specified predicate. |
1175 | /// @param BBI BBInfo for the block to check |
1176 | /// @param Pred Predicate array for the branch that leads to BBI |
1177 | /// @param isTriangle true if the Analysis is for a triangle |
1178 | /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false |
1179 | /// case |
1180 | /// @param hasCommonTail true if BBI shares a tail with a sibling block that |
1181 | /// contains any instruction that would make the block unpredicable. |
1182 | bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, |
1183 | SmallVectorImpl<MachineOperand> &Pred, |
1184 | bool isTriangle, bool RevBranch, |
1185 | bool hasCommonTail) { |
1186 | // If the block is dead or unpredicable, then it cannot be predicated. |
1187 | // Two blocks may share a common unpredicable tail, but this doesn't prevent |
1188 | // them from being if-converted. The non-shared portion is assumed to have |
1189 | // been checked |
1190 | if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) |
1191 | return false; |
1192 | |
1193 | // If it is already predicated but we couldn't analyze its terminator, the |
1194 | // latter might fallthrough, but we can't determine where to. |
1195 | // Conservatively avoid if-converting again. |
1196 | if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) |
1197 | return false; |
1198 | |
1199 | // If it is already predicated, check if the new predicate subsumes |
1200 | // its predicate. |
1201 | if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred1: Pred, Pred2: BBI.Predicate)) |
1202 | return false; |
1203 | |
1204 | if (!hasCommonTail && BBI.BrCond.size()) { |
1205 | if (!isTriangle) |
1206 | return false; |
1207 | |
1208 | // Test predicate subsumption. |
1209 | SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); |
1210 | SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1211 | if (RevBranch) { |
1212 | if (TII->reverseBranchCondition(Cond)) |
1213 | return false; |
1214 | } |
1215 | if (TII->reverseBranchCondition(Cond&: RevPred) || |
1216 | !TII->SubsumesPredicate(Pred1: Cond, Pred2: RevPred)) |
1217 | return false; |
1218 | } |
1219 | |
1220 | return true; |
1221 | } |
1222 | |
1223 | /// Analyze the structure of the sub-CFG starting from the specified block. |
1224 | /// Record its successors and whether it looks like an if-conversion candidate. |
1225 | void IfConverter::AnalyzeBlock( |
1226 | MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { |
1227 | struct BBState { |
1228 | BBState(MachineBasicBlock &MBB) : MBB(&MBB) {} |
1229 | MachineBasicBlock *MBB; |
1230 | |
1231 | /// This flag is true if MBB's successors have been analyzed. |
1232 | bool SuccsAnalyzed = false; |
1233 | }; |
1234 | |
1235 | // Push MBB to the stack. |
1236 | SmallVector<BBState, 16> BBStack(1, MBB); |
1237 | |
1238 | while (!BBStack.empty()) { |
1239 | BBState &State = BBStack.back(); |
1240 | MachineBasicBlock *BB = State.MBB; |
1241 | BBInfo &BBI = BBAnalysis[BB->getNumber()]; |
1242 | |
1243 | if (!State.SuccsAnalyzed) { |
1244 | if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { |
1245 | BBStack.pop_back(); |
1246 | continue; |
1247 | } |
1248 | |
1249 | BBI.BB = BB; |
1250 | BBI.IsBeingAnalyzed = true; |
1251 | |
1252 | AnalyzeBranches(BBI); |
1253 | MachineBasicBlock::iterator Begin = BBI.BB->begin(); |
1254 | MachineBasicBlock::iterator End = BBI.BB->end(); |
1255 | ScanInstructions(BBI, Begin, End); |
1256 | |
1257 | // Unanalyzable or ends with fallthrough or unconditional branch, or if is |
1258 | // not considered for ifcvt anymore. |
1259 | if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { |
1260 | BBI.IsBeingAnalyzed = false; |
1261 | BBI.IsAnalyzed = true; |
1262 | BBStack.pop_back(); |
1263 | continue; |
1264 | } |
1265 | |
1266 | // Do not ifcvt if either path is a back edge to the entry block. |
1267 | if (BBI.TrueBB == BB || BBI.FalseBB == BB) { |
1268 | BBI.IsBeingAnalyzed = false; |
1269 | BBI.IsAnalyzed = true; |
1270 | BBStack.pop_back(); |
1271 | continue; |
1272 | } |
1273 | |
1274 | // Do not ifcvt if true and false fallthrough blocks are the same. |
1275 | if (!BBI.FalseBB) { |
1276 | BBI.IsBeingAnalyzed = false; |
1277 | BBI.IsAnalyzed = true; |
1278 | BBStack.pop_back(); |
1279 | continue; |
1280 | } |
1281 | |
1282 | // Push the False and True blocks to the stack. |
1283 | State.SuccsAnalyzed = true; |
1284 | BBStack.push_back(Elt: *BBI.FalseBB); |
1285 | BBStack.push_back(Elt: *BBI.TrueBB); |
1286 | continue; |
1287 | } |
1288 | |
1289 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
1290 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
1291 | |
1292 | if (TrueBBI.IsDone && FalseBBI.IsDone) { |
1293 | BBI.IsBeingAnalyzed = false; |
1294 | BBI.IsAnalyzed = true; |
1295 | BBStack.pop_back(); |
1296 | continue; |
1297 | } |
1298 | |
1299 | SmallVector<MachineOperand, 4> |
1300 | RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1301 | bool CanRevCond = !TII->reverseBranchCondition(Cond&: RevCond); |
1302 | |
1303 | unsigned Dups = 0; |
1304 | unsigned Dups2 = 0; |
1305 | bool TNeedSub = !TrueBBI.Predicate.empty(); |
1306 | bool FNeedSub = !FalseBBI.Predicate.empty(); |
1307 | bool Enqueued = false; |
1308 | |
1309 | BranchProbability Prediction = MBPI->getEdgeProbability(Src: BB, Dst: TrueBBI.BB); |
1310 | |
1311 | if (CanRevCond) { |
1312 | BBInfo TrueBBICalc, FalseBBICalc; |
1313 | auto feasibleDiamond = [&](bool Forked) { |
1314 | bool MeetsSize = MeetIfcvtSizeLimit(TBBInfo&: TrueBBICalc, FBBInfo&: FalseBBICalc, CommBB&: *BB, |
1315 | Dups: Dups + Dups2, Prediction, Forked); |
1316 | bool TrueFeasible = FeasibilityAnalysis(BBI&: TrueBBI, Pred&: BBI.BrCond, |
1317 | /* IsTriangle */ isTriangle: false, /* RevCond */ RevBranch: false, |
1318 | /* hasCommonTail */ true); |
1319 | bool FalseFeasible = FeasibilityAnalysis(BBI&: FalseBBI, Pred&: RevCond, |
1320 | /* IsTriangle */ isTriangle: false, /* RevCond */ RevBranch: false, |
1321 | /* hasCommonTail */ true); |
1322 | return MeetsSize && TrueFeasible && FalseFeasible; |
1323 | }; |
1324 | |
1325 | if (ValidDiamond(TrueBBI, FalseBBI, Dups1&: Dups, Dups2, |
1326 | TrueBBICalc, FalseBBICalc)) { |
1327 | if (feasibleDiamond(false)) { |
1328 | // Diamond: |
1329 | // EBB |
1330 | // / \_ |
1331 | // | | |
1332 | // TBB FBB |
1333 | // \ / |
1334 | // TailBB |
1335 | // Note TailBB can be empty. |
1336 | Tokens.push_back(x: std::make_unique<IfcvtToken>( |
1337 | args&: BBI, args: ICDiamond, args: TNeedSub | FNeedSub, args&: Dups, args&: Dups2, |
1338 | args: (bool) TrueBBICalc.ClobbersPred, args: (bool) FalseBBICalc.ClobbersPred)); |
1339 | Enqueued = true; |
1340 | } |
1341 | } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups1&: Dups, Dups2, |
1342 | TrueBBICalc, FalseBBICalc)) { |
1343 | if (feasibleDiamond(true)) { |
1344 | // ForkedDiamond: |
1345 | // if TBB and FBB have a common tail that includes their conditional |
1346 | // branch instructions, then we can If Convert this pattern. |
1347 | // EBB |
1348 | // _/ \_ |
1349 | // | | |
1350 | // TBB FBB |
1351 | // / \ / \ |
1352 | // FalseBB TrueBB FalseBB |
1353 | // |
1354 | Tokens.push_back(x: std::make_unique<IfcvtToken>( |
1355 | args&: BBI, args: ICForkedDiamond, args: TNeedSub | FNeedSub, args&: Dups, args&: Dups2, |
1356 | args: (bool) TrueBBICalc.ClobbersPred, args: (bool) FalseBBICalc.ClobbersPred)); |
1357 | Enqueued = true; |
1358 | } |
1359 | } |
1360 | } |
1361 | |
1362 | if (ValidTriangle(TrueBBI, FalseBBI, FalseBranch: false, Dups, Prediction) && |
1363 | MeetIfcvtSizeLimit(BB&: *TrueBBI.BB, Cycle: TrueBBI.NonPredSize + TrueBBI.ExtraCost, |
1364 | Extra: TrueBBI.ExtraCost2, Prediction) && |
1365 | FeasibilityAnalysis(BBI&: TrueBBI, Pred&: BBI.BrCond, isTriangle: true)) { |
1366 | // Triangle: |
1367 | // EBB |
1368 | // | \_ |
1369 | // | | |
1370 | // | TBB |
1371 | // | / |
1372 | // FBB |
1373 | Tokens.push_back( |
1374 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICTriangle, args&: TNeedSub, args&: Dups)); |
1375 | Enqueued = true; |
1376 | } |
1377 | |
1378 | if (ValidTriangle(TrueBBI, FalseBBI, FalseBranch: true, Dups, Prediction) && |
1379 | MeetIfcvtSizeLimit(BB&: *TrueBBI.BB, Cycle: TrueBBI.NonPredSize + TrueBBI.ExtraCost, |
1380 | Extra: TrueBBI.ExtraCost2, Prediction) && |
1381 | FeasibilityAnalysis(BBI&: TrueBBI, Pred&: BBI.BrCond, isTriangle: true, RevBranch: true)) { |
1382 | Tokens.push_back( |
1383 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICTriangleRev, args&: TNeedSub, args&: Dups)); |
1384 | Enqueued = true; |
1385 | } |
1386 | |
1387 | if (ValidSimple(TrueBBI, Dups, Prediction) && |
1388 | MeetIfcvtSizeLimit(BB&: *TrueBBI.BB, Cycle: TrueBBI.NonPredSize + TrueBBI.ExtraCost, |
1389 | Extra: TrueBBI.ExtraCost2, Prediction) && |
1390 | FeasibilityAnalysis(BBI&: TrueBBI, Pred&: BBI.BrCond)) { |
1391 | // Simple (split, no rejoin): |
1392 | // EBB |
1393 | // | \_ |
1394 | // | | |
1395 | // | TBB---> exit |
1396 | // | |
1397 | // FBB |
1398 | Tokens.push_back( |
1399 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICSimple, args&: TNeedSub, args&: Dups)); |
1400 | Enqueued = true; |
1401 | } |
1402 | |
1403 | if (CanRevCond) { |
1404 | // Try the other path... |
1405 | if (ValidTriangle(TrueBBI&: FalseBBI, FalseBBI&: TrueBBI, FalseBranch: false, Dups, |
1406 | Prediction: Prediction.getCompl()) && |
1407 | MeetIfcvtSizeLimit(BB&: *FalseBBI.BB, |
1408 | Cycle: FalseBBI.NonPredSize + FalseBBI.ExtraCost, |
1409 | Extra: FalseBBI.ExtraCost2, Prediction: Prediction.getCompl()) && |
1410 | FeasibilityAnalysis(BBI&: FalseBBI, Pred&: RevCond, isTriangle: true)) { |
1411 | Tokens.push_back(x: std::make_unique<IfcvtToken>(args&: BBI, args: ICTriangleFalse, |
1412 | args&: FNeedSub, args&: Dups)); |
1413 | Enqueued = true; |
1414 | } |
1415 | |
1416 | if (ValidTriangle(TrueBBI&: FalseBBI, FalseBBI&: TrueBBI, FalseBranch: true, Dups, |
1417 | Prediction: Prediction.getCompl()) && |
1418 | MeetIfcvtSizeLimit(BB&: *FalseBBI.BB, |
1419 | Cycle: FalseBBI.NonPredSize + FalseBBI.ExtraCost, |
1420 | Extra: FalseBBI.ExtraCost2, Prediction: Prediction.getCompl()) && |
1421 | FeasibilityAnalysis(BBI&: FalseBBI, Pred&: RevCond, isTriangle: true, RevBranch: true)) { |
1422 | Tokens.push_back( |
1423 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICTriangleFRev, args&: FNeedSub, args&: Dups)); |
1424 | Enqueued = true; |
1425 | } |
1426 | |
1427 | if (ValidSimple(TrueBBI&: FalseBBI, Dups, Prediction: Prediction.getCompl()) && |
1428 | MeetIfcvtSizeLimit(BB&: *FalseBBI.BB, |
1429 | Cycle: FalseBBI.NonPredSize + FalseBBI.ExtraCost, |
1430 | Extra: FalseBBI.ExtraCost2, Prediction: Prediction.getCompl()) && |
1431 | FeasibilityAnalysis(BBI&: FalseBBI, Pred&: RevCond)) { |
1432 | Tokens.push_back( |
1433 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICSimpleFalse, args&: FNeedSub, args&: Dups)); |
1434 | Enqueued = true; |
1435 | } |
1436 | } |
1437 | |
1438 | BBI.IsEnqueued = Enqueued; |
1439 | BBI.IsBeingAnalyzed = false; |
1440 | BBI.IsAnalyzed = true; |
1441 | BBStack.pop_back(); |
1442 | } |
1443 | } |
1444 | |
1445 | /// Analyze all blocks and find entries for all if-conversion candidates. |
1446 | void IfConverter::AnalyzeBlocks( |
1447 | MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { |
1448 | for (MachineBasicBlock &MBB : MF) |
1449 | AnalyzeBlock(MBB, Tokens); |
1450 | |
1451 | // Sort to favor more complex ifcvt scheme. |
1452 | llvm::stable_sort(Range&: Tokens, C: IfcvtTokenCmp); |
1453 | } |
1454 | |
1455 | /// Returns true either if ToMBB is the next block after MBB or that all the |
1456 | /// intervening blocks are empty (given MBB can fall through to its next block). |
1457 | static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { |
1458 | MachineFunction::iterator PI = MBB.getIterator(); |
1459 | MachineFunction::iterator I = std::next(x: PI); |
1460 | MachineFunction::iterator TI = ToMBB.getIterator(); |
1461 | MachineFunction::iterator E = MBB.getParent()->end(); |
1462 | while (I != TI) { |
1463 | // Check isSuccessor to avoid case where the next block is empty, but |
1464 | // it's not a successor. |
1465 | if (I == E || !I->empty() || !PI->isSuccessor(MBB: &*I)) |
1466 | return false; |
1467 | PI = I++; |
1468 | } |
1469 | // Finally see if the last I is indeed a successor to PI. |
1470 | return PI->isSuccessor(MBB: &*I); |
1471 | } |
1472 | |
1473 | /// Invalidate predecessor BB info so it would be re-analyzed to determine if it |
1474 | /// can be if-converted. If predecessor is already enqueued, dequeue it! |
1475 | void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { |
1476 | for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { |
1477 | BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; |
1478 | if (PBBI.IsDone || PBBI.BB == &MBB) |
1479 | continue; |
1480 | PBBI.IsAnalyzed = false; |
1481 | PBBI.IsEnqueued = false; |
1482 | } |
1483 | } |
1484 | |
1485 | /// Inserts an unconditional branch from \p MBB to \p ToMBB. |
1486 | static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, |
1487 | const TargetInstrInfo *TII) { |
1488 | DebugLoc dl; // FIXME: this is nowhere |
1489 | SmallVector<MachineOperand, 0> NoCond; |
1490 | TII->insertBranch(MBB, TBB: &ToMBB, FBB: nullptr, Cond: NoCond, DL: dl); |
1491 | } |
1492 | |
1493 | /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all |
1494 | /// values defined in MI which are also live/used by MI. |
1495 | static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { |
1496 | const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); |
1497 | |
1498 | // Before stepping forward past MI, remember which regs were live |
1499 | // before MI. This is needed to set the Undef flag only when reg is |
1500 | // dead. |
1501 | SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; |
1502 | LiveBeforeMI.setUniverse(TRI->getNumRegs()); |
1503 | for (unsigned Reg : Redefs) |
1504 | LiveBeforeMI.insert(Val: Reg); |
1505 | |
1506 | SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; |
1507 | Redefs.stepForward(MI, Clobbers); |
1508 | |
1509 | // Now add the implicit uses for each of the clobbered values. |
1510 | for (auto Clobber : Clobbers) { |
1511 | // FIXME: Const cast here is nasty, but better than making StepForward |
1512 | // take a mutable instruction instead of const. |
1513 | unsigned Reg = Clobber.first; |
1514 | MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); |
1515 | MachineInstr *OpMI = Op.getParent(); |
1516 | MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); |
1517 | if (Op.isRegMask()) { |
1518 | // First handle regmasks. They clobber any entries in the mask which |
1519 | // means that we need a def for those registers. |
1520 | if (LiveBeforeMI.count(Key: Reg)) |
1521 | MIB.addReg(RegNo: Reg, flags: RegState::Implicit); |
1522 | |
1523 | // We also need to add an implicit def of this register for the later |
1524 | // use to read from. |
1525 | // For the register allocator to have allocated a register clobbered |
1526 | // by the call which is used later, it must be the case that |
1527 | // the call doesn't return. |
1528 | MIB.addReg(RegNo: Reg, flags: RegState::Implicit | RegState::Define); |
1529 | continue; |
1530 | } |
1531 | if (any_of(Range: TRI->subregs_inclusive(Reg), |
1532 | P: [&](MCPhysReg S) { return LiveBeforeMI.count(Key: S); })) |
1533 | MIB.addReg(RegNo: Reg, flags: RegState::Implicit); |
1534 | } |
1535 | } |
1536 | |
1537 | /// If convert a simple (split, no rejoin) sub-CFG. |
1538 | bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { |
1539 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
1540 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
1541 | BBInfo *CvtBBI = &TrueBBI; |
1542 | BBInfo *NextBBI = &FalseBBI; |
1543 | |
1544 | SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1545 | if (Kind == ICSimpleFalse) |
1546 | std::swap(a&: CvtBBI, b&: NextBBI); |
1547 | |
1548 | MachineBasicBlock &CvtMBB = *CvtBBI->BB; |
1549 | MachineBasicBlock &NextMBB = *NextBBI->BB; |
1550 | if (CvtBBI->IsDone || |
1551 | (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { |
1552 | // Something has changed. It's no longer safe to predicate this block. |
1553 | BBI.IsAnalyzed = false; |
1554 | CvtBBI->IsAnalyzed = false; |
1555 | return false; |
1556 | } |
1557 | |
1558 | if (CvtMBB.hasAddressTaken()) |
1559 | // Conservatively abort if-conversion if BB's address is taken. |
1560 | return false; |
1561 | |
1562 | if (Kind == ICSimpleFalse) |
1563 | if (TII->reverseBranchCondition(Cond)) |
1564 | llvm_unreachable("Unable to reverse branch condition!" ); |
1565 | |
1566 | Redefs.init(TRI: *TRI); |
1567 | |
1568 | if (MRI->tracksLiveness()) { |
1569 | // Initialize liveins to the first BB. These are potentially redefined by |
1570 | // predicated instructions. |
1571 | Redefs.addLiveInsNoPristines(MBB: CvtMBB); |
1572 | Redefs.addLiveInsNoPristines(MBB: NextMBB); |
1573 | } |
1574 | |
1575 | // Remove the branches from the entry so we can add the contents of the true |
1576 | // block to it. |
1577 | BBI.NonPredSize -= TII->removeBranch(MBB&: *BBI.BB); |
1578 | |
1579 | if (CvtMBB.pred_size() > 1) { |
1580 | // Copy instructions in the true block, predicate them, and add them to |
1581 | // the entry block. |
1582 | CopyAndPredicateBlock(ToBBI&: BBI, FromBBI&: *CvtBBI, Cond); |
1583 | |
1584 | // Keep the CFG updated. |
1585 | BBI.BB->removeSuccessor(Succ: &CvtMBB, NormalizeSuccProbs: true); |
1586 | } else { |
1587 | // Predicate the instructions in the true block. |
1588 | PredicateBlock(BBI&: *CvtBBI, E: CvtMBB.end(), Cond); |
1589 | |
1590 | // Merge converted block into entry block. The BB to Cvt edge is removed |
1591 | // by MergeBlocks. |
1592 | MergeBlocks(ToBBI&: BBI, FromBBI&: *CvtBBI); |
1593 | } |
1594 | |
1595 | bool IterIfcvt = true; |
1596 | if (!canFallThroughTo(MBB&: *BBI.BB, ToMBB&: NextMBB)) { |
1597 | InsertUncondBranch(MBB&: *BBI.BB, ToMBB&: NextMBB, TII); |
1598 | BBI.HasFallThrough = false; |
1599 | // Now ifcvt'd block will look like this: |
1600 | // BB: |
1601 | // ... |
1602 | // t, f = cmp |
1603 | // if t op |
1604 | // b BBf |
1605 | // |
1606 | // We cannot further ifcvt this block because the unconditional branch |
1607 | // will have to be predicated on the new condition, that will not be |
1608 | // available if cmp executes. |
1609 | IterIfcvt = false; |
1610 | } |
1611 | |
1612 | // Update block info. BB can be iteratively if-converted. |
1613 | if (!IterIfcvt) |
1614 | BBI.IsDone = true; |
1615 | InvalidatePreds(MBB&: *BBI.BB); |
1616 | CvtBBI->IsDone = true; |
1617 | |
1618 | // FIXME: Must maintain LiveIns. |
1619 | return true; |
1620 | } |
1621 | |
1622 | /// If convert a triangle sub-CFG. |
1623 | bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { |
1624 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
1625 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
1626 | BBInfo *CvtBBI = &TrueBBI; |
1627 | BBInfo *NextBBI = &FalseBBI; |
1628 | DebugLoc dl; // FIXME: this is nowhere |
1629 | |
1630 | SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1631 | if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) |
1632 | std::swap(a&: CvtBBI, b&: NextBBI); |
1633 | |
1634 | MachineBasicBlock &CvtMBB = *CvtBBI->BB; |
1635 | MachineBasicBlock &NextMBB = *NextBBI->BB; |
1636 | if (CvtBBI->IsDone || |
1637 | (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { |
1638 | // Something has changed. It's no longer safe to predicate this block. |
1639 | BBI.IsAnalyzed = false; |
1640 | CvtBBI->IsAnalyzed = false; |
1641 | return false; |
1642 | } |
1643 | |
1644 | if (CvtMBB.hasAddressTaken()) |
1645 | // Conservatively abort if-conversion if BB's address is taken. |
1646 | return false; |
1647 | |
1648 | if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) |
1649 | if (TII->reverseBranchCondition(Cond)) |
1650 | llvm_unreachable("Unable to reverse branch condition!" ); |
1651 | |
1652 | if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { |
1653 | if (reverseBranchCondition(BBI&: *CvtBBI)) { |
1654 | // BB has been changed, modify its predecessors (except for this |
1655 | // one) so they don't get ifcvt'ed based on bad intel. |
1656 | for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { |
1657 | if (PBB == BBI.BB) |
1658 | continue; |
1659 | BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; |
1660 | if (PBBI.IsEnqueued) { |
1661 | PBBI.IsAnalyzed = false; |
1662 | PBBI.IsEnqueued = false; |
1663 | } |
1664 | } |
1665 | } |
1666 | } |
1667 | |
1668 | // Initialize liveins to the first BB. These are potentially redefined by |
1669 | // predicated instructions. |
1670 | Redefs.init(TRI: *TRI); |
1671 | if (MRI->tracksLiveness()) { |
1672 | Redefs.addLiveInsNoPristines(MBB: CvtMBB); |
1673 | Redefs.addLiveInsNoPristines(MBB: NextMBB); |
1674 | } |
1675 | |
1676 | bool HasEarlyExit = CvtBBI->FalseBB != nullptr; |
1677 | BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; |
1678 | |
1679 | if (HasEarlyExit) { |
1680 | // Get probabilities before modifying CvtMBB and BBI.BB. |
1681 | CvtNext = MBPI->getEdgeProbability(Src: &CvtMBB, Dst: &NextMBB); |
1682 | CvtFalse = MBPI->getEdgeProbability(Src: &CvtMBB, Dst: CvtBBI->FalseBB); |
1683 | BBNext = MBPI->getEdgeProbability(Src: BBI.BB, Dst: &NextMBB); |
1684 | BBCvt = MBPI->getEdgeProbability(Src: BBI.BB, Dst: &CvtMBB); |
1685 | } |
1686 | |
1687 | // Remove the branches from the entry so we can add the contents of the true |
1688 | // block to it. |
1689 | BBI.NonPredSize -= TII->removeBranch(MBB&: *BBI.BB); |
1690 | |
1691 | if (CvtMBB.pred_size() > 1) { |
1692 | // Copy instructions in the true block, predicate them, and add them to |
1693 | // the entry block. |
1694 | CopyAndPredicateBlock(ToBBI&: BBI, FromBBI&: *CvtBBI, Cond, IgnoreBr: true); |
1695 | } else { |
1696 | // Predicate the 'true' block after removing its branch. |
1697 | CvtBBI->NonPredSize -= TII->removeBranch(MBB&: CvtMBB); |
1698 | PredicateBlock(BBI&: *CvtBBI, E: CvtMBB.end(), Cond); |
1699 | |
1700 | // Now merge the entry of the triangle with the true block. |
1701 | MergeBlocks(ToBBI&: BBI, FromBBI&: *CvtBBI, AddEdges: false); |
1702 | } |
1703 | |
1704 | // Keep the CFG updated. |
1705 | BBI.BB->removeSuccessor(Succ: &CvtMBB, NormalizeSuccProbs: true); |
1706 | |
1707 | // If 'true' block has a 'false' successor, add an exit branch to it. |
1708 | if (HasEarlyExit) { |
1709 | SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), |
1710 | CvtBBI->BrCond.end()); |
1711 | if (TII->reverseBranchCondition(Cond&: RevCond)) |
1712 | llvm_unreachable("Unable to reverse branch condition!" ); |
1713 | |
1714 | // Update the edge probability for both CvtBBI->FalseBB and NextBBI. |
1715 | // NewNext = New_Prob(BBI.BB, NextMBB) = |
1716 | // Prob(BBI.BB, NextMBB) + |
1717 | // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) |
1718 | // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = |
1719 | // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) |
1720 | auto NewTrueBB = getNextBlock(MBB&: *BBI.BB); |
1721 | auto NewNext = BBNext + BBCvt * CvtNext; |
1722 | auto NewTrueBBIter = find(Range: BBI.BB->successors(), Val: NewTrueBB); |
1723 | if (NewTrueBBIter != BBI.BB->succ_end()) |
1724 | BBI.BB->setSuccProbability(I: NewTrueBBIter, Prob: NewNext); |
1725 | |
1726 | auto NewFalse = BBCvt * CvtFalse; |
1727 | TII->insertBranch(MBB&: *BBI.BB, TBB: CvtBBI->FalseBB, FBB: nullptr, Cond: RevCond, DL: dl); |
1728 | BBI.BB->addSuccessor(Succ: CvtBBI->FalseBB, Prob: NewFalse); |
1729 | } |
1730 | |
1731 | // Merge in the 'false' block if the 'false' block has no other |
1732 | // predecessors. Otherwise, add an unconditional branch to 'false'. |
1733 | bool FalseBBDead = false; |
1734 | bool IterIfcvt = true; |
1735 | bool isFallThrough = canFallThroughTo(MBB&: *BBI.BB, ToMBB&: NextMBB); |
1736 | if (!isFallThrough) { |
1737 | // Only merge them if the true block does not fallthrough to the false |
1738 | // block. By not merging them, we make it possible to iteratively |
1739 | // ifcvt the blocks. |
1740 | if (!HasEarlyExit && NextMBB.pred_size() == 1 && |
1741 | blockNeverFallThrough(BBI&: *NextBBI) && !NextMBB.hasAddressTaken()) { |
1742 | MergeBlocks(ToBBI&: BBI, FromBBI&: *NextBBI); |
1743 | FalseBBDead = true; |
1744 | } else { |
1745 | InsertUncondBranch(MBB&: *BBI.BB, ToMBB&: NextMBB, TII); |
1746 | BBI.HasFallThrough = false; |
1747 | } |
1748 | // Mixed predicated and unpredicated code. This cannot be iteratively |
1749 | // predicated. |
1750 | IterIfcvt = false; |
1751 | } |
1752 | |
1753 | // Update block info. BB can be iteratively if-converted. |
1754 | if (!IterIfcvt) |
1755 | BBI.IsDone = true; |
1756 | InvalidatePreds(MBB&: *BBI.BB); |
1757 | CvtBBI->IsDone = true; |
1758 | if (FalseBBDead) |
1759 | NextBBI->IsDone = true; |
1760 | |
1761 | // FIXME: Must maintain LiveIns. |
1762 | return true; |
1763 | } |
1764 | |
1765 | /// Common code shared between diamond conversions. |
1766 | /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. |
1767 | /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI |
1768 | /// and FalseBBI |
1769 | /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI |
1770 | /// and \p FalseBBI |
1771 | /// \p RemoveBranch - Remove the common branch of the two blocks before |
1772 | /// predicating. Only false for unanalyzable fallthrough |
1773 | /// cases. The caller will replace the branch if necessary. |
1774 | /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for |
1775 | /// unanalyzable fallthrough |
1776 | bool IfConverter::IfConvertDiamondCommon( |
1777 | BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, |
1778 | unsigned NumDups1, unsigned NumDups2, |
1779 | bool TClobbersPred, bool FClobbersPred, |
1780 | bool RemoveBranch, bool MergeAddEdges) { |
1781 | |
1782 | if (TrueBBI.IsDone || FalseBBI.IsDone || |
1783 | TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { |
1784 | // Something has changed. It's no longer safe to predicate these blocks. |
1785 | BBI.IsAnalyzed = false; |
1786 | TrueBBI.IsAnalyzed = false; |
1787 | FalseBBI.IsAnalyzed = false; |
1788 | return false; |
1789 | } |
1790 | |
1791 | if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) |
1792 | // Conservatively abort if-conversion if either BB has its address taken. |
1793 | return false; |
1794 | |
1795 | // Put the predicated instructions from the 'true' block before the |
1796 | // instructions from the 'false' block, unless the true block would clobber |
1797 | // the predicate, in which case, do the opposite. |
1798 | BBInfo *BBI1 = &TrueBBI; |
1799 | BBInfo *BBI2 = &FalseBBI; |
1800 | SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1801 | if (TII->reverseBranchCondition(Cond&: RevCond)) |
1802 | llvm_unreachable("Unable to reverse branch condition!" ); |
1803 | SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; |
1804 | SmallVector<MachineOperand, 4> *Cond2 = &RevCond; |
1805 | |
1806 | // Figure out the more profitable ordering. |
1807 | bool DoSwap = false; |
1808 | if (TClobbersPred && !FClobbersPred) |
1809 | DoSwap = true; |
1810 | else if (!TClobbersPred && !FClobbersPred) { |
1811 | if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) |
1812 | DoSwap = true; |
1813 | } else if (TClobbersPred && FClobbersPred) |
1814 | llvm_unreachable("Predicate info cannot be clobbered by both sides." ); |
1815 | if (DoSwap) { |
1816 | std::swap(a&: BBI1, b&: BBI2); |
1817 | std::swap(a&: Cond1, b&: Cond2); |
1818 | } |
1819 | |
1820 | // Remove the conditional branch from entry to the blocks. |
1821 | BBI.NonPredSize -= TII->removeBranch(MBB&: *BBI.BB); |
1822 | |
1823 | MachineBasicBlock &MBB1 = *BBI1->BB; |
1824 | MachineBasicBlock &MBB2 = *BBI2->BB; |
1825 | |
1826 | // Initialize the Redefs: |
1827 | // - BB2 live-in regs need implicit uses before being redefined by BB1 |
1828 | // instructions. |
1829 | // - BB1 live-out regs need implicit uses before being redefined by BB2 |
1830 | // instructions. We start with BB1 live-ins so we have the live-out regs |
1831 | // after tracking the BB1 instructions. |
1832 | Redefs.init(TRI: *TRI); |
1833 | if (MRI->tracksLiveness()) { |
1834 | Redefs.addLiveInsNoPristines(MBB: MBB1); |
1835 | Redefs.addLiveInsNoPristines(MBB: MBB2); |
1836 | } |
1837 | |
1838 | // Remove the duplicated instructions at the beginnings of both paths. |
1839 | // Skip dbg_value instructions. |
1840 | MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(SkipPseudoOp: false); |
1841 | MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(SkipPseudoOp: false); |
1842 | BBI1->NonPredSize -= NumDups1; |
1843 | BBI2->NonPredSize -= NumDups1; |
1844 | |
1845 | // Skip past the dups on each side separately since there may be |
1846 | // differing dbg_value entries. NumDups1 can include a "return" |
1847 | // instruction, if it's not marked as "branch". |
1848 | for (unsigned i = 0; i < NumDups1; ++DI1) { |
1849 | if (DI1 == MBB1.end()) |
1850 | break; |
1851 | if (!DI1->isDebugInstr()) |
1852 | ++i; |
1853 | } |
1854 | while (NumDups1 != 0) { |
1855 | // Since this instruction is going to be deleted, update call |
1856 | // info state if the instruction is call instruction. |
1857 | if (DI2->shouldUpdateAdditionalCallInfo()) |
1858 | MBB2.getParent()->eraseAdditionalCallInfo(MI: &*DI2); |
1859 | |
1860 | ++DI2; |
1861 | if (DI2 == MBB2.end()) |
1862 | break; |
1863 | if (!DI2->isDebugInstr()) |
1864 | --NumDups1; |
1865 | } |
1866 | |
1867 | if (MRI->tracksLiveness()) { |
1868 | for (const MachineInstr &MI : make_range(x: MBB1.begin(), y: DI1)) { |
1869 | SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; |
1870 | Redefs.stepForward(MI, Clobbers&: Dummy); |
1871 | } |
1872 | } |
1873 | |
1874 | BBI.BB->splice(Where: BBI.BB->end(), Other: &MBB1, From: MBB1.begin(), To: DI1); |
1875 | MBB2.erase(I: MBB2.begin(), E: DI2); |
1876 | |
1877 | // The branches have been checked to match, so it is safe to remove the |
1878 | // branch in BB1 and rely on the copy in BB2. The complication is that |
1879 | // the blocks may end with a return instruction, which may or may not |
1880 | // be marked as "branch". If it's not, then it could be included in |
1881 | // "dups1", leaving the blocks potentially empty after moving the common |
1882 | // duplicates. |
1883 | #ifndef NDEBUG |
1884 | // Unanalyzable branches must match exactly. Check that now. |
1885 | if (!BBI1->IsBrAnalyzable) |
1886 | verifySameBranchInstructions(&MBB1, &MBB2); |
1887 | #endif |
1888 | // Remove duplicated instructions from the tail of MBB1: any branch |
1889 | // instructions, and the common instructions counted by NumDups2. |
1890 | DI1 = MBB1.end(); |
1891 | while (DI1 != MBB1.begin()) { |
1892 | MachineBasicBlock::iterator Prev = std::prev(x: DI1); |
1893 | if (!Prev->isBranch() && !Prev->isDebugInstr()) |
1894 | break; |
1895 | DI1 = Prev; |
1896 | } |
1897 | for (unsigned i = 0; i != NumDups2; ) { |
1898 | // NumDups2 only counted non-dbg_value instructions, so this won't |
1899 | // run off the head of the list. |
1900 | assert(DI1 != MBB1.begin()); |
1901 | |
1902 | --DI1; |
1903 | |
1904 | // Since this instruction is going to be deleted, update call |
1905 | // info state if the instruction is call instruction. |
1906 | if (DI1->shouldUpdateAdditionalCallInfo()) |
1907 | MBB1.getParent()->eraseAdditionalCallInfo(MI: &*DI1); |
1908 | |
1909 | // skip dbg_value instructions |
1910 | if (!DI1->isDebugInstr()) |
1911 | ++i; |
1912 | } |
1913 | MBB1.erase(I: DI1, E: MBB1.end()); |
1914 | |
1915 | DI2 = BBI2->BB->end(); |
1916 | // The branches have been checked to match. Skip over the branch in the false |
1917 | // block so that we don't try to predicate it. |
1918 | if (RemoveBranch) |
1919 | BBI2->NonPredSize -= TII->removeBranch(MBB&: *BBI2->BB); |
1920 | else { |
1921 | // Make DI2 point to the end of the range where the common "tail" |
1922 | // instructions could be found. |
1923 | while (DI2 != MBB2.begin()) { |
1924 | MachineBasicBlock::iterator Prev = std::prev(x: DI2); |
1925 | if (!Prev->isBranch() && !Prev->isDebugInstr()) |
1926 | break; |
1927 | DI2 = Prev; |
1928 | } |
1929 | } |
1930 | while (NumDups2 != 0) { |
1931 | // NumDups2 only counted non-dbg_value instructions, so this won't |
1932 | // run off the head of the list. |
1933 | assert(DI2 != MBB2.begin()); |
1934 | --DI2; |
1935 | // skip dbg_value instructions |
1936 | if (!DI2->isDebugInstr()) |
1937 | --NumDups2; |
1938 | } |
1939 | |
1940 | // Remember which registers would later be defined by the false block. |
1941 | // This allows us not to predicate instructions in the true block that would |
1942 | // later be re-defined. That is, rather than |
1943 | // subeq r0, r1, #1 |
1944 | // addne r0, r1, #1 |
1945 | // generate: |
1946 | // sub r0, r1, #1 |
1947 | // addne r0, r1, #1 |
1948 | SmallSet<MCRegister, 4> RedefsByFalse; |
1949 | SmallSet<MCRegister, 4> ExtUses; |
1950 | if (TII->isProfitableToUnpredicate(TMBB&: MBB1, FMBB&: MBB2)) { |
1951 | for (const MachineInstr &FI : make_range(x: MBB2.begin(), y: DI2)) { |
1952 | if (FI.isDebugInstr()) |
1953 | continue; |
1954 | SmallVector<MCRegister, 4> Defs; |
1955 | for (const MachineOperand &MO : FI.operands()) { |
1956 | if (!MO.isReg()) |
1957 | continue; |
1958 | Register Reg = MO.getReg(); |
1959 | if (!Reg) |
1960 | continue; |
1961 | if (MO.isDef()) { |
1962 | Defs.push_back(Elt: Reg); |
1963 | } else if (!RedefsByFalse.count(V: Reg)) { |
1964 | // These are defined before ctrl flow reach the 'false' instructions. |
1965 | // They cannot be modified by the 'true' instructions. |
1966 | ExtUses.insert_range(R: TRI->subregs_inclusive(Reg)); |
1967 | } |
1968 | } |
1969 | |
1970 | for (MCRegister Reg : Defs) { |
1971 | if (!ExtUses.contains(V: Reg)) |
1972 | RedefsByFalse.insert_range(R: TRI->subregs_inclusive(Reg)); |
1973 | } |
1974 | } |
1975 | } |
1976 | |
1977 | // Predicate the 'true' block. |
1978 | PredicateBlock(BBI&: *BBI1, E: MBB1.end(), Cond&: *Cond1, LaterRedefs: &RedefsByFalse); |
1979 | |
1980 | // After predicating BBI1, if there is a predicated terminator in BBI1 and |
1981 | // a non-predicated in BBI2, then we don't want to predicate the one from |
1982 | // BBI2. The reason is that if we merged these blocks, we would end up with |
1983 | // two predicated terminators in the same block. |
1984 | // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't |
1985 | // predicate them either. They were checked to be identical, and so the |
1986 | // same branch would happen regardless of which path was taken. |
1987 | if (!MBB2.empty() && (DI2 == MBB2.end())) { |
1988 | MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); |
1989 | MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); |
1990 | bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(MI: *BBI1T); |
1991 | bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(MI: *BBI2T); |
1992 | if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) |
1993 | --DI2; |
1994 | } |
1995 | |
1996 | // Predicate the 'false' block. |
1997 | PredicateBlock(BBI&: *BBI2, E: DI2, Cond&: *Cond2); |
1998 | |
1999 | // Merge the true block into the entry of the diamond. |
2000 | MergeBlocks(ToBBI&: BBI, FromBBI&: *BBI1, AddEdges: MergeAddEdges); |
2001 | MergeBlocks(ToBBI&: BBI, FromBBI&: *BBI2, AddEdges: MergeAddEdges); |
2002 | return true; |
2003 | } |
2004 | |
2005 | /// If convert an almost-diamond sub-CFG where the true |
2006 | /// and false blocks share a common tail. |
2007 | bool IfConverter::IfConvertForkedDiamond( |
2008 | BBInfo &BBI, IfcvtKind Kind, |
2009 | unsigned NumDups1, unsigned NumDups2, |
2010 | bool TClobbersPred, bool FClobbersPred) { |
2011 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
2012 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
2013 | |
2014 | // Save the debug location for later. |
2015 | DebugLoc dl; |
2016 | MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); |
2017 | if (TIE != TrueBBI.BB->end()) |
2018 | dl = TIE->getDebugLoc(); |
2019 | // Removing branches from both blocks is safe, because we have already |
2020 | // determined that both blocks have the same branch instructions. The branch |
2021 | // will be added back at the end, unpredicated. |
2022 | if (!IfConvertDiamondCommon( |
2023 | BBI, TrueBBI, FalseBBI, |
2024 | NumDups1, NumDups2, |
2025 | TClobbersPred, FClobbersPred, |
2026 | /* RemoveBranch */ true, /* MergeAddEdges */ true)) |
2027 | return false; |
2028 | |
2029 | // Add back the branch. |
2030 | // Debug location saved above when removing the branch from BBI2 |
2031 | TII->insertBranch(MBB&: *BBI.BB, TBB: TrueBBI.TrueBB, FBB: TrueBBI.FalseBB, |
2032 | Cond: TrueBBI.BrCond, DL: dl); |
2033 | |
2034 | // Update block info. |
2035 | BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; |
2036 | InvalidatePreds(MBB&: *BBI.BB); |
2037 | |
2038 | // FIXME: Must maintain LiveIns. |
2039 | return true; |
2040 | } |
2041 | |
2042 | /// If convert a diamond sub-CFG. |
2043 | bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, |
2044 | unsigned NumDups1, unsigned NumDups2, |
2045 | bool TClobbersPred, bool FClobbersPred) { |
2046 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
2047 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
2048 | MachineBasicBlock *TailBB = TrueBBI.TrueBB; |
2049 | |
2050 | // True block must fall through or end with an unanalyzable terminator. |
2051 | if (!TailBB) { |
2052 | if (blockAlwaysFallThrough(BBI&: TrueBBI)) |
2053 | TailBB = FalseBBI.TrueBB; |
2054 | assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!" ); |
2055 | } |
2056 | |
2057 | if (!IfConvertDiamondCommon( |
2058 | BBI, TrueBBI, FalseBBI, |
2059 | NumDups1, NumDups2, |
2060 | TClobbersPred, FClobbersPred, |
2061 | /* RemoveBranch */ TrueBBI.IsBrAnalyzable, |
2062 | /* MergeAddEdges */ TailBB == nullptr)) |
2063 | return false; |
2064 | |
2065 | // If the if-converted block falls through or unconditionally branches into |
2066 | // the tail block, and the tail block does not have other predecessors, then |
2067 | // fold the tail block in as well. Otherwise, unless it falls through to the |
2068 | // tail, add a unconditional branch to it. |
2069 | if (TailBB) { |
2070 | // We need to remove the edges to the true and false blocks manually since |
2071 | // we didn't let IfConvertDiamondCommon update the CFG. |
2072 | BBI.BB->removeSuccessor(Succ: TrueBBI.BB); |
2073 | BBI.BB->removeSuccessor(Succ: FalseBBI.BB, NormalizeSuccProbs: true); |
2074 | |
2075 | BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; |
2076 | bool CanMergeTail = |
2077 | blockNeverFallThrough(BBI&: TailBBI) && !TailBBI.BB->hasAddressTaken(); |
2078 | // The if-converted block can still have a predicated terminator |
2079 | // (e.g. a predicated return). If that is the case, we cannot merge |
2080 | // it with the tail block. |
2081 | MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); |
2082 | if (TI != BBI.BB->end() && TII->isPredicated(MI: *TI)) |
2083 | CanMergeTail = false; |
2084 | // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; |
2085 | // check if there are any other predecessors besides those. |
2086 | unsigned NumPreds = TailBB->pred_size(); |
2087 | if (NumPreds > 1) |
2088 | CanMergeTail = false; |
2089 | else if (NumPreds == 1 && CanMergeTail) { |
2090 | MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); |
2091 | if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) |
2092 | CanMergeTail = false; |
2093 | } |
2094 | if (CanMergeTail) { |
2095 | MergeBlocks(ToBBI&: BBI, FromBBI&: TailBBI); |
2096 | TailBBI.IsDone = true; |
2097 | } else { |
2098 | BBI.BB->addSuccessor(Succ: TailBB, Prob: BranchProbability::getOne()); |
2099 | InsertUncondBranch(MBB&: *BBI.BB, ToMBB&: *TailBB, TII); |
2100 | BBI.HasFallThrough = false; |
2101 | } |
2102 | } |
2103 | |
2104 | // Update block info. |
2105 | BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; |
2106 | InvalidatePreds(MBB&: *BBI.BB); |
2107 | |
2108 | // FIXME: Must maintain LiveIns. |
2109 | return true; |
2110 | } |
2111 | |
2112 | static bool MaySpeculate(const MachineInstr &MI, |
2113 | SmallSet<MCRegister, 4> &LaterRedefs) { |
2114 | bool SawStore = true; |
2115 | if (!MI.isSafeToMove(SawStore)) |
2116 | return false; |
2117 | |
2118 | for (const MachineOperand &MO : MI.operands()) { |
2119 | if (!MO.isReg()) |
2120 | continue; |
2121 | Register Reg = MO.getReg(); |
2122 | if (!Reg) |
2123 | continue; |
2124 | if (MO.isDef() && !LaterRedefs.count(V: Reg)) |
2125 | return false; |
2126 | } |
2127 | |
2128 | return true; |
2129 | } |
2130 | |
2131 | /// Predicate instructions from the start of the block to the specified end with |
2132 | /// the specified condition. |
2133 | void IfConverter::PredicateBlock(BBInfo &BBI, MachineBasicBlock::iterator E, |
2134 | SmallVectorImpl<MachineOperand> &Cond, |
2135 | SmallSet<MCRegister, 4> *LaterRedefs) { |
2136 | bool AnyUnpred = false; |
2137 | bool MaySpec = LaterRedefs != nullptr; |
2138 | for (MachineInstr &I : make_range(x: BBI.BB->begin(), y: E)) { |
2139 | if (I.isDebugInstr() || TII->isPredicated(MI: I)) |
2140 | continue; |
2141 | // It may be possible not to predicate an instruction if it's the 'true' |
2142 | // side of a diamond and the 'false' side may re-define the instruction's |
2143 | // defs. |
2144 | if (MaySpec && MaySpeculate(MI: I, LaterRedefs&: *LaterRedefs)) { |
2145 | AnyUnpred = true; |
2146 | continue; |
2147 | } |
2148 | // If any instruction is predicated, then every instruction after it must |
2149 | // be predicated. |
2150 | MaySpec = false; |
2151 | if (!TII->PredicateInstruction(MI&: I, Pred: Cond)) { |
2152 | #ifndef NDEBUG |
2153 | dbgs() << "Unable to predicate " << I << "!\n" ; |
2154 | #endif |
2155 | llvm_unreachable(nullptr); |
2156 | } |
2157 | |
2158 | // If the predicated instruction now redefines a register as the result of |
2159 | // if-conversion, add an implicit kill. |
2160 | UpdatePredRedefs(MI&: I, Redefs); |
2161 | } |
2162 | |
2163 | BBI.Predicate.append(in_start: Cond.begin(), in_end: Cond.end()); |
2164 | |
2165 | BBI.IsAnalyzed = false; |
2166 | BBI.NonPredSize = 0; |
2167 | |
2168 | ++NumIfConvBBs; |
2169 | if (AnyUnpred) |
2170 | ++NumUnpred; |
2171 | } |
2172 | |
2173 | /// Copy and predicate instructions from source BB to the destination block. |
2174 | /// Skip end of block branches if IgnoreBr is true. |
2175 | void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, |
2176 | SmallVectorImpl<MachineOperand> &Cond, |
2177 | bool IgnoreBr) { |
2178 | MachineFunction &MF = *ToBBI.BB->getParent(); |
2179 | |
2180 | MachineBasicBlock &FromMBB = *FromBBI.BB; |
2181 | for (MachineInstr &I : FromMBB) { |
2182 | // Do not copy the end of the block branches. |
2183 | if (IgnoreBr && I.isBranch()) |
2184 | break; |
2185 | |
2186 | MachineInstr *MI = MF.CloneMachineInstr(Orig: &I); |
2187 | // Make a copy of the call info. |
2188 | if (I.isCandidateForAdditionalCallInfo()) |
2189 | MF.copyAdditionalCallInfo(Old: &I, New: MI); |
2190 | |
2191 | ToBBI.BB->insert(I: ToBBI.BB->end(), MI); |
2192 | ToBBI.NonPredSize++; |
2193 | unsigned = TII->getPredicationCost(MI: I); |
2194 | unsigned NumCycles = SchedModel.computeInstrLatency(MI: &I, UseDefaultDefLatency: false); |
2195 | if (NumCycles > 1) |
2196 | ToBBI.ExtraCost += NumCycles-1; |
2197 | ToBBI.ExtraCost2 += ExtraPredCost; |
2198 | |
2199 | if (!TII->isPredicated(MI: I) && !MI->isDebugInstr()) { |
2200 | if (!TII->PredicateInstruction(MI&: *MI, Pred: Cond)) { |
2201 | #ifndef NDEBUG |
2202 | dbgs() << "Unable to predicate " << I << "!\n" ; |
2203 | #endif |
2204 | llvm_unreachable(nullptr); |
2205 | } |
2206 | } |
2207 | |
2208 | // If the predicated instruction now redefines a register as the result of |
2209 | // if-conversion, add an implicit kill. |
2210 | UpdatePredRedefs(MI&: *MI, Redefs); |
2211 | } |
2212 | |
2213 | if (!IgnoreBr) { |
2214 | std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), |
2215 | FromMBB.succ_end()); |
2216 | MachineBasicBlock *NBB = getNextBlock(MBB&: FromMBB); |
2217 | MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; |
2218 | |
2219 | for (MachineBasicBlock *Succ : Succs) { |
2220 | // Fallthrough edge can't be transferred. |
2221 | if (Succ == FallThrough) |
2222 | continue; |
2223 | ToBBI.BB->addSuccessor(Succ); |
2224 | } |
2225 | } |
2226 | |
2227 | ToBBI.Predicate.append(in_start: FromBBI.Predicate.begin(), in_end: FromBBI.Predicate.end()); |
2228 | ToBBI.Predicate.append(in_start: Cond.begin(), in_end: Cond.end()); |
2229 | |
2230 | ToBBI.ClobbersPred |= FromBBI.ClobbersPred; |
2231 | ToBBI.IsAnalyzed = false; |
2232 | |
2233 | ++NumDupBBs; |
2234 | } |
2235 | |
2236 | /// Move all instructions from FromBB to the end of ToBB. This will leave |
2237 | /// FromBB as an empty block, so remove all of its successor edges and move it |
2238 | /// to the end of the function. If AddEdges is true, i.e., when FromBBI's |
2239 | /// branch is being moved, add those successor edges to ToBBI and remove the old |
2240 | /// edge from ToBBI to FromBBI. |
2241 | void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { |
2242 | MachineBasicBlock &FromMBB = *FromBBI.BB; |
2243 | assert(!FromMBB.hasAddressTaken() && |
2244 | "Removing a BB whose address is taken!" ); |
2245 | |
2246 | // If we're about to splice an INLINEASM_BR from FromBBI, we need to update |
2247 | // ToBBI's successor list accordingly. |
2248 | if (FromMBB.mayHaveInlineAsmBr()) |
2249 | for (MachineInstr &MI : FromMBB) |
2250 | if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) |
2251 | for (MachineOperand &MO : MI.operands()) |
2252 | if (MO.isMBB() && !ToBBI.BB->isSuccessor(MBB: MO.getMBB())) |
2253 | ToBBI.BB->addSuccessor(Succ: MO.getMBB(), Prob: BranchProbability::getZero()); |
2254 | |
2255 | // In case FromMBB contains terminators (e.g. return instruction), |
2256 | // first move the non-terminator instructions, then the terminators. |
2257 | MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); |
2258 | MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); |
2259 | ToBBI.BB->splice(Where: ToTI, Other: &FromMBB, From: FromMBB.begin(), To: FromTI); |
2260 | |
2261 | // If FromBB has non-predicated terminator we should copy it at the end. |
2262 | if (FromTI != FromMBB.end() && !TII->isPredicated(MI: *FromTI)) |
2263 | ToTI = ToBBI.BB->end(); |
2264 | ToBBI.BB->splice(Where: ToTI, Other: &FromMBB, From: FromTI, To: FromMBB.end()); |
2265 | |
2266 | // Force normalizing the successors' probabilities of ToBBI.BB to convert all |
2267 | // unknown probabilities into known ones. |
2268 | // FIXME: This usage is too tricky and in the future we would like to |
2269 | // eliminate all unknown probabilities in MBB. |
2270 | if (ToBBI.IsBrAnalyzable) |
2271 | ToBBI.BB->normalizeSuccProbs(); |
2272 | |
2273 | SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors()); |
2274 | MachineBasicBlock *NBB = getNextBlock(MBB&: FromMBB); |
2275 | MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; |
2276 | // The edge probability from ToBBI.BB to FromMBB, which is only needed when |
2277 | // AddEdges is true and FromMBB is a successor of ToBBI.BB. |
2278 | auto To2FromProb = BranchProbability::getZero(); |
2279 | if (AddEdges && ToBBI.BB->isSuccessor(MBB: &FromMBB)) { |
2280 | // Remove the old edge but remember the edge probability so we can calculate |
2281 | // the correct weights on the new edges being added further down. |
2282 | To2FromProb = MBPI->getEdgeProbability(Src: ToBBI.BB, Dst: &FromMBB); |
2283 | ToBBI.BB->removeSuccessor(Succ: &FromMBB); |
2284 | } |
2285 | |
2286 | for (MachineBasicBlock *Succ : FromSuccs) { |
2287 | // Fallthrough edge can't be transferred. |
2288 | if (Succ == FallThrough) { |
2289 | FromMBB.removeSuccessor(Succ); |
2290 | continue; |
2291 | } |
2292 | |
2293 | auto NewProb = BranchProbability::getZero(); |
2294 | if (AddEdges) { |
2295 | // Calculate the edge probability for the edge from ToBBI.BB to Succ, |
2296 | // which is a portion of the edge probability from FromMBB to Succ. The |
2297 | // portion ratio is the edge probability from ToBBI.BB to FromMBB (if |
2298 | // FromBBI is a successor of ToBBI.BB. See comment below for exception). |
2299 | NewProb = MBPI->getEdgeProbability(Src: &FromMBB, Dst: Succ); |
2300 | |
2301 | // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This |
2302 | // only happens when if-converting a diamond CFG and FromMBB is the |
2303 | // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we |
2304 | // could just use the probabilities on FromMBB's out-edges when adding |
2305 | // new successors. |
2306 | if (!To2FromProb.isZero()) |
2307 | NewProb *= To2FromProb; |
2308 | } |
2309 | |
2310 | FromMBB.removeSuccessor(Succ); |
2311 | |
2312 | if (AddEdges) { |
2313 | // If the edge from ToBBI.BB to Succ already exists, update the |
2314 | // probability of this edge by adding NewProb to it. An example is shown |
2315 | // below, in which A is ToBBI.BB and B is FromMBB. In this case we |
2316 | // don't have to set C as A's successor as it already is. We only need to |
2317 | // update the edge probability on A->C. Note that B will not be |
2318 | // immediately removed from A's successors. It is possible that B->D is |
2319 | // not removed either if D is a fallthrough of B. Later the edge A->D |
2320 | // (generated here) and B->D will be combined into one edge. To maintain |
2321 | // correct edge probability of this combined edge, we need to set the edge |
2322 | // probability of A->B to zero, which is already done above. The edge |
2323 | // probability on A->D is calculated by scaling the original probability |
2324 | // on A->B by the probability of B->D. |
2325 | // |
2326 | // Before ifcvt: After ifcvt (assume B->D is kept): |
2327 | // |
2328 | // A A |
2329 | // /| /|\ |
2330 | // / B / B| |
2331 | // | /| | || |
2332 | // |/ | | |/ |
2333 | // C D C D |
2334 | // |
2335 | if (ToBBI.BB->isSuccessor(MBB: Succ)) |
2336 | ToBBI.BB->setSuccProbability( |
2337 | I: find(Range: ToBBI.BB->successors(), Val: Succ), |
2338 | Prob: MBPI->getEdgeProbability(Src: ToBBI.BB, Dst: Succ) + NewProb); |
2339 | else |
2340 | ToBBI.BB->addSuccessor(Succ, Prob: NewProb); |
2341 | } |
2342 | } |
2343 | |
2344 | // Move the now empty FromMBB out of the way to the end of the function so |
2345 | // it doesn't interfere with fallthrough checks done by canFallThroughTo(). |
2346 | MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); |
2347 | if (Last != &FromMBB) |
2348 | FromMBB.moveAfter(NewBefore: Last); |
2349 | |
2350 | // Normalize the probabilities of ToBBI.BB's successors with all adjustment |
2351 | // we've done above. |
2352 | if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) |
2353 | ToBBI.BB->normalizeSuccProbs(); |
2354 | |
2355 | ToBBI.Predicate.append(in_start: FromBBI.Predicate.begin(), in_end: FromBBI.Predicate.end()); |
2356 | FromBBI.Predicate.clear(); |
2357 | |
2358 | ToBBI.NonPredSize += FromBBI.NonPredSize; |
2359 | ToBBI.ExtraCost += FromBBI.ExtraCost; |
2360 | ToBBI.ExtraCost2 += FromBBI.ExtraCost2; |
2361 | FromBBI.NonPredSize = 0; |
2362 | FromBBI.ExtraCost = 0; |
2363 | FromBBI.ExtraCost2 = 0; |
2364 | |
2365 | ToBBI.ClobbersPred |= FromBBI.ClobbersPred; |
2366 | ToBBI.HasFallThrough = FromBBI.HasFallThrough; |
2367 | ToBBI.IsAnalyzed = false; |
2368 | FromBBI.IsAnalyzed = false; |
2369 | } |
2370 | |
2371 | FunctionPass * |
2372 | llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { |
2373 | return new IfConverter(std::move(Ftor)); |
2374 | } |
2375 | |