| 1 | //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file InstrRefBasedImpl.cpp |
| 9 | /// |
| 10 | /// This is a separate implementation of LiveDebugValues, see |
| 11 | /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. |
| 12 | /// |
| 13 | /// This pass propagates variable locations between basic blocks, resolving |
| 14 | /// control flow conflicts between them. The problem is SSA construction, where |
| 15 | /// each debug instruction assigns the *value* that a variable has, and every |
| 16 | /// instruction where the variable is in scope uses that variable. The resulting |
| 17 | /// map of instruction-to-value is then translated into a register (or spill) |
| 18 | /// location for each variable over each instruction. |
| 19 | /// |
| 20 | /// The primary difference from normal SSA construction is that we cannot |
| 21 | /// _create_ PHI values that contain variable values. CodeGen has already |
| 22 | /// completed, and we can't alter it just to make debug-info complete. Thus: |
| 23 | /// we can identify function positions where we would like a PHI value for a |
| 24 | /// variable, but must search the MachineFunction to see whether such a PHI is |
| 25 | /// available. If no such PHI exists, the variable location must be dropped. |
| 26 | /// |
| 27 | /// To achieve this, we perform two kinds of analysis. First, we identify |
| 28 | /// every value defined by every instruction (ignoring those that only move |
| 29 | /// another value), then re-compute an SSA-form representation of the |
| 30 | /// MachineFunction, using value propagation to eliminate any un-necessary |
| 31 | /// PHI values. This gives us a map of every value computed in the function, |
| 32 | /// and its location within the register file / stack. |
| 33 | /// |
| 34 | /// Secondly, for each variable we perform the same analysis, where each debug |
| 35 | /// instruction is considered a def, and every instruction where the variable |
| 36 | /// is in lexical scope as a use. Value propagation is used again to eliminate |
| 37 | /// any un-necessary PHIs. This gives us a map of each variable to the value |
| 38 | /// it should have in a block. |
| 39 | /// |
| 40 | /// Once both are complete, we have two maps for each block: |
| 41 | /// * Variables to the values they should have, |
| 42 | /// * Values to the register / spill slot they are located in. |
| 43 | /// After which we can marry-up variable values with a location, and emit |
| 44 | /// DBG_VALUE instructions specifying those locations. Variable locations may |
| 45 | /// be dropped in this process due to the desired variable value not being |
| 46 | /// resident in any machine location, or because there is no PHI value in any |
| 47 | /// location that accurately represents the desired value. The building of |
| 48 | /// location lists for each block is left to DbgEntityHistoryCalculator. |
| 49 | /// |
| 50 | /// This pass is kept efficient because the size of the first SSA problem |
| 51 | /// is proportional to the working-set size of the function, which the compiler |
| 52 | /// tries to keep small. (It's also proportional to the number of blocks). |
| 53 | /// Additionally, we repeatedly perform the second SSA problem analysis with |
| 54 | /// only the variables and blocks in a single lexical scope, exploiting their |
| 55 | /// locality. |
| 56 | /// |
| 57 | /// ### Terminology |
| 58 | /// |
| 59 | /// A machine location is a register or spill slot, a value is something that's |
| 60 | /// defined by an instruction or PHI node, while a variable value is the value |
| 61 | /// assigned to a variable. A variable location is a machine location, that must |
| 62 | /// contain the appropriate variable value. A value that is a PHI node is |
| 63 | /// occasionally called an mphi. |
| 64 | /// |
| 65 | /// The first SSA problem is the "machine value location" problem, |
| 66 | /// because we're determining which machine locations contain which values. |
| 67 | /// The "locations" are constant: what's unknown is what value they contain. |
| 68 | /// |
| 69 | /// The second SSA problem (the one for variables) is the "variable value |
| 70 | /// problem", because it's determining what values a variable has, rather than |
| 71 | /// what location those values are placed in. |
| 72 | /// |
| 73 | /// TODO: |
| 74 | /// Overlapping fragments |
| 75 | /// Entry values |
| 76 | /// Add back DEBUG statements for debugging this |
| 77 | /// Collect statistics |
| 78 | /// |
| 79 | //===----------------------------------------------------------------------===// |
| 80 | |
| 81 | #include "llvm/ADT/DenseMap.h" |
| 82 | #include "llvm/ADT/PostOrderIterator.h" |
| 83 | #include "llvm/ADT/STLExtras.h" |
| 84 | #include "llvm/ADT/SmallPtrSet.h" |
| 85 | #include "llvm/ADT/SmallSet.h" |
| 86 | #include "llvm/ADT/SmallVector.h" |
| 87 | #include "llvm/BinaryFormat/Dwarf.h" |
| 88 | #include "llvm/CodeGen/LexicalScopes.h" |
| 89 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 90 | #include "llvm/CodeGen/MachineDominators.h" |
| 91 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 92 | #include "llvm/CodeGen/MachineFunction.h" |
| 93 | #include "llvm/CodeGen/MachineInstr.h" |
| 94 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 95 | #include "llvm/CodeGen/MachineInstrBundle.h" |
| 96 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 97 | #include "llvm/CodeGen/MachineOperand.h" |
| 98 | #include "llvm/CodeGen/PseudoSourceValue.h" |
| 99 | #include "llvm/CodeGen/TargetFrameLowering.h" |
| 100 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 101 | #include "llvm/CodeGen/TargetLowering.h" |
| 102 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 103 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 104 | #include "llvm/Config/llvm-config.h" |
| 105 | #include "llvm/IR/DebugInfoMetadata.h" |
| 106 | #include "llvm/IR/DebugLoc.h" |
| 107 | #include "llvm/IR/Function.h" |
| 108 | #include "llvm/MC/MCRegisterInfo.h" |
| 109 | #include "llvm/Support/Casting.h" |
| 110 | #include "llvm/Support/Compiler.h" |
| 111 | #include "llvm/Support/Debug.h" |
| 112 | #include "llvm/Support/GenericIteratedDominanceFrontier.h" |
| 113 | #include "llvm/Support/TypeSize.h" |
| 114 | #include "llvm/Support/raw_ostream.h" |
| 115 | #include "llvm/Target/TargetMachine.h" |
| 116 | #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" |
| 117 | #include <algorithm> |
| 118 | #include <cassert> |
| 119 | #include <climits> |
| 120 | #include <cstdint> |
| 121 | #include <functional> |
| 122 | #include <queue> |
| 123 | #include <tuple> |
| 124 | #include <utility> |
| 125 | #include <vector> |
| 126 | |
| 127 | #include "InstrRefBasedImpl.h" |
| 128 | #include "LiveDebugValues.h" |
| 129 | #include <optional> |
| 130 | |
| 131 | using namespace llvm; |
| 132 | using namespace LiveDebugValues; |
| 133 | |
| 134 | // SSAUpdaterImple sets DEBUG_TYPE, change it. |
| 135 | #undef DEBUG_TYPE |
| 136 | #define DEBUG_TYPE "livedebugvalues" |
| 137 | |
| 138 | // Act more like the VarLoc implementation, by propagating some locations too |
| 139 | // far and ignoring some transfers. |
| 140 | static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues" , cl::Hidden, |
| 141 | cl::desc("Act like old LiveDebugValues did" ), |
| 142 | cl::init(Val: false)); |
| 143 | |
| 144 | // Limit for the maximum number of stack slots we should track, past which we |
| 145 | // will ignore any spills. InstrRefBasedLDV gathers detailed information on all |
| 146 | // stack slots which leads to high memory consumption, and in some scenarios |
| 147 | // (such as asan with very many locals) the working set of the function can be |
| 148 | // very large, causing many spills. In these scenarios, it is very unlikely that |
| 149 | // the developer has hundreds of variables live at the same time that they're |
| 150 | // carefully thinking about -- instead, they probably autogenerated the code. |
| 151 | // When this happens, gracefully stop tracking excess spill slots, rather than |
| 152 | // consuming all the developer's memory. |
| 153 | static cl::opt<unsigned> |
| 154 | StackWorkingSetLimit("livedebugvalues-max-stack-slots" , cl::Hidden, |
| 155 | cl::desc("livedebugvalues-stack-ws-limit" ), |
| 156 | cl::init(Val: 250)); |
| 157 | |
| 158 | DbgOpID DbgOpID::UndefID = DbgOpID(0xffffffff); |
| 159 | |
| 160 | /// Tracker for converting machine value locations and variable values into |
| 161 | /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs |
| 162 | /// specifying block live-in locations and transfers within blocks. |
| 163 | /// |
| 164 | /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker |
| 165 | /// and must be initialized with the set of variable values that are live-in to |
| 166 | /// the block. The caller then repeatedly calls process(). TransferTracker picks |
| 167 | /// out variable locations for the live-in variable values (if there _is_ a |
| 168 | /// location) and creates the corresponding DBG_VALUEs. Then, as the block is |
| 169 | /// stepped through, transfers of values between machine locations are |
| 170 | /// identified and if profitable, a DBG_VALUE created. |
| 171 | /// |
| 172 | /// This is where debug use-before-defs would be resolved: a variable with an |
| 173 | /// unavailable value could materialize in the middle of a block, when the |
| 174 | /// value becomes available. Or, we could detect clobbers and re-specify the |
| 175 | /// variable in a backup location. (XXX these are unimplemented). |
| 176 | class TransferTracker { |
| 177 | public: |
| 178 | const TargetInstrInfo *TII; |
| 179 | const TargetLowering *TLI; |
| 180 | /// This machine location tracker is assumed to always contain the up-to-date |
| 181 | /// value mapping for all machine locations. TransferTracker only reads |
| 182 | /// information from it. (XXX make it const?) |
| 183 | MLocTracker *MTracker; |
| 184 | MachineFunction &MF; |
| 185 | const DebugVariableMap &DVMap; |
| 186 | bool ShouldEmitDebugEntryValues; |
| 187 | |
| 188 | /// Record of all changes in variable locations at a block position. Awkwardly |
| 189 | /// we allow inserting either before or after the point: MBB != nullptr |
| 190 | /// indicates it's before, otherwise after. |
| 191 | struct Transfer { |
| 192 | MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes |
| 193 | MachineBasicBlock *MBB; /// non-null if we should insert after. |
| 194 | /// Vector of DBG_VALUEs to insert. Store with their DebugVariableID so that |
| 195 | /// they can be sorted into a stable order for emission at a later time. |
| 196 | SmallVector<std::pair<DebugVariableID, MachineInstr *>, 4> Insts; |
| 197 | }; |
| 198 | |
| 199 | /// Stores the resolved operands (machine locations and constants) and |
| 200 | /// qualifying meta-information needed to construct a concrete DBG_VALUE-like |
| 201 | /// instruction. |
| 202 | struct ResolvedDbgValue { |
| 203 | SmallVector<ResolvedDbgOp> Ops; |
| 204 | DbgValueProperties Properties; |
| 205 | |
| 206 | ResolvedDbgValue(SmallVectorImpl<ResolvedDbgOp> &Ops, |
| 207 | DbgValueProperties Properties) |
| 208 | : Ops(Ops.begin(), Ops.end()), Properties(Properties) {} |
| 209 | |
| 210 | /// Returns all the LocIdx values used in this struct, in the order in which |
| 211 | /// they appear as operands in the debug value; may contain duplicates. |
| 212 | auto loc_indices() const { |
| 213 | return map_range( |
| 214 | C: make_filter_range( |
| 215 | Range: Ops, Pred: [](const ResolvedDbgOp &Op) { return !Op.IsConst; }), |
| 216 | F: [](const ResolvedDbgOp &Op) { return Op.Loc; }); |
| 217 | } |
| 218 | }; |
| 219 | |
| 220 | /// Collection of transfers (DBG_VALUEs) to be inserted. |
| 221 | SmallVector<Transfer, 32> Transfers; |
| 222 | |
| 223 | /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences |
| 224 | /// between TransferTrackers view of variable locations and MLocTrackers. For |
| 225 | /// example, MLocTracker observes all clobbers, but TransferTracker lazily |
| 226 | /// does not. |
| 227 | SmallVector<ValueIDNum, 32> VarLocs; |
| 228 | |
| 229 | /// Map from LocIdxes to which DebugVariables are based that location. |
| 230 | /// Mantained while stepping through the block. Not accurate if |
| 231 | /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. |
| 232 | DenseMap<LocIdx, SmallSet<DebugVariableID, 4>> ActiveMLocs; |
| 233 | |
| 234 | /// Map from DebugVariable to it's current location and qualifying meta |
| 235 | /// information. To be used in conjunction with ActiveMLocs to construct |
| 236 | /// enough information for the DBG_VALUEs for a particular LocIdx. |
| 237 | DenseMap<DebugVariableID, ResolvedDbgValue> ActiveVLocs; |
| 238 | |
| 239 | /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. |
| 240 | SmallVector<std::pair<DebugVariableID, MachineInstr *>, 4> PendingDbgValues; |
| 241 | |
| 242 | /// Record of a use-before-def: created when a value that's live-in to the |
| 243 | /// current block isn't available in any machine location, but it will be |
| 244 | /// defined in this block. |
| 245 | struct UseBeforeDef { |
| 246 | /// Value of this variable, def'd in block. |
| 247 | SmallVector<DbgOp> Values; |
| 248 | /// Identity of this variable. |
| 249 | DebugVariableID VarID; |
| 250 | /// Additional variable properties. |
| 251 | DbgValueProperties Properties; |
| 252 | UseBeforeDef(ArrayRef<DbgOp> Values, DebugVariableID VarID, |
| 253 | const DbgValueProperties &Properties) |
| 254 | : Values(Values), VarID(VarID), Properties(Properties) {} |
| 255 | }; |
| 256 | |
| 257 | /// Map from instruction index (within the block) to the set of UseBeforeDefs |
| 258 | /// that become defined at that instruction. |
| 259 | DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; |
| 260 | |
| 261 | /// The set of variables that are in UseBeforeDefs and can become a location |
| 262 | /// once the relevant value is defined. An element being erased from this |
| 263 | /// collection prevents the use-before-def materializing. |
| 264 | DenseSet<DebugVariableID> UseBeforeDefVariables; |
| 265 | |
| 266 | const TargetRegisterInfo &TRI; |
| 267 | const BitVector &CalleeSavedRegs; |
| 268 | |
| 269 | TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, |
| 270 | MachineFunction &MF, const DebugVariableMap &DVMap, |
| 271 | const TargetRegisterInfo &TRI, |
| 272 | const BitVector &CalleeSavedRegs, |
| 273 | bool ShouldEmitDebugEntryValues) |
| 274 | : TII(TII), MTracker(MTracker), MF(MF), DVMap(DVMap), TRI(TRI), |
| 275 | CalleeSavedRegs(CalleeSavedRegs) { |
| 276 | TLI = MF.getSubtarget().getTargetLowering(); |
| 277 | this->ShouldEmitDebugEntryValues = ShouldEmitDebugEntryValues; |
| 278 | } |
| 279 | |
| 280 | bool isCalleeSaved(LocIdx L) const { |
| 281 | unsigned Reg = MTracker->LocIdxToLocID[L]; |
| 282 | if (Reg >= MTracker->NumRegs) |
| 283 | return false; |
| 284 | for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) |
| 285 | if (CalleeSavedRegs.test(Idx: (*RAI).id())) |
| 286 | return true; |
| 287 | return false; |
| 288 | }; |
| 289 | |
| 290 | // An estimate of the expected lifespan of values at a machine location, with |
| 291 | // a greater value corresponding to a longer expected lifespan, i.e. spill |
| 292 | // slots generally live longer than callee-saved registers which generally |
| 293 | // live longer than non-callee-saved registers. The minimum value of 0 |
| 294 | // corresponds to an illegal location that cannot have a "lifespan" at all. |
| 295 | enum class LocationQuality : unsigned char { |
| 296 | Illegal = 0, |
| 297 | Register, |
| 298 | CalleeSavedRegister, |
| 299 | SpillSlot, |
| 300 | Best = SpillSlot |
| 301 | }; |
| 302 | |
| 303 | class LocationAndQuality { |
| 304 | unsigned Location : 24; |
| 305 | unsigned Quality : 8; |
| 306 | |
| 307 | public: |
| 308 | LocationAndQuality() : Location(0), Quality(0) {} |
| 309 | LocationAndQuality(LocIdx L, LocationQuality Q) |
| 310 | : Location(L.asU64()), Quality(static_cast<unsigned>(Q)) {} |
| 311 | LocIdx getLoc() const { |
| 312 | if (!Quality) |
| 313 | return LocIdx::MakeIllegalLoc(); |
| 314 | return LocIdx(Location); |
| 315 | } |
| 316 | LocationQuality getQuality() const { return LocationQuality(Quality); } |
| 317 | bool isIllegal() const { return !Quality; } |
| 318 | bool isBest() const { return getQuality() == LocationQuality::Best; } |
| 319 | }; |
| 320 | |
| 321 | using ValueLocPair = std::pair<ValueIDNum, LocationAndQuality>; |
| 322 | |
| 323 | static inline bool ValueToLocSort(const ValueLocPair &A, |
| 324 | const ValueLocPair &B) { |
| 325 | return A.first < B.first; |
| 326 | }; |
| 327 | |
| 328 | // Returns the LocationQuality for the location L iff the quality of L is |
| 329 | // is strictly greater than the provided minimum quality. |
| 330 | std::optional<LocationQuality> |
| 331 | getLocQualityIfBetter(LocIdx L, LocationQuality Min) const { |
| 332 | if (L.isIllegal()) |
| 333 | return std::nullopt; |
| 334 | if (Min >= LocationQuality::SpillSlot) |
| 335 | return std::nullopt; |
| 336 | if (MTracker->isSpill(Idx: L)) |
| 337 | return LocationQuality::SpillSlot; |
| 338 | if (Min >= LocationQuality::CalleeSavedRegister) |
| 339 | return std::nullopt; |
| 340 | if (isCalleeSaved(L)) |
| 341 | return LocationQuality::CalleeSavedRegister; |
| 342 | if (Min >= LocationQuality::Register) |
| 343 | return std::nullopt; |
| 344 | return LocationQuality::Register; |
| 345 | } |
| 346 | |
| 347 | /// For a variable \p Var with the live-in value \p Value, attempts to resolve |
| 348 | /// the DbgValue to a concrete DBG_VALUE, emitting that value and loading the |
| 349 | /// tracking information to track Var throughout the block. |
| 350 | /// \p ValueToLoc is a map containing the best known location for every |
| 351 | /// ValueIDNum that Value may use. |
| 352 | /// \p MBB is the basic block that we are loading the live-in value for. |
| 353 | /// \p DbgOpStore is the map containing the DbgOpID->DbgOp mapping needed to |
| 354 | /// determine the values used by Value. |
| 355 | void loadVarInloc(MachineBasicBlock &MBB, DbgOpIDMap &DbgOpStore, |
| 356 | const SmallVectorImpl<ValueLocPair> &ValueToLoc, |
| 357 | DebugVariableID VarID, DbgValue Value) { |
| 358 | SmallVector<DbgOp> DbgOps; |
| 359 | SmallVector<ResolvedDbgOp> ResolvedDbgOps; |
| 360 | bool IsValueValid = true; |
| 361 | unsigned LastUseBeforeDef = 0; |
| 362 | bool DbgLocAvailableAndIsEntryVal = false; |
| 363 | |
| 364 | // If every value used by the incoming DbgValue is available at block |
| 365 | // entry, ResolvedDbgOps will contain the machine locations/constants for |
| 366 | // those values and will be used to emit a debug location. |
| 367 | // If one or more values are not yet available, but will all be defined in |
| 368 | // this block, then LastUseBeforeDef will track the instruction index in |
| 369 | // this BB at which the last of those values is defined, DbgOps will |
| 370 | // contain the values that we will emit when we reach that instruction. |
| 371 | // If one or more values are undef or not available throughout this block, |
| 372 | // and we can't recover as an entry value, we set IsValueValid=false and |
| 373 | // skip this variable. |
| 374 | for (DbgOpID ID : Value.getDbgOpIDs()) { |
| 375 | DbgOp Op = DbgOpStore.find(ID); |
| 376 | DbgOps.push_back(Elt: Op); |
| 377 | if (ID.isUndef()) { |
| 378 | IsValueValid = false; |
| 379 | break; |
| 380 | } |
| 381 | if (ID.isConst()) { |
| 382 | ResolvedDbgOps.push_back(Elt: Op.MO); |
| 383 | continue; |
| 384 | } |
| 385 | |
| 386 | // Search for the desired ValueIDNum, to examine the best location found |
| 387 | // for it. Use an empty ValueLocPair to search for an entry in ValueToLoc. |
| 388 | const ValueIDNum &Num = Op.ID; |
| 389 | ValueLocPair Probe(Num, LocationAndQuality()); |
| 390 | auto ValuesPreferredLoc = |
| 391 | llvm::lower_bound(Range: ValueToLoc, Value&: Probe, C: ValueToLocSort); |
| 392 | |
| 393 | // There must be a legitimate entry found for Num. |
| 394 | assert(ValuesPreferredLoc != ValueToLoc.end() && |
| 395 | ValuesPreferredLoc->first == Num); |
| 396 | |
| 397 | if (ValuesPreferredLoc->second.isIllegal()) { |
| 398 | // If it's a def that occurs in this block, register it as a |
| 399 | // use-before-def to be resolved as we step through the block. |
| 400 | // Continue processing values so that we add any other UseBeforeDef |
| 401 | // entries needed for later. |
| 402 | if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) { |
| 403 | LastUseBeforeDef = std::max(a: LastUseBeforeDef, |
| 404 | b: static_cast<unsigned>(Num.getInst())); |
| 405 | continue; |
| 406 | } |
| 407 | recoverAsEntryValue(VarID, Prop: Value.Properties, Num); |
| 408 | IsValueValid = false; |
| 409 | break; |
| 410 | } |
| 411 | |
| 412 | // Defer modifying ActiveVLocs until after we've confirmed we have a |
| 413 | // live range. |
| 414 | LocIdx M = ValuesPreferredLoc->second.getLoc(); |
| 415 | ResolvedDbgOps.push_back(Elt: M); |
| 416 | if (Value.Properties.DIExpr->isEntryValue()) |
| 417 | DbgLocAvailableAndIsEntryVal = true; |
| 418 | } |
| 419 | |
| 420 | // If we cannot produce a valid value for the LiveIn value within this |
| 421 | // block, skip this variable. |
| 422 | if (!IsValueValid) |
| 423 | return; |
| 424 | |
| 425 | // Add UseBeforeDef entry for the last value to be defined in this block. |
| 426 | if (LastUseBeforeDef) { |
| 427 | addUseBeforeDef(VarID, Properties: Value.Properties, DbgOps, Inst: LastUseBeforeDef); |
| 428 | return; |
| 429 | } |
| 430 | |
| 431 | auto &[Var, DILoc] = DVMap.lookupDVID(ID: VarID); |
| 432 | PendingDbgValues.push_back( |
| 433 | Elt: std::make_pair(x&: VarID, y: &*MTracker->emitLoc(DbgOps: ResolvedDbgOps, Var, DILoc, |
| 434 | Properties: Value.Properties))); |
| 435 | |
| 436 | // If the location is available at block entry and is an entry value, skip |
| 437 | // tracking and recording thr transfer. |
| 438 | if (DbgLocAvailableAndIsEntryVal) |
| 439 | return; |
| 440 | |
| 441 | // The LiveIn value is available at block entry, begin tracking and record |
| 442 | // the transfer. |
| 443 | for (const ResolvedDbgOp &Op : ResolvedDbgOps) |
| 444 | if (!Op.IsConst) |
| 445 | ActiveMLocs[Op.Loc].insert(V: VarID); |
| 446 | auto NewValue = ResolvedDbgValue{ResolvedDbgOps, Value.Properties}; |
| 447 | auto Result = ActiveVLocs.insert(KV: std::make_pair(x&: VarID, y&: NewValue)); |
| 448 | if (!Result.second) |
| 449 | Result.first->second = NewValue; |
| 450 | } |
| 451 | |
| 452 | /// Load object with live-in variable values. \p mlocs contains the live-in |
| 453 | /// values in each machine location, while \p vlocs the live-in variable |
| 454 | /// values. This method picks variable locations for the live-in variables, |
| 455 | /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other |
| 456 | /// object fields to track variable locations as we step through the block. |
| 457 | /// FIXME: could just examine mloctracker instead of passing in \p mlocs? |
| 458 | void |
| 459 | loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, DbgOpIDMap &DbgOpStore, |
| 460 | const SmallVectorImpl<std::pair<DebugVariableID, DbgValue>> &VLocs, |
| 461 | unsigned NumLocs) { |
| 462 | ActiveMLocs.clear(); |
| 463 | ActiveVLocs.clear(); |
| 464 | VarLocs.clear(); |
| 465 | VarLocs.reserve(N: NumLocs); |
| 466 | UseBeforeDefs.clear(); |
| 467 | UseBeforeDefVariables.clear(); |
| 468 | |
| 469 | // Mapping of the preferred locations for each value. Collected into this |
| 470 | // vector then sorted for easy searching. |
| 471 | SmallVector<ValueLocPair, 16> ValueToLoc; |
| 472 | |
| 473 | // Initialized the preferred-location map with illegal locations, to be |
| 474 | // filled in later. |
| 475 | for (const auto &VLoc : VLocs) |
| 476 | if (VLoc.second.Kind == DbgValue::Def) |
| 477 | for (DbgOpID OpID : VLoc.second.getDbgOpIDs()) |
| 478 | if (!OpID.ID.IsConst) |
| 479 | ValueToLoc.push_back( |
| 480 | Elt: {DbgOpStore.find(ID: OpID).ID, LocationAndQuality()}); |
| 481 | |
| 482 | llvm::sort(C&: ValueToLoc, Comp: ValueToLocSort); |
| 483 | ActiveMLocs.reserve(NumEntries: VLocs.size()); |
| 484 | ActiveVLocs.reserve(NumEntries: VLocs.size()); |
| 485 | |
| 486 | // Produce a map of value numbers to the current machine locs they live |
| 487 | // in. When emulating VarLocBasedImpl, there should only be one |
| 488 | // location; when not, we get to pick. |
| 489 | for (auto Location : MTracker->locations()) { |
| 490 | LocIdx Idx = Location.Idx; |
| 491 | ValueIDNum &VNum = MLocs[Idx.asU64()]; |
| 492 | if (VNum == ValueIDNum::EmptyValue) |
| 493 | continue; |
| 494 | VarLocs.push_back(Elt: VNum); |
| 495 | |
| 496 | // Is there a variable that wants a location for this value? If not, skip. |
| 497 | ValueLocPair Probe(VNum, LocationAndQuality()); |
| 498 | auto VIt = llvm::lower_bound(Range&: ValueToLoc, Value&: Probe, C: ValueToLocSort); |
| 499 | if (VIt == ValueToLoc.end() || VIt->first != VNum) |
| 500 | continue; |
| 501 | |
| 502 | auto &Previous = VIt->second; |
| 503 | // If this is the first location with that value, pick it. Otherwise, |
| 504 | // consider whether it's a "longer term" location. |
| 505 | std::optional<LocationQuality> ReplacementQuality = |
| 506 | getLocQualityIfBetter(L: Idx, Min: Previous.getQuality()); |
| 507 | if (ReplacementQuality) |
| 508 | Previous = LocationAndQuality(Idx, *ReplacementQuality); |
| 509 | } |
| 510 | |
| 511 | // Now map variables to their picked LocIdxes. |
| 512 | for (const auto &Var : VLocs) { |
| 513 | loadVarInloc(MBB, DbgOpStore, ValueToLoc, VarID: Var.first, Value: Var.second); |
| 514 | } |
| 515 | flushDbgValues(Pos: MBB.begin(), MBB: &MBB); |
| 516 | } |
| 517 | |
| 518 | /// Record that \p Var has value \p ID, a value that becomes available |
| 519 | /// later in the function. |
| 520 | void addUseBeforeDef(DebugVariableID VarID, |
| 521 | const DbgValueProperties &Properties, |
| 522 | const SmallVectorImpl<DbgOp> &DbgOps, unsigned Inst) { |
| 523 | UseBeforeDefs[Inst].emplace_back(Args: DbgOps, Args&: VarID, Args: Properties); |
| 524 | UseBeforeDefVariables.insert(V: VarID); |
| 525 | } |
| 526 | |
| 527 | /// After the instruction at index \p Inst and position \p pos has been |
| 528 | /// processed, check whether it defines a variable value in a use-before-def. |
| 529 | /// If so, and the variable value hasn't changed since the start of the |
| 530 | /// block, create a DBG_VALUE. |
| 531 | void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { |
| 532 | auto MIt = UseBeforeDefs.find(Val: Inst); |
| 533 | if (MIt == UseBeforeDefs.end()) |
| 534 | return; |
| 535 | |
| 536 | // Map of values to the locations that store them for every value used by |
| 537 | // the variables that may have become available. |
| 538 | SmallDenseMap<ValueIDNum, LocationAndQuality> ValueToLoc; |
| 539 | |
| 540 | // Populate ValueToLoc with illegal default mappings for every value used by |
| 541 | // any UseBeforeDef variables for this instruction. |
| 542 | for (auto &Use : MIt->second) { |
| 543 | if (!UseBeforeDefVariables.count(V: Use.VarID)) |
| 544 | continue; |
| 545 | |
| 546 | for (DbgOp &Op : Use.Values) { |
| 547 | assert(!Op.isUndef() && "UseBeforeDef erroneously created for a " |
| 548 | "DbgValue with undef values." ); |
| 549 | if (Op.IsConst) |
| 550 | continue; |
| 551 | |
| 552 | ValueToLoc.insert(KV: {Op.ID, LocationAndQuality()}); |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | // Exit early if we have no DbgValues to produce. |
| 557 | if (ValueToLoc.empty()) |
| 558 | return; |
| 559 | |
| 560 | // Determine the best location for each desired value. |
| 561 | for (auto Location : MTracker->locations()) { |
| 562 | LocIdx Idx = Location.Idx; |
| 563 | ValueIDNum &LocValueID = Location.Value; |
| 564 | |
| 565 | // Is there a variable that wants a location for this value? If not, skip. |
| 566 | auto VIt = ValueToLoc.find(Val: LocValueID); |
| 567 | if (VIt == ValueToLoc.end()) |
| 568 | continue; |
| 569 | |
| 570 | auto &Previous = VIt->second; |
| 571 | // If this is the first location with that value, pick it. Otherwise, |
| 572 | // consider whether it's a "longer term" location. |
| 573 | std::optional<LocationQuality> ReplacementQuality = |
| 574 | getLocQualityIfBetter(L: Idx, Min: Previous.getQuality()); |
| 575 | if (ReplacementQuality) |
| 576 | Previous = LocationAndQuality(Idx, *ReplacementQuality); |
| 577 | } |
| 578 | |
| 579 | // Using the map of values to locations, produce a final set of values for |
| 580 | // this variable. |
| 581 | for (auto &Use : MIt->second) { |
| 582 | if (!UseBeforeDefVariables.count(V: Use.VarID)) |
| 583 | continue; |
| 584 | |
| 585 | SmallVector<ResolvedDbgOp> DbgOps; |
| 586 | |
| 587 | for (DbgOp &Op : Use.Values) { |
| 588 | if (Op.IsConst) { |
| 589 | DbgOps.push_back(Elt: Op.MO); |
| 590 | continue; |
| 591 | } |
| 592 | LocIdx NewLoc = ValueToLoc.find(Val: Op.ID)->second.getLoc(); |
| 593 | if (NewLoc.isIllegal()) |
| 594 | break; |
| 595 | DbgOps.push_back(Elt: NewLoc); |
| 596 | } |
| 597 | |
| 598 | // If at least one value used by this debug value is no longer available, |
| 599 | // i.e. one of the values was killed before we finished defining all of |
| 600 | // the values used by this variable, discard. |
| 601 | if (DbgOps.size() != Use.Values.size()) |
| 602 | continue; |
| 603 | |
| 604 | // Otherwise, we're good to go. |
| 605 | auto &[Var, DILoc] = DVMap.lookupDVID(ID: Use.VarID); |
| 606 | PendingDbgValues.push_back(Elt: std::make_pair( |
| 607 | x&: Use.VarID, y: MTracker->emitLoc(DbgOps, Var, DILoc, Properties: Use.Properties))); |
| 608 | } |
| 609 | flushDbgValues(Pos: pos, MBB: nullptr); |
| 610 | } |
| 611 | |
| 612 | /// Helper to move created DBG_VALUEs into Transfers collection. |
| 613 | void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { |
| 614 | if (PendingDbgValues.size() == 0) |
| 615 | return; |
| 616 | |
| 617 | // Pick out the instruction start position. |
| 618 | MachineBasicBlock::instr_iterator BundleStart; |
| 619 | if (MBB && Pos == MBB->begin()) |
| 620 | BundleStart = MBB->instr_begin(); |
| 621 | else |
| 622 | BundleStart = getBundleStart(I: Pos->getIterator()); |
| 623 | |
| 624 | Transfers.push_back(Elt: {.Pos: BundleStart, .MBB: MBB, .Insts: PendingDbgValues}); |
| 625 | PendingDbgValues.clear(); |
| 626 | } |
| 627 | |
| 628 | bool isEntryValueVariable(const DebugVariable &Var, |
| 629 | const DIExpression *Expr) const { |
| 630 | if (!Var.getVariable()->isParameter()) |
| 631 | return false; |
| 632 | |
| 633 | if (Var.getInlinedAt()) |
| 634 | return false; |
| 635 | |
| 636 | if (Expr->getNumElements() > 0 && !Expr->isDeref()) |
| 637 | return false; |
| 638 | |
| 639 | return true; |
| 640 | } |
| 641 | |
| 642 | bool isEntryValueValue(const ValueIDNum &Val) const { |
| 643 | // Must be in entry block (block number zero), and be a PHI / live-in value. |
| 644 | if (Val.getBlock() || !Val.isPHI()) |
| 645 | return false; |
| 646 | |
| 647 | // Entry values must enter in a register. |
| 648 | if (MTracker->isSpill(Idx: Val.getLoc())) |
| 649 | return false; |
| 650 | |
| 651 | Register SP = TLI->getStackPointerRegisterToSaveRestore(); |
| 652 | Register FP = TRI.getFrameRegister(MF); |
| 653 | Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; |
| 654 | return Reg != SP && Reg != FP; |
| 655 | } |
| 656 | |
| 657 | bool recoverAsEntryValue(DebugVariableID VarID, |
| 658 | const DbgValueProperties &Prop, |
| 659 | const ValueIDNum &Num) { |
| 660 | // Is this variable location a candidate to be an entry value. First, |
| 661 | // should we be trying this at all? |
| 662 | if (!ShouldEmitDebugEntryValues) |
| 663 | return false; |
| 664 | |
| 665 | const DIExpression *DIExpr = Prop.DIExpr; |
| 666 | |
| 667 | // We don't currently emit entry values for DBG_VALUE_LISTs. |
| 668 | if (Prop.IsVariadic) { |
| 669 | // If this debug value can be converted to be non-variadic, then do so; |
| 670 | // otherwise give up. |
| 671 | auto NonVariadicExpression = |
| 672 | DIExpression::convertToNonVariadicExpression(Expr: DIExpr); |
| 673 | if (!NonVariadicExpression) |
| 674 | return false; |
| 675 | DIExpr = *NonVariadicExpression; |
| 676 | } |
| 677 | |
| 678 | auto &[Var, DILoc] = DVMap.lookupDVID(ID: VarID); |
| 679 | |
| 680 | // If the expression is a DW_OP_entry_value, emit the variable location |
| 681 | // as-is. |
| 682 | if (DIExpr->isEntryValue()) { |
| 683 | Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; |
| 684 | MachineOperand MO = MachineOperand::CreateReg(Reg, isDef: false); |
| 685 | PendingDbgValues.push_back(Elt: std::make_pair( |
| 686 | x&: VarID, y: &*emitMOLoc(MO, Var, Properties: {DIExpr, Prop.Indirect, false}))); |
| 687 | return true; |
| 688 | } |
| 689 | |
| 690 | // Is the variable appropriate for entry values (i.e., is a parameter). |
| 691 | if (!isEntryValueVariable(Var, Expr: DIExpr)) |
| 692 | return false; |
| 693 | |
| 694 | // Is the value assigned to this variable still the entry value? |
| 695 | if (!isEntryValueValue(Val: Num)) |
| 696 | return false; |
| 697 | |
| 698 | // Emit a variable location using an entry value expression. |
| 699 | DIExpression *NewExpr = |
| 700 | DIExpression::prepend(Expr: DIExpr, Flags: DIExpression::EntryValue); |
| 701 | Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; |
| 702 | MachineOperand MO = MachineOperand::CreateReg(Reg, isDef: false); |
| 703 | PendingDbgValues.push_back(Elt: std::make_pair( |
| 704 | x&: VarID, y: &*emitMOLoc(MO, Var, Properties: {NewExpr, Prop.Indirect, false}))); |
| 705 | return true; |
| 706 | } |
| 707 | |
| 708 | /// Change a variable value after encountering a DBG_VALUE inside a block. |
| 709 | void redefVar(const MachineInstr &MI) { |
| 710 | DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), |
| 711 | MI.getDebugLoc()->getInlinedAt()); |
| 712 | DbgValueProperties Properties(MI); |
| 713 | DebugVariableID VarID = DVMap.getDVID(Var); |
| 714 | |
| 715 | // Ignore non-register locations, we don't transfer those. |
| 716 | if (MI.isUndefDebugValue() || MI.getDebugExpression()->isEntryValue() || |
| 717 | all_of(Range: MI.debug_operands(), |
| 718 | P: [](const MachineOperand &MO) { return !MO.isReg(); })) { |
| 719 | auto It = ActiveVLocs.find(Val: VarID); |
| 720 | if (It != ActiveVLocs.end()) { |
| 721 | for (LocIdx Loc : It->second.loc_indices()) |
| 722 | ActiveMLocs[Loc].erase(V: VarID); |
| 723 | ActiveVLocs.erase(I: It); |
| 724 | } |
| 725 | // Any use-before-defs no longer apply. |
| 726 | UseBeforeDefVariables.erase(V: VarID); |
| 727 | return; |
| 728 | } |
| 729 | |
| 730 | SmallVector<ResolvedDbgOp> NewLocs; |
| 731 | for (const MachineOperand &MO : MI.debug_operands()) { |
| 732 | if (MO.isReg()) { |
| 733 | // Any undef regs have already been filtered out above. |
| 734 | Register Reg = MO.getReg(); |
| 735 | LocIdx NewLoc = MTracker->getRegMLoc(R: Reg); |
| 736 | NewLocs.push_back(Elt: NewLoc); |
| 737 | } else { |
| 738 | NewLocs.push_back(Elt: MO); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | redefVar(MI, Properties, NewLocs); |
| 743 | } |
| 744 | |
| 745 | /// Handle a change in variable location within a block. Terminate the |
| 746 | /// variables current location, and record the value it now refers to, so |
| 747 | /// that we can detect location transfers later on. |
| 748 | void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, |
| 749 | SmallVectorImpl<ResolvedDbgOp> &NewLocs) { |
| 750 | DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), |
| 751 | MI.getDebugLoc()->getInlinedAt()); |
| 752 | DebugVariableID VarID = DVMap.getDVID(Var); |
| 753 | // Any use-before-defs no longer apply. |
| 754 | UseBeforeDefVariables.erase(V: VarID); |
| 755 | |
| 756 | // Erase any previous location. |
| 757 | auto It = ActiveVLocs.find(Val: VarID); |
| 758 | if (It != ActiveVLocs.end()) { |
| 759 | for (LocIdx Loc : It->second.loc_indices()) |
| 760 | ActiveMLocs[Loc].erase(V: VarID); |
| 761 | } |
| 762 | |
| 763 | // If there _is_ no new location, all we had to do was erase. |
| 764 | if (NewLocs.empty()) { |
| 765 | if (It != ActiveVLocs.end()) |
| 766 | ActiveVLocs.erase(I: It); |
| 767 | return; |
| 768 | } |
| 769 | |
| 770 | SmallVector<std::pair<LocIdx, DebugVariableID>> LostMLocs; |
| 771 | for (ResolvedDbgOp &Op : NewLocs) { |
| 772 | if (Op.IsConst) |
| 773 | continue; |
| 774 | |
| 775 | LocIdx NewLoc = Op.Loc; |
| 776 | |
| 777 | // Check whether our local copy of values-by-location in #VarLocs is out |
| 778 | // of date. Wipe old tracking data for the location if it's been clobbered |
| 779 | // in the meantime. |
| 780 | if (MTracker->readMLoc(L: NewLoc) != VarLocs[NewLoc.asU64()]) { |
| 781 | for (const auto &P : ActiveMLocs[NewLoc]) { |
| 782 | auto LostVLocIt = ActiveVLocs.find(Val: P); |
| 783 | if (LostVLocIt != ActiveVLocs.end()) { |
| 784 | for (LocIdx Loc : LostVLocIt->second.loc_indices()) { |
| 785 | // Every active variable mapping for NewLoc will be cleared, no |
| 786 | // need to track individual variables. |
| 787 | if (Loc == NewLoc) |
| 788 | continue; |
| 789 | LostMLocs.emplace_back(Args&: Loc, Args: P); |
| 790 | } |
| 791 | } |
| 792 | ActiveVLocs.erase(Val: P); |
| 793 | } |
| 794 | for (const auto &LostMLoc : LostMLocs) |
| 795 | ActiveMLocs[LostMLoc.first].erase(V: LostMLoc.second); |
| 796 | LostMLocs.clear(); |
| 797 | It = ActiveVLocs.find(Val: VarID); |
| 798 | ActiveMLocs[NewLoc.asU64()].clear(); |
| 799 | VarLocs[NewLoc.asU64()] = MTracker->readMLoc(L: NewLoc); |
| 800 | } |
| 801 | |
| 802 | ActiveMLocs[NewLoc].insert(V: VarID); |
| 803 | } |
| 804 | |
| 805 | if (It == ActiveVLocs.end()) { |
| 806 | ActiveVLocs.insert( |
| 807 | KV: std::make_pair(x&: VarID, y: ResolvedDbgValue(NewLocs, Properties))); |
| 808 | } else { |
| 809 | It->second.Ops.assign(RHS: NewLocs); |
| 810 | It->second.Properties = Properties; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | /// Account for a location \p mloc being clobbered. Examine the variable |
| 815 | /// locations that will be terminated: and try to recover them by using |
| 816 | /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to |
| 817 | /// explicitly terminate a location if it can't be recovered. |
| 818 | void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, |
| 819 | bool MakeUndef = true) { |
| 820 | auto ActiveMLocIt = ActiveMLocs.find(Val: MLoc); |
| 821 | if (ActiveMLocIt == ActiveMLocs.end()) |
| 822 | return; |
| 823 | |
| 824 | // What was the old variable value? |
| 825 | ValueIDNum OldValue = VarLocs[MLoc.asU64()]; |
| 826 | clobberMloc(MLoc, OldValue, Pos, MakeUndef); |
| 827 | } |
| 828 | /// Overload that takes an explicit value \p OldValue for when the value in |
| 829 | /// \p MLoc has changed and the TransferTracker's locations have not been |
| 830 | /// updated yet. |
| 831 | void clobberMloc(LocIdx MLoc, ValueIDNum OldValue, |
| 832 | MachineBasicBlock::iterator Pos, bool MakeUndef = true) { |
| 833 | auto ActiveMLocIt = ActiveMLocs.find(Val: MLoc); |
| 834 | if (ActiveMLocIt == ActiveMLocs.end()) |
| 835 | return; |
| 836 | |
| 837 | VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; |
| 838 | |
| 839 | // Examine the remaining variable locations: if we can find the same value |
| 840 | // again, we can recover the location. |
| 841 | std::optional<LocIdx> NewLoc; |
| 842 | for (auto Loc : MTracker->locations()) |
| 843 | if (Loc.Value == OldValue) |
| 844 | NewLoc = Loc.Idx; |
| 845 | |
| 846 | // If there is no location, and we weren't asked to make the variable |
| 847 | // explicitly undef, then stop here. |
| 848 | if (!NewLoc && !MakeUndef) { |
| 849 | // Try and recover a few more locations with entry values. |
| 850 | for (DebugVariableID VarID : ActiveMLocIt->second) { |
| 851 | auto &Prop = ActiveVLocs.find(Val: VarID)->second.Properties; |
| 852 | recoverAsEntryValue(VarID, Prop, Num: OldValue); |
| 853 | } |
| 854 | flushDbgValues(Pos, MBB: nullptr); |
| 855 | return; |
| 856 | } |
| 857 | |
| 858 | // Examine all the variables based on this location. |
| 859 | DenseSet<DebugVariableID> NewMLocs; |
| 860 | // If no new location has been found, every variable that depends on this |
| 861 | // MLoc is dead, so end their existing MLoc->Var mappings as well. |
| 862 | SmallVector<std::pair<LocIdx, DebugVariableID>> LostMLocs; |
| 863 | for (DebugVariableID VarID : ActiveMLocIt->second) { |
| 864 | auto ActiveVLocIt = ActiveVLocs.find(Val: VarID); |
| 865 | // Re-state the variable location: if there's no replacement then NewLoc |
| 866 | // is std::nullopt and a $noreg DBG_VALUE will be created. Otherwise, a |
| 867 | // DBG_VALUE identifying the alternative location will be emitted. |
| 868 | const DbgValueProperties &Properties = ActiveVLocIt->second.Properties; |
| 869 | |
| 870 | // Produce the new list of debug ops - an empty list if no new location |
| 871 | // was found, or the existing list with the substitution MLoc -> NewLoc |
| 872 | // otherwise. |
| 873 | SmallVector<ResolvedDbgOp> DbgOps; |
| 874 | if (NewLoc) { |
| 875 | ResolvedDbgOp OldOp(MLoc); |
| 876 | ResolvedDbgOp NewOp(*NewLoc); |
| 877 | // Insert illegal ops to overwrite afterwards. |
| 878 | DbgOps.insert(I: DbgOps.begin(), NumToInsert: ActiveVLocIt->second.Ops.size(), |
| 879 | Elt: ResolvedDbgOp(LocIdx::MakeIllegalLoc())); |
| 880 | replace_copy(Range&: ActiveVLocIt->second.Ops, Out: DbgOps.begin(), OldValue: OldOp, NewValue: NewOp); |
| 881 | } |
| 882 | |
| 883 | auto &[Var, DILoc] = DVMap.lookupDVID(ID: VarID); |
| 884 | PendingDbgValues.push_back(Elt: std::make_pair( |
| 885 | x&: VarID, y: &*MTracker->emitLoc(DbgOps, Var, DILoc, Properties))); |
| 886 | |
| 887 | // Update machine locations <=> variable locations maps. Defer updating |
| 888 | // ActiveMLocs to avoid invalidating the ActiveMLocIt iterator. |
| 889 | if (!NewLoc) { |
| 890 | for (LocIdx Loc : ActiveVLocIt->second.loc_indices()) { |
| 891 | if (Loc != MLoc) |
| 892 | LostMLocs.emplace_back(Args&: Loc, Args&: VarID); |
| 893 | } |
| 894 | ActiveVLocs.erase(I: ActiveVLocIt); |
| 895 | } else { |
| 896 | ActiveVLocIt->second.Ops = DbgOps; |
| 897 | NewMLocs.insert(V: VarID); |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | // Remove variables from ActiveMLocs if they no longer use any other MLocs |
| 902 | // due to being killed by this clobber. |
| 903 | for (auto &LocVarIt : LostMLocs) { |
| 904 | auto LostMLocIt = ActiveMLocs.find(Val: LocVarIt.first); |
| 905 | assert(LostMLocIt != ActiveMLocs.end() && |
| 906 | "Variable was using this MLoc, but ActiveMLocs[MLoc] has no " |
| 907 | "entries?" ); |
| 908 | LostMLocIt->second.erase(V: LocVarIt.second); |
| 909 | } |
| 910 | |
| 911 | // We lazily track what locations have which values; if we've found a new |
| 912 | // location for the clobbered value, remember it. |
| 913 | if (NewLoc) |
| 914 | VarLocs[NewLoc->asU64()] = OldValue; |
| 915 | |
| 916 | flushDbgValues(Pos, MBB: nullptr); |
| 917 | |
| 918 | // Commit ActiveMLoc changes. |
| 919 | ActiveMLocIt->second.clear(); |
| 920 | if (!NewMLocs.empty()) |
| 921 | ActiveMLocs[*NewLoc].insert_range(R&: NewMLocs); |
| 922 | } |
| 923 | |
| 924 | /// Transfer variables based on \p Src to be based on \p Dst. This handles |
| 925 | /// both register copies as well as spills and restores. Creates DBG_VALUEs |
| 926 | /// describing the movement. |
| 927 | void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { |
| 928 | // Does Src still contain the value num we expect? If not, it's been |
| 929 | // clobbered in the meantime, and our variable locations are stale. |
| 930 | if (VarLocs[Src.asU64()] != MTracker->readMLoc(L: Src)) |
| 931 | return; |
| 932 | |
| 933 | // assert(ActiveMLocs[Dst].size() == 0); |
| 934 | //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? |
| 935 | |
| 936 | // Move set of active variables from one location to another. |
| 937 | auto MovingVars = ActiveMLocs[Src]; |
| 938 | ActiveMLocs[Dst].insert_range(R&: MovingVars); |
| 939 | VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; |
| 940 | |
| 941 | // For each variable based on Src; create a location at Dst. |
| 942 | ResolvedDbgOp SrcOp(Src); |
| 943 | ResolvedDbgOp DstOp(Dst); |
| 944 | for (DebugVariableID VarID : MovingVars) { |
| 945 | auto ActiveVLocIt = ActiveVLocs.find(Val: VarID); |
| 946 | assert(ActiveVLocIt != ActiveVLocs.end()); |
| 947 | |
| 948 | // Update all instances of Src in the variable's tracked values to Dst. |
| 949 | llvm::replace(Range&: ActiveVLocIt->second.Ops, OldValue: SrcOp, NewValue: DstOp); |
| 950 | |
| 951 | auto &[Var, DILoc] = DVMap.lookupDVID(ID: VarID); |
| 952 | MachineInstr *MI = MTracker->emitLoc(DbgOps: ActiveVLocIt->second.Ops, Var, DILoc, |
| 953 | Properties: ActiveVLocIt->second.Properties); |
| 954 | PendingDbgValues.push_back(Elt: std::make_pair(x&: VarID, y&: MI)); |
| 955 | } |
| 956 | ActiveMLocs[Src].clear(); |
| 957 | flushDbgValues(Pos, MBB: nullptr); |
| 958 | |
| 959 | // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data |
| 960 | // about the old location. |
| 961 | if (EmulateOldLDV) |
| 962 | VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; |
| 963 | } |
| 964 | |
| 965 | MachineInstrBuilder emitMOLoc(const MachineOperand &MO, |
| 966 | const DebugVariable &Var, |
| 967 | const DbgValueProperties &Properties) { |
| 968 | DebugLoc DL = DILocation::get(Context&: Var.getVariable()->getContext(), Line: 0, Column: 0, |
| 969 | Scope: Var.getVariable()->getScope(), |
| 970 | InlinedAt: const_cast<DILocation *>(Var.getInlinedAt())); |
| 971 | auto MIB = BuildMI(MF, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::DBG_VALUE)); |
| 972 | MIB.add(MO); |
| 973 | if (Properties.Indirect) |
| 974 | MIB.addImm(Val: 0); |
| 975 | else |
| 976 | MIB.addReg(RegNo: 0); |
| 977 | MIB.addMetadata(MD: Var.getVariable()); |
| 978 | MIB.addMetadata(MD: Properties.DIExpr); |
| 979 | return MIB; |
| 980 | } |
| 981 | }; |
| 982 | |
| 983 | //===----------------------------------------------------------------------===// |
| 984 | // Implementation |
| 985 | //===----------------------------------------------------------------------===// |
| 986 | |
| 987 | ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; |
| 988 | ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1}; |
| 989 | |
| 990 | #ifndef NDEBUG |
| 991 | void ResolvedDbgOp::dump(const MLocTracker *MTrack) const { |
| 992 | if (IsConst) { |
| 993 | dbgs() << MO; |
| 994 | } else { |
| 995 | dbgs() << MTrack->LocIdxToName(Loc); |
| 996 | } |
| 997 | } |
| 998 | void DbgOp::dump(const MLocTracker *MTrack) const { |
| 999 | if (IsConst) { |
| 1000 | dbgs() << MO; |
| 1001 | } else if (!isUndef()) { |
| 1002 | dbgs() << MTrack->IDAsString(ID); |
| 1003 | } |
| 1004 | } |
| 1005 | void DbgOpID::dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const { |
| 1006 | if (!OpStore) { |
| 1007 | dbgs() << "ID(" << asU32() << ")" ; |
| 1008 | } else { |
| 1009 | OpStore->find(*this).dump(MTrack); |
| 1010 | } |
| 1011 | } |
| 1012 | void DbgValue::dump(const MLocTracker *MTrack, |
| 1013 | const DbgOpIDMap *OpStore) const { |
| 1014 | if (Kind == NoVal) { |
| 1015 | dbgs() << "NoVal(" << BlockNo << ")" ; |
| 1016 | } else if (Kind == VPHI || Kind == Def) { |
| 1017 | if (Kind == VPHI) |
| 1018 | dbgs() << "VPHI(" << BlockNo << "," ; |
| 1019 | else |
| 1020 | dbgs() << "Def(" ; |
| 1021 | for (unsigned Idx = 0; Idx < getDbgOpIDs().size(); ++Idx) { |
| 1022 | getDbgOpID(Idx).dump(MTrack, OpStore); |
| 1023 | if (Idx != 0) |
| 1024 | dbgs() << "," ; |
| 1025 | } |
| 1026 | dbgs() << ")" ; |
| 1027 | } |
| 1028 | if (Properties.Indirect) |
| 1029 | dbgs() << " indir" ; |
| 1030 | if (Properties.DIExpr) |
| 1031 | dbgs() << " " << *Properties.DIExpr; |
| 1032 | } |
| 1033 | #endif |
| 1034 | |
| 1035 | MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, |
| 1036 | const TargetRegisterInfo &TRI, |
| 1037 | const TargetLowering &TLI) |
| 1038 | : MF(MF), TII(TII), TRI(TRI), TLI(TLI), |
| 1039 | LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { |
| 1040 | NumRegs = TRI.getNumRegs(); |
| 1041 | reset(); |
| 1042 | LocIDToLocIdx.resize(new_size: NumRegs, x: LocIdx::MakeIllegalLoc()); |
| 1043 | assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure |
| 1044 | |
| 1045 | // Always track SP. This avoids the implicit clobbering caused by regmasks |
| 1046 | // from affectings its values. (LiveDebugValues disbelieves calls and |
| 1047 | // regmasks that claim to clobber SP). |
| 1048 | Register SP = TLI.getStackPointerRegisterToSaveRestore(); |
| 1049 | if (SP) { |
| 1050 | unsigned ID = getLocID(Reg: SP); |
| 1051 | (void)lookupOrTrackRegister(ID); |
| 1052 | |
| 1053 | for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI) |
| 1054 | SPAliases.insert(V: *RAI); |
| 1055 | } |
| 1056 | |
| 1057 | // Build some common stack positions -- full registers being spilt to the |
| 1058 | // stack. |
| 1059 | StackSlotIdxes.insert(KV: {{8, 0}, 0}); |
| 1060 | StackSlotIdxes.insert(KV: {{16, 0}, 1}); |
| 1061 | StackSlotIdxes.insert(KV: {{32, 0}, 2}); |
| 1062 | StackSlotIdxes.insert(KV: {{64, 0}, 3}); |
| 1063 | StackSlotIdxes.insert(KV: {{128, 0}, 4}); |
| 1064 | StackSlotIdxes.insert(KV: {{256, 0}, 5}); |
| 1065 | StackSlotIdxes.insert(KV: {{512, 0}, 6}); |
| 1066 | |
| 1067 | // Traverse all the subregister idxes, and ensure there's an index for them. |
| 1068 | // Duplicates are no problem: we're interested in their position in the |
| 1069 | // stack slot, we don't want to type the slot. |
| 1070 | for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) { |
| 1071 | unsigned Size = TRI.getSubRegIdxSize(Idx: I); |
| 1072 | unsigned Offs = TRI.getSubRegIdxOffset(Idx: I); |
| 1073 | unsigned Idx = StackSlotIdxes.size(); |
| 1074 | |
| 1075 | // Some subregs have -1, -2 and so forth fed into their fields, to mean |
| 1076 | // special backend things. Ignore those. |
| 1077 | if (Size > 60000 || Offs > 60000) |
| 1078 | continue; |
| 1079 | |
| 1080 | StackSlotIdxes.insert(KV: {{Size, Offs}, Idx}); |
| 1081 | } |
| 1082 | |
| 1083 | // There may also be strange register class sizes (think x86 fp80s). |
| 1084 | for (const TargetRegisterClass *RC : TRI.regclasses()) { |
| 1085 | unsigned Size = TRI.getRegSizeInBits(RC: *RC); |
| 1086 | |
| 1087 | // We might see special reserved values as sizes, and classes for other |
| 1088 | // stuff the machine tries to model. If it's more than 512 bits, then it |
| 1089 | // is very unlikely to be a register than can be spilt. |
| 1090 | if (Size > 512) |
| 1091 | continue; |
| 1092 | |
| 1093 | unsigned Idx = StackSlotIdxes.size(); |
| 1094 | StackSlotIdxes.insert(KV: {{Size, 0}, Idx}); |
| 1095 | } |
| 1096 | |
| 1097 | for (auto &Idx : StackSlotIdxes) |
| 1098 | StackIdxesToPos[Idx.second] = Idx.first; |
| 1099 | |
| 1100 | NumSlotIdxes = StackSlotIdxes.size(); |
| 1101 | } |
| 1102 | |
| 1103 | LocIdx MLocTracker::trackRegister(unsigned ID) { |
| 1104 | assert(ID != 0); |
| 1105 | LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); |
| 1106 | LocIdxToIDNum.grow(n: NewIdx); |
| 1107 | LocIdxToLocID.grow(n: NewIdx); |
| 1108 | |
| 1109 | // Default: it's an mphi. |
| 1110 | ValueIDNum ValNum = {CurBB, 0, NewIdx}; |
| 1111 | // Was this reg ever touched by a regmask? |
| 1112 | for (const auto &MaskPair : reverse(C&: Masks)) { |
| 1113 | if (MaskPair.first->clobbersPhysReg(PhysReg: ID)) { |
| 1114 | // There was an earlier def we skipped. |
| 1115 | ValNum = {CurBB, MaskPair.second, NewIdx}; |
| 1116 | break; |
| 1117 | } |
| 1118 | } |
| 1119 | |
| 1120 | LocIdxToIDNum[NewIdx] = ValNum; |
| 1121 | LocIdxToLocID[NewIdx] = ID; |
| 1122 | return NewIdx; |
| 1123 | } |
| 1124 | |
| 1125 | void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, |
| 1126 | unsigned InstID) { |
| 1127 | // Def any register we track have that isn't preserved. The regmask |
| 1128 | // terminates the liveness of a register, meaning its value can't be |
| 1129 | // relied upon -- we represent this by giving it a new value. |
| 1130 | for (auto Location : locations()) { |
| 1131 | unsigned ID = LocIdxToLocID[Location.Idx]; |
| 1132 | // Don't clobber SP, even if the mask says it's clobbered. |
| 1133 | if (ID < NumRegs && !SPAliases.count(V: ID) && MO->clobbersPhysReg(PhysReg: ID)) |
| 1134 | defReg(R: ID, BB: CurBB, Inst: InstID); |
| 1135 | } |
| 1136 | Masks.push_back(Elt: std::make_pair(x&: MO, y&: InstID)); |
| 1137 | } |
| 1138 | |
| 1139 | std::optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) { |
| 1140 | SpillLocationNo SpillID(SpillLocs.idFor(Entry: L)); |
| 1141 | |
| 1142 | if (SpillID.id() == 0) { |
| 1143 | // If there is no location, and we have reached the limit of how many stack |
| 1144 | // slots to track, then don't track this one. |
| 1145 | if (SpillLocs.size() >= StackWorkingSetLimit) |
| 1146 | return std::nullopt; |
| 1147 | |
| 1148 | // Spill location is untracked: create record for this one, and all |
| 1149 | // subregister slots too. |
| 1150 | SpillID = SpillLocationNo(SpillLocs.insert(Entry: L)); |
| 1151 | for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) { |
| 1152 | unsigned L = getSpillIDWithIdx(Spill: SpillID, Idx: StackIdx); |
| 1153 | LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx |
| 1154 | LocIdxToIDNum.grow(n: Idx); |
| 1155 | LocIdxToLocID.grow(n: Idx); |
| 1156 | LocIDToLocIdx.push_back(x: Idx); |
| 1157 | LocIdxToLocID[Idx] = L; |
| 1158 | // Initialize to PHI value; corresponds to the location's live-in value |
| 1159 | // during transfer function construction. |
| 1160 | LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx); |
| 1161 | } |
| 1162 | } |
| 1163 | return SpillID; |
| 1164 | } |
| 1165 | |
| 1166 | std::string MLocTracker::LocIdxToName(LocIdx Idx) const { |
| 1167 | unsigned ID = LocIdxToLocID[Idx]; |
| 1168 | if (ID >= NumRegs) { |
| 1169 | StackSlotPos Pos = locIDToSpillIdx(ID); |
| 1170 | ID -= NumRegs; |
| 1171 | unsigned Slot = ID / NumSlotIdxes; |
| 1172 | return Twine("slot " ) |
| 1173 | .concat(Suffix: Twine(Slot).concat(Suffix: Twine(" sz " ).concat(Suffix: Twine(Pos.first) |
| 1174 | .concat(Suffix: Twine(" offs " ).concat(Suffix: Twine(Pos.second)))))) |
| 1175 | .str(); |
| 1176 | } else { |
| 1177 | return TRI.getRegAsmName(Reg: ID).str(); |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { |
| 1182 | std::string DefName = LocIdxToName(Idx: Num.getLoc()); |
| 1183 | return Num.asString(mlocname: DefName); |
| 1184 | } |
| 1185 | |
| 1186 | #ifndef NDEBUG |
| 1187 | LLVM_DUMP_METHOD void MLocTracker::dump() { |
| 1188 | for (auto Location : locations()) { |
| 1189 | std::string MLocName = LocIdxToName(Location.Value.getLoc()); |
| 1190 | std::string DefName = Location.Value.asString(MLocName); |
| 1191 | dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n" ; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { |
| 1196 | for (auto Location : locations()) { |
| 1197 | std::string foo = LocIdxToName(Location.Idx); |
| 1198 | dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n" ; |
| 1199 | } |
| 1200 | } |
| 1201 | #endif |
| 1202 | |
| 1203 | MachineInstrBuilder |
| 1204 | MLocTracker::emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps, |
| 1205 | const DebugVariable &Var, const DILocation *DILoc, |
| 1206 | const DbgValueProperties &Properties) { |
| 1207 | DebugLoc DL = DebugLoc(DILoc); |
| 1208 | |
| 1209 | const MCInstrDesc &Desc = Properties.IsVariadic |
| 1210 | ? TII.get(Opcode: TargetOpcode::DBG_VALUE_LIST) |
| 1211 | : TII.get(Opcode: TargetOpcode::DBG_VALUE); |
| 1212 | |
| 1213 | #ifdef EXPENSIVE_CHECKS |
| 1214 | assert(all_of(DbgOps, |
| 1215 | [](const ResolvedDbgOp &Op) { |
| 1216 | return Op.IsConst || !Op.Loc.isIllegal(); |
| 1217 | }) && |
| 1218 | "Did not expect illegal ops in DbgOps." ); |
| 1219 | assert((DbgOps.size() == 0 || |
| 1220 | DbgOps.size() == Properties.getLocationOpCount()) && |
| 1221 | "Expected to have either one DbgOp per MI LocationOp, or none." ); |
| 1222 | #endif |
| 1223 | |
| 1224 | auto GetRegOp = [](unsigned Reg) -> MachineOperand { |
| 1225 | return MachineOperand::CreateReg( |
| 1226 | /* Reg */ Reg, /* isDef */ false, /* isImp */ false, |
| 1227 | /* isKill */ false, /* isDead */ false, |
| 1228 | /* isUndef */ false, /* isEarlyClobber */ false, |
| 1229 | /* SubReg */ 0, /* isDebug */ true); |
| 1230 | }; |
| 1231 | |
| 1232 | SmallVector<MachineOperand> MOs; |
| 1233 | |
| 1234 | auto EmitUndef = [&]() { |
| 1235 | MOs.clear(); |
| 1236 | MOs.assign(NumElts: Properties.getLocationOpCount(), Elt: GetRegOp(0)); |
| 1237 | return BuildMI(MF, DL, MCID: Desc, IsIndirect: false, MOs, Variable: Var.getVariable(), |
| 1238 | Expr: Properties.DIExpr); |
| 1239 | }; |
| 1240 | |
| 1241 | // Don't bother passing any real operands to BuildMI if any of them would be |
| 1242 | // $noreg. |
| 1243 | if (DbgOps.empty()) |
| 1244 | return EmitUndef(); |
| 1245 | |
| 1246 | bool Indirect = Properties.Indirect; |
| 1247 | |
| 1248 | const DIExpression *Expr = Properties.DIExpr; |
| 1249 | |
| 1250 | assert(DbgOps.size() == Properties.getLocationOpCount()); |
| 1251 | |
| 1252 | // If all locations are valid, accumulate them into our list of |
| 1253 | // MachineOperands. For any spilled locations, either update the indirectness |
| 1254 | // register or apply the appropriate transformations in the DIExpression. |
| 1255 | for (size_t Idx = 0; Idx < Properties.getLocationOpCount(); ++Idx) { |
| 1256 | const ResolvedDbgOp &Op = DbgOps[Idx]; |
| 1257 | |
| 1258 | if (Op.IsConst) { |
| 1259 | MOs.push_back(Elt: Op.MO); |
| 1260 | continue; |
| 1261 | } |
| 1262 | |
| 1263 | LocIdx MLoc = Op.Loc; |
| 1264 | unsigned LocID = LocIdxToLocID[MLoc]; |
| 1265 | if (LocID >= NumRegs) { |
| 1266 | SpillLocationNo SpillID = locIDToSpill(ID: LocID); |
| 1267 | StackSlotPos StackIdx = locIDToSpillIdx(ID: LocID); |
| 1268 | unsigned short Offset = StackIdx.second; |
| 1269 | |
| 1270 | // TODO: support variables that are located in spill slots, with non-zero |
| 1271 | // offsets from the start of the spill slot. It would require some more |
| 1272 | // complex DIExpression calculations. This doesn't seem to be produced by |
| 1273 | // LLVM right now, so don't try and support it. |
| 1274 | // Accept no-subregister slots and subregisters where the offset is zero. |
| 1275 | // The consumer should already have type information to work out how large |
| 1276 | // the variable is. |
| 1277 | if (Offset == 0) { |
| 1278 | const SpillLoc &Spill = SpillLocs[SpillID.id()]; |
| 1279 | unsigned Base = Spill.SpillBase; |
| 1280 | |
| 1281 | // There are several ways we can dereference things, and several inputs |
| 1282 | // to consider: |
| 1283 | // * NRVO variables will appear with IsIndirect set, but should have |
| 1284 | // nothing else in their DIExpressions, |
| 1285 | // * Variables with DW_OP_stack_value in their expr already need an |
| 1286 | // explicit dereference of the stack location, |
| 1287 | // * Values that don't match the variable size need DW_OP_deref_size, |
| 1288 | // * Everything else can just become a simple location expression. |
| 1289 | |
| 1290 | // We need to use deref_size whenever there's a mismatch between the |
| 1291 | // size of value and the size of variable portion being read. |
| 1292 | // Additionally, we should use it whenever dealing with stack_value |
| 1293 | // fragments, to avoid the consumer having to determine the deref size |
| 1294 | // from DW_OP_piece. |
| 1295 | bool UseDerefSize = false; |
| 1296 | unsigned ValueSizeInBits = getLocSizeInBits(L: MLoc); |
| 1297 | unsigned DerefSizeInBytes = ValueSizeInBits / 8; |
| 1298 | if (auto Fragment = Var.getFragment()) { |
| 1299 | unsigned VariableSizeInBits = Fragment->SizeInBits; |
| 1300 | if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex()) |
| 1301 | UseDerefSize = true; |
| 1302 | } else if (auto Size = Var.getVariable()->getSizeInBits()) { |
| 1303 | if (*Size != ValueSizeInBits) { |
| 1304 | UseDerefSize = true; |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | // https://github.com/llvm/llvm-project/issues/64093 |
| 1309 | // in particular #issuecomment-2531264124. We use variable locations |
| 1310 | // such as DBG_VALUE $xmm0 as shorthand to refer to "the low lane of |
| 1311 | // $xmm0", and this is reflected in how DWARF is interpreted too. |
| 1312 | // However InstrRefBasedLDV tries to be smart and interprets such a |
| 1313 | // DBG_VALUE as a 128-bit reference. We then issue a DW_OP_deref_size |
| 1314 | // of 128 bits to the stack, which isn't permitted by DWARF (it's |
| 1315 | // larger than a pointer). |
| 1316 | // |
| 1317 | // Solve this for now by not using DW_OP_deref_size if it would be |
| 1318 | // illegal. Instead we'll use DW_OP_deref, and the consumer will load |
| 1319 | // the variable type from the stack, which should be correct. |
| 1320 | // |
| 1321 | // There's still a risk of imprecision when LLVM decides to use |
| 1322 | // smaller or larger value types than the source-variable type, which |
| 1323 | // manifests as too-little or too-much memory being read from the stack. |
| 1324 | // However we can't solve that without putting more type information in |
| 1325 | // debug-info. |
| 1326 | if (ValueSizeInBits > MF.getTarget().getPointerSizeInBits(AS: 0)) |
| 1327 | UseDerefSize = false; |
| 1328 | |
| 1329 | SmallVector<uint64_t, 5> OffsetOps; |
| 1330 | TRI.getOffsetOpcodes(Offset: Spill.SpillOffset, Ops&: OffsetOps); |
| 1331 | bool StackValue = false; |
| 1332 | |
| 1333 | if (Properties.Indirect) { |
| 1334 | // This is something like an NRVO variable, where the pointer has been |
| 1335 | // spilt to the stack. It should end up being a memory location, with |
| 1336 | // the pointer to the variable loaded off the stack with a deref: |
| 1337 | assert(!Expr->isImplicit()); |
| 1338 | OffsetOps.push_back(Elt: dwarf::DW_OP_deref); |
| 1339 | } else if (UseDerefSize && Expr->isSingleLocationExpression()) { |
| 1340 | // TODO: Figure out how to handle deref size issues for variadic |
| 1341 | // values. |
| 1342 | // We're loading a value off the stack that's not the same size as the |
| 1343 | // variable. Add / subtract stack offset, explicitly deref with a |
| 1344 | // size, and add DW_OP_stack_value if not already present. |
| 1345 | OffsetOps.push_back(Elt: dwarf::DW_OP_deref_size); |
| 1346 | OffsetOps.push_back(Elt: DerefSizeInBytes); |
| 1347 | StackValue = true; |
| 1348 | } else if (Expr->isComplex() || Properties.IsVariadic) { |
| 1349 | // A variable with no size ambiguity, but with extra elements in it's |
| 1350 | // expression. Manually dereference the stack location. |
| 1351 | OffsetOps.push_back(Elt: dwarf::DW_OP_deref); |
| 1352 | } else { |
| 1353 | // A plain value that has been spilt to the stack, with no further |
| 1354 | // context. Request a location expression, marking the DBG_VALUE as |
| 1355 | // IsIndirect. |
| 1356 | Indirect = true; |
| 1357 | } |
| 1358 | |
| 1359 | Expr = DIExpression::appendOpsToArg(Expr, Ops: OffsetOps, ArgNo: Idx, StackValue); |
| 1360 | MOs.push_back(Elt: GetRegOp(Base)); |
| 1361 | } else { |
| 1362 | // This is a stack location with a weird subregister offset: emit an |
| 1363 | // undef DBG_VALUE instead. |
| 1364 | return EmitUndef(); |
| 1365 | } |
| 1366 | } else { |
| 1367 | // Non-empty, non-stack slot, must be a plain register. |
| 1368 | MOs.push_back(Elt: GetRegOp(LocID)); |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | return BuildMI(MF, DL, MCID: Desc, IsIndirect: Indirect, MOs, Variable: Var.getVariable(), Expr); |
| 1373 | } |
| 1374 | |
| 1375 | /// Default construct and initialize the pass. |
| 1376 | InstrRefBasedLDV::InstrRefBasedLDV() = default; |
| 1377 | |
| 1378 | bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { |
| 1379 | unsigned Reg = MTracker->LocIdxToLocID[L]; |
| 1380 | return isCalleeSavedReg(R: Reg); |
| 1381 | } |
| 1382 | bool InstrRefBasedLDV::isCalleeSavedReg(Register R) const { |
| 1383 | for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) |
| 1384 | if (CalleeSavedRegs.test(Idx: (*RAI).id())) |
| 1385 | return true; |
| 1386 | return false; |
| 1387 | } |
| 1388 | |
| 1389 | //===----------------------------------------------------------------------===// |
| 1390 | // Debug Range Extension Implementation |
| 1391 | //===----------------------------------------------------------------------===// |
| 1392 | |
| 1393 | #ifndef NDEBUG |
| 1394 | // Something to restore in the future. |
| 1395 | // void InstrRefBasedLDV::printVarLocInMBB(..) |
| 1396 | #endif |
| 1397 | |
| 1398 | std::optional<SpillLocationNo> |
| 1399 | InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { |
| 1400 | assert(MI.hasOneMemOperand() && |
| 1401 | "Spill instruction does not have exactly one memory operand?" ); |
| 1402 | auto MMOI = MI.memoperands_begin(); |
| 1403 | const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); |
| 1404 | assert(PVal->kind() == PseudoSourceValue::FixedStack && |
| 1405 | "Inconsistent memory operand in spill instruction" ); |
| 1406 | int FI = cast<FixedStackPseudoSourceValue>(Val: PVal)->getFrameIndex(); |
| 1407 | const MachineBasicBlock *MBB = MI.getParent(); |
| 1408 | Register Reg; |
| 1409 | StackOffset Offset = TFI->getFrameIndexReference(MF: *MBB->getParent(), FI, FrameReg&: Reg); |
| 1410 | return MTracker->getOrTrackSpillLoc(L: {.SpillBase: Reg, .SpillOffset: Offset}); |
| 1411 | } |
| 1412 | |
| 1413 | std::optional<LocIdx> |
| 1414 | InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) { |
| 1415 | std::optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI); |
| 1416 | if (!SpillLoc) |
| 1417 | return std::nullopt; |
| 1418 | |
| 1419 | // Where in the stack slot is this value defined -- i.e., what size of value |
| 1420 | // is this? An important question, because it could be loaded into a register |
| 1421 | // from the stack at some point. Happily the memory operand will tell us |
| 1422 | // the size written to the stack. |
| 1423 | auto *MemOperand = *MI.memoperands_begin(); |
| 1424 | LocationSize SizeInBits = MemOperand->getSizeInBits(); |
| 1425 | assert(SizeInBits.hasValue() && "Expected to find a valid size!" ); |
| 1426 | |
| 1427 | // Find that position in the stack indexes we're tracking. |
| 1428 | auto IdxIt = MTracker->StackSlotIdxes.find(Val: {SizeInBits.getValue(), 0}); |
| 1429 | if (IdxIt == MTracker->StackSlotIdxes.end()) |
| 1430 | // That index is not tracked. This is suprising, and unlikely to ever |
| 1431 | // occur, but the safe action is to indicate the variable is optimised out. |
| 1432 | return std::nullopt; |
| 1433 | |
| 1434 | unsigned SpillID = MTracker->getSpillIDWithIdx(Spill: *SpillLoc, Idx: IdxIt->second); |
| 1435 | return MTracker->getSpillMLoc(SpillID); |
| 1436 | } |
| 1437 | |
| 1438 | /// End all previous ranges related to @MI and start a new range from @MI |
| 1439 | /// if it is a DBG_VALUE instr. |
| 1440 | bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { |
| 1441 | if (!MI.isDebugValue()) |
| 1442 | return false; |
| 1443 | |
| 1444 | assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && |
| 1445 | "Expected inlined-at fields to agree" ); |
| 1446 | |
| 1447 | // If there are no instructions in this lexical scope, do no location tracking |
| 1448 | // at all, this variable shouldn't get a legitimate location range. |
| 1449 | auto *Scope = LS.findLexicalScope(DL: MI.getDebugLoc().get()); |
| 1450 | if (Scope == nullptr) |
| 1451 | return true; // handled it; by doing nothing |
| 1452 | |
| 1453 | // MLocTracker needs to know that this register is read, even if it's only |
| 1454 | // read by a debug inst. |
| 1455 | for (const MachineOperand &MO : MI.debug_operands()) |
| 1456 | if (MO.isReg() && MO.getReg() != 0) |
| 1457 | (void)MTracker->readReg(R: MO.getReg()); |
| 1458 | |
| 1459 | // If we're preparing for the second analysis (variables), the machine value |
| 1460 | // locations are already solved, and we report this DBG_VALUE and the value |
| 1461 | // it refers to to VLocTracker. |
| 1462 | if (VTracker) { |
| 1463 | SmallVector<DbgOpID> DebugOps; |
| 1464 | // Feed defVar the new variable location, or if this is a DBG_VALUE $noreg, |
| 1465 | // feed defVar None. |
| 1466 | if (!MI.isUndefDebugValue()) { |
| 1467 | for (const MachineOperand &MO : MI.debug_operands()) { |
| 1468 | // There should be no undef registers here, as we've screened for undef |
| 1469 | // debug values. |
| 1470 | if (MO.isReg()) { |
| 1471 | DebugOps.push_back(Elt: DbgOpStore.insert(Op: MTracker->readReg(R: MO.getReg()))); |
| 1472 | } else if (MO.isImm() || MO.isFPImm() || MO.isCImm()) { |
| 1473 | DebugOps.push_back(Elt: DbgOpStore.insert(Op: MO)); |
| 1474 | } else { |
| 1475 | llvm_unreachable("Unexpected debug operand type." ); |
| 1476 | } |
| 1477 | } |
| 1478 | } |
| 1479 | VTracker->defVar(MI, Properties: DbgValueProperties(MI), DebugOps); |
| 1480 | } |
| 1481 | |
| 1482 | // If performing final tracking of transfers, report this variable definition |
| 1483 | // to the TransferTracker too. |
| 1484 | if (TTracker) |
| 1485 | TTracker->redefVar(MI); |
| 1486 | return true; |
| 1487 | } |
| 1488 | |
| 1489 | std::optional<ValueIDNum> InstrRefBasedLDV::getValueForInstrRef( |
| 1490 | unsigned InstNo, unsigned OpNo, MachineInstr &MI, |
| 1491 | const FuncValueTable *MLiveOuts, const FuncValueTable *MLiveIns) { |
| 1492 | // Various optimizations may have happened to the value during codegen, |
| 1493 | // recorded in the value substitution table. Apply any substitutions to |
| 1494 | // the instruction / operand number in this DBG_INSTR_REF, and collect |
| 1495 | // any subregister extractions performed during optimization. |
| 1496 | const MachineFunction &MF = *MI.getParent()->getParent(); |
| 1497 | |
| 1498 | // Create dummy substitution with Src set, for lookup. |
| 1499 | auto SoughtSub = |
| 1500 | MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); |
| 1501 | |
| 1502 | SmallVector<unsigned, 4> SeenSubregs; |
| 1503 | auto LowerBoundIt = llvm::lower_bound(Range: MF.DebugValueSubstitutions, Value&: SoughtSub); |
| 1504 | while (LowerBoundIt != MF.DebugValueSubstitutions.end() && |
| 1505 | LowerBoundIt->Src == SoughtSub.Src) { |
| 1506 | std::tie(args&: InstNo, args&: OpNo) = LowerBoundIt->Dest; |
| 1507 | SoughtSub.Src = LowerBoundIt->Dest; |
| 1508 | if (unsigned Subreg = LowerBoundIt->Subreg) |
| 1509 | SeenSubregs.push_back(Elt: Subreg); |
| 1510 | LowerBoundIt = llvm::lower_bound(Range: MF.DebugValueSubstitutions, Value&: SoughtSub); |
| 1511 | } |
| 1512 | |
| 1513 | // Default machine value number is <None> -- if no instruction defines |
| 1514 | // the corresponding value, it must have been optimized out. |
| 1515 | std::optional<ValueIDNum> NewID; |
| 1516 | |
| 1517 | // Try to lookup the instruction number, and find the machine value number |
| 1518 | // that it defines. It could be an instruction, or a PHI. |
| 1519 | auto InstrIt = DebugInstrNumToInstr.find(x: InstNo); |
| 1520 | auto PHIIt = llvm::lower_bound(Range&: DebugPHINumToValue, Value&: InstNo); |
| 1521 | if (InstrIt != DebugInstrNumToInstr.end()) { |
| 1522 | const MachineInstr &TargetInstr = *InstrIt->second.first; |
| 1523 | uint64_t BlockNo = TargetInstr.getParent()->getNumber(); |
| 1524 | |
| 1525 | // Pick out the designated operand. It might be a memory reference, if |
| 1526 | // a register def was folded into a stack store. |
| 1527 | if (OpNo == MachineFunction::DebugOperandMemNumber && |
| 1528 | TargetInstr.hasOneMemOperand()) { |
| 1529 | std::optional<LocIdx> L = findLocationForMemOperand(MI: TargetInstr); |
| 1530 | if (L) |
| 1531 | NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L); |
| 1532 | } else if (OpNo != MachineFunction::DebugOperandMemNumber) { |
| 1533 | // Permit the debug-info to be completely wrong: identifying a nonexistant |
| 1534 | // operand, or one that is not a register definition, means something |
| 1535 | // unexpected happened during optimisation. Broken debug-info, however, |
| 1536 | // shouldn't crash the compiler -- instead leave the variable value as |
| 1537 | // None, which will make it appear "optimised out". |
| 1538 | if (OpNo < TargetInstr.getNumOperands()) { |
| 1539 | const MachineOperand &MO = TargetInstr.getOperand(i: OpNo); |
| 1540 | |
| 1541 | if (MO.isReg() && MO.isDef() && MO.getReg()) { |
| 1542 | unsigned LocID = MTracker->getLocID(Reg: MO.getReg()); |
| 1543 | LocIdx L = MTracker->LocIDToLocIdx[LocID]; |
| 1544 | NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | if (!NewID) { |
| 1549 | LLVM_DEBUG( |
| 1550 | { dbgs() << "Seen instruction reference to illegal operand\n" ; }); |
| 1551 | } |
| 1552 | } |
| 1553 | // else: NewID is left as None. |
| 1554 | } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { |
| 1555 | // It's actually a PHI value. Which value it is might not be obvious, use |
| 1556 | // the resolver helper to find out. |
| 1557 | assert(MLiveOuts && MLiveIns); |
| 1558 | NewID = resolveDbgPHIs(MF&: *MI.getParent()->getParent(), MLiveOuts: *MLiveOuts, MLiveIns: *MLiveIns, |
| 1559 | Here&: MI, InstrNum: InstNo); |
| 1560 | } |
| 1561 | |
| 1562 | // Apply any subregister extractions, in reverse. We might have seen code |
| 1563 | // like this: |
| 1564 | // CALL64 @foo, implicit-def $rax |
| 1565 | // %0:gr64 = COPY $rax |
| 1566 | // %1:gr32 = COPY %0.sub_32bit |
| 1567 | // %2:gr16 = COPY %1.sub_16bit |
| 1568 | // %3:gr8 = COPY %2.sub_8bit |
| 1569 | // In which case each copy would have been recorded as a substitution with |
| 1570 | // a subregister qualifier. Apply those qualifiers now. |
| 1571 | if (NewID && !SeenSubregs.empty()) { |
| 1572 | unsigned Offset = 0; |
| 1573 | unsigned Size = 0; |
| 1574 | |
| 1575 | // Look at each subregister that we passed through, and progressively |
| 1576 | // narrow in, accumulating any offsets that occur. Substitutions should |
| 1577 | // only ever be the same or narrower width than what they read from; |
| 1578 | // iterate in reverse order so that we go from wide to small. |
| 1579 | for (unsigned Subreg : reverse(C&: SeenSubregs)) { |
| 1580 | unsigned ThisSize = TRI->getSubRegIdxSize(Idx: Subreg); |
| 1581 | unsigned ThisOffset = TRI->getSubRegIdxOffset(Idx: Subreg); |
| 1582 | Offset += ThisOffset; |
| 1583 | Size = (Size == 0) ? ThisSize : std::min(a: Size, b: ThisSize); |
| 1584 | } |
| 1585 | |
| 1586 | // If that worked, look for an appropriate subregister with the register |
| 1587 | // where the define happens. Don't look at values that were defined during |
| 1588 | // a stack write: we can't currently express register locations within |
| 1589 | // spills. |
| 1590 | LocIdx L = NewID->getLoc(); |
| 1591 | if (NewID && !MTracker->isSpill(Idx: L)) { |
| 1592 | // Find the register class for the register where this def happened. |
| 1593 | // FIXME: no index for this? |
| 1594 | Register Reg = MTracker->LocIdxToLocID[L]; |
| 1595 | const TargetRegisterClass *TRC = nullptr; |
| 1596 | for (const auto *TRCI : TRI->regclasses()) |
| 1597 | if (TRCI->contains(Reg)) |
| 1598 | TRC = TRCI; |
| 1599 | assert(TRC && "Couldn't find target register class?" ); |
| 1600 | |
| 1601 | // If the register we have isn't the right size or in the right place, |
| 1602 | // Try to find a subregister inside it. |
| 1603 | unsigned MainRegSize = TRI->getRegSizeInBits(RC: *TRC); |
| 1604 | if (Size != MainRegSize || Offset) { |
| 1605 | // Enumerate all subregisters, searching. |
| 1606 | Register NewReg = 0; |
| 1607 | for (MCPhysReg SR : TRI->subregs(Reg)) { |
| 1608 | unsigned Subreg = TRI->getSubRegIndex(RegNo: Reg, SubRegNo: SR); |
| 1609 | unsigned SubregSize = TRI->getSubRegIdxSize(Idx: Subreg); |
| 1610 | unsigned SubregOffset = TRI->getSubRegIdxOffset(Idx: Subreg); |
| 1611 | if (SubregSize == Size && SubregOffset == Offset) { |
| 1612 | NewReg = SR; |
| 1613 | break; |
| 1614 | } |
| 1615 | } |
| 1616 | |
| 1617 | // If we didn't find anything: there's no way to express our value. |
| 1618 | if (!NewReg) { |
| 1619 | NewID = std::nullopt; |
| 1620 | } else { |
| 1621 | // Re-state the value as being defined within the subregister |
| 1622 | // that we found. |
| 1623 | LocIdx NewLoc = MTracker->lookupOrTrackRegister(ID: NewReg); |
| 1624 | NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); |
| 1625 | } |
| 1626 | } |
| 1627 | } else { |
| 1628 | // If we can't handle subregisters, unset the new value. |
| 1629 | NewID = std::nullopt; |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | return NewID; |
| 1634 | } |
| 1635 | |
| 1636 | bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, |
| 1637 | const FuncValueTable *MLiveOuts, |
| 1638 | const FuncValueTable *MLiveIns) { |
| 1639 | if (!MI.isDebugRef()) |
| 1640 | return false; |
| 1641 | |
| 1642 | // Only handle this instruction when we are building the variable value |
| 1643 | // transfer function. |
| 1644 | if (!VTracker && !TTracker) |
| 1645 | return false; |
| 1646 | |
| 1647 | const DILocalVariable *Var = MI.getDebugVariable(); |
| 1648 | const DIExpression *Expr = MI.getDebugExpression(); |
| 1649 | const DILocation *DebugLoc = MI.getDebugLoc(); |
| 1650 | const DILocation *InlinedAt = DebugLoc->getInlinedAt(); |
| 1651 | assert(Var->isValidLocationForIntrinsic(DebugLoc) && |
| 1652 | "Expected inlined-at fields to agree" ); |
| 1653 | |
| 1654 | DebugVariable V(Var, Expr, InlinedAt); |
| 1655 | |
| 1656 | auto *Scope = LS.findLexicalScope(DL: MI.getDebugLoc().get()); |
| 1657 | if (Scope == nullptr) |
| 1658 | return true; // Handled by doing nothing. This variable is never in scope. |
| 1659 | |
| 1660 | SmallVector<DbgOpID> DbgOpIDs; |
| 1661 | for (const MachineOperand &MO : MI.debug_operands()) { |
| 1662 | if (!MO.isDbgInstrRef()) { |
| 1663 | assert(!MO.isReg() && "DBG_INSTR_REF should not contain registers" ); |
| 1664 | DbgOpID ConstOpID = DbgOpStore.insert(Op: DbgOp(MO)); |
| 1665 | DbgOpIDs.push_back(Elt: ConstOpID); |
| 1666 | continue; |
| 1667 | } |
| 1668 | |
| 1669 | unsigned InstNo = MO.getInstrRefInstrIndex(); |
| 1670 | unsigned OpNo = MO.getInstrRefOpIndex(); |
| 1671 | |
| 1672 | // Default machine value number is <None> -- if no instruction defines |
| 1673 | // the corresponding value, it must have been optimized out. |
| 1674 | std::optional<ValueIDNum> NewID = |
| 1675 | getValueForInstrRef(InstNo, OpNo, MI, MLiveOuts, MLiveIns); |
| 1676 | // We have a value number or std::nullopt. If the latter, then kill the |
| 1677 | // entire debug value. |
| 1678 | if (NewID) { |
| 1679 | DbgOpIDs.push_back(Elt: DbgOpStore.insert(Op: *NewID)); |
| 1680 | } else { |
| 1681 | DbgOpIDs.clear(); |
| 1682 | break; |
| 1683 | } |
| 1684 | } |
| 1685 | |
| 1686 | // We have a DbgOpID for every value or for none. Tell the variable value |
| 1687 | // tracker about it. The rest of this LiveDebugValues implementation acts |
| 1688 | // exactly the same for DBG_INSTR_REFs as DBG_VALUEs (just, the former can |
| 1689 | // refer to values that aren't immediately available). |
| 1690 | DbgValueProperties Properties(Expr, false, true); |
| 1691 | if (VTracker) |
| 1692 | VTracker->defVar(MI, Properties, DebugOps: DbgOpIDs); |
| 1693 | |
| 1694 | // If we're on the final pass through the function, decompose this INSTR_REF |
| 1695 | // into a plain DBG_VALUE. |
| 1696 | if (!TTracker) |
| 1697 | return true; |
| 1698 | |
| 1699 | // Fetch the concrete DbgOps now, as we will need them later. |
| 1700 | SmallVector<DbgOp> DbgOps; |
| 1701 | for (DbgOpID OpID : DbgOpIDs) { |
| 1702 | DbgOps.push_back(Elt: DbgOpStore.find(ID: OpID)); |
| 1703 | } |
| 1704 | |
| 1705 | // Pick a location for the machine value number, if such a location exists. |
| 1706 | // (This information could be stored in TransferTracker to make it faster). |
| 1707 | SmallDenseMap<ValueIDNum, TransferTracker::LocationAndQuality> FoundLocs; |
| 1708 | SmallVector<ValueIDNum> ValuesToFind; |
| 1709 | // Initialized the preferred-location map with illegal locations, to be |
| 1710 | // filled in later. |
| 1711 | for (const DbgOp &Op : DbgOps) { |
| 1712 | if (!Op.IsConst) |
| 1713 | if (FoundLocs.try_emplace(Key: Op.ID).second) |
| 1714 | ValuesToFind.push_back(Elt: Op.ID); |
| 1715 | } |
| 1716 | |
| 1717 | for (auto Location : MTracker->locations()) { |
| 1718 | LocIdx CurL = Location.Idx; |
| 1719 | ValueIDNum ID = MTracker->readMLoc(L: CurL); |
| 1720 | auto ValueToFindIt = find(Range&: ValuesToFind, Val: ID); |
| 1721 | if (ValueToFindIt == ValuesToFind.end()) |
| 1722 | continue; |
| 1723 | auto &Previous = FoundLocs.find(Val: ID)->second; |
| 1724 | // If this is the first location with that value, pick it. Otherwise, |
| 1725 | // consider whether it's a "longer term" location. |
| 1726 | std::optional<TransferTracker::LocationQuality> ReplacementQuality = |
| 1727 | TTracker->getLocQualityIfBetter(L: CurL, Min: Previous.getQuality()); |
| 1728 | if (ReplacementQuality) { |
| 1729 | Previous = TransferTracker::LocationAndQuality(CurL, *ReplacementQuality); |
| 1730 | if (Previous.isBest()) { |
| 1731 | ValuesToFind.erase(CI: ValueToFindIt); |
| 1732 | if (ValuesToFind.empty()) |
| 1733 | break; |
| 1734 | } |
| 1735 | } |
| 1736 | } |
| 1737 | |
| 1738 | SmallVector<ResolvedDbgOp> NewLocs; |
| 1739 | for (const DbgOp &DbgOp : DbgOps) { |
| 1740 | if (DbgOp.IsConst) { |
| 1741 | NewLocs.push_back(Elt: DbgOp.MO); |
| 1742 | continue; |
| 1743 | } |
| 1744 | LocIdx FoundLoc = FoundLocs.find(Val: DbgOp.ID)->second.getLoc(); |
| 1745 | if (FoundLoc.isIllegal()) { |
| 1746 | NewLocs.clear(); |
| 1747 | break; |
| 1748 | } |
| 1749 | NewLocs.push_back(Elt: FoundLoc); |
| 1750 | } |
| 1751 | // Tell transfer tracker that the variable value has changed. |
| 1752 | TTracker->redefVar(MI, Properties, NewLocs); |
| 1753 | |
| 1754 | // If there were values with no location, but all such values are defined in |
| 1755 | // later instructions in this block, this is a block-local use-before-def. |
| 1756 | if (!DbgOps.empty() && NewLocs.empty()) { |
| 1757 | bool IsValidUseBeforeDef = true; |
| 1758 | uint64_t LastUseBeforeDef = 0; |
| 1759 | for (auto ValueLoc : FoundLocs) { |
| 1760 | ValueIDNum NewID = ValueLoc.first; |
| 1761 | LocIdx FoundLoc = ValueLoc.second.getLoc(); |
| 1762 | if (!FoundLoc.isIllegal()) |
| 1763 | continue; |
| 1764 | // If we have an value with no location that is not defined in this block, |
| 1765 | // then it has no location in this block, leaving this value undefined. |
| 1766 | if (NewID.getBlock() != CurBB || NewID.getInst() <= CurInst) { |
| 1767 | IsValidUseBeforeDef = false; |
| 1768 | break; |
| 1769 | } |
| 1770 | LastUseBeforeDef = std::max(a: LastUseBeforeDef, b: NewID.getInst()); |
| 1771 | } |
| 1772 | if (IsValidUseBeforeDef) { |
| 1773 | DebugVariableID VID = DVMap.insertDVID(Var&: V, Loc: MI.getDebugLoc().get()); |
| 1774 | TTracker->addUseBeforeDef(VarID: VID, Properties: {MI.getDebugExpression(), false, true}, |
| 1775 | DbgOps, Inst: LastUseBeforeDef); |
| 1776 | } |
| 1777 | } |
| 1778 | |
| 1779 | // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. |
| 1780 | // This DBG_VALUE is potentially a $noreg / undefined location, if |
| 1781 | // FoundLoc is illegal. |
| 1782 | // (XXX -- could morph the DBG_INSTR_REF in the future). |
| 1783 | MachineInstr *DbgMI = |
| 1784 | MTracker->emitLoc(DbgOps: NewLocs, Var: V, DILoc: MI.getDebugLoc().get(), Properties); |
| 1785 | DebugVariableID ID = DVMap.getDVID(Var: V); |
| 1786 | |
| 1787 | TTracker->PendingDbgValues.push_back(Elt: std::make_pair(x&: ID, y&: DbgMI)); |
| 1788 | TTracker->flushDbgValues(Pos: MI.getIterator(), MBB: nullptr); |
| 1789 | return true; |
| 1790 | } |
| 1791 | |
| 1792 | bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { |
| 1793 | if (!MI.isDebugPHI()) |
| 1794 | return false; |
| 1795 | |
| 1796 | // Analyse these only when solving the machine value location problem. |
| 1797 | if (VTracker || TTracker) |
| 1798 | return true; |
| 1799 | |
| 1800 | // First operand is the value location, either a stack slot or register. |
| 1801 | // Second is the debug instruction number of the original PHI. |
| 1802 | const MachineOperand &MO = MI.getOperand(i: 0); |
| 1803 | unsigned InstrNum = MI.getOperand(i: 1).getImm(); |
| 1804 | |
| 1805 | auto EmitBadPHI = [this, &MI, InstrNum]() -> bool { |
| 1806 | // Helper lambda to do any accounting when we fail to find a location for |
| 1807 | // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a |
| 1808 | // dead stack slot, for example. |
| 1809 | // Record a DebugPHIRecord with an empty value + location. |
| 1810 | DebugPHINumToValue.push_back( |
| 1811 | Elt: {.InstrNum: InstrNum, .MBB: MI.getParent(), .ValueRead: std::nullopt, .ReadLoc: std::nullopt}); |
| 1812 | return true; |
| 1813 | }; |
| 1814 | |
| 1815 | if (MO.isReg() && MO.getReg()) { |
| 1816 | // The value is whatever's currently in the register. Read and record it, |
| 1817 | // to be analysed later. |
| 1818 | Register Reg = MO.getReg(); |
| 1819 | ValueIDNum Num = MTracker->readReg(R: Reg); |
| 1820 | auto PHIRec = DebugPHIRecord( |
| 1821 | {.InstrNum: InstrNum, .MBB: MI.getParent(), .ValueRead: Num, .ReadLoc: MTracker->lookupOrTrackRegister(ID: Reg)}); |
| 1822 | DebugPHINumToValue.push_back(Elt: PHIRec); |
| 1823 | |
| 1824 | // Ensure this register is tracked. |
| 1825 | for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) |
| 1826 | MTracker->lookupOrTrackRegister(ID: *RAI); |
| 1827 | } else if (MO.isFI()) { |
| 1828 | // The value is whatever's in this stack slot. |
| 1829 | unsigned FI = MO.getIndex(); |
| 1830 | |
| 1831 | // If the stack slot is dead, then this was optimized away. |
| 1832 | // FIXME: stack slot colouring should account for slots that get merged. |
| 1833 | if (MFI->isDeadObjectIndex(ObjectIdx: FI)) |
| 1834 | return EmitBadPHI(); |
| 1835 | |
| 1836 | // Identify this spill slot, ensure it's tracked. |
| 1837 | Register Base; |
| 1838 | StackOffset Offs = TFI->getFrameIndexReference(MF: *MI.getMF(), FI, FrameReg&: Base); |
| 1839 | SpillLoc SL = {.SpillBase: Base, .SpillOffset: Offs}; |
| 1840 | std::optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(L: SL); |
| 1841 | |
| 1842 | // We might be able to find a value, but have chosen not to, to avoid |
| 1843 | // tracking too much stack information. |
| 1844 | if (!SpillNo) |
| 1845 | return EmitBadPHI(); |
| 1846 | |
| 1847 | // Any stack location DBG_PHI should have an associate bit-size. |
| 1848 | assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?" ); |
| 1849 | unsigned slotBitSize = MI.getOperand(i: 2).getImm(); |
| 1850 | |
| 1851 | unsigned SpillID = MTracker->getLocID(Spill: *SpillNo, Idx: {slotBitSize, 0}); |
| 1852 | LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID); |
| 1853 | ValueIDNum Result = MTracker->readMLoc(L: SpillLoc); |
| 1854 | |
| 1855 | // Record this DBG_PHI for later analysis. |
| 1856 | auto DbgPHI = DebugPHIRecord({.InstrNum: InstrNum, .MBB: MI.getParent(), .ValueRead: Result, .ReadLoc: SpillLoc}); |
| 1857 | DebugPHINumToValue.push_back(Elt: DbgPHI); |
| 1858 | } else { |
| 1859 | // Else: if the operand is neither a legal register or a stack slot, then |
| 1860 | // we're being fed illegal debug-info. Record an empty PHI, so that any |
| 1861 | // debug users trying to read this number will be put off trying to |
| 1862 | // interpret the value. |
| 1863 | LLVM_DEBUG( |
| 1864 | { dbgs() << "Seen DBG_PHI with unrecognised operand format\n" ; }); |
| 1865 | return EmitBadPHI(); |
| 1866 | } |
| 1867 | |
| 1868 | return true; |
| 1869 | } |
| 1870 | |
| 1871 | void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { |
| 1872 | // Meta Instructions do not affect the debug liveness of any register they |
| 1873 | // define. |
| 1874 | if (MI.isImplicitDef()) { |
| 1875 | // Except when there's an implicit def, and the location it's defining has |
| 1876 | // no value number. The whole point of an implicit def is to announce that |
| 1877 | // the register is live, without be specific about it's value. So define |
| 1878 | // a value if there isn't one already. |
| 1879 | ValueIDNum Num = MTracker->readReg(R: MI.getOperand(i: 0).getReg()); |
| 1880 | // Has a legitimate value -> ignore the implicit def. |
| 1881 | if (Num.getLoc() != 0) |
| 1882 | return; |
| 1883 | // Otherwise, def it here. |
| 1884 | } else if (MI.isMetaInstruction()) |
| 1885 | return; |
| 1886 | |
| 1887 | // We always ignore SP defines on call instructions, they don't actually |
| 1888 | // change the value of the stack pointer... except for win32's _chkstk. This |
| 1889 | // is rare: filter quickly for the common case (no stack adjustments, not a |
| 1890 | // call, etc). If it is a call that modifies SP, recognise the SP register |
| 1891 | // defs. |
| 1892 | bool CallChangesSP = false; |
| 1893 | if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(i: 0).isSymbol() && |
| 1894 | !strcmp(s1: MI.getOperand(i: 0).getSymbolName(), s2: StackProbeSymbolName.data())) |
| 1895 | CallChangesSP = true; |
| 1896 | |
| 1897 | // Test whether we should ignore a def of this register due to it being part |
| 1898 | // of the stack pointer. |
| 1899 | auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool { |
| 1900 | if (CallChangesSP) |
| 1901 | return false; |
| 1902 | return MI.isCall() && MTracker->SPAliases.count(V: R); |
| 1903 | }; |
| 1904 | |
| 1905 | // Find the regs killed by MI, and find regmasks of preserved regs. |
| 1906 | // Max out the number of statically allocated elements in `DeadRegs`, as this |
| 1907 | // prevents fallback to std::set::count() operations. |
| 1908 | SmallSet<uint32_t, 32> DeadRegs; |
| 1909 | SmallVector<const uint32_t *, 4> RegMasks; |
| 1910 | SmallVector<const MachineOperand *, 4> RegMaskPtrs; |
| 1911 | for (const MachineOperand &MO : MI.operands()) { |
| 1912 | // Determine whether the operand is a register def. |
| 1913 | if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() && |
| 1914 | !IgnoreSPAlias(MO.getReg())) { |
| 1915 | // Remove ranges of all aliased registers. |
| 1916 | for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) |
| 1917 | // FIXME: Can we break out of this loop early if no insertion occurs? |
| 1918 | DeadRegs.insert(V: (*RAI).id()); |
| 1919 | } else if (MO.isRegMask()) { |
| 1920 | RegMasks.push_back(Elt: MO.getRegMask()); |
| 1921 | RegMaskPtrs.push_back(Elt: &MO); |
| 1922 | } |
| 1923 | } |
| 1924 | |
| 1925 | // Tell MLocTracker about all definitions, of regmasks and otherwise. |
| 1926 | for (uint32_t DeadReg : DeadRegs) |
| 1927 | MTracker->defReg(R: DeadReg, BB: CurBB, Inst: CurInst); |
| 1928 | |
| 1929 | for (const auto *MO : RegMaskPtrs) |
| 1930 | MTracker->writeRegMask(MO, CurBB, InstID: CurInst); |
| 1931 | |
| 1932 | // If this instruction writes to a spill slot, def that slot. |
| 1933 | if (hasFoldedStackStore(MI)) { |
| 1934 | if (std::optional<SpillLocationNo> SpillNo = |
| 1935 | extractSpillBaseRegAndOffset(MI)) { |
| 1936 | for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { |
| 1937 | unsigned SpillID = MTracker->getSpillIDWithIdx(Spill: *SpillNo, Idx: I); |
| 1938 | LocIdx L = MTracker->getSpillMLoc(SpillID); |
| 1939 | MTracker->setMLoc(L, Num: ValueIDNum(CurBB, CurInst, L)); |
| 1940 | } |
| 1941 | } |
| 1942 | } |
| 1943 | |
| 1944 | if (!TTracker) |
| 1945 | return; |
| 1946 | |
| 1947 | // When committing variable values to locations: tell transfer tracker that |
| 1948 | // we've clobbered things. It may be able to recover the variable from a |
| 1949 | // different location. |
| 1950 | |
| 1951 | // Inform TTracker about any direct clobbers. |
| 1952 | for (uint32_t DeadReg : DeadRegs) { |
| 1953 | LocIdx Loc = MTracker->lookupOrTrackRegister(ID: DeadReg); |
| 1954 | TTracker->clobberMloc(MLoc: Loc, Pos: MI.getIterator(), MakeUndef: false); |
| 1955 | } |
| 1956 | |
| 1957 | // Look for any clobbers performed by a register mask. Only test locations |
| 1958 | // that are actually being tracked. |
| 1959 | if (!RegMaskPtrs.empty()) { |
| 1960 | for (auto L : MTracker->locations()) { |
| 1961 | // Stack locations can't be clobbered by regmasks. |
| 1962 | if (MTracker->isSpill(Idx: L.Idx)) |
| 1963 | continue; |
| 1964 | |
| 1965 | Register Reg = MTracker->LocIdxToLocID[L.Idx]; |
| 1966 | if (IgnoreSPAlias(Reg)) |
| 1967 | continue; |
| 1968 | |
| 1969 | for (const auto *MO : RegMaskPtrs) |
| 1970 | if (MO->clobbersPhysReg(PhysReg: Reg)) |
| 1971 | TTracker->clobberMloc(MLoc: L.Idx, Pos: MI.getIterator(), MakeUndef: false); |
| 1972 | } |
| 1973 | } |
| 1974 | |
| 1975 | // Tell TTracker about any folded stack store. |
| 1976 | if (hasFoldedStackStore(MI)) { |
| 1977 | if (std::optional<SpillLocationNo> SpillNo = |
| 1978 | extractSpillBaseRegAndOffset(MI)) { |
| 1979 | for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { |
| 1980 | unsigned SpillID = MTracker->getSpillIDWithIdx(Spill: *SpillNo, Idx: I); |
| 1981 | LocIdx L = MTracker->getSpillMLoc(SpillID); |
| 1982 | TTracker->clobberMloc(MLoc: L, Pos: MI.getIterator(), MakeUndef: true); |
| 1983 | } |
| 1984 | } |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { |
| 1989 | // In all circumstances, re-def all aliases. It's definitely a new value now. |
| 1990 | for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI) |
| 1991 | MTracker->defReg(R: *RAI, BB: CurBB, Inst: CurInst); |
| 1992 | |
| 1993 | ValueIDNum SrcValue = MTracker->readReg(R: SrcRegNum); |
| 1994 | MTracker->setReg(R: DstRegNum, ValueID: SrcValue); |
| 1995 | |
| 1996 | // Copy subregisters from one location to another. |
| 1997 | for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { |
| 1998 | unsigned SrcSubReg = SRI.getSubReg(); |
| 1999 | unsigned SubRegIdx = SRI.getSubRegIndex(); |
| 2000 | unsigned DstSubReg = TRI->getSubReg(Reg: DstRegNum, Idx: SubRegIdx); |
| 2001 | if (!DstSubReg) |
| 2002 | continue; |
| 2003 | |
| 2004 | // Do copy. There are two matching subregisters, the source value should |
| 2005 | // have been def'd when the super-reg was, the latter might not be tracked |
| 2006 | // yet. |
| 2007 | // This will force SrcSubReg to be tracked, if it isn't yet. Will read |
| 2008 | // mphi values if it wasn't tracked. |
| 2009 | LocIdx SrcL = MTracker->lookupOrTrackRegister(ID: SrcSubReg); |
| 2010 | LocIdx DstL = MTracker->lookupOrTrackRegister(ID: DstSubReg); |
| 2011 | (void)SrcL; |
| 2012 | (void)DstL; |
| 2013 | ValueIDNum CpyValue = MTracker->readReg(R: SrcSubReg); |
| 2014 | |
| 2015 | MTracker->setReg(R: DstSubReg, ValueID: CpyValue); |
| 2016 | } |
| 2017 | } |
| 2018 | |
| 2019 | std::optional<SpillLocationNo> |
| 2020 | InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, |
| 2021 | MachineFunction *MF) { |
| 2022 | // TODO: Handle multiple stores folded into one. |
| 2023 | if (!MI.hasOneMemOperand()) |
| 2024 | return std::nullopt; |
| 2025 | |
| 2026 | // Reject any memory operand that's aliased -- we can't guarantee its value. |
| 2027 | auto MMOI = MI.memoperands_begin(); |
| 2028 | const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); |
| 2029 | if (PVal->isAliased(MFI)) |
| 2030 | return std::nullopt; |
| 2031 | |
| 2032 | if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) |
| 2033 | return std::nullopt; // This is not a spill instruction, since no valid size |
| 2034 | // was returned from either function. |
| 2035 | |
| 2036 | return extractSpillBaseRegAndOffset(MI); |
| 2037 | } |
| 2038 | |
| 2039 | bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, |
| 2040 | MachineFunction *MF, unsigned &Reg) { |
| 2041 | if (!isSpillInstruction(MI, MF)) |
| 2042 | return false; |
| 2043 | |
| 2044 | int FI; |
| 2045 | Reg = TII->isStoreToStackSlotPostFE(MI, FrameIndex&: FI); |
| 2046 | return Reg != 0; |
| 2047 | } |
| 2048 | |
| 2049 | std::optional<SpillLocationNo> |
| 2050 | InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, |
| 2051 | MachineFunction *MF, unsigned &Reg) { |
| 2052 | if (!MI.hasOneMemOperand()) |
| 2053 | return std::nullopt; |
| 2054 | |
| 2055 | // FIXME: Handle folded restore instructions with more than one memory |
| 2056 | // operand. |
| 2057 | if (MI.getRestoreSize(TII)) { |
| 2058 | Reg = MI.getOperand(i: 0).getReg(); |
| 2059 | return extractSpillBaseRegAndOffset(MI); |
| 2060 | } |
| 2061 | return std::nullopt; |
| 2062 | } |
| 2063 | |
| 2064 | bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { |
| 2065 | // XXX -- it's too difficult to implement VarLocBasedImpl's stack location |
| 2066 | // limitations under the new model. Therefore, when comparing them, compare |
| 2067 | // versions that don't attempt spills or restores at all. |
| 2068 | if (EmulateOldLDV) |
| 2069 | return false; |
| 2070 | |
| 2071 | // Strictly limit ourselves to plain loads and stores, not all instructions |
| 2072 | // that can access the stack. |
| 2073 | int DummyFI = -1; |
| 2074 | if (!TII->isStoreToStackSlotPostFE(MI, FrameIndex&: DummyFI) && |
| 2075 | !TII->isLoadFromStackSlotPostFE(MI, FrameIndex&: DummyFI)) |
| 2076 | return false; |
| 2077 | |
| 2078 | MachineFunction *MF = MI.getMF(); |
| 2079 | unsigned Reg; |
| 2080 | |
| 2081 | LLVM_DEBUG(dbgs() << "Examining instruction: " ; MI.dump();); |
| 2082 | |
| 2083 | // Strictly limit ourselves to plain loads and stores, not all instructions |
| 2084 | // that can access the stack. |
| 2085 | int FIDummy; |
| 2086 | if (!TII->isStoreToStackSlotPostFE(MI, FrameIndex&: FIDummy) && |
| 2087 | !TII->isLoadFromStackSlotPostFE(MI, FrameIndex&: FIDummy)) |
| 2088 | return false; |
| 2089 | |
| 2090 | // First, if there are any DBG_VALUEs pointing at a spill slot that is |
| 2091 | // written to, terminate that variable location. The value in memory |
| 2092 | // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. |
| 2093 | if (std::optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) { |
| 2094 | // Un-set this location and clobber, so that earlier locations don't |
| 2095 | // continue past this store. |
| 2096 | for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) { |
| 2097 | unsigned SpillID = MTracker->getSpillIDWithIdx(Spill: *Loc, Idx: SlotIdx); |
| 2098 | std::optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID); |
| 2099 | if (!MLoc) |
| 2100 | continue; |
| 2101 | |
| 2102 | // We need to over-write the stack slot with something (here, a def at |
| 2103 | // this instruction) to ensure no values are preserved in this stack slot |
| 2104 | // after the spill. It also prevents TTracker from trying to recover the |
| 2105 | // location and re-installing it in the same place. |
| 2106 | ValueIDNum Def(CurBB, CurInst, *MLoc); |
| 2107 | MTracker->setMLoc(L: *MLoc, Num: Def); |
| 2108 | if (TTracker) |
| 2109 | TTracker->clobberMloc(MLoc: *MLoc, Pos: MI.getIterator()); |
| 2110 | } |
| 2111 | } |
| 2112 | |
| 2113 | // Try to recognise spill and restore instructions that may transfer a value. |
| 2114 | if (isLocationSpill(MI, MF, Reg)) { |
| 2115 | // isLocationSpill returning true should guarantee we can extract a |
| 2116 | // location. |
| 2117 | SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI); |
| 2118 | |
| 2119 | auto DoTransfer = [&](Register SrcReg, unsigned SpillID) { |
| 2120 | auto ReadValue = MTracker->readReg(R: SrcReg); |
| 2121 | LocIdx DstLoc = MTracker->getSpillMLoc(SpillID); |
| 2122 | MTracker->setMLoc(L: DstLoc, Num: ReadValue); |
| 2123 | |
| 2124 | if (TTracker) { |
| 2125 | LocIdx SrcLoc = MTracker->getRegMLoc(R: SrcReg); |
| 2126 | TTracker->transferMlocs(Src: SrcLoc, Dst: DstLoc, Pos: MI.getIterator()); |
| 2127 | } |
| 2128 | }; |
| 2129 | |
| 2130 | // Then, transfer subreg bits. |
| 2131 | for (MCPhysReg SR : TRI->subregs(Reg)) { |
| 2132 | // Ensure this reg is tracked, |
| 2133 | (void)MTracker->lookupOrTrackRegister(ID: SR); |
| 2134 | unsigned SubregIdx = TRI->getSubRegIndex(RegNo: Reg, SubRegNo: SR); |
| 2135 | unsigned SpillID = MTracker->getLocID(Spill: Loc, SpillSubReg: SubregIdx); |
| 2136 | DoTransfer(SR, SpillID); |
| 2137 | } |
| 2138 | |
| 2139 | // Directly lookup size of main source reg, and transfer. |
| 2140 | unsigned Size = TRI->getRegSizeInBits(Reg, MRI: *MRI); |
| 2141 | unsigned SpillID = MTracker->getLocID(Spill: Loc, Idx: {Size, 0}); |
| 2142 | DoTransfer(Reg, SpillID); |
| 2143 | } else { |
| 2144 | std::optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg); |
| 2145 | if (!Loc) |
| 2146 | return false; |
| 2147 | |
| 2148 | // Assumption: we're reading from the base of the stack slot, not some |
| 2149 | // offset into it. It seems very unlikely LLVM would ever generate |
| 2150 | // restores where this wasn't true. This then becomes a question of what |
| 2151 | // subregisters in the destination register line up with positions in the |
| 2152 | // stack slot. |
| 2153 | |
| 2154 | // Def all registers that alias the destination. |
| 2155 | for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) |
| 2156 | MTracker->defReg(R: *RAI, BB: CurBB, Inst: CurInst); |
| 2157 | |
| 2158 | // Now find subregisters within the destination register, and load values |
| 2159 | // from stack slot positions. |
| 2160 | auto DoTransfer = [&](Register DestReg, unsigned SpillID) { |
| 2161 | LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID); |
| 2162 | auto ReadValue = MTracker->readMLoc(L: SrcIdx); |
| 2163 | MTracker->setReg(R: DestReg, ValueID: ReadValue); |
| 2164 | }; |
| 2165 | |
| 2166 | for (MCPhysReg SR : TRI->subregs(Reg)) { |
| 2167 | unsigned Subreg = TRI->getSubRegIndex(RegNo: Reg, SubRegNo: SR); |
| 2168 | unsigned SpillID = MTracker->getLocID(Spill: *Loc, SpillSubReg: Subreg); |
| 2169 | DoTransfer(SR, SpillID); |
| 2170 | } |
| 2171 | |
| 2172 | // Directly look up this registers slot idx by size, and transfer. |
| 2173 | unsigned Size = TRI->getRegSizeInBits(Reg, MRI: *MRI); |
| 2174 | unsigned SpillID = MTracker->getLocID(Spill: *Loc, Idx: {Size, 0}); |
| 2175 | DoTransfer(Reg, SpillID); |
| 2176 | } |
| 2177 | return true; |
| 2178 | } |
| 2179 | |
| 2180 | bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { |
| 2181 | auto DestSrc = TII->isCopyLikeInstr(MI); |
| 2182 | if (!DestSrc) |
| 2183 | return false; |
| 2184 | |
| 2185 | const MachineOperand *DestRegOp = DestSrc->Destination; |
| 2186 | const MachineOperand *SrcRegOp = DestSrc->Source; |
| 2187 | |
| 2188 | Register SrcReg = SrcRegOp->getReg(); |
| 2189 | Register DestReg = DestRegOp->getReg(); |
| 2190 | |
| 2191 | // Ignore identity copies. Yep, these make it as far as LiveDebugValues. |
| 2192 | if (SrcReg == DestReg) |
| 2193 | return true; |
| 2194 | |
| 2195 | // For emulating VarLocBasedImpl: |
| 2196 | // We want to recognize instructions where destination register is callee |
| 2197 | // saved register. If register that could be clobbered by the call is |
| 2198 | // included, there would be a great chance that it is going to be clobbered |
| 2199 | // soon. It is more likely that previous register, which is callee saved, is |
| 2200 | // going to stay unclobbered longer, even if it is killed. |
| 2201 | // |
| 2202 | // For InstrRefBasedImpl, we can track multiple locations per value, so |
| 2203 | // ignore this condition. |
| 2204 | if (EmulateOldLDV && !isCalleeSavedReg(R: DestReg)) |
| 2205 | return false; |
| 2206 | |
| 2207 | // InstrRefBasedImpl only followed killing copies. |
| 2208 | if (EmulateOldLDV && !SrcRegOp->isKill()) |
| 2209 | return false; |
| 2210 | |
| 2211 | // Before we update MTracker, remember which values were present in each of |
| 2212 | // the locations about to be overwritten, so that we can recover any |
| 2213 | // potentially clobbered variables. |
| 2214 | DenseMap<LocIdx, ValueIDNum> ClobberedLocs; |
| 2215 | if (TTracker) { |
| 2216 | for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { |
| 2217 | LocIdx ClobberedLoc = MTracker->getRegMLoc(R: *RAI); |
| 2218 | auto MLocIt = TTracker->ActiveMLocs.find(Val: ClobberedLoc); |
| 2219 | // If ActiveMLocs isn't tracking this location or there are no variables |
| 2220 | // using it, don't bother remembering. |
| 2221 | if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty()) |
| 2222 | continue; |
| 2223 | ValueIDNum Value = MTracker->readReg(R: *RAI); |
| 2224 | ClobberedLocs[ClobberedLoc] = Value; |
| 2225 | } |
| 2226 | } |
| 2227 | |
| 2228 | // Copy MTracker info, including subregs if available. |
| 2229 | InstrRefBasedLDV::performCopy(SrcRegNum: SrcReg, DstRegNum: DestReg); |
| 2230 | |
| 2231 | // The copy might have clobbered variables based on the destination register. |
| 2232 | // Tell TTracker about it, passing the old ValueIDNum to search for |
| 2233 | // alternative locations (or else terminating those variables). |
| 2234 | if (TTracker) { |
| 2235 | for (auto LocVal : ClobberedLocs) { |
| 2236 | TTracker->clobberMloc(MLoc: LocVal.first, OldValue: LocVal.second, Pos: MI.getIterator(), MakeUndef: false); |
| 2237 | } |
| 2238 | } |
| 2239 | |
| 2240 | // Only produce a transfer of DBG_VALUE within a block where old LDV |
| 2241 | // would have. We might make use of the additional value tracking in some |
| 2242 | // other way, later. |
| 2243 | if (TTracker && isCalleeSavedReg(R: DestReg) && SrcRegOp->isKill()) |
| 2244 | TTracker->transferMlocs(Src: MTracker->getRegMLoc(R: SrcReg), |
| 2245 | Dst: MTracker->getRegMLoc(R: DestReg), Pos: MI.getIterator()); |
| 2246 | |
| 2247 | // VarLocBasedImpl would quit tracking the old location after copying. |
| 2248 | if (EmulateOldLDV && SrcReg != DestReg) |
| 2249 | MTracker->defReg(R: SrcReg, BB: CurBB, Inst: CurInst); |
| 2250 | |
| 2251 | return true; |
| 2252 | } |
| 2253 | |
| 2254 | /// Accumulate a mapping between each DILocalVariable fragment and other |
| 2255 | /// fragments of that DILocalVariable which overlap. This reduces work during |
| 2256 | /// the data-flow stage from "Find any overlapping fragments" to "Check if the |
| 2257 | /// known-to-overlap fragments are present". |
| 2258 | /// \param MI A previously unprocessed debug instruction to analyze for |
| 2259 | /// fragment usage. |
| 2260 | void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { |
| 2261 | assert(MI.isDebugValueLike()); |
| 2262 | DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), |
| 2263 | MI.getDebugLoc()->getInlinedAt()); |
| 2264 | FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); |
| 2265 | |
| 2266 | // If this is the first sighting of this variable, then we are guaranteed |
| 2267 | // there are currently no overlapping fragments either. Initialize the set |
| 2268 | // of seen fragments, record no overlaps for the current one, and return. |
| 2269 | auto [SeenIt, Inserted] = SeenFragments.try_emplace(Key: MIVar.getVariable()); |
| 2270 | if (Inserted) { |
| 2271 | SeenIt->second.insert(V: ThisFragment); |
| 2272 | |
| 2273 | OverlapFragments.insert(KV: {{MIVar.getVariable(), ThisFragment}, {}}); |
| 2274 | return; |
| 2275 | } |
| 2276 | |
| 2277 | // If this particular Variable/Fragment pair already exists in the overlap |
| 2278 | // map, it has already been accounted for. |
| 2279 | auto IsInOLapMap = |
| 2280 | OverlapFragments.insert(KV: {{MIVar.getVariable(), ThisFragment}, {}}); |
| 2281 | if (!IsInOLapMap.second) |
| 2282 | return; |
| 2283 | |
| 2284 | auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; |
| 2285 | auto &AllSeenFragments = SeenIt->second; |
| 2286 | |
| 2287 | // Otherwise, examine all other seen fragments for this variable, with "this" |
| 2288 | // fragment being a previously unseen fragment. Record any pair of |
| 2289 | // overlapping fragments. |
| 2290 | for (const auto &ASeenFragment : AllSeenFragments) { |
| 2291 | // Does this previously seen fragment overlap? |
| 2292 | if (DIExpression::fragmentsOverlap(A: ThisFragment, B: ASeenFragment)) { |
| 2293 | // Yes: Mark the current fragment as being overlapped. |
| 2294 | ThisFragmentsOverlaps.push_back(Elt: ASeenFragment); |
| 2295 | // Mark the previously seen fragment as being overlapped by the current |
| 2296 | // one. |
| 2297 | auto ASeenFragmentsOverlaps = |
| 2298 | OverlapFragments.find(Val: {MIVar.getVariable(), ASeenFragment}); |
| 2299 | assert(ASeenFragmentsOverlaps != OverlapFragments.end() && |
| 2300 | "Previously seen var fragment has no vector of overlaps" ); |
| 2301 | ASeenFragmentsOverlaps->second.push_back(Elt: ThisFragment); |
| 2302 | } |
| 2303 | } |
| 2304 | |
| 2305 | AllSeenFragments.insert(V: ThisFragment); |
| 2306 | } |
| 2307 | |
| 2308 | void InstrRefBasedLDV::process(MachineInstr &MI, |
| 2309 | const FuncValueTable *MLiveOuts, |
| 2310 | const FuncValueTable *MLiveIns) { |
| 2311 | // Try to interpret an MI as a debug or transfer instruction. Only if it's |
| 2312 | // none of these should we interpret it's register defs as new value |
| 2313 | // definitions. |
| 2314 | if (transferDebugValue(MI)) |
| 2315 | return; |
| 2316 | if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) |
| 2317 | return; |
| 2318 | if (transferDebugPHI(MI)) |
| 2319 | return; |
| 2320 | if (transferRegisterCopy(MI)) |
| 2321 | return; |
| 2322 | if (transferSpillOrRestoreInst(MI)) |
| 2323 | return; |
| 2324 | transferRegisterDef(MI); |
| 2325 | } |
| 2326 | |
| 2327 | void InstrRefBasedLDV::produceMLocTransferFunction( |
| 2328 | MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, |
| 2329 | unsigned MaxNumBlocks) { |
| 2330 | // Because we try to optimize around register mask operands by ignoring regs |
| 2331 | // that aren't currently tracked, we set up something ugly for later: RegMask |
| 2332 | // operands that are seen earlier than the first use of a register, still need |
| 2333 | // to clobber that register in the transfer function. But this information |
| 2334 | // isn't actively recorded. Instead, we track each RegMask used in each block, |
| 2335 | // and accumulated the clobbered but untracked registers in each block into |
| 2336 | // the following bitvector. Later, if new values are tracked, we can add |
| 2337 | // appropriate clobbers. |
| 2338 | SmallVector<BitVector, 32> BlockMasks; |
| 2339 | BlockMasks.resize(N: MaxNumBlocks); |
| 2340 | |
| 2341 | // Reserve one bit per register for the masks described above. |
| 2342 | unsigned BVWords = MachineOperand::getRegMaskSize(NumRegs: TRI->getNumRegs()); |
| 2343 | for (auto &BV : BlockMasks) |
| 2344 | BV.resize(N: TRI->getNumRegs(), t: true); |
| 2345 | |
| 2346 | // Step through all instructions and inhale the transfer function. |
| 2347 | for (auto &MBB : MF) { |
| 2348 | // Object fields that are read by trackers to know where we are in the |
| 2349 | // function. |
| 2350 | CurBB = MBB.getNumber(); |
| 2351 | CurInst = 1; |
| 2352 | |
| 2353 | // Set all machine locations to a PHI value. For transfer function |
| 2354 | // production only, this signifies the live-in value to the block. |
| 2355 | MTracker->reset(); |
| 2356 | MTracker->setMPhis(CurBB); |
| 2357 | |
| 2358 | // Step through each instruction in this block. |
| 2359 | for (auto &MI : MBB) { |
| 2360 | // Pass in an empty unique_ptr for the value tables when accumulating the |
| 2361 | // machine transfer function. |
| 2362 | process(MI, MLiveOuts: nullptr, MLiveIns: nullptr); |
| 2363 | |
| 2364 | // Also accumulate fragment map. |
| 2365 | if (MI.isDebugValueLike()) |
| 2366 | accumulateFragmentMap(MI); |
| 2367 | |
| 2368 | // Create a map from the instruction number (if present) to the |
| 2369 | // MachineInstr and its position. |
| 2370 | if (uint64_t InstrNo = MI.peekDebugInstrNum()) { |
| 2371 | auto InstrAndPos = std::make_pair(x: &MI, y&: CurInst); |
| 2372 | auto InsertResult = |
| 2373 | DebugInstrNumToInstr.insert(x: std::make_pair(x&: InstrNo, y&: InstrAndPos)); |
| 2374 | |
| 2375 | // There should never be duplicate instruction numbers. |
| 2376 | assert(InsertResult.second); |
| 2377 | (void)InsertResult; |
| 2378 | } |
| 2379 | |
| 2380 | ++CurInst; |
| 2381 | } |
| 2382 | |
| 2383 | // Produce the transfer function, a map of machine location to new value. If |
| 2384 | // any machine location has the live-in phi value from the start of the |
| 2385 | // block, it's live-through and doesn't need recording in the transfer |
| 2386 | // function. |
| 2387 | for (auto Location : MTracker->locations()) { |
| 2388 | LocIdx Idx = Location.Idx; |
| 2389 | ValueIDNum &P = Location.Value; |
| 2390 | if (P.isPHI() && P.getLoc() == Idx.asU64()) |
| 2391 | continue; |
| 2392 | |
| 2393 | // Insert-or-update. |
| 2394 | auto &TransferMap = MLocTransfer[CurBB]; |
| 2395 | auto Result = TransferMap.insert(KV: std::make_pair(x: Idx.asU64(), y&: P)); |
| 2396 | if (!Result.second) |
| 2397 | Result.first->second = P; |
| 2398 | } |
| 2399 | |
| 2400 | // Accumulate any bitmask operands into the clobbered reg mask for this |
| 2401 | // block. |
| 2402 | for (auto &P : MTracker->Masks) { |
| 2403 | BlockMasks[CurBB].clearBitsNotInMask(Mask: P.first->getRegMask(), MaskWords: BVWords); |
| 2404 | } |
| 2405 | } |
| 2406 | |
| 2407 | // Compute a bitvector of all the registers that are tracked in this block. |
| 2408 | BitVector UsedRegs(TRI->getNumRegs()); |
| 2409 | for (auto Location : MTracker->locations()) { |
| 2410 | unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; |
| 2411 | // Ignore stack slots, and aliases of the stack pointer. |
| 2412 | if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(V: ID)) |
| 2413 | continue; |
| 2414 | UsedRegs.set(ID); |
| 2415 | } |
| 2416 | |
| 2417 | // Check that any regmask-clobber of a register that gets tracked, is not |
| 2418 | // live-through in the transfer function. It needs to be clobbered at the |
| 2419 | // very least. |
| 2420 | for (unsigned int I = 0; I < MaxNumBlocks; ++I) { |
| 2421 | BitVector &BV = BlockMasks[I]; |
| 2422 | BV.flip(); |
| 2423 | BV &= UsedRegs; |
| 2424 | // This produces all the bits that we clobber, but also use. Check that |
| 2425 | // they're all clobbered or at least set in the designated transfer |
| 2426 | // elem. |
| 2427 | for (unsigned Bit : BV.set_bits()) { |
| 2428 | unsigned ID = MTracker->getLocID(Reg: Bit); |
| 2429 | LocIdx Idx = MTracker->LocIDToLocIdx[ID]; |
| 2430 | auto &TransferMap = MLocTransfer[I]; |
| 2431 | |
| 2432 | // Install a value representing the fact that this location is effectively |
| 2433 | // written to in this block. As there's no reserved value, instead use |
| 2434 | // a value number that is never generated. Pick the value number for the |
| 2435 | // first instruction in the block, def'ing this location, which we know |
| 2436 | // this block never used anyway. |
| 2437 | ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); |
| 2438 | auto Result = |
| 2439 | TransferMap.insert(KV: std::make_pair(x: Idx.asU64(), y&: NotGeneratedNum)); |
| 2440 | if (!Result.second) { |
| 2441 | ValueIDNum &ValueID = Result.first->second; |
| 2442 | if (ValueID.getBlock() == I && ValueID.isPHI()) |
| 2443 | // It was left as live-through. Set it to clobbered. |
| 2444 | ValueID = NotGeneratedNum; |
| 2445 | } |
| 2446 | } |
| 2447 | } |
| 2448 | } |
| 2449 | |
| 2450 | bool InstrRefBasedLDV::mlocJoin( |
| 2451 | MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited, |
| 2452 | FuncValueTable &OutLocs, ValueTable &InLocs) { |
| 2453 | LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n" ); |
| 2454 | bool Changed = false; |
| 2455 | |
| 2456 | // Handle value-propagation when control flow merges on entry to a block. For |
| 2457 | // any location without a PHI already placed, the location has the same value |
| 2458 | // as its predecessors. If a PHI is placed, test to see whether it's now a |
| 2459 | // redundant PHI that we can eliminate. |
| 2460 | |
| 2461 | SmallVector<const MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); |
| 2462 | |
| 2463 | // Visit predecessors in RPOT order. |
| 2464 | auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { |
| 2465 | return BBToOrder.find(Val: A)->second < BBToOrder.find(Val: B)->second; |
| 2466 | }; |
| 2467 | llvm::sort(C&: BlockOrders, Comp: Cmp); |
| 2468 | |
| 2469 | // Skip entry block. |
| 2470 | if (BlockOrders.size() == 0) { |
| 2471 | // FIXME: We don't use assert here to prevent instr-ref-unreachable.mir |
| 2472 | // failing. |
| 2473 | LLVM_DEBUG(if (!MBB.isEntryBlock()) dbgs() |
| 2474 | << "Found not reachable block " << MBB.getFullName() |
| 2475 | << " from entry which may lead out of " |
| 2476 | "bound access to VarLocs\n" ); |
| 2477 | return false; |
| 2478 | } |
| 2479 | |
| 2480 | // Step through all machine locations, look at each predecessor and test |
| 2481 | // whether we can eliminate redundant PHIs. |
| 2482 | for (auto Location : MTracker->locations()) { |
| 2483 | LocIdx Idx = Location.Idx; |
| 2484 | |
| 2485 | // Pick out the first predecessors live-out value for this location. It's |
| 2486 | // guaranteed to not be a backedge, as we order by RPO. |
| 2487 | ValueIDNum FirstVal = OutLocs[*BlockOrders[0]][Idx.asU64()]; |
| 2488 | |
| 2489 | // If we've already eliminated a PHI here, do no further checking, just |
| 2490 | // propagate the first live-in value into this block. |
| 2491 | if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) { |
| 2492 | if (InLocs[Idx.asU64()] != FirstVal) { |
| 2493 | InLocs[Idx.asU64()] = FirstVal; |
| 2494 | Changed |= true; |
| 2495 | } |
| 2496 | continue; |
| 2497 | } |
| 2498 | |
| 2499 | // We're now examining a PHI to see whether it's un-necessary. Loop around |
| 2500 | // the other live-in values and test whether they're all the same. |
| 2501 | bool Disagree = false; |
| 2502 | for (unsigned int I = 1; I < BlockOrders.size(); ++I) { |
| 2503 | const MachineBasicBlock *PredMBB = BlockOrders[I]; |
| 2504 | const ValueIDNum &PredLiveOut = OutLocs[*PredMBB][Idx.asU64()]; |
| 2505 | |
| 2506 | // Incoming values agree, continue trying to eliminate this PHI. |
| 2507 | if (FirstVal == PredLiveOut) |
| 2508 | continue; |
| 2509 | |
| 2510 | // We can also accept a PHI value that feeds back into itself. |
| 2511 | if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx)) |
| 2512 | continue; |
| 2513 | |
| 2514 | // Live-out of a predecessor disagrees with the first predecessor. |
| 2515 | Disagree = true; |
| 2516 | } |
| 2517 | |
| 2518 | // No disagreement? No PHI. Otherwise, leave the PHI in live-ins. |
| 2519 | if (!Disagree) { |
| 2520 | InLocs[Idx.asU64()] = FirstVal; |
| 2521 | Changed |= true; |
| 2522 | } |
| 2523 | } |
| 2524 | |
| 2525 | // TODO: Reimplement NumInserted and NumRemoved. |
| 2526 | return Changed; |
| 2527 | } |
| 2528 | |
| 2529 | void InstrRefBasedLDV::findStackIndexInterference( |
| 2530 | SmallVectorImpl<unsigned> &Slots) { |
| 2531 | // We could spend a bit of time finding the exact, minimal, set of stack |
| 2532 | // indexes that interfere with each other, much like reg units. Or, we can |
| 2533 | // rely on the fact that: |
| 2534 | // * The smallest / lowest index will interfere with everything at zero |
| 2535 | // offset, which will be the largest set of registers, |
| 2536 | // * Most indexes with non-zero offset will end up being interference units |
| 2537 | // anyway. |
| 2538 | // So just pick those out and return them. |
| 2539 | |
| 2540 | // We can rely on a single-byte stack index existing already, because we |
| 2541 | // initialize them in MLocTracker. |
| 2542 | auto It = MTracker->StackSlotIdxes.find(Val: {8, 0}); |
| 2543 | assert(It != MTracker->StackSlotIdxes.end()); |
| 2544 | Slots.push_back(Elt: It->second); |
| 2545 | |
| 2546 | // Find anything that has a non-zero offset and add that too. |
| 2547 | for (auto &Pair : MTracker->StackSlotIdxes) { |
| 2548 | // Is offset zero? If so, ignore. |
| 2549 | if (!Pair.first.second) |
| 2550 | continue; |
| 2551 | Slots.push_back(Elt: Pair.second); |
| 2552 | } |
| 2553 | } |
| 2554 | |
| 2555 | void InstrRefBasedLDV::placeMLocPHIs( |
| 2556 | MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, |
| 2557 | FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { |
| 2558 | SmallVector<unsigned, 4> StackUnits; |
| 2559 | findStackIndexInterference(Slots&: StackUnits); |
| 2560 | |
| 2561 | // To avoid repeatedly running the PHI placement algorithm, leverage the |
| 2562 | // fact that a def of register MUST also def its register units. Find the |
| 2563 | // units for registers, place PHIs for them, and then replicate them for |
| 2564 | // aliasing registers. Some inputs that are never def'd (DBG_PHIs of |
| 2565 | // arguments) don't lead to register units being tracked, just place PHIs for |
| 2566 | // those registers directly. Stack slots have their own form of "unit", |
| 2567 | // store them to one side. |
| 2568 | SmallSet<Register, 32> RegUnitsToPHIUp; |
| 2569 | SmallSet<LocIdx, 32> NormalLocsToPHI; |
| 2570 | SmallSet<SpillLocationNo, 32> StackSlots; |
| 2571 | for (auto Location : MTracker->locations()) { |
| 2572 | LocIdx L = Location.Idx; |
| 2573 | if (MTracker->isSpill(Idx: L)) { |
| 2574 | StackSlots.insert(V: MTracker->locIDToSpill(ID: MTracker->LocIdxToLocID[L])); |
| 2575 | continue; |
| 2576 | } |
| 2577 | |
| 2578 | Register R = MTracker->LocIdxToLocID[L]; |
| 2579 | SmallSet<Register, 8> FoundRegUnits; |
| 2580 | bool AnyIllegal = false; |
| 2581 | for (MCRegUnit Unit : TRI->regunits(Reg: R.asMCReg())) { |
| 2582 | for (MCRegUnitRootIterator URoot(Unit, TRI); URoot.isValid(); ++URoot) { |
| 2583 | if (!MTracker->isRegisterTracked(R: *URoot)) { |
| 2584 | // Not all roots were loaded into the tracking map: this register |
| 2585 | // isn't actually def'd anywhere, we only read from it. Generate PHIs |
| 2586 | // for this reg, but don't iterate units. |
| 2587 | AnyIllegal = true; |
| 2588 | } else { |
| 2589 | FoundRegUnits.insert(V: *URoot); |
| 2590 | } |
| 2591 | } |
| 2592 | } |
| 2593 | |
| 2594 | if (AnyIllegal) { |
| 2595 | NormalLocsToPHI.insert(V: L); |
| 2596 | continue; |
| 2597 | } |
| 2598 | |
| 2599 | RegUnitsToPHIUp.insert_range(R&: FoundRegUnits); |
| 2600 | } |
| 2601 | |
| 2602 | // Lambda to fetch PHIs for a given location, and write into the PHIBlocks |
| 2603 | // collection. |
| 2604 | SmallVector<MachineBasicBlock *, 32> PHIBlocks; |
| 2605 | auto CollectPHIsForLoc = [&](LocIdx L) { |
| 2606 | // Collect the set of defs. |
| 2607 | SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; |
| 2608 | for (MachineBasicBlock *MBB : OrderToBB) { |
| 2609 | const auto &TransferFunc = MLocTransfer[MBB->getNumber()]; |
| 2610 | if (TransferFunc.contains(Val: L)) |
| 2611 | DefBlocks.insert(Ptr: MBB); |
| 2612 | } |
| 2613 | |
| 2614 | // The entry block defs the location too: it's the live-in / argument value. |
| 2615 | // Only insert if there are other defs though; everything is trivially live |
| 2616 | // through otherwise. |
| 2617 | if (!DefBlocks.empty()) |
| 2618 | DefBlocks.insert(Ptr: &*MF.begin()); |
| 2619 | |
| 2620 | // Ask the SSA construction algorithm where we should put PHIs. Clear |
| 2621 | // anything that might have been hanging around from earlier. |
| 2622 | PHIBlocks.clear(); |
| 2623 | BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks); |
| 2624 | }; |
| 2625 | |
| 2626 | auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) { |
| 2627 | for (const MachineBasicBlock *MBB : PHIBlocks) |
| 2628 | MInLocs[*MBB][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); |
| 2629 | }; |
| 2630 | |
| 2631 | // For locations with no reg units, just place PHIs. |
| 2632 | for (LocIdx L : NormalLocsToPHI) { |
| 2633 | CollectPHIsForLoc(L); |
| 2634 | // Install those PHI values into the live-in value array. |
| 2635 | InstallPHIsAtLoc(L); |
| 2636 | } |
| 2637 | |
| 2638 | // For stack slots, calculate PHIs for the equivalent of the units, then |
| 2639 | // install for each index. |
| 2640 | for (SpillLocationNo Slot : StackSlots) { |
| 2641 | for (unsigned Idx : StackUnits) { |
| 2642 | unsigned SpillID = MTracker->getSpillIDWithIdx(Spill: Slot, Idx); |
| 2643 | LocIdx L = MTracker->getSpillMLoc(SpillID); |
| 2644 | CollectPHIsForLoc(L); |
| 2645 | InstallPHIsAtLoc(L); |
| 2646 | |
| 2647 | // Find anything that aliases this stack index, install PHIs for it too. |
| 2648 | unsigned Size, Offset; |
| 2649 | std::tie(args&: Size, args&: Offset) = MTracker->StackIdxesToPos[Idx]; |
| 2650 | for (auto &Pair : MTracker->StackSlotIdxes) { |
| 2651 | unsigned ThisSize, ThisOffset; |
| 2652 | std::tie(args&: ThisSize, args&: ThisOffset) = Pair.first; |
| 2653 | if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset) |
| 2654 | continue; |
| 2655 | |
| 2656 | unsigned ThisID = MTracker->getSpillIDWithIdx(Spill: Slot, Idx: Pair.second); |
| 2657 | LocIdx ThisL = MTracker->getSpillMLoc(SpillID: ThisID); |
| 2658 | InstallPHIsAtLoc(ThisL); |
| 2659 | } |
| 2660 | } |
| 2661 | } |
| 2662 | |
| 2663 | // For reg units, place PHIs, and then place them for any aliasing registers. |
| 2664 | for (Register R : RegUnitsToPHIUp) { |
| 2665 | LocIdx L = MTracker->lookupOrTrackRegister(ID: R); |
| 2666 | CollectPHIsForLoc(L); |
| 2667 | |
| 2668 | // Install those PHI values into the live-in value array. |
| 2669 | InstallPHIsAtLoc(L); |
| 2670 | |
| 2671 | // Now find aliases and install PHIs for those. |
| 2672 | for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) { |
| 2673 | // Super-registers that are "above" the largest register read/written by |
| 2674 | // the function will alias, but will not be tracked. |
| 2675 | if (!MTracker->isRegisterTracked(R: *RAI)) |
| 2676 | continue; |
| 2677 | |
| 2678 | LocIdx AliasLoc = MTracker->lookupOrTrackRegister(ID: *RAI); |
| 2679 | InstallPHIsAtLoc(AliasLoc); |
| 2680 | } |
| 2681 | } |
| 2682 | } |
| 2683 | |
| 2684 | void InstrRefBasedLDV::buildMLocValueMap( |
| 2685 | MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs, |
| 2686 | SmallVectorImpl<MLocTransferMap> &MLocTransfer) { |
| 2687 | std::priority_queue<unsigned int, std::vector<unsigned int>, |
| 2688 | std::greater<unsigned int>> |
| 2689 | Worklist, Pending; |
| 2690 | |
| 2691 | // We track what is on the current and pending worklist to avoid inserting |
| 2692 | // the same thing twice. We could avoid this with a custom priority queue, |
| 2693 | // but this is probably not worth it. |
| 2694 | SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; |
| 2695 | |
| 2696 | // Initialize worklist with every block to be visited. Also produce list of |
| 2697 | // all blocks. |
| 2698 | SmallPtrSet<MachineBasicBlock *, 32> AllBlocks; |
| 2699 | for (unsigned int I = 0; I < BBToOrder.size(); ++I) { |
| 2700 | Worklist.push(x: I); |
| 2701 | OnWorklist.insert(Ptr: OrderToBB[I]); |
| 2702 | AllBlocks.insert(Ptr: OrderToBB[I]); |
| 2703 | } |
| 2704 | |
| 2705 | // Initialize entry block to PHIs. These represent arguments. |
| 2706 | for (auto Location : MTracker->locations()) |
| 2707 | MInLocs.tableForEntryMBB()[Location.Idx.asU64()] = |
| 2708 | ValueIDNum(0, 0, Location.Idx); |
| 2709 | |
| 2710 | MTracker->reset(); |
| 2711 | |
| 2712 | // Start by placing PHIs, using the usual SSA constructor algorithm. Consider |
| 2713 | // any machine-location that isn't live-through a block to be def'd in that |
| 2714 | // block. |
| 2715 | placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); |
| 2716 | |
| 2717 | // Propagate values to eliminate redundant PHIs. At the same time, this |
| 2718 | // produces the table of Block x Location => Value for the entry to each |
| 2719 | // block. |
| 2720 | // The kind of PHIs we can eliminate are, for example, where one path in a |
| 2721 | // conditional spills and restores a register, and the register still has |
| 2722 | // the same value once control flow joins, unbeknowns to the PHI placement |
| 2723 | // code. Propagating values allows us to identify such un-necessary PHIs and |
| 2724 | // remove them. |
| 2725 | SmallPtrSet<const MachineBasicBlock *, 16> Visited; |
| 2726 | while (!Worklist.empty() || !Pending.empty()) { |
| 2727 | // Vector for storing the evaluated block transfer function. |
| 2728 | SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; |
| 2729 | |
| 2730 | while (!Worklist.empty()) { |
| 2731 | MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; |
| 2732 | CurBB = MBB->getNumber(); |
| 2733 | Worklist.pop(); |
| 2734 | |
| 2735 | // Join the values in all predecessor blocks. |
| 2736 | bool InLocsChanged; |
| 2737 | InLocsChanged = mlocJoin(MBB&: *MBB, Visited, OutLocs&: MOutLocs, InLocs&: MInLocs[*MBB]); |
| 2738 | InLocsChanged |= Visited.insert(Ptr: MBB).second; |
| 2739 | |
| 2740 | // Don't examine transfer function if we've visited this loc at least |
| 2741 | // once, and inlocs haven't changed. |
| 2742 | if (!InLocsChanged) |
| 2743 | continue; |
| 2744 | |
| 2745 | // Load the current set of live-ins into MLocTracker. |
| 2746 | MTracker->loadFromArray(Locs&: MInLocs[*MBB], NewCurBB: CurBB); |
| 2747 | |
| 2748 | // Each element of the transfer function can be a new def, or a read of |
| 2749 | // a live-in value. Evaluate each element, and store to "ToRemap". |
| 2750 | ToRemap.clear(); |
| 2751 | for (auto &P : MLocTransfer[CurBB]) { |
| 2752 | if (P.second.getBlock() == CurBB && P.second.isPHI()) { |
| 2753 | // This is a movement of whatever was live in. Read it. |
| 2754 | ValueIDNum NewID = MTracker->readMLoc(L: P.second.getLoc()); |
| 2755 | ToRemap.push_back(Elt: std::make_pair(x&: P.first, y&: NewID)); |
| 2756 | } else { |
| 2757 | // It's a def. Just set it. |
| 2758 | assert(P.second.getBlock() == CurBB); |
| 2759 | ToRemap.push_back(Elt: std::make_pair(x&: P.first, y&: P.second)); |
| 2760 | } |
| 2761 | } |
| 2762 | |
| 2763 | // Commit the transfer function changes into mloc tracker, which |
| 2764 | // transforms the contents of the MLocTracker into the live-outs. |
| 2765 | for (auto &P : ToRemap) |
| 2766 | MTracker->setMLoc(L: P.first, Num: P.second); |
| 2767 | |
| 2768 | // Now copy out-locs from mloc tracker into out-loc vector, checking |
| 2769 | // whether changes have occurred. These changes can have come from both |
| 2770 | // the transfer function, and mlocJoin. |
| 2771 | bool OLChanged = false; |
| 2772 | for (auto Location : MTracker->locations()) { |
| 2773 | OLChanged |= MOutLocs[*MBB][Location.Idx.asU64()] != Location.Value; |
| 2774 | MOutLocs[*MBB][Location.Idx.asU64()] = Location.Value; |
| 2775 | } |
| 2776 | |
| 2777 | MTracker->reset(); |
| 2778 | |
| 2779 | // No need to examine successors again if out-locs didn't change. |
| 2780 | if (!OLChanged) |
| 2781 | continue; |
| 2782 | |
| 2783 | // All successors should be visited: put any back-edges on the pending |
| 2784 | // list for the next pass-through, and any other successors to be |
| 2785 | // visited this pass, if they're not going to be already. |
| 2786 | for (auto *s : MBB->successors()) { |
| 2787 | // Does branching to this successor represent a back-edge? |
| 2788 | unsigned Order = BBToOrder[s]; |
| 2789 | if (Order > BBToOrder[MBB]) { |
| 2790 | // No: visit it during this dataflow iteration. |
| 2791 | if (OnWorklist.insert(Ptr: s).second) |
| 2792 | Worklist.push(x: Order); |
| 2793 | } else { |
| 2794 | // Yes: visit it on the next iteration. |
| 2795 | if (OnPending.insert(Ptr: s).second) |
| 2796 | Pending.push(x: Order); |
| 2797 | } |
| 2798 | } |
| 2799 | } |
| 2800 | |
| 2801 | Worklist.swap(pq&: Pending); |
| 2802 | std::swap(LHS&: OnPending, RHS&: OnWorklist); |
| 2803 | OnPending.clear(); |
| 2804 | // At this point, pending must be empty, since it was just the empty |
| 2805 | // worklist |
| 2806 | assert(Pending.empty() && "Pending should be empty" ); |
| 2807 | } |
| 2808 | |
| 2809 | // Once all the live-ins don't change on mlocJoin(), we've eliminated all |
| 2810 | // redundant PHIs. |
| 2811 | } |
| 2812 | |
| 2813 | void InstrRefBasedLDV::BlockPHIPlacement( |
| 2814 | const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, |
| 2815 | const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, |
| 2816 | SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) { |
| 2817 | // Apply IDF calculator to the designated set of location defs, storing |
| 2818 | // required PHIs into PHIBlocks. Uses the dominator tree stored in the |
| 2819 | // InstrRefBasedLDV object. |
| 2820 | IDFCalculatorBase<MachineBasicBlock, false> IDF(*DomTree); |
| 2821 | |
| 2822 | IDF.setLiveInBlocks(AllBlocks); |
| 2823 | IDF.setDefiningBlocks(DefBlocks); |
| 2824 | IDF.calculate(IDFBlocks&: PHIBlocks); |
| 2825 | } |
| 2826 | |
| 2827 | bool InstrRefBasedLDV::pickVPHILoc( |
| 2828 | SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB, |
| 2829 | const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, |
| 2830 | const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { |
| 2831 | |
| 2832 | // No predecessors means no PHIs. |
| 2833 | if (BlockOrders.empty()) |
| 2834 | return false; |
| 2835 | |
| 2836 | // All the location operands that do not already agree need to be joined, |
| 2837 | // track the indices of each such location operand here. |
| 2838 | SmallDenseSet<unsigned> LocOpsToJoin; |
| 2839 | |
| 2840 | auto FirstValueIt = LiveOuts.find(Val: BlockOrders[0]); |
| 2841 | if (FirstValueIt == LiveOuts.end()) |
| 2842 | return false; |
| 2843 | const DbgValue &FirstValue = *FirstValueIt->second; |
| 2844 | |
| 2845 | for (const auto p : BlockOrders) { |
| 2846 | auto OutValIt = LiveOuts.find(Val: p); |
| 2847 | if (OutValIt == LiveOuts.end()) |
| 2848 | // If we have a predecessor not in scope, we'll never find a PHI position. |
| 2849 | return false; |
| 2850 | const DbgValue &OutVal = *OutValIt->second; |
| 2851 | |
| 2852 | // No-values cannot have locations we can join on. |
| 2853 | if (OutVal.Kind == DbgValue::NoVal) |
| 2854 | return false; |
| 2855 | |
| 2856 | // For unjoined VPHIs where we don't know the location, we definitely |
| 2857 | // can't find a join loc unless the VPHI is a backedge. |
| 2858 | if (OutVal.isUnjoinedPHI() && OutVal.BlockNo != MBB.getNumber()) |
| 2859 | return false; |
| 2860 | |
| 2861 | if (!FirstValue.Properties.isJoinable(Other: OutVal.Properties)) |
| 2862 | return false; |
| 2863 | |
| 2864 | for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) { |
| 2865 | // An unjoined PHI has no defined locations, and so a shared location must |
| 2866 | // be found for every operand. |
| 2867 | if (OutVal.isUnjoinedPHI()) { |
| 2868 | LocOpsToJoin.insert(V: Idx); |
| 2869 | continue; |
| 2870 | } |
| 2871 | DbgOpID FirstValOp = FirstValue.getDbgOpID(Index: Idx); |
| 2872 | DbgOpID OutValOp = OutVal.getDbgOpID(Index: Idx); |
| 2873 | if (FirstValOp != OutValOp) { |
| 2874 | // We can never join constant ops - the ops must either both be equal |
| 2875 | // constant ops or non-const ops. |
| 2876 | if (FirstValOp.isConst() || OutValOp.isConst()) |
| 2877 | return false; |
| 2878 | else |
| 2879 | LocOpsToJoin.insert(V: Idx); |
| 2880 | } |
| 2881 | } |
| 2882 | } |
| 2883 | |
| 2884 | SmallVector<DbgOpID> NewDbgOps; |
| 2885 | |
| 2886 | for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) { |
| 2887 | // If this op doesn't need to be joined because the values agree, use that |
| 2888 | // already-agreed value. |
| 2889 | if (!LocOpsToJoin.contains(V: Idx)) { |
| 2890 | NewDbgOps.push_back(Elt: FirstValue.getDbgOpID(Index: Idx)); |
| 2891 | continue; |
| 2892 | } |
| 2893 | |
| 2894 | std::optional<ValueIDNum> JoinedOpLoc = |
| 2895 | pickOperandPHILoc(DbgOpIdx: Idx, MBB, LiveOuts, MOutLocs, BlockOrders); |
| 2896 | |
| 2897 | if (!JoinedOpLoc) |
| 2898 | return false; |
| 2899 | |
| 2900 | NewDbgOps.push_back(Elt: DbgOpStore.insert(Op: *JoinedOpLoc)); |
| 2901 | } |
| 2902 | |
| 2903 | OutValues.append(RHS: NewDbgOps); |
| 2904 | return true; |
| 2905 | } |
| 2906 | |
| 2907 | std::optional<ValueIDNum> InstrRefBasedLDV::pickOperandPHILoc( |
| 2908 | unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts, |
| 2909 | FuncValueTable &MOutLocs, |
| 2910 | const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { |
| 2911 | |
| 2912 | // Collect a set of locations from predecessor where its live-out value can |
| 2913 | // be found. |
| 2914 | SmallVector<SmallVector<LocIdx, 4>, 8> Locs; |
| 2915 | unsigned NumLocs = MTracker->getNumLocs(); |
| 2916 | |
| 2917 | for (const auto p : BlockOrders) { |
| 2918 | auto OutValIt = LiveOuts.find(Val: p); |
| 2919 | assert(OutValIt != LiveOuts.end()); |
| 2920 | const DbgValue &OutVal = *OutValIt->second; |
| 2921 | DbgOpID OutValOpID = OutVal.getDbgOpID(Index: DbgOpIdx); |
| 2922 | DbgOp OutValOp = DbgOpStore.find(ID: OutValOpID); |
| 2923 | assert(!OutValOp.IsConst); |
| 2924 | |
| 2925 | // Create new empty vector of locations. |
| 2926 | Locs.resize(N: Locs.size() + 1); |
| 2927 | |
| 2928 | // If the live-in value is a def, find the locations where that value is |
| 2929 | // present. Do the same for VPHIs where we know the VPHI value. |
| 2930 | if (OutVal.Kind == DbgValue::Def || |
| 2931 | (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() && |
| 2932 | !OutValOp.isUndef())) { |
| 2933 | ValueIDNum ValToLookFor = OutValOp.ID; |
| 2934 | // Search the live-outs of the predecessor for the specified value. |
| 2935 | for (unsigned int I = 0; I < NumLocs; ++I) { |
| 2936 | if (MOutLocs[*p][I] == ValToLookFor) |
| 2937 | Locs.back().push_back(Elt: LocIdx(I)); |
| 2938 | } |
| 2939 | } else { |
| 2940 | assert(OutVal.Kind == DbgValue::VPHI); |
| 2941 | // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e. |
| 2942 | // a value that's live-through the whole loop. (It has to be a backedge, |
| 2943 | // because a block can't dominate itself). We can accept as a PHI location |
| 2944 | // any location where the other predecessors agree, _and_ the machine |
| 2945 | // locations feed back into themselves. Therefore, add all self-looping |
| 2946 | // machine-value PHI locations. |
| 2947 | for (unsigned int I = 0; I < NumLocs; ++I) { |
| 2948 | ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I)); |
| 2949 | if (MOutLocs[*p][I] == MPHI) |
| 2950 | Locs.back().push_back(Elt: LocIdx(I)); |
| 2951 | } |
| 2952 | } |
| 2953 | } |
| 2954 | // We should have found locations for all predecessors, or returned. |
| 2955 | assert(Locs.size() == BlockOrders.size()); |
| 2956 | |
| 2957 | // Starting with the first set of locations, take the intersection with |
| 2958 | // subsequent sets. |
| 2959 | SmallVector<LocIdx, 4> CandidateLocs = Locs[0]; |
| 2960 | for (unsigned int I = 1; I < Locs.size(); ++I) { |
| 2961 | auto &LocVec = Locs[I]; |
| 2962 | SmallVector<LocIdx, 4> NewCandidates; |
| 2963 | std::set_intersection(first1: CandidateLocs.begin(), last1: CandidateLocs.end(), |
| 2964 | first2: LocVec.begin(), last2: LocVec.end(), result: std::inserter(x&: NewCandidates, i: NewCandidates.begin())); |
| 2965 | CandidateLocs = std::move(NewCandidates); |
| 2966 | } |
| 2967 | if (CandidateLocs.empty()) |
| 2968 | return std::nullopt; |
| 2969 | |
| 2970 | // We now have a set of LocIdxes that contain the right output value in |
| 2971 | // each of the predecessors. Pick the lowest; if there's a register loc, |
| 2972 | // that'll be it. |
| 2973 | LocIdx L = *CandidateLocs.begin(); |
| 2974 | |
| 2975 | // Return a PHI-value-number for the found location. |
| 2976 | ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; |
| 2977 | return PHIVal; |
| 2978 | } |
| 2979 | |
| 2980 | bool InstrRefBasedLDV::vlocJoin( |
| 2981 | MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, |
| 2982 | SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, |
| 2983 | DbgValue &LiveIn) { |
| 2984 | LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n" ); |
| 2985 | bool Changed = false; |
| 2986 | |
| 2987 | // Order predecessors by RPOT order, for exploring them in that order. |
| 2988 | SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); |
| 2989 | |
| 2990 | auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { |
| 2991 | return BBToOrder[A] < BBToOrder[B]; |
| 2992 | }; |
| 2993 | |
| 2994 | llvm::sort(C&: BlockOrders, Comp: Cmp); |
| 2995 | |
| 2996 | unsigned CurBlockRPONum = BBToOrder[&MBB]; |
| 2997 | |
| 2998 | // Collect all the incoming DbgValues for this variable, from predecessor |
| 2999 | // live-out values. |
| 3000 | SmallVector<InValueT, 8> Values; |
| 3001 | bool Bail = false; |
| 3002 | int BackEdgesStart = 0; |
| 3003 | for (auto *p : BlockOrders) { |
| 3004 | // If the predecessor isn't in scope / to be explored, we'll never be |
| 3005 | // able to join any locations. |
| 3006 | if (!BlocksToExplore.contains(Ptr: p)) { |
| 3007 | Bail = true; |
| 3008 | break; |
| 3009 | } |
| 3010 | |
| 3011 | // All Live-outs will have been initialized. |
| 3012 | DbgValue &OutLoc = *VLOCOutLocs.find(Val: p)->second; |
| 3013 | |
| 3014 | // Keep track of where back-edges begin in the Values vector. Relies on |
| 3015 | // BlockOrders being sorted by RPO. |
| 3016 | unsigned ThisBBRPONum = BBToOrder[p]; |
| 3017 | if (ThisBBRPONum < CurBlockRPONum) |
| 3018 | ++BackEdgesStart; |
| 3019 | |
| 3020 | Values.push_back(Elt: std::make_pair(x&: p, y: &OutLoc)); |
| 3021 | } |
| 3022 | |
| 3023 | // If there were no values, or one of the predecessors couldn't have a |
| 3024 | // value, then give up immediately. It's not safe to produce a live-in |
| 3025 | // value. Leave as whatever it was before. |
| 3026 | if (Bail || Values.size() == 0) |
| 3027 | return false; |
| 3028 | |
| 3029 | // All (non-entry) blocks have at least one non-backedge predecessor. |
| 3030 | // Pick the variable value from the first of these, to compare against |
| 3031 | // all others. |
| 3032 | const DbgValue &FirstVal = *Values[0].second; |
| 3033 | |
| 3034 | // If the old live-in value is not a PHI then either a) no PHI is needed |
| 3035 | // here, or b) we eliminated the PHI that was here. If so, we can just |
| 3036 | // propagate in the first parent's incoming value. |
| 3037 | if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) { |
| 3038 | Changed = LiveIn != FirstVal; |
| 3039 | if (Changed) |
| 3040 | LiveIn = FirstVal; |
| 3041 | return Changed; |
| 3042 | } |
| 3043 | |
| 3044 | // Scan for variable values that can never be resolved: if they have |
| 3045 | // different DIExpressions, different indirectness, or are mixed constants / |
| 3046 | // non-constants. |
| 3047 | for (const auto &V : Values) { |
| 3048 | if (!V.second->Properties.isJoinable(Other: FirstVal.Properties)) |
| 3049 | return false; |
| 3050 | if (V.second->Kind == DbgValue::NoVal) |
| 3051 | return false; |
| 3052 | if (!V.second->hasJoinableLocOps(Other: FirstVal)) |
| 3053 | return false; |
| 3054 | } |
| 3055 | |
| 3056 | // Try to eliminate this PHI. Do the incoming values all agree? |
| 3057 | bool Disagree = false; |
| 3058 | for (auto &V : Values) { |
| 3059 | if (*V.second == FirstVal) |
| 3060 | continue; // No disagreement. |
| 3061 | |
| 3062 | // If both values are not equal but have equal non-empty IDs then they refer |
| 3063 | // to the same value from different sources (e.g. one is VPHI and the other |
| 3064 | // is Def), which does not cause disagreement. |
| 3065 | if (V.second->hasIdenticalValidLocOps(Other: FirstVal)) |
| 3066 | continue; |
| 3067 | |
| 3068 | // Eliminate if a backedge feeds a VPHI back into itself. |
| 3069 | if (V.second->Kind == DbgValue::VPHI && |
| 3070 | V.second->BlockNo == MBB.getNumber() && |
| 3071 | // Is this a backedge? |
| 3072 | std::distance(first: Values.begin(), last: &V) >= BackEdgesStart) |
| 3073 | continue; |
| 3074 | |
| 3075 | Disagree = true; |
| 3076 | } |
| 3077 | |
| 3078 | // No disagreement -> live-through value. |
| 3079 | if (!Disagree) { |
| 3080 | Changed = LiveIn != FirstVal; |
| 3081 | if (Changed) |
| 3082 | LiveIn = FirstVal; |
| 3083 | return Changed; |
| 3084 | } else { |
| 3085 | // Otherwise use a VPHI. |
| 3086 | DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI); |
| 3087 | Changed = LiveIn != VPHI; |
| 3088 | if (Changed) |
| 3089 | LiveIn = VPHI; |
| 3090 | return Changed; |
| 3091 | } |
| 3092 | } |
| 3093 | |
| 3094 | void InstrRefBasedLDV::getBlocksForScope( |
| 3095 | const DILocation *DILoc, |
| 3096 | SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore, |
| 3097 | const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) { |
| 3098 | // Get the set of "normal" in-lexical-scope blocks. |
| 3099 | LS.getMachineBasicBlocks(DL: DILoc, MBBs&: BlocksToExplore); |
| 3100 | |
| 3101 | // VarLoc LiveDebugValues tracks variable locations that are defined in |
| 3102 | // blocks not in scope. This is something we could legitimately ignore, but |
| 3103 | // lets allow it for now for the sake of coverage. |
| 3104 | BlocksToExplore.insert_range(R: AssignBlocks); |
| 3105 | |
| 3106 | // Storage for artificial blocks we intend to add to BlocksToExplore. |
| 3107 | DenseSet<const MachineBasicBlock *> ToAdd; |
| 3108 | |
| 3109 | // To avoid needlessly dropping large volumes of variable locations, propagate |
| 3110 | // variables through aritifical blocks, i.e. those that don't have any |
| 3111 | // instructions in scope at all. To accurately replicate VarLoc |
| 3112 | // LiveDebugValues, this means exploring all artificial successors too. |
| 3113 | // Perform a depth-first-search to enumerate those blocks. |
| 3114 | for (const auto *MBB : BlocksToExplore) { |
| 3115 | // Depth-first-search state: each node is a block and which successor |
| 3116 | // we're currently exploring. |
| 3117 | SmallVector<std::pair<const MachineBasicBlock *, |
| 3118 | MachineBasicBlock::const_succ_iterator>, |
| 3119 | 8> |
| 3120 | DFS; |
| 3121 | |
| 3122 | // Find any artificial successors not already tracked. |
| 3123 | for (auto *succ : MBB->successors()) { |
| 3124 | if (BlocksToExplore.count(Ptr: succ)) |
| 3125 | continue; |
| 3126 | if (!ArtificialBlocks.count(Ptr: succ)) |
| 3127 | continue; |
| 3128 | ToAdd.insert(V: succ); |
| 3129 | DFS.push_back(Elt: {succ, succ->succ_begin()}); |
| 3130 | } |
| 3131 | |
| 3132 | // Search all those blocks, depth first. |
| 3133 | while (!DFS.empty()) { |
| 3134 | const MachineBasicBlock *CurBB = DFS.back().first; |
| 3135 | MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; |
| 3136 | // Walk back if we've explored this blocks successors to the end. |
| 3137 | if (CurSucc == CurBB->succ_end()) { |
| 3138 | DFS.pop_back(); |
| 3139 | continue; |
| 3140 | } |
| 3141 | |
| 3142 | // If the current successor is artificial and unexplored, descend into |
| 3143 | // it. |
| 3144 | if (!ToAdd.count(V: *CurSucc) && ArtificialBlocks.count(Ptr: *CurSucc)) { |
| 3145 | ToAdd.insert(V: *CurSucc); |
| 3146 | DFS.push_back(Elt: {*CurSucc, (*CurSucc)->succ_begin()}); |
| 3147 | continue; |
| 3148 | } |
| 3149 | |
| 3150 | ++CurSucc; |
| 3151 | } |
| 3152 | }; |
| 3153 | |
| 3154 | BlocksToExplore.insert_range(R&: ToAdd); |
| 3155 | } |
| 3156 | |
| 3157 | void InstrRefBasedLDV::buildVLocValueMap( |
| 3158 | const DILocation *DILoc, |
| 3159 | const SmallSet<DebugVariableID, 4> &VarsWeCareAbout, |
| 3160 | SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, |
| 3161 | FuncValueTable &MOutLocs, FuncValueTable &MInLocs, |
| 3162 | SmallVectorImpl<VLocTracker> &AllTheVLocs) { |
| 3163 | // This method is much like buildMLocValueMap: but focuses on a single |
| 3164 | // LexicalScope at a time. Pick out a set of blocks and variables that are |
| 3165 | // to have their value assignments solved, then run our dataflow algorithm |
| 3166 | // until a fixedpoint is reached. |
| 3167 | std::priority_queue<unsigned int, std::vector<unsigned int>, |
| 3168 | std::greater<unsigned int>> |
| 3169 | Worklist, Pending; |
| 3170 | SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; |
| 3171 | |
| 3172 | // The set of blocks we'll be examining. |
| 3173 | SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; |
| 3174 | |
| 3175 | // The order in which to examine them (RPO). |
| 3176 | SmallVector<MachineBasicBlock *, 16> BlockOrders; |
| 3177 | SmallVector<unsigned, 32> BlockOrderNums; |
| 3178 | |
| 3179 | getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks); |
| 3180 | |
| 3181 | // Single block scope: not interesting! No propagation at all. Note that |
| 3182 | // this could probably go above ArtificialBlocks without damage, but |
| 3183 | // that then produces output differences from original-live-debug-values, |
| 3184 | // which propagates from a single block into many artificial ones. |
| 3185 | if (BlocksToExplore.size() == 1) |
| 3186 | return; |
| 3187 | |
| 3188 | // Convert a const set to a non-const set. LexicalScopes |
| 3189 | // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones. |
| 3190 | // (Neither of them mutate anything). |
| 3191 | SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore; |
| 3192 | for (const auto *MBB : BlocksToExplore) |
| 3193 | MutBlocksToExplore.insert(Ptr: const_cast<MachineBasicBlock *>(MBB)); |
| 3194 | |
| 3195 | // Picks out relevants blocks RPO order and sort them. Sort their |
| 3196 | // order-numbers and map back to MBB pointers later, to avoid repeated |
| 3197 | // DenseMap queries during comparisons. |
| 3198 | for (const auto *MBB : BlocksToExplore) |
| 3199 | BlockOrderNums.push_back(Elt: BBToOrder[MBB]); |
| 3200 | |
| 3201 | llvm::sort(C&: BlockOrderNums); |
| 3202 | for (unsigned int I : BlockOrderNums) |
| 3203 | BlockOrders.push_back(Elt: OrderToBB[I]); |
| 3204 | BlockOrderNums.clear(); |
| 3205 | unsigned NumBlocks = BlockOrders.size(); |
| 3206 | |
| 3207 | // Allocate some vectors for storing the live ins and live outs. Large. |
| 3208 | SmallVector<DbgValue, 32> LiveIns, LiveOuts; |
| 3209 | LiveIns.reserve(N: NumBlocks); |
| 3210 | LiveOuts.reserve(N: NumBlocks); |
| 3211 | |
| 3212 | // Initialize all values to start as NoVals. This signifies "it's live |
| 3213 | // through, but we don't know what it is". |
| 3214 | DbgValueProperties EmptyProperties(EmptyExpr, false, false); |
| 3215 | for (unsigned int I = 0; I < NumBlocks; ++I) { |
| 3216 | DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); |
| 3217 | LiveIns.push_back(Elt: EmptyDbgValue); |
| 3218 | LiveOuts.push_back(Elt: EmptyDbgValue); |
| 3219 | } |
| 3220 | |
| 3221 | // Produce by-MBB indexes of live-in/live-outs, to ease lookup within |
| 3222 | // vlocJoin. |
| 3223 | LiveIdxT LiveOutIdx, LiveInIdx; |
| 3224 | LiveOutIdx.reserve(NumEntries: NumBlocks); |
| 3225 | LiveInIdx.reserve(NumEntries: NumBlocks); |
| 3226 | for (unsigned I = 0; I < NumBlocks; ++I) { |
| 3227 | LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; |
| 3228 | LiveInIdx[BlockOrders[I]] = &LiveIns[I]; |
| 3229 | } |
| 3230 | |
| 3231 | // Loop over each variable and place PHIs for it, then propagate values |
| 3232 | // between blocks. This keeps the locality of working on one lexical scope at |
| 3233 | // at time, but avoids re-processing variable values because some other |
| 3234 | // variable has been assigned. |
| 3235 | for (DebugVariableID VarID : VarsWeCareAbout) { |
| 3236 | // Re-initialize live-ins and live-outs, to clear the remains of previous |
| 3237 | // variables live-ins / live-outs. |
| 3238 | for (unsigned int I = 0; I < NumBlocks; ++I) { |
| 3239 | DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); |
| 3240 | LiveIns[I] = EmptyDbgValue; |
| 3241 | LiveOuts[I] = EmptyDbgValue; |
| 3242 | } |
| 3243 | |
| 3244 | // Place PHIs for variable values, using the LLVM IDF calculator. |
| 3245 | // Collect the set of blocks where variables are def'd. |
| 3246 | SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; |
| 3247 | for (const MachineBasicBlock *ExpMBB : BlocksToExplore) { |
| 3248 | auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars; |
| 3249 | if (TransferFunc.contains(Key: VarID)) |
| 3250 | DefBlocks.insert(Ptr: const_cast<MachineBasicBlock *>(ExpMBB)); |
| 3251 | } |
| 3252 | |
| 3253 | SmallVector<MachineBasicBlock *, 32> PHIBlocks; |
| 3254 | |
| 3255 | // Request the set of PHIs we should insert for this variable. If there's |
| 3256 | // only one value definition, things are very simple. |
| 3257 | if (DefBlocks.size() == 1) { |
| 3258 | placePHIsForSingleVarDefinition(InScopeBlocks: MutBlocksToExplore, MBB: *DefBlocks.begin(), |
| 3259 | AllTheVLocs, Var: VarID, Output); |
| 3260 | continue; |
| 3261 | } |
| 3262 | |
| 3263 | // Otherwise: we need to place PHIs through SSA and propagate values. |
| 3264 | BlockPHIPlacement(AllBlocks: MutBlocksToExplore, DefBlocks, PHIBlocks); |
| 3265 | |
| 3266 | // Insert PHIs into the per-block live-in tables for this variable. |
| 3267 | for (MachineBasicBlock *PHIMBB : PHIBlocks) { |
| 3268 | unsigned BlockNo = PHIMBB->getNumber(); |
| 3269 | DbgValue *LiveIn = LiveInIdx[PHIMBB]; |
| 3270 | *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI); |
| 3271 | } |
| 3272 | |
| 3273 | for (auto *MBB : BlockOrders) { |
| 3274 | Worklist.push(x: BBToOrder[MBB]); |
| 3275 | OnWorklist.insert(Ptr: MBB); |
| 3276 | } |
| 3277 | |
| 3278 | // Iterate over all the blocks we selected, propagating the variables value. |
| 3279 | // This loop does two things: |
| 3280 | // * Eliminates un-necessary VPHIs in vlocJoin, |
| 3281 | // * Evaluates the blocks transfer function (i.e. variable assignments) and |
| 3282 | // stores the result to the blocks live-outs. |
| 3283 | // Always evaluate the transfer function on the first iteration, and when |
| 3284 | // the live-ins change thereafter. |
| 3285 | bool FirstTrip = true; |
| 3286 | while (!Worklist.empty() || !Pending.empty()) { |
| 3287 | while (!Worklist.empty()) { |
| 3288 | auto *MBB = OrderToBB[Worklist.top()]; |
| 3289 | CurBB = MBB->getNumber(); |
| 3290 | Worklist.pop(); |
| 3291 | |
| 3292 | auto LiveInsIt = LiveInIdx.find(Val: MBB); |
| 3293 | assert(LiveInsIt != LiveInIdx.end()); |
| 3294 | DbgValue *LiveIn = LiveInsIt->second; |
| 3295 | |
| 3296 | // Join values from predecessors. Updates LiveInIdx, and writes output |
| 3297 | // into JoinedInLocs. |
| 3298 | bool InLocsChanged = |
| 3299 | vlocJoin(MBB&: *MBB, VLOCOutLocs&: LiveOutIdx, BlocksToExplore, LiveIn&: *LiveIn); |
| 3300 | |
| 3301 | SmallVector<const MachineBasicBlock *, 8> Preds(MBB->predecessors()); |
| 3302 | |
| 3303 | // If this block's live-in value is a VPHI, try to pick a machine-value |
| 3304 | // for it. This makes the machine-value available and propagated |
| 3305 | // through all blocks by the time value propagation finishes. We can't |
| 3306 | // do this any earlier as it needs to read the block live-outs. |
| 3307 | if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) { |
| 3308 | // There's a small possibility that on a preceeding path, a VPHI is |
| 3309 | // eliminated and transitions from VPHI-with-location to |
| 3310 | // live-through-value. As a result, the selected location of any VPHI |
| 3311 | // might change, so we need to re-compute it on each iteration. |
| 3312 | SmallVector<DbgOpID> JoinedOps; |
| 3313 | |
| 3314 | if (pickVPHILoc(OutValues&: JoinedOps, MBB: *MBB, LiveOuts: LiveOutIdx, MOutLocs, BlockOrders: Preds)) { |
| 3315 | bool NewLocPicked = !equal(LRange: LiveIn->getDbgOpIDs(), RRange&: JoinedOps); |
| 3316 | InLocsChanged |= NewLocPicked; |
| 3317 | if (NewLocPicked) |
| 3318 | LiveIn->setDbgOpIDs(JoinedOps); |
| 3319 | } |
| 3320 | } |
| 3321 | |
| 3322 | if (!InLocsChanged && !FirstTrip) |
| 3323 | continue; |
| 3324 | |
| 3325 | DbgValue *LiveOut = LiveOutIdx[MBB]; |
| 3326 | bool OLChanged = false; |
| 3327 | |
| 3328 | // Do transfer function. |
| 3329 | auto &VTracker = AllTheVLocs[MBB->getNumber()]; |
| 3330 | auto TransferIt = VTracker.Vars.find(Key: VarID); |
| 3331 | if (TransferIt != VTracker.Vars.end()) { |
| 3332 | // Erase on empty transfer (DBG_VALUE $noreg). |
| 3333 | if (TransferIt->second.Kind == DbgValue::Undef) { |
| 3334 | DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal); |
| 3335 | if (*LiveOut != NewVal) { |
| 3336 | *LiveOut = NewVal; |
| 3337 | OLChanged = true; |
| 3338 | } |
| 3339 | } else { |
| 3340 | // Insert new variable value; or overwrite. |
| 3341 | if (*LiveOut != TransferIt->second) { |
| 3342 | *LiveOut = TransferIt->second; |
| 3343 | OLChanged = true; |
| 3344 | } |
| 3345 | } |
| 3346 | } else { |
| 3347 | // Just copy live-ins to live-outs, for anything not transferred. |
| 3348 | if (*LiveOut != *LiveIn) { |
| 3349 | *LiveOut = *LiveIn; |
| 3350 | OLChanged = true; |
| 3351 | } |
| 3352 | } |
| 3353 | |
| 3354 | // If no live-out value changed, there's no need to explore further. |
| 3355 | if (!OLChanged) |
| 3356 | continue; |
| 3357 | |
| 3358 | // We should visit all successors. Ensure we'll visit any non-backedge |
| 3359 | // successors during this dataflow iteration; book backedge successors |
| 3360 | // to be visited next time around. |
| 3361 | for (auto *s : MBB->successors()) { |
| 3362 | // Ignore out of scope / not-to-be-explored successors. |
| 3363 | if (!LiveInIdx.contains(Val: s)) |
| 3364 | continue; |
| 3365 | |
| 3366 | unsigned Order = BBToOrder[s]; |
| 3367 | if (Order > BBToOrder[MBB]) { |
| 3368 | if (OnWorklist.insert(Ptr: s).second) |
| 3369 | Worklist.push(x: Order); |
| 3370 | } else if (OnPending.insert(Ptr: s).second && (FirstTrip || OLChanged)) { |
| 3371 | Pending.push(x: Order); |
| 3372 | } |
| 3373 | } |
| 3374 | } |
| 3375 | Worklist.swap(pq&: Pending); |
| 3376 | std::swap(LHS&: OnWorklist, RHS&: OnPending); |
| 3377 | OnPending.clear(); |
| 3378 | assert(Pending.empty()); |
| 3379 | FirstTrip = false; |
| 3380 | } |
| 3381 | |
| 3382 | // Save live-ins to output vector. Ignore any that are still marked as being |
| 3383 | // VPHIs with no location -- those are variables that we know the value of, |
| 3384 | // but are not actually available in the register file. |
| 3385 | for (auto *MBB : BlockOrders) { |
| 3386 | DbgValue *BlockLiveIn = LiveInIdx[MBB]; |
| 3387 | if (BlockLiveIn->Kind == DbgValue::NoVal) |
| 3388 | continue; |
| 3389 | if (BlockLiveIn->isUnjoinedPHI()) |
| 3390 | continue; |
| 3391 | if (BlockLiveIn->Kind == DbgValue::VPHI) |
| 3392 | BlockLiveIn->Kind = DbgValue::Def; |
| 3393 | [[maybe_unused]] auto &[Var, DILoc] = DVMap.lookupDVID(ID: VarID); |
| 3394 | assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() == |
| 3395 | Var.getFragment() && |
| 3396 | "Fragment info missing during value prop" ); |
| 3397 | Output[MBB->getNumber()].push_back(Elt: std::make_pair(x&: VarID, y&: *BlockLiveIn)); |
| 3398 | } |
| 3399 | } // Per-variable loop. |
| 3400 | |
| 3401 | BlockOrders.clear(); |
| 3402 | BlocksToExplore.clear(); |
| 3403 | } |
| 3404 | |
| 3405 | void InstrRefBasedLDV::placePHIsForSingleVarDefinition( |
| 3406 | const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, |
| 3407 | MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, |
| 3408 | DebugVariableID VarID, LiveInsT &Output) { |
| 3409 | // If there is a single definition of the variable, then working out it's |
| 3410 | // value everywhere is very simple: it's every block dominated by the |
| 3411 | // definition. At the dominance frontier, the usual algorithm would: |
| 3412 | // * Place PHIs, |
| 3413 | // * Propagate values into them, |
| 3414 | // * Find there's no incoming variable value from the other incoming branches |
| 3415 | // of the dominance frontier, |
| 3416 | // * Specify there's no variable value in blocks past the frontier. |
| 3417 | // This is a common case, hence it's worth special-casing it. |
| 3418 | |
| 3419 | // Pick out the variables value from the block transfer function. |
| 3420 | VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()]; |
| 3421 | auto ValueIt = VLocs.Vars.find(Key: VarID); |
| 3422 | const DbgValue &Value = ValueIt->second; |
| 3423 | |
| 3424 | // If it's an explicit assignment of "undef", that means there is no location |
| 3425 | // anyway, anywhere. |
| 3426 | if (Value.Kind == DbgValue::Undef) |
| 3427 | return; |
| 3428 | |
| 3429 | // Assign the variable value to entry to each dominated block that's in scope. |
| 3430 | // Skip the definition block -- it's assigned the variable value in the middle |
| 3431 | // of the block somewhere. |
| 3432 | for (auto *ScopeBlock : InScopeBlocks) { |
| 3433 | if (!DomTree->properlyDominates(A: AssignMBB, B: ScopeBlock)) |
| 3434 | continue; |
| 3435 | |
| 3436 | Output[ScopeBlock->getNumber()].push_back(Elt: {VarID, Value}); |
| 3437 | } |
| 3438 | |
| 3439 | // All blocks that aren't dominated have no live-in value, thus no variable |
| 3440 | // value will be given to them. |
| 3441 | } |
| 3442 | |
| 3443 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3444 | void InstrRefBasedLDV::dump_mloc_transfer( |
| 3445 | const MLocTransferMap &mloc_transfer) const { |
| 3446 | for (const auto &P : mloc_transfer) { |
| 3447 | std::string foo = MTracker->LocIdxToName(P.first); |
| 3448 | std::string bar = MTracker->IDAsString(P.second); |
| 3449 | dbgs() << "Loc " << foo << " --> " << bar << "\n" ; |
| 3450 | } |
| 3451 | } |
| 3452 | #endif |
| 3453 | |
| 3454 | void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { |
| 3455 | // Build some useful data structures. |
| 3456 | |
| 3457 | LLVMContext &Context = MF.getFunction().getContext(); |
| 3458 | EmptyExpr = DIExpression::get(Context, Elements: {}); |
| 3459 | |
| 3460 | auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { |
| 3461 | if (const DebugLoc &DL = MI.getDebugLoc()) |
| 3462 | return DL.getLine() != 0; |
| 3463 | return false; |
| 3464 | }; |
| 3465 | |
| 3466 | // Collect a set of all the artificial blocks. Collect the size too, ilist |
| 3467 | // size calls are O(n). |
| 3468 | unsigned int Size = 0; |
| 3469 | for (auto &MBB : MF) { |
| 3470 | ++Size; |
| 3471 | if (none_of(Range: MBB.instrs(), P: hasNonArtificialLocation)) |
| 3472 | ArtificialBlocks.insert(Ptr: &MBB); |
| 3473 | } |
| 3474 | |
| 3475 | // Compute mappings of block <=> RPO order. |
| 3476 | ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); |
| 3477 | unsigned int RPONumber = 0; |
| 3478 | OrderToBB.reserve(N: Size); |
| 3479 | BBToOrder.reserve(NumEntries: Size); |
| 3480 | BBNumToRPO.reserve(NumEntries: Size); |
| 3481 | auto processMBB = [&](MachineBasicBlock *MBB) { |
| 3482 | OrderToBB.push_back(Elt: MBB); |
| 3483 | BBToOrder[MBB] = RPONumber; |
| 3484 | BBNumToRPO[MBB->getNumber()] = RPONumber; |
| 3485 | ++RPONumber; |
| 3486 | }; |
| 3487 | for (MachineBasicBlock *MBB : RPOT) |
| 3488 | processMBB(MBB); |
| 3489 | for (MachineBasicBlock &MBB : MF) |
| 3490 | if (!BBToOrder.contains(Val: &MBB)) |
| 3491 | processMBB(&MBB); |
| 3492 | |
| 3493 | // Order value substitutions by their "source" operand pair, for quick lookup. |
| 3494 | llvm::sort(C&: MF.DebugValueSubstitutions); |
| 3495 | |
| 3496 | #ifdef EXPENSIVE_CHECKS |
| 3497 | // As an expensive check, test whether there are any duplicate substitution |
| 3498 | // sources in the collection. |
| 3499 | if (MF.DebugValueSubstitutions.size() > 2) { |
| 3500 | for (auto It = MF.DebugValueSubstitutions.begin(); |
| 3501 | It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { |
| 3502 | assert(It->Src != std::next(It)->Src && "Duplicate variable location " |
| 3503 | "substitution seen" ); |
| 3504 | } |
| 3505 | } |
| 3506 | #endif |
| 3507 | } |
| 3508 | |
| 3509 | // Produce an "ejection map" for blocks, i.e., what's the highest-numbered |
| 3510 | // lexical scope it's used in. When exploring in DFS order and we pass that |
| 3511 | // scope, the block can be processed and any tracking information freed. |
| 3512 | void InstrRefBasedLDV::makeDepthFirstEjectionMap( |
| 3513 | SmallVectorImpl<unsigned> &EjectionMap, |
| 3514 | const ScopeToDILocT &ScopeToDILocation, |
| 3515 | ScopeToAssignBlocksT &ScopeToAssignBlocks) { |
| 3516 | SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; |
| 3517 | SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack; |
| 3518 | auto *TopScope = LS.getCurrentFunctionScope(); |
| 3519 | |
| 3520 | // Unlike lexical scope explorers, we explore in reverse order, to find the |
| 3521 | // "last" lexical scope used for each block early. |
| 3522 | WorkStack.push_back(Elt: {TopScope, TopScope->getChildren().size() - 1}); |
| 3523 | |
| 3524 | while (!WorkStack.empty()) { |
| 3525 | auto &ScopePosition = WorkStack.back(); |
| 3526 | LexicalScope *WS = ScopePosition.first; |
| 3527 | ssize_t ChildNum = ScopePosition.second--; |
| 3528 | |
| 3529 | const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren(); |
| 3530 | if (ChildNum >= 0) { |
| 3531 | // If ChildNum is positive, there are remaining children to explore. |
| 3532 | // Push the child and its children-count onto the stack. |
| 3533 | auto &ChildScope = Children[ChildNum]; |
| 3534 | WorkStack.push_back( |
| 3535 | Elt: std::make_pair(x: ChildScope, y: ChildScope->getChildren().size() - 1)); |
| 3536 | } else { |
| 3537 | WorkStack.pop_back(); |
| 3538 | |
| 3539 | // We've explored all children and any later blocks: examine all blocks |
| 3540 | // in our scope. If they haven't yet had an ejection number set, then |
| 3541 | // this scope will be the last to use that block. |
| 3542 | auto DILocationIt = ScopeToDILocation.find(Val: WS); |
| 3543 | if (DILocationIt != ScopeToDILocation.end()) { |
| 3544 | getBlocksForScope(DILoc: DILocationIt->second, BlocksToExplore, |
| 3545 | AssignBlocks: ScopeToAssignBlocks.find(Val: WS)->second); |
| 3546 | for (const auto *MBB : BlocksToExplore) { |
| 3547 | unsigned BBNum = MBB->getNumber(); |
| 3548 | if (EjectionMap[BBNum] == 0) |
| 3549 | EjectionMap[BBNum] = WS->getDFSOut(); |
| 3550 | } |
| 3551 | |
| 3552 | BlocksToExplore.clear(); |
| 3553 | } |
| 3554 | } |
| 3555 | } |
| 3556 | } |
| 3557 | |
| 3558 | bool InstrRefBasedLDV::depthFirstVLocAndEmit( |
| 3559 | unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation, |
| 3560 | const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks, |
| 3561 | LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs, |
| 3562 | SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF, |
| 3563 | bool ShouldEmitDebugEntryValues) { |
| 3564 | TTracker = new TransferTracker(TII, MTracker, MF, DVMap, *TRI, |
| 3565 | CalleeSavedRegs, ShouldEmitDebugEntryValues); |
| 3566 | unsigned NumLocs = MTracker->getNumLocs(); |
| 3567 | VTracker = nullptr; |
| 3568 | |
| 3569 | // No scopes? No variable locations. |
| 3570 | if (!LS.getCurrentFunctionScope()) |
| 3571 | return false; |
| 3572 | |
| 3573 | // Build map from block number to the last scope that uses the block. |
| 3574 | SmallVector<unsigned, 16> EjectionMap; |
| 3575 | EjectionMap.resize(N: MaxNumBlocks, NV: 0); |
| 3576 | makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation, |
| 3577 | ScopeToAssignBlocks); |
| 3578 | |
| 3579 | // Helper lambda for ejecting a block -- if nothing is going to use the block, |
| 3580 | // we can translate the variable location information into DBG_VALUEs and then |
| 3581 | // free all of InstrRefBasedLDV's data structures. |
| 3582 | auto EjectBlock = [&](MachineBasicBlock &MBB) -> void { |
| 3583 | unsigned BBNum = MBB.getNumber(); |
| 3584 | AllTheVLocs[BBNum].clear(); |
| 3585 | |
| 3586 | // Prime the transfer-tracker, and then step through all the block |
| 3587 | // instructions, installing transfers. |
| 3588 | MTracker->reset(); |
| 3589 | MTracker->loadFromArray(Locs&: MInLocs[MBB], NewCurBB: BBNum); |
| 3590 | TTracker->loadInlocs(MBB, MLocs&: MInLocs[MBB], DbgOpStore, VLocs: Output[BBNum], NumLocs); |
| 3591 | |
| 3592 | CurBB = BBNum; |
| 3593 | CurInst = 1; |
| 3594 | for (auto &MI : MBB) { |
| 3595 | process(MI, MLiveOuts: &MOutLocs, MLiveIns: &MInLocs); |
| 3596 | TTracker->checkInstForNewValues(Inst: CurInst, pos: MI.getIterator()); |
| 3597 | ++CurInst; |
| 3598 | } |
| 3599 | |
| 3600 | // Free machine-location tables for this block. |
| 3601 | MInLocs.ejectTableForBlock(MBB); |
| 3602 | MOutLocs.ejectTableForBlock(MBB); |
| 3603 | // We don't need live-in variable values for this block either. |
| 3604 | Output[BBNum].clear(); |
| 3605 | AllTheVLocs[BBNum].clear(); |
| 3606 | }; |
| 3607 | |
| 3608 | SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; |
| 3609 | SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack; |
| 3610 | WorkStack.push_back(Elt: {LS.getCurrentFunctionScope(), 0}); |
| 3611 | unsigned HighestDFSIn = 0; |
| 3612 | |
| 3613 | // Proceed to explore in depth first order. |
| 3614 | while (!WorkStack.empty()) { |
| 3615 | auto &ScopePosition = WorkStack.back(); |
| 3616 | LexicalScope *WS = ScopePosition.first; |
| 3617 | ssize_t ChildNum = ScopePosition.second++; |
| 3618 | |
| 3619 | // We obesrve scopes with children twice here, once descending in, once |
| 3620 | // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure |
| 3621 | // we don't process a scope twice. Additionally, ignore scopes that don't |
| 3622 | // have a DILocation -- by proxy, this means we never tracked any variable |
| 3623 | // assignments in that scope. |
| 3624 | auto DILocIt = ScopeToDILocation.find(Val: WS); |
| 3625 | if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) { |
| 3626 | const DILocation *DILoc = DILocIt->second; |
| 3627 | auto &VarsWeCareAbout = ScopeToVars.find(Val: WS)->second; |
| 3628 | auto &BlocksInScope = ScopeToAssignBlocks.find(Val: WS)->second; |
| 3629 | |
| 3630 | buildVLocValueMap(DILoc, VarsWeCareAbout, AssignBlocks&: BlocksInScope, Output, MOutLocs, |
| 3631 | MInLocs, AllTheVLocs); |
| 3632 | } |
| 3633 | |
| 3634 | HighestDFSIn = std::max(a: HighestDFSIn, b: WS->getDFSIn()); |
| 3635 | |
| 3636 | // Descend into any scope nests. |
| 3637 | const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren(); |
| 3638 | if (ChildNum < (ssize_t)Children.size()) { |
| 3639 | // There are children to explore -- push onto stack and continue. |
| 3640 | auto &ChildScope = Children[ChildNum]; |
| 3641 | WorkStack.push_back(Elt: std::make_pair(x: ChildScope, y: 0)); |
| 3642 | } else { |
| 3643 | WorkStack.pop_back(); |
| 3644 | |
| 3645 | // We've explored a leaf, or have explored all the children of a scope. |
| 3646 | // Try to eject any blocks where this is the last scope it's relevant to. |
| 3647 | auto DILocationIt = ScopeToDILocation.find(Val: WS); |
| 3648 | if (DILocationIt == ScopeToDILocation.end()) |
| 3649 | continue; |
| 3650 | |
| 3651 | getBlocksForScope(DILoc: DILocationIt->second, BlocksToExplore, |
| 3652 | AssignBlocks: ScopeToAssignBlocks.find(Val: WS)->second); |
| 3653 | for (const auto *MBB : BlocksToExplore) |
| 3654 | if (WS->getDFSOut() == EjectionMap[MBB->getNumber()]) |
| 3655 | EjectBlock(const_cast<MachineBasicBlock &>(*MBB)); |
| 3656 | |
| 3657 | BlocksToExplore.clear(); |
| 3658 | } |
| 3659 | } |
| 3660 | |
| 3661 | // Some artificial blocks may not have been ejected, meaning they're not |
| 3662 | // connected to an actual legitimate scope. This can technically happen |
| 3663 | // with things like the entry block. In theory, we shouldn't need to do |
| 3664 | // anything for such out-of-scope blocks, but for the sake of being similar |
| 3665 | // to VarLocBasedLDV, eject these too. |
| 3666 | for (auto *MBB : ArtificialBlocks) |
| 3667 | if (MInLocs.hasTableFor(MBB&: *MBB)) |
| 3668 | EjectBlock(*MBB); |
| 3669 | |
| 3670 | return emitTransfers(); |
| 3671 | } |
| 3672 | |
| 3673 | bool InstrRefBasedLDV::emitTransfers() { |
| 3674 | // Go through all the transfers recorded in the TransferTracker -- this is |
| 3675 | // both the live-ins to a block, and any movements of values that happen |
| 3676 | // in the middle. |
| 3677 | for (auto &P : TTracker->Transfers) { |
| 3678 | // We have to insert DBG_VALUEs in a consistent order, otherwise they |
| 3679 | // appear in DWARF in different orders. Use the order that they appear |
| 3680 | // when walking through each block / each instruction, stored in |
| 3681 | // DVMap. |
| 3682 | llvm::sort(C&: P.Insts, Comp: llvm::less_first()); |
| 3683 | |
| 3684 | // Insert either before or after the designated point... |
| 3685 | if (P.MBB) { |
| 3686 | MachineBasicBlock &MBB = *P.MBB; |
| 3687 | for (const auto &Pair : P.Insts) |
| 3688 | MBB.insert(I: P.Pos, M: Pair.second); |
| 3689 | } else { |
| 3690 | // Terminators, like tail calls, can clobber things. Don't try and place |
| 3691 | // transfers after them. |
| 3692 | if (P.Pos->isTerminator()) |
| 3693 | continue; |
| 3694 | |
| 3695 | MachineBasicBlock &MBB = *P.Pos->getParent(); |
| 3696 | for (const auto &Pair : P.Insts) |
| 3697 | MBB.insertAfterBundle(I: P.Pos, MI: Pair.second); |
| 3698 | } |
| 3699 | } |
| 3700 | |
| 3701 | return TTracker->Transfers.size() != 0; |
| 3702 | } |
| 3703 | |
| 3704 | /// Calculate the liveness information for the given machine function and |
| 3705 | /// extend ranges across basic blocks. |
| 3706 | bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, |
| 3707 | MachineDominatorTree *DomTree, |
| 3708 | bool ShouldEmitDebugEntryValues, |
| 3709 | unsigned InputBBLimit, |
| 3710 | unsigned InputDbgValLimit) { |
| 3711 | // No subprogram means this function contains no debuginfo. |
| 3712 | if (!MF.getFunction().getSubprogram()) |
| 3713 | return false; |
| 3714 | |
| 3715 | LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n" ); |
| 3716 | |
| 3717 | this->DomTree = DomTree; |
| 3718 | TRI = MF.getSubtarget().getRegisterInfo(); |
| 3719 | MRI = &MF.getRegInfo(); |
| 3720 | TII = MF.getSubtarget().getInstrInfo(); |
| 3721 | TFI = MF.getSubtarget().getFrameLowering(); |
| 3722 | TFI->getCalleeSaves(MF, SavedRegs&: CalleeSavedRegs); |
| 3723 | MFI = &MF.getFrameInfo(); |
| 3724 | LS.initialize(MF); |
| 3725 | |
| 3726 | const auto &STI = MF.getSubtarget(); |
| 3727 | AdjustsStackInCalls = MFI->adjustsStack() && |
| 3728 | STI.getFrameLowering()->stackProbeFunctionModifiesSP(); |
| 3729 | if (AdjustsStackInCalls) |
| 3730 | StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF); |
| 3731 | |
| 3732 | MTracker = |
| 3733 | new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); |
| 3734 | VTracker = nullptr; |
| 3735 | TTracker = nullptr; |
| 3736 | |
| 3737 | SmallVector<MLocTransferMap, 32> MLocTransfer; |
| 3738 | SmallVector<VLocTracker, 8> vlocs; |
| 3739 | LiveInsT SavedLiveIns; |
| 3740 | |
| 3741 | int MaxNumBlocks = -1; |
| 3742 | for (auto &MBB : MF) |
| 3743 | MaxNumBlocks = std::max(a: MBB.getNumber(), b: MaxNumBlocks); |
| 3744 | assert(MaxNumBlocks >= 0); |
| 3745 | ++MaxNumBlocks; |
| 3746 | |
| 3747 | initialSetup(MF); |
| 3748 | |
| 3749 | MLocTransfer.resize(N: MaxNumBlocks); |
| 3750 | vlocs.resize(N: MaxNumBlocks, NV: VLocTracker(DVMap, OverlapFragments, EmptyExpr)); |
| 3751 | SavedLiveIns.resize(N: MaxNumBlocks); |
| 3752 | |
| 3753 | produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); |
| 3754 | |
| 3755 | // Allocate and initialize two array-of-arrays for the live-in and live-out |
| 3756 | // machine values. The outer dimension is the block number; while the inner |
| 3757 | // dimension is a LocIdx from MLocTracker. |
| 3758 | unsigned NumLocs = MTracker->getNumLocs(); |
| 3759 | FuncValueTable MOutLocs(MaxNumBlocks, NumLocs); |
| 3760 | FuncValueTable MInLocs(MaxNumBlocks, NumLocs); |
| 3761 | |
| 3762 | // Solve the machine value dataflow problem using the MLocTransfer function, |
| 3763 | // storing the computed live-ins / live-outs into the array-of-arrays. We use |
| 3764 | // both live-ins and live-outs for decision making in the variable value |
| 3765 | // dataflow problem. |
| 3766 | buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer); |
| 3767 | |
| 3768 | // Patch up debug phi numbers, turning unknown block-live-in values into |
| 3769 | // either live-through machine values, or PHIs. |
| 3770 | for (auto &DBG_PHI : DebugPHINumToValue) { |
| 3771 | // Identify unresolved block-live-ins. |
| 3772 | if (!DBG_PHI.ValueRead) |
| 3773 | continue; |
| 3774 | |
| 3775 | ValueIDNum &Num = *DBG_PHI.ValueRead; |
| 3776 | if (!Num.isPHI()) |
| 3777 | continue; |
| 3778 | |
| 3779 | unsigned BlockNo = Num.getBlock(); |
| 3780 | LocIdx LocNo = Num.getLoc(); |
| 3781 | ValueIDNum ResolvedValue = MInLocs[BlockNo][LocNo.asU64()]; |
| 3782 | // If there is no resolved value for this live-in then it is not directly |
| 3783 | // reachable from the entry block -- model it as a PHI on entry to this |
| 3784 | // block, which means we leave the ValueIDNum unchanged. |
| 3785 | if (ResolvedValue != ValueIDNum::EmptyValue) |
| 3786 | Num = ResolvedValue; |
| 3787 | } |
| 3788 | // Later, we'll be looking up ranges of instruction numbers. |
| 3789 | llvm::sort(C&: DebugPHINumToValue); |
| 3790 | |
| 3791 | // Walk back through each block / instruction, collecting DBG_VALUE |
| 3792 | // instructions and recording what machine value their operands refer to. |
| 3793 | for (MachineBasicBlock *MBB : OrderToBB) { |
| 3794 | CurBB = MBB->getNumber(); |
| 3795 | VTracker = &vlocs[CurBB]; |
| 3796 | VTracker->MBB = MBB; |
| 3797 | MTracker->loadFromArray(Locs&: MInLocs[*MBB], NewCurBB: CurBB); |
| 3798 | CurInst = 1; |
| 3799 | for (auto &MI : *MBB) { |
| 3800 | process(MI, MLiveOuts: &MOutLocs, MLiveIns: &MInLocs); |
| 3801 | ++CurInst; |
| 3802 | } |
| 3803 | MTracker->reset(); |
| 3804 | } |
| 3805 | |
| 3806 | // Map from one LexicalScope to all the variables in that scope. |
| 3807 | ScopeToVarsT ScopeToVars; |
| 3808 | |
| 3809 | // Map from One lexical scope to all blocks where assignments happen for |
| 3810 | // that scope. |
| 3811 | ScopeToAssignBlocksT ScopeToAssignBlocks; |
| 3812 | |
| 3813 | // Store map of DILocations that describes scopes. |
| 3814 | ScopeToDILocT ScopeToDILocation; |
| 3815 | |
| 3816 | // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise |
| 3817 | // the order is unimportant, it just has to be stable. |
| 3818 | unsigned VarAssignCount = 0; |
| 3819 | for (MachineBasicBlock *MBB : OrderToBB) { |
| 3820 | auto *VTracker = &vlocs[MBB->getNumber()]; |
| 3821 | // Collect each variable with a DBG_VALUE in this block. |
| 3822 | for (auto &idx : VTracker->Vars) { |
| 3823 | DebugVariableID VarID = idx.first; |
| 3824 | const DILocation *ScopeLoc = VTracker->Scopes[VarID]; |
| 3825 | assert(ScopeLoc != nullptr); |
| 3826 | auto *Scope = LS.findLexicalScope(DL: ScopeLoc); |
| 3827 | |
| 3828 | // No insts in scope -> shouldn't have been recorded. |
| 3829 | assert(Scope != nullptr); |
| 3830 | |
| 3831 | ScopeToVars[Scope].insert(V: VarID); |
| 3832 | ScopeToAssignBlocks[Scope].insert(Ptr: VTracker->MBB); |
| 3833 | ScopeToDILocation[Scope] = ScopeLoc; |
| 3834 | ++VarAssignCount; |
| 3835 | } |
| 3836 | } |
| 3837 | |
| 3838 | bool Changed = false; |
| 3839 | |
| 3840 | // If we have an extremely large number of variable assignments and blocks, |
| 3841 | // bail out at this point. We've burnt some time doing analysis already, |
| 3842 | // however we should cut our losses. |
| 3843 | if ((unsigned)MaxNumBlocks > InputBBLimit && |
| 3844 | VarAssignCount > InputDbgValLimit) { |
| 3845 | LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() |
| 3846 | << " has " << MaxNumBlocks << " basic blocks and " |
| 3847 | << VarAssignCount |
| 3848 | << " variable assignments, exceeding limits.\n" ); |
| 3849 | } else { |
| 3850 | // Optionally, solve the variable value problem and emit to blocks by using |
| 3851 | // a lexical-scope-depth search. It should be functionally identical to |
| 3852 | // the "else" block of this condition. |
| 3853 | Changed = depthFirstVLocAndEmit( |
| 3854 | MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks, |
| 3855 | Output&: SavedLiveIns, MOutLocs, MInLocs, AllTheVLocs&: vlocs, MF, ShouldEmitDebugEntryValues); |
| 3856 | } |
| 3857 | |
| 3858 | delete MTracker; |
| 3859 | delete TTracker; |
| 3860 | MTracker = nullptr; |
| 3861 | VTracker = nullptr; |
| 3862 | TTracker = nullptr; |
| 3863 | |
| 3864 | ArtificialBlocks.clear(); |
| 3865 | OrderToBB.clear(); |
| 3866 | BBToOrder.clear(); |
| 3867 | BBNumToRPO.clear(); |
| 3868 | DebugInstrNumToInstr.clear(); |
| 3869 | DebugPHINumToValue.clear(); |
| 3870 | OverlapFragments.clear(); |
| 3871 | SeenFragments.clear(); |
| 3872 | SeenDbgPHIs.clear(); |
| 3873 | DbgOpStore.clear(); |
| 3874 | DVMap.clear(); |
| 3875 | |
| 3876 | return Changed; |
| 3877 | } |
| 3878 | |
| 3879 | LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { |
| 3880 | return new InstrRefBasedLDV(); |
| 3881 | } |
| 3882 | |
| 3883 | namespace { |
| 3884 | class LDVSSABlock; |
| 3885 | class LDVSSAUpdater; |
| 3886 | |
| 3887 | // Pick a type to identify incoming block values as we construct SSA. We |
| 3888 | // can't use anything more robust than an integer unfortunately, as SSAUpdater |
| 3889 | // expects to zero-initialize the type. |
| 3890 | typedef uint64_t BlockValueNum; |
| 3891 | |
| 3892 | /// Represents an SSA PHI node for the SSA updater class. Contains the block |
| 3893 | /// this PHI is in, the value number it would have, and the expected incoming |
| 3894 | /// values from parent blocks. |
| 3895 | class LDVSSAPhi { |
| 3896 | public: |
| 3897 | SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; |
| 3898 | LDVSSABlock *ParentBlock; |
| 3899 | BlockValueNum PHIValNum; |
| 3900 | LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) |
| 3901 | : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} |
| 3902 | |
| 3903 | LDVSSABlock *getParent() { return ParentBlock; } |
| 3904 | }; |
| 3905 | |
| 3906 | /// Thin wrapper around a block predecessor iterator. Only difference from a |
| 3907 | /// normal block iterator is that it dereferences to an LDVSSABlock. |
| 3908 | class LDVSSABlockIterator { |
| 3909 | public: |
| 3910 | MachineBasicBlock::pred_iterator PredIt; |
| 3911 | LDVSSAUpdater &Updater; |
| 3912 | |
| 3913 | LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, |
| 3914 | LDVSSAUpdater &Updater) |
| 3915 | : PredIt(PredIt), Updater(Updater) {} |
| 3916 | |
| 3917 | bool operator!=(const LDVSSABlockIterator &OtherIt) const { |
| 3918 | return OtherIt.PredIt != PredIt; |
| 3919 | } |
| 3920 | |
| 3921 | LDVSSABlockIterator &operator++() { |
| 3922 | ++PredIt; |
| 3923 | return *this; |
| 3924 | } |
| 3925 | |
| 3926 | LDVSSABlock *operator*(); |
| 3927 | }; |
| 3928 | |
| 3929 | /// Thin wrapper around a block for SSA Updater interface. Necessary because |
| 3930 | /// we need to track the PHI value(s) that we may have observed as necessary |
| 3931 | /// in this block. |
| 3932 | class LDVSSABlock { |
| 3933 | public: |
| 3934 | MachineBasicBlock &BB; |
| 3935 | LDVSSAUpdater &Updater; |
| 3936 | using PHIListT = SmallVector<LDVSSAPhi, 1>; |
| 3937 | /// List of PHIs in this block. There should only ever be one. |
| 3938 | PHIListT PHIList; |
| 3939 | |
| 3940 | LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) |
| 3941 | : BB(BB), Updater(Updater) {} |
| 3942 | |
| 3943 | LDVSSABlockIterator succ_begin() { |
| 3944 | return LDVSSABlockIterator(BB.succ_begin(), Updater); |
| 3945 | } |
| 3946 | |
| 3947 | LDVSSABlockIterator succ_end() { |
| 3948 | return LDVSSABlockIterator(BB.succ_end(), Updater); |
| 3949 | } |
| 3950 | |
| 3951 | /// SSAUpdater has requested a PHI: create that within this block record. |
| 3952 | LDVSSAPhi *newPHI(BlockValueNum Value) { |
| 3953 | PHIList.emplace_back(Args&: Value, Args: this); |
| 3954 | return &PHIList.back(); |
| 3955 | } |
| 3956 | |
| 3957 | /// SSAUpdater wishes to know what PHIs already exist in this block. |
| 3958 | PHIListT &phis() { return PHIList; } |
| 3959 | }; |
| 3960 | |
| 3961 | /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values |
| 3962 | /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to |
| 3963 | // SSAUpdaterTraits<LDVSSAUpdater>. |
| 3964 | class LDVSSAUpdater { |
| 3965 | public: |
| 3966 | /// Map of value numbers to PHI records. |
| 3967 | DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; |
| 3968 | /// Map of which blocks generate Undef values -- blocks that are not |
| 3969 | /// dominated by any Def. |
| 3970 | DenseMap<MachineBasicBlock *, BlockValueNum> PoisonMap; |
| 3971 | /// Map of machine blocks to our own records of them. |
| 3972 | DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; |
| 3973 | /// Machine location where any PHI must occur. |
| 3974 | LocIdx Loc; |
| 3975 | /// Table of live-in machine value numbers for blocks / locations. |
| 3976 | const FuncValueTable &MLiveIns; |
| 3977 | |
| 3978 | LDVSSAUpdater(LocIdx L, const FuncValueTable &MLiveIns) |
| 3979 | : Loc(L), MLiveIns(MLiveIns) {} |
| 3980 | |
| 3981 | void reset() { |
| 3982 | for (auto &Block : BlockMap) |
| 3983 | delete Block.second; |
| 3984 | |
| 3985 | PHIs.clear(); |
| 3986 | PoisonMap.clear(); |
| 3987 | BlockMap.clear(); |
| 3988 | } |
| 3989 | |
| 3990 | ~LDVSSAUpdater() { reset(); } |
| 3991 | |
| 3992 | /// For a given MBB, create a wrapper block for it. Stores it in the |
| 3993 | /// LDVSSAUpdater block map. |
| 3994 | LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { |
| 3995 | auto [It, Inserted] = BlockMap.try_emplace(Key: BB); |
| 3996 | if (Inserted) |
| 3997 | It->second = new LDVSSABlock(*BB, *this); |
| 3998 | return It->second; |
| 3999 | } |
| 4000 | |
| 4001 | /// Find the live-in value number for the given block. Looks up the value at |
| 4002 | /// the PHI location on entry. |
| 4003 | BlockValueNum getValue(LDVSSABlock *LDVBB) { |
| 4004 | return MLiveIns[LDVBB->BB][Loc.asU64()].asU64(); |
| 4005 | } |
| 4006 | }; |
| 4007 | |
| 4008 | LDVSSABlock *LDVSSABlockIterator::operator*() { |
| 4009 | return Updater.getSSALDVBlock(BB: *PredIt); |
| 4010 | } |
| 4011 | |
| 4012 | #ifndef NDEBUG |
| 4013 | |
| 4014 | raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { |
| 4015 | out << "SSALDVPHI " << PHI.PHIValNum; |
| 4016 | return out; |
| 4017 | } |
| 4018 | |
| 4019 | #endif |
| 4020 | |
| 4021 | } // namespace |
| 4022 | |
| 4023 | namespace llvm { |
| 4024 | |
| 4025 | /// Template specialization to give SSAUpdater access to CFG and value |
| 4026 | /// information. SSAUpdater calls methods in these traits, passing in the |
| 4027 | /// LDVSSAUpdater object, to learn about blocks and the values they define. |
| 4028 | /// It also provides methods to create PHI nodes and track them. |
| 4029 | template <> class SSAUpdaterTraits<LDVSSAUpdater> { |
| 4030 | public: |
| 4031 | using BlkT = LDVSSABlock; |
| 4032 | using ValT = BlockValueNum; |
| 4033 | using PhiT = LDVSSAPhi; |
| 4034 | using BlkSucc_iterator = LDVSSABlockIterator; |
| 4035 | |
| 4036 | // Methods to access block successors -- dereferencing to our wrapper class. |
| 4037 | static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } |
| 4038 | static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } |
| 4039 | |
| 4040 | /// Iterator for PHI operands. |
| 4041 | class PHI_iterator { |
| 4042 | private: |
| 4043 | LDVSSAPhi *PHI; |
| 4044 | unsigned Idx; |
| 4045 | |
| 4046 | public: |
| 4047 | explicit PHI_iterator(LDVSSAPhi *P) // begin iterator |
| 4048 | : PHI(P), Idx(0) {} |
| 4049 | PHI_iterator(LDVSSAPhi *P, bool) // end iterator |
| 4050 | : PHI(P), Idx(PHI->IncomingValues.size()) {} |
| 4051 | |
| 4052 | PHI_iterator &operator++() { |
| 4053 | Idx++; |
| 4054 | return *this; |
| 4055 | } |
| 4056 | bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } |
| 4057 | bool operator!=(const PHI_iterator &X) const { return !operator==(X); } |
| 4058 | |
| 4059 | BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } |
| 4060 | |
| 4061 | LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } |
| 4062 | }; |
| 4063 | |
| 4064 | static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } |
| 4065 | |
| 4066 | static inline PHI_iterator PHI_end(PhiT *PHI) { |
| 4067 | return PHI_iterator(PHI, true); |
| 4068 | } |
| 4069 | |
| 4070 | /// FindPredecessorBlocks - Put the predecessors of BB into the Preds |
| 4071 | /// vector. |
| 4072 | static void FindPredecessorBlocks(LDVSSABlock *BB, |
| 4073 | SmallVectorImpl<LDVSSABlock *> *Preds) { |
| 4074 | for (MachineBasicBlock *Pred : BB->BB.predecessors()) |
| 4075 | Preds->push_back(Elt: BB->Updater.getSSALDVBlock(BB: Pred)); |
| 4076 | } |
| 4077 | |
| 4078 | /// GetPoisonVal - Normally creates an IMPLICIT_DEF instruction with a new |
| 4079 | /// register. For LiveDebugValues, represents a block identified as not having |
| 4080 | /// any DBG_PHI predecessors. |
| 4081 | static BlockValueNum GetPoisonVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { |
| 4082 | // Create a value number for this block -- it needs to be unique and in the |
| 4083 | // "poison" collection, so that we know it's not real. Use a number |
| 4084 | // representing a PHI into this block. |
| 4085 | BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); |
| 4086 | Updater->PoisonMap[&BB->BB] = Num; |
| 4087 | return Num; |
| 4088 | } |
| 4089 | |
| 4090 | /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. |
| 4091 | /// SSAUpdater will populate it with information about incoming values. The |
| 4092 | /// value number of this PHI is whatever the machine value number problem |
| 4093 | /// solution determined it to be. This includes non-phi values if SSAUpdater |
| 4094 | /// tries to create a PHI where the incoming values are identical. |
| 4095 | static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, |
| 4096 | LDVSSAUpdater *Updater) { |
| 4097 | BlockValueNum PHIValNum = Updater->getValue(LDVBB: BB); |
| 4098 | LDVSSAPhi *PHI = BB->newPHI(Value: PHIValNum); |
| 4099 | Updater->PHIs[PHIValNum] = PHI; |
| 4100 | return PHIValNum; |
| 4101 | } |
| 4102 | |
| 4103 | /// AddPHIOperand - Add the specified value as an operand of the PHI for |
| 4104 | /// the specified predecessor block. |
| 4105 | static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { |
| 4106 | PHI->IncomingValues.push_back(Elt: std::make_pair(x&: Pred, y&: Val)); |
| 4107 | } |
| 4108 | |
| 4109 | /// ValueIsPHI - Check if the instruction that defines the specified value |
| 4110 | /// is a PHI instruction. |
| 4111 | static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { |
| 4112 | return Updater->PHIs.lookup(Val); |
| 4113 | } |
| 4114 | |
| 4115 | /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source |
| 4116 | /// operands, i.e., it was just added. |
| 4117 | static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { |
| 4118 | LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); |
| 4119 | if (PHI && PHI->IncomingValues.size() == 0) |
| 4120 | return PHI; |
| 4121 | return nullptr; |
| 4122 | } |
| 4123 | |
| 4124 | /// GetPHIValue - For the specified PHI instruction, return the value |
| 4125 | /// that it defines. |
| 4126 | static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } |
| 4127 | }; |
| 4128 | |
| 4129 | } // end namespace llvm |
| 4130 | |
| 4131 | std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs( |
| 4132 | MachineFunction &MF, const FuncValueTable &MLiveOuts, |
| 4133 | const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) { |
| 4134 | // This function will be called twice per DBG_INSTR_REF, and might end up |
| 4135 | // computing lots of SSA information: memoize it. |
| 4136 | auto SeenDbgPHIIt = SeenDbgPHIs.find(Val: std::make_pair(x: &Here, y&: InstrNum)); |
| 4137 | if (SeenDbgPHIIt != SeenDbgPHIs.end()) |
| 4138 | return SeenDbgPHIIt->second; |
| 4139 | |
| 4140 | std::optional<ValueIDNum> Result = |
| 4141 | resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum); |
| 4142 | SeenDbgPHIs.insert(KV: {std::make_pair(x: &Here, y&: InstrNum), Result}); |
| 4143 | return Result; |
| 4144 | } |
| 4145 | |
| 4146 | std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl( |
| 4147 | MachineFunction &MF, const FuncValueTable &MLiveOuts, |
| 4148 | const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) { |
| 4149 | // Pick out records of DBG_PHI instructions that have been observed. If there |
| 4150 | // are none, then we cannot compute a value number. |
| 4151 | auto RangePair = std::equal_range(first: DebugPHINumToValue.begin(), |
| 4152 | last: DebugPHINumToValue.end(), val: InstrNum); |
| 4153 | auto LowerIt = RangePair.first; |
| 4154 | auto UpperIt = RangePair.second; |
| 4155 | |
| 4156 | // No DBG_PHI means there can be no location. |
| 4157 | if (LowerIt == UpperIt) |
| 4158 | return std::nullopt; |
| 4159 | |
| 4160 | // If any DBG_PHIs referred to a location we didn't understand, don't try to |
| 4161 | // compute a value. There might be scenarios where we could recover a value |
| 4162 | // for some range of DBG_INSTR_REFs, but at this point we can have high |
| 4163 | // confidence that we've seen a bug. |
| 4164 | auto DBGPHIRange = make_range(x: LowerIt, y: UpperIt); |
| 4165 | for (const DebugPHIRecord &DBG_PHI : DBGPHIRange) |
| 4166 | if (!DBG_PHI.ValueRead) |
| 4167 | return std::nullopt; |
| 4168 | |
| 4169 | // If there's only one DBG_PHI, then that is our value number. |
| 4170 | if (std::distance(first: LowerIt, last: UpperIt) == 1) |
| 4171 | return *LowerIt->ValueRead; |
| 4172 | |
| 4173 | // Pick out the location (physreg, slot) where any PHIs must occur. It's |
| 4174 | // technically possible for us to merge values in different registers in each |
| 4175 | // block, but highly unlikely that LLVM will generate such code after register |
| 4176 | // allocation. |
| 4177 | LocIdx Loc = *LowerIt->ReadLoc; |
| 4178 | |
| 4179 | // We have several DBG_PHIs, and a use position (the Here inst). All each |
| 4180 | // DBG_PHI does is identify a value at a program position. We can treat each |
| 4181 | // DBG_PHI like it's a Def of a value, and the use position is a Use of a |
| 4182 | // value, just like SSA. We use the bulk-standard LLVM SSA updater class to |
| 4183 | // determine which Def is used at the Use, and any PHIs that happen along |
| 4184 | // the way. |
| 4185 | // Adapted LLVM SSA Updater: |
| 4186 | LDVSSAUpdater Updater(Loc, MLiveIns); |
| 4187 | // Map of which Def or PHI is the current value in each block. |
| 4188 | DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; |
| 4189 | // Set of PHIs that we have created along the way. |
| 4190 | SmallVector<LDVSSAPhi *, 8> CreatedPHIs; |
| 4191 | |
| 4192 | // Each existing DBG_PHI is a Def'd value under this model. Record these Defs |
| 4193 | // for the SSAUpdater. |
| 4194 | for (const auto &DBG_PHI : DBGPHIRange) { |
| 4195 | LDVSSABlock *Block = Updater.getSSALDVBlock(BB: DBG_PHI.MBB); |
| 4196 | const ValueIDNum &Num = *DBG_PHI.ValueRead; |
| 4197 | AvailableValues.insert(KV: std::make_pair(x&: Block, y: Num.asU64())); |
| 4198 | } |
| 4199 | |
| 4200 | LDVSSABlock *HereBlock = Updater.getSSALDVBlock(BB: Here.getParent()); |
| 4201 | const auto &AvailIt = AvailableValues.find(Val: HereBlock); |
| 4202 | if (AvailIt != AvailableValues.end()) { |
| 4203 | // Actually, we already know what the value is -- the Use is in the same |
| 4204 | // block as the Def. |
| 4205 | return ValueIDNum::fromU64(v: AvailIt->second); |
| 4206 | } |
| 4207 | |
| 4208 | // Otherwise, we must use the SSA Updater. It will identify the value number |
| 4209 | // that we are to use, and the PHIs that must happen along the way. |
| 4210 | SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); |
| 4211 | BlockValueNum ResultInt = Impl.GetValue(BB: Updater.getSSALDVBlock(BB: Here.getParent())); |
| 4212 | ValueIDNum Result = ValueIDNum::fromU64(v: ResultInt); |
| 4213 | |
| 4214 | // We have the number for a PHI, or possibly live-through value, to be used |
| 4215 | // at this Use. There are a number of things we have to check about it though: |
| 4216 | // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this |
| 4217 | // Use was not completely dominated by DBG_PHIs and we should abort. |
| 4218 | // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that |
| 4219 | // we've left SSA form. Validate that the inputs to each PHI are the |
| 4220 | // expected values. |
| 4221 | // * Is a PHI we've created actually a merging of values, or are all the |
| 4222 | // predecessor values the same, leading to a non-PHI machine value number? |
| 4223 | // (SSAUpdater doesn't know that either). Remap validated PHIs into the |
| 4224 | // the ValidatedValues collection below to sort this out. |
| 4225 | DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; |
| 4226 | |
| 4227 | // Define all the input DBG_PHI values in ValidatedValues. |
| 4228 | for (const auto &DBG_PHI : DBGPHIRange) { |
| 4229 | LDVSSABlock *Block = Updater.getSSALDVBlock(BB: DBG_PHI.MBB); |
| 4230 | const ValueIDNum &Num = *DBG_PHI.ValueRead; |
| 4231 | ValidatedValues.insert(KV: std::make_pair(x&: Block, y: Num)); |
| 4232 | } |
| 4233 | |
| 4234 | // Sort PHIs to validate into RPO-order. |
| 4235 | SmallVector<LDVSSAPhi *, 8> SortedPHIs(CreatedPHIs); |
| 4236 | |
| 4237 | llvm::sort(C&: SortedPHIs, Comp: [&](LDVSSAPhi *A, LDVSSAPhi *B) { |
| 4238 | return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; |
| 4239 | }); |
| 4240 | |
| 4241 | for (auto &PHI : SortedPHIs) { |
| 4242 | ValueIDNum ThisBlockValueNum = MLiveIns[PHI->ParentBlock->BB][Loc.asU64()]; |
| 4243 | |
| 4244 | // Are all these things actually defined? |
| 4245 | for (auto &PHIIt : PHI->IncomingValues) { |
| 4246 | // Any undef input means DBG_PHIs didn't dominate the use point. |
| 4247 | if (Updater.PoisonMap.contains(Val: &PHIIt.first->BB)) |
| 4248 | return std::nullopt; |
| 4249 | |
| 4250 | ValueIDNum ValueToCheck; |
| 4251 | const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB]; |
| 4252 | |
| 4253 | auto VVal = ValidatedValues.find(Val: PHIIt.first); |
| 4254 | if (VVal == ValidatedValues.end()) { |
| 4255 | // We cross a loop, and this is a backedge. LLVMs tail duplication |
| 4256 | // happens so late that DBG_PHI instructions should not be able to |
| 4257 | // migrate into loops -- meaning we can only be live-through this |
| 4258 | // loop. |
| 4259 | ValueToCheck = ThisBlockValueNum; |
| 4260 | } else { |
| 4261 | // Does the block have as a live-out, in the location we're examining, |
| 4262 | // the value that we expect? If not, it's been moved or clobbered. |
| 4263 | ValueToCheck = VVal->second; |
| 4264 | } |
| 4265 | |
| 4266 | if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) |
| 4267 | return std::nullopt; |
| 4268 | } |
| 4269 | |
| 4270 | // Record this value as validated. |
| 4271 | ValidatedValues.insert(KV: {PHI->ParentBlock, ThisBlockValueNum}); |
| 4272 | } |
| 4273 | |
| 4274 | // All the PHIs are valid: we can return what the SSAUpdater said our value |
| 4275 | // number was. |
| 4276 | return Result; |
| 4277 | } |
| 4278 | |