| 1 | //===- LiveIntervalCalc.cpp - Calculate live interval --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Implementation of the LiveIntervalCalc class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/LiveIntervalCalc.h" |
| 14 | #include "llvm/ADT/SmallVector.h" |
| 15 | #include "llvm/CodeGen/LiveInterval.h" |
| 16 | #include "llvm/CodeGen/MachineInstr.h" |
| 17 | #include "llvm/CodeGen/MachineOperand.h" |
| 18 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 19 | #include "llvm/CodeGen/SlotIndexes.h" |
| 20 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 21 | #include "llvm/MC/LaneBitmask.h" |
| 22 | #include <cassert> |
| 23 | |
| 24 | using namespace llvm; |
| 25 | |
| 26 | #define DEBUG_TYPE "regalloc" |
| 27 | |
| 28 | // Reserve an address that indicates a value that is known to be "undef". |
| 29 | static VNInfo UndefVNI(0xbad, SlotIndex()); |
| 30 | |
| 31 | static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, |
| 32 | LiveRange &LR, const MachineOperand &MO) { |
| 33 | const MachineInstr &MI = *MO.getParent(); |
| 34 | SlotIndex DefIdx = |
| 35 | Indexes.getInstructionIndex(MI).getRegSlot(EC: MO.isEarlyClobber()); |
| 36 | |
| 37 | // Create the def in LR. This may find an existing def. |
| 38 | LR.createDeadDef(Def: DefIdx, VNIAlloc&: Alloc); |
| 39 | } |
| 40 | |
| 41 | void LiveIntervalCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { |
| 42 | const MachineRegisterInfo *MRI = getRegInfo(); |
| 43 | SlotIndexes *Indexes = getIndexes(); |
| 44 | VNInfo::Allocator *Alloc = getVNAlloc(); |
| 45 | |
| 46 | assert(MRI && Indexes && "call reset() first" ); |
| 47 | |
| 48 | // Step 1: Create minimal live segments for every definition of Reg. |
| 49 | // Visit all def operands. If the same instruction has multiple defs of Reg, |
| 50 | // createDeadDef() will deduplicate. |
| 51 | const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); |
| 52 | Register Reg = LI.reg(); |
| 53 | for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { |
| 54 | if (!MO.isDef() && !MO.readsReg()) |
| 55 | continue; |
| 56 | |
| 57 | unsigned SubReg = MO.getSubReg(); |
| 58 | if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { |
| 59 | LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubIdx: SubReg) |
| 60 | : MRI->getMaxLaneMaskForVReg(Reg); |
| 61 | // If this is the first time we see a subregister def, initialize |
| 62 | // subranges by creating a copy of the main range. |
| 63 | if (!LI.hasSubRanges() && !LI.empty()) { |
| 64 | LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); |
| 65 | LI.createSubRangeFrom(Allocator&: *Alloc, LaneMask: ClassMask, CopyFrom: LI); |
| 66 | } |
| 67 | |
| 68 | LI.refineSubRanges( |
| 69 | Allocator&: *Alloc, LaneMask: SubMask, |
| 70 | Apply: [&MO, Indexes, Alloc](LiveInterval::SubRange &SR) { |
| 71 | if (MO.isDef()) |
| 72 | createDeadDef(Indexes&: *Indexes, Alloc&: *Alloc, LR&: SR, MO); |
| 73 | }, |
| 74 | Indexes: *Indexes, TRI); |
| 75 | } |
| 76 | |
| 77 | // Create the def in the main liverange. We do not have to do this if |
| 78 | // subranges are tracked as we recreate the main range later in this case. |
| 79 | if (MO.isDef() && !LI.hasSubRanges()) |
| 80 | createDeadDef(Indexes&: *Indexes, Alloc&: *Alloc, LR&: LI, MO); |
| 81 | } |
| 82 | |
| 83 | // We may have created empty live ranges for partially undefined uses, we |
| 84 | // can't keep them because we won't find defs in them later. |
| 85 | LI.removeEmptySubRanges(); |
| 86 | |
| 87 | const MachineFunction *MF = getMachineFunction(); |
| 88 | MachineDominatorTree *DomTree = getDomTree(); |
| 89 | // Step 2: Extend live segments to all uses, constructing SSA form as |
| 90 | // necessary. |
| 91 | if (LI.hasSubRanges()) { |
| 92 | for (LiveInterval::SubRange &S : LI.subranges()) { |
| 93 | LiveIntervalCalc SubLIC; |
| 94 | SubLIC.reset(mf: MF, SI: Indexes, MDT: DomTree, VNIA: Alloc); |
| 95 | SubLIC.extendToUses(LR&: S, Reg, LaneMask: S.LaneMask, LI: &LI); |
| 96 | } |
| 97 | LI.clear(); |
| 98 | constructMainRangeFromSubranges(LI); |
| 99 | } else { |
| 100 | resetLiveOutMap(); |
| 101 | extendToUses(LR&: LI, Reg, LaneMask: LaneBitmask::getAll()); |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | void LiveIntervalCalc::constructMainRangeFromSubranges(LiveInterval &LI) { |
| 106 | // First create dead defs at all defs found in subranges. |
| 107 | LiveRange &MainRange = LI; |
| 108 | assert(MainRange.segments.empty() && MainRange.valnos.empty() && |
| 109 | "Expect empty main liverange" ); |
| 110 | |
| 111 | VNInfo::Allocator *Alloc = getVNAlloc(); |
| 112 | for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| 113 | for (const VNInfo *VNI : SR.valnos) { |
| 114 | if (!VNI->isUnused() && !VNI->isPHIDef()) |
| 115 | MainRange.createDeadDef(Def: VNI->def, VNIAlloc&: *Alloc); |
| 116 | } |
| 117 | } |
| 118 | resetLiveOutMap(); |
| 119 | extendToUses(LR&: MainRange, Reg: LI.reg(), LaneMask: LaneBitmask::getAll(), LI: &LI); |
| 120 | } |
| 121 | |
| 122 | void LiveIntervalCalc::createDeadDefs(LiveRange &LR, Register Reg) { |
| 123 | const MachineRegisterInfo *MRI = getRegInfo(); |
| 124 | SlotIndexes *Indexes = getIndexes(); |
| 125 | VNInfo::Allocator *Alloc = getVNAlloc(); |
| 126 | assert(MRI && Indexes && "call reset() first" ); |
| 127 | |
| 128 | // Visit all def operands. If the same instruction has multiple defs of Reg, |
| 129 | // LR.createDeadDef() will deduplicate. |
| 130 | for (MachineOperand &MO : MRI->def_operands(Reg)) |
| 131 | createDeadDef(Indexes&: *Indexes, Alloc&: *Alloc, LR, MO); |
| 132 | } |
| 133 | |
| 134 | void LiveIntervalCalc::extendToUses(LiveRange &LR, Register Reg, |
| 135 | LaneBitmask Mask, LiveInterval *LI) { |
| 136 | const MachineRegisterInfo *MRI = getRegInfo(); |
| 137 | SlotIndexes *Indexes = getIndexes(); |
| 138 | SmallVector<SlotIndex, 4> Undefs; |
| 139 | if (LI != nullptr) |
| 140 | LI->computeSubRangeUndefs(Undefs, LaneMask: Mask, MRI: *MRI, Indexes: *Indexes); |
| 141 | |
| 142 | // Visit all operands that read Reg. This may include partial defs. |
| 143 | bool IsSubRange = !Mask.all(); |
| 144 | const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); |
| 145 | for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { |
| 146 | // Clear all kill flags. They will be reinserted after register allocation |
| 147 | // by LiveIntervals::addKillFlags(). |
| 148 | if (MO.isUse()) |
| 149 | MO.setIsKill(false); |
| 150 | // MO::readsReg returns "true" for subregister defs. This is for keeping |
| 151 | // liveness of the entire register (i.e. for the main range of the live |
| 152 | // interval). For subranges, definitions of non-overlapping subregisters |
| 153 | // do not count as uses. |
| 154 | if (!MO.readsReg() || (IsSubRange && MO.isDef())) |
| 155 | continue; |
| 156 | |
| 157 | unsigned SubReg = MO.getSubReg(); |
| 158 | if (SubReg != 0) { |
| 159 | LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubIdx: SubReg); |
| 160 | if (MO.isDef()) |
| 161 | SLM = ~SLM; |
| 162 | // Ignore uses not reading the current (sub)range. |
| 163 | if ((SLM & Mask).none()) |
| 164 | continue; |
| 165 | } |
| 166 | |
| 167 | // Determine the actual place of the use. |
| 168 | const MachineInstr *MI = MO.getParent(); |
| 169 | unsigned OpNo = (&MO - &MI->getOperand(i: 0)); |
| 170 | SlotIndex UseIdx; |
| 171 | if (MI->isPHI()) { |
| 172 | assert(!MO.isDef() && "Cannot handle PHI def of partial register." ); |
| 173 | // The actual place where a phi operand is used is the end of the pred |
| 174 | // MBB. PHI operands are paired: (Reg, PredMBB). |
| 175 | UseIdx = Indexes->getMBBEndIdx(mbb: MI->getOperand(i: OpNo + 1).getMBB()); |
| 176 | } else { |
| 177 | // Check for early-clobber redefs. |
| 178 | bool isEarlyClobber = false; |
| 179 | unsigned DefIdx; |
| 180 | if (MO.isDef()) |
| 181 | isEarlyClobber = MO.isEarlyClobber(); |
| 182 | else if (MI->isRegTiedToDefOperand(UseOpIdx: OpNo, DefOpIdx: &DefIdx)) { |
| 183 | // FIXME: This would be a lot easier if tied early-clobber uses also |
| 184 | // had an early-clobber flag. |
| 185 | isEarlyClobber = MI->getOperand(i: DefIdx).isEarlyClobber(); |
| 186 | } |
| 187 | UseIdx = Indexes->getInstructionIndex(MI: *MI).getRegSlot(EC: isEarlyClobber); |
| 188 | } |
| 189 | |
| 190 | // MI is reading Reg. We may have visited MI before if it happens to be |
| 191 | // reading Reg multiple times. That is OK, extend() is idempotent. |
| 192 | extend(LR, Use: UseIdx, PhysReg: Reg, Undefs); |
| 193 | } |
| 194 | } |
| 195 | |