| 1 | //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file This file implements the LiveInterval analysis pass which is used |
| 10 | /// by the Linear Scan Register allocator. This pass linearizes the |
| 11 | /// basic blocks of the function in DFS order and computes live intervals for |
| 12 | /// each virtual and physical register. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/CodeGen/LiveIntervals.h" |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/DepthFirstIterator.h" |
| 19 | #include "llvm/ADT/SmallPtrSet.h" |
| 20 | #include "llvm/ADT/SmallVector.h" |
| 21 | #include "llvm/ADT/iterator_range.h" |
| 22 | #include "llvm/CodeGen/LiveInterval.h" |
| 23 | #include "llvm/CodeGen/LiveIntervalCalc.h" |
| 24 | #include "llvm/CodeGen/LiveVariables.h" |
| 25 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 26 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 27 | #include "llvm/CodeGen/MachineDominators.h" |
| 28 | #include "llvm/CodeGen/MachineFunction.h" |
| 29 | #include "llvm/CodeGen/MachineInstr.h" |
| 30 | #include "llvm/CodeGen/MachineInstrBundle.h" |
| 31 | #include "llvm/CodeGen/MachineOperand.h" |
| 32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 33 | #include "llvm/CodeGen/MachineSizeOpts.h" |
| 34 | #include "llvm/CodeGen/Passes.h" |
| 35 | #include "llvm/CodeGen/SlotIndexes.h" |
| 36 | #include "llvm/CodeGen/StackMaps.h" |
| 37 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 38 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 39 | #include "llvm/CodeGen/VirtRegMap.h" |
| 40 | #include "llvm/Config/llvm-config.h" |
| 41 | #include "llvm/IR/ProfileSummary.h" |
| 42 | #include "llvm/IR/Statepoint.h" |
| 43 | #include "llvm/MC/LaneBitmask.h" |
| 44 | #include "llvm/MC/MCRegisterInfo.h" |
| 45 | #include "llvm/Pass.h" |
| 46 | #include "llvm/Support/CommandLine.h" |
| 47 | #include "llvm/Support/Compiler.h" |
| 48 | #include "llvm/Support/Debug.h" |
| 49 | #include "llvm/Support/MathExtras.h" |
| 50 | #include "llvm/Support/raw_ostream.h" |
| 51 | #include <algorithm> |
| 52 | #include <cassert> |
| 53 | #include <cstdint> |
| 54 | #include <iterator> |
| 55 | #include <tuple> |
| 56 | #include <utility> |
| 57 | |
| 58 | using namespace llvm; |
| 59 | |
| 60 | #define DEBUG_TYPE "regalloc" |
| 61 | |
| 62 | AnalysisKey LiveIntervalsAnalysis::Key; |
| 63 | |
| 64 | LiveIntervalsAnalysis::Result |
| 65 | LiveIntervalsAnalysis::run(MachineFunction &MF, |
| 66 | MachineFunctionAnalysisManager &MFAM) { |
| 67 | return Result(MF, MFAM.getResult<SlotIndexesAnalysis>(IR&: MF), |
| 68 | MFAM.getResult<MachineDominatorTreeAnalysis>(IR&: MF)); |
| 69 | } |
| 70 | |
| 71 | PreservedAnalyses |
| 72 | LiveIntervalsPrinterPass::run(MachineFunction &MF, |
| 73 | MachineFunctionAnalysisManager &MFAM) { |
| 74 | OS << "Live intervals for machine function: " << MF.getName() << ":\n" ; |
| 75 | MFAM.getResult<LiveIntervalsAnalysis>(IR&: MF).print(O&: OS); |
| 76 | return PreservedAnalyses::all(); |
| 77 | } |
| 78 | |
| 79 | char LiveIntervalsWrapperPass::ID = 0; |
| 80 | char &llvm::LiveIntervalsID = LiveIntervalsWrapperPass::ID; |
| 81 | INITIALIZE_PASS_BEGIN(LiveIntervalsWrapperPass, "liveintervals" , |
| 82 | "Live Interval Analysis" , false, false) |
| 83 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 84 | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) |
| 85 | INITIALIZE_PASS_END(LiveIntervalsWrapperPass, "liveintervals" , |
| 86 | "Live Interval Analysis" , false, true) |
| 87 | |
| 88 | bool LiveIntervalsWrapperPass::runOnMachineFunction(MachineFunction &MF) { |
| 89 | LIS.Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); |
| 90 | LIS.DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
| 91 | LIS.analyze(MF); |
| 92 | LLVM_DEBUG(dump()); |
| 93 | return false; |
| 94 | } |
| 95 | |
| 96 | #ifndef NDEBUG |
| 97 | static cl::opt<bool> EnablePrecomputePhysRegs( |
| 98 | "precompute-phys-liveness" , cl::Hidden, |
| 99 | cl::desc("Eagerly compute live intervals for all physreg units." )); |
| 100 | #else |
| 101 | static bool EnablePrecomputePhysRegs = false; |
| 102 | #endif // NDEBUG |
| 103 | |
| 104 | namespace llvm { |
| 105 | |
| 106 | cl::opt<bool> UseSegmentSetForPhysRegs( |
| 107 | "use-segment-set-for-physregs" , cl::Hidden, cl::init(Val: true), |
| 108 | cl::desc( |
| 109 | "Use segment set for the computation of the live ranges of physregs." )); |
| 110 | |
| 111 | } // end namespace llvm |
| 112 | |
| 113 | void LiveIntervalsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 114 | AU.setPreservesCFG(); |
| 115 | AU.addPreserved<LiveVariablesWrapperPass>(); |
| 116 | AU.addPreservedID(ID&: MachineLoopInfoID); |
| 117 | AU.addRequiredTransitiveID(ID&: MachineDominatorsID); |
| 118 | AU.addPreservedID(ID&: MachineDominatorsID); |
| 119 | AU.addPreserved<SlotIndexesWrapperPass>(); |
| 120 | AU.addRequiredTransitive<SlotIndexesWrapperPass>(); |
| 121 | MachineFunctionPass::getAnalysisUsage(AU); |
| 122 | } |
| 123 | |
| 124 | LiveIntervalsWrapperPass::LiveIntervalsWrapperPass() : MachineFunctionPass(ID) { |
| 125 | initializeLiveIntervalsWrapperPassPass(Registry&: *PassRegistry::getPassRegistry()); |
| 126 | } |
| 127 | |
| 128 | LiveIntervals::~LiveIntervals() { clear(); } |
| 129 | |
| 130 | bool LiveIntervals::invalidate( |
| 131 | MachineFunction &MF, const PreservedAnalyses &PA, |
| 132 | MachineFunctionAnalysisManager::Invalidator &Inv) { |
| 133 | auto PAC = PA.getChecker<LiveIntervalsAnalysis>(); |
| 134 | |
| 135 | if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<MachineFunction>>()) |
| 136 | return true; |
| 137 | |
| 138 | // LiveIntervals holds pointers to these results, so check for their |
| 139 | // invalidation. |
| 140 | return Inv.invalidate<SlotIndexesAnalysis>(IR&: MF, PA) || |
| 141 | Inv.invalidate<MachineDominatorTreeAnalysis>(IR&: MF, PA); |
| 142 | } |
| 143 | |
| 144 | void LiveIntervals::clear() { |
| 145 | // Free the live intervals themselves. |
| 146 | for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) |
| 147 | delete VirtRegIntervals[Register::index2VirtReg(Index: i)]; |
| 148 | VirtRegIntervals.clear(); |
| 149 | RegMaskSlots.clear(); |
| 150 | RegMaskBits.clear(); |
| 151 | RegMaskBlocks.clear(); |
| 152 | |
| 153 | for (LiveRange *LR : RegUnitRanges) |
| 154 | delete LR; |
| 155 | RegUnitRanges.clear(); |
| 156 | |
| 157 | // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. |
| 158 | VNInfoAllocator.Reset(); |
| 159 | } |
| 160 | |
| 161 | void LiveIntervals::analyze(MachineFunction &fn) { |
| 162 | MF = &fn; |
| 163 | MRI = &MF->getRegInfo(); |
| 164 | TRI = MF->getSubtarget().getRegisterInfo(); |
| 165 | TII = MF->getSubtarget().getInstrInfo(); |
| 166 | |
| 167 | if (!LICalc) |
| 168 | LICalc = std::make_unique<LiveIntervalCalc>(); |
| 169 | |
| 170 | // Allocate space for all virtual registers. |
| 171 | VirtRegIntervals.resize(s: MRI->getNumVirtRegs()); |
| 172 | |
| 173 | computeVirtRegs(); |
| 174 | computeRegMasks(); |
| 175 | computeLiveInRegUnits(); |
| 176 | |
| 177 | if (EnablePrecomputePhysRegs) { |
| 178 | // For stress testing, precompute live ranges of all physical register |
| 179 | // units, including reserved registers. |
| 180 | for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) |
| 181 | getRegUnit(Unit: i); |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | void LiveIntervals::print(raw_ostream &OS) const { |
| 186 | OS << "********** INTERVALS **********\n" ; |
| 187 | |
| 188 | // Dump the regunits. |
| 189 | for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) |
| 190 | if (LiveRange *LR = RegUnitRanges[Unit]) |
| 191 | OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; |
| 192 | |
| 193 | // Dump the virtregs. |
| 194 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| 195 | Register Reg = Register::index2VirtReg(Index: i); |
| 196 | if (hasInterval(Reg)) |
| 197 | OS << getInterval(Reg) << '\n'; |
| 198 | } |
| 199 | |
| 200 | OS << "RegMasks:" ; |
| 201 | for (SlotIndex Idx : RegMaskSlots) |
| 202 | OS << ' ' << Idx; |
| 203 | OS << '\n'; |
| 204 | |
| 205 | printInstrs(O&: OS); |
| 206 | } |
| 207 | |
| 208 | void LiveIntervals::printInstrs(raw_ostream &OS) const { |
| 209 | OS << "********** MACHINEINSTRS **********\n" ; |
| 210 | MF->print(OS, Indexes); |
| 211 | } |
| 212 | |
| 213 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 214 | LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { |
| 215 | printInstrs(dbgs()); |
| 216 | } |
| 217 | #endif |
| 218 | |
| 219 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 220 | LLVM_DUMP_METHOD void LiveIntervals::dump() const { print(dbgs()); } |
| 221 | #endif |
| 222 | |
| 223 | LiveInterval *LiveIntervals::createInterval(Register reg) { |
| 224 | float Weight = reg.isPhysical() ? huge_valf : 0.0F; |
| 225 | return new LiveInterval(reg, Weight); |
| 226 | } |
| 227 | |
| 228 | /// Compute the live interval of a virtual register, based on defs and uses. |
| 229 | bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { |
| 230 | assert(LICalc && "LICalc not initialized." ); |
| 231 | assert(LI.empty() && "Should only compute empty intervals." ); |
| 232 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
| 233 | LICalc->calculate(LI, TrackSubRegs: MRI->shouldTrackSubRegLiveness(VReg: LI.reg())); |
| 234 | return computeDeadValues(LI, dead: nullptr); |
| 235 | } |
| 236 | |
| 237 | void LiveIntervals::computeVirtRegs() { |
| 238 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| 239 | Register Reg = Register::index2VirtReg(Index: i); |
| 240 | if (MRI->reg_nodbg_empty(RegNo: Reg)) |
| 241 | continue; |
| 242 | LiveInterval &LI = createEmptyInterval(Reg); |
| 243 | bool NeedSplit = computeVirtRegInterval(LI); |
| 244 | if (NeedSplit) { |
| 245 | SmallVector<LiveInterval*, 8> SplitLIs; |
| 246 | splitSeparateComponents(LI, SplitLIs); |
| 247 | } |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | void LiveIntervals::computeRegMasks() { |
| 252 | RegMaskBlocks.resize(N: MF->getNumBlockIDs()); |
| 253 | |
| 254 | // Find all instructions with regmask operands. |
| 255 | for (const MachineBasicBlock &MBB : *MF) { |
| 256 | std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; |
| 257 | RMB.first = RegMaskSlots.size(); |
| 258 | |
| 259 | // Some block starts, such as EH funclets, create masks. |
| 260 | if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { |
| 261 | RegMaskSlots.push_back(Elt: Indexes->getMBBStartIdx(mbb: &MBB)); |
| 262 | RegMaskBits.push_back(Elt: Mask); |
| 263 | } |
| 264 | |
| 265 | // Unwinders may clobber additional registers. |
| 266 | // FIXME: This functionality can possibly be merged into |
| 267 | // MachineBasicBlock::getBeginClobberMask(). |
| 268 | if (MBB.isEHPad()) |
| 269 | if (auto *Mask = TRI->getCustomEHPadPreservedMask(MF: *MBB.getParent())) { |
| 270 | RegMaskSlots.push_back(Elt: Indexes->getMBBStartIdx(mbb: &MBB)); |
| 271 | RegMaskBits.push_back(Elt: Mask); |
| 272 | } |
| 273 | |
| 274 | for (const MachineInstr &MI : MBB) { |
| 275 | for (const MachineOperand &MO : MI.operands()) { |
| 276 | if (!MO.isRegMask()) |
| 277 | continue; |
| 278 | RegMaskSlots.push_back(Elt: Indexes->getInstructionIndex(MI).getRegSlot()); |
| 279 | RegMaskBits.push_back(Elt: MO.getRegMask()); |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | // Some block ends, such as funclet returns, create masks. Put the mask on |
| 284 | // the last instruction of the block, because MBB slot index intervals are |
| 285 | // half-open. |
| 286 | if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { |
| 287 | assert(!MBB.empty() && "empty return block?" ); |
| 288 | RegMaskSlots.push_back( |
| 289 | Elt: Indexes->getInstructionIndex(MI: MBB.back()).getRegSlot()); |
| 290 | RegMaskBits.push_back(Elt: Mask); |
| 291 | } |
| 292 | |
| 293 | // Compute the number of register mask instructions in this block. |
| 294 | RMB.second = RegMaskSlots.size() - RMB.first; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | //===----------------------------------------------------------------------===// |
| 299 | // Register Unit Liveness |
| 300 | //===----------------------------------------------------------------------===// |
| 301 | // |
| 302 | // Fixed interference typically comes from ABI boundaries: Function arguments |
| 303 | // and return values are passed in fixed registers, and so are exception |
| 304 | // pointers entering landing pads. Certain instructions require values to be |
| 305 | // present in specific registers. That is also represented through fixed |
| 306 | // interference. |
| 307 | // |
| 308 | |
| 309 | /// Compute the live range of a register unit, based on the uses and defs of |
| 310 | /// aliasing registers. The range should be empty, or contain only dead |
| 311 | /// phi-defs from ABI blocks. |
| 312 | void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { |
| 313 | assert(LICalc && "LICalc not initialized." ); |
| 314 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
| 315 | |
| 316 | // The physregs aliasing Unit are the roots and their super-registers. |
| 317 | // Create all values as dead defs before extending to uses. Note that roots |
| 318 | // may share super-registers. That's OK because createDeadDefs() is |
| 319 | // idempotent. It is very rare for a register unit to have multiple roots, so |
| 320 | // uniquing super-registers is probably not worthwhile. |
| 321 | bool IsReserved = false; |
| 322 | for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { |
| 323 | bool IsRootReserved = true; |
| 324 | for (MCPhysReg Reg : TRI->superregs_inclusive(Reg: *Root)) { |
| 325 | if (!MRI->reg_empty(RegNo: Reg)) |
| 326 | LICalc->createDeadDefs(LR, Reg); |
| 327 | // A register unit is considered reserved if all its roots and all their |
| 328 | // super registers are reserved. |
| 329 | if (!MRI->isReserved(PhysReg: Reg)) |
| 330 | IsRootReserved = false; |
| 331 | } |
| 332 | IsReserved |= IsRootReserved; |
| 333 | } |
| 334 | assert(IsReserved == MRI->isReservedRegUnit(Unit) && |
| 335 | "reserved computation mismatch" ); |
| 336 | |
| 337 | // Now extend LR to reach all uses. |
| 338 | // Ignore uses of reserved registers. We only track defs of those. |
| 339 | if (!IsReserved) { |
| 340 | for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { |
| 341 | for (MCPhysReg Reg : TRI->superregs_inclusive(Reg: *Root)) { |
| 342 | if (!MRI->reg_empty(RegNo: Reg)) |
| 343 | LICalc->extendToUses(LR, PhysReg: Reg); |
| 344 | } |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | // Flush the segment set to the segment vector. |
| 349 | if (UseSegmentSetForPhysRegs) |
| 350 | LR.flushSegmentSet(); |
| 351 | } |
| 352 | |
| 353 | /// Precompute the live ranges of any register units that are live-in to an ABI |
| 354 | /// block somewhere. Register values can appear without a corresponding def when |
| 355 | /// entering the entry block or a landing pad. |
| 356 | void LiveIntervals::computeLiveInRegUnits() { |
| 357 | RegUnitRanges.resize(N: TRI->getNumRegUnits()); |
| 358 | LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n" ); |
| 359 | |
| 360 | // Keep track of the live range sets allocated. |
| 361 | SmallVector<unsigned, 8> NewRanges; |
| 362 | |
| 363 | // Check all basic blocks for live-ins. |
| 364 | for (const MachineBasicBlock &MBB : *MF) { |
| 365 | // We only care about ABI blocks: Entry + landing pads. |
| 366 | if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) |
| 367 | continue; |
| 368 | |
| 369 | // Create phi-defs at Begin for all live-in registers. |
| 370 | SlotIndex Begin = Indexes->getMBBStartIdx(mbb: &MBB); |
| 371 | LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); |
| 372 | for (const auto &LI : MBB.liveins()) { |
| 373 | for (MCRegUnit Unit : TRI->regunits(Reg: LI.PhysReg)) { |
| 374 | LiveRange *LR = RegUnitRanges[Unit]; |
| 375 | if (!LR) { |
| 376 | // Use segment set to speed-up initial computation of the live range. |
| 377 | LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); |
| 378 | NewRanges.push_back(Elt: Unit); |
| 379 | } |
| 380 | VNInfo *VNI = LR->createDeadDef(Def: Begin, VNIAlloc&: getVNInfoAllocator()); |
| 381 | (void)VNI; |
| 382 | LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); |
| 383 | } |
| 384 | } |
| 385 | LLVM_DEBUG(dbgs() << '\n'); |
| 386 | } |
| 387 | LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n" ); |
| 388 | |
| 389 | // Compute the 'normal' part of the ranges. |
| 390 | for (unsigned Unit : NewRanges) |
| 391 | computeRegUnitRange(LR&: *RegUnitRanges[Unit], Unit); |
| 392 | } |
| 393 | |
| 394 | static void createSegmentsForValues(LiveRange &LR, |
| 395 | iterator_range<LiveInterval::vni_iterator> VNIs) { |
| 396 | for (VNInfo *VNI : VNIs) { |
| 397 | if (VNI->isUnused()) |
| 398 | continue; |
| 399 | SlotIndex Def = VNI->def; |
| 400 | LR.addSegment(S: LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, |
| 405 | ShrinkToUsesWorkList &WorkList, |
| 406 | Register Reg, LaneBitmask LaneMask) { |
| 407 | // Keep track of the PHIs that are in use. |
| 408 | SmallPtrSet<VNInfo*, 8> UsedPHIs; |
| 409 | // Blocks that have already been added to WorkList as live-out. |
| 410 | SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; |
| 411 | |
| 412 | auto getSubRange = [](const LiveInterval &I, LaneBitmask M) |
| 413 | -> const LiveRange& { |
| 414 | if (M.none()) |
| 415 | return I; |
| 416 | for (const LiveInterval::SubRange &SR : I.subranges()) { |
| 417 | if ((SR.LaneMask & M).any()) { |
| 418 | assert(SR.LaneMask == M && "Expecting lane masks to match exactly" ); |
| 419 | return SR; |
| 420 | } |
| 421 | } |
| 422 | llvm_unreachable("Subrange for mask not found" ); |
| 423 | }; |
| 424 | |
| 425 | const LiveInterval &LI = getInterval(Reg); |
| 426 | const LiveRange &OldRange = getSubRange(LI, LaneMask); |
| 427 | |
| 428 | // Extend intervals to reach all uses in WorkList. |
| 429 | while (!WorkList.empty()) { |
| 430 | SlotIndex Idx = WorkList.back().first; |
| 431 | VNInfo *VNI = WorkList.back().second; |
| 432 | WorkList.pop_back(); |
| 433 | const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: Idx.getPrevSlot()); |
| 434 | SlotIndex BlockStart = Indexes->getMBBStartIdx(mbb: MBB); |
| 435 | |
| 436 | // Extend the live range for VNI to be live at Idx. |
| 437 | if (VNInfo *ExtVNI = Segments.extendInBlock(StartIdx: BlockStart, Kill: Idx)) { |
| 438 | assert(ExtVNI == VNI && "Unexpected existing value number" ); |
| 439 | (void)ExtVNI; |
| 440 | // Is this a PHIDef we haven't seen before? |
| 441 | if (!VNI->isPHIDef() || VNI->def != BlockStart || |
| 442 | !UsedPHIs.insert(Ptr: VNI).second) |
| 443 | continue; |
| 444 | // The PHI is live, make sure the predecessors are live-out. |
| 445 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
| 446 | if (!LiveOut.insert(Ptr: Pred).second) |
| 447 | continue; |
| 448 | SlotIndex Stop = Indexes->getMBBEndIdx(mbb: Pred); |
| 449 | // A predecessor is not required to have a live-out value for a PHI. |
| 450 | if (VNInfo *PVNI = OldRange.getVNInfoBefore(Idx: Stop)) |
| 451 | WorkList.push_back(Elt: std::make_pair(x&: Stop, y&: PVNI)); |
| 452 | } |
| 453 | continue; |
| 454 | } |
| 455 | |
| 456 | // VNI is live-in to MBB. |
| 457 | LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); |
| 458 | Segments.addSegment(S: LiveRange::Segment(BlockStart, Idx, VNI)); |
| 459 | |
| 460 | // Make sure VNI is live-out from the predecessors. |
| 461 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
| 462 | if (!LiveOut.insert(Ptr: Pred).second) |
| 463 | continue; |
| 464 | SlotIndex Stop = Indexes->getMBBEndIdx(mbb: Pred); |
| 465 | if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Idx: Stop)) { |
| 466 | assert(OldVNI == VNI && "Wrong value out of predecessor" ); |
| 467 | (void)OldVNI; |
| 468 | WorkList.push_back(Elt: std::make_pair(x&: Stop, y&: VNI)); |
| 469 | } else { |
| 470 | #ifndef NDEBUG |
| 471 | // There was no old VNI. Verify that Stop is jointly dominated |
| 472 | // by <undef>s for this live range. |
| 473 | assert(LaneMask.any() && |
| 474 | "Missing value out of predecessor for main range" ); |
| 475 | SmallVector<SlotIndex,8> Undefs; |
| 476 | LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); |
| 477 | assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && |
| 478 | "Missing value out of predecessor for subrange" ); |
| 479 | #endif |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | bool LiveIntervals::shrinkToUses(LiveInterval *li, |
| 486 | SmallVectorImpl<MachineInstr*> *dead) { |
| 487 | LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); |
| 488 | assert(li->reg().isVirtual() && "Can only shrink virtual registers" ); |
| 489 | |
| 490 | // Shrink subregister live ranges. |
| 491 | bool NeedsCleanup = false; |
| 492 | for (LiveInterval::SubRange &S : li->subranges()) { |
| 493 | shrinkToUses(SR&: S, Reg: li->reg()); |
| 494 | if (S.empty()) |
| 495 | NeedsCleanup = true; |
| 496 | } |
| 497 | if (NeedsCleanup) |
| 498 | li->removeEmptySubRanges(); |
| 499 | |
| 500 | // Find all the values used, including PHI kills. |
| 501 | ShrinkToUsesWorkList WorkList; |
| 502 | |
| 503 | // Visit all instructions reading li->reg(). |
| 504 | Register Reg = li->reg(); |
| 505 | for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { |
| 506 | if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg)) |
| 507 | continue; |
| 508 | SlotIndex Idx = getInstructionIndex(Instr: UseMI).getRegSlot(); |
| 509 | LiveQueryResult LRQ = li->Query(Idx); |
| 510 | VNInfo *VNI = LRQ.valueIn(); |
| 511 | if (!VNI) { |
| 512 | // This shouldn't happen: readsVirtualRegister returns true, but there is |
| 513 | // no live value. It is likely caused by a target getting <undef> flags |
| 514 | // wrong. |
| 515 | LLVM_DEBUG( |
| 516 | dbgs() << Idx << '\t' << UseMI |
| 517 | << "Warning: Instr claims to read non-existent value in " |
| 518 | << *li << '\n'); |
| 519 | continue; |
| 520 | } |
| 521 | // Special case: An early-clobber tied operand reads and writes the |
| 522 | // register one slot early. |
| 523 | if (VNInfo *DefVNI = LRQ.valueDefined()) |
| 524 | Idx = DefVNI->def; |
| 525 | |
| 526 | WorkList.push_back(Elt: std::make_pair(x&: Idx, y&: VNI)); |
| 527 | } |
| 528 | |
| 529 | // Create new live ranges with only minimal live segments per def. |
| 530 | LiveRange NewLR; |
| 531 | createSegmentsForValues(LR&: NewLR, VNIs: li->vnis()); |
| 532 | extendSegmentsToUses(Segments&: NewLR, WorkList, Reg, LaneMask: LaneBitmask::getNone()); |
| 533 | |
| 534 | // Move the trimmed segments back. |
| 535 | li->segments.swap(RHS&: NewLR.segments); |
| 536 | |
| 537 | // Handle dead values. |
| 538 | bool CanSeparate = computeDeadValues(LI&: *li, dead); |
| 539 | LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); |
| 540 | return CanSeparate; |
| 541 | } |
| 542 | |
| 543 | bool LiveIntervals::computeDeadValues(LiveInterval &LI, |
| 544 | SmallVectorImpl<MachineInstr*> *dead) { |
| 545 | bool MayHaveSplitComponents = false; |
| 546 | |
| 547 | for (VNInfo *VNI : LI.valnos) { |
| 548 | if (VNI->isUnused()) |
| 549 | continue; |
| 550 | SlotIndex Def = VNI->def; |
| 551 | LiveRange::iterator I = LI.FindSegmentContaining(Idx: Def); |
| 552 | assert(I != LI.end() && "Missing segment for VNI" ); |
| 553 | |
| 554 | // Is the register live before? Otherwise we may have to add a read-undef |
| 555 | // flag for subregister defs. |
| 556 | Register VReg = LI.reg(); |
| 557 | if (MRI->shouldTrackSubRegLiveness(VReg)) { |
| 558 | if ((I == LI.begin() || std::prev(x: I)->end < Def) && !VNI->isPHIDef()) { |
| 559 | MachineInstr *MI = getInstructionFromIndex(index: Def); |
| 560 | MI->setRegisterDefReadUndef(Reg: VReg); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | if (I->end != Def.getDeadSlot()) |
| 565 | continue; |
| 566 | if (VNI->isPHIDef()) { |
| 567 | // This is a dead PHI. Remove it. |
| 568 | VNI->markUnused(); |
| 569 | LI.removeSegment(I); |
| 570 | LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n" ); |
| 571 | } else { |
| 572 | // This is a dead def. Make sure the instruction knows. |
| 573 | MachineInstr *MI = getInstructionFromIndex(index: Def); |
| 574 | assert(MI && "No instruction defining live value" ); |
| 575 | MI->addRegisterDead(Reg: LI.reg(), RegInfo: TRI); |
| 576 | |
| 577 | if (dead && MI->allDefsAreDead()) { |
| 578 | LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); |
| 579 | dead->push_back(Elt: MI); |
| 580 | } |
| 581 | } |
| 582 | MayHaveSplitComponents = true; |
| 583 | } |
| 584 | return MayHaveSplitComponents; |
| 585 | } |
| 586 | |
| 587 | void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) { |
| 588 | LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); |
| 589 | assert(Reg.isVirtual() && "Can only shrink virtual registers" ); |
| 590 | // Find all the values used, including PHI kills. |
| 591 | ShrinkToUsesWorkList WorkList; |
| 592 | |
| 593 | // Visit all instructions reading Reg. |
| 594 | SlotIndex LastIdx; |
| 595 | for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { |
| 596 | // Skip "undef" uses. |
| 597 | if (!MO.readsReg()) |
| 598 | continue; |
| 599 | // Maybe the operand is for a subregister we don't care about. |
| 600 | unsigned SubReg = MO.getSubReg(); |
| 601 | if (SubReg != 0) { |
| 602 | LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
| 603 | if ((LaneMask & SR.LaneMask).none()) |
| 604 | continue; |
| 605 | } |
| 606 | // We only need to visit each instruction once. |
| 607 | MachineInstr *UseMI = MO.getParent(); |
| 608 | SlotIndex Idx = getInstructionIndex(Instr: *UseMI).getRegSlot(); |
| 609 | if (Idx == LastIdx) |
| 610 | continue; |
| 611 | LastIdx = Idx; |
| 612 | |
| 613 | LiveQueryResult LRQ = SR.Query(Idx); |
| 614 | VNInfo *VNI = LRQ.valueIn(); |
| 615 | // For Subranges it is possible that only undef values are left in that |
| 616 | // part of the subregister, so there is no real liverange at the use |
| 617 | if (!VNI) |
| 618 | continue; |
| 619 | |
| 620 | // Special case: An early-clobber tied operand reads and writes the |
| 621 | // register one slot early. |
| 622 | if (VNInfo *DefVNI = LRQ.valueDefined()) |
| 623 | Idx = DefVNI->def; |
| 624 | |
| 625 | WorkList.push_back(Elt: std::make_pair(x&: Idx, y&: VNI)); |
| 626 | } |
| 627 | |
| 628 | // Create a new live ranges with only minimal live segments per def. |
| 629 | LiveRange NewLR; |
| 630 | createSegmentsForValues(LR&: NewLR, VNIs: SR.vnis()); |
| 631 | extendSegmentsToUses(Segments&: NewLR, WorkList, Reg, LaneMask: SR.LaneMask); |
| 632 | |
| 633 | // Move the trimmed ranges back. |
| 634 | SR.segments.swap(RHS&: NewLR.segments); |
| 635 | |
| 636 | // Remove dead PHI value numbers |
| 637 | for (VNInfo *VNI : SR.valnos) { |
| 638 | if (VNI->isUnused()) |
| 639 | continue; |
| 640 | const LiveRange::Segment *Segment = SR.getSegmentContaining(Idx: VNI->def); |
| 641 | assert(Segment != nullptr && "Missing segment for VNI" ); |
| 642 | if (Segment->end != VNI->def.getDeadSlot()) |
| 643 | continue; |
| 644 | if (VNI->isPHIDef()) { |
| 645 | // This is a dead PHI. Remove it. |
| 646 | LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def |
| 647 | << " may separate interval\n" ); |
| 648 | VNI->markUnused(); |
| 649 | SR.removeSegment(S: *Segment); |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); |
| 654 | } |
| 655 | |
| 656 | void LiveIntervals::extendToIndices(LiveRange &LR, |
| 657 | ArrayRef<SlotIndex> Indices, |
| 658 | ArrayRef<SlotIndex> Undefs) { |
| 659 | assert(LICalc && "LICalc not initialized." ); |
| 660 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
| 661 | for (SlotIndex Idx : Indices) |
| 662 | LICalc->extend(LR, Use: Idx, /*PhysReg=*/0, Undefs); |
| 663 | } |
| 664 | |
| 665 | void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, |
| 666 | SmallVectorImpl<SlotIndex> *EndPoints) { |
| 667 | LiveQueryResult LRQ = LR.Query(Idx: Kill); |
| 668 | VNInfo *VNI = LRQ.valueOutOrDead(); |
| 669 | if (!VNI) |
| 670 | return; |
| 671 | |
| 672 | MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(index: Kill); |
| 673 | SlotIndex MBBEnd = Indexes->getMBBEndIdx(mbb: KillMBB); |
| 674 | |
| 675 | // If VNI isn't live out from KillMBB, the value is trivially pruned. |
| 676 | if (LRQ.endPoint() < MBBEnd) { |
| 677 | LR.removeSegment(Start: Kill, End: LRQ.endPoint()); |
| 678 | if (EndPoints) EndPoints->push_back(Elt: LRQ.endPoint()); |
| 679 | return; |
| 680 | } |
| 681 | |
| 682 | // VNI is live out of KillMBB. |
| 683 | LR.removeSegment(Start: Kill, End: MBBEnd); |
| 684 | if (EndPoints) EndPoints->push_back(Elt: MBBEnd); |
| 685 | |
| 686 | // Find all blocks that are reachable from KillMBB without leaving VNI's live |
| 687 | // range. It is possible that KillMBB itself is reachable, so start a DFS |
| 688 | // from each successor. |
| 689 | using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; |
| 690 | VisitedTy Visited; |
| 691 | for (MachineBasicBlock *Succ : KillMBB->successors()) { |
| 692 | for (df_ext_iterator<MachineBasicBlock*, VisitedTy> |
| 693 | I = df_ext_begin(G: Succ, S&: Visited), E = df_ext_end(G: Succ, S&: Visited); |
| 694 | I != E;) { |
| 695 | MachineBasicBlock *MBB = *I; |
| 696 | |
| 697 | // Check if VNI is live in to MBB. |
| 698 | SlotIndex MBBStart, MBBEnd; |
| 699 | std::tie(args&: MBBStart, args&: MBBEnd) = Indexes->getMBBRange(MBB); |
| 700 | LiveQueryResult LRQ = LR.Query(Idx: MBBStart); |
| 701 | if (LRQ.valueIn() != VNI) { |
| 702 | // This block isn't part of the VNI segment. Prune the search. |
| 703 | I.skipChildren(); |
| 704 | continue; |
| 705 | } |
| 706 | |
| 707 | // Prune the search if VNI is killed in MBB. |
| 708 | if (LRQ.endPoint() < MBBEnd) { |
| 709 | LR.removeSegment(Start: MBBStart, End: LRQ.endPoint()); |
| 710 | if (EndPoints) EndPoints->push_back(Elt: LRQ.endPoint()); |
| 711 | I.skipChildren(); |
| 712 | continue; |
| 713 | } |
| 714 | |
| 715 | // VNI is live through MBB. |
| 716 | LR.removeSegment(Start: MBBStart, End: MBBEnd); |
| 717 | if (EndPoints) EndPoints->push_back(Elt: MBBEnd); |
| 718 | ++I; |
| 719 | } |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | //===----------------------------------------------------------------------===// |
| 724 | // Register allocator hooks. |
| 725 | // |
| 726 | |
| 727 | void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { |
| 728 | // Keep track of regunit ranges. |
| 729 | SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; |
| 730 | |
| 731 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| 732 | Register Reg = Register::index2VirtReg(Index: i); |
| 733 | if (MRI->reg_nodbg_empty(RegNo: Reg)) |
| 734 | continue; |
| 735 | const LiveInterval &LI = getInterval(Reg); |
| 736 | if (LI.empty()) |
| 737 | continue; |
| 738 | |
| 739 | // Target may have not allocated this yet. |
| 740 | Register PhysReg = VRM->getPhys(virtReg: Reg); |
| 741 | if (!PhysReg) |
| 742 | continue; |
| 743 | |
| 744 | // Find the regunit intervals for the assigned register. They may overlap |
| 745 | // the virtual register live range, cancelling any kills. |
| 746 | RU.clear(); |
| 747 | LaneBitmask ArtificialLanes; |
| 748 | for (MCRegUnitMaskIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { |
| 749 | auto [Unit, Bitmask] = *UI; |
| 750 | // Record lane mask for all artificial RegUnits for this physreg. |
| 751 | if (TRI->isArtificialRegUnit(Unit)) |
| 752 | ArtificialLanes |= Bitmask; |
| 753 | const LiveRange &RURange = getRegUnit(Unit); |
| 754 | if (RURange.empty()) |
| 755 | continue; |
| 756 | RU.push_back(Elt: std::make_pair(x: &RURange, y: RURange.find(Pos: LI.begin()->end))); |
| 757 | } |
| 758 | // Every instruction that kills Reg corresponds to a segment range end |
| 759 | // point. |
| 760 | for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; |
| 761 | ++RI) { |
| 762 | // A block index indicates an MBB edge. |
| 763 | if (RI->end.isBlock()) |
| 764 | continue; |
| 765 | MachineInstr *MI = getInstructionFromIndex(index: RI->end); |
| 766 | if (!MI) |
| 767 | continue; |
| 768 | |
| 769 | // Check if any of the regunits are live beyond the end of RI. That could |
| 770 | // happen when a physreg is defined as a copy of a virtreg: |
| 771 | // |
| 772 | // %eax = COPY %5 |
| 773 | // FOO %5 <--- MI, cancel kill because %eax is live. |
| 774 | // BAR killed %eax |
| 775 | // |
| 776 | // There should be no kill flag on FOO when %5 is rewritten as %eax. |
| 777 | for (auto &RUP : RU) { |
| 778 | const LiveRange &RURange = *RUP.first; |
| 779 | LiveRange::const_iterator &I = RUP.second; |
| 780 | if (I == RURange.end()) |
| 781 | continue; |
| 782 | I = RURange.advanceTo(I, Pos: RI->end); |
| 783 | if (I == RURange.end() || I->start >= RI->end) |
| 784 | continue; |
| 785 | // I is overlapping RI. |
| 786 | goto CancelKill; |
| 787 | } |
| 788 | |
| 789 | if (MRI->subRegLivenessEnabled()) { |
| 790 | // When reading a partial undefined value we must not add a kill flag. |
| 791 | // The regalloc might have used the undef lane for something else. |
| 792 | // Example: |
| 793 | // %1 = ... ; R32: %1 |
| 794 | // %2:high16 = ... ; R64: %2 |
| 795 | // = read killed %2 ; R64: %2 |
| 796 | // = read %1 ; R32: %1 |
| 797 | // The <kill> flag is correct for %2, but the register allocator may |
| 798 | // assign R0L to %1, and R0 to %2 because the low 32bits of R0 |
| 799 | // are actually never written by %2. After assignment the <kill> |
| 800 | // flag at the read instruction is invalid. |
| 801 | LaneBitmask DefinedLanesMask; |
| 802 | if (LI.hasSubRanges()) { |
| 803 | // Compute a mask of lanes that are defined. |
| 804 | // Artificial regunits are not independently allocatable so the |
| 805 | // register allocator cannot have used them to represent any other |
| 806 | // values. That's why we mark them as 'defined' here, as this |
| 807 | // otherwise prevents kill flags from being added. |
| 808 | DefinedLanesMask = ArtificialLanes; |
| 809 | for (const LiveInterval::SubRange &SR : LI.subranges()) |
| 810 | for (const LiveRange::Segment &Segment : SR.segments) { |
| 811 | if (Segment.start >= RI->end) |
| 812 | break; |
| 813 | if (Segment.end == RI->end) { |
| 814 | DefinedLanesMask |= SR.LaneMask; |
| 815 | break; |
| 816 | } |
| 817 | } |
| 818 | } else |
| 819 | DefinedLanesMask = LaneBitmask::getAll(); |
| 820 | |
| 821 | bool IsFullWrite = false; |
| 822 | for (const MachineOperand &MO : MI->operands()) { |
| 823 | if (!MO.isReg() || MO.getReg() != Reg) |
| 824 | continue; |
| 825 | if (MO.isUse()) { |
| 826 | // Reading any undefined lanes? |
| 827 | unsigned SubReg = MO.getSubReg(); |
| 828 | LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubIdx: SubReg) |
| 829 | : MRI->getMaxLaneMaskForVReg(Reg); |
| 830 | if ((UseMask & ~DefinedLanesMask).any()) |
| 831 | goto CancelKill; |
| 832 | } else if (MO.getSubReg() == 0) { |
| 833 | // Writing to the full register? |
| 834 | assert(MO.isDef()); |
| 835 | IsFullWrite = true; |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | // If an instruction writes to a subregister, a new segment starts in |
| 840 | // the LiveInterval. But as this is only overriding part of the register |
| 841 | // adding kill-flags is not correct here after registers have been |
| 842 | // assigned. |
| 843 | if (!IsFullWrite) { |
| 844 | // Next segment has to be adjacent in the subregister write case. |
| 845 | LiveRange::const_iterator N = std::next(x: RI); |
| 846 | if (N != LI.end() && N->start == RI->end) |
| 847 | goto CancelKill; |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | MI->addRegisterKilled(IncomingReg: Reg, RegInfo: nullptr); |
| 852 | continue; |
| 853 | CancelKill: |
| 854 | MI->clearRegisterKills(Reg, RegInfo: nullptr); |
| 855 | } |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | MachineBasicBlock* |
| 860 | LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { |
| 861 | assert(!LI.empty() && "LiveInterval is empty." ); |
| 862 | |
| 863 | // A local live range must be fully contained inside the block, meaning it is |
| 864 | // defined and killed at instructions, not at block boundaries. It is not |
| 865 | // live in or out of any block. |
| 866 | // |
| 867 | // It is technically possible to have a PHI-defined live range identical to a |
| 868 | // single block, but we are going to return false in that case. |
| 869 | |
| 870 | SlotIndex Start = LI.beginIndex(); |
| 871 | if (Start.isBlock()) |
| 872 | return nullptr; |
| 873 | |
| 874 | SlotIndex Stop = LI.endIndex(); |
| 875 | if (Stop.isBlock()) |
| 876 | return nullptr; |
| 877 | |
| 878 | // getMBBFromIndex doesn't need to search the MBB table when both indexes |
| 879 | // belong to proper instructions. |
| 880 | MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(index: Start); |
| 881 | MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(index: Stop); |
| 882 | return MBB1 == MBB2 ? MBB1 : nullptr; |
| 883 | } |
| 884 | |
| 885 | bool |
| 886 | LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { |
| 887 | for (const VNInfo *PHI : LI.valnos) { |
| 888 | if (PHI->isUnused() || !PHI->isPHIDef()) |
| 889 | continue; |
| 890 | const MachineBasicBlock *PHIMBB = getMBBFromIndex(index: PHI->def); |
| 891 | // Conservatively return true instead of scanning huge predecessor lists. |
| 892 | if (PHIMBB->pred_size() > 100) |
| 893 | return true; |
| 894 | for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) |
| 895 | if (VNI == LI.getVNInfoBefore(Idx: Indexes->getMBBEndIdx(mbb: Pred))) |
| 896 | return true; |
| 897 | } |
| 898 | return false; |
| 899 | } |
| 900 | |
| 901 | float LiveIntervals::getSpillWeight(bool isDef, bool isUse, |
| 902 | const MachineBlockFrequencyInfo *MBFI, |
| 903 | const MachineInstr &MI, |
| 904 | ProfileSummaryInfo *PSI) { |
| 905 | return getSpillWeight(isDef, isUse, MBFI, MBB: MI.getParent(), PSI); |
| 906 | } |
| 907 | |
| 908 | float LiveIntervals::getSpillWeight(bool isDef, bool isUse, |
| 909 | const MachineBlockFrequencyInfo *MBFI, |
| 910 | const MachineBasicBlock *MBB, |
| 911 | ProfileSummaryInfo *PSI) { |
| 912 | float Weight = isDef + isUse; |
| 913 | const auto *MF = MBB->getParent(); |
| 914 | // When optimizing for size we only consider the codesize impact of spilling |
| 915 | // the register, not the runtime impact. |
| 916 | if (PSI && llvm::shouldOptimizeForSize(MF, PSI, BFI: MBFI)) |
| 917 | return Weight; |
| 918 | return Weight * MBFI->getBlockFreqRelativeToEntryBlock(MBB); |
| 919 | } |
| 920 | |
| 921 | LiveRange::Segment |
| 922 | LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) { |
| 923 | LiveInterval &Interval = getOrCreateEmptyInterval(Reg); |
| 924 | VNInfo *VN = Interval.getNextValue( |
| 925 | Def: SlotIndex(getInstructionIndex(Instr: startInst).getRegSlot()), |
| 926 | VNInfoAllocator&: getVNInfoAllocator()); |
| 927 | LiveRange::Segment S(SlotIndex(getInstructionIndex(Instr: startInst).getRegSlot()), |
| 928 | getMBBEndIdx(mbb: startInst.getParent()), VN); |
| 929 | Interval.addSegment(S); |
| 930 | |
| 931 | return S; |
| 932 | } |
| 933 | |
| 934 | //===----------------------------------------------------------------------===// |
| 935 | // Register mask functions |
| 936 | //===----------------------------------------------------------------------===// |
| 937 | /// Check whether use of reg in MI is live-through. Live-through means that |
| 938 | /// the value is alive on exit from Machine instruction. The example of such |
| 939 | /// use is a deopt value in statepoint instruction. |
| 940 | static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) { |
| 941 | if (MI->getOpcode() != TargetOpcode::STATEPOINT) |
| 942 | return false; |
| 943 | StatepointOpers SO(MI); |
| 944 | if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn) |
| 945 | return false; |
| 946 | for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E; |
| 947 | ++Idx) { |
| 948 | const MachineOperand &MO = MI->getOperand(i: Idx); |
| 949 | if (MO.isReg() && MO.getReg() == Reg) |
| 950 | return true; |
| 951 | } |
| 952 | return false; |
| 953 | } |
| 954 | |
| 955 | bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI, |
| 956 | BitVector &UsableRegs) { |
| 957 | if (LI.empty()) |
| 958 | return false; |
| 959 | LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end(); |
| 960 | |
| 961 | // Use a smaller arrays for local live ranges. |
| 962 | ArrayRef<SlotIndex> Slots; |
| 963 | ArrayRef<const uint32_t*> Bits; |
| 964 | if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { |
| 965 | Slots = getRegMaskSlotsInBlock(MBBNum: MBB->getNumber()); |
| 966 | Bits = getRegMaskBitsInBlock(MBBNum: MBB->getNumber()); |
| 967 | } else { |
| 968 | Slots = getRegMaskSlots(); |
| 969 | Bits = getRegMaskBits(); |
| 970 | } |
| 971 | |
| 972 | // We are going to enumerate all the register mask slots contained in LI. |
| 973 | // Start with a binary search of RegMaskSlots to find a starting point. |
| 974 | ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Range&: Slots, Value: LiveI->start); |
| 975 | ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); |
| 976 | |
| 977 | // No slots in range, LI begins after the last call. |
| 978 | if (SlotI == SlotE) |
| 979 | return false; |
| 980 | |
| 981 | bool Found = false; |
| 982 | // Utility to union regmasks. |
| 983 | auto unionBitMask = [&](unsigned Idx) { |
| 984 | if (!Found) { |
| 985 | // This is the first overlap. Initialize UsableRegs to all ones. |
| 986 | UsableRegs.clear(); |
| 987 | UsableRegs.resize(N: TRI->getNumRegs(), t: true); |
| 988 | Found = true; |
| 989 | } |
| 990 | // Remove usable registers clobbered by this mask. |
| 991 | UsableRegs.clearBitsNotInMask(Mask: Bits[Idx]); |
| 992 | }; |
| 993 | while (true) { |
| 994 | assert(*SlotI >= LiveI->start); |
| 995 | // Loop over all slots overlapping this segment. |
| 996 | while (*SlotI < LiveI->end) { |
| 997 | // *SlotI overlaps LI. Collect mask bits. |
| 998 | unionBitMask(SlotI - Slots.begin()); |
| 999 | if (++SlotI == SlotE) |
| 1000 | return Found; |
| 1001 | } |
| 1002 | // If segment ends with live-through use we need to collect its regmask. |
| 1003 | if (*SlotI == LiveI->end) |
| 1004 | if (MachineInstr *MI = getInstructionFromIndex(index: *SlotI)) |
| 1005 | if (hasLiveThroughUse(MI, Reg: LI.reg())) |
| 1006 | unionBitMask(SlotI++ - Slots.begin()); |
| 1007 | // *SlotI is beyond the current LI segment. |
| 1008 | // Special advance implementation to not miss next LiveI->end. |
| 1009 | if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex()) |
| 1010 | return Found; |
| 1011 | while (LiveI->end < *SlotI) |
| 1012 | ++LiveI; |
| 1013 | // Advance SlotI until it overlaps. |
| 1014 | while (*SlotI < LiveI->start) |
| 1015 | if (++SlotI == SlotE) |
| 1016 | return Found; |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | //===----------------------------------------------------------------------===// |
| 1021 | // IntervalUpdate class. |
| 1022 | //===----------------------------------------------------------------------===// |
| 1023 | |
| 1024 | /// Toolkit used by handleMove to trim or extend live intervals. |
| 1025 | class LiveIntervals::HMEditor { |
| 1026 | private: |
| 1027 | LiveIntervals& LIS; |
| 1028 | const MachineRegisterInfo& MRI; |
| 1029 | const TargetRegisterInfo& TRI; |
| 1030 | SlotIndex OldIdx; |
| 1031 | SlotIndex NewIdx; |
| 1032 | SmallPtrSet<LiveRange*, 8> Updated; |
| 1033 | bool UpdateFlags; |
| 1034 | |
| 1035 | public: |
| 1036 | HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, |
| 1037 | const TargetRegisterInfo& TRI, |
| 1038 | SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) |
| 1039 | : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), |
| 1040 | UpdateFlags(UpdateFlags) {} |
| 1041 | |
| 1042 | // FIXME: UpdateFlags is a workaround that creates live intervals for all |
| 1043 | // physregs, even those that aren't needed for regalloc, in order to update |
| 1044 | // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill |
| 1045 | // flags, and postRA passes will use a live register utility instead. |
| 1046 | LiveRange *getRegUnitLI(unsigned Unit) { |
| 1047 | if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) |
| 1048 | return &LIS.getRegUnit(Unit); |
| 1049 | return LIS.getCachedRegUnit(Unit); |
| 1050 | } |
| 1051 | |
| 1052 | /// Update all live ranges touched by MI, assuming a move from OldIdx to |
| 1053 | /// NewIdx. |
| 1054 | void updateAllRanges(MachineInstr *MI) { |
| 1055 | LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " |
| 1056 | << *MI); |
| 1057 | bool hasRegMask = false; |
| 1058 | for (MachineOperand &MO : MI->operands()) { |
| 1059 | if (MO.isRegMask()) |
| 1060 | hasRegMask = true; |
| 1061 | if (!MO.isReg()) |
| 1062 | continue; |
| 1063 | if (MO.isUse()) { |
| 1064 | if (!MO.readsReg()) |
| 1065 | continue; |
| 1066 | // Aggressively clear all kill flags. |
| 1067 | // They are reinserted by VirtRegRewriter. |
| 1068 | MO.setIsKill(false); |
| 1069 | } |
| 1070 | |
| 1071 | Register Reg = MO.getReg(); |
| 1072 | if (!Reg) |
| 1073 | continue; |
| 1074 | if (Reg.isVirtual()) { |
| 1075 | LiveInterval &LI = LIS.getInterval(Reg); |
| 1076 | if (LI.hasSubRanges()) { |
| 1077 | unsigned SubReg = MO.getSubReg(); |
| 1078 | LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubIdx: SubReg) |
| 1079 | : MRI.getMaxLaneMaskForVReg(Reg); |
| 1080 | for (LiveInterval::SubRange &S : LI.subranges()) { |
| 1081 | if ((S.LaneMask & LaneMask).none()) |
| 1082 | continue; |
| 1083 | updateRange(LR&: S, VRegOrUnit: VirtRegOrUnit(Reg), LaneMask: S.LaneMask); |
| 1084 | } |
| 1085 | } |
| 1086 | updateRange(LR&: LI, VRegOrUnit: VirtRegOrUnit(Reg), LaneMask: LaneBitmask::getNone()); |
| 1087 | // If main range has a hole and we are moving a subrange use across |
| 1088 | // the hole updateRange() cannot properly handle it since it only |
| 1089 | // gets the LiveRange and not the whole LiveInterval. As a result |
| 1090 | // we may end up with a main range not covering all subranges. |
| 1091 | // This is extremely rare case, so let's check and reconstruct the |
| 1092 | // main range. |
| 1093 | if (LI.hasSubRanges()) { |
| 1094 | unsigned SubReg = MO.getSubReg(); |
| 1095 | LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubIdx: SubReg) |
| 1096 | : MRI.getMaxLaneMaskForVReg(Reg); |
| 1097 | for (LiveInterval::SubRange &S : LI.subranges()) { |
| 1098 | if ((S.LaneMask & LaneMask).none() || LI.covers(Other: S)) |
| 1099 | continue; |
| 1100 | LI.clear(); |
| 1101 | LIS.constructMainRangeFromSubranges(LI); |
| 1102 | break; |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | continue; |
| 1107 | } |
| 1108 | |
| 1109 | // For physregs, only update the regunits that actually have a |
| 1110 | // precomputed live range. |
| 1111 | for (MCRegUnit Unit : TRI.regunits(Reg: Reg.asMCReg())) |
| 1112 | if (LiveRange *LR = getRegUnitLI(Unit)) |
| 1113 | updateRange(LR&: *LR, VRegOrUnit: VirtRegOrUnit(Unit), LaneMask: LaneBitmask::getNone()); |
| 1114 | } |
| 1115 | if (hasRegMask) |
| 1116 | updateRegMaskSlots(); |
| 1117 | } |
| 1118 | |
| 1119 | private: |
| 1120 | /// Update a single live range, assuming an instruction has been moved from |
| 1121 | /// OldIdx to NewIdx. |
| 1122 | void updateRange(LiveRange &LR, VirtRegOrUnit VRegOrUnit, |
| 1123 | LaneBitmask LaneMask) { |
| 1124 | if (!Updated.insert(Ptr: &LR).second) |
| 1125 | return; |
| 1126 | LLVM_DEBUG({ |
| 1127 | dbgs() << " " ; |
| 1128 | if (VRegOrUnit.isVirtualReg()) { |
| 1129 | dbgs() << printReg(VRegOrUnit.asVirtualReg()); |
| 1130 | if (LaneMask.any()) |
| 1131 | dbgs() << " L" << PrintLaneMask(LaneMask); |
| 1132 | } else { |
| 1133 | dbgs() << printRegUnit(VRegOrUnit.asMCRegUnit(), &TRI); |
| 1134 | } |
| 1135 | dbgs() << ":\t" << LR << '\n'; |
| 1136 | }); |
| 1137 | if (SlotIndex::isEarlierInstr(A: OldIdx, B: NewIdx)) |
| 1138 | handleMoveDown(LR); |
| 1139 | else |
| 1140 | handleMoveUp(LR, VRegOrUnit, LaneMask); |
| 1141 | LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n'); |
| 1142 | assert(LR.verify()); |
| 1143 | } |
| 1144 | |
| 1145 | /// Update LR to reflect an instruction has been moved downwards from OldIdx |
| 1146 | /// to NewIdx (OldIdx < NewIdx). |
| 1147 | void handleMoveDown(LiveRange &LR) { |
| 1148 | LiveRange::iterator E = LR.end(); |
| 1149 | // Segment going into OldIdx. |
| 1150 | LiveRange::iterator OldIdxIn = LR.find(Pos: OldIdx.getBaseIndex()); |
| 1151 | |
| 1152 | // No value live before or after OldIdx? Nothing to do. |
| 1153 | if (OldIdxIn == E || SlotIndex::isEarlierInstr(A: OldIdx, B: OldIdxIn->start)) |
| 1154 | return; |
| 1155 | |
| 1156 | LiveRange::iterator OldIdxOut; |
| 1157 | // Do we have a value live-in to OldIdx? |
| 1158 | if (SlotIndex::isEarlierInstr(A: OldIdxIn->start, B: OldIdx)) { |
| 1159 | // If the live-in value already extends to NewIdx, there is nothing to do. |
| 1160 | if (SlotIndex::isEarlierEqualInstr(A: NewIdx, B: OldIdxIn->end)) |
| 1161 | return; |
| 1162 | // Aggressively remove all kill flags from the old kill point. |
| 1163 | // Kill flags shouldn't be used while live intervals exist, they will be |
| 1164 | // reinserted by VirtRegRewriter. |
| 1165 | if (MachineInstr *KillMI = LIS.getInstructionFromIndex(index: OldIdxIn->end)) |
| 1166 | for (MachineOperand &MOP : mi_bundle_ops(MI&: *KillMI)) |
| 1167 | if (MOP.isReg() && MOP.isUse()) |
| 1168 | MOP.setIsKill(false); |
| 1169 | |
| 1170 | // Is there a def before NewIdx which is not OldIdx? |
| 1171 | LiveRange::iterator Next = std::next(x: OldIdxIn); |
| 1172 | if (Next != E && !SlotIndex::isSameInstr(A: OldIdx, B: Next->start) && |
| 1173 | SlotIndex::isEarlierInstr(A: Next->start, B: NewIdx)) { |
| 1174 | // If we are here then OldIdx was just a use but not a def. We only have |
| 1175 | // to ensure liveness extends to NewIdx. |
| 1176 | LiveRange::iterator NewIdxIn = |
| 1177 | LR.advanceTo(I: Next, Pos: NewIdx.getBaseIndex()); |
| 1178 | // Extend the segment before NewIdx if necessary. |
| 1179 | if (NewIdxIn == E || |
| 1180 | !SlotIndex::isEarlierInstr(A: NewIdxIn->start, B: NewIdx)) { |
| 1181 | LiveRange::iterator Prev = std::prev(x: NewIdxIn); |
| 1182 | Prev->end = NewIdx.getRegSlot(); |
| 1183 | } |
| 1184 | // Extend OldIdxIn. |
| 1185 | OldIdxIn->end = Next->start; |
| 1186 | return; |
| 1187 | } |
| 1188 | |
| 1189 | // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR |
| 1190 | // invalid by overlapping ranges. |
| 1191 | bool isKill = SlotIndex::isSameInstr(A: OldIdx, B: OldIdxIn->end); |
| 1192 | OldIdxIn->end = NewIdx.getRegSlot(EC: OldIdxIn->end.isEarlyClobber()); |
| 1193 | // If this was not a kill, then there was no def and we're done. |
| 1194 | if (!isKill) |
| 1195 | return; |
| 1196 | |
| 1197 | // Did we have a Def at OldIdx? |
| 1198 | OldIdxOut = Next; |
| 1199 | if (OldIdxOut == E || !SlotIndex::isSameInstr(A: OldIdx, B: OldIdxOut->start)) |
| 1200 | return; |
| 1201 | } else { |
| 1202 | OldIdxOut = OldIdxIn; |
| 1203 | } |
| 1204 | |
| 1205 | // If we are here then there is a Definition at OldIdx. OldIdxOut points |
| 1206 | // to the segment starting there. |
| 1207 | assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && |
| 1208 | "No def?" ); |
| 1209 | VNInfo *OldIdxVNI = OldIdxOut->valno; |
| 1210 | assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def" ); |
| 1211 | |
| 1212 | // If the defined value extends beyond NewIdx, just move the beginning |
| 1213 | // of the segment to NewIdx. |
| 1214 | SlotIndex NewIdxDef = NewIdx.getRegSlot(EC: OldIdxOut->start.isEarlyClobber()); |
| 1215 | if (SlotIndex::isEarlierInstr(A: NewIdxDef, B: OldIdxOut->end)) { |
| 1216 | OldIdxVNI->def = NewIdxDef; |
| 1217 | OldIdxOut->start = OldIdxVNI->def; |
| 1218 | return; |
| 1219 | } |
| 1220 | |
| 1221 | // If we are here then we have a Definition at OldIdx which ends before |
| 1222 | // NewIdx. |
| 1223 | |
| 1224 | // Is there an existing Def at NewIdx? |
| 1225 | LiveRange::iterator AfterNewIdx |
| 1226 | = LR.advanceTo(I: OldIdxOut, Pos: NewIdx.getRegSlot()); |
| 1227 | bool OldIdxDefIsDead = OldIdxOut->end.isDead(); |
| 1228 | if (!OldIdxDefIsDead && |
| 1229 | SlotIndex::isEarlierInstr(A: OldIdxOut->end, B: NewIdxDef)) { |
| 1230 | // OldIdx is not a dead def, and NewIdxDef is inside a new interval. |
| 1231 | VNInfo *DefVNI; |
| 1232 | if (OldIdxOut != LR.begin() && |
| 1233 | !SlotIndex::isEarlierInstr(A: std::prev(x: OldIdxOut)->end, |
| 1234 | B: OldIdxOut->start)) { |
| 1235 | // There is no gap between OldIdxOut and its predecessor anymore, |
| 1236 | // merge them. |
| 1237 | LiveRange::iterator IPrev = std::prev(x: OldIdxOut); |
| 1238 | DefVNI = OldIdxVNI; |
| 1239 | IPrev->end = OldIdxOut->end; |
| 1240 | } else { |
| 1241 | // The value is live in to OldIdx |
| 1242 | LiveRange::iterator INext = std::next(x: OldIdxOut); |
| 1243 | assert(INext != E && "Must have following segment" ); |
| 1244 | // We merge OldIdxOut and its successor. As we're dealing with subreg |
| 1245 | // reordering, there is always a successor to OldIdxOut in the same BB |
| 1246 | // We don't need INext->valno anymore and will reuse for the new segment |
| 1247 | // we create later. |
| 1248 | DefVNI = OldIdxVNI; |
| 1249 | INext->start = OldIdxOut->end; |
| 1250 | INext->valno->def = INext->start; |
| 1251 | } |
| 1252 | // If NewIdx is behind the last segment, extend that and append a new one. |
| 1253 | if (AfterNewIdx == E) { |
| 1254 | // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up |
| 1255 | // one position. |
| 1256 | // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end |
| 1257 | // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end |
| 1258 | std::copy(first: std::next(x: OldIdxOut), last: E, result: OldIdxOut); |
| 1259 | // The last segment is undefined now, reuse it for a dead def. |
| 1260 | LiveRange::iterator NewSegment = std::prev(x: E); |
| 1261 | *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), |
| 1262 | DefVNI); |
| 1263 | DefVNI->def = NewIdxDef; |
| 1264 | |
| 1265 | LiveRange::iterator Prev = std::prev(x: NewSegment); |
| 1266 | Prev->end = NewIdxDef; |
| 1267 | } else { |
| 1268 | // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up |
| 1269 | // one position. |
| 1270 | // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| |
| 1271 | // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| |
| 1272 | std::copy(first: std::next(x: OldIdxOut), last: std::next(x: AfterNewIdx), result: OldIdxOut); |
| 1273 | LiveRange::iterator Prev = std::prev(x: AfterNewIdx); |
| 1274 | // We have two cases: |
| 1275 | if (SlotIndex::isEarlierInstr(A: Prev->start, B: NewIdxDef)) { |
| 1276 | // Case 1: NewIdx is inside a liverange. Split this liverange at |
| 1277 | // NewIdxDef into the segment "Prev" followed by "NewSegment". |
| 1278 | LiveRange::iterator NewSegment = AfterNewIdx; |
| 1279 | *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); |
| 1280 | Prev->valno->def = NewIdxDef; |
| 1281 | |
| 1282 | *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); |
| 1283 | DefVNI->def = Prev->start; |
| 1284 | } else { |
| 1285 | // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and |
| 1286 | // turn Prev into a segment from NewIdx to AfterNewIdx->start. |
| 1287 | *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); |
| 1288 | DefVNI->def = NewIdxDef; |
| 1289 | assert(DefVNI != AfterNewIdx->valno); |
| 1290 | } |
| 1291 | } |
| 1292 | return; |
| 1293 | } |
| 1294 | |
| 1295 | if (AfterNewIdx != E && |
| 1296 | SlotIndex::isSameInstr(A: AfterNewIdx->start, B: NewIdxDef)) { |
| 1297 | // There is an existing def at NewIdx. The def at OldIdx is coalesced into |
| 1298 | // that value. |
| 1299 | assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?" ); |
| 1300 | LR.removeValNo(ValNo: OldIdxVNI); |
| 1301 | } else { |
| 1302 | // There was no existing def at NewIdx. We need to create a dead def |
| 1303 | // at NewIdx. Shift segments over the old OldIdxOut segment, this frees |
| 1304 | // a new segment at the place where we want to construct the dead def. |
| 1305 | // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| |
| 1306 | // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| |
| 1307 | assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators" ); |
| 1308 | std::copy(first: std::next(x: OldIdxOut), last: AfterNewIdx, result: OldIdxOut); |
| 1309 | // We can reuse OldIdxVNI now. |
| 1310 | LiveRange::iterator NewSegment = std::prev(x: AfterNewIdx); |
| 1311 | VNInfo *NewSegmentVNI = OldIdxVNI; |
| 1312 | NewSegmentVNI->def = NewIdxDef; |
| 1313 | *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), |
| 1314 | NewSegmentVNI); |
| 1315 | } |
| 1316 | } |
| 1317 | |
| 1318 | /// Update LR to reflect an instruction has been moved upwards from OldIdx |
| 1319 | /// to NewIdx (NewIdx < OldIdx). |
| 1320 | void handleMoveUp(LiveRange &LR, VirtRegOrUnit VRegOrUnit, |
| 1321 | LaneBitmask LaneMask) { |
| 1322 | LiveRange::iterator E = LR.end(); |
| 1323 | // Segment going into OldIdx. |
| 1324 | LiveRange::iterator OldIdxIn = LR.find(Pos: OldIdx.getBaseIndex()); |
| 1325 | |
| 1326 | // No value live before or after OldIdx? Nothing to do. |
| 1327 | if (OldIdxIn == E || SlotIndex::isEarlierInstr(A: OldIdx, B: OldIdxIn->start)) |
| 1328 | return; |
| 1329 | |
| 1330 | LiveRange::iterator OldIdxOut; |
| 1331 | // Do we have a value live-in to OldIdx? |
| 1332 | if (SlotIndex::isEarlierInstr(A: OldIdxIn->start, B: OldIdx)) { |
| 1333 | // If the live-in value isn't killed here, then we have no Def at |
| 1334 | // OldIdx, moreover the value must be live at NewIdx so there is nothing |
| 1335 | // to do. |
| 1336 | bool isKill = SlotIndex::isSameInstr(A: OldIdx, B: OldIdxIn->end); |
| 1337 | if (!isKill) |
| 1338 | return; |
| 1339 | |
| 1340 | // At this point we have to move OldIdxIn->end back to the nearest |
| 1341 | // previous use or (dead-)def but no further than NewIdx. |
| 1342 | SlotIndex DefBeforeOldIdx |
| 1343 | = std::max(a: OldIdxIn->start.getDeadSlot(), |
| 1344 | b: NewIdx.getRegSlot(EC: OldIdxIn->end.isEarlyClobber())); |
| 1345 | OldIdxIn->end = findLastUseBefore(Before: DefBeforeOldIdx, VRegOrUnit, LaneMask); |
| 1346 | |
| 1347 | // Did we have a Def at OldIdx? If not we are done now. |
| 1348 | OldIdxOut = std::next(x: OldIdxIn); |
| 1349 | if (OldIdxOut == E || !SlotIndex::isSameInstr(A: OldIdx, B: OldIdxOut->start)) |
| 1350 | return; |
| 1351 | } else { |
| 1352 | OldIdxOut = OldIdxIn; |
| 1353 | OldIdxIn = OldIdxOut != LR.begin() ? std::prev(x: OldIdxOut) : E; |
| 1354 | } |
| 1355 | |
| 1356 | // If we are here then there is a Definition at OldIdx. OldIdxOut points |
| 1357 | // to the segment starting there. |
| 1358 | assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && |
| 1359 | "No def?" ); |
| 1360 | VNInfo *OldIdxVNI = OldIdxOut->valno; |
| 1361 | assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def" ); |
| 1362 | bool OldIdxDefIsDead = OldIdxOut->end.isDead(); |
| 1363 | |
| 1364 | // Is there an existing def at NewIdx? |
| 1365 | SlotIndex NewIdxDef = NewIdx.getRegSlot(EC: OldIdxOut->start.isEarlyClobber()); |
| 1366 | LiveRange::iterator NewIdxOut = LR.find(Pos: NewIdx.getRegSlot()); |
| 1367 | if (SlotIndex::isSameInstr(A: NewIdxOut->start, B: NewIdx)) { |
| 1368 | assert(NewIdxOut->valno != OldIdxVNI && |
| 1369 | "Same value defined more than once?" ); |
| 1370 | // If OldIdx was a dead def remove it. |
| 1371 | if (!OldIdxDefIsDead) { |
| 1372 | // Remove segment starting at NewIdx and move begin of OldIdxOut to |
| 1373 | // NewIdx so it can take its place. |
| 1374 | OldIdxVNI->def = NewIdxDef; |
| 1375 | OldIdxOut->start = NewIdxDef; |
| 1376 | LR.removeValNo(ValNo: NewIdxOut->valno); |
| 1377 | } else { |
| 1378 | // Simply remove the dead def at OldIdx. |
| 1379 | LR.removeValNo(ValNo: OldIdxVNI); |
| 1380 | } |
| 1381 | } else { |
| 1382 | // Previously nothing was live after NewIdx, so all we have to do now is |
| 1383 | // move the begin of OldIdxOut to NewIdx. |
| 1384 | if (!OldIdxDefIsDead) { |
| 1385 | // Do we have any intermediate Defs between OldIdx and NewIdx? |
| 1386 | if (OldIdxIn != E && |
| 1387 | SlotIndex::isEarlierInstr(A: NewIdxDef, B: OldIdxIn->start)) { |
| 1388 | // OldIdx is not a dead def and NewIdx is before predecessor start. |
| 1389 | LiveRange::iterator NewIdxIn = NewIdxOut; |
| 1390 | assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); |
| 1391 | const SlotIndex SplitPos = NewIdxDef; |
| 1392 | OldIdxVNI = OldIdxIn->valno; |
| 1393 | |
| 1394 | SlotIndex NewDefEndPoint = std::next(x: NewIdxIn)->end; |
| 1395 | LiveRange::iterator Prev = std::prev(x: OldIdxIn); |
| 1396 | if (OldIdxIn != LR.begin() && |
| 1397 | SlotIndex::isEarlierInstr(A: NewIdx, B: Prev->end)) { |
| 1398 | // If the segment before OldIdx read a value defined earlier than |
| 1399 | // NewIdx, the moved instruction also reads and forwards that |
| 1400 | // value. Extend the lifetime of the new def point. |
| 1401 | |
| 1402 | // Extend to where the previous range started, unless there is |
| 1403 | // another redef first. |
| 1404 | NewDefEndPoint = std::min(a: OldIdxIn->start, |
| 1405 | b: std::next(x: NewIdxOut)->start); |
| 1406 | } |
| 1407 | |
| 1408 | // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. |
| 1409 | OldIdxOut->valno->def = OldIdxIn->start; |
| 1410 | *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, |
| 1411 | OldIdxOut->valno); |
| 1412 | // OldIdxIn and OldIdxVNI are now undef and can be overridden. |
| 1413 | // We Slide [NewIdxIn, OldIdxIn) down one position. |
| 1414 | // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| |
| 1415 | // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |
| 1416 | std::copy_backward(first: NewIdxIn, last: OldIdxIn, result: OldIdxOut); |
| 1417 | // NewIdxIn is now considered undef so we can reuse it for the moved |
| 1418 | // value. |
| 1419 | LiveRange::iterator NewSegment = NewIdxIn; |
| 1420 | LiveRange::iterator Next = std::next(x: NewSegment); |
| 1421 | if (SlotIndex::isEarlierInstr(A: Next->start, B: NewIdx)) { |
| 1422 | // There is no gap between NewSegment and its predecessor. |
| 1423 | *NewSegment = LiveRange::Segment(Next->start, SplitPos, |
| 1424 | Next->valno); |
| 1425 | |
| 1426 | *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI); |
| 1427 | Next->valno->def = SplitPos; |
| 1428 | } else { |
| 1429 | // There is a gap between NewSegment and its predecessor |
| 1430 | // Value becomes live in. |
| 1431 | *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); |
| 1432 | NewSegment->valno->def = SplitPos; |
| 1433 | } |
| 1434 | } else { |
| 1435 | // Leave the end point of a live def. |
| 1436 | OldIdxOut->start = NewIdxDef; |
| 1437 | OldIdxVNI->def = NewIdxDef; |
| 1438 | if (OldIdxIn != E && SlotIndex::isEarlierInstr(A: NewIdx, B: OldIdxIn->end)) |
| 1439 | OldIdxIn->end = NewIdxDef; |
| 1440 | } |
| 1441 | } else if (OldIdxIn != E |
| 1442 | && SlotIndex::isEarlierInstr(A: NewIdxOut->start, B: NewIdx) |
| 1443 | && SlotIndex::isEarlierInstr(A: NewIdx, B: NewIdxOut->end)) { |
| 1444 | // OldIdxVNI is a dead def that has been moved into the middle of |
| 1445 | // another value in LR. That can happen when LR is a whole register, |
| 1446 | // but the dead def is a write to a subreg that is dead at NewIdx. |
| 1447 | // The dead def may have been moved across other values |
| 1448 | // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) |
| 1449 | // down one position. |
| 1450 | // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | |
| 1451 | // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| |
| 1452 | std::copy_backward(first: NewIdxOut, last: OldIdxOut, result: std::next(x: OldIdxOut)); |
| 1453 | // Modify the segment at NewIdxOut and the following segment to meet at |
| 1454 | // the point of the dead def, with the following segment getting |
| 1455 | // OldIdxVNI as its value number. |
| 1456 | *NewIdxOut = LiveRange::Segment( |
| 1457 | NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); |
| 1458 | *(NewIdxOut + 1) = LiveRange::Segment( |
| 1459 | NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); |
| 1460 | OldIdxVNI->def = NewIdxDef; |
| 1461 | // Modify subsequent segments to be defined by the moved def OldIdxVNI. |
| 1462 | for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) |
| 1463 | Idx->valno = OldIdxVNI; |
| 1464 | // Aggressively remove all dead flags from the former dead definition. |
| 1465 | // Kill/dead flags shouldn't be used while live intervals exist; they |
| 1466 | // will be reinserted by VirtRegRewriter. |
| 1467 | if (MachineInstr *KillMI = LIS.getInstructionFromIndex(index: NewIdx)) |
| 1468 | for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) |
| 1469 | if (MO->isReg() && !MO->isUse()) |
| 1470 | MO->setIsDead(false); |
| 1471 | } else { |
| 1472 | // OldIdxVNI is a dead def. It may have been moved across other values |
| 1473 | // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) |
| 1474 | // down one position. |
| 1475 | // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | |
| 1476 | // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| |
| 1477 | std::copy_backward(first: NewIdxOut, last: OldIdxOut, result: std::next(x: OldIdxOut)); |
| 1478 | // OldIdxVNI can be reused now to build a new dead def segment. |
| 1479 | LiveRange::iterator NewSegment = NewIdxOut; |
| 1480 | VNInfo *NewSegmentVNI = OldIdxVNI; |
| 1481 | *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), |
| 1482 | NewSegmentVNI); |
| 1483 | NewSegmentVNI->def = NewIdxDef; |
| 1484 | } |
| 1485 | } |
| 1486 | } |
| 1487 | |
| 1488 | void updateRegMaskSlots() { |
| 1489 | SmallVectorImpl<SlotIndex>::iterator RI = |
| 1490 | llvm::lower_bound(Range&: LIS.RegMaskSlots, Value&: OldIdx); |
| 1491 | assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && |
| 1492 | "No RegMask at OldIdx." ); |
| 1493 | *RI = NewIdx.getRegSlot(); |
| 1494 | assert((RI == LIS.RegMaskSlots.begin() || |
| 1495 | SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && |
| 1496 | "Cannot move regmask instruction above another call" ); |
| 1497 | assert((std::next(RI) == LIS.RegMaskSlots.end() || |
| 1498 | SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && |
| 1499 | "Cannot move regmask instruction below another call" ); |
| 1500 | } |
| 1501 | |
| 1502 | // Return the last use of reg between NewIdx and OldIdx. |
| 1503 | SlotIndex findLastUseBefore(SlotIndex Before, VirtRegOrUnit VRegOrUnit, |
| 1504 | LaneBitmask LaneMask) { |
| 1505 | if (VRegOrUnit.isVirtualReg()) { |
| 1506 | SlotIndex LastUse = Before; |
| 1507 | for (MachineOperand &MO : |
| 1508 | MRI.use_nodbg_operands(Reg: VRegOrUnit.asVirtualReg())) { |
| 1509 | if (MO.isUndef()) |
| 1510 | continue; |
| 1511 | unsigned SubReg = MO.getSubReg(); |
| 1512 | if (SubReg != 0 && LaneMask.any() |
| 1513 | && (TRI.getSubRegIndexLaneMask(SubIdx: SubReg) & LaneMask).none()) |
| 1514 | continue; |
| 1515 | |
| 1516 | const MachineInstr &MI = *MO.getParent(); |
| 1517 | SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); |
| 1518 | if (InstSlot > LastUse && InstSlot < OldIdx) |
| 1519 | LastUse = InstSlot.getRegSlot(); |
| 1520 | } |
| 1521 | return LastUse; |
| 1522 | } |
| 1523 | |
| 1524 | // This is a regunit interval, so scanning the use list could be very |
| 1525 | // expensive. Scan upwards from OldIdx instead. |
| 1526 | assert(Before < OldIdx && "Expected upwards move" ); |
| 1527 | SlotIndexes *Indexes = LIS.getSlotIndexes(); |
| 1528 | MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: Before); |
| 1529 | |
| 1530 | // OldIdx may not correspond to an instruction any longer, so set MII to |
| 1531 | // point to the next instruction after OldIdx, or MBB->end(). |
| 1532 | MachineBasicBlock::iterator MII = MBB->end(); |
| 1533 | if (MachineInstr *MI = Indexes->getInstructionFromIndex( |
| 1534 | index: Indexes->getNextNonNullIndex(Index: OldIdx))) |
| 1535 | if (MI->getParent() == MBB) |
| 1536 | MII = MI; |
| 1537 | |
| 1538 | MachineBasicBlock::iterator Begin = MBB->begin(); |
| 1539 | while (MII != Begin) { |
| 1540 | if ((--MII)->isDebugOrPseudoInstr()) |
| 1541 | continue; |
| 1542 | SlotIndex Idx = Indexes->getInstructionIndex(MI: *MII); |
| 1543 | |
| 1544 | // Stop searching when Before is reached. |
| 1545 | if (!SlotIndex::isEarlierInstr(A: Before, B: Idx)) |
| 1546 | return Before; |
| 1547 | |
| 1548 | // Check if MII uses Reg. |
| 1549 | for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) |
| 1550 | if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() && |
| 1551 | TRI.hasRegUnit(Reg: MO->getReg(), RegUnit: VRegOrUnit.asMCRegUnit())) |
| 1552 | return Idx.getRegSlot(); |
| 1553 | } |
| 1554 | // Didn't reach Before. It must be the first instruction in the block. |
| 1555 | return Before; |
| 1556 | } |
| 1557 | }; |
| 1558 | |
| 1559 | void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { |
| 1560 | // It is fine to move a bundle as a whole, but not an individual instruction |
| 1561 | // inside it. |
| 1562 | assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) && |
| 1563 | "Cannot move instruction in bundle" ); |
| 1564 | SlotIndex OldIndex = Indexes->getInstructionIndex(MI); |
| 1565 | Indexes->removeMachineInstrFromMaps(MI); |
| 1566 | SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); |
| 1567 | assert(getMBBStartIdx(MI.getParent()) <= OldIndex && |
| 1568 | OldIndex < getMBBEndIdx(MI.getParent()) && |
| 1569 | "Cannot handle moves across basic block boundaries." ); |
| 1570 | |
| 1571 | HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); |
| 1572 | HME.updateAllRanges(MI: &MI); |
| 1573 | } |
| 1574 | |
| 1575 | void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart, |
| 1576 | bool UpdateFlags) { |
| 1577 | assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) && |
| 1578 | "Bundle start is not a bundle" ); |
| 1579 | SmallVector<SlotIndex, 16> ToProcess; |
| 1580 | const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI&: BundleStart); |
| 1581 | auto BundleEnd = getBundleEnd(I: BundleStart.getIterator()); |
| 1582 | |
| 1583 | auto I = BundleStart.getIterator(); |
| 1584 | I++; |
| 1585 | while (I != BundleEnd) { |
| 1586 | if (!Indexes->hasIndex(instr: *I)) |
| 1587 | continue; |
| 1588 | SlotIndex OldIndex = Indexes->getInstructionIndex(MI: *I, IgnoreBundle: true); |
| 1589 | ToProcess.push_back(Elt: OldIndex); |
| 1590 | Indexes->removeMachineInstrFromMaps(MI&: *I, AllowBundled: true); |
| 1591 | I++; |
| 1592 | } |
| 1593 | for (SlotIndex OldIndex : ToProcess) { |
| 1594 | HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); |
| 1595 | HME.updateAllRanges(MI: &BundleStart); |
| 1596 | } |
| 1597 | |
| 1598 | // Fix up dead defs |
| 1599 | const SlotIndex Index = getInstructionIndex(Instr: BundleStart); |
| 1600 | for (MachineOperand &MO : BundleStart.operands()) { |
| 1601 | if (!MO.isReg()) |
| 1602 | continue; |
| 1603 | Register Reg = MO.getReg(); |
| 1604 | if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) { |
| 1605 | LiveInterval &LI = getInterval(Reg); |
| 1606 | LiveQueryResult LRQ = LI.Query(Idx: Index); |
| 1607 | if (LRQ.isDeadDef()) |
| 1608 | MO.setIsDead(); |
| 1609 | } |
| 1610 | } |
| 1611 | } |
| 1612 | |
| 1613 | void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, |
| 1614 | const MachineBasicBlock::iterator End, |
| 1615 | const SlotIndex EndIdx, LiveRange &LR, |
| 1616 | const Register Reg, |
| 1617 | LaneBitmask LaneMask) { |
| 1618 | LiveInterval::iterator LII = LR.find(Pos: EndIdx); |
| 1619 | SlotIndex lastUseIdx; |
| 1620 | if (LII != LR.end() && LII->start < EndIdx) { |
| 1621 | lastUseIdx = LII->end; |
| 1622 | } else if (LII == LR.begin()) { |
| 1623 | // We may not have a liverange at all if this is a subregister untouched |
| 1624 | // between \p Begin and \p End. |
| 1625 | } else { |
| 1626 | --LII; |
| 1627 | } |
| 1628 | |
| 1629 | for (MachineBasicBlock::iterator I = End; I != Begin;) { |
| 1630 | --I; |
| 1631 | MachineInstr &MI = *I; |
| 1632 | if (MI.isDebugOrPseudoInstr()) |
| 1633 | continue; |
| 1634 | |
| 1635 | SlotIndex instrIdx = getInstructionIndex(Instr: MI); |
| 1636 | bool isStartValid = getInstructionFromIndex(index: LII->start); |
| 1637 | bool isEndValid = getInstructionFromIndex(index: LII->end); |
| 1638 | |
| 1639 | // FIXME: This doesn't currently handle early-clobber or multiple removed |
| 1640 | // defs inside of the region to repair. |
| 1641 | for (const MachineOperand &MO : MI.operands()) { |
| 1642 | if (!MO.isReg() || MO.getReg() != Reg) |
| 1643 | continue; |
| 1644 | |
| 1645 | unsigned SubReg = MO.getSubReg(); |
| 1646 | LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
| 1647 | if ((Mask & LaneMask).none()) |
| 1648 | continue; |
| 1649 | |
| 1650 | if (MO.isDef()) { |
| 1651 | if (!isStartValid) { |
| 1652 | if (LII->end.isDead()) { |
| 1653 | LII = LR.removeSegment(I: LII, RemoveDeadValNo: true); |
| 1654 | if (LII != LR.begin()) |
| 1655 | --LII; |
| 1656 | } else { |
| 1657 | LII->start = instrIdx.getRegSlot(); |
| 1658 | LII->valno->def = instrIdx.getRegSlot(); |
| 1659 | if (MO.getSubReg() && !MO.isUndef()) |
| 1660 | lastUseIdx = instrIdx.getRegSlot(); |
| 1661 | else |
| 1662 | lastUseIdx = SlotIndex(); |
| 1663 | continue; |
| 1664 | } |
| 1665 | } |
| 1666 | |
| 1667 | if (!lastUseIdx.isValid()) { |
| 1668 | VNInfo *VNI = LR.getNextValue(Def: instrIdx.getRegSlot(), VNInfoAllocator); |
| 1669 | LiveRange::Segment S(instrIdx.getRegSlot(), |
| 1670 | instrIdx.getDeadSlot(), VNI); |
| 1671 | LII = LR.addSegment(S); |
| 1672 | } else if (LII->start != instrIdx.getRegSlot()) { |
| 1673 | VNInfo *VNI = LR.getNextValue(Def: instrIdx.getRegSlot(), VNInfoAllocator); |
| 1674 | LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); |
| 1675 | LII = LR.addSegment(S); |
| 1676 | } |
| 1677 | |
| 1678 | if (MO.getSubReg() && !MO.isUndef()) |
| 1679 | lastUseIdx = instrIdx.getRegSlot(); |
| 1680 | else |
| 1681 | lastUseIdx = SlotIndex(); |
| 1682 | } else if (MO.isUse()) { |
| 1683 | // FIXME: This should probably be handled outside of this branch, |
| 1684 | // either as part of the def case (for defs inside of the region) or |
| 1685 | // after the loop over the region. |
| 1686 | if (!isEndValid && !LII->end.isBlock()) |
| 1687 | LII->end = instrIdx.getRegSlot(); |
| 1688 | if (!lastUseIdx.isValid()) |
| 1689 | lastUseIdx = instrIdx.getRegSlot(); |
| 1690 | } |
| 1691 | } |
| 1692 | } |
| 1693 | |
| 1694 | bool isStartValid = getInstructionFromIndex(index: LII->start); |
| 1695 | if (!isStartValid && LII->end.isDead()) |
| 1696 | LR.removeSegment(S: *LII, RemoveDeadValNo: true); |
| 1697 | } |
| 1698 | |
| 1699 | void |
| 1700 | LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, |
| 1701 | MachineBasicBlock::iterator Begin, |
| 1702 | MachineBasicBlock::iterator End, |
| 1703 | ArrayRef<Register> OrigRegs) { |
| 1704 | // Find anchor points, which are at the beginning/end of blocks or at |
| 1705 | // instructions that already have indexes. |
| 1706 | while (Begin != MBB->begin() && !Indexes->hasIndex(instr: *std::prev(x: Begin))) |
| 1707 | --Begin; |
| 1708 | while (End != MBB->end() && !Indexes->hasIndex(instr: *End)) |
| 1709 | ++End; |
| 1710 | |
| 1711 | SlotIndex EndIdx; |
| 1712 | if (End == MBB->end()) |
| 1713 | EndIdx = getMBBEndIdx(mbb: MBB).getPrevSlot(); |
| 1714 | else |
| 1715 | EndIdx = getInstructionIndex(Instr: *End); |
| 1716 | |
| 1717 | Indexes->repairIndexesInRange(MBB, Begin, End); |
| 1718 | |
| 1719 | // Make sure a live interval exists for all register operands in the range. |
| 1720 | SmallVector<Register> RegsToRepair(OrigRegs); |
| 1721 | for (MachineBasicBlock::iterator I = End; I != Begin;) { |
| 1722 | --I; |
| 1723 | MachineInstr &MI = *I; |
| 1724 | if (MI.isDebugOrPseudoInstr()) |
| 1725 | continue; |
| 1726 | for (const MachineOperand &MO : MI.operands()) { |
| 1727 | if (MO.isReg() && MO.getReg().isVirtual()) { |
| 1728 | Register Reg = MO.getReg(); |
| 1729 | if (MO.getSubReg() && hasInterval(Reg) && |
| 1730 | MRI->shouldTrackSubRegLiveness(VReg: Reg)) { |
| 1731 | LiveInterval &LI = getInterval(Reg); |
| 1732 | if (!LI.hasSubRanges()) { |
| 1733 | // If the new instructions refer to subregs but the old instructions |
| 1734 | // did not, throw away any old live interval so it will be |
| 1735 | // recomputed with subranges. |
| 1736 | removeInterval(Reg); |
| 1737 | } else if (MO.isDef()) { |
| 1738 | // Similarly if a subreg def has no precise subrange match then |
| 1739 | // assume we need to recompute all subranges. |
| 1740 | unsigned SubReg = MO.getSubReg(); |
| 1741 | LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
| 1742 | if (llvm::none_of(Range: LI.subranges(), |
| 1743 | P: [Mask](LiveInterval::SubRange &SR) { |
| 1744 | return SR.LaneMask == Mask; |
| 1745 | })) { |
| 1746 | removeInterval(Reg); |
| 1747 | } |
| 1748 | } |
| 1749 | } |
| 1750 | if (!hasInterval(Reg)) { |
| 1751 | createAndComputeVirtRegInterval(Reg); |
| 1752 | // Don't bother to repair a freshly calculated live interval. |
| 1753 | llvm::erase(C&: RegsToRepair, V: Reg); |
| 1754 | } |
| 1755 | } |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | for (Register Reg : RegsToRepair) { |
| 1760 | if (!Reg.isVirtual()) |
| 1761 | continue; |
| 1762 | |
| 1763 | LiveInterval &LI = getInterval(Reg); |
| 1764 | // FIXME: Should we support undefs that gain defs? |
| 1765 | if (!LI.hasAtLeastOneValue()) |
| 1766 | continue; |
| 1767 | |
| 1768 | for (LiveInterval::SubRange &S : LI.subranges()) |
| 1769 | repairOldRegInRange(Begin, End, EndIdx, LR&: S, Reg, LaneMask: S.LaneMask); |
| 1770 | LI.removeEmptySubRanges(); |
| 1771 | |
| 1772 | repairOldRegInRange(Begin, End, EndIdx, LR&: LI, Reg); |
| 1773 | } |
| 1774 | } |
| 1775 | |
| 1776 | void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) { |
| 1777 | for (MCRegUnit Unit : TRI->regunits(Reg)) { |
| 1778 | if (LiveRange *LR = getCachedRegUnit(Unit)) |
| 1779 | if (VNInfo *VNI = LR->getVNInfoAt(Idx: Pos)) |
| 1780 | LR->removeValNo(ValNo: VNI); |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { |
| 1785 | // LI may not have the main range computed yet, but its subranges may |
| 1786 | // be present. |
| 1787 | VNInfo *VNI = LI.getVNInfoAt(Idx: Pos); |
| 1788 | if (VNI != nullptr) { |
| 1789 | assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); |
| 1790 | LI.removeValNo(ValNo: VNI); |
| 1791 | } |
| 1792 | |
| 1793 | // Also remove the value defined in subranges. |
| 1794 | for (LiveInterval::SubRange &S : LI.subranges()) { |
| 1795 | if (VNInfo *SVNI = S.getVNInfoAt(Idx: Pos)) |
| 1796 | if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) |
| 1797 | S.removeValNo(ValNo: SVNI); |
| 1798 | } |
| 1799 | LI.removeEmptySubRanges(); |
| 1800 | } |
| 1801 | |
| 1802 | void LiveIntervals::splitSeparateComponents(LiveInterval &LI, |
| 1803 | SmallVectorImpl<LiveInterval*> &SplitLIs) { |
| 1804 | ConnectedVNInfoEqClasses ConEQ(*this); |
| 1805 | unsigned NumComp = ConEQ.Classify(LR: LI); |
| 1806 | if (NumComp <= 1) |
| 1807 | return; |
| 1808 | LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); |
| 1809 | Register Reg = LI.reg(); |
| 1810 | for (unsigned I = 1; I < NumComp; ++I) { |
| 1811 | Register NewVReg = MRI->cloneVirtualRegister(VReg: Reg); |
| 1812 | LiveInterval &NewLI = createEmptyInterval(Reg: NewVReg); |
| 1813 | SplitLIs.push_back(Elt: &NewLI); |
| 1814 | } |
| 1815 | ConEQ.Distribute(LI, LIV: SplitLIs.data(), MRI&: *MRI); |
| 1816 | } |
| 1817 | |
| 1818 | void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { |
| 1819 | assert(LICalc && "LICalc not initialized." ); |
| 1820 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
| 1821 | LICalc->constructMainRangeFromSubranges(LI); |
| 1822 | } |
| 1823 | |