1 | //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file This file implements the LiveInterval analysis pass which is used |
10 | /// by the Linear Scan Register allocator. This pass linearizes the |
11 | /// basic blocks of the function in DFS order and computes live intervals for |
12 | /// each virtual and physical register. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "llvm/CodeGen/LiveIntervals.h" |
17 | #include "llvm/ADT/ArrayRef.h" |
18 | #include "llvm/ADT/DepthFirstIterator.h" |
19 | #include "llvm/ADT/SmallPtrSet.h" |
20 | #include "llvm/ADT/SmallVector.h" |
21 | #include "llvm/ADT/iterator_range.h" |
22 | #include "llvm/CodeGen/LiveInterval.h" |
23 | #include "llvm/CodeGen/LiveIntervalCalc.h" |
24 | #include "llvm/CodeGen/LiveVariables.h" |
25 | #include "llvm/CodeGen/MachineBasicBlock.h" |
26 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
27 | #include "llvm/CodeGen/MachineDominators.h" |
28 | #include "llvm/CodeGen/MachineFunction.h" |
29 | #include "llvm/CodeGen/MachineInstr.h" |
30 | #include "llvm/CodeGen/MachineInstrBundle.h" |
31 | #include "llvm/CodeGen/MachineOperand.h" |
32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
33 | #include "llvm/CodeGen/MachineSizeOpts.h" |
34 | #include "llvm/CodeGen/Passes.h" |
35 | #include "llvm/CodeGen/SlotIndexes.h" |
36 | #include "llvm/CodeGen/StackMaps.h" |
37 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
38 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
39 | #include "llvm/CodeGen/VirtRegMap.h" |
40 | #include "llvm/Config/llvm-config.h" |
41 | #include "llvm/IR/ProfileSummary.h" |
42 | #include "llvm/IR/Statepoint.h" |
43 | #include "llvm/MC/LaneBitmask.h" |
44 | #include "llvm/MC/MCRegisterInfo.h" |
45 | #include "llvm/Pass.h" |
46 | #include "llvm/Support/CommandLine.h" |
47 | #include "llvm/Support/Compiler.h" |
48 | #include "llvm/Support/Debug.h" |
49 | #include "llvm/Support/MathExtras.h" |
50 | #include "llvm/Support/raw_ostream.h" |
51 | #include <algorithm> |
52 | #include <cassert> |
53 | #include <cstdint> |
54 | #include <iterator> |
55 | #include <tuple> |
56 | #include <utility> |
57 | |
58 | using namespace llvm; |
59 | |
60 | #define DEBUG_TYPE "regalloc" |
61 | |
62 | AnalysisKey LiveIntervalsAnalysis::Key; |
63 | |
64 | LiveIntervalsAnalysis::Result |
65 | LiveIntervalsAnalysis::run(MachineFunction &MF, |
66 | MachineFunctionAnalysisManager &MFAM) { |
67 | return Result(MF, MFAM.getResult<SlotIndexesAnalysis>(IR&: MF), |
68 | MFAM.getResult<MachineDominatorTreeAnalysis>(IR&: MF)); |
69 | } |
70 | |
71 | PreservedAnalyses |
72 | LiveIntervalsPrinterPass::run(MachineFunction &MF, |
73 | MachineFunctionAnalysisManager &MFAM) { |
74 | OS << "Live intervals for machine function: " << MF.getName() << ":\n" ; |
75 | MFAM.getResult<LiveIntervalsAnalysis>(IR&: MF).print(O&: OS); |
76 | return PreservedAnalyses::all(); |
77 | } |
78 | |
79 | char LiveIntervalsWrapperPass::ID = 0; |
80 | char &llvm::LiveIntervalsID = LiveIntervalsWrapperPass::ID; |
81 | INITIALIZE_PASS_BEGIN(LiveIntervalsWrapperPass, "liveintervals" , |
82 | "Live Interval Analysis" , false, false) |
83 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
84 | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) |
85 | INITIALIZE_PASS_END(LiveIntervalsWrapperPass, "liveintervals" , |
86 | "Live Interval Analysis" , false, true) |
87 | |
88 | bool LiveIntervalsWrapperPass::runOnMachineFunction(MachineFunction &MF) { |
89 | LIS.Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); |
90 | LIS.DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
91 | LIS.analyze(MF); |
92 | LLVM_DEBUG(dump()); |
93 | return false; |
94 | } |
95 | |
96 | #ifndef NDEBUG |
97 | static cl::opt<bool> EnablePrecomputePhysRegs( |
98 | "precompute-phys-liveness" , cl::Hidden, |
99 | cl::desc("Eagerly compute live intervals for all physreg units." )); |
100 | #else |
101 | static bool EnablePrecomputePhysRegs = false; |
102 | #endif // NDEBUG |
103 | |
104 | namespace llvm { |
105 | |
106 | cl::opt<bool> UseSegmentSetForPhysRegs( |
107 | "use-segment-set-for-physregs" , cl::Hidden, cl::init(Val: true), |
108 | cl::desc( |
109 | "Use segment set for the computation of the live ranges of physregs." )); |
110 | |
111 | } // end namespace llvm |
112 | |
113 | void LiveIntervalsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
114 | AU.setPreservesCFG(); |
115 | AU.addPreserved<LiveVariablesWrapperPass>(); |
116 | AU.addPreservedID(ID&: MachineLoopInfoID); |
117 | AU.addRequiredTransitiveID(ID&: MachineDominatorsID); |
118 | AU.addPreservedID(ID&: MachineDominatorsID); |
119 | AU.addPreserved<SlotIndexesWrapperPass>(); |
120 | AU.addRequiredTransitive<SlotIndexesWrapperPass>(); |
121 | MachineFunctionPass::getAnalysisUsage(AU); |
122 | } |
123 | |
124 | LiveIntervalsWrapperPass::LiveIntervalsWrapperPass() : MachineFunctionPass(ID) { |
125 | initializeLiveIntervalsWrapperPassPass(Registry&: *PassRegistry::getPassRegistry()); |
126 | } |
127 | |
128 | LiveIntervals::~LiveIntervals() { clear(); } |
129 | |
130 | bool LiveIntervals::invalidate( |
131 | MachineFunction &MF, const PreservedAnalyses &PA, |
132 | MachineFunctionAnalysisManager::Invalidator &Inv) { |
133 | auto PAC = PA.getChecker<LiveIntervalsAnalysis>(); |
134 | |
135 | if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<MachineFunction>>()) |
136 | return true; |
137 | |
138 | // LiveIntervals holds pointers to these results, so check for their |
139 | // invalidation. |
140 | return Inv.invalidate<SlotIndexesAnalysis>(IR&: MF, PA) || |
141 | Inv.invalidate<MachineDominatorTreeAnalysis>(IR&: MF, PA); |
142 | } |
143 | |
144 | void LiveIntervals::clear() { |
145 | // Free the live intervals themselves. |
146 | for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) |
147 | delete VirtRegIntervals[Register::index2VirtReg(Index: i)]; |
148 | VirtRegIntervals.clear(); |
149 | RegMaskSlots.clear(); |
150 | RegMaskBits.clear(); |
151 | RegMaskBlocks.clear(); |
152 | |
153 | for (LiveRange *LR : RegUnitRanges) |
154 | delete LR; |
155 | RegUnitRanges.clear(); |
156 | |
157 | // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. |
158 | VNInfoAllocator.Reset(); |
159 | } |
160 | |
161 | void LiveIntervals::analyze(MachineFunction &fn) { |
162 | MF = &fn; |
163 | MRI = &MF->getRegInfo(); |
164 | TRI = MF->getSubtarget().getRegisterInfo(); |
165 | TII = MF->getSubtarget().getInstrInfo(); |
166 | |
167 | if (!LICalc) |
168 | LICalc = std::make_unique<LiveIntervalCalc>(); |
169 | |
170 | // Allocate space for all virtual registers. |
171 | VirtRegIntervals.resize(s: MRI->getNumVirtRegs()); |
172 | |
173 | computeVirtRegs(); |
174 | computeRegMasks(); |
175 | computeLiveInRegUnits(); |
176 | |
177 | if (EnablePrecomputePhysRegs) { |
178 | // For stress testing, precompute live ranges of all physical register |
179 | // units, including reserved registers. |
180 | for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) |
181 | getRegUnit(Unit: i); |
182 | } |
183 | } |
184 | |
185 | void LiveIntervals::print(raw_ostream &OS) const { |
186 | OS << "********** INTERVALS **********\n" ; |
187 | |
188 | // Dump the regunits. |
189 | for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) |
190 | if (LiveRange *LR = RegUnitRanges[Unit]) |
191 | OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; |
192 | |
193 | // Dump the virtregs. |
194 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
195 | Register Reg = Register::index2VirtReg(Index: i); |
196 | if (hasInterval(Reg)) |
197 | OS << getInterval(Reg) << '\n'; |
198 | } |
199 | |
200 | OS << "RegMasks:" ; |
201 | for (SlotIndex Idx : RegMaskSlots) |
202 | OS << ' ' << Idx; |
203 | OS << '\n'; |
204 | |
205 | printInstrs(O&: OS); |
206 | } |
207 | |
208 | void LiveIntervals::printInstrs(raw_ostream &OS) const { |
209 | OS << "********** MACHINEINSTRS **********\n" ; |
210 | MF->print(OS, Indexes); |
211 | } |
212 | |
213 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
214 | LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { |
215 | printInstrs(dbgs()); |
216 | } |
217 | #endif |
218 | |
219 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
220 | LLVM_DUMP_METHOD void LiveIntervals::dump() const { print(dbgs()); } |
221 | #endif |
222 | |
223 | LiveInterval *LiveIntervals::createInterval(Register reg) { |
224 | float Weight = reg.isPhysical() ? huge_valf : 0.0F; |
225 | return new LiveInterval(reg, Weight); |
226 | } |
227 | |
228 | /// Compute the live interval of a virtual register, based on defs and uses. |
229 | bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { |
230 | assert(LICalc && "LICalc not initialized." ); |
231 | assert(LI.empty() && "Should only compute empty intervals." ); |
232 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
233 | LICalc->calculate(LI, TrackSubRegs: MRI->shouldTrackSubRegLiveness(VReg: LI.reg())); |
234 | return computeDeadValues(LI, dead: nullptr); |
235 | } |
236 | |
237 | void LiveIntervals::computeVirtRegs() { |
238 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
239 | Register Reg = Register::index2VirtReg(Index: i); |
240 | if (MRI->reg_nodbg_empty(RegNo: Reg)) |
241 | continue; |
242 | LiveInterval &LI = createEmptyInterval(Reg); |
243 | bool NeedSplit = computeVirtRegInterval(LI); |
244 | if (NeedSplit) { |
245 | SmallVector<LiveInterval*, 8> SplitLIs; |
246 | splitSeparateComponents(LI, SplitLIs); |
247 | } |
248 | } |
249 | } |
250 | |
251 | void LiveIntervals::computeRegMasks() { |
252 | RegMaskBlocks.resize(N: MF->getNumBlockIDs()); |
253 | |
254 | // Find all instructions with regmask operands. |
255 | for (const MachineBasicBlock &MBB : *MF) { |
256 | std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; |
257 | RMB.first = RegMaskSlots.size(); |
258 | |
259 | // Some block starts, such as EH funclets, create masks. |
260 | if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { |
261 | RegMaskSlots.push_back(Elt: Indexes->getMBBStartIdx(mbb: &MBB)); |
262 | RegMaskBits.push_back(Elt: Mask); |
263 | } |
264 | |
265 | // Unwinders may clobber additional registers. |
266 | // FIXME: This functionality can possibly be merged into |
267 | // MachineBasicBlock::getBeginClobberMask(). |
268 | if (MBB.isEHPad()) |
269 | if (auto *Mask = TRI->getCustomEHPadPreservedMask(MF: *MBB.getParent())) { |
270 | RegMaskSlots.push_back(Elt: Indexes->getMBBStartIdx(mbb: &MBB)); |
271 | RegMaskBits.push_back(Elt: Mask); |
272 | } |
273 | |
274 | for (const MachineInstr &MI : MBB) { |
275 | for (const MachineOperand &MO : MI.operands()) { |
276 | if (!MO.isRegMask()) |
277 | continue; |
278 | RegMaskSlots.push_back(Elt: Indexes->getInstructionIndex(MI).getRegSlot()); |
279 | RegMaskBits.push_back(Elt: MO.getRegMask()); |
280 | } |
281 | } |
282 | |
283 | // Some block ends, such as funclet returns, create masks. Put the mask on |
284 | // the last instruction of the block, because MBB slot index intervals are |
285 | // half-open. |
286 | if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { |
287 | assert(!MBB.empty() && "empty return block?" ); |
288 | RegMaskSlots.push_back( |
289 | Elt: Indexes->getInstructionIndex(MI: MBB.back()).getRegSlot()); |
290 | RegMaskBits.push_back(Elt: Mask); |
291 | } |
292 | |
293 | // Compute the number of register mask instructions in this block. |
294 | RMB.second = RegMaskSlots.size() - RMB.first; |
295 | } |
296 | } |
297 | |
298 | //===----------------------------------------------------------------------===// |
299 | // Register Unit Liveness |
300 | //===----------------------------------------------------------------------===// |
301 | // |
302 | // Fixed interference typically comes from ABI boundaries: Function arguments |
303 | // and return values are passed in fixed registers, and so are exception |
304 | // pointers entering landing pads. Certain instructions require values to be |
305 | // present in specific registers. That is also represented through fixed |
306 | // interference. |
307 | // |
308 | |
309 | /// Compute the live range of a register unit, based on the uses and defs of |
310 | /// aliasing registers. The range should be empty, or contain only dead |
311 | /// phi-defs from ABI blocks. |
312 | void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { |
313 | assert(LICalc && "LICalc not initialized." ); |
314 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
315 | |
316 | // The physregs aliasing Unit are the roots and their super-registers. |
317 | // Create all values as dead defs before extending to uses. Note that roots |
318 | // may share super-registers. That's OK because createDeadDefs() is |
319 | // idempotent. It is very rare for a register unit to have multiple roots, so |
320 | // uniquing super-registers is probably not worthwhile. |
321 | bool IsReserved = false; |
322 | for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { |
323 | bool IsRootReserved = true; |
324 | for (MCPhysReg Reg : TRI->superregs_inclusive(Reg: *Root)) { |
325 | if (!MRI->reg_empty(RegNo: Reg)) |
326 | LICalc->createDeadDefs(LR, Reg); |
327 | // A register unit is considered reserved if all its roots and all their |
328 | // super registers are reserved. |
329 | if (!MRI->isReserved(PhysReg: Reg)) |
330 | IsRootReserved = false; |
331 | } |
332 | IsReserved |= IsRootReserved; |
333 | } |
334 | assert(IsReserved == MRI->isReservedRegUnit(Unit) && |
335 | "reserved computation mismatch" ); |
336 | |
337 | // Now extend LR to reach all uses. |
338 | // Ignore uses of reserved registers. We only track defs of those. |
339 | if (!IsReserved) { |
340 | for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { |
341 | for (MCPhysReg Reg : TRI->superregs_inclusive(Reg: *Root)) { |
342 | if (!MRI->reg_empty(RegNo: Reg)) |
343 | LICalc->extendToUses(LR, PhysReg: Reg); |
344 | } |
345 | } |
346 | } |
347 | |
348 | // Flush the segment set to the segment vector. |
349 | if (UseSegmentSetForPhysRegs) |
350 | LR.flushSegmentSet(); |
351 | } |
352 | |
353 | /// Precompute the live ranges of any register units that are live-in to an ABI |
354 | /// block somewhere. Register values can appear without a corresponding def when |
355 | /// entering the entry block or a landing pad. |
356 | void LiveIntervals::computeLiveInRegUnits() { |
357 | RegUnitRanges.resize(N: TRI->getNumRegUnits()); |
358 | LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n" ); |
359 | |
360 | // Keep track of the live range sets allocated. |
361 | SmallVector<unsigned, 8> NewRanges; |
362 | |
363 | // Check all basic blocks for live-ins. |
364 | for (const MachineBasicBlock &MBB : *MF) { |
365 | // We only care about ABI blocks: Entry + landing pads. |
366 | if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) |
367 | continue; |
368 | |
369 | // Create phi-defs at Begin for all live-in registers. |
370 | SlotIndex Begin = Indexes->getMBBStartIdx(mbb: &MBB); |
371 | LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); |
372 | for (const auto &LI : MBB.liveins()) { |
373 | for (MCRegUnit Unit : TRI->regunits(Reg: LI.PhysReg)) { |
374 | LiveRange *LR = RegUnitRanges[Unit]; |
375 | if (!LR) { |
376 | // Use segment set to speed-up initial computation of the live range. |
377 | LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); |
378 | NewRanges.push_back(Elt: Unit); |
379 | } |
380 | VNInfo *VNI = LR->createDeadDef(Def: Begin, VNIAlloc&: getVNInfoAllocator()); |
381 | (void)VNI; |
382 | LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); |
383 | } |
384 | } |
385 | LLVM_DEBUG(dbgs() << '\n'); |
386 | } |
387 | LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n" ); |
388 | |
389 | // Compute the 'normal' part of the ranges. |
390 | for (unsigned Unit : NewRanges) |
391 | computeRegUnitRange(LR&: *RegUnitRanges[Unit], Unit); |
392 | } |
393 | |
394 | static void createSegmentsForValues(LiveRange &LR, |
395 | iterator_range<LiveInterval::vni_iterator> VNIs) { |
396 | for (VNInfo *VNI : VNIs) { |
397 | if (VNI->isUnused()) |
398 | continue; |
399 | SlotIndex Def = VNI->def; |
400 | LR.addSegment(S: LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); |
401 | } |
402 | } |
403 | |
404 | void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, |
405 | ShrinkToUsesWorkList &WorkList, |
406 | Register Reg, LaneBitmask LaneMask) { |
407 | // Keep track of the PHIs that are in use. |
408 | SmallPtrSet<VNInfo*, 8> UsedPHIs; |
409 | // Blocks that have already been added to WorkList as live-out. |
410 | SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; |
411 | |
412 | auto getSubRange = [](const LiveInterval &I, LaneBitmask M) |
413 | -> const LiveRange& { |
414 | if (M.none()) |
415 | return I; |
416 | for (const LiveInterval::SubRange &SR : I.subranges()) { |
417 | if ((SR.LaneMask & M).any()) { |
418 | assert(SR.LaneMask == M && "Expecting lane masks to match exactly" ); |
419 | return SR; |
420 | } |
421 | } |
422 | llvm_unreachable("Subrange for mask not found" ); |
423 | }; |
424 | |
425 | const LiveInterval &LI = getInterval(Reg); |
426 | const LiveRange &OldRange = getSubRange(LI, LaneMask); |
427 | |
428 | // Extend intervals to reach all uses in WorkList. |
429 | while (!WorkList.empty()) { |
430 | SlotIndex Idx = WorkList.back().first; |
431 | VNInfo *VNI = WorkList.back().second; |
432 | WorkList.pop_back(); |
433 | const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: Idx.getPrevSlot()); |
434 | SlotIndex BlockStart = Indexes->getMBBStartIdx(mbb: MBB); |
435 | |
436 | // Extend the live range for VNI to be live at Idx. |
437 | if (VNInfo *ExtVNI = Segments.extendInBlock(StartIdx: BlockStart, Kill: Idx)) { |
438 | assert(ExtVNI == VNI && "Unexpected existing value number" ); |
439 | (void)ExtVNI; |
440 | // Is this a PHIDef we haven't seen before? |
441 | if (!VNI->isPHIDef() || VNI->def != BlockStart || |
442 | !UsedPHIs.insert(Ptr: VNI).second) |
443 | continue; |
444 | // The PHI is live, make sure the predecessors are live-out. |
445 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
446 | if (!LiveOut.insert(Ptr: Pred).second) |
447 | continue; |
448 | SlotIndex Stop = Indexes->getMBBEndIdx(mbb: Pred); |
449 | // A predecessor is not required to have a live-out value for a PHI. |
450 | if (VNInfo *PVNI = OldRange.getVNInfoBefore(Idx: Stop)) |
451 | WorkList.push_back(Elt: std::make_pair(x&: Stop, y&: PVNI)); |
452 | } |
453 | continue; |
454 | } |
455 | |
456 | // VNI is live-in to MBB. |
457 | LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); |
458 | Segments.addSegment(S: LiveRange::Segment(BlockStart, Idx, VNI)); |
459 | |
460 | // Make sure VNI is live-out from the predecessors. |
461 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
462 | if (!LiveOut.insert(Ptr: Pred).second) |
463 | continue; |
464 | SlotIndex Stop = Indexes->getMBBEndIdx(mbb: Pred); |
465 | if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Idx: Stop)) { |
466 | assert(OldVNI == VNI && "Wrong value out of predecessor" ); |
467 | (void)OldVNI; |
468 | WorkList.push_back(Elt: std::make_pair(x&: Stop, y&: VNI)); |
469 | } else { |
470 | #ifndef NDEBUG |
471 | // There was no old VNI. Verify that Stop is jointly dominated |
472 | // by <undef>s for this live range. |
473 | assert(LaneMask.any() && |
474 | "Missing value out of predecessor for main range" ); |
475 | SmallVector<SlotIndex,8> Undefs; |
476 | LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); |
477 | assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && |
478 | "Missing value out of predecessor for subrange" ); |
479 | #endif |
480 | } |
481 | } |
482 | } |
483 | } |
484 | |
485 | bool LiveIntervals::shrinkToUses(LiveInterval *li, |
486 | SmallVectorImpl<MachineInstr*> *dead) { |
487 | LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); |
488 | assert(li->reg().isVirtual() && "Can only shrink virtual registers" ); |
489 | |
490 | // Shrink subregister live ranges. |
491 | bool NeedsCleanup = false; |
492 | for (LiveInterval::SubRange &S : li->subranges()) { |
493 | shrinkToUses(SR&: S, Reg: li->reg()); |
494 | if (S.empty()) |
495 | NeedsCleanup = true; |
496 | } |
497 | if (NeedsCleanup) |
498 | li->removeEmptySubRanges(); |
499 | |
500 | // Find all the values used, including PHI kills. |
501 | ShrinkToUsesWorkList WorkList; |
502 | |
503 | // Visit all instructions reading li->reg(). |
504 | Register Reg = li->reg(); |
505 | for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { |
506 | if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg)) |
507 | continue; |
508 | SlotIndex Idx = getInstructionIndex(Instr: UseMI).getRegSlot(); |
509 | LiveQueryResult LRQ = li->Query(Idx); |
510 | VNInfo *VNI = LRQ.valueIn(); |
511 | if (!VNI) { |
512 | // This shouldn't happen: readsVirtualRegister returns true, but there is |
513 | // no live value. It is likely caused by a target getting <undef> flags |
514 | // wrong. |
515 | LLVM_DEBUG( |
516 | dbgs() << Idx << '\t' << UseMI |
517 | << "Warning: Instr claims to read non-existent value in " |
518 | << *li << '\n'); |
519 | continue; |
520 | } |
521 | // Special case: An early-clobber tied operand reads and writes the |
522 | // register one slot early. |
523 | if (VNInfo *DefVNI = LRQ.valueDefined()) |
524 | Idx = DefVNI->def; |
525 | |
526 | WorkList.push_back(Elt: std::make_pair(x&: Idx, y&: VNI)); |
527 | } |
528 | |
529 | // Create new live ranges with only minimal live segments per def. |
530 | LiveRange NewLR; |
531 | createSegmentsForValues(LR&: NewLR, VNIs: li->vnis()); |
532 | extendSegmentsToUses(Segments&: NewLR, WorkList, Reg, LaneMask: LaneBitmask::getNone()); |
533 | |
534 | // Move the trimmed segments back. |
535 | li->segments.swap(RHS&: NewLR.segments); |
536 | |
537 | // Handle dead values. |
538 | bool CanSeparate = computeDeadValues(LI&: *li, dead); |
539 | LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); |
540 | return CanSeparate; |
541 | } |
542 | |
543 | bool LiveIntervals::computeDeadValues(LiveInterval &LI, |
544 | SmallVectorImpl<MachineInstr*> *dead) { |
545 | bool MayHaveSplitComponents = false; |
546 | |
547 | for (VNInfo *VNI : LI.valnos) { |
548 | if (VNI->isUnused()) |
549 | continue; |
550 | SlotIndex Def = VNI->def; |
551 | LiveRange::iterator I = LI.FindSegmentContaining(Idx: Def); |
552 | assert(I != LI.end() && "Missing segment for VNI" ); |
553 | |
554 | // Is the register live before? Otherwise we may have to add a read-undef |
555 | // flag for subregister defs. |
556 | Register VReg = LI.reg(); |
557 | if (MRI->shouldTrackSubRegLiveness(VReg)) { |
558 | if ((I == LI.begin() || std::prev(x: I)->end < Def) && !VNI->isPHIDef()) { |
559 | MachineInstr *MI = getInstructionFromIndex(index: Def); |
560 | MI->setRegisterDefReadUndef(Reg: VReg); |
561 | } |
562 | } |
563 | |
564 | if (I->end != Def.getDeadSlot()) |
565 | continue; |
566 | if (VNI->isPHIDef()) { |
567 | // This is a dead PHI. Remove it. |
568 | VNI->markUnused(); |
569 | LI.removeSegment(I); |
570 | LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n" ); |
571 | } else { |
572 | // This is a dead def. Make sure the instruction knows. |
573 | MachineInstr *MI = getInstructionFromIndex(index: Def); |
574 | assert(MI && "No instruction defining live value" ); |
575 | MI->addRegisterDead(Reg: LI.reg(), RegInfo: TRI); |
576 | |
577 | if (dead && MI->allDefsAreDead()) { |
578 | LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); |
579 | dead->push_back(Elt: MI); |
580 | } |
581 | } |
582 | MayHaveSplitComponents = true; |
583 | } |
584 | return MayHaveSplitComponents; |
585 | } |
586 | |
587 | void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) { |
588 | LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); |
589 | assert(Reg.isVirtual() && "Can only shrink virtual registers" ); |
590 | // Find all the values used, including PHI kills. |
591 | ShrinkToUsesWorkList WorkList; |
592 | |
593 | // Visit all instructions reading Reg. |
594 | SlotIndex LastIdx; |
595 | for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { |
596 | // Skip "undef" uses. |
597 | if (!MO.readsReg()) |
598 | continue; |
599 | // Maybe the operand is for a subregister we don't care about. |
600 | unsigned SubReg = MO.getSubReg(); |
601 | if (SubReg != 0) { |
602 | LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
603 | if ((LaneMask & SR.LaneMask).none()) |
604 | continue; |
605 | } |
606 | // We only need to visit each instruction once. |
607 | MachineInstr *UseMI = MO.getParent(); |
608 | SlotIndex Idx = getInstructionIndex(Instr: *UseMI).getRegSlot(); |
609 | if (Idx == LastIdx) |
610 | continue; |
611 | LastIdx = Idx; |
612 | |
613 | LiveQueryResult LRQ = SR.Query(Idx); |
614 | VNInfo *VNI = LRQ.valueIn(); |
615 | // For Subranges it is possible that only undef values are left in that |
616 | // part of the subregister, so there is no real liverange at the use |
617 | if (!VNI) |
618 | continue; |
619 | |
620 | // Special case: An early-clobber tied operand reads and writes the |
621 | // register one slot early. |
622 | if (VNInfo *DefVNI = LRQ.valueDefined()) |
623 | Idx = DefVNI->def; |
624 | |
625 | WorkList.push_back(Elt: std::make_pair(x&: Idx, y&: VNI)); |
626 | } |
627 | |
628 | // Create a new live ranges with only minimal live segments per def. |
629 | LiveRange NewLR; |
630 | createSegmentsForValues(LR&: NewLR, VNIs: SR.vnis()); |
631 | extendSegmentsToUses(Segments&: NewLR, WorkList, Reg, LaneMask: SR.LaneMask); |
632 | |
633 | // Move the trimmed ranges back. |
634 | SR.segments.swap(RHS&: NewLR.segments); |
635 | |
636 | // Remove dead PHI value numbers |
637 | for (VNInfo *VNI : SR.valnos) { |
638 | if (VNI->isUnused()) |
639 | continue; |
640 | const LiveRange::Segment *Segment = SR.getSegmentContaining(Idx: VNI->def); |
641 | assert(Segment != nullptr && "Missing segment for VNI" ); |
642 | if (Segment->end != VNI->def.getDeadSlot()) |
643 | continue; |
644 | if (VNI->isPHIDef()) { |
645 | // This is a dead PHI. Remove it. |
646 | LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def |
647 | << " may separate interval\n" ); |
648 | VNI->markUnused(); |
649 | SR.removeSegment(S: *Segment); |
650 | } |
651 | } |
652 | |
653 | LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); |
654 | } |
655 | |
656 | void LiveIntervals::extendToIndices(LiveRange &LR, |
657 | ArrayRef<SlotIndex> Indices, |
658 | ArrayRef<SlotIndex> Undefs) { |
659 | assert(LICalc && "LICalc not initialized." ); |
660 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
661 | for (SlotIndex Idx : Indices) |
662 | LICalc->extend(LR, Use: Idx, /*PhysReg=*/0, Undefs); |
663 | } |
664 | |
665 | void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, |
666 | SmallVectorImpl<SlotIndex> *EndPoints) { |
667 | LiveQueryResult LRQ = LR.Query(Idx: Kill); |
668 | VNInfo *VNI = LRQ.valueOutOrDead(); |
669 | if (!VNI) |
670 | return; |
671 | |
672 | MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(index: Kill); |
673 | SlotIndex MBBEnd = Indexes->getMBBEndIdx(mbb: KillMBB); |
674 | |
675 | // If VNI isn't live out from KillMBB, the value is trivially pruned. |
676 | if (LRQ.endPoint() < MBBEnd) { |
677 | LR.removeSegment(Start: Kill, End: LRQ.endPoint()); |
678 | if (EndPoints) EndPoints->push_back(Elt: LRQ.endPoint()); |
679 | return; |
680 | } |
681 | |
682 | // VNI is live out of KillMBB. |
683 | LR.removeSegment(Start: Kill, End: MBBEnd); |
684 | if (EndPoints) EndPoints->push_back(Elt: MBBEnd); |
685 | |
686 | // Find all blocks that are reachable from KillMBB without leaving VNI's live |
687 | // range. It is possible that KillMBB itself is reachable, so start a DFS |
688 | // from each successor. |
689 | using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; |
690 | VisitedTy Visited; |
691 | for (MachineBasicBlock *Succ : KillMBB->successors()) { |
692 | for (df_ext_iterator<MachineBasicBlock*, VisitedTy> |
693 | I = df_ext_begin(G: Succ, S&: Visited), E = df_ext_end(G: Succ, S&: Visited); |
694 | I != E;) { |
695 | MachineBasicBlock *MBB = *I; |
696 | |
697 | // Check if VNI is live in to MBB. |
698 | SlotIndex MBBStart, MBBEnd; |
699 | std::tie(args&: MBBStart, args&: MBBEnd) = Indexes->getMBBRange(MBB); |
700 | LiveQueryResult LRQ = LR.Query(Idx: MBBStart); |
701 | if (LRQ.valueIn() != VNI) { |
702 | // This block isn't part of the VNI segment. Prune the search. |
703 | I.skipChildren(); |
704 | continue; |
705 | } |
706 | |
707 | // Prune the search if VNI is killed in MBB. |
708 | if (LRQ.endPoint() < MBBEnd) { |
709 | LR.removeSegment(Start: MBBStart, End: LRQ.endPoint()); |
710 | if (EndPoints) EndPoints->push_back(Elt: LRQ.endPoint()); |
711 | I.skipChildren(); |
712 | continue; |
713 | } |
714 | |
715 | // VNI is live through MBB. |
716 | LR.removeSegment(Start: MBBStart, End: MBBEnd); |
717 | if (EndPoints) EndPoints->push_back(Elt: MBBEnd); |
718 | ++I; |
719 | } |
720 | } |
721 | } |
722 | |
723 | //===----------------------------------------------------------------------===// |
724 | // Register allocator hooks. |
725 | // |
726 | |
727 | void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { |
728 | // Keep track of regunit ranges. |
729 | SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; |
730 | |
731 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
732 | Register Reg = Register::index2VirtReg(Index: i); |
733 | if (MRI->reg_nodbg_empty(RegNo: Reg)) |
734 | continue; |
735 | const LiveInterval &LI = getInterval(Reg); |
736 | if (LI.empty()) |
737 | continue; |
738 | |
739 | // Target may have not allocated this yet. |
740 | Register PhysReg = VRM->getPhys(virtReg: Reg); |
741 | if (!PhysReg) |
742 | continue; |
743 | |
744 | // Find the regunit intervals for the assigned register. They may overlap |
745 | // the virtual register live range, cancelling any kills. |
746 | RU.clear(); |
747 | LaneBitmask ArtificialLanes; |
748 | for (MCRegUnitMaskIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { |
749 | auto [Unit, Bitmask] = *UI; |
750 | // Record lane mask for all artificial RegUnits for this physreg. |
751 | if (TRI->isArtificialRegUnit(Unit)) |
752 | ArtificialLanes |= Bitmask; |
753 | const LiveRange &RURange = getRegUnit(Unit); |
754 | if (RURange.empty()) |
755 | continue; |
756 | RU.push_back(Elt: std::make_pair(x: &RURange, y: RURange.find(Pos: LI.begin()->end))); |
757 | } |
758 | // Every instruction that kills Reg corresponds to a segment range end |
759 | // point. |
760 | for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; |
761 | ++RI) { |
762 | // A block index indicates an MBB edge. |
763 | if (RI->end.isBlock()) |
764 | continue; |
765 | MachineInstr *MI = getInstructionFromIndex(index: RI->end); |
766 | if (!MI) |
767 | continue; |
768 | |
769 | // Check if any of the regunits are live beyond the end of RI. That could |
770 | // happen when a physreg is defined as a copy of a virtreg: |
771 | // |
772 | // %eax = COPY %5 |
773 | // FOO %5 <--- MI, cancel kill because %eax is live. |
774 | // BAR killed %eax |
775 | // |
776 | // There should be no kill flag on FOO when %5 is rewritten as %eax. |
777 | for (auto &RUP : RU) { |
778 | const LiveRange &RURange = *RUP.first; |
779 | LiveRange::const_iterator &I = RUP.second; |
780 | if (I == RURange.end()) |
781 | continue; |
782 | I = RURange.advanceTo(I, Pos: RI->end); |
783 | if (I == RURange.end() || I->start >= RI->end) |
784 | continue; |
785 | // I is overlapping RI. |
786 | goto CancelKill; |
787 | } |
788 | |
789 | if (MRI->subRegLivenessEnabled()) { |
790 | // When reading a partial undefined value we must not add a kill flag. |
791 | // The regalloc might have used the undef lane for something else. |
792 | // Example: |
793 | // %1 = ... ; R32: %1 |
794 | // %2:high16 = ... ; R64: %2 |
795 | // = read killed %2 ; R64: %2 |
796 | // = read %1 ; R32: %1 |
797 | // The <kill> flag is correct for %2, but the register allocator may |
798 | // assign R0L to %1, and R0 to %2 because the low 32bits of R0 |
799 | // are actually never written by %2. After assignment the <kill> |
800 | // flag at the read instruction is invalid. |
801 | LaneBitmask DefinedLanesMask; |
802 | if (LI.hasSubRanges()) { |
803 | // Compute a mask of lanes that are defined. |
804 | // Artificial regunits are not independently allocatable so the |
805 | // register allocator cannot have used them to represent any other |
806 | // values. That's why we mark them as 'defined' here, as this |
807 | // otherwise prevents kill flags from being added. |
808 | DefinedLanesMask = ArtificialLanes; |
809 | for (const LiveInterval::SubRange &SR : LI.subranges()) |
810 | for (const LiveRange::Segment &Segment : SR.segments) { |
811 | if (Segment.start >= RI->end) |
812 | break; |
813 | if (Segment.end == RI->end) { |
814 | DefinedLanesMask |= SR.LaneMask; |
815 | break; |
816 | } |
817 | } |
818 | } else |
819 | DefinedLanesMask = LaneBitmask::getAll(); |
820 | |
821 | bool IsFullWrite = false; |
822 | for (const MachineOperand &MO : MI->operands()) { |
823 | if (!MO.isReg() || MO.getReg() != Reg) |
824 | continue; |
825 | if (MO.isUse()) { |
826 | // Reading any undefined lanes? |
827 | unsigned SubReg = MO.getSubReg(); |
828 | LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubIdx: SubReg) |
829 | : MRI->getMaxLaneMaskForVReg(Reg); |
830 | if ((UseMask & ~DefinedLanesMask).any()) |
831 | goto CancelKill; |
832 | } else if (MO.getSubReg() == 0) { |
833 | // Writing to the full register? |
834 | assert(MO.isDef()); |
835 | IsFullWrite = true; |
836 | } |
837 | } |
838 | |
839 | // If an instruction writes to a subregister, a new segment starts in |
840 | // the LiveInterval. But as this is only overriding part of the register |
841 | // adding kill-flags is not correct here after registers have been |
842 | // assigned. |
843 | if (!IsFullWrite) { |
844 | // Next segment has to be adjacent in the subregister write case. |
845 | LiveRange::const_iterator N = std::next(x: RI); |
846 | if (N != LI.end() && N->start == RI->end) |
847 | goto CancelKill; |
848 | } |
849 | } |
850 | |
851 | MI->addRegisterKilled(IncomingReg: Reg, RegInfo: nullptr); |
852 | continue; |
853 | CancelKill: |
854 | MI->clearRegisterKills(Reg, RegInfo: nullptr); |
855 | } |
856 | } |
857 | } |
858 | |
859 | MachineBasicBlock* |
860 | LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { |
861 | assert(!LI.empty() && "LiveInterval is empty." ); |
862 | |
863 | // A local live range must be fully contained inside the block, meaning it is |
864 | // defined and killed at instructions, not at block boundaries. It is not |
865 | // live in or out of any block. |
866 | // |
867 | // It is technically possible to have a PHI-defined live range identical to a |
868 | // single block, but we are going to return false in that case. |
869 | |
870 | SlotIndex Start = LI.beginIndex(); |
871 | if (Start.isBlock()) |
872 | return nullptr; |
873 | |
874 | SlotIndex Stop = LI.endIndex(); |
875 | if (Stop.isBlock()) |
876 | return nullptr; |
877 | |
878 | // getMBBFromIndex doesn't need to search the MBB table when both indexes |
879 | // belong to proper instructions. |
880 | MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(index: Start); |
881 | MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(index: Stop); |
882 | return MBB1 == MBB2 ? MBB1 : nullptr; |
883 | } |
884 | |
885 | bool |
886 | LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { |
887 | for (const VNInfo *PHI : LI.valnos) { |
888 | if (PHI->isUnused() || !PHI->isPHIDef()) |
889 | continue; |
890 | const MachineBasicBlock *PHIMBB = getMBBFromIndex(index: PHI->def); |
891 | // Conservatively return true instead of scanning huge predecessor lists. |
892 | if (PHIMBB->pred_size() > 100) |
893 | return true; |
894 | for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) |
895 | if (VNI == LI.getVNInfoBefore(Idx: Indexes->getMBBEndIdx(mbb: Pred))) |
896 | return true; |
897 | } |
898 | return false; |
899 | } |
900 | |
901 | float LiveIntervals::getSpillWeight(bool isDef, bool isUse, |
902 | const MachineBlockFrequencyInfo *MBFI, |
903 | const MachineInstr &MI, |
904 | ProfileSummaryInfo *PSI) { |
905 | return getSpillWeight(isDef, isUse, MBFI, MBB: MI.getParent(), PSI); |
906 | } |
907 | |
908 | float LiveIntervals::getSpillWeight(bool isDef, bool isUse, |
909 | const MachineBlockFrequencyInfo *MBFI, |
910 | const MachineBasicBlock *MBB, |
911 | ProfileSummaryInfo *PSI) { |
912 | float Weight = isDef + isUse; |
913 | const auto *MF = MBB->getParent(); |
914 | // When optimizing for size we only consider the codesize impact of spilling |
915 | // the register, not the runtime impact. |
916 | if (PSI && llvm::shouldOptimizeForSize(MF, PSI, BFI: MBFI)) |
917 | return Weight; |
918 | return Weight * MBFI->getBlockFreqRelativeToEntryBlock(MBB); |
919 | } |
920 | |
921 | LiveRange::Segment |
922 | LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) { |
923 | LiveInterval &Interval = getOrCreateEmptyInterval(Reg); |
924 | VNInfo *VN = Interval.getNextValue( |
925 | Def: SlotIndex(getInstructionIndex(Instr: startInst).getRegSlot()), |
926 | VNInfoAllocator&: getVNInfoAllocator()); |
927 | LiveRange::Segment S(SlotIndex(getInstructionIndex(Instr: startInst).getRegSlot()), |
928 | getMBBEndIdx(mbb: startInst.getParent()), VN); |
929 | Interval.addSegment(S); |
930 | |
931 | return S; |
932 | } |
933 | |
934 | //===----------------------------------------------------------------------===// |
935 | // Register mask functions |
936 | //===----------------------------------------------------------------------===// |
937 | /// Check whether use of reg in MI is live-through. Live-through means that |
938 | /// the value is alive on exit from Machine instruction. The example of such |
939 | /// use is a deopt value in statepoint instruction. |
940 | static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) { |
941 | if (MI->getOpcode() != TargetOpcode::STATEPOINT) |
942 | return false; |
943 | StatepointOpers SO(MI); |
944 | if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn) |
945 | return false; |
946 | for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E; |
947 | ++Idx) { |
948 | const MachineOperand &MO = MI->getOperand(i: Idx); |
949 | if (MO.isReg() && MO.getReg() == Reg) |
950 | return true; |
951 | } |
952 | return false; |
953 | } |
954 | |
955 | bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI, |
956 | BitVector &UsableRegs) { |
957 | if (LI.empty()) |
958 | return false; |
959 | LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end(); |
960 | |
961 | // Use a smaller arrays for local live ranges. |
962 | ArrayRef<SlotIndex> Slots; |
963 | ArrayRef<const uint32_t*> Bits; |
964 | if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { |
965 | Slots = getRegMaskSlotsInBlock(MBBNum: MBB->getNumber()); |
966 | Bits = getRegMaskBitsInBlock(MBBNum: MBB->getNumber()); |
967 | } else { |
968 | Slots = getRegMaskSlots(); |
969 | Bits = getRegMaskBits(); |
970 | } |
971 | |
972 | // We are going to enumerate all the register mask slots contained in LI. |
973 | // Start with a binary search of RegMaskSlots to find a starting point. |
974 | ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Range&: Slots, Value: LiveI->start); |
975 | ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); |
976 | |
977 | // No slots in range, LI begins after the last call. |
978 | if (SlotI == SlotE) |
979 | return false; |
980 | |
981 | bool Found = false; |
982 | // Utility to union regmasks. |
983 | auto unionBitMask = [&](unsigned Idx) { |
984 | if (!Found) { |
985 | // This is the first overlap. Initialize UsableRegs to all ones. |
986 | UsableRegs.clear(); |
987 | UsableRegs.resize(N: TRI->getNumRegs(), t: true); |
988 | Found = true; |
989 | } |
990 | // Remove usable registers clobbered by this mask. |
991 | UsableRegs.clearBitsNotInMask(Mask: Bits[Idx]); |
992 | }; |
993 | while (true) { |
994 | assert(*SlotI >= LiveI->start); |
995 | // Loop over all slots overlapping this segment. |
996 | while (*SlotI < LiveI->end) { |
997 | // *SlotI overlaps LI. Collect mask bits. |
998 | unionBitMask(SlotI - Slots.begin()); |
999 | if (++SlotI == SlotE) |
1000 | return Found; |
1001 | } |
1002 | // If segment ends with live-through use we need to collect its regmask. |
1003 | if (*SlotI == LiveI->end) |
1004 | if (MachineInstr *MI = getInstructionFromIndex(index: *SlotI)) |
1005 | if (hasLiveThroughUse(MI, Reg: LI.reg())) |
1006 | unionBitMask(SlotI++ - Slots.begin()); |
1007 | // *SlotI is beyond the current LI segment. |
1008 | // Special advance implementation to not miss next LiveI->end. |
1009 | if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex()) |
1010 | return Found; |
1011 | while (LiveI->end < *SlotI) |
1012 | ++LiveI; |
1013 | // Advance SlotI until it overlaps. |
1014 | while (*SlotI < LiveI->start) |
1015 | if (++SlotI == SlotE) |
1016 | return Found; |
1017 | } |
1018 | } |
1019 | |
1020 | //===----------------------------------------------------------------------===// |
1021 | // IntervalUpdate class. |
1022 | //===----------------------------------------------------------------------===// |
1023 | |
1024 | /// Toolkit used by handleMove to trim or extend live intervals. |
1025 | class LiveIntervals::HMEditor { |
1026 | private: |
1027 | LiveIntervals& LIS; |
1028 | const MachineRegisterInfo& MRI; |
1029 | const TargetRegisterInfo& TRI; |
1030 | SlotIndex OldIdx; |
1031 | SlotIndex NewIdx; |
1032 | SmallPtrSet<LiveRange*, 8> Updated; |
1033 | bool UpdateFlags; |
1034 | |
1035 | public: |
1036 | HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, |
1037 | const TargetRegisterInfo& TRI, |
1038 | SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) |
1039 | : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), |
1040 | UpdateFlags(UpdateFlags) {} |
1041 | |
1042 | // FIXME: UpdateFlags is a workaround that creates live intervals for all |
1043 | // physregs, even those that aren't needed for regalloc, in order to update |
1044 | // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill |
1045 | // flags, and postRA passes will use a live register utility instead. |
1046 | LiveRange *getRegUnitLI(unsigned Unit) { |
1047 | if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) |
1048 | return &LIS.getRegUnit(Unit); |
1049 | return LIS.getCachedRegUnit(Unit); |
1050 | } |
1051 | |
1052 | /// Update all live ranges touched by MI, assuming a move from OldIdx to |
1053 | /// NewIdx. |
1054 | void updateAllRanges(MachineInstr *MI) { |
1055 | LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " |
1056 | << *MI); |
1057 | bool hasRegMask = false; |
1058 | for (MachineOperand &MO : MI->operands()) { |
1059 | if (MO.isRegMask()) |
1060 | hasRegMask = true; |
1061 | if (!MO.isReg()) |
1062 | continue; |
1063 | if (MO.isUse()) { |
1064 | if (!MO.readsReg()) |
1065 | continue; |
1066 | // Aggressively clear all kill flags. |
1067 | // They are reinserted by VirtRegRewriter. |
1068 | MO.setIsKill(false); |
1069 | } |
1070 | |
1071 | Register Reg = MO.getReg(); |
1072 | if (!Reg) |
1073 | continue; |
1074 | if (Reg.isVirtual()) { |
1075 | LiveInterval &LI = LIS.getInterval(Reg); |
1076 | if (LI.hasSubRanges()) { |
1077 | unsigned SubReg = MO.getSubReg(); |
1078 | LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubIdx: SubReg) |
1079 | : MRI.getMaxLaneMaskForVReg(Reg); |
1080 | for (LiveInterval::SubRange &S : LI.subranges()) { |
1081 | if ((S.LaneMask & LaneMask).none()) |
1082 | continue; |
1083 | updateRange(LR&: S, VRegOrUnit: VirtRegOrUnit(Reg), LaneMask: S.LaneMask); |
1084 | } |
1085 | } |
1086 | updateRange(LR&: LI, VRegOrUnit: VirtRegOrUnit(Reg), LaneMask: LaneBitmask::getNone()); |
1087 | // If main range has a hole and we are moving a subrange use across |
1088 | // the hole updateRange() cannot properly handle it since it only |
1089 | // gets the LiveRange and not the whole LiveInterval. As a result |
1090 | // we may end up with a main range not covering all subranges. |
1091 | // This is extremely rare case, so let's check and reconstruct the |
1092 | // main range. |
1093 | if (LI.hasSubRanges()) { |
1094 | unsigned SubReg = MO.getSubReg(); |
1095 | LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubIdx: SubReg) |
1096 | : MRI.getMaxLaneMaskForVReg(Reg); |
1097 | for (LiveInterval::SubRange &S : LI.subranges()) { |
1098 | if ((S.LaneMask & LaneMask).none() || LI.covers(Other: S)) |
1099 | continue; |
1100 | LI.clear(); |
1101 | LIS.constructMainRangeFromSubranges(LI); |
1102 | break; |
1103 | } |
1104 | } |
1105 | |
1106 | continue; |
1107 | } |
1108 | |
1109 | // For physregs, only update the regunits that actually have a |
1110 | // precomputed live range. |
1111 | for (MCRegUnit Unit : TRI.regunits(Reg: Reg.asMCReg())) |
1112 | if (LiveRange *LR = getRegUnitLI(Unit)) |
1113 | updateRange(LR&: *LR, VRegOrUnit: VirtRegOrUnit(Unit), LaneMask: LaneBitmask::getNone()); |
1114 | } |
1115 | if (hasRegMask) |
1116 | updateRegMaskSlots(); |
1117 | } |
1118 | |
1119 | private: |
1120 | /// Update a single live range, assuming an instruction has been moved from |
1121 | /// OldIdx to NewIdx. |
1122 | void updateRange(LiveRange &LR, VirtRegOrUnit VRegOrUnit, |
1123 | LaneBitmask LaneMask) { |
1124 | if (!Updated.insert(Ptr: &LR).second) |
1125 | return; |
1126 | LLVM_DEBUG({ |
1127 | dbgs() << " " ; |
1128 | if (VRegOrUnit.isVirtualReg()) { |
1129 | dbgs() << printReg(VRegOrUnit.asVirtualReg()); |
1130 | if (LaneMask.any()) |
1131 | dbgs() << " L" << PrintLaneMask(LaneMask); |
1132 | } else { |
1133 | dbgs() << printRegUnit(VRegOrUnit.asMCRegUnit(), &TRI); |
1134 | } |
1135 | dbgs() << ":\t" << LR << '\n'; |
1136 | }); |
1137 | if (SlotIndex::isEarlierInstr(A: OldIdx, B: NewIdx)) |
1138 | handleMoveDown(LR); |
1139 | else |
1140 | handleMoveUp(LR, VRegOrUnit, LaneMask); |
1141 | LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n'); |
1142 | assert(LR.verify()); |
1143 | } |
1144 | |
1145 | /// Update LR to reflect an instruction has been moved downwards from OldIdx |
1146 | /// to NewIdx (OldIdx < NewIdx). |
1147 | void handleMoveDown(LiveRange &LR) { |
1148 | LiveRange::iterator E = LR.end(); |
1149 | // Segment going into OldIdx. |
1150 | LiveRange::iterator OldIdxIn = LR.find(Pos: OldIdx.getBaseIndex()); |
1151 | |
1152 | // No value live before or after OldIdx? Nothing to do. |
1153 | if (OldIdxIn == E || SlotIndex::isEarlierInstr(A: OldIdx, B: OldIdxIn->start)) |
1154 | return; |
1155 | |
1156 | LiveRange::iterator OldIdxOut; |
1157 | // Do we have a value live-in to OldIdx? |
1158 | if (SlotIndex::isEarlierInstr(A: OldIdxIn->start, B: OldIdx)) { |
1159 | // If the live-in value already extends to NewIdx, there is nothing to do. |
1160 | if (SlotIndex::isEarlierEqualInstr(A: NewIdx, B: OldIdxIn->end)) |
1161 | return; |
1162 | // Aggressively remove all kill flags from the old kill point. |
1163 | // Kill flags shouldn't be used while live intervals exist, they will be |
1164 | // reinserted by VirtRegRewriter. |
1165 | if (MachineInstr *KillMI = LIS.getInstructionFromIndex(index: OldIdxIn->end)) |
1166 | for (MachineOperand &MOP : mi_bundle_ops(MI&: *KillMI)) |
1167 | if (MOP.isReg() && MOP.isUse()) |
1168 | MOP.setIsKill(false); |
1169 | |
1170 | // Is there a def before NewIdx which is not OldIdx? |
1171 | LiveRange::iterator Next = std::next(x: OldIdxIn); |
1172 | if (Next != E && !SlotIndex::isSameInstr(A: OldIdx, B: Next->start) && |
1173 | SlotIndex::isEarlierInstr(A: Next->start, B: NewIdx)) { |
1174 | // If we are here then OldIdx was just a use but not a def. We only have |
1175 | // to ensure liveness extends to NewIdx. |
1176 | LiveRange::iterator NewIdxIn = |
1177 | LR.advanceTo(I: Next, Pos: NewIdx.getBaseIndex()); |
1178 | // Extend the segment before NewIdx if necessary. |
1179 | if (NewIdxIn == E || |
1180 | !SlotIndex::isEarlierInstr(A: NewIdxIn->start, B: NewIdx)) { |
1181 | LiveRange::iterator Prev = std::prev(x: NewIdxIn); |
1182 | Prev->end = NewIdx.getRegSlot(); |
1183 | } |
1184 | // Extend OldIdxIn. |
1185 | OldIdxIn->end = Next->start; |
1186 | return; |
1187 | } |
1188 | |
1189 | // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR |
1190 | // invalid by overlapping ranges. |
1191 | bool isKill = SlotIndex::isSameInstr(A: OldIdx, B: OldIdxIn->end); |
1192 | OldIdxIn->end = NewIdx.getRegSlot(EC: OldIdxIn->end.isEarlyClobber()); |
1193 | // If this was not a kill, then there was no def and we're done. |
1194 | if (!isKill) |
1195 | return; |
1196 | |
1197 | // Did we have a Def at OldIdx? |
1198 | OldIdxOut = Next; |
1199 | if (OldIdxOut == E || !SlotIndex::isSameInstr(A: OldIdx, B: OldIdxOut->start)) |
1200 | return; |
1201 | } else { |
1202 | OldIdxOut = OldIdxIn; |
1203 | } |
1204 | |
1205 | // If we are here then there is a Definition at OldIdx. OldIdxOut points |
1206 | // to the segment starting there. |
1207 | assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && |
1208 | "No def?" ); |
1209 | VNInfo *OldIdxVNI = OldIdxOut->valno; |
1210 | assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def" ); |
1211 | |
1212 | // If the defined value extends beyond NewIdx, just move the beginning |
1213 | // of the segment to NewIdx. |
1214 | SlotIndex NewIdxDef = NewIdx.getRegSlot(EC: OldIdxOut->start.isEarlyClobber()); |
1215 | if (SlotIndex::isEarlierInstr(A: NewIdxDef, B: OldIdxOut->end)) { |
1216 | OldIdxVNI->def = NewIdxDef; |
1217 | OldIdxOut->start = OldIdxVNI->def; |
1218 | return; |
1219 | } |
1220 | |
1221 | // If we are here then we have a Definition at OldIdx which ends before |
1222 | // NewIdx. |
1223 | |
1224 | // Is there an existing Def at NewIdx? |
1225 | LiveRange::iterator AfterNewIdx |
1226 | = LR.advanceTo(I: OldIdxOut, Pos: NewIdx.getRegSlot()); |
1227 | bool OldIdxDefIsDead = OldIdxOut->end.isDead(); |
1228 | if (!OldIdxDefIsDead && |
1229 | SlotIndex::isEarlierInstr(A: OldIdxOut->end, B: NewIdxDef)) { |
1230 | // OldIdx is not a dead def, and NewIdxDef is inside a new interval. |
1231 | VNInfo *DefVNI; |
1232 | if (OldIdxOut != LR.begin() && |
1233 | !SlotIndex::isEarlierInstr(A: std::prev(x: OldIdxOut)->end, |
1234 | B: OldIdxOut->start)) { |
1235 | // There is no gap between OldIdxOut and its predecessor anymore, |
1236 | // merge them. |
1237 | LiveRange::iterator IPrev = std::prev(x: OldIdxOut); |
1238 | DefVNI = OldIdxVNI; |
1239 | IPrev->end = OldIdxOut->end; |
1240 | } else { |
1241 | // The value is live in to OldIdx |
1242 | LiveRange::iterator INext = std::next(x: OldIdxOut); |
1243 | assert(INext != E && "Must have following segment" ); |
1244 | // We merge OldIdxOut and its successor. As we're dealing with subreg |
1245 | // reordering, there is always a successor to OldIdxOut in the same BB |
1246 | // We don't need INext->valno anymore and will reuse for the new segment |
1247 | // we create later. |
1248 | DefVNI = OldIdxVNI; |
1249 | INext->start = OldIdxOut->end; |
1250 | INext->valno->def = INext->start; |
1251 | } |
1252 | // If NewIdx is behind the last segment, extend that and append a new one. |
1253 | if (AfterNewIdx == E) { |
1254 | // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up |
1255 | // one position. |
1256 | // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end |
1257 | // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end |
1258 | std::copy(first: std::next(x: OldIdxOut), last: E, result: OldIdxOut); |
1259 | // The last segment is undefined now, reuse it for a dead def. |
1260 | LiveRange::iterator NewSegment = std::prev(x: E); |
1261 | *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), |
1262 | DefVNI); |
1263 | DefVNI->def = NewIdxDef; |
1264 | |
1265 | LiveRange::iterator Prev = std::prev(x: NewSegment); |
1266 | Prev->end = NewIdxDef; |
1267 | } else { |
1268 | // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up |
1269 | // one position. |
1270 | // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| |
1271 | // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| |
1272 | std::copy(first: std::next(x: OldIdxOut), last: std::next(x: AfterNewIdx), result: OldIdxOut); |
1273 | LiveRange::iterator Prev = std::prev(x: AfterNewIdx); |
1274 | // We have two cases: |
1275 | if (SlotIndex::isEarlierInstr(A: Prev->start, B: NewIdxDef)) { |
1276 | // Case 1: NewIdx is inside a liverange. Split this liverange at |
1277 | // NewIdxDef into the segment "Prev" followed by "NewSegment". |
1278 | LiveRange::iterator NewSegment = AfterNewIdx; |
1279 | *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); |
1280 | Prev->valno->def = NewIdxDef; |
1281 | |
1282 | *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); |
1283 | DefVNI->def = Prev->start; |
1284 | } else { |
1285 | // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and |
1286 | // turn Prev into a segment from NewIdx to AfterNewIdx->start. |
1287 | *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); |
1288 | DefVNI->def = NewIdxDef; |
1289 | assert(DefVNI != AfterNewIdx->valno); |
1290 | } |
1291 | } |
1292 | return; |
1293 | } |
1294 | |
1295 | if (AfterNewIdx != E && |
1296 | SlotIndex::isSameInstr(A: AfterNewIdx->start, B: NewIdxDef)) { |
1297 | // There is an existing def at NewIdx. The def at OldIdx is coalesced into |
1298 | // that value. |
1299 | assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?" ); |
1300 | LR.removeValNo(ValNo: OldIdxVNI); |
1301 | } else { |
1302 | // There was no existing def at NewIdx. We need to create a dead def |
1303 | // at NewIdx. Shift segments over the old OldIdxOut segment, this frees |
1304 | // a new segment at the place where we want to construct the dead def. |
1305 | // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| |
1306 | // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| |
1307 | assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators" ); |
1308 | std::copy(first: std::next(x: OldIdxOut), last: AfterNewIdx, result: OldIdxOut); |
1309 | // We can reuse OldIdxVNI now. |
1310 | LiveRange::iterator NewSegment = std::prev(x: AfterNewIdx); |
1311 | VNInfo *NewSegmentVNI = OldIdxVNI; |
1312 | NewSegmentVNI->def = NewIdxDef; |
1313 | *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), |
1314 | NewSegmentVNI); |
1315 | } |
1316 | } |
1317 | |
1318 | /// Update LR to reflect an instruction has been moved upwards from OldIdx |
1319 | /// to NewIdx (NewIdx < OldIdx). |
1320 | void handleMoveUp(LiveRange &LR, VirtRegOrUnit VRegOrUnit, |
1321 | LaneBitmask LaneMask) { |
1322 | LiveRange::iterator E = LR.end(); |
1323 | // Segment going into OldIdx. |
1324 | LiveRange::iterator OldIdxIn = LR.find(Pos: OldIdx.getBaseIndex()); |
1325 | |
1326 | // No value live before or after OldIdx? Nothing to do. |
1327 | if (OldIdxIn == E || SlotIndex::isEarlierInstr(A: OldIdx, B: OldIdxIn->start)) |
1328 | return; |
1329 | |
1330 | LiveRange::iterator OldIdxOut; |
1331 | // Do we have a value live-in to OldIdx? |
1332 | if (SlotIndex::isEarlierInstr(A: OldIdxIn->start, B: OldIdx)) { |
1333 | // If the live-in value isn't killed here, then we have no Def at |
1334 | // OldIdx, moreover the value must be live at NewIdx so there is nothing |
1335 | // to do. |
1336 | bool isKill = SlotIndex::isSameInstr(A: OldIdx, B: OldIdxIn->end); |
1337 | if (!isKill) |
1338 | return; |
1339 | |
1340 | // At this point we have to move OldIdxIn->end back to the nearest |
1341 | // previous use or (dead-)def but no further than NewIdx. |
1342 | SlotIndex DefBeforeOldIdx |
1343 | = std::max(a: OldIdxIn->start.getDeadSlot(), |
1344 | b: NewIdx.getRegSlot(EC: OldIdxIn->end.isEarlyClobber())); |
1345 | OldIdxIn->end = findLastUseBefore(Before: DefBeforeOldIdx, VRegOrUnit, LaneMask); |
1346 | |
1347 | // Did we have a Def at OldIdx? If not we are done now. |
1348 | OldIdxOut = std::next(x: OldIdxIn); |
1349 | if (OldIdxOut == E || !SlotIndex::isSameInstr(A: OldIdx, B: OldIdxOut->start)) |
1350 | return; |
1351 | } else { |
1352 | OldIdxOut = OldIdxIn; |
1353 | OldIdxIn = OldIdxOut != LR.begin() ? std::prev(x: OldIdxOut) : E; |
1354 | } |
1355 | |
1356 | // If we are here then there is a Definition at OldIdx. OldIdxOut points |
1357 | // to the segment starting there. |
1358 | assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && |
1359 | "No def?" ); |
1360 | VNInfo *OldIdxVNI = OldIdxOut->valno; |
1361 | assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def" ); |
1362 | bool OldIdxDefIsDead = OldIdxOut->end.isDead(); |
1363 | |
1364 | // Is there an existing def at NewIdx? |
1365 | SlotIndex NewIdxDef = NewIdx.getRegSlot(EC: OldIdxOut->start.isEarlyClobber()); |
1366 | LiveRange::iterator NewIdxOut = LR.find(Pos: NewIdx.getRegSlot()); |
1367 | if (SlotIndex::isSameInstr(A: NewIdxOut->start, B: NewIdx)) { |
1368 | assert(NewIdxOut->valno != OldIdxVNI && |
1369 | "Same value defined more than once?" ); |
1370 | // If OldIdx was a dead def remove it. |
1371 | if (!OldIdxDefIsDead) { |
1372 | // Remove segment starting at NewIdx and move begin of OldIdxOut to |
1373 | // NewIdx so it can take its place. |
1374 | OldIdxVNI->def = NewIdxDef; |
1375 | OldIdxOut->start = NewIdxDef; |
1376 | LR.removeValNo(ValNo: NewIdxOut->valno); |
1377 | } else { |
1378 | // Simply remove the dead def at OldIdx. |
1379 | LR.removeValNo(ValNo: OldIdxVNI); |
1380 | } |
1381 | } else { |
1382 | // Previously nothing was live after NewIdx, so all we have to do now is |
1383 | // move the begin of OldIdxOut to NewIdx. |
1384 | if (!OldIdxDefIsDead) { |
1385 | // Do we have any intermediate Defs between OldIdx and NewIdx? |
1386 | if (OldIdxIn != E && |
1387 | SlotIndex::isEarlierInstr(A: NewIdxDef, B: OldIdxIn->start)) { |
1388 | // OldIdx is not a dead def and NewIdx is before predecessor start. |
1389 | LiveRange::iterator NewIdxIn = NewIdxOut; |
1390 | assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); |
1391 | const SlotIndex SplitPos = NewIdxDef; |
1392 | OldIdxVNI = OldIdxIn->valno; |
1393 | |
1394 | SlotIndex NewDefEndPoint = std::next(x: NewIdxIn)->end; |
1395 | LiveRange::iterator Prev = std::prev(x: OldIdxIn); |
1396 | if (OldIdxIn != LR.begin() && |
1397 | SlotIndex::isEarlierInstr(A: NewIdx, B: Prev->end)) { |
1398 | // If the segment before OldIdx read a value defined earlier than |
1399 | // NewIdx, the moved instruction also reads and forwards that |
1400 | // value. Extend the lifetime of the new def point. |
1401 | |
1402 | // Extend to where the previous range started, unless there is |
1403 | // another redef first. |
1404 | NewDefEndPoint = std::min(a: OldIdxIn->start, |
1405 | b: std::next(x: NewIdxOut)->start); |
1406 | } |
1407 | |
1408 | // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. |
1409 | OldIdxOut->valno->def = OldIdxIn->start; |
1410 | *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, |
1411 | OldIdxOut->valno); |
1412 | // OldIdxIn and OldIdxVNI are now undef and can be overridden. |
1413 | // We Slide [NewIdxIn, OldIdxIn) down one position. |
1414 | // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| |
1415 | // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |
1416 | std::copy_backward(first: NewIdxIn, last: OldIdxIn, result: OldIdxOut); |
1417 | // NewIdxIn is now considered undef so we can reuse it for the moved |
1418 | // value. |
1419 | LiveRange::iterator NewSegment = NewIdxIn; |
1420 | LiveRange::iterator Next = std::next(x: NewSegment); |
1421 | if (SlotIndex::isEarlierInstr(A: Next->start, B: NewIdx)) { |
1422 | // There is no gap between NewSegment and its predecessor. |
1423 | *NewSegment = LiveRange::Segment(Next->start, SplitPos, |
1424 | Next->valno); |
1425 | |
1426 | *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI); |
1427 | Next->valno->def = SplitPos; |
1428 | } else { |
1429 | // There is a gap between NewSegment and its predecessor |
1430 | // Value becomes live in. |
1431 | *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); |
1432 | NewSegment->valno->def = SplitPos; |
1433 | } |
1434 | } else { |
1435 | // Leave the end point of a live def. |
1436 | OldIdxOut->start = NewIdxDef; |
1437 | OldIdxVNI->def = NewIdxDef; |
1438 | if (OldIdxIn != E && SlotIndex::isEarlierInstr(A: NewIdx, B: OldIdxIn->end)) |
1439 | OldIdxIn->end = NewIdxDef; |
1440 | } |
1441 | } else if (OldIdxIn != E |
1442 | && SlotIndex::isEarlierInstr(A: NewIdxOut->start, B: NewIdx) |
1443 | && SlotIndex::isEarlierInstr(A: NewIdx, B: NewIdxOut->end)) { |
1444 | // OldIdxVNI is a dead def that has been moved into the middle of |
1445 | // another value in LR. That can happen when LR is a whole register, |
1446 | // but the dead def is a write to a subreg that is dead at NewIdx. |
1447 | // The dead def may have been moved across other values |
1448 | // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) |
1449 | // down one position. |
1450 | // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | |
1451 | // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| |
1452 | std::copy_backward(first: NewIdxOut, last: OldIdxOut, result: std::next(x: OldIdxOut)); |
1453 | // Modify the segment at NewIdxOut and the following segment to meet at |
1454 | // the point of the dead def, with the following segment getting |
1455 | // OldIdxVNI as its value number. |
1456 | *NewIdxOut = LiveRange::Segment( |
1457 | NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); |
1458 | *(NewIdxOut + 1) = LiveRange::Segment( |
1459 | NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); |
1460 | OldIdxVNI->def = NewIdxDef; |
1461 | // Modify subsequent segments to be defined by the moved def OldIdxVNI. |
1462 | for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) |
1463 | Idx->valno = OldIdxVNI; |
1464 | // Aggressively remove all dead flags from the former dead definition. |
1465 | // Kill/dead flags shouldn't be used while live intervals exist; they |
1466 | // will be reinserted by VirtRegRewriter. |
1467 | if (MachineInstr *KillMI = LIS.getInstructionFromIndex(index: NewIdx)) |
1468 | for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) |
1469 | if (MO->isReg() && !MO->isUse()) |
1470 | MO->setIsDead(false); |
1471 | } else { |
1472 | // OldIdxVNI is a dead def. It may have been moved across other values |
1473 | // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) |
1474 | // down one position. |
1475 | // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | |
1476 | // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| |
1477 | std::copy_backward(first: NewIdxOut, last: OldIdxOut, result: std::next(x: OldIdxOut)); |
1478 | // OldIdxVNI can be reused now to build a new dead def segment. |
1479 | LiveRange::iterator NewSegment = NewIdxOut; |
1480 | VNInfo *NewSegmentVNI = OldIdxVNI; |
1481 | *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), |
1482 | NewSegmentVNI); |
1483 | NewSegmentVNI->def = NewIdxDef; |
1484 | } |
1485 | } |
1486 | } |
1487 | |
1488 | void updateRegMaskSlots() { |
1489 | SmallVectorImpl<SlotIndex>::iterator RI = |
1490 | llvm::lower_bound(Range&: LIS.RegMaskSlots, Value&: OldIdx); |
1491 | assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && |
1492 | "No RegMask at OldIdx." ); |
1493 | *RI = NewIdx.getRegSlot(); |
1494 | assert((RI == LIS.RegMaskSlots.begin() || |
1495 | SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && |
1496 | "Cannot move regmask instruction above another call" ); |
1497 | assert((std::next(RI) == LIS.RegMaskSlots.end() || |
1498 | SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && |
1499 | "Cannot move regmask instruction below another call" ); |
1500 | } |
1501 | |
1502 | // Return the last use of reg between NewIdx and OldIdx. |
1503 | SlotIndex findLastUseBefore(SlotIndex Before, VirtRegOrUnit VRegOrUnit, |
1504 | LaneBitmask LaneMask) { |
1505 | if (VRegOrUnit.isVirtualReg()) { |
1506 | SlotIndex LastUse = Before; |
1507 | for (MachineOperand &MO : |
1508 | MRI.use_nodbg_operands(Reg: VRegOrUnit.asVirtualReg())) { |
1509 | if (MO.isUndef()) |
1510 | continue; |
1511 | unsigned SubReg = MO.getSubReg(); |
1512 | if (SubReg != 0 && LaneMask.any() |
1513 | && (TRI.getSubRegIndexLaneMask(SubIdx: SubReg) & LaneMask).none()) |
1514 | continue; |
1515 | |
1516 | const MachineInstr &MI = *MO.getParent(); |
1517 | SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); |
1518 | if (InstSlot > LastUse && InstSlot < OldIdx) |
1519 | LastUse = InstSlot.getRegSlot(); |
1520 | } |
1521 | return LastUse; |
1522 | } |
1523 | |
1524 | // This is a regunit interval, so scanning the use list could be very |
1525 | // expensive. Scan upwards from OldIdx instead. |
1526 | assert(Before < OldIdx && "Expected upwards move" ); |
1527 | SlotIndexes *Indexes = LIS.getSlotIndexes(); |
1528 | MachineBasicBlock *MBB = Indexes->getMBBFromIndex(index: Before); |
1529 | |
1530 | // OldIdx may not correspond to an instruction any longer, so set MII to |
1531 | // point to the next instruction after OldIdx, or MBB->end(). |
1532 | MachineBasicBlock::iterator MII = MBB->end(); |
1533 | if (MachineInstr *MI = Indexes->getInstructionFromIndex( |
1534 | index: Indexes->getNextNonNullIndex(Index: OldIdx))) |
1535 | if (MI->getParent() == MBB) |
1536 | MII = MI; |
1537 | |
1538 | MachineBasicBlock::iterator Begin = MBB->begin(); |
1539 | while (MII != Begin) { |
1540 | if ((--MII)->isDebugOrPseudoInstr()) |
1541 | continue; |
1542 | SlotIndex Idx = Indexes->getInstructionIndex(MI: *MII); |
1543 | |
1544 | // Stop searching when Before is reached. |
1545 | if (!SlotIndex::isEarlierInstr(A: Before, B: Idx)) |
1546 | return Before; |
1547 | |
1548 | // Check if MII uses Reg. |
1549 | for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) |
1550 | if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() && |
1551 | TRI.hasRegUnit(Reg: MO->getReg(), RegUnit: VRegOrUnit.asMCRegUnit())) |
1552 | return Idx.getRegSlot(); |
1553 | } |
1554 | // Didn't reach Before. It must be the first instruction in the block. |
1555 | return Before; |
1556 | } |
1557 | }; |
1558 | |
1559 | void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { |
1560 | // It is fine to move a bundle as a whole, but not an individual instruction |
1561 | // inside it. |
1562 | assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) && |
1563 | "Cannot move instruction in bundle" ); |
1564 | SlotIndex OldIndex = Indexes->getInstructionIndex(MI); |
1565 | Indexes->removeMachineInstrFromMaps(MI); |
1566 | SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); |
1567 | assert(getMBBStartIdx(MI.getParent()) <= OldIndex && |
1568 | OldIndex < getMBBEndIdx(MI.getParent()) && |
1569 | "Cannot handle moves across basic block boundaries." ); |
1570 | |
1571 | HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); |
1572 | HME.updateAllRanges(MI: &MI); |
1573 | } |
1574 | |
1575 | void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart, |
1576 | bool UpdateFlags) { |
1577 | assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) && |
1578 | "Bundle start is not a bundle" ); |
1579 | SmallVector<SlotIndex, 16> ToProcess; |
1580 | const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI&: BundleStart); |
1581 | auto BundleEnd = getBundleEnd(I: BundleStart.getIterator()); |
1582 | |
1583 | auto I = BundleStart.getIterator(); |
1584 | I++; |
1585 | while (I != BundleEnd) { |
1586 | if (!Indexes->hasIndex(instr: *I)) |
1587 | continue; |
1588 | SlotIndex OldIndex = Indexes->getInstructionIndex(MI: *I, IgnoreBundle: true); |
1589 | ToProcess.push_back(Elt: OldIndex); |
1590 | Indexes->removeMachineInstrFromMaps(MI&: *I, AllowBundled: true); |
1591 | I++; |
1592 | } |
1593 | for (SlotIndex OldIndex : ToProcess) { |
1594 | HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); |
1595 | HME.updateAllRanges(MI: &BundleStart); |
1596 | } |
1597 | |
1598 | // Fix up dead defs |
1599 | const SlotIndex Index = getInstructionIndex(Instr: BundleStart); |
1600 | for (MachineOperand &MO : BundleStart.operands()) { |
1601 | if (!MO.isReg()) |
1602 | continue; |
1603 | Register Reg = MO.getReg(); |
1604 | if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) { |
1605 | LiveInterval &LI = getInterval(Reg); |
1606 | LiveQueryResult LRQ = LI.Query(Idx: Index); |
1607 | if (LRQ.isDeadDef()) |
1608 | MO.setIsDead(); |
1609 | } |
1610 | } |
1611 | } |
1612 | |
1613 | void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, |
1614 | const MachineBasicBlock::iterator End, |
1615 | const SlotIndex EndIdx, LiveRange &LR, |
1616 | const Register Reg, |
1617 | LaneBitmask LaneMask) { |
1618 | LiveInterval::iterator LII = LR.find(Pos: EndIdx); |
1619 | SlotIndex lastUseIdx; |
1620 | if (LII != LR.end() && LII->start < EndIdx) { |
1621 | lastUseIdx = LII->end; |
1622 | } else if (LII == LR.begin()) { |
1623 | // We may not have a liverange at all if this is a subregister untouched |
1624 | // between \p Begin and \p End. |
1625 | } else { |
1626 | --LII; |
1627 | } |
1628 | |
1629 | for (MachineBasicBlock::iterator I = End; I != Begin;) { |
1630 | --I; |
1631 | MachineInstr &MI = *I; |
1632 | if (MI.isDebugOrPseudoInstr()) |
1633 | continue; |
1634 | |
1635 | SlotIndex instrIdx = getInstructionIndex(Instr: MI); |
1636 | bool isStartValid = getInstructionFromIndex(index: LII->start); |
1637 | bool isEndValid = getInstructionFromIndex(index: LII->end); |
1638 | |
1639 | // FIXME: This doesn't currently handle early-clobber or multiple removed |
1640 | // defs inside of the region to repair. |
1641 | for (const MachineOperand &MO : MI.operands()) { |
1642 | if (!MO.isReg() || MO.getReg() != Reg) |
1643 | continue; |
1644 | |
1645 | unsigned SubReg = MO.getSubReg(); |
1646 | LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
1647 | if ((Mask & LaneMask).none()) |
1648 | continue; |
1649 | |
1650 | if (MO.isDef()) { |
1651 | if (!isStartValid) { |
1652 | if (LII->end.isDead()) { |
1653 | LII = LR.removeSegment(I: LII, RemoveDeadValNo: true); |
1654 | if (LII != LR.begin()) |
1655 | --LII; |
1656 | } else { |
1657 | LII->start = instrIdx.getRegSlot(); |
1658 | LII->valno->def = instrIdx.getRegSlot(); |
1659 | if (MO.getSubReg() && !MO.isUndef()) |
1660 | lastUseIdx = instrIdx.getRegSlot(); |
1661 | else |
1662 | lastUseIdx = SlotIndex(); |
1663 | continue; |
1664 | } |
1665 | } |
1666 | |
1667 | if (!lastUseIdx.isValid()) { |
1668 | VNInfo *VNI = LR.getNextValue(Def: instrIdx.getRegSlot(), VNInfoAllocator); |
1669 | LiveRange::Segment S(instrIdx.getRegSlot(), |
1670 | instrIdx.getDeadSlot(), VNI); |
1671 | LII = LR.addSegment(S); |
1672 | } else if (LII->start != instrIdx.getRegSlot()) { |
1673 | VNInfo *VNI = LR.getNextValue(Def: instrIdx.getRegSlot(), VNInfoAllocator); |
1674 | LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); |
1675 | LII = LR.addSegment(S); |
1676 | } |
1677 | |
1678 | if (MO.getSubReg() && !MO.isUndef()) |
1679 | lastUseIdx = instrIdx.getRegSlot(); |
1680 | else |
1681 | lastUseIdx = SlotIndex(); |
1682 | } else if (MO.isUse()) { |
1683 | // FIXME: This should probably be handled outside of this branch, |
1684 | // either as part of the def case (for defs inside of the region) or |
1685 | // after the loop over the region. |
1686 | if (!isEndValid && !LII->end.isBlock()) |
1687 | LII->end = instrIdx.getRegSlot(); |
1688 | if (!lastUseIdx.isValid()) |
1689 | lastUseIdx = instrIdx.getRegSlot(); |
1690 | } |
1691 | } |
1692 | } |
1693 | |
1694 | bool isStartValid = getInstructionFromIndex(index: LII->start); |
1695 | if (!isStartValid && LII->end.isDead()) |
1696 | LR.removeSegment(S: *LII, RemoveDeadValNo: true); |
1697 | } |
1698 | |
1699 | void |
1700 | LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, |
1701 | MachineBasicBlock::iterator Begin, |
1702 | MachineBasicBlock::iterator End, |
1703 | ArrayRef<Register> OrigRegs) { |
1704 | // Find anchor points, which are at the beginning/end of blocks or at |
1705 | // instructions that already have indexes. |
1706 | while (Begin != MBB->begin() && !Indexes->hasIndex(instr: *std::prev(x: Begin))) |
1707 | --Begin; |
1708 | while (End != MBB->end() && !Indexes->hasIndex(instr: *End)) |
1709 | ++End; |
1710 | |
1711 | SlotIndex EndIdx; |
1712 | if (End == MBB->end()) |
1713 | EndIdx = getMBBEndIdx(mbb: MBB).getPrevSlot(); |
1714 | else |
1715 | EndIdx = getInstructionIndex(Instr: *End); |
1716 | |
1717 | Indexes->repairIndexesInRange(MBB, Begin, End); |
1718 | |
1719 | // Make sure a live interval exists for all register operands in the range. |
1720 | SmallVector<Register> RegsToRepair(OrigRegs); |
1721 | for (MachineBasicBlock::iterator I = End; I != Begin;) { |
1722 | --I; |
1723 | MachineInstr &MI = *I; |
1724 | if (MI.isDebugOrPseudoInstr()) |
1725 | continue; |
1726 | for (const MachineOperand &MO : MI.operands()) { |
1727 | if (MO.isReg() && MO.getReg().isVirtual()) { |
1728 | Register Reg = MO.getReg(); |
1729 | if (MO.getSubReg() && hasInterval(Reg) && |
1730 | MRI->shouldTrackSubRegLiveness(VReg: Reg)) { |
1731 | LiveInterval &LI = getInterval(Reg); |
1732 | if (!LI.hasSubRanges()) { |
1733 | // If the new instructions refer to subregs but the old instructions |
1734 | // did not, throw away any old live interval so it will be |
1735 | // recomputed with subranges. |
1736 | removeInterval(Reg); |
1737 | } else if (MO.isDef()) { |
1738 | // Similarly if a subreg def has no precise subrange match then |
1739 | // assume we need to recompute all subranges. |
1740 | unsigned SubReg = MO.getSubReg(); |
1741 | LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
1742 | if (llvm::none_of(Range: LI.subranges(), |
1743 | P: [Mask](LiveInterval::SubRange &SR) { |
1744 | return SR.LaneMask == Mask; |
1745 | })) { |
1746 | removeInterval(Reg); |
1747 | } |
1748 | } |
1749 | } |
1750 | if (!hasInterval(Reg)) { |
1751 | createAndComputeVirtRegInterval(Reg); |
1752 | // Don't bother to repair a freshly calculated live interval. |
1753 | llvm::erase(C&: RegsToRepair, V: Reg); |
1754 | } |
1755 | } |
1756 | } |
1757 | } |
1758 | |
1759 | for (Register Reg : RegsToRepair) { |
1760 | if (!Reg.isVirtual()) |
1761 | continue; |
1762 | |
1763 | LiveInterval &LI = getInterval(Reg); |
1764 | // FIXME: Should we support undefs that gain defs? |
1765 | if (!LI.hasAtLeastOneValue()) |
1766 | continue; |
1767 | |
1768 | for (LiveInterval::SubRange &S : LI.subranges()) |
1769 | repairOldRegInRange(Begin, End, EndIdx, LR&: S, Reg, LaneMask: S.LaneMask); |
1770 | LI.removeEmptySubRanges(); |
1771 | |
1772 | repairOldRegInRange(Begin, End, EndIdx, LR&: LI, Reg); |
1773 | } |
1774 | } |
1775 | |
1776 | void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) { |
1777 | for (MCRegUnit Unit : TRI->regunits(Reg)) { |
1778 | if (LiveRange *LR = getCachedRegUnit(Unit)) |
1779 | if (VNInfo *VNI = LR->getVNInfoAt(Idx: Pos)) |
1780 | LR->removeValNo(ValNo: VNI); |
1781 | } |
1782 | } |
1783 | |
1784 | void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { |
1785 | // LI may not have the main range computed yet, but its subranges may |
1786 | // be present. |
1787 | VNInfo *VNI = LI.getVNInfoAt(Idx: Pos); |
1788 | if (VNI != nullptr) { |
1789 | assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); |
1790 | LI.removeValNo(ValNo: VNI); |
1791 | } |
1792 | |
1793 | // Also remove the value defined in subranges. |
1794 | for (LiveInterval::SubRange &S : LI.subranges()) { |
1795 | if (VNInfo *SVNI = S.getVNInfoAt(Idx: Pos)) |
1796 | if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) |
1797 | S.removeValNo(ValNo: SVNI); |
1798 | } |
1799 | LI.removeEmptySubRanges(); |
1800 | } |
1801 | |
1802 | void LiveIntervals::splitSeparateComponents(LiveInterval &LI, |
1803 | SmallVectorImpl<LiveInterval*> &SplitLIs) { |
1804 | ConnectedVNInfoEqClasses ConEQ(*this); |
1805 | unsigned NumComp = ConEQ.Classify(LR: LI); |
1806 | if (NumComp <= 1) |
1807 | return; |
1808 | LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); |
1809 | Register Reg = LI.reg(); |
1810 | for (unsigned I = 1; I < NumComp; ++I) { |
1811 | Register NewVReg = MRI->cloneVirtualRegister(VReg: Reg); |
1812 | LiveInterval &NewLI = createEmptyInterval(Reg: NewVReg); |
1813 | SplitLIs.push_back(Elt: &NewLI); |
1814 | } |
1815 | ConEQ.Distribute(LI, LIV: SplitLIs.data(), MRI&: *MRI); |
1816 | } |
1817 | |
1818 | void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { |
1819 | assert(LICalc && "LICalc not initialized." ); |
1820 | LICalc->reset(mf: MF, SI: getSlotIndexes(), MDT: DomTree, VNIA: &getVNInfoAllocator()); |
1821 | LICalc->constructMainRangeFromSubranges(LI); |
1822 | } |
1823 | |