| 1 | //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // The LiveRangeEdit class represents changes done to a virtual register when it |
| 10 | // is spilled or split. |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/LiveRangeEdit.h" |
| 14 | #include "llvm/ADT/Statistic.h" |
| 15 | #include "llvm/CodeGen/CalcSpillWeights.h" |
| 16 | #include "llvm/CodeGen/LiveIntervals.h" |
| 17 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 18 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 19 | #include "llvm/CodeGen/VirtRegMap.h" |
| 20 | #include "llvm/Support/Debug.h" |
| 21 | #include "llvm/Support/raw_ostream.h" |
| 22 | |
| 23 | using namespace llvm; |
| 24 | |
| 25 | #define DEBUG_TYPE "regalloc" |
| 26 | |
| 27 | STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE" ); |
| 28 | STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE" ); |
| 29 | STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE" ); |
| 30 | STATISTIC(NumReMaterialization, "Number of instructions rematerialized" ); |
| 31 | |
| 32 | void LiveRangeEdit::Delegate::anchor() { } |
| 33 | |
| 34 | LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg, |
| 35 | bool createSubRanges) { |
| 36 | Register VReg = MRI.cloneVirtualRegister(VReg: OldReg); |
| 37 | if (VRM) |
| 38 | VRM->setIsSplitFromReg(virtReg: VReg, SReg: VRM->getOriginal(VirtReg: OldReg)); |
| 39 | |
| 40 | LiveInterval &LI = LIS.createEmptyInterval(Reg: VReg); |
| 41 | if (Parent && !Parent->isSpillable()) |
| 42 | LI.markNotSpillable(); |
| 43 | if (createSubRanges) { |
| 44 | // Create empty subranges if the OldReg's interval has them. Do not create |
| 45 | // the main range here---it will be constructed later after the subranges |
| 46 | // have been finalized. |
| 47 | LiveInterval &OldLI = LIS.getInterval(Reg: OldReg); |
| 48 | VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); |
| 49 | for (LiveInterval::SubRange &S : OldLI.subranges()) |
| 50 | LI.createSubRange(Allocator&: Alloc, LaneMask: S.LaneMask); |
| 51 | } |
| 52 | return LI; |
| 53 | } |
| 54 | |
| 55 | Register LiveRangeEdit::createFrom(Register OldReg) { |
| 56 | Register VReg = MRI.cloneVirtualRegister(VReg: OldReg); |
| 57 | if (VRM) { |
| 58 | VRM->setIsSplitFromReg(virtReg: VReg, SReg: VRM->getOriginal(VirtReg: OldReg)); |
| 59 | } |
| 60 | // FIXME: Getting the interval here actually computes it. |
| 61 | // In theory, this may not be what we want, but in practice |
| 62 | // the createEmptyIntervalFrom API is used when this is not |
| 63 | // the case. Generally speaking we just want to annotate the |
| 64 | // LiveInterval when it gets created but we cannot do that at |
| 65 | // the moment. |
| 66 | if (Parent && !Parent->isSpillable()) |
| 67 | LIS.getInterval(Reg: VReg).markNotSpillable(); |
| 68 | return VReg; |
| 69 | } |
| 70 | |
| 71 | bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, |
| 72 | const MachineInstr *DefMI) { |
| 73 | assert(DefMI && "Missing instruction" ); |
| 74 | ScannedRemattable = true; |
| 75 | if (!TII.isTriviallyReMaterializable(MI: *DefMI)) |
| 76 | return false; |
| 77 | Remattable.insert(Ptr: VNI); |
| 78 | return true; |
| 79 | } |
| 80 | |
| 81 | void LiveRangeEdit::scanRemattable() { |
| 82 | for (VNInfo *VNI : getParent().valnos) { |
| 83 | if (VNI->isUnused()) |
| 84 | continue; |
| 85 | Register Original = VRM->getOriginal(VirtReg: getReg()); |
| 86 | LiveInterval &OrigLI = LIS.getInterval(Reg: Original); |
| 87 | VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx: VNI->def); |
| 88 | if (!OrigVNI) |
| 89 | continue; |
| 90 | MachineInstr *DefMI = LIS.getInstructionFromIndex(index: OrigVNI->def); |
| 91 | if (!DefMI) |
| 92 | continue; |
| 93 | checkRematerializable(VNI: OrigVNI, DefMI); |
| 94 | } |
| 95 | ScannedRemattable = true; |
| 96 | } |
| 97 | |
| 98 | bool LiveRangeEdit::anyRematerializable() { |
| 99 | if (!ScannedRemattable) |
| 100 | scanRemattable(); |
| 101 | return !Remattable.empty(); |
| 102 | } |
| 103 | |
| 104 | /// allUsesAvailableAt - Return true if all registers used by OrigMI at |
| 105 | /// OrigIdx are also available with the same value at UseIdx. |
| 106 | bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, |
| 107 | SlotIndex OrigIdx, |
| 108 | SlotIndex UseIdx) const { |
| 109 | OrigIdx = OrigIdx.getRegSlot(EC: true); |
| 110 | UseIdx = std::max(a: UseIdx, b: UseIdx.getRegSlot(EC: true)); |
| 111 | for (const MachineOperand &MO : OrigMI->operands()) { |
| 112 | if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) |
| 113 | continue; |
| 114 | |
| 115 | // We can't remat physreg uses, unless it is a constant or target wants |
| 116 | // to ignore this use. |
| 117 | if (MO.getReg().isPhysical()) { |
| 118 | if (MRI.isConstantPhysReg(PhysReg: MO.getReg()) || TII.isIgnorableUse(MO)) |
| 119 | continue; |
| 120 | return false; |
| 121 | } |
| 122 | |
| 123 | LiveInterval &li = LIS.getInterval(Reg: MO.getReg()); |
| 124 | const VNInfo *OVNI = li.getVNInfoAt(Idx: OrigIdx); |
| 125 | if (!OVNI) |
| 126 | continue; |
| 127 | |
| 128 | // Don't allow rematerialization immediately after the original def. |
| 129 | // It would be incorrect if OrigMI redefines the register. |
| 130 | // See PR14098. |
| 131 | if (SlotIndex::isSameInstr(A: OrigIdx, B: UseIdx)) |
| 132 | return false; |
| 133 | |
| 134 | if (OVNI != li.getVNInfoAt(Idx: UseIdx)) |
| 135 | return false; |
| 136 | |
| 137 | // Check that subrange is live at UseIdx. |
| 138 | if (li.hasSubRanges()) { |
| 139 | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); |
| 140 | unsigned SubReg = MO.getSubReg(); |
| 141 | LaneBitmask LM = SubReg ? TRI->getSubRegIndexLaneMask(SubIdx: SubReg) |
| 142 | : MRI.getMaxLaneMaskForVReg(Reg: MO.getReg()); |
| 143 | for (LiveInterval::SubRange &SR : li.subranges()) { |
| 144 | if ((SR.LaneMask & LM).none()) |
| 145 | continue; |
| 146 | if (!SR.liveAt(index: UseIdx)) |
| 147 | return false; |
| 148 | // Early exit if all used lanes are checked. No need to continue. |
| 149 | LM &= ~SR.LaneMask; |
| 150 | if (LM.none()) |
| 151 | break; |
| 152 | } |
| 153 | } |
| 154 | } |
| 155 | return true; |
| 156 | } |
| 157 | |
| 158 | bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, |
| 159 | SlotIndex UseIdx) { |
| 160 | assert(ScannedRemattable && "Call anyRematerializable first" ); |
| 161 | |
| 162 | // Use scanRemattable info. |
| 163 | if (!Remattable.count(Ptr: OrigVNI)) |
| 164 | return false; |
| 165 | |
| 166 | // No defining instruction provided. |
| 167 | SlotIndex DefIdx; |
| 168 | assert(RM.OrigMI && "No defining instruction for remattable value" ); |
| 169 | DefIdx = LIS.getInstructionIndex(Instr: *RM.OrigMI); |
| 170 | |
| 171 | // Verify that all used registers are available with the same values. |
| 172 | if (!allUsesAvailableAt(OrigMI: RM.OrigMI, OrigIdx: DefIdx, UseIdx)) |
| 173 | return false; |
| 174 | |
| 175 | return true; |
| 176 | } |
| 177 | |
| 178 | SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, |
| 179 | MachineBasicBlock::iterator MI, |
| 180 | Register DestReg, const Remat &RM, |
| 181 | const TargetRegisterInfo &tri, |
| 182 | bool Late, unsigned SubIdx, |
| 183 | MachineInstr *ReplaceIndexMI) { |
| 184 | assert(RM.OrigMI && "Invalid remat" ); |
| 185 | TII.reMaterialize(MBB, MI, DestReg, SubIdx, Orig: *RM.OrigMI, TRI: tri); |
| 186 | // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg |
| 187 | // to false anyway in case the isDead flag of RM.OrigMI's dest register |
| 188 | // is true. |
| 189 | (*--MI).clearRegisterDeads(Reg: DestReg); |
| 190 | Rematted.insert(Ptr: RM.ParentVNI); |
| 191 | ++NumReMaterialization; |
| 192 | |
| 193 | if (ReplaceIndexMI) |
| 194 | return LIS.ReplaceMachineInstrInMaps(MI&: *ReplaceIndexMI, NewMI&: *MI).getRegSlot(); |
| 195 | return LIS.getSlotIndexes()->insertMachineInstrInMaps(MI&: *MI, Late).getRegSlot(); |
| 196 | } |
| 197 | |
| 198 | void LiveRangeEdit::eraseVirtReg(Register Reg) { |
| 199 | if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) |
| 200 | LIS.removeInterval(Reg); |
| 201 | } |
| 202 | |
| 203 | bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, |
| 204 | SmallVectorImpl<MachineInstr*> &Dead) { |
| 205 | MachineInstr *DefMI = nullptr, *UseMI = nullptr; |
| 206 | |
| 207 | // Check that there is a single def and a single use. |
| 208 | for (MachineOperand &MO : MRI.reg_nodbg_operands(Reg: LI->reg())) { |
| 209 | MachineInstr *MI = MO.getParent(); |
| 210 | if (MO.isDef()) { |
| 211 | if (DefMI && DefMI != MI) |
| 212 | return false; |
| 213 | if (!MI->canFoldAsLoad()) |
| 214 | return false; |
| 215 | DefMI = MI; |
| 216 | } else if (!MO.isUndef()) { |
| 217 | if (UseMI && UseMI != MI) |
| 218 | return false; |
| 219 | // FIXME: Targets don't know how to fold subreg uses. |
| 220 | if (MO.getSubReg()) |
| 221 | return false; |
| 222 | UseMI = MI; |
| 223 | } |
| 224 | } |
| 225 | if (!DefMI || !UseMI) |
| 226 | return false; |
| 227 | |
| 228 | // Since we're moving the DefMI load, make sure we're not extending any live |
| 229 | // ranges. |
| 230 | if (!allUsesAvailableAt(OrigMI: DefMI, OrigIdx: LIS.getInstructionIndex(Instr: *DefMI), |
| 231 | UseIdx: LIS.getInstructionIndex(Instr: *UseMI))) |
| 232 | return false; |
| 233 | |
| 234 | // We also need to make sure it is safe to move the load. |
| 235 | // Assume there are stores between DefMI and UseMI. |
| 236 | bool SawStore = true; |
| 237 | if (!DefMI->isSafeToMove(SawStore)) |
| 238 | return false; |
| 239 | |
| 240 | LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI |
| 241 | << " into single use: " << *UseMI); |
| 242 | |
| 243 | SmallVector<unsigned, 8> Ops; |
| 244 | if (UseMI->readsWritesVirtualRegister(Reg: LI->reg(), Ops: &Ops).second) |
| 245 | return false; |
| 246 | |
| 247 | MachineInstr *FoldMI = TII.foldMemoryOperand(MI&: *UseMI, Ops, LoadMI&: *DefMI, LIS: &LIS); |
| 248 | if (!FoldMI) |
| 249 | return false; |
| 250 | LLVM_DEBUG(dbgs() << " folded: " << *FoldMI); |
| 251 | LIS.ReplaceMachineInstrInMaps(MI&: *UseMI, NewMI&: *FoldMI); |
| 252 | // Update the call info. |
| 253 | if (UseMI->shouldUpdateAdditionalCallInfo()) |
| 254 | UseMI->getMF()->moveAdditionalCallInfo(Old: UseMI, New: FoldMI); |
| 255 | UseMI->eraseFromParent(); |
| 256 | DefMI->addRegisterDead(Reg: LI->reg(), RegInfo: nullptr); |
| 257 | Dead.push_back(Elt: DefMI); |
| 258 | ++NumDCEFoldedLoads; |
| 259 | return true; |
| 260 | } |
| 261 | |
| 262 | bool LiveRangeEdit::useIsKill(const LiveInterval &LI, |
| 263 | const MachineOperand &MO) const { |
| 264 | const MachineInstr &MI = *MO.getParent(); |
| 265 | SlotIndex Idx = LIS.getInstructionIndex(Instr: MI).getRegSlot(); |
| 266 | if (LI.Query(Idx).isKill()) |
| 267 | return true; |
| 268 | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| 269 | unsigned SubReg = MO.getSubReg(); |
| 270 | LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx: SubReg); |
| 271 | for (const LiveInterval::SubRange &S : LI.subranges()) { |
| 272 | if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) |
| 273 | return true; |
| 274 | } |
| 275 | return false; |
| 276 | } |
| 277 | |
| 278 | /// Find all live intervals that need to shrink, then remove the instruction. |
| 279 | void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { |
| 280 | assert(MI->allDefsAreDead() && "Def isn't really dead" ); |
| 281 | SlotIndex Idx = LIS.getInstructionIndex(Instr: *MI).getRegSlot(); |
| 282 | |
| 283 | // Never delete a bundled instruction. |
| 284 | if (MI->isBundled()) { |
| 285 | // TODO: Handle deleting copy bundles |
| 286 | LLVM_DEBUG(dbgs() << "Won't delete dead bundled inst: " << Idx << '\t' |
| 287 | << *MI); |
| 288 | return; |
| 289 | } |
| 290 | |
| 291 | // Never delete inline asm. |
| 292 | if (MI->isInlineAsm()) { |
| 293 | LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); |
| 294 | return; |
| 295 | } |
| 296 | |
| 297 | // Use the same criteria as DeadMachineInstructionElim. |
| 298 | bool SawStore = false; |
| 299 | if (!MI->isSafeToMove(SawStore)) { |
| 300 | LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); |
| 301 | return; |
| 302 | } |
| 303 | |
| 304 | LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); |
| 305 | |
| 306 | // Collect virtual registers to be erased after MI is gone. |
| 307 | SmallVector<Register, 8> RegsToErase; |
| 308 | bool ReadsPhysRegs = false; |
| 309 | bool isOrigDef = false; |
| 310 | Register Dest; |
| 311 | unsigned DestSubReg; |
| 312 | // Only optimize rematerialize case when the instruction has one def, since |
| 313 | // otherwise we could leave some dead defs in the code. This case is |
| 314 | // extremely rare. |
| 315 | if (VRM && MI->getOperand(i: 0).isReg() && MI->getOperand(i: 0).isDef() && |
| 316 | MI->getDesc().getNumDefs() == 1) { |
| 317 | Dest = MI->getOperand(i: 0).getReg(); |
| 318 | DestSubReg = MI->getOperand(i: 0).getSubReg(); |
| 319 | Register Original = VRM->getOriginal(VirtReg: Dest); |
| 320 | LiveInterval &OrigLI = LIS.getInterval(Reg: Original); |
| 321 | VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); |
| 322 | // The original live-range may have been shrunk to |
| 323 | // an empty live-range. It happens when it is dead, but |
| 324 | // we still keep it around to be able to rematerialize |
| 325 | // other values that depend on it. |
| 326 | if (OrigVNI) |
| 327 | isOrigDef = SlotIndex::isSameInstr(A: OrigVNI->def, B: Idx); |
| 328 | } |
| 329 | |
| 330 | bool HasLiveVRegUses = false; |
| 331 | |
| 332 | // Check for live intervals that may shrink |
| 333 | for (const MachineOperand &MO : MI->operands()) { |
| 334 | if (!MO.isReg()) |
| 335 | continue; |
| 336 | Register Reg = MO.getReg(); |
| 337 | if (!Reg.isVirtual()) { |
| 338 | // Check if MI reads any unreserved physregs. |
| 339 | if (Reg && MO.readsReg() && !MRI.isReserved(PhysReg: Reg)) |
| 340 | ReadsPhysRegs = true; |
| 341 | else if (MO.isDef()) |
| 342 | LIS.removePhysRegDefAt(Reg: Reg.asMCReg(), Pos: Idx); |
| 343 | continue; |
| 344 | } |
| 345 | LiveInterval &LI = LIS.getInterval(Reg); |
| 346 | |
| 347 | // Shrink read registers, unless it is likely to be expensive and |
| 348 | // unlikely to change anything. We typically don't want to shrink the |
| 349 | // PIC base register that has lots of uses everywhere. |
| 350 | // Always shrink COPY uses that probably come from live range splitting. |
| 351 | if ((MI->readsVirtualRegister(Reg) && |
| 352 | (MO.isDef() || TII.isCopyInstr(MI: *MI))) || |
| 353 | (MO.readsReg() && (MRI.hasOneNonDBGUse(RegNo: Reg) || useIsKill(LI, MO)))) |
| 354 | ToShrink.insert(X: &LI); |
| 355 | else if (MO.readsReg()) |
| 356 | HasLiveVRegUses = true; |
| 357 | |
| 358 | // Remove defined value. |
| 359 | if (MO.isDef()) { |
| 360 | if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) |
| 361 | TheDelegate->LRE_WillShrinkVirtReg(LI.reg()); |
| 362 | LIS.removeVRegDefAt(LI, Pos: Idx); |
| 363 | if (LI.empty()) |
| 364 | RegsToErase.push_back(Elt: Reg); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | // Currently, we don't support DCE of physreg live ranges. If MI reads |
| 369 | // any unreserved physregs, don't erase the instruction, but turn it into |
| 370 | // a KILL instead. This way, the physreg live ranges don't end up |
| 371 | // dangling. |
| 372 | // FIXME: It would be better to have something like shrinkToUses() for |
| 373 | // physregs. That could potentially enable more DCE and it would free up |
| 374 | // the physreg. It would not happen often, though. |
| 375 | if (ReadsPhysRegs) { |
| 376 | MI->setDesc(TII.get(Opcode: TargetOpcode::KILL)); |
| 377 | // Remove all operands that aren't physregs. |
| 378 | for (unsigned i = MI->getNumOperands(); i; --i) { |
| 379 | const MachineOperand &MO = MI->getOperand(i: i-1); |
| 380 | if (MO.isReg() && MO.getReg().isPhysical()) |
| 381 | continue; |
| 382 | MI->removeOperand(OpNo: i-1); |
| 383 | } |
| 384 | MI->dropMemRefs(MF&: *MI->getMF()); |
| 385 | LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); |
| 386 | } else { |
| 387 | // If the dest of MI is an original reg and MI is reMaterializable, |
| 388 | // don't delete the inst. Replace the dest with a new reg, and keep |
| 389 | // the inst for remat of other siblings. The inst is saved in |
| 390 | // LiveRangeEdit::DeadRemats and will be deleted after all the |
| 391 | // allocations of the func are done. |
| 392 | // However, immediately delete instructions which have unshrunk virtual |
| 393 | // register uses. That may provoke RA to split an interval at the KILL |
| 394 | // and later result in an invalid live segment end. |
| 395 | if (isOrigDef && DeadRemats && !HasLiveVRegUses && |
| 396 | TII.isTriviallyReMaterializable(MI: *MI)) { |
| 397 | LiveInterval &NewLI = createEmptyIntervalFrom(OldReg: Dest, createSubRanges: false); |
| 398 | VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); |
| 399 | VNInfo *VNI = NewLI.getNextValue(Def: Idx, VNInfoAllocator&: Alloc); |
| 400 | NewLI.addSegment(S: LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); |
| 401 | |
| 402 | if (DestSubReg) { |
| 403 | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); |
| 404 | auto *SR = NewLI.createSubRange( |
| 405 | Allocator&: Alloc, LaneMask: TRI->getSubRegIndexLaneMask(SubIdx: DestSubReg)); |
| 406 | SR->addSegment(S: LiveInterval::Segment(Idx, Idx.getDeadSlot(), |
| 407 | SR->getNextValue(Def: Idx, VNInfoAllocator&: Alloc))); |
| 408 | } |
| 409 | |
| 410 | pop_back(); |
| 411 | DeadRemats->insert(Ptr: MI); |
| 412 | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| 413 | MI->substituteRegister(FromReg: Dest, ToReg: NewLI.reg(), SubIdx: 0, RegInfo: TRI); |
| 414 | assert(MI->registerDefIsDead(NewLI.reg(), &TRI)); |
| 415 | } else { |
| 416 | if (TheDelegate) |
| 417 | TheDelegate->LRE_WillEraseInstruction(MI); |
| 418 | LIS.RemoveMachineInstrFromMaps(MI&: *MI); |
| 419 | MI->eraseFromParent(); |
| 420 | ++NumDCEDeleted; |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | // Erase any virtregs that are now empty and unused. There may be <undef> |
| 425 | // uses around. Keep the empty live range in that case. |
| 426 | for (Register Reg : RegsToErase) { |
| 427 | if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(RegNo: Reg)) { |
| 428 | ToShrink.remove(X: &LIS.getInterval(Reg)); |
| 429 | eraseVirtReg(Reg); |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, |
| 435 | ArrayRef<Register> RegsBeingSpilled) { |
| 436 | ToShrinkSet ToShrink; |
| 437 | |
| 438 | for (;;) { |
| 439 | // Erase all dead defs. |
| 440 | while (!Dead.empty()) |
| 441 | eliminateDeadDef(MI: Dead.pop_back_val(), ToShrink); |
| 442 | |
| 443 | if (ToShrink.empty()) |
| 444 | break; |
| 445 | |
| 446 | // Shrink just one live interval. Then delete new dead defs. |
| 447 | LiveInterval *LI = ToShrink.pop_back_val(); |
| 448 | if (foldAsLoad(LI, Dead)) |
| 449 | continue; |
| 450 | Register VReg = LI->reg(); |
| 451 | if (TheDelegate) |
| 452 | TheDelegate->LRE_WillShrinkVirtReg(VReg); |
| 453 | if (!LIS.shrinkToUses(li: LI, dead: &Dead)) |
| 454 | continue; |
| 455 | |
| 456 | // Don't create new intervals for a register being spilled. |
| 457 | // The new intervals would have to be spilled anyway so its not worth it. |
| 458 | // Also they currently aren't spilled so creating them and not spilling |
| 459 | // them results in incorrect code. |
| 460 | if (llvm::is_contained(Range&: RegsBeingSpilled, Element: VReg)) |
| 461 | continue; |
| 462 | |
| 463 | // LI may have been separated, create new intervals. |
| 464 | LI->RenumberValues(); |
| 465 | SmallVector<LiveInterval*, 8> SplitLIs; |
| 466 | LIS.splitSeparateComponents(LI&: *LI, SplitLIs); |
| 467 | if (!SplitLIs.empty()) |
| 468 | ++NumFracRanges; |
| 469 | |
| 470 | Register Original = VRM ? VRM->getOriginal(VirtReg: VReg) : Register(); |
| 471 | for (const LiveInterval *SplitLI : SplitLIs) { |
| 472 | // If LI is an original interval that hasn't been split yet, make the new |
| 473 | // intervals their own originals instead of referring to LI. The original |
| 474 | // interval must contain all the split products, and LI doesn't. |
| 475 | if (Original != VReg && Original != 0) |
| 476 | VRM->setIsSplitFromReg(virtReg: SplitLI->reg(), SReg: Original); |
| 477 | if (TheDelegate) |
| 478 | TheDelegate->LRE_DidCloneVirtReg(New: SplitLI->reg(), Old: VReg); |
| 479 | } |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | // Keep track of new virtual registers created via |
| 484 | // MachineRegisterInfo::createVirtualRegister. |
| 485 | void |
| 486 | LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) { |
| 487 | if (VRM) |
| 488 | VRM->grow(); |
| 489 | |
| 490 | NewRegs.push_back(Elt: VReg); |
| 491 | } |
| 492 | |
| 493 | void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, |
| 494 | VirtRegAuxInfo &VRAI) { |
| 495 | for (unsigned I = 0, Size = size(); I < Size; ++I) { |
| 496 | LiveInterval &LI = LIS.getInterval(Reg: get(idx: I)); |
| 497 | if (MRI.recomputeRegClass(Reg: LI.reg())) |
| 498 | LLVM_DEBUG({ |
| 499 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| 500 | dbgs() << "Inflated " << printReg(LI.reg()) << " to " |
| 501 | << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n'; |
| 502 | }); |
| 503 | VRAI.calculateSpillWeightAndHint(LI); |
| 504 | } |
| 505 | } |
| 506 | |