1 | //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements basic block placement transformations using the CFG |
10 | // structure and branch probability estimates. |
11 | // |
12 | // The pass strives to preserve the structure of the CFG (that is, retain |
13 | // a topological ordering of basic blocks) in the absence of a *strong* signal |
14 | // to the contrary from probabilities. However, within the CFG structure, it |
15 | // attempts to choose an ordering which favors placing more likely sequences of |
16 | // blocks adjacent to each other. |
17 | // |
18 | // The algorithm works from the inner-most loop within a function outward, and |
19 | // at each stage walks through the basic blocks, trying to coalesce them into |
20 | // sequential chains where allowed by the CFG (or demanded by heavy |
21 | // probabilities). Finally, it walks the blocks in topological order, and the |
22 | // first time it reaches a chain of basic blocks, it schedules them in the |
23 | // function in-order. |
24 | // |
25 | //===----------------------------------------------------------------------===// |
26 | |
27 | #include "llvm/CodeGen/MachineBlockPlacement.h" |
28 | #include "BranchFolding.h" |
29 | #include "llvm/ADT/ArrayRef.h" |
30 | #include "llvm/ADT/DenseMap.h" |
31 | #include "llvm/ADT/STLExtras.h" |
32 | #include "llvm/ADT/SetVector.h" |
33 | #include "llvm/ADT/SmallPtrSet.h" |
34 | #include "llvm/ADT/SmallVector.h" |
35 | #include "llvm/ADT/Statistic.h" |
36 | #include "llvm/Analysis/BlockFrequencyInfoImpl.h" |
37 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
38 | #include "llvm/CodeGen/MBFIWrapper.h" |
39 | #include "llvm/CodeGen/MachineBasicBlock.h" |
40 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
41 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
42 | #include "llvm/CodeGen/MachineFunction.h" |
43 | #include "llvm/CodeGen/MachineFunctionPass.h" |
44 | #include "llvm/CodeGen/MachineLoopInfo.h" |
45 | #include "llvm/CodeGen/MachinePostDominators.h" |
46 | #include "llvm/CodeGen/MachineSizeOpts.h" |
47 | #include "llvm/CodeGen/TailDuplicator.h" |
48 | #include "llvm/CodeGen/TargetInstrInfo.h" |
49 | #include "llvm/CodeGen/TargetLowering.h" |
50 | #include "llvm/CodeGen/TargetPassConfig.h" |
51 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
52 | #include "llvm/IR/DebugLoc.h" |
53 | #include "llvm/IR/Function.h" |
54 | #include "llvm/IR/PrintPasses.h" |
55 | #include "llvm/InitializePasses.h" |
56 | #include "llvm/Pass.h" |
57 | #include "llvm/Support/Allocator.h" |
58 | #include "llvm/Support/BlockFrequency.h" |
59 | #include "llvm/Support/BranchProbability.h" |
60 | #include "llvm/Support/CodeGen.h" |
61 | #include "llvm/Support/CommandLine.h" |
62 | #include "llvm/Support/Compiler.h" |
63 | #include "llvm/Support/Debug.h" |
64 | #include "llvm/Support/raw_ostream.h" |
65 | #include "llvm/Target/TargetMachine.h" |
66 | #include "llvm/Transforms/Utils/CodeLayout.h" |
67 | #include <algorithm> |
68 | #include <cassert> |
69 | #include <cstdint> |
70 | #include <iterator> |
71 | #include <memory> |
72 | #include <string> |
73 | #include <tuple> |
74 | #include <utility> |
75 | #include <vector> |
76 | |
77 | using namespace llvm; |
78 | |
79 | #define DEBUG_TYPE "block-placement" |
80 | |
81 | STATISTIC(NumCondBranches, "Number of conditional branches" ); |
82 | STATISTIC(NumUncondBranches, "Number of unconditional branches" ); |
83 | STATISTIC(CondBranchTakenFreq, |
84 | "Potential frequency of taking conditional branches" ); |
85 | STATISTIC(UncondBranchTakenFreq, |
86 | "Potential frequency of taking unconditional branches" ); |
87 | |
88 | static cl::opt<unsigned> AlignAllBlock( |
89 | "align-all-blocks" , |
90 | cl::desc("Force the alignment of all blocks in the function in log2 format " |
91 | "(e.g 4 means align on 16B boundaries)." ), |
92 | cl::init(Val: 0), cl::Hidden); |
93 | |
94 | static cl::opt<unsigned> AlignAllNonFallThruBlocks( |
95 | "align-all-nofallthru-blocks" , |
96 | cl::desc("Force the alignment of all blocks that have no fall-through " |
97 | "predecessors (i.e. don't add nops that are executed). In log2 " |
98 | "format (e.g 4 means align on 16B boundaries)." ), |
99 | cl::init(Val: 0), cl::Hidden); |
100 | |
101 | static cl::opt<unsigned> MaxBytesForAlignmentOverride( |
102 | "max-bytes-for-alignment" , |
103 | cl::desc("Forces the maximum bytes allowed to be emitted when padding for " |
104 | "alignment" ), |
105 | cl::init(Val: 0), cl::Hidden); |
106 | |
107 | static cl::opt<unsigned> PredecessorLimit( |
108 | "block-placement-predecessor-limit" , |
109 | cl::desc("For blocks with more predecessors, certain layout optimizations" |
110 | "will be disabled to prevent quadratic compile time." ), |
111 | cl::init(Val: 1000), cl::Hidden); |
112 | |
113 | // FIXME: Find a good default for this flag and remove the flag. |
114 | static cl::opt<unsigned> ExitBlockBias( |
115 | "block-placement-exit-block-bias" , |
116 | cl::desc("Block frequency percentage a loop exit block needs " |
117 | "over the original exit to be considered the new exit." ), |
118 | cl::init(Val: 0), cl::Hidden); |
119 | |
120 | // Definition: |
121 | // - Outlining: placement of a basic block outside the chain or hot path. |
122 | |
123 | static cl::opt<unsigned> LoopToColdBlockRatio( |
124 | "loop-to-cold-block-ratio" , |
125 | cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " |
126 | "(frequency of block) is greater than this ratio" ), |
127 | cl::init(Val: 5), cl::Hidden); |
128 | |
129 | static cl::opt<bool> |
130 | ForceLoopColdBlock("force-loop-cold-block" , |
131 | cl::desc("Force outlining cold blocks from loops." ), |
132 | cl::init(Val: false), cl::Hidden); |
133 | |
134 | static cl::opt<bool> |
135 | PreciseRotationCost("precise-rotation-cost" , |
136 | cl::desc("Model the cost of loop rotation more " |
137 | "precisely by using profile data." ), |
138 | cl::init(Val: false), cl::Hidden); |
139 | |
140 | static cl::opt<bool> |
141 | ForcePreciseRotationCost("force-precise-rotation-cost" , |
142 | cl::desc("Force the use of precise cost " |
143 | "loop rotation strategy." ), |
144 | cl::init(Val: false), cl::Hidden); |
145 | |
146 | static cl::opt<unsigned> MisfetchCost( |
147 | "misfetch-cost" , |
148 | cl::desc("Cost that models the probabilistic risk of an instruction " |
149 | "misfetch due to a jump comparing to falling through, whose cost " |
150 | "is zero." ), |
151 | cl::init(Val: 1), cl::Hidden); |
152 | |
153 | static cl::opt<unsigned> JumpInstCost("jump-inst-cost" , |
154 | cl::desc("Cost of jump instructions." ), |
155 | cl::init(Val: 1), cl::Hidden); |
156 | static cl::opt<bool> |
157 | TailDupPlacement("tail-dup-placement" , |
158 | cl::desc("Perform tail duplication during placement. " |
159 | "Creates more fallthrough opportunities in " |
160 | "outline branches." ), |
161 | cl::init(Val: true), cl::Hidden); |
162 | |
163 | static cl::opt<bool> |
164 | BranchFoldPlacement("branch-fold-placement" , |
165 | cl::desc("Perform branch folding during placement. " |
166 | "Reduces code size." ), |
167 | cl::init(Val: true), cl::Hidden); |
168 | |
169 | // Heuristic for tail duplication. |
170 | static cl::opt<unsigned> TailDupPlacementThreshold( |
171 | "tail-dup-placement-threshold" , |
172 | cl::desc("Instruction cutoff for tail duplication during layout. " |
173 | "Tail merging during layout is forced to have a threshold " |
174 | "that won't conflict." ), |
175 | cl::init(Val: 2), cl::Hidden); |
176 | |
177 | // Heuristic for aggressive tail duplication. |
178 | static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( |
179 | "tail-dup-placement-aggressive-threshold" , |
180 | cl::desc("Instruction cutoff for aggressive tail duplication during " |
181 | "layout. Used at -O3. Tail merging during layout is forced to " |
182 | "have a threshold that won't conflict." ), |
183 | cl::init(Val: 4), cl::Hidden); |
184 | |
185 | // Heuristic for tail duplication. |
186 | static cl::opt<unsigned> TailDupPlacementPenalty( |
187 | "tail-dup-placement-penalty" , |
188 | cl::desc( |
189 | "Cost penalty for blocks that can avoid breaking CFG by copying. " |
190 | "Copying can increase fallthrough, but it also increases icache " |
191 | "pressure. This parameter controls the penalty to account for that. " |
192 | "Percent as integer." ), |
193 | cl::init(Val: 2), cl::Hidden); |
194 | |
195 | // Heuristic for tail duplication if profile count is used in cost model. |
196 | static cl::opt<unsigned> TailDupProfilePercentThreshold( |
197 | "tail-dup-profile-percent-threshold" , |
198 | cl::desc("If profile count information is used in tail duplication cost " |
199 | "model, the gained fall through number from tail duplication " |
200 | "should be at least this percent of hot count." ), |
201 | cl::init(Val: 50), cl::Hidden); |
202 | |
203 | // Heuristic for triangle chains. |
204 | static cl::opt<unsigned> TriangleChainCount( |
205 | "triangle-chain-count" , |
206 | cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " |
207 | "triangle tail duplication heuristic to kick in. 0 to disable." ), |
208 | cl::init(Val: 2), cl::Hidden); |
209 | |
210 | // Use case: When block layout is visualized after MBP pass, the basic blocks |
211 | // are labeled in layout order; meanwhile blocks could be numbered in a |
212 | // different order. It's hard to map between the graph and pass output. |
213 | // With this option on, the basic blocks are renumbered in function layout |
214 | // order. For debugging only. |
215 | static cl::opt<bool> RenumberBlocksBeforeView( |
216 | "renumber-blocks-before-view" , |
217 | cl::desc( |
218 | "If true, basic blocks are re-numbered before MBP layout is printed " |
219 | "into a dot graph. Only used when a function is being printed." ), |
220 | cl::init(Val: false), cl::Hidden); |
221 | |
222 | static cl::opt<unsigned> ExtTspBlockPlacementMaxBlocks( |
223 | "ext-tsp-block-placement-max-blocks" , |
224 | cl::desc("Maximum number of basic blocks in a function to run ext-TSP " |
225 | "block placement." ), |
226 | cl::init(UINT_MAX), cl::Hidden); |
227 | |
228 | // Apply the ext-tsp algorithm minimizing the size of a binary. |
229 | static cl::opt<bool> |
230 | ApplyExtTspForSize("apply-ext-tsp-for-size" , cl::init(Val: false), cl::Hidden, |
231 | cl::desc("Use ext-tsp for size-aware block placement." )); |
232 | |
233 | namespace llvm { |
234 | extern cl::opt<bool> EnableExtTspBlockPlacement; |
235 | extern cl::opt<bool> ApplyExtTspWithoutProfile; |
236 | extern cl::opt<unsigned> StaticLikelyProb; |
237 | extern cl::opt<unsigned> ProfileLikelyProb; |
238 | |
239 | // Internal option used to control BFI display only after MBP pass. |
240 | // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: |
241 | // -view-block-layout-with-bfi= |
242 | extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; |
243 | |
244 | // Command line option to specify the name of the function for CFG dump |
245 | // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= |
246 | extern cl::opt<std::string> ViewBlockFreqFuncName; |
247 | } // namespace llvm |
248 | |
249 | namespace { |
250 | |
251 | class BlockChain; |
252 | |
253 | /// Type for our function-wide basic block -> block chain mapping. |
254 | using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; |
255 | |
256 | /// A chain of blocks which will be laid out contiguously. |
257 | /// |
258 | /// This is the datastructure representing a chain of consecutive blocks that |
259 | /// are profitable to layout together in order to maximize fallthrough |
260 | /// probabilities and code locality. We also can use a block chain to represent |
261 | /// a sequence of basic blocks which have some external (correctness) |
262 | /// requirement for sequential layout. |
263 | /// |
264 | /// Chains can be built around a single basic block and can be merged to grow |
265 | /// them. They participate in a block-to-chain mapping, which is updated |
266 | /// automatically as chains are merged together. |
267 | class BlockChain { |
268 | /// The sequence of blocks belonging to this chain. |
269 | /// |
270 | /// This is the sequence of blocks for a particular chain. These will be laid |
271 | /// out in-order within the function. |
272 | SmallVector<MachineBasicBlock *, 4> Blocks; |
273 | |
274 | /// A handle to the function-wide basic block to block chain mapping. |
275 | /// |
276 | /// This is retained in each block chain to simplify the computation of child |
277 | /// block chains for SCC-formation and iteration. We store the edges to child |
278 | /// basic blocks, and map them back to their associated chains using this |
279 | /// structure. |
280 | BlockToChainMapType &BlockToChain; |
281 | |
282 | public: |
283 | /// Construct a new BlockChain. |
284 | /// |
285 | /// This builds a new block chain representing a single basic block in the |
286 | /// function. It also registers itself as the chain that block participates |
287 | /// in with the BlockToChain mapping. |
288 | BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) |
289 | : Blocks(1, BB), BlockToChain(BlockToChain) { |
290 | assert(BB && "Cannot create a chain with a null basic block" ); |
291 | BlockToChain[BB] = this; |
292 | } |
293 | |
294 | /// Iterator over blocks within the chain. |
295 | using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; |
296 | using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; |
297 | |
298 | /// Beginning of blocks within the chain. |
299 | iterator begin() { return Blocks.begin(); } |
300 | const_iterator begin() const { return Blocks.begin(); } |
301 | |
302 | /// End of blocks within the chain. |
303 | iterator end() { return Blocks.end(); } |
304 | const_iterator end() const { return Blocks.end(); } |
305 | |
306 | bool remove(MachineBasicBlock *BB) { |
307 | for (iterator i = begin(); i != end(); ++i) { |
308 | if (*i == BB) { |
309 | Blocks.erase(CI: i); |
310 | return true; |
311 | } |
312 | } |
313 | return false; |
314 | } |
315 | |
316 | /// Merge a block chain into this one. |
317 | /// |
318 | /// This routine merges a block chain into this one. It takes care of forming |
319 | /// a contiguous sequence of basic blocks, updating the edge list, and |
320 | /// updating the block -> chain mapping. It does not free or tear down the |
321 | /// old chain, but the old chain's block list is no longer valid. |
322 | void merge(MachineBasicBlock *BB, BlockChain *Chain) { |
323 | assert(BB && "Can't merge a null block." ); |
324 | assert(!Blocks.empty() && "Can't merge into an empty chain." ); |
325 | |
326 | // Fast path in case we don't have a chain already. |
327 | if (!Chain) { |
328 | assert(!BlockToChain[BB] && |
329 | "Passed chain is null, but BB has entry in BlockToChain." ); |
330 | Blocks.push_back(Elt: BB); |
331 | BlockToChain[BB] = this; |
332 | return; |
333 | } |
334 | |
335 | assert(BB == *Chain->begin() && "Passed BB is not head of Chain." ); |
336 | assert(Chain->begin() != Chain->end()); |
337 | |
338 | // Update the incoming blocks to point to this chain, and add them to the |
339 | // chain structure. |
340 | for (MachineBasicBlock *ChainBB : *Chain) { |
341 | Blocks.push_back(Elt: ChainBB); |
342 | assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain." ); |
343 | BlockToChain[ChainBB] = this; |
344 | } |
345 | } |
346 | |
347 | #ifndef NDEBUG |
348 | /// Dump the blocks in this chain. |
349 | LLVM_DUMP_METHOD void dump() { |
350 | for (MachineBasicBlock *MBB : *this) |
351 | MBB->dump(); |
352 | } |
353 | #endif // NDEBUG |
354 | |
355 | /// Count of predecessors of any block within the chain which have not |
356 | /// yet been scheduled. In general, we will delay scheduling this chain |
357 | /// until those predecessors are scheduled (or we find a sufficiently good |
358 | /// reason to override this heuristic.) Note that when forming loop chains, |
359 | /// blocks outside the loop are ignored and treated as if they were already |
360 | /// scheduled. |
361 | /// |
362 | /// Note: This field is reinitialized multiple times - once for each loop, |
363 | /// and then once for the function as a whole. |
364 | unsigned UnscheduledPredecessors = 0; |
365 | }; |
366 | |
367 | class MachineBlockPlacement { |
368 | /// A type for a block filter set. |
369 | using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; |
370 | |
371 | /// Pair struct containing basic block and taildup profitability |
372 | struct BlockAndTailDupResult { |
373 | MachineBasicBlock *BB = nullptr; |
374 | bool ShouldTailDup; |
375 | }; |
376 | |
377 | /// Triple struct containing edge weight and the edge. |
378 | struct WeightedEdge { |
379 | BlockFrequency Weight; |
380 | MachineBasicBlock *Src = nullptr; |
381 | MachineBasicBlock *Dest = nullptr; |
382 | }; |
383 | |
384 | /// work lists of blocks that are ready to be laid out |
385 | SmallVector<MachineBasicBlock *, 16> BlockWorkList; |
386 | SmallVector<MachineBasicBlock *, 16> EHPadWorkList; |
387 | |
388 | /// Edges that have already been computed as optimal. |
389 | DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; |
390 | |
391 | /// Machine Function |
392 | MachineFunction *F = nullptr; |
393 | |
394 | /// A handle to the branch probability pass. |
395 | const MachineBranchProbabilityInfo *MBPI = nullptr; |
396 | |
397 | /// A handle to the function-wide block frequency pass. |
398 | std::unique_ptr<MBFIWrapper> MBFI; |
399 | |
400 | /// A handle to the loop info. |
401 | MachineLoopInfo *MLI = nullptr; |
402 | |
403 | /// Preferred loop exit. |
404 | /// Member variable for convenience. It may be removed by duplication deep |
405 | /// in the call stack. |
406 | MachineBasicBlock *PreferredLoopExit = nullptr; |
407 | |
408 | /// A handle to the target's instruction info. |
409 | const TargetInstrInfo *TII = nullptr; |
410 | |
411 | /// A handle to the target's lowering info. |
412 | const TargetLoweringBase *TLI = nullptr; |
413 | |
414 | /// A handle to the post dominator tree. |
415 | MachinePostDominatorTree *MPDT = nullptr; |
416 | |
417 | ProfileSummaryInfo *PSI = nullptr; |
418 | |
419 | // Tail merging is also determined based on |
420 | // whether structured CFG is required. |
421 | bool AllowTailMerge; |
422 | |
423 | CodeGenOptLevel OptLevel; |
424 | |
425 | /// Duplicator used to duplicate tails during placement. |
426 | /// |
427 | /// Placement decisions can open up new tail duplication opportunities, but |
428 | /// since tail duplication affects placement decisions of later blocks, it |
429 | /// must be done inline. |
430 | TailDuplicator TailDup; |
431 | |
432 | /// Partial tail duplication threshold. |
433 | BlockFrequency DupThreshold; |
434 | |
435 | unsigned TailDupSize; |
436 | |
437 | /// True: use block profile count to compute tail duplication cost. |
438 | /// False: use block frequency to compute tail duplication cost. |
439 | bool UseProfileCount = false; |
440 | |
441 | /// Allocator and owner of BlockChain structures. |
442 | /// |
443 | /// We build BlockChains lazily while processing the loop structure of |
444 | /// a function. To reduce malloc traffic, we allocate them using this |
445 | /// slab-like allocator, and destroy them after the pass completes. An |
446 | /// important guarantee is that this allocator produces stable pointers to |
447 | /// the chains. |
448 | SpecificBumpPtrAllocator<BlockChain> ChainAllocator; |
449 | |
450 | /// Function wide BasicBlock to BlockChain mapping. |
451 | /// |
452 | /// This mapping allows efficiently moving from any given basic block to the |
453 | /// BlockChain it participates in, if any. We use it to, among other things, |
454 | /// allow implicitly defining edges between chains as the existing edges |
455 | /// between basic blocks. |
456 | DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; |
457 | |
458 | #ifndef NDEBUG |
459 | /// The set of basic blocks that have terminators that cannot be fully |
460 | /// analyzed. These basic blocks cannot be re-ordered safely by |
461 | /// MachineBlockPlacement, and we must preserve physical layout of these |
462 | /// blocks and their successors through the pass. |
463 | SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; |
464 | #endif |
465 | |
466 | /// Get block profile count or frequency according to UseProfileCount. |
467 | /// The return value is used to model tail duplication cost. |
468 | BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { |
469 | if (UseProfileCount) { |
470 | auto Count = MBFI->getBlockProfileCount(MBB: BB); |
471 | if (Count) |
472 | return BlockFrequency(*Count); |
473 | else |
474 | return BlockFrequency(0); |
475 | } else |
476 | return MBFI->getBlockFreq(MBB: BB); |
477 | } |
478 | |
479 | /// Scale the DupThreshold according to basic block size. |
480 | BlockFrequency scaleThreshold(MachineBasicBlock *BB); |
481 | void initTailDupThreshold(); |
482 | |
483 | /// Decrease the UnscheduledPredecessors count for all blocks in chain, and |
484 | /// if the count goes to 0, add them to the appropriate work list. |
485 | void markChainSuccessors(const BlockChain &Chain, |
486 | const MachineBasicBlock *, |
487 | const BlockFilterSet *BlockFilter = nullptr); |
488 | |
489 | /// Decrease the UnscheduledPredecessors count for a single block, and |
490 | /// if the count goes to 0, add them to the appropriate work list. |
491 | void markBlockSuccessors(const BlockChain &Chain, const MachineBasicBlock *BB, |
492 | const MachineBasicBlock *, |
493 | const BlockFilterSet *BlockFilter = nullptr); |
494 | |
495 | BranchProbability |
496 | collectViableSuccessors(const MachineBasicBlock *BB, const BlockChain &Chain, |
497 | const BlockFilterSet *BlockFilter, |
498 | SmallVector<MachineBasicBlock *, 4> &Successors); |
499 | bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, |
500 | BlockFilterSet *BlockFilter); |
501 | void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, |
502 | MachineBasicBlock *BB, |
503 | BlockFilterSet *BlockFilter); |
504 | bool repeatedlyTailDuplicateBlock( |
505 | MachineBasicBlock *BB, MachineBasicBlock *&LPred, |
506 | const MachineBasicBlock *, BlockChain &Chain, |
507 | BlockFilterSet *BlockFilter, |
508 | MachineFunction::iterator &PrevUnplacedBlockIt, |
509 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt); |
510 | bool |
511 | maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred, |
512 | BlockChain &Chain, BlockFilterSet *BlockFilter, |
513 | MachineFunction::iterator &PrevUnplacedBlockIt, |
514 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, |
515 | bool &DuplicatedToLPred); |
516 | bool hasBetterLayoutPredecessor(const MachineBasicBlock *BB, |
517 | const MachineBasicBlock *Succ, |
518 | const BlockChain &SuccChain, |
519 | BranchProbability SuccProb, |
520 | BranchProbability RealSuccProb, |
521 | const BlockChain &Chain, |
522 | const BlockFilterSet *BlockFilter); |
523 | BlockAndTailDupResult selectBestSuccessor(const MachineBasicBlock *BB, |
524 | const BlockChain &Chain, |
525 | const BlockFilterSet *BlockFilter); |
526 | MachineBasicBlock * |
527 | selectBestCandidateBlock(const BlockChain &Chain, |
528 | SmallVectorImpl<MachineBasicBlock *> &WorkList); |
529 | MachineBasicBlock * |
530 | getFirstUnplacedBlock(const BlockChain &PlacedChain, |
531 | MachineFunction::iterator &PrevUnplacedBlockIt); |
532 | MachineBasicBlock * |
533 | getFirstUnplacedBlock(const BlockChain &PlacedChain, |
534 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, |
535 | const BlockFilterSet *BlockFilter); |
536 | |
537 | /// Add a basic block to the work list if it is appropriate. |
538 | /// |
539 | /// If the optional parameter BlockFilter is provided, only MBB |
540 | /// present in the set will be added to the worklist. If nullptr |
541 | /// is provided, no filtering occurs. |
542 | void fillWorkLists(const MachineBasicBlock *MBB, |
543 | SmallPtrSetImpl<BlockChain *> &UpdatedPreds, |
544 | const BlockFilterSet *BlockFilter); |
545 | |
546 | void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, |
547 | BlockFilterSet *BlockFilter = nullptr); |
548 | bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, |
549 | const MachineBasicBlock *OldTop); |
550 | bool hasViableTopFallthrough(const MachineBasicBlock *Top, |
551 | const BlockFilterSet &LoopBlockSet); |
552 | BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, |
553 | const BlockFilterSet &LoopBlockSet); |
554 | BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, |
555 | const MachineBasicBlock *OldTop, |
556 | const MachineBasicBlock *ExitBB, |
557 | const BlockFilterSet &LoopBlockSet); |
558 | MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, |
559 | const MachineLoop &L, |
560 | const BlockFilterSet &LoopBlockSet); |
561 | MachineBasicBlock *findBestLoopTop(const MachineLoop &L, |
562 | const BlockFilterSet &LoopBlockSet); |
563 | MachineBasicBlock *findBestLoopExit(const MachineLoop &L, |
564 | const BlockFilterSet &LoopBlockSet, |
565 | BlockFrequency &ExitFreq); |
566 | BlockFilterSet collectLoopBlockSet(const MachineLoop &L); |
567 | void buildLoopChains(const MachineLoop &L); |
568 | void rotateLoop(BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, |
569 | BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); |
570 | void rotateLoopWithProfile(BlockChain &LoopChain, const MachineLoop &L, |
571 | const BlockFilterSet &LoopBlockSet); |
572 | void buildCFGChains(); |
573 | void optimizeBranches(); |
574 | void alignBlocks(); |
575 | /// Returns true if a block should be tail-duplicated to increase fallthrough |
576 | /// opportunities. |
577 | bool shouldTailDuplicate(MachineBasicBlock *BB); |
578 | /// Check the edge frequencies to see if tail duplication will increase |
579 | /// fallthroughs. |
580 | bool isProfitableToTailDup(const MachineBasicBlock *BB, |
581 | const MachineBasicBlock *Succ, |
582 | BranchProbability QProb, const BlockChain &Chain, |
583 | const BlockFilterSet *BlockFilter); |
584 | |
585 | /// Check for a trellis layout. |
586 | bool isTrellis(const MachineBasicBlock *BB, |
587 | const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, |
588 | const BlockChain &Chain, const BlockFilterSet *BlockFilter); |
589 | |
590 | /// Get the best successor given a trellis layout. |
591 | BlockAndTailDupResult getBestTrellisSuccessor( |
592 | const MachineBasicBlock *BB, |
593 | const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, |
594 | BranchProbability AdjustedSumProb, const BlockChain &Chain, |
595 | const BlockFilterSet *BlockFilter); |
596 | |
597 | /// Get the best pair of non-conflicting edges. |
598 | static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( |
599 | const MachineBasicBlock *BB, |
600 | MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); |
601 | |
602 | /// Returns true if a block can tail duplicate into all unplaced |
603 | /// predecessors. Filters based on loop. |
604 | bool canTailDuplicateUnplacedPreds(const MachineBasicBlock *BB, |
605 | MachineBasicBlock *Succ, |
606 | const BlockChain &Chain, |
607 | const BlockFilterSet *BlockFilter); |
608 | |
609 | /// Find chains of triangles to tail-duplicate where a global analysis works, |
610 | /// but a local analysis would not find them. |
611 | void precomputeTriangleChains(); |
612 | |
613 | /// Apply a post-processing step optimizing block placement. |
614 | void applyExtTsp(bool OptForSize); |
615 | |
616 | /// Modify the existing block placement in the function and adjust all jumps. |
617 | void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder); |
618 | |
619 | /// Create a single CFG chain from the current block order. |
620 | void createCFGChainExtTsp(); |
621 | |
622 | public: |
623 | MachineBlockPlacement(const MachineBranchProbabilityInfo *MBPI, |
624 | MachineLoopInfo *MLI, ProfileSummaryInfo *PSI, |
625 | std::unique_ptr<MBFIWrapper> MBFI, |
626 | MachinePostDominatorTree *MPDT, bool AllowTailMerge) |
627 | : MBPI(MBPI), MBFI(std::move(MBFI)), MLI(MLI), MPDT(MPDT), PSI(PSI), |
628 | AllowTailMerge(AllowTailMerge) {}; |
629 | |
630 | bool run(MachineFunction &F); |
631 | |
632 | static bool allowTailDupPlacement(MachineFunction &MF) { |
633 | return TailDupPlacement && !MF.getTarget().requiresStructuredCFG(); |
634 | } |
635 | }; |
636 | |
637 | class MachineBlockPlacementLegacy : public MachineFunctionPass { |
638 | public: |
639 | static char ID; // Pass identification, replacement for typeid |
640 | |
641 | MachineBlockPlacementLegacy() : MachineFunctionPass(ID) { |
642 | initializeMachineBlockPlacementLegacyPass(*PassRegistry::getPassRegistry()); |
643 | } |
644 | |
645 | bool runOnMachineFunction(MachineFunction &MF) override { |
646 | if (skipFunction(F: MF.getFunction())) |
647 | return false; |
648 | |
649 | auto *MBPI = |
650 | &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
651 | auto MBFI = std::make_unique<MBFIWrapper>( |
652 | args&: getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()); |
653 | auto *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
654 | auto *MPDT = MachineBlockPlacement::allowTailDupPlacement(MF) |
655 | ? &getAnalysis<MachinePostDominatorTreeWrapperPass>() |
656 | .getPostDomTree() |
657 | : nullptr; |
658 | auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
659 | auto *PassConfig = &getAnalysis<TargetPassConfig>(); |
660 | bool AllowTailMerge = PassConfig->getEnableTailMerge(); |
661 | return MachineBlockPlacement(MBPI, MLI, PSI, std::move(MBFI), MPDT, |
662 | AllowTailMerge) |
663 | .run(F&: MF); |
664 | } |
665 | |
666 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
667 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
668 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
669 | if (TailDupPlacement) |
670 | AU.addRequired<MachinePostDominatorTreeWrapperPass>(); |
671 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
672 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
673 | AU.addRequired<TargetPassConfig>(); |
674 | MachineFunctionPass::getAnalysisUsage(AU); |
675 | } |
676 | }; |
677 | |
678 | } // end anonymous namespace |
679 | |
680 | char MachineBlockPlacementLegacy::ID = 0; |
681 | |
682 | char &llvm::MachineBlockPlacementID = MachineBlockPlacementLegacy::ID; |
683 | |
684 | INITIALIZE_PASS_BEGIN(MachineBlockPlacementLegacy, DEBUG_TYPE, |
685 | "Branch Probability Basic Block Placement" , false, false) |
686 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) |
687 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
688 | INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) |
689 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
690 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
691 | INITIALIZE_PASS_END(MachineBlockPlacementLegacy, DEBUG_TYPE, |
692 | "Branch Probability Basic Block Placement" , false, false) |
693 | |
694 | #ifndef NDEBUG |
695 | /// Helper to print the name of a MBB. |
696 | /// |
697 | /// Only used by debug logging. |
698 | static std::string getBlockName(const MachineBasicBlock *BB) { |
699 | std::string Result; |
700 | raw_string_ostream OS(Result); |
701 | OS << printMBBReference(*BB); |
702 | OS << " ('" << BB->getName() << "')" ; |
703 | OS.flush(); |
704 | return Result; |
705 | } |
706 | #endif |
707 | |
708 | /// Mark a chain's successors as having one fewer preds. |
709 | /// |
710 | /// When a chain is being merged into the "placed" chain, this routine will |
711 | /// quickly walk the successors of each block in the chain and mark them as |
712 | /// having one fewer active predecessor. It also adds any successors of this |
713 | /// chain which reach the zero-predecessor state to the appropriate worklist. |
714 | void MachineBlockPlacement::markChainSuccessors( |
715 | const BlockChain &Chain, const MachineBasicBlock *, |
716 | const BlockFilterSet *BlockFilter) { |
717 | // Walk all the blocks in this chain, marking their successors as having |
718 | // a predecessor placed. |
719 | for (MachineBasicBlock *MBB : Chain) { |
720 | markBlockSuccessors(Chain, BB: MBB, LoopHeaderBB, BlockFilter); |
721 | } |
722 | } |
723 | |
724 | /// Mark a single block's successors as having one fewer preds. |
725 | /// |
726 | /// Under normal circumstances, this is only called by markChainSuccessors, |
727 | /// but if a block that was to be placed is completely tail-duplicated away, |
728 | /// and was duplicated into the chain end, we need to redo markBlockSuccessors |
729 | /// for just that block. |
730 | void MachineBlockPlacement::markBlockSuccessors( |
731 | const BlockChain &Chain, const MachineBasicBlock *MBB, |
732 | const MachineBasicBlock *, const BlockFilterSet *BlockFilter) { |
733 | // Add any successors for which this is the only un-placed in-loop |
734 | // predecessor to the worklist as a viable candidate for CFG-neutral |
735 | // placement. No subsequent placement of this block will violate the CFG |
736 | // shape, so we get to use heuristics to choose a favorable placement. |
737 | for (MachineBasicBlock *Succ : MBB->successors()) { |
738 | if (BlockFilter && !BlockFilter->count(key: Succ)) |
739 | continue; |
740 | BlockChain &SuccChain = *BlockToChain[Succ]; |
741 | // Disregard edges within a fixed chain, or edges to the loop header. |
742 | if (&Chain == &SuccChain || Succ == LoopHeaderBB) |
743 | continue; |
744 | |
745 | // This is a cross-chain edge that is within the loop, so decrement the |
746 | // loop predecessor count of the destination chain. |
747 | if (SuccChain.UnscheduledPredecessors == 0 || |
748 | --SuccChain.UnscheduledPredecessors > 0) |
749 | continue; |
750 | |
751 | auto *NewBB = *SuccChain.begin(); |
752 | if (NewBB->isEHPad()) |
753 | EHPadWorkList.push_back(Elt: NewBB); |
754 | else |
755 | BlockWorkList.push_back(Elt: NewBB); |
756 | } |
757 | } |
758 | |
759 | /// This helper function collects the set of successors of block |
760 | /// \p BB that are allowed to be its layout successors, and return |
761 | /// the total branch probability of edges from \p BB to those |
762 | /// blocks. |
763 | BranchProbability MachineBlockPlacement::collectViableSuccessors( |
764 | const MachineBasicBlock *BB, const BlockChain &Chain, |
765 | const BlockFilterSet *BlockFilter, |
766 | SmallVector<MachineBasicBlock *, 4> &Successors) { |
767 | // Adjust edge probabilities by excluding edges pointing to blocks that is |
768 | // either not in BlockFilter or is already in the current chain. Consider the |
769 | // following CFG: |
770 | // |
771 | // --->A |
772 | // | / \ |
773 | // | B C |
774 | // | \ / \ |
775 | // ----D E |
776 | // |
777 | // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after |
778 | // A->C is chosen as a fall-through, D won't be selected as a successor of C |
779 | // due to CFG constraint (the probability of C->D is not greater than |
780 | // HotProb to break topo-order). If we exclude E that is not in BlockFilter |
781 | // when calculating the probability of C->D, D will be selected and we |
782 | // will get A C D B as the layout of this loop. |
783 | auto AdjustedSumProb = BranchProbability::getOne(); |
784 | for (MachineBasicBlock *Succ : BB->successors()) { |
785 | bool SkipSucc = false; |
786 | if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(key: Succ))) { |
787 | SkipSucc = true; |
788 | } else { |
789 | BlockChain *SuccChain = BlockToChain[Succ]; |
790 | if (SuccChain == &Chain) { |
791 | SkipSucc = true; |
792 | } else if (Succ != *SuccChain->begin()) { |
793 | LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) |
794 | << " -> Mid chain!\n" ); |
795 | continue; |
796 | } |
797 | } |
798 | if (SkipSucc) |
799 | AdjustedSumProb -= MBPI->getEdgeProbability(Src: BB, Dst: Succ); |
800 | else |
801 | Successors.push_back(Elt: Succ); |
802 | } |
803 | |
804 | return AdjustedSumProb; |
805 | } |
806 | |
807 | /// The helper function returns the branch probability that is adjusted |
808 | /// or normalized over the new total \p AdjustedSumProb. |
809 | static BranchProbability |
810 | getAdjustedProbability(BranchProbability OrigProb, |
811 | BranchProbability AdjustedSumProb) { |
812 | BranchProbability SuccProb; |
813 | uint32_t SuccProbN = OrigProb.getNumerator(); |
814 | uint32_t SuccProbD = AdjustedSumProb.getNumerator(); |
815 | if (SuccProbN >= SuccProbD) |
816 | SuccProb = BranchProbability::getOne(); |
817 | else |
818 | SuccProb = BranchProbability(SuccProbN, SuccProbD); |
819 | |
820 | return SuccProb; |
821 | } |
822 | |
823 | /// Check if \p BB has exactly the successors in \p Successors. |
824 | static bool |
825 | hasSameSuccessors(MachineBasicBlock &BB, |
826 | SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { |
827 | if (BB.succ_size() != Successors.size()) |
828 | return false; |
829 | // We don't want to count self-loops |
830 | if (Successors.count(Ptr: &BB)) |
831 | return false; |
832 | for (MachineBasicBlock *Succ : BB.successors()) |
833 | if (!Successors.count(Ptr: Succ)) |
834 | return false; |
835 | return true; |
836 | } |
837 | |
838 | /// Check if a block should be tail duplicated to increase fallthrough |
839 | /// opportunities. |
840 | /// \p BB Block to check. |
841 | bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { |
842 | // Blocks with single successors don't create additional fallthrough |
843 | // opportunities. Don't duplicate them. TODO: When conditional exits are |
844 | // analyzable, allow them to be duplicated. |
845 | bool IsSimple = TailDup.isSimpleBB(TailBB: BB); |
846 | |
847 | if (BB->succ_size() == 1) |
848 | return false; |
849 | return TailDup.shouldTailDuplicate(IsSimple, TailBB&: *BB); |
850 | } |
851 | |
852 | /// Compare 2 BlockFrequency's with a small penalty for \p A. |
853 | /// In order to be conservative, we apply a X% penalty to account for |
854 | /// increased icache pressure and static heuristics. For small frequencies |
855 | /// we use only the numerators to improve accuracy. For simplicity, we assume |
856 | /// the penalty is less than 100% |
857 | /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. |
858 | static bool greaterWithBias(BlockFrequency A, BlockFrequency B, |
859 | BlockFrequency EntryFreq) { |
860 | BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); |
861 | BlockFrequency Gain = A - B; |
862 | return (Gain / ThresholdProb) >= EntryFreq; |
863 | } |
864 | |
865 | /// Check the edge frequencies to see if tail duplication will increase |
866 | /// fallthroughs. It only makes sense to call this function when |
867 | /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is |
868 | /// always locally profitable if we would have picked \p Succ without |
869 | /// considering duplication. |
870 | bool MachineBlockPlacement::isProfitableToTailDup( |
871 | const MachineBasicBlock *BB, const MachineBasicBlock *Succ, |
872 | BranchProbability QProb, const BlockChain &Chain, |
873 | const BlockFilterSet *BlockFilter) { |
874 | // We need to do a probability calculation to make sure this is profitable. |
875 | // First: does succ have a successor that post-dominates? This affects the |
876 | // calculation. The 2 relevant cases are: |
877 | // BB BB |
878 | // | \Qout | \Qout |
879 | // P| C |P C |
880 | // = C' = C' |
881 | // | /Qin | /Qin |
882 | // | / | / |
883 | // Succ Succ |
884 | // / \ | \ V |
885 | // U/ =V |U \ |
886 | // / \ = D |
887 | // D E | / |
888 | // | / |
889 | // |/ |
890 | // PDom |
891 | // '=' : Branch taken for that CFG edge |
892 | // In the second case, Placing Succ while duplicating it into C prevents the |
893 | // fallthrough of Succ into either D or PDom, because they now have C as an |
894 | // unplaced predecessor |
895 | |
896 | // Start by figuring out which case we fall into |
897 | MachineBasicBlock *PDom = nullptr; |
898 | SmallVector<MachineBasicBlock *, 4> SuccSuccs; |
899 | // Only scan the relevant successors |
900 | auto AdjustedSuccSumProb = |
901 | collectViableSuccessors(BB: Succ, Chain, BlockFilter, Successors&: SuccSuccs); |
902 | BranchProbability PProb = MBPI->getEdgeProbability(Src: BB, Dst: Succ); |
903 | auto BBFreq = MBFI->getBlockFreq(MBB: BB); |
904 | auto SuccFreq = MBFI->getBlockFreq(MBB: Succ); |
905 | BlockFrequency P = BBFreq * PProb; |
906 | BlockFrequency Qout = BBFreq * QProb; |
907 | BlockFrequency EntryFreq = MBFI->getEntryFreq(); |
908 | // If there are no more successors, it is profitable to copy, as it strictly |
909 | // increases fallthrough. |
910 | if (SuccSuccs.size() == 0) |
911 | return greaterWithBias(A: P, B: Qout, EntryFreq); |
912 | |
913 | auto BestSuccSucc = BranchProbability::getZero(); |
914 | // Find the PDom or the best Succ if no PDom exists. |
915 | for (MachineBasicBlock *SuccSucc : SuccSuccs) { |
916 | auto Prob = MBPI->getEdgeProbability(Src: Succ, Dst: SuccSucc); |
917 | if (Prob > BestSuccSucc) |
918 | BestSuccSucc = Prob; |
919 | if (PDom == nullptr) |
920 | if (MPDT->dominates(A: SuccSucc, B: Succ)) { |
921 | PDom = SuccSucc; |
922 | break; |
923 | } |
924 | } |
925 | // For the comparisons, we need to know Succ's best incoming edge that isn't |
926 | // from BB. |
927 | auto SuccBestPred = BlockFrequency(0); |
928 | for (MachineBasicBlock *SuccPred : Succ->predecessors()) { |
929 | if (SuccPred == Succ || SuccPred == BB || |
930 | BlockToChain[SuccPred] == &Chain || |
931 | (BlockFilter && !BlockFilter->count(key: SuccPred))) |
932 | continue; |
933 | auto Freq = |
934 | MBFI->getBlockFreq(MBB: SuccPred) * MBPI->getEdgeProbability(Src: SuccPred, Dst: Succ); |
935 | if (Freq > SuccBestPred) |
936 | SuccBestPred = Freq; |
937 | } |
938 | // Qin is Succ's best unplaced incoming edge that isn't BB |
939 | BlockFrequency Qin = SuccBestPred; |
940 | // If it doesn't have a post-dominating successor, here is the calculation: |
941 | // BB BB |
942 | // | \Qout | \ |
943 | // P| C | = |
944 | // = C' | C |
945 | // | /Qin | | |
946 | // | / | C' (+Succ) |
947 | // Succ Succ /| |
948 | // / \ | \/ | |
949 | // U/ =V | == | |
950 | // / \ | / \| |
951 | // D E D E |
952 | // '=' : Branch taken for that CFG edge |
953 | // Cost in the first case is: P + V |
954 | // For this calculation, we always assume P > Qout. If Qout > P |
955 | // The result of this function will be ignored at the caller. |
956 | // Let F = SuccFreq - Qin |
957 | // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V |
958 | |
959 | if (PDom == nullptr || !Succ->isSuccessor(MBB: PDom)) { |
960 | BranchProbability UProb = BestSuccSucc; |
961 | BranchProbability VProb = AdjustedSuccSumProb - UProb; |
962 | BlockFrequency F = SuccFreq - Qin; |
963 | BlockFrequency V = SuccFreq * VProb; |
964 | BlockFrequency QinU = std::min(a: Qin, b: F) * UProb; |
965 | BlockFrequency BaseCost = P + V; |
966 | BlockFrequency DupCost = Qout + QinU + std::max(a: Qin, b: F) * VProb; |
967 | return greaterWithBias(A: BaseCost, B: DupCost, EntryFreq); |
968 | } |
969 | BranchProbability UProb = MBPI->getEdgeProbability(Src: Succ, Dst: PDom); |
970 | BranchProbability VProb = AdjustedSuccSumProb - UProb; |
971 | BlockFrequency U = SuccFreq * UProb; |
972 | BlockFrequency V = SuccFreq * VProb; |
973 | BlockFrequency F = SuccFreq - Qin; |
974 | // If there is a post-dominating successor, here is the calculation: |
975 | // BB BB BB BB |
976 | // | \Qout | \ | \Qout | \ |
977 | // |P C | = |P C | = |
978 | // = C' |P C = C' |P C |
979 | // | /Qin | | | /Qin | | |
980 | // | / | C' (+Succ) | / | C' (+Succ) |
981 | // Succ Succ /| Succ Succ /| |
982 | // | \ V | \/ | | \ V | \/ | |
983 | // |U \ |U /\ =? |U = |U /\ | |
984 | // = D = = =?| | D | = =| |
985 | // | / |/ D | / |/ D |
986 | // | / | / | = | / |
987 | // |/ | / |/ | = |
988 | // Dom Dom Dom Dom |
989 | // '=' : Branch taken for that CFG edge |
990 | // The cost for taken branches in the first case is P + U |
991 | // Let F = SuccFreq - Qin |
992 | // The cost in the second case (assuming independence), given the layout: |
993 | // BB, Succ, (C+Succ), D, Dom or the layout: |
994 | // BB, Succ, D, Dom, (C+Succ) |
995 | // is Qout + max(F, Qin) * U + min(F, Qin) |
996 | // compare P + U vs Qout + P * U + Qin. |
997 | // |
998 | // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. |
999 | // |
1000 | // For the 3rd case, the cost is P + 2 * V |
1001 | // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V |
1002 | // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V |
1003 | if (UProb > AdjustedSuccSumProb / 2 && |
1004 | !hasBetterLayoutPredecessor(BB: Succ, Succ: PDom, SuccChain: *BlockToChain[PDom], SuccProb: UProb, RealSuccProb: UProb, |
1005 | Chain, BlockFilter)) |
1006 | // Cases 3 & 4 |
1007 | return greaterWithBias( |
1008 | A: (P + V), B: (Qout + std::max(a: Qin, b: F) * VProb + std::min(a: Qin, b: F) * UProb), |
1009 | EntryFreq); |
1010 | // Cases 1 & 2 |
1011 | return greaterWithBias(A: (P + U), |
1012 | B: (Qout + std::min(a: Qin, b: F) * AdjustedSuccSumProb + |
1013 | std::max(a: Qin, b: F) * UProb), |
1014 | EntryFreq); |
1015 | } |
1016 | |
1017 | /// Check for a trellis layout. \p BB is the upper part of a trellis if its |
1018 | /// successors form the lower part of a trellis. A successor set S forms the |
1019 | /// lower part of a trellis if all of the predecessors of S are either in S or |
1020 | /// have all of S as successors. We ignore trellises where BB doesn't have 2 |
1021 | /// successors because for fewer than 2, it's trivial, and for 3 or greater they |
1022 | /// are very uncommon and complex to compute optimally. Allowing edges within S |
1023 | /// is not strictly a trellis, but the same algorithm works, so we allow it. |
1024 | bool MachineBlockPlacement::isTrellis( |
1025 | const MachineBasicBlock *BB, |
1026 | const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, |
1027 | const BlockChain &Chain, const BlockFilterSet *BlockFilter) { |
1028 | // Technically BB could form a trellis with branching factor higher than 2. |
1029 | // But that's extremely uncommon. |
1030 | if (BB->succ_size() != 2 || ViableSuccs.size() != 2) |
1031 | return false; |
1032 | |
1033 | SmallPtrSet<const MachineBasicBlock *, 2> Successors(llvm::from_range, |
1034 | BB->successors()); |
1035 | // To avoid reviewing the same predecessors twice. |
1036 | SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; |
1037 | |
1038 | for (MachineBasicBlock *Succ : ViableSuccs) { |
1039 | // Compile-time optimization: runtime is quadratic in the number of |
1040 | // predecessors. For such uncommon cases, exit early. |
1041 | if (Succ->pred_size() > PredecessorLimit) |
1042 | return false; |
1043 | |
1044 | int PredCount = 0; |
1045 | for (auto *SuccPred : Succ->predecessors()) { |
1046 | // Allow triangle successors, but don't count them. |
1047 | if (Successors.count(Ptr: SuccPred)) { |
1048 | // Make sure that it is actually a triangle. |
1049 | for (MachineBasicBlock *CheckSucc : SuccPred->successors()) |
1050 | if (!Successors.count(Ptr: CheckSucc)) |
1051 | return false; |
1052 | continue; |
1053 | } |
1054 | const BlockChain *PredChain = BlockToChain[SuccPred]; |
1055 | if (SuccPred == BB || (BlockFilter && !BlockFilter->count(key: SuccPred)) || |
1056 | PredChain == &Chain || PredChain == BlockToChain[Succ]) |
1057 | continue; |
1058 | ++PredCount; |
1059 | // Perform the successor check only once. |
1060 | if (!SeenPreds.insert(Ptr: SuccPred).second) |
1061 | continue; |
1062 | if (!hasSameSuccessors(BB&: *SuccPred, Successors)) |
1063 | return false; |
1064 | } |
1065 | // If one of the successors has only BB as a predecessor, it is not a |
1066 | // trellis. |
1067 | if (PredCount < 1) |
1068 | return false; |
1069 | } |
1070 | return true; |
1071 | } |
1072 | |
1073 | /// Pick the highest total weight pair of edges that can both be laid out. |
1074 | /// The edges in \p Edges[0] are assumed to have a different destination than |
1075 | /// the edges in \p Edges[1]. Simple counting shows that the best pair is either |
1076 | /// the individual highest weight edges to the 2 different destinations, or in |
1077 | /// case of a conflict, one of them should be replaced with a 2nd best edge. |
1078 | std::pair<MachineBlockPlacement::WeightedEdge, |
1079 | MachineBlockPlacement::WeightedEdge> |
1080 | MachineBlockPlacement::getBestNonConflictingEdges( |
1081 | const MachineBasicBlock *BB, |
1082 | MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> |
1083 | Edges) { |
1084 | // Sort the edges, and then for each successor, find the best incoming |
1085 | // predecessor. If the best incoming predecessors aren't the same, |
1086 | // then that is clearly the best layout. If there is a conflict, one of the |
1087 | // successors will have to fallthrough from the second best predecessor. We |
1088 | // compare which combination is better overall. |
1089 | |
1090 | // Sort for highest frequency. |
1091 | auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; |
1092 | |
1093 | llvm::stable_sort(Range&: Edges[0], C: Cmp); |
1094 | llvm::stable_sort(Range&: Edges[1], C: Cmp); |
1095 | auto BestA = Edges[0].begin(); |
1096 | auto BestB = Edges[1].begin(); |
1097 | // Arrange for the correct answer to be in BestA and BestB |
1098 | // If the 2 best edges don't conflict, the answer is already there. |
1099 | if (BestA->Src == BestB->Src) { |
1100 | // Compare the total fallthrough of (Best + Second Best) for both pairs |
1101 | auto SecondBestA = std::next(x: BestA); |
1102 | auto SecondBestB = std::next(x: BestB); |
1103 | BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; |
1104 | BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; |
1105 | if (BestAScore < BestBScore) |
1106 | BestA = SecondBestA; |
1107 | else |
1108 | BestB = SecondBestB; |
1109 | } |
1110 | // Arrange for the BB edge to be in BestA if it exists. |
1111 | if (BestB->Src == BB) |
1112 | std::swap(a&: BestA, b&: BestB); |
1113 | return std::make_pair(x&: *BestA, y&: *BestB); |
1114 | } |
1115 | |
1116 | /// Get the best successor from \p BB based on \p BB being part of a trellis. |
1117 | /// We only handle trellises with 2 successors, so the algorithm is |
1118 | /// straightforward: Find the best pair of edges that don't conflict. We find |
1119 | /// the best incoming edge for each successor in the trellis. If those conflict, |
1120 | /// we consider which of them should be replaced with the second best. |
1121 | /// Upon return the two best edges will be in \p BestEdges. If one of the edges |
1122 | /// comes from \p BB, it will be in \p BestEdges[0] |
1123 | MachineBlockPlacement::BlockAndTailDupResult |
1124 | MachineBlockPlacement::getBestTrellisSuccessor( |
1125 | const MachineBasicBlock *BB, |
1126 | const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, |
1127 | BranchProbability AdjustedSumProb, const BlockChain &Chain, |
1128 | const BlockFilterSet *BlockFilter) { |
1129 | |
1130 | BlockAndTailDupResult Result = {.BB: nullptr, .ShouldTailDup: false}; |
1131 | SmallPtrSet<const MachineBasicBlock *, 4> Successors(llvm::from_range, |
1132 | BB->successors()); |
1133 | |
1134 | // We assume size 2 because it's common. For general n, we would have to do |
1135 | // the Hungarian algorithm, but it's not worth the complexity because more |
1136 | // than 2 successors is fairly uncommon, and a trellis even more so. |
1137 | if (Successors.size() != 2 || ViableSuccs.size() != 2) |
1138 | return Result; |
1139 | |
1140 | // Collect the edge frequencies of all edges that form the trellis. |
1141 | SmallVector<WeightedEdge, 8> Edges[2]; |
1142 | int SuccIndex = 0; |
1143 | for (auto *Succ : ViableSuccs) { |
1144 | for (MachineBasicBlock *SuccPred : Succ->predecessors()) { |
1145 | // Skip any placed predecessors that are not BB |
1146 | if (SuccPred != BB) { |
1147 | if (BlockFilter && !BlockFilter->count(key: SuccPred)) |
1148 | continue; |
1149 | const BlockChain *SuccPredChain = BlockToChain[SuccPred]; |
1150 | if (SuccPredChain == &Chain || SuccPredChain == BlockToChain[Succ]) |
1151 | continue; |
1152 | } |
1153 | BlockFrequency EdgeFreq = MBFI->getBlockFreq(MBB: SuccPred) * |
1154 | MBPI->getEdgeProbability(Src: SuccPred, Dst: Succ); |
1155 | Edges[SuccIndex].push_back(Elt: {.Weight: EdgeFreq, .Src: SuccPred, .Dest: Succ}); |
1156 | } |
1157 | ++SuccIndex; |
1158 | } |
1159 | |
1160 | // Pick the best combination of 2 edges from all the edges in the trellis. |
1161 | WeightedEdge BestA, BestB; |
1162 | std::tie(args&: BestA, args&: BestB) = getBestNonConflictingEdges(BB, Edges); |
1163 | |
1164 | if (BestA.Src != BB) { |
1165 | // If we have a trellis, and BB doesn't have the best fallthrough edges, |
1166 | // we shouldn't choose any successor. We've already looked and there's a |
1167 | // better fallthrough edge for all the successors. |
1168 | LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n" ); |
1169 | return Result; |
1170 | } |
1171 | |
1172 | // Did we pick the triangle edge? If tail-duplication is profitable, do |
1173 | // that instead. Otherwise merge the triangle edge now while we know it is |
1174 | // optimal. |
1175 | if (BestA.Dest == BestB.Src) { |
1176 | // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 |
1177 | // would be better. |
1178 | MachineBasicBlock *Succ1 = BestA.Dest; |
1179 | MachineBasicBlock *Succ2 = BestB.Dest; |
1180 | // Check to see if tail-duplication would be profitable. |
1181 | if (allowTailDupPlacement(MF&: *F) && shouldTailDuplicate(BB: Succ2) && |
1182 | canTailDuplicateUnplacedPreds(BB, Succ: Succ2, Chain, BlockFilter) && |
1183 | isProfitableToTailDup(BB, Succ: Succ2, QProb: MBPI->getEdgeProbability(Src: BB, Dst: Succ1), |
1184 | Chain, BlockFilter)) { |
1185 | LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( |
1186 | MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); |
1187 | dbgs() << " Selected: " << getBlockName(Succ2) |
1188 | << ", probability: " << Succ2Prob |
1189 | << " (Tail Duplicate)\n" ); |
1190 | Result.BB = Succ2; |
1191 | Result.ShouldTailDup = true; |
1192 | return Result; |
1193 | } |
1194 | } |
1195 | // We have already computed the optimal edge for the other side of the |
1196 | // trellis. |
1197 | ComputedEdges[BestB.Src] = {.BB: BestB.Dest, .ShouldTailDup: false}; |
1198 | |
1199 | auto TrellisSucc = BestA.Dest; |
1200 | LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( |
1201 | MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); |
1202 | dbgs() << " Selected: " << getBlockName(TrellisSucc) |
1203 | << ", probability: " << SuccProb << " (Trellis)\n" ); |
1204 | Result.BB = TrellisSucc; |
1205 | return Result; |
1206 | } |
1207 | |
1208 | /// When the option allowTailDupPlacement() is on, this method checks if the |
1209 | /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated |
1210 | /// into all of its unplaced, unfiltered predecessors, that are not BB. |
1211 | bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( |
1212 | const MachineBasicBlock *BB, MachineBasicBlock *Succ, |
1213 | const BlockChain &Chain, const BlockFilterSet *BlockFilter) { |
1214 | if (!shouldTailDuplicate(BB: Succ)) |
1215 | return false; |
1216 | |
1217 | // The result of canTailDuplicate. |
1218 | bool Duplicate = true; |
1219 | // Number of possible duplication. |
1220 | unsigned int NumDup = 0; |
1221 | |
1222 | // For CFG checking. |
1223 | SmallPtrSet<const MachineBasicBlock *, 4> Successors(llvm::from_range, |
1224 | BB->successors()); |
1225 | for (MachineBasicBlock *Pred : Succ->predecessors()) { |
1226 | // Make sure all unplaced and unfiltered predecessors can be |
1227 | // tail-duplicated into. |
1228 | // Skip any blocks that are already placed or not in this loop. |
1229 | if (Pred == BB || (BlockFilter && !BlockFilter->count(key: Pred)) || |
1230 | (BlockToChain[Pred] == &Chain && !Succ->succ_empty())) |
1231 | continue; |
1232 | if (!TailDup.canTailDuplicate(TailBB: Succ, PredBB: Pred)) { |
1233 | if (Successors.size() > 1 && hasSameSuccessors(BB&: *Pred, Successors)) |
1234 | // This will result in a trellis after tail duplication, so we don't |
1235 | // need to copy Succ into this predecessor. In the presence |
1236 | // of a trellis tail duplication can continue to be profitable. |
1237 | // For example: |
1238 | // A A |
1239 | // |\ |\ |
1240 | // | \ | \ |
1241 | // | C | C+BB |
1242 | // | / | | |
1243 | // |/ | | |
1244 | // BB => BB | |
1245 | // |\ |\/| |
1246 | // | \ |/\| |
1247 | // | D | D |
1248 | // | / | / |
1249 | // |/ |/ |
1250 | // Succ Succ |
1251 | // |
1252 | // After BB was duplicated into C, the layout looks like the one on the |
1253 | // right. BB and C now have the same successors. When considering |
1254 | // whether Succ can be duplicated into all its unplaced predecessors, we |
1255 | // ignore C. |
1256 | // We can do this because C already has a profitable fallthrough, namely |
1257 | // D. TODO(iteratee): ignore sufficiently cold predecessors for |
1258 | // duplication and for this test. |
1259 | // |
1260 | // This allows trellises to be laid out in 2 separate chains |
1261 | // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic |
1262 | // because it allows the creation of 2 fallthrough paths with links |
1263 | // between them, and we correctly identify the best layout for these |
1264 | // CFGs. We want to extend trellises that the user created in addition |
1265 | // to trellises created by tail-duplication, so we just look for the |
1266 | // CFG. |
1267 | continue; |
1268 | Duplicate = false; |
1269 | continue; |
1270 | } |
1271 | NumDup++; |
1272 | } |
1273 | |
1274 | // No possible duplication in current filter set. |
1275 | if (NumDup == 0) |
1276 | return false; |
1277 | |
1278 | // If profile information is available, findDuplicateCandidates can do more |
1279 | // precise benefit analysis. |
1280 | if (F->getFunction().hasProfileData()) |
1281 | return true; |
1282 | |
1283 | // This is mainly for function exit BB. |
1284 | // The integrated tail duplication is really designed for increasing |
1285 | // fallthrough from predecessors from Succ to its successors. We may need |
1286 | // other machanism to handle different cases. |
1287 | if (Succ->succ_empty()) |
1288 | return true; |
1289 | |
1290 | // Plus the already placed predecessor. |
1291 | NumDup++; |
1292 | |
1293 | // If the duplication candidate has more unplaced predecessors than |
1294 | // successors, the extra duplication can't bring more fallthrough. |
1295 | // |
1296 | // Pred1 Pred2 Pred3 |
1297 | // \ | / |
1298 | // \ | / |
1299 | // \ | / |
1300 | // Dup |
1301 | // / \ |
1302 | // / \ |
1303 | // Succ1 Succ2 |
1304 | // |
1305 | // In this example Dup has 2 successors and 3 predecessors, duplication of Dup |
1306 | // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, |
1307 | // but the duplication into Pred3 can't increase fallthrough. |
1308 | // |
1309 | // A small number of extra duplication may not hurt too much. We need a better |
1310 | // heuristic to handle it. |
1311 | if ((NumDup > Succ->succ_size()) || !Duplicate) |
1312 | return false; |
1313 | |
1314 | return true; |
1315 | } |
1316 | |
1317 | /// Find chains of triangles where we believe it would be profitable to |
1318 | /// tail-duplicate them all, but a local analysis would not find them. |
1319 | /// There are 3 ways this can be profitable: |
1320 | /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with |
1321 | /// longer chains) |
1322 | /// 2) The chains are statically correlated. Branch probabilities have a very |
1323 | /// U-shaped distribution. |
1324 | /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] |
1325 | /// If the branches in a chain are likely to be from the same side of the |
1326 | /// distribution as their predecessor, but are independent at runtime, this |
1327 | /// transformation is profitable. (Because the cost of being wrong is a small |
1328 | /// fixed cost, unlike the standard triangle layout where the cost of being |
1329 | /// wrong scales with the # of triangles.) |
1330 | /// 3) The chains are dynamically correlated. If the probability that a previous |
1331 | /// branch was taken positively influences whether the next branch will be |
1332 | /// taken |
1333 | /// We believe that 2 and 3 are common enough to justify the small margin in 1. |
1334 | void MachineBlockPlacement::precomputeTriangleChains() { |
1335 | struct TriangleChain { |
1336 | std::vector<MachineBasicBlock *> Edges; |
1337 | |
1338 | TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) |
1339 | : Edges({src, dst}) {} |
1340 | |
1341 | void append(MachineBasicBlock *dst) { |
1342 | assert(getKey()->isSuccessor(dst) && |
1343 | "Attempting to append a block that is not a successor." ); |
1344 | Edges.push_back(x: dst); |
1345 | } |
1346 | |
1347 | unsigned count() const { return Edges.size() - 1; } |
1348 | |
1349 | MachineBasicBlock *getKey() const { return Edges.back(); } |
1350 | }; |
1351 | |
1352 | if (TriangleChainCount == 0) |
1353 | return; |
1354 | |
1355 | LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n" ); |
1356 | // Map from last block to the chain that contains it. This allows us to extend |
1357 | // chains as we find new triangles. |
1358 | DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; |
1359 | for (MachineBasicBlock &BB : *F) { |
1360 | // If BB doesn't have 2 successors, it doesn't start a triangle. |
1361 | if (BB.succ_size() != 2) |
1362 | continue; |
1363 | MachineBasicBlock *PDom = nullptr; |
1364 | for (MachineBasicBlock *Succ : BB.successors()) { |
1365 | if (!MPDT->dominates(A: Succ, B: &BB)) |
1366 | continue; |
1367 | PDom = Succ; |
1368 | break; |
1369 | } |
1370 | // If BB doesn't have a post-dominating successor, it doesn't form a |
1371 | // triangle. |
1372 | if (PDom == nullptr) |
1373 | continue; |
1374 | // If PDom has a hint that it is low probability, skip this triangle. |
1375 | if (MBPI->getEdgeProbability(Src: &BB, Dst: PDom) < BranchProbability(50, 100)) |
1376 | continue; |
1377 | // If PDom isn't eligible for duplication, this isn't the kind of triangle |
1378 | // we're looking for. |
1379 | if (!shouldTailDuplicate(BB: PDom)) |
1380 | continue; |
1381 | bool CanTailDuplicate = true; |
1382 | // If PDom can't tail-duplicate into it's non-BB predecessors, then this |
1383 | // isn't the kind of triangle we're looking for. |
1384 | for (MachineBasicBlock *Pred : PDom->predecessors()) { |
1385 | if (Pred == &BB) |
1386 | continue; |
1387 | if (!TailDup.canTailDuplicate(TailBB: PDom, PredBB: Pred)) { |
1388 | CanTailDuplicate = false; |
1389 | break; |
1390 | } |
1391 | } |
1392 | // If we can't tail-duplicate PDom to its predecessors, then skip this |
1393 | // triangle. |
1394 | if (!CanTailDuplicate) |
1395 | continue; |
1396 | |
1397 | // Now we have an interesting triangle. Insert it if it's not part of an |
1398 | // existing chain. |
1399 | // Note: This cannot be replaced with a call insert() or emplace() because |
1400 | // the find key is BB, but the insert/emplace key is PDom. |
1401 | auto Found = TriangleChainMap.find(Val: &BB); |
1402 | // If it is, remove the chain from the map, grow it, and put it back in the |
1403 | // map with the end as the new key. |
1404 | if (Found != TriangleChainMap.end()) { |
1405 | TriangleChain Chain = std::move(Found->second); |
1406 | TriangleChainMap.erase(I: Found); |
1407 | Chain.append(dst: PDom); |
1408 | TriangleChainMap.insert(KV: std::make_pair(x: Chain.getKey(), y: std::move(Chain))); |
1409 | } else { |
1410 | auto InsertResult = TriangleChainMap.try_emplace(Key: PDom, Args: &BB, Args&: PDom); |
1411 | assert(InsertResult.second && "Block seen twice." ); |
1412 | (void)InsertResult; |
1413 | } |
1414 | } |
1415 | |
1416 | // Iterating over a DenseMap is safe here, because the only thing in the body |
1417 | // of the loop is inserting into another DenseMap (ComputedEdges). |
1418 | // ComputedEdges is never iterated, so this doesn't lead to non-determinism. |
1419 | for (auto &ChainPair : TriangleChainMap) { |
1420 | TriangleChain &Chain = ChainPair.second; |
1421 | // Benchmarking has shown that due to branch correlation duplicating 2 or |
1422 | // more triangles is profitable, despite the calculations assuming |
1423 | // independence. |
1424 | if (Chain.count() < TriangleChainCount) |
1425 | continue; |
1426 | MachineBasicBlock *dst = Chain.Edges.back(); |
1427 | Chain.Edges.pop_back(); |
1428 | for (MachineBasicBlock *src : reverse(C&: Chain.Edges)) { |
1429 | LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" |
1430 | << getBlockName(dst) |
1431 | << " as pre-computed based on triangles.\n" ); |
1432 | |
1433 | auto InsertResult = ComputedEdges.insert(KV: {src, {.BB: dst, .ShouldTailDup: true}}); |
1434 | assert(InsertResult.second && "Block seen twice." ); |
1435 | (void)InsertResult; |
1436 | |
1437 | dst = src; |
1438 | } |
1439 | } |
1440 | } |
1441 | |
1442 | // When profile is not present, return the StaticLikelyProb. |
1443 | // When profile is available, we need to handle the triangle-shape CFG. |
1444 | static BranchProbability |
1445 | getLayoutSuccessorProbThreshold(const MachineBasicBlock *BB) { |
1446 | if (!BB->getParent()->getFunction().hasProfileData()) |
1447 | return BranchProbability(StaticLikelyProb, 100); |
1448 | if (BB->succ_size() == 2) { |
1449 | const MachineBasicBlock *Succ1 = *BB->succ_begin(); |
1450 | const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); |
1451 | if (Succ1->isSuccessor(MBB: Succ2) || Succ2->isSuccessor(MBB: Succ1)) { |
1452 | /* See case 1 below for the cost analysis. For BB->Succ to |
1453 | * be taken with smaller cost, the following needs to hold: |
1454 | * Prob(BB->Succ) > 2 * Prob(BB->Pred) |
1455 | * So the threshold T in the calculation below |
1456 | * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) |
1457 | * So T / (1 - T) = 2, Yielding T = 2/3 |
1458 | * Also adding user specified branch bias, we have |
1459 | * T = (2/3)*(ProfileLikelyProb/50) |
1460 | * = (2*ProfileLikelyProb)/150) |
1461 | */ |
1462 | return BranchProbability(2 * ProfileLikelyProb, 150); |
1463 | } |
1464 | } |
1465 | return BranchProbability(ProfileLikelyProb, 100); |
1466 | } |
1467 | |
1468 | /// Checks to see if the layout candidate block \p Succ has a better layout |
1469 | /// predecessor than \c BB. If yes, returns true. |
1470 | /// \p SuccProb: The probability adjusted for only remaining blocks. |
1471 | /// Only used for logging |
1472 | /// \p RealSuccProb: The un-adjusted probability. |
1473 | /// \p Chain: The chain that BB belongs to and Succ is being considered for. |
1474 | /// \p BlockFilter: if non-null, the set of blocks that make up the loop being |
1475 | /// considered |
1476 | bool MachineBlockPlacement::hasBetterLayoutPredecessor( |
1477 | const MachineBasicBlock *BB, const MachineBasicBlock *Succ, |
1478 | const BlockChain &SuccChain, BranchProbability SuccProb, |
1479 | BranchProbability RealSuccProb, const BlockChain &Chain, |
1480 | const BlockFilterSet *BlockFilter) { |
1481 | |
1482 | // There isn't a better layout when there are no unscheduled predecessors. |
1483 | if (SuccChain.UnscheduledPredecessors == 0) |
1484 | return false; |
1485 | |
1486 | // Compile-time optimization: runtime is quadratic in the number of |
1487 | // predecessors. For such uncommon cases, exit early. |
1488 | if (Succ->pred_size() > PredecessorLimit) |
1489 | return false; |
1490 | |
1491 | // There are two basic scenarios here: |
1492 | // ------------------------------------- |
1493 | // Case 1: triangular shape CFG (if-then): |
1494 | // BB |
1495 | // | \ |
1496 | // | \ |
1497 | // | Pred |
1498 | // | / |
1499 | // Succ |
1500 | // In this case, we are evaluating whether to select edge -> Succ, e.g. |
1501 | // set Succ as the layout successor of BB. Picking Succ as BB's |
1502 | // successor breaks the CFG constraints (FIXME: define these constraints). |
1503 | // With this layout, Pred BB |
1504 | // is forced to be outlined, so the overall cost will be cost of the |
1505 | // branch taken from BB to Pred, plus the cost of back taken branch |
1506 | // from Pred to Succ, as well as the additional cost associated |
1507 | // with the needed unconditional jump instruction from Pred To Succ. |
1508 | |
1509 | // The cost of the topological order layout is the taken branch cost |
1510 | // from BB to Succ, so to make BB->Succ a viable candidate, the following |
1511 | // must hold: |
1512 | // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost |
1513 | // < freq(BB->Succ) * taken_branch_cost. |
1514 | // Ignoring unconditional jump cost, we get |
1515 | // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., |
1516 | // prob(BB->Succ) > 2 * prob(BB->Pred) |
1517 | // |
1518 | // When real profile data is available, we can precisely compute the |
1519 | // probability threshold that is needed for edge BB->Succ to be considered. |
1520 | // Without profile data, the heuristic requires the branch bias to be |
1521 | // a lot larger to make sure the signal is very strong (e.g. 80% default). |
1522 | // ----------------------------------------------------------------- |
1523 | // Case 2: diamond like CFG (if-then-else): |
1524 | // S |
1525 | // / \ |
1526 | // | \ |
1527 | // BB Pred |
1528 | // \ / |
1529 | // Succ |
1530 | // .. |
1531 | // |
1532 | // The current block is BB and edge BB->Succ is now being evaluated. |
1533 | // Note that edge S->BB was previously already selected because |
1534 | // prob(S->BB) > prob(S->Pred). |
1535 | // At this point, 2 blocks can be placed after BB: Pred or Succ. If we |
1536 | // choose Pred, we will have a topological ordering as shown on the left |
1537 | // in the picture below. If we choose Succ, we have the solution as shown |
1538 | // on the right: |
1539 | // |
1540 | // topo-order: |
1541 | // |
1542 | // S----- ---S |
1543 | // | | | | |
1544 | // ---BB | | BB |
1545 | // | | | | |
1546 | // | Pred-- | Succ-- |
1547 | // | | | | |
1548 | // ---Succ ---Pred-- |
1549 | // |
1550 | // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) |
1551 | // = freq(S->Pred) + freq(S->BB) |
1552 | // |
1553 | // If we have profile data (i.e, branch probabilities can be trusted), the |
1554 | // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * |
1555 | // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). |
1556 | // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which |
1557 | // means the cost of topological order is greater. |
1558 | // When profile data is not available, however, we need to be more |
1559 | // conservative. If the branch prediction is wrong, breaking the topo-order |
1560 | // will actually yield a layout with large cost. For this reason, we need |
1561 | // strong biased branch at block S with Prob(S->BB) in order to select |
1562 | // BB->Succ. This is equivalent to looking the CFG backward with backward |
1563 | // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without |
1564 | // profile data). |
1565 | // -------------------------------------------------------------------------- |
1566 | // Case 3: forked diamond |
1567 | // S |
1568 | // / \ |
1569 | // / \ |
1570 | // BB Pred |
1571 | // | \ / | |
1572 | // | \ / | |
1573 | // | X | |
1574 | // | / \ | |
1575 | // | / \ | |
1576 | // S1 S2 |
1577 | // |
1578 | // The current block is BB and edge BB->S1 is now being evaluated. |
1579 | // As above S->BB was already selected because |
1580 | // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). |
1581 | // |
1582 | // topo-order: |
1583 | // |
1584 | // S-------| ---S |
1585 | // | | | | |
1586 | // ---BB | | BB |
1587 | // | | | | |
1588 | // | Pred----| | S1---- |
1589 | // | | | | |
1590 | // --(S1 or S2) ---Pred-- |
1591 | // | |
1592 | // S2 |
1593 | // |
1594 | // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) |
1595 | // + min(freq(Pred->S1), freq(Pred->S2)) |
1596 | // Non-topo-order cost: |
1597 | // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). |
1598 | // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) |
1599 | // is 0. Then the non topo layout is better when |
1600 | // freq(S->Pred) < freq(BB->S1). |
1601 | // This is exactly what is checked below. |
1602 | // Note there are other shapes that apply (Pred may not be a single block, |
1603 | // but they all fit this general pattern.) |
1604 | BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); |
1605 | |
1606 | // Make sure that a hot successor doesn't have a globally more |
1607 | // important predecessor. |
1608 | BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(MBB: BB) * RealSuccProb; |
1609 | bool BadCFGConflict = false; |
1610 | |
1611 | for (MachineBasicBlock *Pred : Succ->predecessors()) { |
1612 | BlockChain *PredChain = BlockToChain[Pred]; |
1613 | if (Pred == Succ || PredChain == &SuccChain || |
1614 | (BlockFilter && !BlockFilter->count(key: Pred)) || PredChain == &Chain || |
1615 | Pred != *std::prev(x: PredChain->end()) || |
1616 | // This check is redundant except for look ahead. This function is |
1617 | // called for lookahead by isProfitableToTailDup when BB hasn't been |
1618 | // placed yet. |
1619 | (Pred == BB)) |
1620 | continue; |
1621 | // Do backward checking. |
1622 | // For all cases above, we need a backward checking to filter out edges that |
1623 | // are not 'strongly' biased. |
1624 | // BB Pred |
1625 | // \ / |
1626 | // Succ |
1627 | // We select edge BB->Succ if |
1628 | // freq(BB->Succ) > freq(Succ) * HotProb |
1629 | // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * |
1630 | // HotProb |
1631 | // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb |
1632 | // Case 1 is covered too, because the first equation reduces to: |
1633 | // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) |
1634 | BlockFrequency PredEdgeFreq = |
1635 | MBFI->getBlockFreq(MBB: Pred) * MBPI->getEdgeProbability(Src: Pred, Dst: Succ); |
1636 | if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { |
1637 | BadCFGConflict = true; |
1638 | break; |
1639 | } |
1640 | } |
1641 | |
1642 | if (BadCFGConflict) { |
1643 | LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " |
1644 | << SuccProb << " (prob) (non-cold CFG conflict)\n" ); |
1645 | return true; |
1646 | } |
1647 | |
1648 | return false; |
1649 | } |
1650 | |
1651 | /// Select the best successor for a block. |
1652 | /// |
1653 | /// This looks across all successors of a particular block and attempts to |
1654 | /// select the "best" one to be the layout successor. It only considers direct |
1655 | /// successors which also pass the block filter. It will attempt to avoid |
1656 | /// breaking CFG structure, but cave and break such structures in the case of |
1657 | /// very hot successor edges. |
1658 | /// |
1659 | /// \returns The best successor block found, or null if none are viable, along |
1660 | /// with a boolean indicating if tail duplication is necessary. |
1661 | MachineBlockPlacement::BlockAndTailDupResult |
1662 | MachineBlockPlacement::selectBestSuccessor(const MachineBasicBlock *BB, |
1663 | const BlockChain &Chain, |
1664 | const BlockFilterSet *BlockFilter) { |
1665 | const BranchProbability HotProb(StaticLikelyProb, 100); |
1666 | |
1667 | BlockAndTailDupResult BestSucc = {.BB: nullptr, .ShouldTailDup: false}; |
1668 | auto BestProb = BranchProbability::getZero(); |
1669 | |
1670 | SmallVector<MachineBasicBlock *, 4> Successors; |
1671 | auto AdjustedSumProb = |
1672 | collectViableSuccessors(BB, Chain, BlockFilter, Successors); |
1673 | |
1674 | LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) |
1675 | << "\n" ); |
1676 | |
1677 | // if we already precomputed the best successor for BB, return that if still |
1678 | // applicable. |
1679 | auto FoundEdge = ComputedEdges.find(Val: BB); |
1680 | if (FoundEdge != ComputedEdges.end()) { |
1681 | MachineBasicBlock *Succ = FoundEdge->second.BB; |
1682 | ComputedEdges.erase(I: FoundEdge); |
1683 | BlockChain *SuccChain = BlockToChain[Succ]; |
1684 | if (BB->isSuccessor(MBB: Succ) && (!BlockFilter || BlockFilter->count(key: Succ)) && |
1685 | SuccChain != &Chain && Succ == *SuccChain->begin()) |
1686 | return FoundEdge->second; |
1687 | } |
1688 | |
1689 | // if BB is part of a trellis, Use the trellis to determine the optimal |
1690 | // fallthrough edges |
1691 | if (isTrellis(BB, ViableSuccs: Successors, Chain, BlockFilter)) |
1692 | return getBestTrellisSuccessor(BB, ViableSuccs: Successors, AdjustedSumProb, Chain, |
1693 | BlockFilter); |
1694 | |
1695 | // For blocks with CFG violations, we may be able to lay them out anyway with |
1696 | // tail-duplication. We keep this vector so we can perform the probability |
1697 | // calculations the minimum number of times. |
1698 | SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> |
1699 | DupCandidates; |
1700 | for (MachineBasicBlock *Succ : Successors) { |
1701 | auto RealSuccProb = MBPI->getEdgeProbability(Src: BB, Dst: Succ); |
1702 | BranchProbability SuccProb = |
1703 | getAdjustedProbability(OrigProb: RealSuccProb, AdjustedSumProb); |
1704 | |
1705 | BlockChain &SuccChain = *BlockToChain[Succ]; |
1706 | // Skip the edge \c BB->Succ if block \c Succ has a better layout |
1707 | // predecessor that yields lower global cost. |
1708 | if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, |
1709 | Chain, BlockFilter)) { |
1710 | // If tail duplication would make Succ profitable, place it. |
1711 | if (allowTailDupPlacement(MF&: *F) && shouldTailDuplicate(BB: Succ)) |
1712 | DupCandidates.emplace_back(Args&: SuccProb, Args&: Succ); |
1713 | continue; |
1714 | } |
1715 | |
1716 | LLVM_DEBUG( |
1717 | dbgs() << " Candidate: " << getBlockName(Succ) |
1718 | << ", probability: " << SuccProb |
1719 | << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "" ) |
1720 | << "\n" ); |
1721 | |
1722 | if (BestSucc.BB && BestProb >= SuccProb) { |
1723 | LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n" ); |
1724 | continue; |
1725 | } |
1726 | |
1727 | LLVM_DEBUG(dbgs() << " Setting it as best candidate\n" ); |
1728 | BestSucc.BB = Succ; |
1729 | BestProb = SuccProb; |
1730 | } |
1731 | // Handle the tail duplication candidates in order of decreasing probability. |
1732 | // Stop at the first one that is profitable. Also stop if they are less |
1733 | // profitable than BestSucc. Position is important because we preserve it and |
1734 | // prefer first best match. Here we aren't comparing in order, so we capture |
1735 | // the position instead. |
1736 | llvm::stable_sort(Range&: DupCandidates, |
1737 | C: [](std::tuple<BranchProbability, MachineBasicBlock *> L, |
1738 | std::tuple<BranchProbability, MachineBasicBlock *> R) { |
1739 | return std::get<0>(t&: L) > std::get<0>(t&: R); |
1740 | }); |
1741 | for (auto &Tup : DupCandidates) { |
1742 | BranchProbability DupProb; |
1743 | MachineBasicBlock *Succ; |
1744 | std::tie(args&: DupProb, args&: Succ) = Tup; |
1745 | if (DupProb < BestProb) |
1746 | break; |
1747 | if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) && |
1748 | (isProfitableToTailDup(BB, Succ, QProb: BestProb, Chain, BlockFilter))) { |
1749 | LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) |
1750 | << ", probability: " << DupProb |
1751 | << " (Tail Duplicate)\n" ); |
1752 | BestSucc.BB = Succ; |
1753 | BestSucc.ShouldTailDup = true; |
1754 | break; |
1755 | } |
1756 | } |
1757 | |
1758 | if (BestSucc.BB) |
1759 | LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n" ); |
1760 | |
1761 | return BestSucc; |
1762 | } |
1763 | |
1764 | /// Select the best block from a worklist. |
1765 | /// |
1766 | /// This looks through the provided worklist as a list of candidate basic |
1767 | /// blocks and select the most profitable one to place. The definition of |
1768 | /// profitable only really makes sense in the context of a loop. This returns |
1769 | /// the most frequently visited block in the worklist, which in the case of |
1770 | /// a loop, is the one most desirable to be physically close to the rest of the |
1771 | /// loop body in order to improve i-cache behavior. |
1772 | /// |
1773 | /// \returns The best block found, or null if none are viable. |
1774 | MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( |
1775 | const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { |
1776 | // Once we need to walk the worklist looking for a candidate, cleanup the |
1777 | // worklist of already placed entries. |
1778 | // FIXME: If this shows up on profiles, it could be folded (at the cost of |
1779 | // some code complexity) into the loop below. |
1780 | llvm::erase_if(C&: WorkList, P: [&](MachineBasicBlock *BB) { |
1781 | return BlockToChain.lookup(Val: BB) == &Chain; |
1782 | }); |
1783 | |
1784 | if (WorkList.empty()) |
1785 | return nullptr; |
1786 | |
1787 | bool IsEHPad = WorkList[0]->isEHPad(); |
1788 | |
1789 | MachineBasicBlock *BestBlock = nullptr; |
1790 | BlockFrequency BestFreq; |
1791 | for (MachineBasicBlock *MBB : WorkList) { |
1792 | assert(MBB->isEHPad() == IsEHPad && |
1793 | "EHPad mismatch between block and work list." ); |
1794 | |
1795 | BlockChain &SuccChain = *BlockToChain[MBB]; |
1796 | if (&SuccChain == &Chain) |
1797 | continue; |
1798 | |
1799 | assert(SuccChain.UnscheduledPredecessors == 0 && |
1800 | "Found CFG-violating block" ); |
1801 | |
1802 | BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); |
1803 | LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> " |
1804 | << printBlockFreq(MBFI->getMBFI(), CandidateFreq) |
1805 | << " (freq)\n" ); |
1806 | |
1807 | // For ehpad, we layout the least probable first as to avoid jumping back |
1808 | // from least probable landingpads to more probable ones. |
1809 | // |
1810 | // FIXME: Using probability is probably (!) not the best way to achieve |
1811 | // this. We should probably have a more principled approach to layout |
1812 | // cleanup code. |
1813 | // |
1814 | // The goal is to get: |
1815 | // |
1816 | // +--------------------------+ |
1817 | // | V |
1818 | // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume |
1819 | // |
1820 | // Rather than: |
1821 | // |
1822 | // +-------------------------------------+ |
1823 | // V | |
1824 | // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup |
1825 | if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) |
1826 | continue; |
1827 | |
1828 | BestBlock = MBB; |
1829 | BestFreq = CandidateFreq; |
1830 | } |
1831 | |
1832 | return BestBlock; |
1833 | } |
1834 | |
1835 | /// Retrieve the first unplaced basic block in the entire function. |
1836 | /// |
1837 | /// This routine is called when we are unable to use the CFG to walk through |
1838 | /// all of the basic blocks and form a chain due to unnatural loops in the CFG. |
1839 | /// We walk through the function's blocks in order, starting from the |
1840 | /// LastUnplacedBlockIt. We update this iterator on each call to avoid |
1841 | /// re-scanning the entire sequence on repeated calls to this routine. |
1842 | MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( |
1843 | const BlockChain &PlacedChain, |
1844 | MachineFunction::iterator &PrevUnplacedBlockIt) { |
1845 | |
1846 | for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; |
1847 | ++I) { |
1848 | if (BlockChain *Chain = BlockToChain[&*I]; Chain != &PlacedChain) { |
1849 | PrevUnplacedBlockIt = I; |
1850 | // Now select the head of the chain to which the unplaced block belongs |
1851 | // as the block to place. This will force the entire chain to be placed, |
1852 | // and satisfies the requirements of merging chains. |
1853 | return *Chain->begin(); |
1854 | } |
1855 | } |
1856 | return nullptr; |
1857 | } |
1858 | |
1859 | /// Retrieve the first unplaced basic block among the blocks in BlockFilter. |
1860 | /// |
1861 | /// This is similar to getFirstUnplacedBlock for the entire function, but since |
1862 | /// the size of BlockFilter is typically far less than the number of blocks in |
1863 | /// the entire function, iterating through the BlockFilter is more efficient. |
1864 | /// When processing the entire funciton, using the version without BlockFilter |
1865 | /// has a complexity of #(loops in function) * #(blocks in function), while this |
1866 | /// version has a complexity of sum(#(loops in block) foreach block in function) |
1867 | /// which is always smaller. For long function mostly sequential in structure, |
1868 | /// the complexity is amortized to 1 * #(blocks in function). |
1869 | MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( |
1870 | const BlockChain &PlacedChain, |
1871 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, |
1872 | const BlockFilterSet *BlockFilter) { |
1873 | assert(BlockFilter); |
1874 | for (; PrevUnplacedBlockInFilterIt != BlockFilter->end(); |
1875 | ++PrevUnplacedBlockInFilterIt) { |
1876 | BlockChain *C = BlockToChain[*PrevUnplacedBlockInFilterIt]; |
1877 | if (C != &PlacedChain) { |
1878 | return *C->begin(); |
1879 | } |
1880 | } |
1881 | return nullptr; |
1882 | } |
1883 | |
1884 | void MachineBlockPlacement::fillWorkLists( |
1885 | const MachineBasicBlock *MBB, SmallPtrSetImpl<BlockChain *> &UpdatedPreds, |
1886 | const BlockFilterSet *BlockFilter = nullptr) { |
1887 | BlockChain &Chain = *BlockToChain[MBB]; |
1888 | if (!UpdatedPreds.insert(Ptr: &Chain).second) |
1889 | return; |
1890 | |
1891 | assert( |
1892 | Chain.UnscheduledPredecessors == 0 && |
1893 | "Attempting to place block with unscheduled predecessors in worklist." ); |
1894 | for (MachineBasicBlock *ChainBB : Chain) { |
1895 | assert(BlockToChain[ChainBB] == &Chain && |
1896 | "Block in chain doesn't match BlockToChain map." ); |
1897 | for (MachineBasicBlock *Pred : ChainBB->predecessors()) { |
1898 | if (BlockFilter && !BlockFilter->count(key: Pred)) |
1899 | continue; |
1900 | if (BlockToChain[Pred] == &Chain) |
1901 | continue; |
1902 | ++Chain.UnscheduledPredecessors; |
1903 | } |
1904 | } |
1905 | |
1906 | if (Chain.UnscheduledPredecessors != 0) |
1907 | return; |
1908 | |
1909 | MachineBasicBlock *BB = *Chain.begin(); |
1910 | if (BB->isEHPad()) |
1911 | EHPadWorkList.push_back(Elt: BB); |
1912 | else |
1913 | BlockWorkList.push_back(Elt: BB); |
1914 | } |
1915 | |
1916 | void MachineBlockPlacement::buildChain(const MachineBasicBlock *HeadBB, |
1917 | BlockChain &Chain, |
1918 | BlockFilterSet *BlockFilter) { |
1919 | assert(HeadBB && "BB must not be null.\n" ); |
1920 | assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n" ); |
1921 | MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); |
1922 | BlockFilterSet::iterator PrevUnplacedBlockInFilterIt; |
1923 | if (BlockFilter) |
1924 | PrevUnplacedBlockInFilterIt = BlockFilter->begin(); |
1925 | |
1926 | const MachineBasicBlock * = HeadBB; |
1927 | markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); |
1928 | MachineBasicBlock *BB = *std::prev(x: Chain.end()); |
1929 | while (true) { |
1930 | assert(BB && "null block found at end of chain in loop." ); |
1931 | assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop." ); |
1932 | assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain." ); |
1933 | |
1934 | // Look for the best viable successor if there is one to place immediately |
1935 | // after this block. |
1936 | auto Result = selectBestSuccessor(BB, Chain, BlockFilter); |
1937 | MachineBasicBlock *BestSucc = Result.BB; |
1938 | bool ShouldTailDup = Result.ShouldTailDup; |
1939 | if (allowTailDupPlacement(MF&: *F)) |
1940 | ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds( |
1941 | BB, Succ: BestSucc, Chain, BlockFilter)); |
1942 | |
1943 | // If an immediate successor isn't available, look for the best viable |
1944 | // block among those we've identified as not violating the loop's CFG at |
1945 | // this point. This won't be a fallthrough, but it will increase locality. |
1946 | if (!BestSucc) |
1947 | BestSucc = selectBestCandidateBlock(Chain, WorkList&: BlockWorkList); |
1948 | if (!BestSucc) |
1949 | BestSucc = selectBestCandidateBlock(Chain, WorkList&: EHPadWorkList); |
1950 | |
1951 | if (!BestSucc) { |
1952 | if (BlockFilter) |
1953 | BestSucc = getFirstUnplacedBlock(PlacedChain: Chain, PrevUnplacedBlockInFilterIt, |
1954 | BlockFilter); |
1955 | else |
1956 | BestSucc = getFirstUnplacedBlock(PlacedChain: Chain, PrevUnplacedBlockIt); |
1957 | if (!BestSucc) |
1958 | break; |
1959 | |
1960 | LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " |
1961 | "layout successor until the CFG reduces\n" ); |
1962 | } |
1963 | |
1964 | // Placement may have changed tail duplication opportunities. |
1965 | // Check for that now. |
1966 | if (allowTailDupPlacement(MF&: *F) && BestSucc && ShouldTailDup) { |
1967 | repeatedlyTailDuplicateBlock(BB: BestSucc, LPred&: BB, LoopHeaderBB, Chain, |
1968 | BlockFilter, PrevUnplacedBlockIt, |
1969 | PrevUnplacedBlockInFilterIt); |
1970 | // If the chosen successor was duplicated into BB, don't bother laying |
1971 | // it out, just go round the loop again with BB as the chain end. |
1972 | if (!BB->isSuccessor(MBB: BestSucc)) |
1973 | continue; |
1974 | } |
1975 | |
1976 | // Place this block, updating the datastructures to reflect its placement. |
1977 | BlockChain &SuccChain = *BlockToChain[BestSucc]; |
1978 | // Zero out UnscheduledPredecessors for the successor we're about to merge |
1979 | // in case we selected a successor that didn't fit naturally into the CFG. |
1980 | SuccChain.UnscheduledPredecessors = 0; |
1981 | LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " |
1982 | << getBlockName(BestSucc) << "\n" ); |
1983 | markChainSuccessors(Chain: SuccChain, LoopHeaderBB, BlockFilter); |
1984 | Chain.merge(BB: BestSucc, Chain: &SuccChain); |
1985 | BB = *std::prev(x: Chain.end()); |
1986 | } |
1987 | |
1988 | LLVM_DEBUG(dbgs() << "Finished forming chain for header block " |
1989 | << getBlockName(*Chain.begin()) << "\n" ); |
1990 | } |
1991 | |
1992 | // If bottom of block BB has only one successor OldTop, in most cases it is |
1993 | // profitable to move it before OldTop, except the following case: |
1994 | // |
1995 | // -->OldTop<- |
1996 | // | . | |
1997 | // | . | |
1998 | // | . | |
1999 | // ---Pred | |
2000 | // | | |
2001 | // BB----- |
2002 | // |
2003 | // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't |
2004 | // layout the other successor below it, so it can't reduce taken branch. |
2005 | // In this case we keep its original layout. |
2006 | bool MachineBlockPlacement::canMoveBottomBlockToTop( |
2007 | const MachineBasicBlock *BottomBlock, const MachineBasicBlock *OldTop) { |
2008 | if (BottomBlock->pred_size() != 1) |
2009 | return true; |
2010 | MachineBasicBlock *Pred = *BottomBlock->pred_begin(); |
2011 | if (Pred->succ_size() != 2) |
2012 | return true; |
2013 | |
2014 | MachineBasicBlock *OtherBB = *Pred->succ_begin(); |
2015 | if (OtherBB == BottomBlock) |
2016 | OtherBB = *Pred->succ_rbegin(); |
2017 | if (OtherBB == OldTop) |
2018 | return false; |
2019 | |
2020 | return true; |
2021 | } |
2022 | |
2023 | // Find out the possible fall through frequence to the top of a loop. |
2024 | BlockFrequency |
2025 | MachineBlockPlacement::TopFallThroughFreq(const MachineBasicBlock *Top, |
2026 | const BlockFilterSet &LoopBlockSet) { |
2027 | BlockFrequency MaxFreq = BlockFrequency(0); |
2028 | for (MachineBasicBlock *Pred : Top->predecessors()) { |
2029 | BlockChain *PredChain = BlockToChain[Pred]; |
2030 | if (!LoopBlockSet.count(key: Pred) && |
2031 | (!PredChain || Pred == *std::prev(x: PredChain->end()))) { |
2032 | // Found a Pred block can be placed before Top. |
2033 | // Check if Top is the best successor of Pred. |
2034 | auto TopProb = MBPI->getEdgeProbability(Src: Pred, Dst: Top); |
2035 | bool TopOK = true; |
2036 | for (MachineBasicBlock *Succ : Pred->successors()) { |
2037 | auto SuccProb = MBPI->getEdgeProbability(Src: Pred, Dst: Succ); |
2038 | BlockChain *SuccChain = BlockToChain[Succ]; |
2039 | // Check if Succ can be placed after Pred. |
2040 | // Succ should not be in any chain, or it is the head of some chain. |
2041 | if (!LoopBlockSet.count(key: Succ) && (SuccProb > TopProb) && |
2042 | (!SuccChain || Succ == *SuccChain->begin())) { |
2043 | TopOK = false; |
2044 | break; |
2045 | } |
2046 | } |
2047 | if (TopOK) { |
2048 | BlockFrequency EdgeFreq = |
2049 | MBFI->getBlockFreq(MBB: Pred) * MBPI->getEdgeProbability(Src: Pred, Dst: Top); |
2050 | if (EdgeFreq > MaxFreq) |
2051 | MaxFreq = EdgeFreq; |
2052 | } |
2053 | } |
2054 | } |
2055 | return MaxFreq; |
2056 | } |
2057 | |
2058 | // Compute the fall through gains when move NewTop before OldTop. |
2059 | // |
2060 | // In following diagram, edges marked as "-" are reduced fallthrough, edges |
2061 | // marked as "+" are increased fallthrough, this function computes |
2062 | // |
2063 | // SUM(increased fallthrough) - SUM(decreased fallthrough) |
2064 | // |
2065 | // | |
2066 | // | - |
2067 | // V |
2068 | // --->OldTop |
2069 | // | . |
2070 | // | . |
2071 | // +| . + |
2072 | // | Pred ---> |
2073 | // | |- |
2074 | // | V |
2075 | // --- NewTop <--- |
2076 | // |- |
2077 | // V |
2078 | // |
2079 | BlockFrequency MachineBlockPlacement::FallThroughGains( |
2080 | const MachineBasicBlock *NewTop, const MachineBasicBlock *OldTop, |
2081 | const MachineBasicBlock *ExitBB, const BlockFilterSet &LoopBlockSet) { |
2082 | BlockFrequency FallThrough2Top = TopFallThroughFreq(Top: OldTop, LoopBlockSet); |
2083 | BlockFrequency FallThrough2Exit = BlockFrequency(0); |
2084 | if (ExitBB) |
2085 | FallThrough2Exit = |
2086 | MBFI->getBlockFreq(MBB: NewTop) * MBPI->getEdgeProbability(Src: NewTop, Dst: ExitBB); |
2087 | BlockFrequency BackEdgeFreq = |
2088 | MBFI->getBlockFreq(MBB: NewTop) * MBPI->getEdgeProbability(Src: NewTop, Dst: OldTop); |
2089 | |
2090 | // Find the best Pred of NewTop. |
2091 | MachineBasicBlock *BestPred = nullptr; |
2092 | BlockFrequency FallThroughFromPred = BlockFrequency(0); |
2093 | for (MachineBasicBlock *Pred : NewTop->predecessors()) { |
2094 | if (!LoopBlockSet.count(key: Pred)) |
2095 | continue; |
2096 | BlockChain *PredChain = BlockToChain[Pred]; |
2097 | if (!PredChain || Pred == *std::prev(x: PredChain->end())) { |
2098 | BlockFrequency EdgeFreq = |
2099 | MBFI->getBlockFreq(MBB: Pred) * MBPI->getEdgeProbability(Src: Pred, Dst: NewTop); |
2100 | if (EdgeFreq > FallThroughFromPred) { |
2101 | FallThroughFromPred = EdgeFreq; |
2102 | BestPred = Pred; |
2103 | } |
2104 | } |
2105 | } |
2106 | |
2107 | // If NewTop is not placed after Pred, another successor can be placed |
2108 | // after Pred. |
2109 | BlockFrequency NewFreq = BlockFrequency(0); |
2110 | if (BestPred) { |
2111 | for (MachineBasicBlock *Succ : BestPred->successors()) { |
2112 | if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(key: Succ)) |
2113 | continue; |
2114 | if (ComputedEdges.contains(Val: Succ)) |
2115 | continue; |
2116 | BlockChain *SuccChain = BlockToChain[Succ]; |
2117 | if ((SuccChain && (Succ != *SuccChain->begin())) || |
2118 | (SuccChain == BlockToChain[BestPred])) |
2119 | continue; |
2120 | BlockFrequency EdgeFreq = MBFI->getBlockFreq(MBB: BestPred) * |
2121 | MBPI->getEdgeProbability(Src: BestPred, Dst: Succ); |
2122 | if (EdgeFreq > NewFreq) |
2123 | NewFreq = EdgeFreq; |
2124 | } |
2125 | BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(MBB: BestPred) * |
2126 | MBPI->getEdgeProbability(Src: BestPred, Dst: NewTop); |
2127 | if (NewFreq > OrigEdgeFreq) { |
2128 | // If NewTop is not the best successor of Pred, then Pred doesn't |
2129 | // fallthrough to NewTop. So there is no FallThroughFromPred and |
2130 | // NewFreq. |
2131 | NewFreq = BlockFrequency(0); |
2132 | FallThroughFromPred = BlockFrequency(0); |
2133 | } |
2134 | } |
2135 | |
2136 | BlockFrequency Result = BlockFrequency(0); |
2137 | BlockFrequency Gains = BackEdgeFreq + NewFreq; |
2138 | BlockFrequency Lost = |
2139 | FallThrough2Top + FallThrough2Exit + FallThroughFromPred; |
2140 | if (Gains > Lost) |
2141 | Result = Gains - Lost; |
2142 | return Result; |
2143 | } |
2144 | |
2145 | /// Helper function of findBestLoopTop. Find the best loop top block |
2146 | /// from predecessors of old top. |
2147 | /// |
2148 | /// Look for a block which is strictly better than the old top for laying |
2149 | /// out before the old top of the loop. This looks for only two patterns: |
2150 | /// |
2151 | /// 1. a block has only one successor, the old loop top |
2152 | /// |
2153 | /// Because such a block will always result in an unconditional jump, |
2154 | /// rotating it in front of the old top is always profitable. |
2155 | /// |
2156 | /// 2. a block has two successors, one is old top, another is exit |
2157 | /// and it has more than one predecessors |
2158 | /// |
2159 | /// If it is below one of its predecessors P, only P can fall through to |
2160 | /// it, all other predecessors need a jump to it, and another conditional |
2161 | /// jump to loop header. If it is moved before loop header, all its |
2162 | /// predecessors jump to it, then fall through to loop header. So all its |
2163 | /// predecessors except P can reduce one taken branch. |
2164 | /// At the same time, move it before old top increases the taken branch |
2165 | /// to loop exit block, so the reduced taken branch will be compared with |
2166 | /// the increased taken branch to the loop exit block. |
2167 | MachineBasicBlock *MachineBlockPlacement::findBestLoopTopHelper( |
2168 | MachineBasicBlock *OldTop, const MachineLoop &L, |
2169 | const BlockFilterSet &LoopBlockSet) { |
2170 | // Check that the header hasn't been fused with a preheader block due to |
2171 | // crazy branches. If it has, we need to start with the header at the top to |
2172 | // prevent pulling the preheader into the loop body. |
2173 | BlockChain & = *BlockToChain[OldTop]; |
2174 | if (!LoopBlockSet.count(key: *HeaderChain.begin())) |
2175 | return OldTop; |
2176 | if (OldTop != *HeaderChain.begin()) |
2177 | return OldTop; |
2178 | |
2179 | LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) |
2180 | << "\n" ); |
2181 | |
2182 | BlockFrequency BestGains = BlockFrequency(0); |
2183 | MachineBasicBlock *BestPred = nullptr; |
2184 | for (MachineBasicBlock *Pred : OldTop->predecessors()) { |
2185 | if (!LoopBlockSet.count(key: Pred)) |
2186 | continue; |
2187 | if (Pred == L.getHeader()) |
2188 | continue; |
2189 | LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " |
2190 | << Pred->succ_size() << " successors, " |
2191 | << printBlockFreq(MBFI->getMBFI(), *Pred) << " freq\n" ); |
2192 | if (Pred->succ_size() > 2) |
2193 | continue; |
2194 | |
2195 | MachineBasicBlock *OtherBB = nullptr; |
2196 | if (Pred->succ_size() == 2) { |
2197 | OtherBB = *Pred->succ_begin(); |
2198 | if (OtherBB == OldTop) |
2199 | OtherBB = *Pred->succ_rbegin(); |
2200 | } |
2201 | |
2202 | if (!canMoveBottomBlockToTop(BottomBlock: Pred, OldTop)) |
2203 | continue; |
2204 | |
2205 | BlockFrequency Gains = |
2206 | FallThroughGains(NewTop: Pred, OldTop, ExitBB: OtherBB, LoopBlockSet); |
2207 | if ((Gains > BlockFrequency(0)) && |
2208 | (Gains > BestGains || |
2209 | ((Gains == BestGains) && Pred->isLayoutSuccessor(MBB: OldTop)))) { |
2210 | BestPred = Pred; |
2211 | BestGains = Gains; |
2212 | } |
2213 | } |
2214 | |
2215 | // If no direct predecessor is fine, just use the loop header. |
2216 | if (!BestPred) { |
2217 | LLVM_DEBUG(dbgs() << " final top unchanged\n" ); |
2218 | return OldTop; |
2219 | } |
2220 | |
2221 | // Walk backwards through any straight line of predecessors. |
2222 | while (BestPred->pred_size() == 1 && |
2223 | (*BestPred->pred_begin())->succ_size() == 1 && |
2224 | *BestPred->pred_begin() != L.getHeader()) |
2225 | BestPred = *BestPred->pred_begin(); |
2226 | |
2227 | LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n" ); |
2228 | return BestPred; |
2229 | } |
2230 | |
2231 | /// Find the best loop top block for layout. |
2232 | /// |
2233 | /// This function iteratively calls findBestLoopTopHelper, until no new better |
2234 | /// BB can be found. |
2235 | MachineBasicBlock * |
2236 | MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, |
2237 | const BlockFilterSet &LoopBlockSet) { |
2238 | // Placing the latch block before the header may introduce an extra branch |
2239 | // that skips this block the first time the loop is executed, which we want |
2240 | // to avoid when optimising for size. |
2241 | // FIXME: in theory there is a case that does not introduce a new branch, |
2242 | // i.e. when the layout predecessor does not fallthrough to the loop header. |
2243 | // In practice this never happens though: there always seems to be a preheader |
2244 | // that can fallthrough and that is also placed before the header. |
2245 | if (llvm::shouldOptimizeForSize(MBB: L.getHeader(), PSI, MBFIWrapper: MBFI.get())) |
2246 | return L.getHeader(); |
2247 | |
2248 | MachineBasicBlock *OldTop = nullptr; |
2249 | MachineBasicBlock *NewTop = L.getHeader(); |
2250 | while (NewTop != OldTop) { |
2251 | OldTop = NewTop; |
2252 | NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); |
2253 | if (NewTop != OldTop) |
2254 | ComputedEdges[NewTop] = {.BB: OldTop, .ShouldTailDup: false}; |
2255 | } |
2256 | return NewTop; |
2257 | } |
2258 | |
2259 | /// Find the best loop exiting block for layout. |
2260 | /// |
2261 | /// This routine implements the logic to analyze the loop looking for the best |
2262 | /// block to layout at the top of the loop. Typically this is done to maximize |
2263 | /// fallthrough opportunities. |
2264 | MachineBasicBlock * |
2265 | MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, |
2266 | const BlockFilterSet &LoopBlockSet, |
2267 | BlockFrequency &ExitFreq) { |
2268 | // We don't want to layout the loop linearly in all cases. If the loop header |
2269 | // is just a normal basic block in the loop, we want to look for what block |
2270 | // within the loop is the best one to layout at the top. However, if the loop |
2271 | // header has be pre-merged into a chain due to predecessors not having |
2272 | // analyzable branches, *and* the predecessor it is merged with is *not* part |
2273 | // of the loop, rotating the header into the middle of the loop will create |
2274 | // a non-contiguous range of blocks which is Very Bad. So start with the |
2275 | // header and only rotate if safe. |
2276 | BlockChain & = *BlockToChain[L.getHeader()]; |
2277 | if (!LoopBlockSet.count(key: *HeaderChain.begin())) |
2278 | return nullptr; |
2279 | |
2280 | BlockFrequency BestExitEdgeFreq; |
2281 | unsigned BestExitLoopDepth = 0; |
2282 | MachineBasicBlock *ExitingBB = nullptr; |
2283 | // If there are exits to outer loops, loop rotation can severely limit |
2284 | // fallthrough opportunities unless it selects such an exit. Keep a set of |
2285 | // blocks where rotating to exit with that block will reach an outer loop. |
2286 | SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; |
2287 | |
2288 | LLVM_DEBUG(dbgs() << "Finding best loop exit for: " |
2289 | << getBlockName(L.getHeader()) << "\n" ); |
2290 | for (MachineBasicBlock *MBB : L.getBlocks()) { |
2291 | BlockChain &Chain = *BlockToChain[MBB]; |
2292 | // Ensure that this block is at the end of a chain; otherwise it could be |
2293 | // mid-way through an inner loop or a successor of an unanalyzable branch. |
2294 | if (MBB != *std::prev(x: Chain.end())) |
2295 | continue; |
2296 | |
2297 | // Now walk the successors. We need to establish whether this has a viable |
2298 | // exiting successor and whether it has a viable non-exiting successor. |
2299 | // We store the old exiting state and restore it if a viable looping |
2300 | // successor isn't found. |
2301 | MachineBasicBlock *OldExitingBB = ExitingBB; |
2302 | BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; |
2303 | bool HasLoopingSucc = false; |
2304 | for (MachineBasicBlock *Succ : MBB->successors()) { |
2305 | if (Succ->isEHPad()) |
2306 | continue; |
2307 | if (Succ == MBB) |
2308 | continue; |
2309 | BlockChain &SuccChain = *BlockToChain[Succ]; |
2310 | // Don't split chains, either this chain or the successor's chain. |
2311 | if (&Chain == &SuccChain) { |
2312 | LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " |
2313 | << getBlockName(Succ) << " (chain conflict)\n" ); |
2314 | continue; |
2315 | } |
2316 | |
2317 | auto SuccProb = MBPI->getEdgeProbability(Src: MBB, Dst: Succ); |
2318 | if (LoopBlockSet.count(key: Succ)) { |
2319 | LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " |
2320 | << getBlockName(Succ) << " (" << SuccProb << ")\n" ); |
2321 | HasLoopingSucc = true; |
2322 | continue; |
2323 | } |
2324 | |
2325 | unsigned SuccLoopDepth = 0; |
2326 | if (MachineLoop *ExitLoop = MLI->getLoopFor(BB: Succ)) { |
2327 | SuccLoopDepth = ExitLoop->getLoopDepth(); |
2328 | if (ExitLoop->contains(L: &L)) |
2329 | BlocksExitingToOuterLoop.insert(Ptr: MBB); |
2330 | } |
2331 | |
2332 | BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; |
2333 | LLVM_DEBUG( |
2334 | dbgs() << " exiting: " << getBlockName(MBB) << " -> " |
2335 | << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (" |
2336 | << printBlockFreq(MBFI->getMBFI(), ExitEdgeFreq) << ")\n" ); |
2337 | // Note that we bias this toward an existing layout successor to retain |
2338 | // incoming order in the absence of better information. The exit must have |
2339 | // a frequency higher than the current exit before we consider breaking |
2340 | // the layout. |
2341 | BranchProbability Bias(100 - ExitBlockBias, 100); |
2342 | if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || |
2343 | ExitEdgeFreq > BestExitEdgeFreq || |
2344 | (MBB->isLayoutSuccessor(MBB: Succ) && |
2345 | !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { |
2346 | BestExitEdgeFreq = ExitEdgeFreq; |
2347 | ExitingBB = MBB; |
2348 | } |
2349 | } |
2350 | |
2351 | if (!HasLoopingSucc) { |
2352 | // Restore the old exiting state, no viable looping successor was found. |
2353 | ExitingBB = OldExitingBB; |
2354 | BestExitEdgeFreq = OldBestExitEdgeFreq; |
2355 | } |
2356 | } |
2357 | // Without a candidate exiting block or with only a single block in the |
2358 | // loop, just use the loop header to layout the loop. |
2359 | if (!ExitingBB) { |
2360 | LLVM_DEBUG( |
2361 | dbgs() << " No other candidate exit blocks, using loop header\n" ); |
2362 | return nullptr; |
2363 | } |
2364 | if (L.getNumBlocks() == 1) { |
2365 | LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n" ); |
2366 | return nullptr; |
2367 | } |
2368 | |
2369 | // Also, if we have exit blocks which lead to outer loops but didn't select |
2370 | // one of them as the exiting block we are rotating toward, disable loop |
2371 | // rotation altogether. |
2372 | if (!BlocksExitingToOuterLoop.empty() && |
2373 | !BlocksExitingToOuterLoop.count(Ptr: ExitingBB)) |
2374 | return nullptr; |
2375 | |
2376 | LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) |
2377 | << "\n" ); |
2378 | ExitFreq = BestExitEdgeFreq; |
2379 | return ExitingBB; |
2380 | } |
2381 | |
2382 | /// Check if there is a fallthrough to loop header Top. |
2383 | /// |
2384 | /// 1. Look for a Pred that can be layout before Top. |
2385 | /// 2. Check if Top is the most possible successor of Pred. |
2386 | bool MachineBlockPlacement::hasViableTopFallthrough( |
2387 | const MachineBasicBlock *Top, const BlockFilterSet &LoopBlockSet) { |
2388 | for (MachineBasicBlock *Pred : Top->predecessors()) { |
2389 | BlockChain *PredChain = BlockToChain[Pred]; |
2390 | if (!LoopBlockSet.count(key: Pred) && |
2391 | (!PredChain || Pred == *std::prev(x: PredChain->end()))) { |
2392 | // Found a Pred block can be placed before Top. |
2393 | // Check if Top is the best successor of Pred. |
2394 | auto TopProb = MBPI->getEdgeProbability(Src: Pred, Dst: Top); |
2395 | bool TopOK = true; |
2396 | for (MachineBasicBlock *Succ : Pred->successors()) { |
2397 | auto SuccProb = MBPI->getEdgeProbability(Src: Pred, Dst: Succ); |
2398 | BlockChain *SuccChain = BlockToChain[Succ]; |
2399 | // Check if Succ can be placed after Pred. |
2400 | // Succ should not be in any chain, or it is the head of some chain. |
2401 | if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { |
2402 | TopOK = false; |
2403 | break; |
2404 | } |
2405 | } |
2406 | if (TopOK) |
2407 | return true; |
2408 | } |
2409 | } |
2410 | return false; |
2411 | } |
2412 | |
2413 | /// Attempt to rotate an exiting block to the bottom of the loop. |
2414 | /// |
2415 | /// Once we have built a chain, try to rotate it to line up the hot exit block |
2416 | /// with fallthrough out of the loop if doing so doesn't introduce unnecessary |
2417 | /// branches. For example, if the loop has fallthrough into its header and out |
2418 | /// of its bottom already, don't rotate it. |
2419 | void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, |
2420 | const MachineBasicBlock *ExitingBB, |
2421 | BlockFrequency ExitFreq, |
2422 | const BlockFilterSet &LoopBlockSet) { |
2423 | if (!ExitingBB) |
2424 | return; |
2425 | |
2426 | MachineBasicBlock *Top = *LoopChain.begin(); |
2427 | MachineBasicBlock *Bottom = *std::prev(x: LoopChain.end()); |
2428 | |
2429 | // If ExitingBB is already the last one in a chain then nothing to do. |
2430 | if (Bottom == ExitingBB) |
2431 | return; |
2432 | |
2433 | // The entry block should always be the first BB in a function. |
2434 | if (Top->isEntryBlock()) |
2435 | return; |
2436 | |
2437 | bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); |
2438 | |
2439 | // If the header has viable fallthrough, check whether the current loop |
2440 | // bottom is a viable exiting block. If so, bail out as rotating will |
2441 | // introduce an unnecessary branch. |
2442 | if (ViableTopFallthrough) { |
2443 | for (MachineBasicBlock *Succ : Bottom->successors()) { |
2444 | BlockChain *SuccChain = BlockToChain[Succ]; |
2445 | if (!LoopBlockSet.count(key: Succ) && |
2446 | (!SuccChain || Succ == *SuccChain->begin())) |
2447 | return; |
2448 | } |
2449 | |
2450 | // Rotate will destroy the top fallthrough, we need to ensure the new exit |
2451 | // frequency is larger than top fallthrough. |
2452 | BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); |
2453 | if (FallThrough2Top >= ExitFreq) |
2454 | return; |
2455 | } |
2456 | |
2457 | BlockChain::iterator ExitIt = llvm::find(Range&: LoopChain, Val: ExitingBB); |
2458 | if (ExitIt == LoopChain.end()) |
2459 | return; |
2460 | |
2461 | // Rotating a loop exit to the bottom when there is a fallthrough to top |
2462 | // trades the entry fallthrough for an exit fallthrough. |
2463 | // If there is no bottom->top edge, but the chosen exit block does have |
2464 | // a fallthrough, we break that fallthrough for nothing in return. |
2465 | |
2466 | // Let's consider an example. We have a built chain of basic blocks |
2467 | // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. |
2468 | // By doing a rotation we get |
2469 | // Bk+1, ..., Bn, B1, ..., Bk |
2470 | // Break of fallthrough to B1 is compensated by a fallthrough from Bk. |
2471 | // If we had a fallthrough Bk -> Bk+1 it is broken now. |
2472 | // It might be compensated by fallthrough Bn -> B1. |
2473 | // So we have a condition to avoid creation of extra branch by loop rotation. |
2474 | // All below must be true to avoid loop rotation: |
2475 | // If there is a fallthrough to top (B1) |
2476 | // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) |
2477 | // There is no fallthrough from bottom (Bn) to top (B1). |
2478 | // Please note that there is no exit fallthrough from Bn because we checked it |
2479 | // above. |
2480 | if (ViableTopFallthrough) { |
2481 | assert(std::next(ExitIt) != LoopChain.end() && |
2482 | "Exit should not be last BB" ); |
2483 | MachineBasicBlock *NextBlockInChain = *std::next(x: ExitIt); |
2484 | if (ExitingBB->isSuccessor(MBB: NextBlockInChain)) |
2485 | if (!Bottom->isSuccessor(MBB: Top)) |
2486 | return; |
2487 | } |
2488 | |
2489 | LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) |
2490 | << " at bottom\n" ); |
2491 | std::rotate(first: LoopChain.begin(), middle: std::next(x: ExitIt), last: LoopChain.end()); |
2492 | } |
2493 | |
2494 | /// Attempt to rotate a loop based on profile data to reduce branch cost. |
2495 | /// |
2496 | /// With profile data, we can determine the cost in terms of missed fall through |
2497 | /// opportunities when rotating a loop chain and select the best rotation. |
2498 | /// Basically, there are three kinds of cost to consider for each rotation: |
2499 | /// 1. The possibly missed fall through edge (if it exists) from BB out of |
2500 | /// the loop to the loop header. |
2501 | /// 2. The possibly missed fall through edges (if they exist) from the loop |
2502 | /// exits to BB out of the loop. |
2503 | /// 3. The missed fall through edge (if it exists) from the last BB to the |
2504 | /// first BB in the loop chain. |
2505 | /// Therefore, the cost for a given rotation is the sum of costs listed above. |
2506 | /// We select the best rotation with the smallest cost. |
2507 | void MachineBlockPlacement::rotateLoopWithProfile( |
2508 | BlockChain &LoopChain, const MachineLoop &L, |
2509 | const BlockFilterSet &LoopBlockSet) { |
2510 | auto RotationPos = LoopChain.end(); |
2511 | MachineBasicBlock * = *LoopChain.begin(); |
2512 | |
2513 | // The entry block should always be the first BB in a function. |
2514 | if (ChainHeaderBB->isEntryBlock()) |
2515 | return; |
2516 | |
2517 | BlockFrequency SmallestRotationCost = BlockFrequency::max(); |
2518 | |
2519 | // A utility lambda that scales up a block frequency by dividing it by a |
2520 | // branch probability which is the reciprocal of the scale. |
2521 | auto ScaleBlockFrequency = [](BlockFrequency Freq, |
2522 | unsigned Scale) -> BlockFrequency { |
2523 | if (Scale == 0) |
2524 | return BlockFrequency(0); |
2525 | // Use operator / between BlockFrequency and BranchProbability to implement |
2526 | // saturating multiplication. |
2527 | return Freq / BranchProbability(1, Scale); |
2528 | }; |
2529 | |
2530 | // Compute the cost of the missed fall-through edge to the loop header if the |
2531 | // chain head is not the loop header. As we only consider natural loops with |
2532 | // single header, this computation can be done only once. |
2533 | BlockFrequency (0); |
2534 | for (auto *Pred : ChainHeaderBB->predecessors()) { |
2535 | BlockChain *PredChain = BlockToChain[Pred]; |
2536 | if (!LoopBlockSet.count(key: Pred) && |
2537 | (!PredChain || Pred == *std::prev(x: PredChain->end()))) { |
2538 | auto EdgeFreq = MBFI->getBlockFreq(MBB: Pred) * |
2539 | MBPI->getEdgeProbability(Src: Pred, Dst: ChainHeaderBB); |
2540 | auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); |
2541 | // If the predecessor has only an unconditional jump to the header, we |
2542 | // need to consider the cost of this jump. |
2543 | if (Pred->succ_size() == 1) |
2544 | FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); |
2545 | HeaderFallThroughCost = std::max(a: HeaderFallThroughCost, b: FallThruCost); |
2546 | } |
2547 | } |
2548 | |
2549 | // Here we collect all exit blocks in the loop, and for each exit we find out |
2550 | // its hottest exit edge. For each loop rotation, we define the loop exit cost |
2551 | // as the sum of frequencies of exit edges we collect here, excluding the exit |
2552 | // edge from the tail of the loop chain. |
2553 | SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; |
2554 | for (auto *BB : LoopChain) { |
2555 | auto LargestExitEdgeProb = BranchProbability::getZero(); |
2556 | for (auto *Succ : BB->successors()) { |
2557 | BlockChain *SuccChain = BlockToChain[Succ]; |
2558 | if (!LoopBlockSet.count(key: Succ) && |
2559 | (!SuccChain || Succ == *SuccChain->begin())) { |
2560 | auto SuccProb = MBPI->getEdgeProbability(Src: BB, Dst: Succ); |
2561 | LargestExitEdgeProb = std::max(a: LargestExitEdgeProb, b: SuccProb); |
2562 | } |
2563 | } |
2564 | if (LargestExitEdgeProb > BranchProbability::getZero()) { |
2565 | auto ExitFreq = MBFI->getBlockFreq(MBB: BB) * LargestExitEdgeProb; |
2566 | ExitsWithFreq.emplace_back(Args&: BB, Args&: ExitFreq); |
2567 | } |
2568 | } |
2569 | |
2570 | // In this loop we iterate every block in the loop chain and calculate the |
2571 | // cost assuming the block is the head of the loop chain. When the loop ends, |
2572 | // we should have found the best candidate as the loop chain's head. |
2573 | for (auto Iter = LoopChain.begin(), TailIter = std::prev(x: LoopChain.end()), |
2574 | EndIter = LoopChain.end(); |
2575 | Iter != EndIter; Iter++, TailIter++) { |
2576 | // TailIter is used to track the tail of the loop chain if the block we are |
2577 | // checking (pointed by Iter) is the head of the chain. |
2578 | if (TailIter == LoopChain.end()) |
2579 | TailIter = LoopChain.begin(); |
2580 | |
2581 | auto TailBB = *TailIter; |
2582 | |
2583 | // Calculate the cost by putting this BB to the top. |
2584 | BlockFrequency Cost = BlockFrequency(0); |
2585 | |
2586 | // If the current BB is the loop header, we need to take into account the |
2587 | // cost of the missed fall through edge from outside of the loop to the |
2588 | // header. |
2589 | if (Iter != LoopChain.begin()) |
2590 | Cost += HeaderFallThroughCost; |
2591 | |
2592 | // Collect the loop exit cost by summing up frequencies of all exit edges |
2593 | // except the one from the chain tail. |
2594 | for (auto &ExitWithFreq : ExitsWithFreq) |
2595 | if (TailBB != ExitWithFreq.first) |
2596 | Cost += ExitWithFreq.second; |
2597 | |
2598 | // The cost of breaking the once fall-through edge from the tail to the top |
2599 | // of the loop chain. Here we need to consider three cases: |
2600 | // 1. If the tail node has only one successor, then we will get an |
2601 | // additional jmp instruction. So the cost here is (MisfetchCost + |
2602 | // JumpInstCost) * tail node frequency. |
2603 | // 2. If the tail node has two successors, then we may still get an |
2604 | // additional jmp instruction if the layout successor after the loop |
2605 | // chain is not its CFG successor. Note that the more frequently executed |
2606 | // jmp instruction will be put ahead of the other one. Assume the |
2607 | // frequency of those two branches are x and y, where x is the frequency |
2608 | // of the edge to the chain head, then the cost will be |
2609 | // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. |
2610 | // 3. If the tail node has more than two successors (this rarely happens), |
2611 | // we won't consider any additional cost. |
2612 | if (TailBB->isSuccessor(MBB: *Iter)) { |
2613 | auto TailBBFreq = MBFI->getBlockFreq(MBB: TailBB); |
2614 | if (TailBB->succ_size() == 1) |
2615 | Cost += ScaleBlockFrequency(TailBBFreq, MisfetchCost + JumpInstCost); |
2616 | else if (TailBB->succ_size() == 2) { |
2617 | auto TailToHeadProb = MBPI->getEdgeProbability(Src: TailBB, Dst: *Iter); |
2618 | auto TailToHeadFreq = TailBBFreq * TailToHeadProb; |
2619 | auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) |
2620 | ? TailBBFreq * TailToHeadProb.getCompl() |
2621 | : TailToHeadFreq; |
2622 | Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + |
2623 | ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); |
2624 | } |
2625 | } |
2626 | |
2627 | LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " |
2628 | << getBlockName(*Iter) << " to the top: " |
2629 | << printBlockFreq(MBFI->getMBFI(), Cost) << "\n" ); |
2630 | |
2631 | if (Cost < SmallestRotationCost) { |
2632 | SmallestRotationCost = Cost; |
2633 | RotationPos = Iter; |
2634 | } |
2635 | } |
2636 | |
2637 | if (RotationPos != LoopChain.end()) { |
2638 | LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) |
2639 | << " to the top\n" ); |
2640 | std::rotate(first: LoopChain.begin(), middle: RotationPos, last: LoopChain.end()); |
2641 | } |
2642 | } |
2643 | |
2644 | /// Collect blocks in the given loop that are to be placed. |
2645 | /// |
2646 | /// When profile data is available, exclude cold blocks from the returned set; |
2647 | /// otherwise, collect all blocks in the loop. |
2648 | MachineBlockPlacement::BlockFilterSet |
2649 | MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { |
2650 | // Collect the blocks in a set ordered by block number, as this gives the same |
2651 | // order as they appear in the function. |
2652 | struct MBBCompare { |
2653 | bool operator()(const MachineBasicBlock *X, |
2654 | const MachineBasicBlock *Y) const { |
2655 | return X->getNumber() < Y->getNumber(); |
2656 | } |
2657 | }; |
2658 | std::set<const MachineBasicBlock *, MBBCompare> LoopBlockSet; |
2659 | |
2660 | // Filter cold blocks off from LoopBlockSet when profile data is available. |
2661 | // Collect the sum of frequencies of incoming edges to the loop header from |
2662 | // outside. If we treat the loop as a super block, this is the frequency of |
2663 | // the loop. Then for each block in the loop, we calculate the ratio between |
2664 | // its frequency and the frequency of the loop block. When it is too small, |
2665 | // don't add it to the loop chain. If there are outer loops, then this block |
2666 | // will be merged into the first outer loop chain for which this block is not |
2667 | // cold anymore. This needs precise profile data and we only do this when |
2668 | // profile data is available. |
2669 | if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { |
2670 | BlockFrequency LoopFreq(0); |
2671 | for (auto *LoopPred : L.getHeader()->predecessors()) |
2672 | if (!L.contains(BB: LoopPred)) |
2673 | LoopFreq += MBFI->getBlockFreq(MBB: LoopPred) * |
2674 | MBPI->getEdgeProbability(Src: LoopPred, Dst: L.getHeader()); |
2675 | |
2676 | for (MachineBasicBlock *LoopBB : L.getBlocks()) { |
2677 | if (LoopBlockSet.count(x: LoopBB)) |
2678 | continue; |
2679 | auto Freq = MBFI->getBlockFreq(MBB: LoopBB).getFrequency(); |
2680 | if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) |
2681 | continue; |
2682 | BlockChain *Chain = BlockToChain[LoopBB]; |
2683 | for (MachineBasicBlock *ChainBB : *Chain) |
2684 | LoopBlockSet.insert(x: ChainBB); |
2685 | } |
2686 | } else |
2687 | LoopBlockSet.insert(first: L.block_begin(), last: L.block_end()); |
2688 | |
2689 | // Copy the blocks into a BlockFilterSet, as iterating it is faster than |
2690 | // std::set. We will only remove blocks and never insert them, which will |
2691 | // preserve the ordering. |
2692 | BlockFilterSet Ret(LoopBlockSet.begin(), LoopBlockSet.end()); |
2693 | return Ret; |
2694 | } |
2695 | |
2696 | /// Forms basic block chains from the natural loop structures. |
2697 | /// |
2698 | /// These chains are designed to preserve the existing *structure* of the code |
2699 | /// as much as possible. We can then stitch the chains together in a way which |
2700 | /// both preserves the topological structure and minimizes taken conditional |
2701 | /// branches. |
2702 | void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { |
2703 | // First recurse through any nested loops, building chains for those inner |
2704 | // loops. |
2705 | for (const MachineLoop *InnerLoop : L) |
2706 | buildLoopChains(L: *InnerLoop); |
2707 | |
2708 | assert(BlockWorkList.empty() && |
2709 | "BlockWorkList not empty when starting to build loop chains." ); |
2710 | assert(EHPadWorkList.empty() && |
2711 | "EHPadWorkList not empty when starting to build loop chains." ); |
2712 | BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); |
2713 | |
2714 | // Check if we have profile data for this function. If yes, we will rotate |
2715 | // this loop by modeling costs more precisely which requires the profile data |
2716 | // for better layout. |
2717 | bool RotateLoopWithProfile = |
2718 | ForcePreciseRotationCost || |
2719 | (PreciseRotationCost && F->getFunction().hasProfileData()); |
2720 | |
2721 | // First check to see if there is an obviously preferable top block for the |
2722 | // loop. This will default to the header, but may end up as one of the |
2723 | // predecessors to the header if there is one which will result in strictly |
2724 | // fewer branches in the loop body. |
2725 | MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); |
2726 | |
2727 | // If we selected just the header for the loop top, look for a potentially |
2728 | // profitable exit block in the event that rotating the loop can eliminate |
2729 | // branches by placing an exit edge at the bottom. |
2730 | // |
2731 | // Loops are processed innermost to uttermost, make sure we clear |
2732 | // PreferredLoopExit before processing a new loop. |
2733 | PreferredLoopExit = nullptr; |
2734 | BlockFrequency ExitFreq; |
2735 | if (!RotateLoopWithProfile && LoopTop == L.getHeader()) |
2736 | PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); |
2737 | |
2738 | BlockChain &LoopChain = *BlockToChain[LoopTop]; |
2739 | |
2740 | // FIXME: This is a really lame way of walking the chains in the loop: we |
2741 | // walk the blocks, and use a set to prevent visiting a particular chain |
2742 | // twice. |
2743 | SmallPtrSet<BlockChain *, 4> UpdatedPreds; |
2744 | assert(LoopChain.UnscheduledPredecessors == 0 && |
2745 | "LoopChain should not have unscheduled predecessors." ); |
2746 | UpdatedPreds.insert(Ptr: &LoopChain); |
2747 | |
2748 | for (const MachineBasicBlock *LoopBB : LoopBlockSet) |
2749 | fillWorkLists(MBB: LoopBB, UpdatedPreds, BlockFilter: &LoopBlockSet); |
2750 | |
2751 | buildChain(HeadBB: LoopTop, Chain&: LoopChain, BlockFilter: &LoopBlockSet); |
2752 | |
2753 | if (RotateLoopWithProfile) |
2754 | rotateLoopWithProfile(LoopChain, L, LoopBlockSet); |
2755 | else |
2756 | rotateLoop(LoopChain, ExitingBB: PreferredLoopExit, ExitFreq, LoopBlockSet); |
2757 | |
2758 | LLVM_DEBUG({ |
2759 | // Crash at the end so we get all of the debugging output first. |
2760 | bool BadLoop = false; |
2761 | if (LoopChain.UnscheduledPredecessors) { |
2762 | BadLoop = true; |
2763 | dbgs() << "Loop chain contains a block without its preds placed!\n" |
2764 | << " Loop header: " << getBlockName(*L.block_begin()) << "\n" |
2765 | << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" ; |
2766 | } |
2767 | for (MachineBasicBlock *ChainBB : LoopChain) { |
2768 | dbgs() << " ... " << getBlockName(ChainBB) << "\n" ; |
2769 | if (!LoopBlockSet.remove(ChainBB)) { |
2770 | // We don't mark the loop as bad here because there are real situations |
2771 | // where this can occur. For example, with an unanalyzable fallthrough |
2772 | // from a loop block to a non-loop block or vice versa. |
2773 | dbgs() << "Loop chain contains a block not contained by the loop!\n" |
2774 | << " Loop header: " << getBlockName(*L.block_begin()) << "\n" |
2775 | << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" |
2776 | << " Bad block: " << getBlockName(ChainBB) << "\n" ; |
2777 | } |
2778 | } |
2779 | |
2780 | if (!LoopBlockSet.empty()) { |
2781 | BadLoop = true; |
2782 | for (const MachineBasicBlock *LoopBB : LoopBlockSet) |
2783 | dbgs() << "Loop contains blocks never placed into a chain!\n" |
2784 | << " Loop header: " << getBlockName(*L.block_begin()) << "\n" |
2785 | << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" |
2786 | << " Bad block: " << getBlockName(LoopBB) << "\n" ; |
2787 | } |
2788 | assert(!BadLoop && "Detected problems with the placement of this loop." ); |
2789 | }); |
2790 | |
2791 | BlockWorkList.clear(); |
2792 | EHPadWorkList.clear(); |
2793 | } |
2794 | |
2795 | void MachineBlockPlacement::buildCFGChains() { |
2796 | // Ensure that every BB in the function has an associated chain to simplify |
2797 | // the assumptions of the remaining algorithm. |
2798 | SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. |
2799 | for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; |
2800 | ++FI) { |
2801 | MachineBasicBlock *BB = &*FI; |
2802 | BlockChain *Chain = |
2803 | new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); |
2804 | // Also, merge any blocks which we cannot reason about and must preserve |
2805 | // the exact fallthrough behavior for. |
2806 | while (true) { |
2807 | Cond.clear(); |
2808 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. |
2809 | if (!TII->analyzeBranch(MBB&: *BB, TBB, FBB, Cond) || !FI->canFallThrough()) |
2810 | break; |
2811 | |
2812 | MachineFunction::iterator NextFI = std::next(x: FI); |
2813 | MachineBasicBlock *NextBB = &*NextFI; |
2814 | // Ensure that the layout successor is a viable block, as we know that |
2815 | // fallthrough is a possibility. |
2816 | assert(NextFI != FE && "Can't fallthrough past the last block." ); |
2817 | LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " |
2818 | << getBlockName(BB) << " -> " << getBlockName(NextBB) |
2819 | << "\n" ); |
2820 | Chain->merge(BB: NextBB, Chain: nullptr); |
2821 | #ifndef NDEBUG |
2822 | BlocksWithUnanalyzableExits.insert(&*BB); |
2823 | #endif |
2824 | FI = NextFI; |
2825 | BB = NextBB; |
2826 | } |
2827 | } |
2828 | |
2829 | // Build any loop-based chains. |
2830 | PreferredLoopExit = nullptr; |
2831 | for (MachineLoop *L : *MLI) |
2832 | buildLoopChains(L: *L); |
2833 | |
2834 | assert(BlockWorkList.empty() && |
2835 | "BlockWorkList should be empty before building final chain." ); |
2836 | assert(EHPadWorkList.empty() && |
2837 | "EHPadWorkList should be empty before building final chain." ); |
2838 | |
2839 | SmallPtrSet<BlockChain *, 4> UpdatedPreds; |
2840 | for (MachineBasicBlock &MBB : *F) |
2841 | fillWorkLists(MBB: &MBB, UpdatedPreds); |
2842 | |
2843 | BlockChain &FunctionChain = *BlockToChain[&F->front()]; |
2844 | buildChain(HeadBB: &F->front(), Chain&: FunctionChain); |
2845 | |
2846 | #ifndef NDEBUG |
2847 | using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; |
2848 | #endif |
2849 | LLVM_DEBUG({ |
2850 | // Crash at the end so we get all of the debugging output first. |
2851 | bool BadFunc = false; |
2852 | FunctionBlockSetType FunctionBlockSet; |
2853 | for (MachineBasicBlock &MBB : *F) |
2854 | FunctionBlockSet.insert(&MBB); |
2855 | |
2856 | for (MachineBasicBlock *ChainBB : FunctionChain) |
2857 | if (!FunctionBlockSet.erase(ChainBB)) { |
2858 | BadFunc = true; |
2859 | dbgs() << "Function chain contains a block not in the function!\n" |
2860 | << " Bad block: " << getBlockName(ChainBB) << "\n" ; |
2861 | } |
2862 | |
2863 | if (!FunctionBlockSet.empty()) { |
2864 | BadFunc = true; |
2865 | for (MachineBasicBlock *RemainingBB : FunctionBlockSet) |
2866 | dbgs() << "Function contains blocks never placed into a chain!\n" |
2867 | << " Bad block: " << getBlockName(RemainingBB) << "\n" ; |
2868 | } |
2869 | assert(!BadFunc && "Detected problems with the block placement." ); |
2870 | }); |
2871 | |
2872 | // Remember original layout ordering, so we can update terminators after |
2873 | // reordering to point to the original layout successor. |
2874 | SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( |
2875 | F->getNumBlockIDs()); |
2876 | { |
2877 | MachineBasicBlock *LastMBB = nullptr; |
2878 | for (auto &MBB : *F) { |
2879 | if (LastMBB != nullptr) |
2880 | OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; |
2881 | LastMBB = &MBB; |
2882 | } |
2883 | OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; |
2884 | } |
2885 | |
2886 | // Splice the blocks into place. |
2887 | MachineFunction::iterator InsertPos = F->begin(); |
2888 | LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n" ); |
2889 | for (MachineBasicBlock *ChainBB : FunctionChain) { |
2890 | LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " |
2891 | : " ... " ) |
2892 | << getBlockName(ChainBB) << "\n" ); |
2893 | if (InsertPos != MachineFunction::iterator(ChainBB)) |
2894 | F->splice(InsertPt: InsertPos, MBB: ChainBB); |
2895 | else |
2896 | ++InsertPos; |
2897 | |
2898 | // Update the terminator of the previous block. |
2899 | if (ChainBB == *FunctionChain.begin()) |
2900 | continue; |
2901 | MachineBasicBlock *PrevBB = &*std::prev(x: MachineFunction::iterator(ChainBB)); |
2902 | |
2903 | // FIXME: It would be awesome of updateTerminator would just return rather |
2904 | // than assert when the branch cannot be analyzed in order to remove this |
2905 | // boiler plate. |
2906 | Cond.clear(); |
2907 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. |
2908 | |
2909 | #ifndef NDEBUG |
2910 | if (!BlocksWithUnanalyzableExits.count(PrevBB)) { |
2911 | // Given the exact block placement we chose, we may actually not _need_ to |
2912 | // be able to edit PrevBB's terminator sequence, but not being _able_ to |
2913 | // do that at this point is a bug. |
2914 | assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || |
2915 | !PrevBB->canFallThrough()) && |
2916 | "Unexpected block with un-analyzable fallthrough!" ); |
2917 | Cond.clear(); |
2918 | TBB = FBB = nullptr; |
2919 | } |
2920 | #endif |
2921 | |
2922 | // The "PrevBB" is not yet updated to reflect current code layout, so, |
2923 | // o. it may fall-through to a block without explicit "goto" instruction |
2924 | // before layout, and no longer fall-through it after layout; or |
2925 | // o. just opposite. |
2926 | // |
2927 | // analyzeBranch() may return erroneous value for FBB when these two |
2928 | // situations take place. For the first scenario FBB is mistakenly set NULL; |
2929 | // for the 2nd scenario, the FBB, which is expected to be NULL, is |
2930 | // mistakenly pointing to "*BI". |
2931 | // Thus, if the future change needs to use FBB before the layout is set, it |
2932 | // has to correct FBB first by using the code similar to the following: |
2933 | // |
2934 | // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { |
2935 | // PrevBB->updateTerminator(); |
2936 | // Cond.clear(); |
2937 | // TBB = FBB = nullptr; |
2938 | // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { |
2939 | // // FIXME: This should never take place. |
2940 | // TBB = FBB = nullptr; |
2941 | // } |
2942 | // } |
2943 | if (!TII->analyzeBranch(MBB&: *PrevBB, TBB, FBB, Cond)) { |
2944 | PrevBB->updateTerminator(PreviousLayoutSuccessor: OriginalLayoutSuccessors[PrevBB->getNumber()]); |
2945 | } |
2946 | } |
2947 | |
2948 | // Fixup the last block. |
2949 | Cond.clear(); |
2950 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. |
2951 | if (!TII->analyzeBranch(MBB&: F->back(), TBB, FBB, Cond)) { |
2952 | MachineBasicBlock *PrevBB = &F->back(); |
2953 | PrevBB->updateTerminator(PreviousLayoutSuccessor: OriginalLayoutSuccessors[PrevBB->getNumber()]); |
2954 | } |
2955 | |
2956 | BlockWorkList.clear(); |
2957 | EHPadWorkList.clear(); |
2958 | } |
2959 | |
2960 | void MachineBlockPlacement::optimizeBranches() { |
2961 | BlockChain &FunctionChain = *BlockToChain[&F->front()]; |
2962 | SmallVector<MachineOperand, 4> Cond; |
2963 | |
2964 | // Now that all the basic blocks in the chain have the proper layout, |
2965 | // make a final call to analyzeBranch with AllowModify set. |
2966 | // Indeed, the target may be able to optimize the branches in a way we |
2967 | // cannot because all branches may not be analyzable. |
2968 | // E.g., the target may be able to remove an unconditional branch to |
2969 | // a fallthrough when it occurs after predicated terminators. |
2970 | for (MachineBasicBlock *ChainBB : FunctionChain) { |
2971 | Cond.clear(); |
2972 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
2973 | if (TII->analyzeBranch(MBB&: *ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) |
2974 | continue; |
2975 | if (!TBB || !FBB || Cond.empty()) |
2976 | continue; |
2977 | // If we are optimizing for size we do not consider the runtime performance. |
2978 | // Instead, we retain the original branch condition so we have more uniform |
2979 | // instructions which will benefit ICF. |
2980 | if (llvm::shouldOptimizeForSize(MBB: ChainBB, PSI, MBFIWrapper: MBFI.get())) |
2981 | continue; |
2982 | // If ChainBB has a two-way branch, try to re-order the branches |
2983 | // such that we branch to the successor with higher probability first. |
2984 | if (MBPI->getEdgeProbability(Src: ChainBB, Dst: TBB) >= |
2985 | MBPI->getEdgeProbability(Src: ChainBB, Dst: FBB)) |
2986 | continue; |
2987 | if (TII->reverseBranchCondition(Cond)) |
2988 | continue; |
2989 | LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " |
2990 | << getBlockName(ChainBB) << "\n" ); |
2991 | LLVM_DEBUG(dbgs() << " " << getBlockName(TBB) << " < " << getBlockName(FBB) |
2992 | << "\n" ); |
2993 | auto Dl = ChainBB->findBranchDebugLoc(); |
2994 | TII->removeBranch(MBB&: *ChainBB); |
2995 | TII->insertBranch(MBB&: *ChainBB, TBB: FBB, FBB: TBB, Cond, DL: Dl); |
2996 | } |
2997 | } |
2998 | |
2999 | void MachineBlockPlacement::alignBlocks() { |
3000 | // Walk through the backedges of the function now that we have fully laid out |
3001 | // the basic blocks and align the destination of each backedge. We don't rely |
3002 | // exclusively on the loop info here so that we can align backedges in |
3003 | // unnatural CFGs and backedges that were introduced purely because of the |
3004 | // loop rotations done during this layout pass. |
3005 | if (!AlignAllBlock && !AlignAllNonFallThruBlocks) { |
3006 | if (F->getFunction().hasMinSize() || |
3007 | (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) |
3008 | return; |
3009 | } |
3010 | |
3011 | BlockChain &FunctionChain = *BlockToChain[&F->front()]; |
3012 | // Empty chain. |
3013 | if (FunctionChain.begin() == FunctionChain.end()) |
3014 | return; |
3015 | |
3016 | const BranchProbability ColdProb(1, 5); // 20% |
3017 | BlockFrequency EntryFreq = MBFI->getBlockFreq(MBB: &F->front()); |
3018 | BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; |
3019 | for (MachineBasicBlock *ChainBB : FunctionChain) { |
3020 | if (ChainBB == *FunctionChain.begin()) |
3021 | continue; |
3022 | |
3023 | // Don't align non-looping basic blocks. These are unlikely to execute |
3024 | // enough times to matter in practice. Note that we'll still handle |
3025 | // unnatural CFGs inside of a natural outer loop (the common case) and |
3026 | // rotated loops. |
3027 | MachineLoop *L = MLI->getLoopFor(BB: ChainBB); |
3028 | if (!L) |
3029 | continue; |
3030 | |
3031 | const Align TLIAlign = TLI->getPrefLoopAlignment(ML: L); |
3032 | unsigned MDAlign = 1; |
3033 | MDNode *LoopID = L->getLoopID(); |
3034 | if (LoopID) { |
3035 | for (const MDOperand &MDO : llvm::drop_begin(RangeOrContainer: LoopID->operands())) { |
3036 | MDNode *MD = dyn_cast<MDNode>(Val: MDO); |
3037 | if (MD == nullptr) |
3038 | continue; |
3039 | MDString *S = dyn_cast<MDString>(Val: MD->getOperand(I: 0)); |
3040 | if (S == nullptr) |
3041 | continue; |
3042 | if (S->getString() == "llvm.loop.align" ) { |
3043 | assert(MD->getNumOperands() == 2 && |
3044 | "per-loop align metadata should have two operands." ); |
3045 | MDAlign = |
3046 | mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1))->getZExtValue(); |
3047 | assert(MDAlign >= 1 && "per-loop align value must be positive." ); |
3048 | } |
3049 | } |
3050 | } |
3051 | |
3052 | // Use max of the TLIAlign and MDAlign |
3053 | const Align LoopAlign = std::max(a: TLIAlign, b: Align(MDAlign)); |
3054 | if (LoopAlign == 1) |
3055 | continue; // Don't care about loop alignment. |
3056 | |
3057 | // If the block is cold relative to the function entry don't waste space |
3058 | // aligning it. |
3059 | BlockFrequency Freq = MBFI->getBlockFreq(MBB: ChainBB); |
3060 | if (Freq < WeightedEntryFreq) |
3061 | continue; |
3062 | |
3063 | // If the block is cold relative to its loop header, don't align it |
3064 | // regardless of what edges into the block exist. |
3065 | MachineBasicBlock * = L->getHeader(); |
3066 | BlockFrequency = MBFI->getBlockFreq(MBB: LoopHeader); |
3067 | if (Freq < (LoopHeaderFreq * ColdProb)) |
3068 | continue; |
3069 | |
3070 | // If the global profiles indicates so, don't align it. |
3071 | if (llvm::shouldOptimizeForSize(MBB: ChainBB, PSI, MBFIWrapper: MBFI.get()) && |
3072 | !TLI->alignLoopsWithOptSize()) |
3073 | continue; |
3074 | |
3075 | // Check for the existence of a non-layout predecessor which would benefit |
3076 | // from aligning this block. |
3077 | MachineBasicBlock *LayoutPred = |
3078 | &*std::prev(x: MachineFunction::iterator(ChainBB)); |
3079 | |
3080 | auto DetermineMaxAlignmentPadding = [&]() { |
3081 | // Set the maximum bytes allowed to be emitted for alignment. |
3082 | unsigned MaxBytes; |
3083 | if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0) |
3084 | MaxBytes = MaxBytesForAlignmentOverride; |
3085 | else |
3086 | MaxBytes = TLI->getMaxPermittedBytesForAlignment(MBB: ChainBB); |
3087 | ChainBB->setMaxBytesForAlignment(MaxBytes); |
3088 | }; |
3089 | |
3090 | // Force alignment if all the predecessors are jumps. We already checked |
3091 | // that the block isn't cold above. |
3092 | if (!LayoutPred->isSuccessor(MBB: ChainBB)) { |
3093 | ChainBB->setAlignment(LoopAlign); |
3094 | DetermineMaxAlignmentPadding(); |
3095 | continue; |
3096 | } |
3097 | |
3098 | // Align this block if the layout predecessor's edge into this block is |
3099 | // cold relative to the block. When this is true, other predecessors make up |
3100 | // all of the hot entries into the block and thus alignment is likely to be |
3101 | // important. |
3102 | BranchProbability LayoutProb = |
3103 | MBPI->getEdgeProbability(Src: LayoutPred, Dst: ChainBB); |
3104 | BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(MBB: LayoutPred) * LayoutProb; |
3105 | if (LayoutEdgeFreq <= (Freq * ColdProb)) { |
3106 | ChainBB->setAlignment(LoopAlign); |
3107 | DetermineMaxAlignmentPadding(); |
3108 | } |
3109 | } |
3110 | |
3111 | const bool HasMaxBytesOverride = |
3112 | MaxBytesForAlignmentOverride.getNumOccurrences() > 0; |
3113 | |
3114 | if (AlignAllBlock) |
3115 | // Align all of the blocks in the function to a specific alignment. |
3116 | for (MachineBasicBlock &MBB : *F) { |
3117 | if (HasMaxBytesOverride) |
3118 | MBB.setAlignment(A: Align(1ULL << AlignAllBlock), |
3119 | MaxBytes: MaxBytesForAlignmentOverride); |
3120 | else |
3121 | MBB.setAlignment(Align(1ULL << AlignAllBlock)); |
3122 | } |
3123 | else if (AlignAllNonFallThruBlocks) { |
3124 | // Align all of the blocks that have no fall-through predecessors to a |
3125 | // specific alignment. |
3126 | for (auto MBI = std::next(x: F->begin()), MBE = F->end(); MBI != MBE; ++MBI) { |
3127 | auto LayoutPred = std::prev(x: MBI); |
3128 | if (!LayoutPred->isSuccessor(MBB: &*MBI)) { |
3129 | if (HasMaxBytesOverride) |
3130 | MBI->setAlignment(A: Align(1ULL << AlignAllNonFallThruBlocks), |
3131 | MaxBytes: MaxBytesForAlignmentOverride); |
3132 | else |
3133 | MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); |
3134 | } |
3135 | } |
3136 | } |
3137 | } |
3138 | |
3139 | /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if |
3140 | /// it was duplicated into its chain predecessor and removed. |
3141 | /// \p BB - Basic block that may be duplicated. |
3142 | /// |
3143 | /// \p LPred - Chosen layout predecessor of \p BB. |
3144 | /// Updated to be the chain end if LPred is removed. |
3145 | /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. |
3146 | /// \p BlockFilter - Set of blocks that belong to the loop being laid out. |
3147 | /// Used to identify which blocks to update predecessor |
3148 | /// counts. |
3149 | /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was |
3150 | /// chosen in the given order due to unnatural CFG |
3151 | /// only needed if \p BB is removed and |
3152 | /// \p PrevUnplacedBlockIt pointed to \p BB. |
3153 | /// @return true if \p BB was removed. |
3154 | bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( |
3155 | MachineBasicBlock *BB, MachineBasicBlock *&LPred, |
3156 | const MachineBasicBlock *, BlockChain &Chain, |
3157 | BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, |
3158 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt) { |
3159 | bool Removed, DuplicatedToLPred; |
3160 | bool DuplicatedToOriginalLPred; |
3161 | Removed = maybeTailDuplicateBlock( |
3162 | BB, LPred, Chain, BlockFilter, PrevUnplacedBlockIt, |
3163 | PrevUnplacedBlockInFilterIt, DuplicatedToLPred); |
3164 | if (!Removed) |
3165 | return false; |
3166 | DuplicatedToOriginalLPred = DuplicatedToLPred; |
3167 | // Iteratively try to duplicate again. It can happen that a block that is |
3168 | // duplicated into is still small enough to be duplicated again. |
3169 | // No need to call markBlockSuccessors in this case, as the blocks being |
3170 | // duplicated from here on are already scheduled. |
3171 | while (DuplicatedToLPred && Removed) { |
3172 | MachineBasicBlock *DupBB, *DupPred; |
3173 | // The removal callback causes Chain.end() to be updated when a block is |
3174 | // removed. On the first pass through the loop, the chain end should be the |
3175 | // same as it was on function entry. On subsequent passes, because we are |
3176 | // duplicating the block at the end of the chain, if it is removed the |
3177 | // chain will have shrunk by one block. |
3178 | BlockChain::iterator ChainEnd = Chain.end(); |
3179 | DupBB = *(--ChainEnd); |
3180 | // Now try to duplicate again. |
3181 | if (ChainEnd == Chain.begin()) |
3182 | break; |
3183 | DupPred = *std::prev(x: ChainEnd); |
3184 | Removed = maybeTailDuplicateBlock( |
3185 | BB: DupBB, LPred: DupPred, Chain, BlockFilter, PrevUnplacedBlockIt, |
3186 | PrevUnplacedBlockInFilterIt, DuplicatedToLPred); |
3187 | } |
3188 | // If BB was duplicated into LPred, it is now scheduled. But because it was |
3189 | // removed, markChainSuccessors won't be called for its chain. Instead we |
3190 | // call markBlockSuccessors for LPred to achieve the same effect. This must go |
3191 | // at the end because repeating the tail duplication can increase the number |
3192 | // of unscheduled predecessors. |
3193 | LPred = *std::prev(x: Chain.end()); |
3194 | if (DuplicatedToOriginalLPred) |
3195 | markBlockSuccessors(Chain, MBB: LPred, LoopHeaderBB, BlockFilter); |
3196 | return true; |
3197 | } |
3198 | |
3199 | /// Tail duplicate \p BB into (some) predecessors if profitable. |
3200 | /// \p BB - Basic block that may be duplicated |
3201 | /// \p LPred - Chosen layout predecessor of \p BB |
3202 | /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. |
3203 | /// \p BlockFilter - Set of blocks that belong to the loop being laid out. |
3204 | /// Used to identify which blocks to update predecessor |
3205 | /// counts. |
3206 | /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was |
3207 | /// chosen in the given order due to unnatural CFG |
3208 | /// only needed if \p BB is removed and |
3209 | /// \p PrevUnplacedBlockIt pointed to \p BB. |
3210 | /// \p DuplicatedToLPred - True if the block was duplicated into LPred. |
3211 | /// \return - True if the block was duplicated into all preds and removed. |
3212 | bool MachineBlockPlacement::maybeTailDuplicateBlock( |
3213 | MachineBasicBlock *BB, MachineBasicBlock *LPred, BlockChain &Chain, |
3214 | BlockFilterSet *BlockFilter, MachineFunction::iterator &PrevUnplacedBlockIt, |
3215 | BlockFilterSet::iterator &PrevUnplacedBlockInFilterIt, |
3216 | bool &DuplicatedToLPred) { |
3217 | DuplicatedToLPred = false; |
3218 | if (!shouldTailDuplicate(BB)) |
3219 | return false; |
3220 | |
3221 | LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() |
3222 | << "\n" ); |
3223 | |
3224 | // This has to be a callback because none of it can be done after |
3225 | // BB is deleted. |
3226 | bool Removed = false; |
3227 | auto RemovalCallback = [&](MachineBasicBlock *RemBB) { |
3228 | // Signal to outer function |
3229 | Removed = true; |
3230 | |
3231 | // Remove from the Chain and Chain Map |
3232 | if (auto It = BlockToChain.find(Val: RemBB); It != BlockToChain.end()) { |
3233 | It->second->remove(BB: RemBB); |
3234 | BlockToChain.erase(I: It); |
3235 | } |
3236 | |
3237 | // Handle the unplaced block iterator |
3238 | if (&(*PrevUnplacedBlockIt) == RemBB) { |
3239 | PrevUnplacedBlockIt++; |
3240 | } |
3241 | |
3242 | // Handle the Work Lists |
3243 | if (RemBB->isEHPad()) { |
3244 | llvm::erase(C&: EHPadWorkList, V: RemBB); |
3245 | } else { |
3246 | llvm::erase(C&: BlockWorkList, V: RemBB); |
3247 | } |
3248 | |
3249 | // Handle the filter set |
3250 | if (BlockFilter) { |
3251 | auto It = llvm::find(Range&: *BlockFilter, Val: RemBB); |
3252 | // Erase RemBB from BlockFilter, and keep PrevUnplacedBlockInFilterIt |
3253 | // pointing to the same element as before. |
3254 | if (It != BlockFilter->end()) { |
3255 | if (It < PrevUnplacedBlockInFilterIt) { |
3256 | const MachineBasicBlock *PrevBB = *PrevUnplacedBlockInFilterIt; |
3257 | // BlockFilter is a SmallVector so all elements after RemBB are |
3258 | // shifted to the front by 1 after its deletion. |
3259 | auto Distance = PrevUnplacedBlockInFilterIt - It - 1; |
3260 | PrevUnplacedBlockInFilterIt = BlockFilter->erase(I: It) + Distance; |
3261 | assert(*PrevUnplacedBlockInFilterIt == PrevBB); |
3262 | (void)PrevBB; |
3263 | } else if (It == PrevUnplacedBlockInFilterIt) |
3264 | // The block pointed by PrevUnplacedBlockInFilterIt is erased, we |
3265 | // have to set it to the next element. |
3266 | PrevUnplacedBlockInFilterIt = BlockFilter->erase(I: It); |
3267 | else |
3268 | BlockFilter->erase(I: It); |
3269 | } |
3270 | } |
3271 | |
3272 | // Remove the block from loop info. |
3273 | MLI->removeBlock(BB: RemBB); |
3274 | if (RemBB == PreferredLoopExit) |
3275 | PreferredLoopExit = nullptr; |
3276 | |
3277 | LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " << getBlockName(RemBB) |
3278 | << "\n" ); |
3279 | }; |
3280 | auto RemovalCallbackRef = |
3281 | function_ref<void(MachineBasicBlock *)>(RemovalCallback); |
3282 | |
3283 | SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; |
3284 | bool IsSimple = TailDup.isSimpleBB(TailBB: BB); |
3285 | SmallVector<MachineBasicBlock *, 8> CandidatePreds; |
3286 | SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; |
3287 | if (F->getFunction().hasProfileData()) { |
3288 | // We can do partial duplication with precise profile information. |
3289 | findDuplicateCandidates(Candidates&: CandidatePreds, BB, BlockFilter); |
3290 | if (CandidatePreds.size() == 0) |
3291 | return false; |
3292 | if (CandidatePreds.size() < BB->pred_size()) |
3293 | CandidatePtr = &CandidatePreds; |
3294 | } |
3295 | TailDup.tailDuplicateAndUpdate(IsSimple, MBB: BB, ForcedLayoutPred: LPred, DuplicatedPreds: &DuplicatedPreds, |
3296 | RemovalCallback: &RemovalCallbackRef, CandidatePtr); |
3297 | |
3298 | // Update UnscheduledPredecessors to reflect tail-duplication. |
3299 | DuplicatedToLPred = false; |
3300 | for (MachineBasicBlock *Pred : DuplicatedPreds) { |
3301 | // We're only looking for unscheduled predecessors that match the filter. |
3302 | BlockChain *PredChain = BlockToChain[Pred]; |
3303 | if (Pred == LPred) |
3304 | DuplicatedToLPred = true; |
3305 | if (Pred == LPred || (BlockFilter && !BlockFilter->count(key: Pred)) || |
3306 | PredChain == &Chain) |
3307 | continue; |
3308 | for (MachineBasicBlock *NewSucc : Pred->successors()) { |
3309 | if (BlockFilter && !BlockFilter->count(key: NewSucc)) |
3310 | continue; |
3311 | BlockChain *NewChain = BlockToChain[NewSucc]; |
3312 | if (NewChain != &Chain && NewChain != PredChain) |
3313 | NewChain->UnscheduledPredecessors++; |
3314 | } |
3315 | } |
3316 | return Removed; |
3317 | } |
3318 | |
3319 | // Count the number of actual machine instructions. |
3320 | static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { |
3321 | uint64_t InstrCount = 0; |
3322 | for (MachineInstr &MI : *MBB) { |
3323 | if (!MI.isPHI() && !MI.isMetaInstruction()) |
3324 | InstrCount += 1; |
3325 | } |
3326 | return InstrCount; |
3327 | } |
3328 | |
3329 | // The size cost of duplication is the instruction size of the duplicated block. |
3330 | // So we should scale the threshold accordingly. But the instruction size is not |
3331 | // available on all targets, so we use the number of instructions instead. |
3332 | BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { |
3333 | return BlockFrequency(DupThreshold.getFrequency() * countMBBInstruction(MBB: BB)); |
3334 | } |
3335 | |
3336 | // Returns true if BB is Pred's best successor. |
3337 | bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, |
3338 | MachineBasicBlock *Pred, |
3339 | BlockFilterSet *BlockFilter) { |
3340 | if (BB == Pred) |
3341 | return false; |
3342 | if (BlockFilter && !BlockFilter->count(key: Pred)) |
3343 | return false; |
3344 | BlockChain *PredChain = BlockToChain[Pred]; |
3345 | if (PredChain && (Pred != *std::prev(x: PredChain->end()))) |
3346 | return false; |
3347 | |
3348 | // Find the successor with largest probability excluding BB. |
3349 | BranchProbability BestProb = BranchProbability::getZero(); |
3350 | for (MachineBasicBlock *Succ : Pred->successors()) |
3351 | if (Succ != BB) { |
3352 | if (BlockFilter && !BlockFilter->count(key: Succ)) |
3353 | continue; |
3354 | BlockChain *SuccChain = BlockToChain[Succ]; |
3355 | if (SuccChain && (Succ != *SuccChain->begin())) |
3356 | continue; |
3357 | BranchProbability SuccProb = MBPI->getEdgeProbability(Src: Pred, Dst: Succ); |
3358 | if (SuccProb > BestProb) |
3359 | BestProb = SuccProb; |
3360 | } |
3361 | |
3362 | BranchProbability BBProb = MBPI->getEdgeProbability(Src: Pred, Dst: BB); |
3363 | if (BBProb <= BestProb) |
3364 | return false; |
3365 | |
3366 | // Compute the number of reduced taken branches if Pred falls through to BB |
3367 | // instead of another successor. Then compare it with threshold. |
3368 | BlockFrequency PredFreq = getBlockCountOrFrequency(BB: Pred); |
3369 | BlockFrequency Gain = PredFreq * (BBProb - BestProb); |
3370 | return Gain > scaleThreshold(BB); |
3371 | } |
3372 | |
3373 | // Find out the predecessors of BB and BB can be beneficially duplicated into |
3374 | // them. |
3375 | void MachineBlockPlacement::findDuplicateCandidates( |
3376 | SmallVectorImpl<MachineBasicBlock *> &Candidates, MachineBasicBlock *BB, |
3377 | BlockFilterSet *BlockFilter) { |
3378 | MachineBasicBlock *Fallthrough = nullptr; |
3379 | BranchProbability DefaultBranchProb = BranchProbability::getZero(); |
3380 | BlockFrequency BBDupThreshold(scaleThreshold(BB)); |
3381 | SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors()); |
3382 | SmallVector<MachineBasicBlock *, 8> Succs(BB->successors()); |
3383 | |
3384 | // Sort for highest frequency. |
3385 | auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { |
3386 | return MBPI->getEdgeProbability(Src: BB, Dst: A) > MBPI->getEdgeProbability(Src: BB, Dst: B); |
3387 | }; |
3388 | auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { |
3389 | return MBFI->getBlockFreq(MBB: A) > MBFI->getBlockFreq(MBB: B); |
3390 | }; |
3391 | llvm::stable_sort(Range&: Succs, C: CmpSucc); |
3392 | llvm::stable_sort(Range&: Preds, C: CmpPred); |
3393 | |
3394 | auto SuccIt = Succs.begin(); |
3395 | if (SuccIt != Succs.end()) { |
3396 | DefaultBranchProb = MBPI->getEdgeProbability(Src: BB, Dst: *SuccIt).getCompl(); |
3397 | } |
3398 | |
3399 | // For each predecessors of BB, compute the benefit of duplicating BB, |
3400 | // if it is larger than the threshold, add it into Candidates. |
3401 | // |
3402 | // If we have following control flow. |
3403 | // |
3404 | // PB1 PB2 PB3 PB4 |
3405 | // \ | / /\ |
3406 | // \ | / / \ |
3407 | // \ |/ / \ |
3408 | // BB----/ OB |
3409 | // /\ |
3410 | // / \ |
3411 | // SB1 SB2 |
3412 | // |
3413 | // And it can be partially duplicated as |
3414 | // |
3415 | // PB2+BB |
3416 | // | PB1 PB3 PB4 |
3417 | // | | / /\ |
3418 | // | | / / \ |
3419 | // | |/ / \ |
3420 | // | BB----/ OB |
3421 | // |\ /| |
3422 | // | X | |
3423 | // |/ \| |
3424 | // SB2 SB1 |
3425 | // |
3426 | // The benefit of duplicating into a predecessor is defined as |
3427 | // Orig_taken_branch - Duplicated_taken_branch |
3428 | // |
3429 | // The Orig_taken_branch is computed with the assumption that predecessor |
3430 | // jumps to BB and the most possible successor is laid out after BB. |
3431 | // |
3432 | // The Duplicated_taken_branch is computed with the assumption that BB is |
3433 | // duplicated into PB, and one successor is layout after it (SB1 for PB1 and |
3434 | // SB2 for PB2 in our case). If there is no available successor, the combined |
3435 | // block jumps to all BB's successor, like PB3 in this example. |
3436 | // |
3437 | // If a predecessor has multiple successors, so BB can't be duplicated into |
3438 | // it. But it can beneficially fall through to BB, and duplicate BB into other |
3439 | // predecessors. |
3440 | for (MachineBasicBlock *Pred : Preds) { |
3441 | BlockFrequency PredFreq = getBlockCountOrFrequency(BB: Pred); |
3442 | |
3443 | if (!TailDup.canTailDuplicate(TailBB: BB, PredBB: Pred)) { |
3444 | // BB can't be duplicated into Pred, but it is possible to be layout |
3445 | // below Pred. |
3446 | if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { |
3447 | Fallthrough = Pred; |
3448 | if (SuccIt != Succs.end()) |
3449 | SuccIt++; |
3450 | } |
3451 | continue; |
3452 | } |
3453 | |
3454 | BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; |
3455 | BlockFrequency DupCost; |
3456 | if (SuccIt == Succs.end()) { |
3457 | // Jump to all successors; |
3458 | if (Succs.size() > 0) |
3459 | DupCost += PredFreq; |
3460 | } else { |
3461 | // Fallthrough to *SuccIt, jump to all other successors; |
3462 | DupCost += PredFreq; |
3463 | DupCost -= PredFreq * MBPI->getEdgeProbability(Src: BB, Dst: *SuccIt); |
3464 | } |
3465 | |
3466 | assert(OrigCost >= DupCost); |
3467 | OrigCost -= DupCost; |
3468 | if (OrigCost > BBDupThreshold) { |
3469 | Candidates.push_back(Elt: Pred); |
3470 | if (SuccIt != Succs.end()) |
3471 | SuccIt++; |
3472 | } |
3473 | } |
3474 | |
3475 | // No predecessors can optimally fallthrough to BB. |
3476 | // So we can change one duplication into fallthrough. |
3477 | if (!Fallthrough) { |
3478 | if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { |
3479 | Candidates[0] = Candidates.back(); |
3480 | Candidates.pop_back(); |
3481 | } |
3482 | } |
3483 | } |
3484 | |
3485 | void MachineBlockPlacement::initTailDupThreshold() { |
3486 | DupThreshold = BlockFrequency(0); |
3487 | if (F->getFunction().hasProfileData()) { |
3488 | // We prefer to use prifile count. |
3489 | uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); |
3490 | if (HotThreshold != UINT64_MAX) { |
3491 | UseProfileCount = true; |
3492 | DupThreshold = |
3493 | BlockFrequency(HotThreshold * TailDupProfilePercentThreshold / 100); |
3494 | } else { |
3495 | // Profile count is not available, we can use block frequency instead. |
3496 | BlockFrequency MaxFreq = BlockFrequency(0); |
3497 | for (MachineBasicBlock &MBB : *F) { |
3498 | BlockFrequency Freq = MBFI->getBlockFreq(MBB: &MBB); |
3499 | if (Freq > MaxFreq) |
3500 | MaxFreq = Freq; |
3501 | } |
3502 | |
3503 | BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); |
3504 | DupThreshold = BlockFrequency(MaxFreq * ThresholdProb); |
3505 | UseProfileCount = false; |
3506 | } |
3507 | } |
3508 | |
3509 | TailDupSize = TailDupPlacementThreshold; |
3510 | // If only the aggressive threshold is explicitly set, use it. |
3511 | if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && |
3512 | TailDupPlacementThreshold.getNumOccurrences() == 0) |
3513 | TailDupSize = TailDupPlacementAggressiveThreshold; |
3514 | |
3515 | // For aggressive optimization, we can adjust some thresholds to be less |
3516 | // conservative. |
3517 | if (OptLevel >= CodeGenOptLevel::Aggressive) { |
3518 | // At O3 we should be more willing to copy blocks for tail duplication. This |
3519 | // increases size pressure, so we only do it at O3 |
3520 | // Do this unless only the regular threshold is explicitly set. |
3521 | if (TailDupPlacementThreshold.getNumOccurrences() == 0 || |
3522 | TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) |
3523 | TailDupSize = TailDupPlacementAggressiveThreshold; |
3524 | } |
3525 | |
3526 | // If there's no threshold provided through options, query the target |
3527 | // information for a threshold instead. |
3528 | if (TailDupPlacementThreshold.getNumOccurrences() == 0 && |
3529 | (OptLevel < CodeGenOptLevel::Aggressive || |
3530 | TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0)) |
3531 | TailDupSize = TII->getTailDuplicateSize(OptLevel); |
3532 | } |
3533 | |
3534 | PreservedAnalyses |
3535 | MachineBlockPlacementPass::run(MachineFunction &MF, |
3536 | MachineFunctionAnalysisManager &MFAM) { |
3537 | auto *MBPI = &MFAM.getResult<MachineBranchProbabilityAnalysis>(IR&: MF); |
3538 | auto MBFI = std::make_unique<MBFIWrapper>( |
3539 | args&: MFAM.getResult<MachineBlockFrequencyAnalysis>(IR&: MF)); |
3540 | auto *MLI = &MFAM.getResult<MachineLoopAnalysis>(IR&: MF); |
3541 | auto *MPDT = MachineBlockPlacement::allowTailDupPlacement(MF) |
3542 | ? &MFAM.getResult<MachinePostDominatorTreeAnalysis>(IR&: MF) |
3543 | : nullptr; |
3544 | auto *PSI = MFAM.getResult<ModuleAnalysisManagerMachineFunctionProxy>(IR&: MF) |
3545 | .getCachedResult<ProfileSummaryAnalysis>( |
3546 | IR&: *MF.getFunction().getParent()); |
3547 | if (!PSI) |
3548 | report_fatal_error(reason: "MachineBlockPlacement requires ProfileSummaryAnalysis" , |
3549 | gen_crash_diag: false); |
3550 | |
3551 | MachineBlockPlacement MBP(MBPI, MLI, PSI, std::move(MBFI), MPDT, |
3552 | AllowTailMerge); |
3553 | |
3554 | if (!MBP.run(F&: MF)) |
3555 | return PreservedAnalyses::all(); |
3556 | |
3557 | return getMachineFunctionPassPreservedAnalyses(); |
3558 | } |
3559 | |
3560 | void MachineBlockPlacementPass::printPipeline( |
3561 | raw_ostream &OS, |
3562 | function_ref<StringRef(StringRef)> MapClassName2PassName) const { |
3563 | OS << MapClassName2PassName(name()); |
3564 | if (!AllowTailMerge) |
3565 | OS << "<no-tail-merge>" ; |
3566 | } |
3567 | |
3568 | bool MachineBlockPlacement::run(MachineFunction &MF) { |
3569 | |
3570 | // Check for single-block functions and skip them. |
3571 | if (std::next(x: MF.begin()) == MF.end()) |
3572 | return false; |
3573 | |
3574 | F = &MF; |
3575 | OptLevel = F->getTarget().getOptLevel(); |
3576 | |
3577 | TII = MF.getSubtarget().getInstrInfo(); |
3578 | TLI = MF.getSubtarget().getTargetLowering(); |
3579 | |
3580 | // Initialize PreferredLoopExit to nullptr here since it may never be set if |
3581 | // there are no MachineLoops. |
3582 | PreferredLoopExit = nullptr; |
3583 | |
3584 | assert(BlockToChain.empty() && |
3585 | "BlockToChain map should be empty before starting placement." ); |
3586 | assert(ComputedEdges.empty() && |
3587 | "Computed Edge map should be empty before starting placement." ); |
3588 | |
3589 | // Initialize tail duplication thresholds. |
3590 | initTailDupThreshold(); |
3591 | |
3592 | const bool OptForSize = |
3593 | llvm::shouldOptimizeForSize(MF: &MF, PSI, BFI: &MBFI->getMBFI()); |
3594 | // Determine whether to use ext-tsp for perf/size optimization. The method |
3595 | // is beneficial only for instances with at least 3 basic blocks and it can be |
3596 | // disabled for huge functions (exceeding a certain size). |
3597 | bool UseExtTspForPerf = false; |
3598 | bool UseExtTspForSize = false; |
3599 | if (3 <= MF.size() && MF.size() <= ExtTspBlockPlacementMaxBlocks) { |
3600 | UseExtTspForPerf = |
3601 | EnableExtTspBlockPlacement && |
3602 | (ApplyExtTspWithoutProfile || MF.getFunction().hasProfileData()); |
3603 | UseExtTspForSize = OptForSize && ApplyExtTspForSize; |
3604 | } |
3605 | |
3606 | // Apply tail duplication. |
3607 | if (allowTailDupPlacement(MF&: *F)) { |
3608 | if (OptForSize) |
3609 | TailDupSize = 1; |
3610 | const bool PreRegAlloc = false; |
3611 | TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI: MBFI.get(), PSI, |
3612 | /* LayoutMode */ true, TailDupSize); |
3613 | if (!UseExtTspForSize) |
3614 | precomputeTriangleChains(); |
3615 | } |
3616 | |
3617 | // Run the main block placement. |
3618 | if (!UseExtTspForSize) |
3619 | buildCFGChains(); |
3620 | |
3621 | // Changing the layout can create new tail merging opportunities. |
3622 | // TailMerge can create jump into if branches that make CFG irreducible for |
3623 | // HW that requires structured CFG. |
3624 | const bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && |
3625 | AllowTailMerge && BranchFoldPlacement && |
3626 | MF.size() > 3; |
3627 | // No tail merging opportunities if the block number is less than four. |
3628 | if (EnableTailMerge) { |
3629 | const unsigned TailMergeSize = TailDupSize + 1; |
3630 | BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, |
3631 | *MBFI, *MBPI, PSI, TailMergeSize); |
3632 | |
3633 | if (BF.OptimizeFunction(MF, tii: TII, tri: MF.getSubtarget().getRegisterInfo(), mli: MLI, |
3634 | /*AfterPlacement=*/true)) { |
3635 | // Must redo the post-dominator tree if blocks were changed. |
3636 | if (MPDT) |
3637 | MPDT->recalculate(Func&: MF); |
3638 | if (!UseExtTspForSize) { |
3639 | // Redo the layout if tail merging creates/removes/moves blocks. |
3640 | BlockToChain.clear(); |
3641 | ComputedEdges.clear(); |
3642 | ChainAllocator.DestroyAll(); |
3643 | buildCFGChains(); |
3644 | } |
3645 | } |
3646 | } |
3647 | |
3648 | // Apply a post-processing optimizing block placement: |
3649 | // - find a new placement and modify the layout of the blocks in the function; |
3650 | // - re-create CFG chains so that we can optimizeBranches and alignBlocks. |
3651 | if (UseExtTspForPerf || UseExtTspForSize) { |
3652 | assert( |
3653 | !(UseExtTspForPerf && UseExtTspForSize) && |
3654 | "UseExtTspForPerf and UseExtTspForSize can not be set simultaneously" ); |
3655 | applyExtTsp(/*OptForSize=*/UseExtTspForSize); |
3656 | createCFGChainExtTsp(); |
3657 | } |
3658 | |
3659 | optimizeBranches(); |
3660 | alignBlocks(); |
3661 | |
3662 | BlockToChain.clear(); |
3663 | ComputedEdges.clear(); |
3664 | ChainAllocator.DestroyAll(); |
3665 | |
3666 | // View the function. |
3667 | if (ViewBlockLayoutWithBFI != GVDT_None && |
3668 | (ViewBlockFreqFuncName.empty() || |
3669 | F->getFunction().getName() == ViewBlockFreqFuncName)) { |
3670 | if (RenumberBlocksBeforeView) |
3671 | MF.RenumberBlocks(); |
3672 | MBFI->view(Name: "MBP." + MF.getName(), isSimple: false); |
3673 | } |
3674 | |
3675 | // We always return true as we have no way to track whether the final order |
3676 | // differs from the original order. |
3677 | return true; |
3678 | } |
3679 | |
3680 | void MachineBlockPlacement::applyExtTsp(bool OptForSize) { |
3681 | // Prepare data; blocks are indexed by their index in the current ordering. |
3682 | DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex; |
3683 | BlockIndex.reserve(NumEntries: F->size()); |
3684 | std::vector<const MachineBasicBlock *> CurrentBlockOrder; |
3685 | CurrentBlockOrder.reserve(n: F->size()); |
3686 | size_t NumBlocks = 0; |
3687 | for (const MachineBasicBlock &MBB : *F) { |
3688 | BlockIndex[&MBB] = NumBlocks++; |
3689 | CurrentBlockOrder.push_back(x: &MBB); |
3690 | } |
3691 | |
3692 | SmallVector<uint64_t, 0> BlockCounts(F->size()); |
3693 | SmallVector<uint64_t, 0> BlockSizes(F->size()); |
3694 | SmallVector<codelayout::EdgeCount, 0> JumpCounts; |
3695 | SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. |
3696 | SmallVector<const MachineBasicBlock *, 4> Succs; |
3697 | for (MachineBasicBlock &MBB : *F) { |
3698 | // Getting the block frequency. |
3699 | BlockFrequency BlockFreq = MBFI->getBlockFreq(MBB: &MBB); |
3700 | BlockCounts[BlockIndex[&MBB]] = OptForSize ? 1 : BlockFreq.getFrequency(); |
3701 | // Getting the block size: |
3702 | // - approximate the size of an instruction by 4 bytes, and |
3703 | // - ignore debug instructions. |
3704 | // Note: getting the exact size of each block is target-dependent and can be |
3705 | // done by extending the interface of MCCodeEmitter. Experimentally we do |
3706 | // not see a perf improvement with the exact block sizes. |
3707 | auto NonDbgInsts = |
3708 | instructionsWithoutDebug(It: MBB.instr_begin(), End: MBB.instr_end()); |
3709 | size_t NumInsts = std::distance(first: NonDbgInsts.begin(), last: NonDbgInsts.end()); |
3710 | BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts; |
3711 | |
3712 | // Getting jump frequencies. |
3713 | if (OptForSize) { |
3714 | Cond.clear(); |
3715 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. |
3716 | if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) |
3717 | continue; |
3718 | |
3719 | const MachineBasicBlock *FTB = MBB.getFallThrough(); |
3720 | // Succs is a collection of distinct destinations of the block reachable |
3721 | // from MBB via a jump instruction; initialize the list using the three |
3722 | // (non-necessarily distinct) blocks, FTB, TBB, and FBB. |
3723 | Succs.clear(); |
3724 | if (TBB && TBB != FTB) |
3725 | Succs.push_back(Elt: TBB); |
3726 | if (FBB && FBB != FTB) |
3727 | Succs.push_back(Elt: FBB); |
3728 | if (FTB) |
3729 | Succs.push_back(Elt: FTB); |
3730 | // Absolute magnitude of non-zero counts does not matter for the |
3731 | // optimization; prioritize slightly jumps with a single successor, since |
3732 | // the corresponding jump instruction will be removed from the binary. |
3733 | const uint64_t Freq = Succs.size() == 1 ? 110 : 100; |
3734 | for (const MachineBasicBlock *Succ : Succs) |
3735 | JumpCounts.push_back(Elt: {.src: BlockIndex[&MBB], .dst: BlockIndex[Succ], .count: Freq}); |
3736 | } else { |
3737 | for (MachineBasicBlock *Succ : MBB.successors()) { |
3738 | auto EP = MBPI->getEdgeProbability(Src: &MBB, Dst: Succ); |
3739 | BlockFrequency JumpFreq = BlockFreq * EP; |
3740 | JumpCounts.push_back( |
3741 | Elt: {.src: BlockIndex[&MBB], .dst: BlockIndex[Succ], .count: JumpFreq.getFrequency()}); |
3742 | } |
3743 | } |
3744 | } |
3745 | |
3746 | LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size() |
3747 | << " with profile = " << F->getFunction().hasProfileData() |
3748 | << " (" << F->getName() << ")" << "\n" ); |
3749 | |
3750 | const double OrgScore = calcExtTspScore(NodeSizes: BlockSizes, EdgeCounts: JumpCounts); |
3751 | LLVM_DEBUG(dbgs() << format(" original layout score: %0.2f\n" , OrgScore)); |
3752 | |
3753 | // Run the layout algorithm. |
3754 | auto NewOrder = computeExtTspLayout(NodeSizes: BlockSizes, NodeCounts: BlockCounts, EdgeCounts: JumpCounts); |
3755 | std::vector<const MachineBasicBlock *> NewBlockOrder; |
3756 | NewBlockOrder.reserve(n: F->size()); |
3757 | for (uint64_t Node : NewOrder) { |
3758 | NewBlockOrder.push_back(x: CurrentBlockOrder[Node]); |
3759 | } |
3760 | const double OptScore = calcExtTspScore(Order: NewOrder, NodeSizes: BlockSizes, EdgeCounts: JumpCounts); |
3761 | LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n" , OptScore)); |
3762 | |
3763 | // If the optimization is unsuccessful, fall back to the original block order. |
3764 | if (OptForSize && OrgScore > OptScore) |
3765 | assignBlockOrder(NewOrder: CurrentBlockOrder); |
3766 | else |
3767 | assignBlockOrder(NewOrder: NewBlockOrder); |
3768 | } |
3769 | |
3770 | void MachineBlockPlacement::assignBlockOrder( |
3771 | const std::vector<const MachineBasicBlock *> &NewBlockOrder) { |
3772 | assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order" ); |
3773 | F->RenumberBlocks(); |
3774 | // At this point, we possibly removed blocks from the function, so we can't |
3775 | // renumber the domtree. At this point, we don't need it anymore, though. |
3776 | // TODO: move this to the point where the dominator tree is actually |
3777 | // invalidated (i.e., where blocks are removed without updating the domtree). |
3778 | MPDT = nullptr; |
3779 | |
3780 | bool HasChanges = false; |
3781 | for (size_t I = 0; I < NewBlockOrder.size(); I++) { |
3782 | if (NewBlockOrder[I] != F->getBlockNumbered(N: I)) { |
3783 | HasChanges = true; |
3784 | break; |
3785 | } |
3786 | } |
3787 | // Stop early if the new block order is identical to the existing one. |
3788 | if (!HasChanges) |
3789 | return; |
3790 | |
3791 | SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs()); |
3792 | for (auto &MBB : *F) { |
3793 | PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); |
3794 | } |
3795 | |
3796 | // Sort basic blocks in the function according to the computed order. |
3797 | DenseMap<const MachineBasicBlock *, size_t> NewIndex; |
3798 | for (const MachineBasicBlock *MBB : NewBlockOrder) { |
3799 | NewIndex[MBB] = NewIndex.size(); |
3800 | } |
3801 | F->sort(comp: [&](MachineBasicBlock &L, MachineBasicBlock &R) { |
3802 | return NewIndex[&L] < NewIndex[&R]; |
3803 | }); |
3804 | |
3805 | // Update basic block branches by inserting explicit fallthrough branches |
3806 | // when required and re-optimize branches when possible. |
3807 | const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo(); |
3808 | SmallVector<MachineOperand, 4> Cond; |
3809 | for (auto &MBB : *F) { |
3810 | MachineFunction::iterator NextMBB = std::next(x: MBB.getIterator()); |
3811 | MachineFunction::iterator EndIt = MBB.getParent()->end(); |
3812 | auto *FTMBB = PrevFallThroughs[MBB.getNumber()]; |
3813 | // If this block had a fallthrough before we need an explicit unconditional |
3814 | // branch to that block if the fallthrough block is not adjacent to the |
3815 | // block in the new order. |
3816 | if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) { |
3817 | TII->insertUnconditionalBranch(MBB, DestBB: FTMBB, DL: MBB.findBranchDebugLoc()); |
3818 | } |
3819 | |
3820 | // It might be possible to optimize branches by flipping the condition. |
3821 | Cond.clear(); |
3822 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
3823 | if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) |
3824 | continue; |
3825 | MBB.updateTerminator(PreviousLayoutSuccessor: FTMBB); |
3826 | } |
3827 | } |
3828 | |
3829 | void MachineBlockPlacement::createCFGChainExtTsp() { |
3830 | BlockToChain.clear(); |
3831 | ComputedEdges.clear(); |
3832 | ChainAllocator.DestroyAll(); |
3833 | |
3834 | MachineBasicBlock *HeadBB = &F->front(); |
3835 | BlockChain *FunctionChain = |
3836 | new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB); |
3837 | |
3838 | for (MachineBasicBlock &MBB : *F) { |
3839 | if (HeadBB == &MBB) |
3840 | continue; // Ignore head of the chain |
3841 | FunctionChain->merge(BB: &MBB, Chain: nullptr); |
3842 | } |
3843 | } |
3844 | |
3845 | namespace { |
3846 | |
3847 | /// A pass to compute block placement statistics. |
3848 | /// |
3849 | /// A separate pass to compute interesting statistics for evaluating block |
3850 | /// placement. This is separate from the actual placement pass so that they can |
3851 | /// be computed in the absence of any placement transformations or when using |
3852 | /// alternative placement strategies. |
3853 | class MachineBlockPlacementStats { |
3854 | /// A handle to the branch probability pass. |
3855 | const MachineBranchProbabilityInfo *MBPI; |
3856 | |
3857 | /// A handle to the function-wide block frequency pass. |
3858 | const MachineBlockFrequencyInfo *MBFI; |
3859 | |
3860 | public: |
3861 | MachineBlockPlacementStats(const MachineBranchProbabilityInfo *MBPI, |
3862 | const MachineBlockFrequencyInfo *MBFI) |
3863 | : MBPI(MBPI), MBFI(MBFI) {} |
3864 | bool run(MachineFunction &MF); |
3865 | }; |
3866 | |
3867 | class MachineBlockPlacementStatsLegacy : public MachineFunctionPass { |
3868 | public: |
3869 | static char ID; // Pass identification, replacement for typeid |
3870 | |
3871 | MachineBlockPlacementStatsLegacy() : MachineFunctionPass(ID) { |
3872 | initializeMachineBlockPlacementStatsLegacyPass( |
3873 | *PassRegistry::getPassRegistry()); |
3874 | } |
3875 | |
3876 | bool runOnMachineFunction(MachineFunction &F) override { |
3877 | auto *MBPI = |
3878 | &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
3879 | auto *MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); |
3880 | return MachineBlockPlacementStats(MBPI, MBFI).run(MF&: F); |
3881 | } |
3882 | |
3883 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
3884 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
3885 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
3886 | AU.setPreservesAll(); |
3887 | MachineFunctionPass::getAnalysisUsage(AU); |
3888 | } |
3889 | }; |
3890 | |
3891 | } // end anonymous namespace |
3892 | |
3893 | char MachineBlockPlacementStatsLegacy::ID = 0; |
3894 | |
3895 | char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStatsLegacy::ID; |
3896 | |
3897 | INITIALIZE_PASS_BEGIN(MachineBlockPlacementStatsLegacy, "block-placement-stats" , |
3898 | "Basic Block Placement Stats" , false, false) |
3899 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) |
3900 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
3901 | INITIALIZE_PASS_END(MachineBlockPlacementStatsLegacy, "block-placement-stats" , |
3902 | "Basic Block Placement Stats" , false, false) |
3903 | |
3904 | PreservedAnalyses |
3905 | MachineBlockPlacementStatsPass::run(MachineFunction &MF, |
3906 | MachineFunctionAnalysisManager &MFAM) { |
3907 | auto &MBPI = MFAM.getResult<MachineBranchProbabilityAnalysis>(IR&: MF); |
3908 | auto &MBFI = MFAM.getResult<MachineBlockFrequencyAnalysis>(IR&: MF); |
3909 | |
3910 | MachineBlockPlacementStats(&MBPI, &MBFI).run(MF); |
3911 | return PreservedAnalyses::all(); |
3912 | } |
3913 | |
3914 | bool MachineBlockPlacementStats::run(MachineFunction &F) { |
3915 | // Check for single-block functions and skip them. |
3916 | if (std::next(x: F.begin()) == F.end()) |
3917 | return false; |
3918 | |
3919 | if (!isFunctionInPrintList(FunctionName: F.getName())) |
3920 | return false; |
3921 | |
3922 | for (MachineBasicBlock &MBB : F) { |
3923 | BlockFrequency BlockFreq = MBFI->getBlockFreq(MBB: &MBB); |
3924 | Statistic &NumBranches = |
3925 | (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; |
3926 | Statistic &BranchTakenFreq = |
3927 | (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; |
3928 | for (MachineBasicBlock *Succ : MBB.successors()) { |
3929 | // Skip if this successor is a fallthrough. |
3930 | if (MBB.isLayoutSuccessor(MBB: Succ)) |
3931 | continue; |
3932 | |
3933 | BlockFrequency EdgeFreq = |
3934 | BlockFreq * MBPI->getEdgeProbability(Src: &MBB, Dst: Succ); |
3935 | ++NumBranches; |
3936 | BranchTakenFreq += EdgeFreq.getFrequency(); |
3937 | } |
3938 | } |
3939 | |
3940 | return false; |
3941 | } |
3942 | |