| 1 | //===-- lib/CodeGen/MachineInstrBundle.cpp --------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/CodeGen/MachineInstrBundle.h" |
| 10 | #include "llvm/ADT/SetVector.h" |
| 11 | #include "llvm/ADT/SmallSet.h" |
| 12 | #include "llvm/ADT/SmallVector.h" |
| 13 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 14 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 15 | #include "llvm/CodeGen/Passes.h" |
| 16 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 17 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 18 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 19 | #include "llvm/InitializePasses.h" |
| 20 | #include "llvm/Pass.h" |
| 21 | #include "llvm/PassRegistry.h" |
| 22 | #include <utility> |
| 23 | using namespace llvm; |
| 24 | |
| 25 | namespace { |
| 26 | class UnpackMachineBundles : public MachineFunctionPass { |
| 27 | public: |
| 28 | static char ID; // Pass identification |
| 29 | UnpackMachineBundles( |
| 30 | std::function<bool(const MachineFunction &)> Ftor = nullptr) |
| 31 | : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { |
| 32 | initializeUnpackMachineBundlesPass(*PassRegistry::getPassRegistry()); |
| 33 | } |
| 34 | |
| 35 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 36 | |
| 37 | private: |
| 38 | std::function<bool(const MachineFunction &)> PredicateFtor; |
| 39 | }; |
| 40 | } // end anonymous namespace |
| 41 | |
| 42 | char UnpackMachineBundles::ID = 0; |
| 43 | char &llvm::UnpackMachineBundlesID = UnpackMachineBundles::ID; |
| 44 | INITIALIZE_PASS(UnpackMachineBundles, "unpack-mi-bundles" , |
| 45 | "Unpack machine instruction bundles" , false, false) |
| 46 | |
| 47 | bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) { |
| 48 | if (PredicateFtor && !PredicateFtor(MF)) |
| 49 | return false; |
| 50 | |
| 51 | bool Changed = false; |
| 52 | for (MachineBasicBlock &MBB : MF) { |
| 53 | for (MachineBasicBlock::instr_iterator MII = MBB.instr_begin(), |
| 54 | MIE = MBB.instr_end(); MII != MIE; ) { |
| 55 | MachineInstr *MI = &*MII; |
| 56 | |
| 57 | // Remove BUNDLE instruction and the InsideBundle flags from bundled |
| 58 | // instructions. |
| 59 | if (MI->isBundle()) { |
| 60 | while (++MII != MIE && MII->isBundledWithPred()) { |
| 61 | MII->unbundleFromPred(); |
| 62 | for (MachineOperand &MO : MII->operands()) { |
| 63 | if (MO.isReg() && MO.isInternalRead()) |
| 64 | MO.setIsInternalRead(false); |
| 65 | } |
| 66 | } |
| 67 | MI->eraseFromParent(); |
| 68 | |
| 69 | Changed = true; |
| 70 | continue; |
| 71 | } |
| 72 | |
| 73 | ++MII; |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | return Changed; |
| 78 | } |
| 79 | |
| 80 | FunctionPass * |
| 81 | llvm::createUnpackMachineBundles( |
| 82 | std::function<bool(const MachineFunction &)> Ftor) { |
| 83 | return new UnpackMachineBundles(std::move(Ftor)); |
| 84 | } |
| 85 | |
| 86 | namespace { |
| 87 | class FinalizeMachineBundles : public MachineFunctionPass { |
| 88 | public: |
| 89 | static char ID; // Pass identification |
| 90 | FinalizeMachineBundles() : MachineFunctionPass(ID) { |
| 91 | initializeFinalizeMachineBundlesPass(*PassRegistry::getPassRegistry()); |
| 92 | } |
| 93 | |
| 94 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 95 | }; |
| 96 | } // end anonymous namespace |
| 97 | |
| 98 | char FinalizeMachineBundles::ID = 0; |
| 99 | char &llvm::FinalizeMachineBundlesID = FinalizeMachineBundles::ID; |
| 100 | INITIALIZE_PASS(FinalizeMachineBundles, "finalize-mi-bundles" , |
| 101 | "Finalize machine instruction bundles" , false, false) |
| 102 | |
| 103 | bool FinalizeMachineBundles::runOnMachineFunction(MachineFunction &MF) { |
| 104 | return llvm::finalizeBundles(MF); |
| 105 | } |
| 106 | |
| 107 | /// Return the first found DebugLoc that has a DILocation, given a range of |
| 108 | /// instructions. The search range is from FirstMI to LastMI (exclusive). If no |
| 109 | /// DILocation is found, then an empty location is returned. |
| 110 | static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, |
| 111 | MachineBasicBlock::instr_iterator LastMI) { |
| 112 | for (auto MII = FirstMI; MII != LastMI; ++MII) |
| 113 | if (MII->getDebugLoc()) |
| 114 | return MII->getDebugLoc(); |
| 115 | return DebugLoc(); |
| 116 | } |
| 117 | |
| 118 | /// finalizeBundle - Finalize a machine instruction bundle which includes |
| 119 | /// a sequence of instructions starting from FirstMI to LastMI (exclusive). |
| 120 | /// This routine adds a BUNDLE instruction to represent the bundle, it adds |
| 121 | /// IsInternalRead markers to MachineOperands which are defined inside the |
| 122 | /// bundle, and it copies externally visible defs and uses to the BUNDLE |
| 123 | /// instruction. |
| 124 | void llvm::finalizeBundle(MachineBasicBlock &MBB, |
| 125 | MachineBasicBlock::instr_iterator FirstMI, |
| 126 | MachineBasicBlock::instr_iterator LastMI) { |
| 127 | assert(FirstMI != LastMI && "Empty bundle?" ); |
| 128 | MIBundleBuilder Bundle(MBB, FirstMI, LastMI); |
| 129 | |
| 130 | MachineFunction &MF = *MBB.getParent(); |
| 131 | const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| 132 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| 133 | |
| 134 | MachineInstrBuilder MIB = |
| 135 | BuildMI(MF, MIMD: getDebugLoc(FirstMI, LastMI), MCID: TII->get(Opcode: TargetOpcode::BUNDLE)); |
| 136 | Bundle.prepend(MI: MIB); |
| 137 | |
| 138 | SmallSetVector<Register, 32> LocalDefs; |
| 139 | SmallSet<Register, 8> DeadDefSet; |
| 140 | SmallSet<Register, 16> KilledDefSet; |
| 141 | SmallSetVector<Register, 8> ExternUses; |
| 142 | SmallSet<Register, 8> KilledUseSet; |
| 143 | SmallSet<Register, 8> UndefUseSet; |
| 144 | for (auto MII = FirstMI; MII != LastMI; ++MII) { |
| 145 | // Debug instructions have no effects to track. |
| 146 | if (MII->isDebugInstr()) |
| 147 | continue; |
| 148 | |
| 149 | for (MachineOperand &MO : MII->all_uses()) { |
| 150 | Register Reg = MO.getReg(); |
| 151 | if (!Reg) |
| 152 | continue; |
| 153 | |
| 154 | if (LocalDefs.contains(key: Reg)) { |
| 155 | MO.setIsInternalRead(); |
| 156 | if (MO.isKill()) { |
| 157 | // Internal def is now killed. |
| 158 | KilledDefSet.insert(V: Reg); |
| 159 | } |
| 160 | } else { |
| 161 | if (ExternUses.insert(X: Reg)) { |
| 162 | if (MO.isUndef()) |
| 163 | UndefUseSet.insert(V: Reg); |
| 164 | } |
| 165 | if (MO.isKill()) { |
| 166 | // External def is now killed. |
| 167 | KilledUseSet.insert(V: Reg); |
| 168 | } |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | for (MachineOperand &MO : MII->all_defs()) { |
| 173 | Register Reg = MO.getReg(); |
| 174 | if (!Reg) |
| 175 | continue; |
| 176 | |
| 177 | if (LocalDefs.insert(X: Reg)) { |
| 178 | if (MO.isDead()) |
| 179 | DeadDefSet.insert(V: Reg); |
| 180 | } else { |
| 181 | // Re-defined inside the bundle, it's no longer killed. |
| 182 | KilledDefSet.erase(V: Reg); |
| 183 | if (!MO.isDead()) { |
| 184 | // Previously defined but dead. |
| 185 | DeadDefSet.erase(V: Reg); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | if (!MO.isDead() && Reg.isPhysical()) |
| 190 | LocalDefs.insert_range(R: TRI->subregs(Reg)); |
| 191 | } |
| 192 | |
| 193 | // Set FrameSetup/FrameDestroy for the bundle. If any of the instructions |
| 194 | // got the property, then also set it on the bundle. |
| 195 | if (MII->getFlag(Flag: MachineInstr::FrameSetup)) |
| 196 | MIB.setMIFlag(MachineInstr::FrameSetup); |
| 197 | if (MII->getFlag(Flag: MachineInstr::FrameDestroy)) |
| 198 | MIB.setMIFlag(MachineInstr::FrameDestroy); |
| 199 | } |
| 200 | |
| 201 | for (Register Reg : LocalDefs) { |
| 202 | // If it's not live beyond end of the bundle, mark it dead. |
| 203 | bool isDead = DeadDefSet.contains(V: Reg) || KilledDefSet.contains(V: Reg); |
| 204 | MIB.addReg(RegNo: Reg, flags: getDefRegState(B: true) | getDeadRegState(B: isDead) | |
| 205 | getImplRegState(B: true)); |
| 206 | } |
| 207 | |
| 208 | for (Register Reg : ExternUses) { |
| 209 | bool isKill = KilledUseSet.contains(V: Reg); |
| 210 | bool isUndef = UndefUseSet.contains(V: Reg); |
| 211 | MIB.addReg(RegNo: Reg, flags: getKillRegState(B: isKill) | getUndefRegState(B: isUndef) | |
| 212 | getImplRegState(B: true)); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | /// finalizeBundle - Same functionality as the previous finalizeBundle except |
| 217 | /// the last instruction in the bundle is not provided as an input. This is |
| 218 | /// used in cases where bundles are pre-determined by marking instructions |
| 219 | /// with 'InsideBundle' marker. It returns the MBB instruction iterator that |
| 220 | /// points to the end of the bundle. |
| 221 | MachineBasicBlock::instr_iterator |
| 222 | llvm::finalizeBundle(MachineBasicBlock &MBB, |
| 223 | MachineBasicBlock::instr_iterator FirstMI) { |
| 224 | MachineBasicBlock::instr_iterator E = MBB.instr_end(); |
| 225 | MachineBasicBlock::instr_iterator LastMI = std::next(x: FirstMI); |
| 226 | while (LastMI != E && LastMI->isInsideBundle()) |
| 227 | ++LastMI; |
| 228 | finalizeBundle(MBB, FirstMI, LastMI); |
| 229 | return LastMI; |
| 230 | } |
| 231 | |
| 232 | /// finalizeBundles - Finalize instruction bundles in the specified |
| 233 | /// MachineFunction. Return true if any bundles are finalized. |
| 234 | bool llvm::finalizeBundles(MachineFunction &MF) { |
| 235 | bool Changed = false; |
| 236 | for (MachineBasicBlock &MBB : MF) { |
| 237 | MachineBasicBlock::instr_iterator MII = MBB.instr_begin(); |
| 238 | MachineBasicBlock::instr_iterator MIE = MBB.instr_end(); |
| 239 | if (MII == MIE) |
| 240 | continue; |
| 241 | assert(!MII->isInsideBundle() && |
| 242 | "First instr cannot be inside bundle before finalization!" ); |
| 243 | |
| 244 | for (++MII; MII != MIE; ) { |
| 245 | if (!MII->isInsideBundle()) |
| 246 | ++MII; |
| 247 | else { |
| 248 | MII = finalizeBundle(MBB, FirstMI: std::prev(x: MII)); |
| 249 | Changed = true; |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | return Changed; |
| 255 | } |
| 256 | |
| 257 | VirtRegInfo llvm::AnalyzeVirtRegInBundle( |
| 258 | MachineInstr &MI, Register Reg, |
| 259 | SmallVectorImpl<std::pair<MachineInstr *, unsigned>> *Ops) { |
| 260 | VirtRegInfo RI = {.Reads: false, .Writes: false, .Tied: false}; |
| 261 | for (MIBundleOperands O(MI); O.isValid(); ++O) { |
| 262 | MachineOperand &MO = *O; |
| 263 | if (!MO.isReg() || MO.getReg() != Reg) |
| 264 | continue; |
| 265 | |
| 266 | // Remember each (MI, OpNo) that refers to Reg. |
| 267 | if (Ops) |
| 268 | Ops->push_back(Elt: std::make_pair(x: MO.getParent(), y: O.getOperandNo())); |
| 269 | |
| 270 | // Both defs and uses can read virtual registers. |
| 271 | if (MO.readsReg()) { |
| 272 | RI.Reads = true; |
| 273 | if (MO.isDef()) |
| 274 | RI.Tied = true; |
| 275 | } |
| 276 | |
| 277 | // Only defs can write. |
| 278 | if (MO.isDef()) |
| 279 | RI.Writes = true; |
| 280 | else if (!RI.Tied && |
| 281 | MO.getParent()->isRegTiedToDefOperand(UseOpIdx: O.getOperandNo())) |
| 282 | RI.Tied = true; |
| 283 | } |
| 284 | return RI; |
| 285 | } |
| 286 | |
| 287 | std::pair<LaneBitmask, LaneBitmask> |
| 288 | llvm::AnalyzeVirtRegLanesInBundle(const MachineInstr &MI, Register Reg, |
| 289 | const MachineRegisterInfo &MRI, |
| 290 | const TargetRegisterInfo &TRI) { |
| 291 | |
| 292 | LaneBitmask UseMask, DefMask; |
| 293 | |
| 294 | for (const MachineOperand &MO : const_mi_bundle_ops(MI)) { |
| 295 | if (!MO.isReg() || MO.getReg() != Reg) |
| 296 | continue; |
| 297 | |
| 298 | unsigned SubReg = MO.getSubReg(); |
| 299 | if (SubReg == 0 && MO.isUse() && !MO.isUndef()) |
| 300 | UseMask |= MRI.getMaxLaneMaskForVReg(Reg); |
| 301 | |
| 302 | LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubIdx: SubReg); |
| 303 | if (MO.isDef()) { |
| 304 | if (!MO.isUndef()) |
| 305 | UseMask |= ~SubRegMask; |
| 306 | DefMask |= SubRegMask; |
| 307 | } else if (!MO.isUndef()) |
| 308 | UseMask |= SubRegMask; |
| 309 | } |
| 310 | |
| 311 | return {UseMask, DefMask}; |
| 312 | } |
| 313 | |
| 314 | PhysRegInfo llvm::AnalyzePhysRegInBundle(const MachineInstr &MI, Register Reg, |
| 315 | const TargetRegisterInfo *TRI) { |
| 316 | bool AllDefsDead = true; |
| 317 | PhysRegInfo PRI = {.Clobbered: false, .Defined: false, .FullyDefined: false, .Read: false, .FullyRead: false, .DeadDef: false, .PartialDeadDef: false, .Killed: false}; |
| 318 | |
| 319 | assert(Reg.isPhysical() && "analyzePhysReg not given a physical register!" ); |
| 320 | for (const MachineOperand &MO : const_mi_bundle_ops(MI)) { |
| 321 | if (MO.isRegMask() && MO.clobbersPhysReg(PhysReg: Reg)) { |
| 322 | PRI.Clobbered = true; |
| 323 | continue; |
| 324 | } |
| 325 | |
| 326 | if (!MO.isReg()) |
| 327 | continue; |
| 328 | |
| 329 | Register MOReg = MO.getReg(); |
| 330 | if (!MOReg || !MOReg.isPhysical()) |
| 331 | continue; |
| 332 | |
| 333 | if (!TRI->regsOverlap(RegA: MOReg, RegB: Reg)) |
| 334 | continue; |
| 335 | |
| 336 | bool Covered = TRI->isSuperRegisterEq(RegA: Reg, RegB: MOReg); |
| 337 | if (MO.readsReg()) { |
| 338 | PRI.Read = true; |
| 339 | if (Covered) { |
| 340 | PRI.FullyRead = true; |
| 341 | if (MO.isKill()) |
| 342 | PRI.Killed = true; |
| 343 | } |
| 344 | } else if (MO.isDef()) { |
| 345 | PRI.Defined = true; |
| 346 | if (Covered) |
| 347 | PRI.FullyDefined = true; |
| 348 | if (!MO.isDead()) |
| 349 | AllDefsDead = false; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | if (AllDefsDead) { |
| 354 | if (PRI.FullyDefined || PRI.Clobbered) |
| 355 | PRI.DeadDef = true; |
| 356 | else if (PRI.Defined) |
| 357 | PRI.PartialDeadDef = true; |
| 358 | } |
| 359 | |
| 360 | return PRI; |
| 361 | } |
| 362 | |