| 1 | //===- VLIWMachineScheduler.cpp - VLIW-Focused Scheduling Pass ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // MachineScheduler schedules machine instructions after phi elimination. It |
| 10 | // preserves LiveIntervals so it can be invoked before register allocation. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/CodeGen/VLIWMachineScheduler.h" |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "llvm/CodeGen/DFAPacketizer.h" |
| 17 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 18 | #include "llvm/CodeGen/MachineFunction.h" |
| 19 | #include "llvm/CodeGen/MachineInstr.h" |
| 20 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 21 | #include "llvm/CodeGen/RegisterClassInfo.h" |
| 22 | #include "llvm/CodeGen/RegisterPressure.h" |
| 23 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 24 | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
| 25 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 26 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 27 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 28 | #include "llvm/CodeGen/TargetSchedule.h" |
| 29 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 30 | #include "llvm/Support/CommandLine.h" |
| 31 | #include "llvm/Support/Debug.h" |
| 32 | #include "llvm/Support/raw_ostream.h" |
| 33 | #include <algorithm> |
| 34 | #include <cassert> |
| 35 | #include <iomanip> |
| 36 | #include <limits> |
| 37 | #include <memory> |
| 38 | #include <sstream> |
| 39 | |
| 40 | using namespace llvm; |
| 41 | |
| 42 | #define DEBUG_TYPE "machine-scheduler" |
| 43 | |
| 44 | static cl::opt<bool> IgnoreBBRegPressure("ignore-bb-reg-pressure" , cl::Hidden, |
| 45 | cl::init(Val: false)); |
| 46 | |
| 47 | static cl::opt<bool> UseNewerCandidate("use-newer-candidate" , cl::Hidden, |
| 48 | cl::init(Val: true)); |
| 49 | |
| 50 | static cl::opt<unsigned> SchedDebugVerboseLevel("misched-verbose-level" , |
| 51 | cl::Hidden, cl::init(Val: 1)); |
| 52 | |
| 53 | // Check if the scheduler should penalize instructions that are available to |
| 54 | // early due to a zero-latency dependence. |
| 55 | static cl::opt<bool> CheckEarlyAvail("check-early-avail" , cl::Hidden, |
| 56 | cl::init(Val: true)); |
| 57 | |
| 58 | // This value is used to determine if a register class is a high pressure set. |
| 59 | // We compute the maximum number of registers needed and divided by the total |
| 60 | // available. Then, we compare the result to this value. |
| 61 | static cl::opt<float> RPThreshold("vliw-misched-reg-pressure" , cl::Hidden, |
| 62 | cl::init(Val: 0.75f), |
| 63 | cl::desc("High register pressure threhold." )); |
| 64 | |
| 65 | VLIWResourceModel::VLIWResourceModel(const TargetSubtargetInfo &STI, |
| 66 | const TargetSchedModel *SM) |
| 67 | : TII(STI.getInstrInfo()), SchedModel(SM) { |
| 68 | ResourcesModel = createPacketizer(STI); |
| 69 | |
| 70 | // This hard requirement could be relaxed, |
| 71 | // but for now do not let it proceed. |
| 72 | assert(ResourcesModel && "Unimplemented CreateTargetScheduleState." ); |
| 73 | |
| 74 | Packet.reserve(N: SchedModel->getIssueWidth()); |
| 75 | Packet.clear(); |
| 76 | ResourcesModel->clearResources(); |
| 77 | } |
| 78 | |
| 79 | void VLIWResourceModel::reset() { |
| 80 | Packet.clear(); |
| 81 | ResourcesModel->clearResources(); |
| 82 | } |
| 83 | |
| 84 | VLIWResourceModel::~VLIWResourceModel() { delete ResourcesModel; } |
| 85 | |
| 86 | /// Return true if there is a dependence between SUd and SUu. |
| 87 | bool VLIWResourceModel::hasDependence(const SUnit *SUd, const SUnit *SUu) { |
| 88 | if (SUd->Succs.size() == 0) |
| 89 | return false; |
| 90 | |
| 91 | for (const auto &S : SUd->Succs) { |
| 92 | // Since we do not add pseudos to packets, might as well |
| 93 | // ignore order dependencies. |
| 94 | if (S.isCtrl()) |
| 95 | continue; |
| 96 | |
| 97 | if (S.getSUnit() == SUu && S.getLatency() > 0) |
| 98 | return true; |
| 99 | } |
| 100 | return false; |
| 101 | } |
| 102 | |
| 103 | /// Check if scheduling of this SU is possible |
| 104 | /// in the current packet. |
| 105 | /// It is _not_ precise (statefull), it is more like |
| 106 | /// another heuristic. Many corner cases are figured |
| 107 | /// empirically. |
| 108 | bool VLIWResourceModel::isResourceAvailable(SUnit *SU, bool IsTop) { |
| 109 | if (!SU || !SU->getInstr()) |
| 110 | return false; |
| 111 | |
| 112 | // First see if the pipeline could receive this instruction |
| 113 | // in the current cycle. |
| 114 | switch (SU->getInstr()->getOpcode()) { |
| 115 | default: |
| 116 | if (!ResourcesModel->canReserveResources(MI&: *SU->getInstr())) |
| 117 | return false; |
| 118 | break; |
| 119 | case TargetOpcode::EXTRACT_SUBREG: |
| 120 | case TargetOpcode::INSERT_SUBREG: |
| 121 | case TargetOpcode::SUBREG_TO_REG: |
| 122 | case TargetOpcode::REG_SEQUENCE: |
| 123 | case TargetOpcode::IMPLICIT_DEF: |
| 124 | case TargetOpcode::COPY: |
| 125 | case TargetOpcode::INLINEASM: |
| 126 | case TargetOpcode::INLINEASM_BR: |
| 127 | break; |
| 128 | } |
| 129 | |
| 130 | // Now see if there are no other dependencies to instructions already |
| 131 | // in the packet. |
| 132 | if (IsTop) { |
| 133 | for (const SUnit *U : Packet) |
| 134 | if (hasDependence(SUd: U, SUu: SU)) |
| 135 | return false; |
| 136 | } else { |
| 137 | for (const SUnit *U : Packet) |
| 138 | if (hasDependence(SUd: SU, SUu: U)) |
| 139 | return false; |
| 140 | } |
| 141 | return true; |
| 142 | } |
| 143 | |
| 144 | /// Keep track of available resources. |
| 145 | bool VLIWResourceModel::reserveResources(SUnit *SU, bool IsTop) { |
| 146 | bool startNewCycle = false; |
| 147 | // Artificially reset state. |
| 148 | if (!SU) { |
| 149 | reset(); |
| 150 | TotalPackets++; |
| 151 | return false; |
| 152 | } |
| 153 | // If this SU does not fit in the packet or the packet is now full |
| 154 | // start a new one. |
| 155 | if (!isResourceAvailable(SU, IsTop) || |
| 156 | Packet.size() >= SchedModel->getIssueWidth()) { |
| 157 | reset(); |
| 158 | TotalPackets++; |
| 159 | startNewCycle = true; |
| 160 | } |
| 161 | |
| 162 | switch (SU->getInstr()->getOpcode()) { |
| 163 | default: |
| 164 | ResourcesModel->reserveResources(MI&: *SU->getInstr()); |
| 165 | break; |
| 166 | case TargetOpcode::EXTRACT_SUBREG: |
| 167 | case TargetOpcode::INSERT_SUBREG: |
| 168 | case TargetOpcode::SUBREG_TO_REG: |
| 169 | case TargetOpcode::REG_SEQUENCE: |
| 170 | case TargetOpcode::IMPLICIT_DEF: |
| 171 | case TargetOpcode::KILL: |
| 172 | case TargetOpcode::CFI_INSTRUCTION: |
| 173 | case TargetOpcode::EH_LABEL: |
| 174 | case TargetOpcode::COPY: |
| 175 | case TargetOpcode::INLINEASM: |
| 176 | case TargetOpcode::INLINEASM_BR: |
| 177 | break; |
| 178 | } |
| 179 | Packet.push_back(Elt: SU); |
| 180 | |
| 181 | #ifndef NDEBUG |
| 182 | LLVM_DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n" ); |
| 183 | for (unsigned i = 0, e = Packet.size(); i != e; ++i) { |
| 184 | LLVM_DEBUG(dbgs() << "\t[" << i << "] SU(" ); |
| 185 | LLVM_DEBUG(dbgs() << Packet[i]->NodeNum << ")\t" ); |
| 186 | LLVM_DEBUG(Packet[i]->getInstr()->dump()); |
| 187 | } |
| 188 | #endif |
| 189 | |
| 190 | return startNewCycle; |
| 191 | } |
| 192 | |
| 193 | DFAPacketizer * |
| 194 | VLIWResourceModel::createPacketizer(const TargetSubtargetInfo &STI) const { |
| 195 | return STI.getInstrInfo()->CreateTargetScheduleState(STI); |
| 196 | } |
| 197 | |
| 198 | /// schedule - Called back from MachineScheduler::runOnMachineFunction |
| 199 | /// after setting up the current scheduling region. [RegionBegin, RegionEnd) |
| 200 | /// only includes instructions that have DAG nodes, not scheduling boundaries. |
| 201 | void VLIWMachineScheduler::schedule() { |
| 202 | LLVM_DEBUG(dbgs() << "********** MI Converging Scheduling VLIW " |
| 203 | << printMBBReference(*BB) << " " << BB->getName() |
| 204 | << " in_func " << BB->getParent()->getName() |
| 205 | << " at loop depth " << MLI->getLoopDepth(BB) << " \n" ); |
| 206 | |
| 207 | buildDAGWithRegPressure(); |
| 208 | |
| 209 | Topo.InitDAGTopologicalSorting(); |
| 210 | |
| 211 | // Postprocess the DAG to add platform-specific artificial dependencies. |
| 212 | postProcessDAG(); |
| 213 | |
| 214 | SmallVector<SUnit *, 8> TopRoots, BotRoots; |
| 215 | findRootsAndBiasEdges(TopRoots, BotRoots); |
| 216 | |
| 217 | // Initialize the strategy before modifying the DAG. |
| 218 | SchedImpl->initialize(DAG: this); |
| 219 | |
| 220 | LLVM_DEBUG({ |
| 221 | unsigned maxH = 0; |
| 222 | for (const SUnit &SU : SUnits) |
| 223 | if (SU.getHeight() > maxH) |
| 224 | maxH = SU.getHeight(); |
| 225 | dbgs() << "Max Height " << maxH << "\n" ; |
| 226 | }); |
| 227 | LLVM_DEBUG({ |
| 228 | unsigned maxD = 0; |
| 229 | for (const SUnit &SU : SUnits) |
| 230 | if (SU.getDepth() > maxD) |
| 231 | maxD = SU.getDepth(); |
| 232 | dbgs() << "Max Depth " << maxD << "\n" ; |
| 233 | }); |
| 234 | LLVM_DEBUG(dump()); |
| 235 | if (ViewMISchedDAGs) |
| 236 | viewGraph(); |
| 237 | |
| 238 | initQueues(TopRoots, BotRoots); |
| 239 | |
| 240 | bool IsTopNode = false; |
| 241 | while (true) { |
| 242 | LLVM_DEBUG( |
| 243 | dbgs() << "** VLIWMachineScheduler::schedule picking next node\n" ); |
| 244 | SUnit *SU = SchedImpl->pickNode(IsTopNode); |
| 245 | if (!SU) |
| 246 | break; |
| 247 | |
| 248 | if (!checkSchedLimit()) |
| 249 | break; |
| 250 | |
| 251 | scheduleMI(SU, IsTopNode); |
| 252 | |
| 253 | // Notify the scheduling strategy after updating the DAG. |
| 254 | SchedImpl->schedNode(SU, IsTopNode); |
| 255 | |
| 256 | updateQueues(SU, IsTopNode); |
| 257 | } |
| 258 | assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone." ); |
| 259 | |
| 260 | placeDebugValues(); |
| 261 | |
| 262 | LLVM_DEBUG({ |
| 263 | dbgs() << "*** Final schedule for " |
| 264 | << printMBBReference(*begin()->getParent()) << " ***\n" ; |
| 265 | dumpSchedule(); |
| 266 | dbgs() << '\n'; |
| 267 | }); |
| 268 | } |
| 269 | |
| 270 | void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) { |
| 271 | DAG = static_cast<VLIWMachineScheduler *>(dag); |
| 272 | SchedModel = DAG->getSchedModel(); |
| 273 | |
| 274 | Top.init(dag: DAG, smodel: SchedModel); |
| 275 | Bot.init(dag: DAG, smodel: SchedModel); |
| 276 | |
| 277 | // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or |
| 278 | // are disabled, then these HazardRecs will be disabled. |
| 279 | const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries(); |
| 280 | const TargetSubtargetInfo &STI = DAG->MF.getSubtarget(); |
| 281 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
| 282 | delete Top.HazardRec; |
| 283 | delete Bot.HazardRec; |
| 284 | Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG); |
| 285 | Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG); |
| 286 | |
| 287 | delete Top.ResourceModel; |
| 288 | delete Bot.ResourceModel; |
| 289 | Top.ResourceModel = createVLIWResourceModel(STI, SchedModel: DAG->getSchedModel()); |
| 290 | Bot.ResourceModel = createVLIWResourceModel(STI, SchedModel: DAG->getSchedModel()); |
| 291 | |
| 292 | const std::vector<unsigned> &MaxPressure = |
| 293 | DAG->getRegPressure().MaxSetPressure; |
| 294 | HighPressureSets.assign(NumElts: MaxPressure.size(), Elt: false); |
| 295 | for (unsigned i = 0, e = MaxPressure.size(); i < e; ++i) { |
| 296 | unsigned Limit = DAG->getRegClassInfo()->getRegPressureSetLimit(Idx: i); |
| 297 | HighPressureSets[i] = |
| 298 | ((float)MaxPressure[i] > ((float)Limit * RPThreshold)); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | VLIWResourceModel *ConvergingVLIWScheduler::createVLIWResourceModel( |
| 303 | const TargetSubtargetInfo &STI, const TargetSchedModel *SchedModel) const { |
| 304 | return new VLIWResourceModel(STI, SchedModel); |
| 305 | } |
| 306 | |
| 307 | void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) { |
| 308 | for (const SDep &PI : SU->Preds) { |
| 309 | unsigned PredReadyCycle = PI.getSUnit()->TopReadyCycle; |
| 310 | unsigned MinLatency = PI.getLatency(); |
| 311 | #ifndef NDEBUG |
| 312 | Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); |
| 313 | #endif |
| 314 | if (SU->TopReadyCycle < PredReadyCycle + MinLatency) |
| 315 | SU->TopReadyCycle = PredReadyCycle + MinLatency; |
| 316 | } |
| 317 | |
| 318 | if (!SU->isScheduled) |
| 319 | Top.releaseNode(SU, ReadyCycle: SU->TopReadyCycle); |
| 320 | } |
| 321 | |
| 322 | void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) { |
| 323 | assert(SU->getInstr() && "Scheduled SUnit must have instr" ); |
| 324 | |
| 325 | for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; |
| 326 | ++I) { |
| 327 | unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; |
| 328 | unsigned MinLatency = I->getLatency(); |
| 329 | #ifndef NDEBUG |
| 330 | Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); |
| 331 | #endif |
| 332 | if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) |
| 333 | SU->BotReadyCycle = SuccReadyCycle + MinLatency; |
| 334 | } |
| 335 | |
| 336 | if (!SU->isScheduled) |
| 337 | Bot.releaseNode(SU, ReadyCycle: SU->BotReadyCycle); |
| 338 | } |
| 339 | |
| 340 | ConvergingVLIWScheduler::VLIWSchedBoundary::~VLIWSchedBoundary() { |
| 341 | delete ResourceModel; |
| 342 | delete HazardRec; |
| 343 | } |
| 344 | |
| 345 | /// Does this SU have a hazard within the current instruction group. |
| 346 | /// |
| 347 | /// The scheduler supports two modes of hazard recognition. The first is the |
| 348 | /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that |
| 349 | /// supports highly complicated in-order reservation tables |
| 350 | /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. |
| 351 | /// |
| 352 | /// The second is a streamlined mechanism that checks for hazards based on |
| 353 | /// simple counters that the scheduler itself maintains. It explicitly checks |
| 354 | /// for instruction dispatch limitations, including the number of micro-ops that |
| 355 | /// can dispatch per cycle. |
| 356 | /// |
| 357 | /// TODO: Also check whether the SU must start a new group. |
| 358 | bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) { |
| 359 | if (HazardRec->isEnabled()) |
| 360 | return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; |
| 361 | |
| 362 | unsigned uops = SchedModel->getNumMicroOps(MI: SU->getInstr()); |
| 363 | if (IssueCount + uops > SchedModel->getIssueWidth()) |
| 364 | return true; |
| 365 | |
| 366 | return false; |
| 367 | } |
| 368 | |
| 369 | void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode( |
| 370 | SUnit *SU, unsigned ReadyCycle) { |
| 371 | if (ReadyCycle < MinReadyCycle) |
| 372 | MinReadyCycle = ReadyCycle; |
| 373 | |
| 374 | // Check for interlocks first. For the purpose of other heuristics, an |
| 375 | // instruction that cannot issue appears as if it's not in the ReadyQueue. |
| 376 | if (ReadyCycle > CurrCycle || checkHazard(SU)) |
| 377 | |
| 378 | Pending.push(SU); |
| 379 | else |
| 380 | Available.push(SU); |
| 381 | } |
| 382 | |
| 383 | /// Move the boundary of scheduled code by one cycle. |
| 384 | void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() { |
| 385 | unsigned Width = SchedModel->getIssueWidth(); |
| 386 | IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; |
| 387 | |
| 388 | assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && |
| 389 | "MinReadyCycle uninitialized" ); |
| 390 | unsigned NextCycle = std::max(a: CurrCycle + 1, b: MinReadyCycle); |
| 391 | |
| 392 | if (!HazardRec->isEnabled()) { |
| 393 | // Bypass HazardRec virtual calls. |
| 394 | CurrCycle = NextCycle; |
| 395 | } else { |
| 396 | // Bypass getHazardType calls in case of long latency. |
| 397 | for (; CurrCycle != NextCycle; ++CurrCycle) { |
| 398 | if (isTop()) |
| 399 | HazardRec->AdvanceCycle(); |
| 400 | else |
| 401 | HazardRec->RecedeCycle(); |
| 402 | } |
| 403 | } |
| 404 | CheckPending = true; |
| 405 | |
| 406 | LLVM_DEBUG(dbgs() << "*** Next cycle " << Available.getName() << " cycle " |
| 407 | << CurrCycle << '\n'); |
| 408 | } |
| 409 | |
| 410 | /// Move the boundary of scheduled code by one SUnit. |
| 411 | void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) { |
| 412 | bool startNewCycle = false; |
| 413 | |
| 414 | // Update the reservation table. |
| 415 | if (HazardRec->isEnabled()) { |
| 416 | if (!isTop() && SU->isCall) { |
| 417 | // Calls are scheduled with their preceding instructions. For bottom-up |
| 418 | // scheduling, clear the pipeline state before emitting. |
| 419 | HazardRec->Reset(); |
| 420 | } |
| 421 | HazardRec->EmitInstruction(SU); |
| 422 | } |
| 423 | |
| 424 | // Update DFA model. |
| 425 | startNewCycle = ResourceModel->reserveResources(SU, IsTop: isTop()); |
| 426 | |
| 427 | // Check the instruction group dispatch limit. |
| 428 | // TODO: Check if this SU must end a dispatch group. |
| 429 | IssueCount += SchedModel->getNumMicroOps(MI: SU->getInstr()); |
| 430 | if (startNewCycle) { |
| 431 | LLVM_DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n'); |
| 432 | bumpCycle(); |
| 433 | } else |
| 434 | LLVM_DEBUG(dbgs() << "*** IssueCount " << IssueCount << " at cycle " |
| 435 | << CurrCycle << '\n'); |
| 436 | } |
| 437 | |
| 438 | /// Release pending ready nodes in to the available queue. This makes them |
| 439 | /// visible to heuristics. |
| 440 | void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() { |
| 441 | // If the available queue is empty, it is safe to reset MinReadyCycle. |
| 442 | if (Available.empty()) |
| 443 | MinReadyCycle = std::numeric_limits<unsigned>::max(); |
| 444 | |
| 445 | // Check to see if any of the pending instructions are ready to issue. If |
| 446 | // so, add them to the available queue. |
| 447 | for (unsigned i = 0, e = Pending.size(); i != e; ++i) { |
| 448 | SUnit *SU = *(Pending.begin() + i); |
| 449 | unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; |
| 450 | |
| 451 | if (ReadyCycle < MinReadyCycle) |
| 452 | MinReadyCycle = ReadyCycle; |
| 453 | |
| 454 | if (ReadyCycle > CurrCycle) |
| 455 | continue; |
| 456 | |
| 457 | if (checkHazard(SU)) |
| 458 | continue; |
| 459 | |
| 460 | Available.push(SU); |
| 461 | Pending.remove(I: Pending.begin() + i); |
| 462 | --i; |
| 463 | --e; |
| 464 | } |
| 465 | CheckPending = false; |
| 466 | } |
| 467 | |
| 468 | /// Remove SU from the ready set for this boundary. |
| 469 | void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) { |
| 470 | if (Available.isInQueue(SU)) |
| 471 | Available.remove(I: Available.find(SU)); |
| 472 | else { |
| 473 | assert(Pending.isInQueue(SU) && "bad ready count" ); |
| 474 | Pending.remove(I: Pending.find(SU)); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | /// If this queue only has one ready candidate, return it. As a side effect, |
| 479 | /// advance the cycle until at least one node is ready. If multiple instructions |
| 480 | /// are ready, return NULL. |
| 481 | SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() { |
| 482 | if (CheckPending) |
| 483 | releasePending(); |
| 484 | |
| 485 | auto AdvanceCycle = [this]() { |
| 486 | if (Available.empty()) |
| 487 | return true; |
| 488 | if (Available.size() == 1 && Pending.size() > 0) |
| 489 | return !ResourceModel->isResourceAvailable(SU: *Available.begin(), IsTop: isTop()) || |
| 490 | getWeakLeft(SU: *Available.begin(), isTop: isTop()) != 0; |
| 491 | return false; |
| 492 | }; |
| 493 | for (unsigned i = 0; AdvanceCycle(); ++i) { |
| 494 | assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && |
| 495 | "permanent hazard" ); |
| 496 | (void)i; |
| 497 | ResourceModel->reserveResources(SU: nullptr, IsTop: isTop()); |
| 498 | bumpCycle(); |
| 499 | releasePending(); |
| 500 | } |
| 501 | if (Available.size() == 1) |
| 502 | return *Available.begin(); |
| 503 | return nullptr; |
| 504 | } |
| 505 | |
| 506 | #ifndef NDEBUG |
| 507 | void ConvergingVLIWScheduler::traceCandidate(const char *Label, |
| 508 | const ReadyQueue &Q, SUnit *SU, |
| 509 | int Cost, PressureChange P) { |
| 510 | dbgs() << Label << " " << Q.getName() << " " ; |
| 511 | if (P.isValid()) |
| 512 | dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":" |
| 513 | << P.getUnitInc() << " " ; |
| 514 | else |
| 515 | dbgs() << " " ; |
| 516 | dbgs() << "cost(" << Cost << ")\t" ; |
| 517 | DAG->dumpNode(*SU); |
| 518 | } |
| 519 | |
| 520 | // Very detailed queue dump, to be used with higher verbosity levels. |
| 521 | void ConvergingVLIWScheduler::readyQueueVerboseDump( |
| 522 | const RegPressureTracker &RPTracker, SchedCandidate &Candidate, |
| 523 | ReadyQueue &Q) { |
| 524 | RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker); |
| 525 | |
| 526 | dbgs() << ">>> " << Q.getName() << "\n" ; |
| 527 | for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { |
| 528 | RegPressureDelta RPDelta; |
| 529 | TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta, |
| 530 | DAG->getRegionCriticalPSets(), |
| 531 | DAG->getRegPressure().MaxSetPressure); |
| 532 | std::stringstream dbgstr; |
| 533 | dbgstr << "SU(" << std::setw(3) << (*I)->NodeNum << ")" ; |
| 534 | dbgs() << dbgstr.str(); |
| 535 | SchedulingCost(Q, *I, Candidate, RPDelta, true); |
| 536 | dbgs() << "\t" ; |
| 537 | (*I)->getInstr()->dump(); |
| 538 | } |
| 539 | dbgs() << "\n" ; |
| 540 | } |
| 541 | #endif |
| 542 | |
| 543 | /// isSingleUnscheduledPred - If SU2 is the only unscheduled predecessor |
| 544 | /// of SU, return true (we may have duplicates) |
| 545 | static inline bool isSingleUnscheduledPred(SUnit *SU, SUnit *SU2) { |
| 546 | if (SU->NumPredsLeft == 0) |
| 547 | return false; |
| 548 | |
| 549 | for (auto &Pred : SU->Preds) { |
| 550 | // We found an available, but not scheduled, predecessor. |
| 551 | if (!Pred.getSUnit()->isScheduled && (Pred.getSUnit() != SU2)) |
| 552 | return false; |
| 553 | } |
| 554 | |
| 555 | return true; |
| 556 | } |
| 557 | |
| 558 | /// isSingleUnscheduledSucc - If SU2 is the only unscheduled successor |
| 559 | /// of SU, return true (we may have duplicates) |
| 560 | static inline bool isSingleUnscheduledSucc(SUnit *SU, SUnit *SU2) { |
| 561 | if (SU->NumSuccsLeft == 0) |
| 562 | return false; |
| 563 | |
| 564 | for (auto &Succ : SU->Succs) { |
| 565 | // We found an available, but not scheduled, successor. |
| 566 | if (!Succ.getSUnit()->isScheduled && (Succ.getSUnit() != SU2)) |
| 567 | return false; |
| 568 | } |
| 569 | return true; |
| 570 | } |
| 571 | |
| 572 | /// Check if the instruction changes the register pressure of a register in the |
| 573 | /// high pressure set. The function returns a negative value if the pressure |
| 574 | /// decreases and a positive value is the pressure increases. If the instruction |
| 575 | /// doesn't use a high pressure register or doesn't change the register |
| 576 | /// pressure, then return 0. |
| 577 | int ConvergingVLIWScheduler::pressureChange(const SUnit *SU, bool isBotUp) { |
| 578 | PressureDiff &PD = DAG->getPressureDiff(SU); |
| 579 | for (const auto &P : PD) { |
| 580 | if (!P.isValid()) |
| 581 | continue; |
| 582 | // The pressure differences are computed bottom-up, so the comparison for |
| 583 | // an increase is positive in the bottom direction, but negative in the |
| 584 | // top-down direction. |
| 585 | if (HighPressureSets[P.getPSet()]) |
| 586 | return (isBotUp ? P.getUnitInc() : -P.getUnitInc()); |
| 587 | } |
| 588 | return 0; |
| 589 | } |
| 590 | |
| 591 | /// Single point to compute overall scheduling cost. |
| 592 | /// TODO: More heuristics will be used soon. |
| 593 | int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU, |
| 594 | SchedCandidate &Candidate, |
| 595 | RegPressureDelta &Delta, |
| 596 | bool verbose) { |
| 597 | // Initial trivial priority. |
| 598 | int ResCount = 1; |
| 599 | |
| 600 | // Do not waste time on a node that is already scheduled. |
| 601 | if (!SU || SU->isScheduled) |
| 602 | return ResCount; |
| 603 | |
| 604 | LLVM_DEBUG(if (verbose) dbgs() |
| 605 | << ((Q.getID() == TopQID) ? "(top|" : "(bot|" )); |
| 606 | // Forced priority is high. |
| 607 | if (SU->isScheduleHigh) { |
| 608 | ResCount += PriorityOne; |
| 609 | LLVM_DEBUG(dbgs() << "H|" ); |
| 610 | } |
| 611 | |
| 612 | unsigned IsAvailableAmt = 0; |
| 613 | // Critical path first. |
| 614 | if (Q.getID() == TopQID) { |
| 615 | if (Top.isLatencyBound(SU)) { |
| 616 | LLVM_DEBUG(if (verbose) dbgs() << "LB|" ); |
| 617 | ResCount += (SU->getHeight() * ScaleTwo); |
| 618 | } |
| 619 | |
| 620 | LLVM_DEBUG(if (verbose) { |
| 621 | std::stringstream dbgstr; |
| 622 | dbgstr << "h" << std::setw(3) << SU->getHeight() << "|" ; |
| 623 | dbgs() << dbgstr.str(); |
| 624 | }); |
| 625 | |
| 626 | // If resources are available for it, multiply the |
| 627 | // chance of scheduling. |
| 628 | if (Top.ResourceModel->isResourceAvailable(SU, IsTop: true)) { |
| 629 | IsAvailableAmt = (PriorityTwo + PriorityThree); |
| 630 | ResCount += IsAvailableAmt; |
| 631 | LLVM_DEBUG(if (verbose) dbgs() << "A|" ); |
| 632 | } else |
| 633 | LLVM_DEBUG(if (verbose) dbgs() << " |" ); |
| 634 | } else { |
| 635 | if (Bot.isLatencyBound(SU)) { |
| 636 | LLVM_DEBUG(if (verbose) dbgs() << "LB|" ); |
| 637 | ResCount += (SU->getDepth() * ScaleTwo); |
| 638 | } |
| 639 | |
| 640 | LLVM_DEBUG(if (verbose) { |
| 641 | std::stringstream dbgstr; |
| 642 | dbgstr << "d" << std::setw(3) << SU->getDepth() << "|" ; |
| 643 | dbgs() << dbgstr.str(); |
| 644 | }); |
| 645 | |
| 646 | // If resources are available for it, multiply the |
| 647 | // chance of scheduling. |
| 648 | if (Bot.ResourceModel->isResourceAvailable(SU, IsTop: false)) { |
| 649 | IsAvailableAmt = (PriorityTwo + PriorityThree); |
| 650 | ResCount += IsAvailableAmt; |
| 651 | LLVM_DEBUG(if (verbose) dbgs() << "A|" ); |
| 652 | } else |
| 653 | LLVM_DEBUG(if (verbose) dbgs() << " |" ); |
| 654 | } |
| 655 | |
| 656 | unsigned NumNodesBlocking = 0; |
| 657 | if (Q.getID() == TopQID) { |
| 658 | // How many SUs does it block from scheduling? |
| 659 | // Look at all of the successors of this node. |
| 660 | // Count the number of nodes that |
| 661 | // this node is the sole unscheduled node for. |
| 662 | if (Top.isLatencyBound(SU)) |
| 663 | for (const SDep &SI : SU->Succs) |
| 664 | if (isSingleUnscheduledPred(SU: SI.getSUnit(), SU2: SU)) |
| 665 | ++NumNodesBlocking; |
| 666 | } else { |
| 667 | // How many unscheduled predecessors block this node? |
| 668 | if (Bot.isLatencyBound(SU)) |
| 669 | for (const SDep &PI : SU->Preds) |
| 670 | if (isSingleUnscheduledSucc(SU: PI.getSUnit(), SU2: SU)) |
| 671 | ++NumNodesBlocking; |
| 672 | } |
| 673 | ResCount += (NumNodesBlocking * ScaleTwo); |
| 674 | |
| 675 | LLVM_DEBUG(if (verbose) { |
| 676 | std::stringstream dbgstr; |
| 677 | dbgstr << "blk " << std::setw(2) << NumNodesBlocking << ")|" ; |
| 678 | dbgs() << dbgstr.str(); |
| 679 | }); |
| 680 | |
| 681 | // Factor in reg pressure as a heuristic. |
| 682 | if (!IgnoreBBRegPressure) { |
| 683 | // Decrease priority by the amount that register pressure exceeds the limit. |
| 684 | ResCount -= (Delta.Excess.getUnitInc() * PriorityOne); |
| 685 | // Decrease priority if register pressure exceeds the limit. |
| 686 | ResCount -= (Delta.CriticalMax.getUnitInc() * PriorityOne); |
| 687 | // Decrease priority slightly if register pressure would increase over the |
| 688 | // current maximum. |
| 689 | ResCount -= (Delta.CurrentMax.getUnitInc() * PriorityTwo); |
| 690 | // If there are register pressure issues, then we remove the value added for |
| 691 | // the instruction being available. The rationale is that we really don't |
| 692 | // want to schedule an instruction that causes a spill. |
| 693 | if (IsAvailableAmt && pressureChange(SU, isBotUp: Q.getID() != TopQID) > 0 && |
| 694 | (Delta.Excess.getUnitInc() || Delta.CriticalMax.getUnitInc() || |
| 695 | Delta.CurrentMax.getUnitInc())) |
| 696 | ResCount -= IsAvailableAmt; |
| 697 | LLVM_DEBUG(if (verbose) { |
| 698 | dbgs() << "RP " << Delta.Excess.getUnitInc() << "/" |
| 699 | << Delta.CriticalMax.getUnitInc() << "/" |
| 700 | << Delta.CurrentMax.getUnitInc() << ")|" ; |
| 701 | }); |
| 702 | } |
| 703 | |
| 704 | // Give preference to a zero latency instruction if the dependent |
| 705 | // instruction is in the current packet. |
| 706 | if (Q.getID() == TopQID && getWeakLeft(SU, isTop: true) == 0) { |
| 707 | for (const SDep &PI : SU->Preds) { |
| 708 | if (!PI.getSUnit()->getInstr()->isPseudo() && PI.isAssignedRegDep() && |
| 709 | PI.getLatency() == 0 && |
| 710 | Top.ResourceModel->isInPacket(SU: PI.getSUnit())) { |
| 711 | ResCount += PriorityThree; |
| 712 | LLVM_DEBUG(if (verbose) dbgs() << "Z|" ); |
| 713 | } |
| 714 | } |
| 715 | } else if (Q.getID() == BotQID && getWeakLeft(SU, isTop: false) == 0) { |
| 716 | for (const SDep &SI : SU->Succs) { |
| 717 | if (!SI.getSUnit()->getInstr()->isPseudo() && SI.isAssignedRegDep() && |
| 718 | SI.getLatency() == 0 && |
| 719 | Bot.ResourceModel->isInPacket(SU: SI.getSUnit())) { |
| 720 | ResCount += PriorityThree; |
| 721 | LLVM_DEBUG(if (verbose) dbgs() << "Z|" ); |
| 722 | } |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | // If the instruction has a non-zero latency dependence with an instruction in |
| 727 | // the current packet, then it should not be scheduled yet. The case occurs |
| 728 | // when the dependent instruction is scheduled in a new packet, so the |
| 729 | // scheduler updates the current cycle and pending instructions become |
| 730 | // available. |
| 731 | if (CheckEarlyAvail) { |
| 732 | if (Q.getID() == TopQID) { |
| 733 | for (const auto &PI : SU->Preds) { |
| 734 | if (PI.getLatency() > 0 && |
| 735 | Top.ResourceModel->isInPacket(SU: PI.getSUnit())) { |
| 736 | ResCount -= PriorityOne; |
| 737 | LLVM_DEBUG(if (verbose) dbgs() << "D|" ); |
| 738 | } |
| 739 | } |
| 740 | } else { |
| 741 | for (const auto &SI : SU->Succs) { |
| 742 | if (SI.getLatency() > 0 && |
| 743 | Bot.ResourceModel->isInPacket(SU: SI.getSUnit())) { |
| 744 | ResCount -= PriorityOne; |
| 745 | LLVM_DEBUG(if (verbose) dbgs() << "D|" ); |
| 746 | } |
| 747 | } |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | LLVM_DEBUG(if (verbose) { |
| 752 | std::stringstream dbgstr; |
| 753 | dbgstr << "Total " << std::setw(4) << ResCount << ")" ; |
| 754 | dbgs() << dbgstr.str(); |
| 755 | }); |
| 756 | |
| 757 | return ResCount; |
| 758 | } |
| 759 | |
| 760 | /// Pick the best candidate from the top queue. |
| 761 | /// |
| 762 | /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during |
| 763 | /// DAG building. To adjust for the current scheduling location we need to |
| 764 | /// maintain the number of vreg uses remaining to be top-scheduled. |
| 765 | ConvergingVLIWScheduler::CandResult |
| 766 | ConvergingVLIWScheduler::pickNodeFromQueue(VLIWSchedBoundary &Zone, |
| 767 | const RegPressureTracker &RPTracker, |
| 768 | SchedCandidate &Candidate) { |
| 769 | ReadyQueue &Q = Zone.Available; |
| 770 | LLVM_DEBUG(if (SchedDebugVerboseLevel > 1) |
| 771 | readyQueueVerboseDump(RPTracker, Candidate, Q); |
| 772 | else Q.dump();); |
| 773 | |
| 774 | // getMaxPressureDelta temporarily modifies the tracker. |
| 775 | RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker); |
| 776 | |
| 777 | // BestSU remains NULL if no top candidates beat the best existing candidate. |
| 778 | CandResult FoundCandidate = NoCand; |
| 779 | for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { |
| 780 | RegPressureDelta RPDelta; |
| 781 | TempTracker.getMaxPressureDelta(MI: (*I)->getInstr(), Delta&: RPDelta, |
| 782 | CriticalPSets: DAG->getRegionCriticalPSets(), |
| 783 | MaxPressureLimit: DAG->getRegPressure().MaxSetPressure); |
| 784 | |
| 785 | int CurrentCost = SchedulingCost(Q, SU: *I, Candidate, Delta&: RPDelta, verbose: false); |
| 786 | |
| 787 | // Initialize the candidate if needed. |
| 788 | if (!Candidate.SU) { |
| 789 | LLVM_DEBUG(traceCandidate("DCAND" , Q, *I, CurrentCost)); |
| 790 | Candidate.SU = *I; |
| 791 | Candidate.RPDelta = RPDelta; |
| 792 | Candidate.SCost = CurrentCost; |
| 793 | FoundCandidate = NodeOrder; |
| 794 | continue; |
| 795 | } |
| 796 | |
| 797 | // Choose node order for negative cost candidates. There is no good |
| 798 | // candidate in this case. |
| 799 | if (CurrentCost < 0 && Candidate.SCost < 0) { |
| 800 | if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum) || |
| 801 | (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) { |
| 802 | LLVM_DEBUG(traceCandidate("NCAND" , Q, *I, CurrentCost)); |
| 803 | Candidate.SU = *I; |
| 804 | Candidate.RPDelta = RPDelta; |
| 805 | Candidate.SCost = CurrentCost; |
| 806 | FoundCandidate = NodeOrder; |
| 807 | } |
| 808 | continue; |
| 809 | } |
| 810 | |
| 811 | // Best cost. |
| 812 | if (CurrentCost > Candidate.SCost) { |
| 813 | LLVM_DEBUG(traceCandidate("CCAND" , Q, *I, CurrentCost)); |
| 814 | Candidate.SU = *I; |
| 815 | Candidate.RPDelta = RPDelta; |
| 816 | Candidate.SCost = CurrentCost; |
| 817 | FoundCandidate = BestCost; |
| 818 | continue; |
| 819 | } |
| 820 | |
| 821 | // Choose an instruction that does not depend on an artificial edge. |
| 822 | unsigned CurrWeak = getWeakLeft(SU: *I, isTop: (Q.getID() == TopQID)); |
| 823 | unsigned CandWeak = getWeakLeft(SU: Candidate.SU, isTop: (Q.getID() == TopQID)); |
| 824 | if (CurrWeak != CandWeak) { |
| 825 | if (CurrWeak < CandWeak) { |
| 826 | LLVM_DEBUG(traceCandidate("WCAND" , Q, *I, CurrentCost)); |
| 827 | Candidate.SU = *I; |
| 828 | Candidate.RPDelta = RPDelta; |
| 829 | Candidate.SCost = CurrentCost; |
| 830 | FoundCandidate = Weak; |
| 831 | } |
| 832 | continue; |
| 833 | } |
| 834 | |
| 835 | if (CurrentCost == Candidate.SCost && Zone.isLatencyBound(SU: *I)) { |
| 836 | unsigned CurrSize, CandSize; |
| 837 | if (Q.getID() == TopQID) { |
| 838 | CurrSize = (*I)->Succs.size(); |
| 839 | CandSize = Candidate.SU->Succs.size(); |
| 840 | } else { |
| 841 | CurrSize = (*I)->Preds.size(); |
| 842 | CandSize = Candidate.SU->Preds.size(); |
| 843 | } |
| 844 | if (CurrSize > CandSize) { |
| 845 | LLVM_DEBUG(traceCandidate("SPCAND" , Q, *I, CurrentCost)); |
| 846 | Candidate.SU = *I; |
| 847 | Candidate.RPDelta = RPDelta; |
| 848 | Candidate.SCost = CurrentCost; |
| 849 | FoundCandidate = BestCost; |
| 850 | } |
| 851 | // Keep the old candidate if it's a better candidate. That is, don't use |
| 852 | // the subsequent tie breaker. |
| 853 | if (CurrSize != CandSize) |
| 854 | continue; |
| 855 | } |
| 856 | |
| 857 | // Tie breaker. |
| 858 | // To avoid scheduling indeterminism, we need a tie breaker |
| 859 | // for the case when cost is identical for two nodes. |
| 860 | if (UseNewerCandidate && CurrentCost == Candidate.SCost) { |
| 861 | if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum) || |
| 862 | (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) { |
| 863 | LLVM_DEBUG(traceCandidate("TCAND" , Q, *I, CurrentCost)); |
| 864 | Candidate.SU = *I; |
| 865 | Candidate.RPDelta = RPDelta; |
| 866 | Candidate.SCost = CurrentCost; |
| 867 | FoundCandidate = NodeOrder; |
| 868 | continue; |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | // Fall through to original instruction order. |
| 873 | // Only consider node order if Candidate was chosen from this Q. |
| 874 | if (FoundCandidate == NoCand) |
| 875 | continue; |
| 876 | } |
| 877 | return FoundCandidate; |
| 878 | } |
| 879 | |
| 880 | /// Pick the best candidate node from either the top or bottom queue. |
| 881 | SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) { |
| 882 | // Schedule as far as possible in the direction of no choice. This is most |
| 883 | // efficient, but also provides the best heuristics for CriticalPSets. |
| 884 | if (SUnit *SU = Bot.pickOnlyChoice()) { |
| 885 | LLVM_DEBUG(dbgs() << "Picked only Bottom\n" ); |
| 886 | IsTopNode = false; |
| 887 | return SU; |
| 888 | } |
| 889 | if (SUnit *SU = Top.pickOnlyChoice()) { |
| 890 | LLVM_DEBUG(dbgs() << "Picked only Top\n" ); |
| 891 | IsTopNode = true; |
| 892 | return SU; |
| 893 | } |
| 894 | SchedCandidate BotCand; |
| 895 | // Prefer bottom scheduling when heuristics are silent. |
| 896 | CandResult BotResult = |
| 897 | pickNodeFromQueue(Zone&: Bot, RPTracker: DAG->getBotRPTracker(), Candidate&: BotCand); |
| 898 | assert(BotResult != NoCand && "failed to find the first candidate" ); |
| 899 | |
| 900 | // If either Q has a single candidate that provides the least increase in |
| 901 | // Excess pressure, we can immediately schedule from that Q. |
| 902 | // |
| 903 | // RegionCriticalPSets summarizes the pressure within the scheduled region and |
| 904 | // affects picking from either Q. If scheduling in one direction must |
| 905 | // increase pressure for one of the excess PSets, then schedule in that |
| 906 | // direction first to provide more freedom in the other direction. |
| 907 | if (BotResult == SingleExcess || BotResult == SingleCritical) { |
| 908 | LLVM_DEBUG(dbgs() << "Prefered Bottom Node\n" ); |
| 909 | IsTopNode = false; |
| 910 | return BotCand.SU; |
| 911 | } |
| 912 | // Check if the top Q has a better candidate. |
| 913 | SchedCandidate TopCand; |
| 914 | CandResult TopResult = |
| 915 | pickNodeFromQueue(Zone&: Top, RPTracker: DAG->getTopRPTracker(), Candidate&: TopCand); |
| 916 | assert(TopResult != NoCand && "failed to find the first candidate" ); |
| 917 | |
| 918 | if (TopResult == SingleExcess || TopResult == SingleCritical) { |
| 919 | LLVM_DEBUG(dbgs() << "Prefered Top Node\n" ); |
| 920 | IsTopNode = true; |
| 921 | return TopCand.SU; |
| 922 | } |
| 923 | // If either Q has a single candidate that minimizes pressure above the |
| 924 | // original region's pressure pick it. |
| 925 | if (BotResult == SingleMax) { |
| 926 | LLVM_DEBUG(dbgs() << "Prefered Bottom Node SingleMax\n" ); |
| 927 | IsTopNode = false; |
| 928 | return BotCand.SU; |
| 929 | } |
| 930 | if (TopResult == SingleMax) { |
| 931 | LLVM_DEBUG(dbgs() << "Prefered Top Node SingleMax\n" ); |
| 932 | IsTopNode = true; |
| 933 | return TopCand.SU; |
| 934 | } |
| 935 | if (TopCand.SCost > BotCand.SCost) { |
| 936 | LLVM_DEBUG(dbgs() << "Prefered Top Node Cost\n" ); |
| 937 | IsTopNode = true; |
| 938 | return TopCand.SU; |
| 939 | } |
| 940 | // Otherwise prefer the bottom candidate in node order. |
| 941 | LLVM_DEBUG(dbgs() << "Prefered Bottom in Node order\n" ); |
| 942 | IsTopNode = false; |
| 943 | return BotCand.SU; |
| 944 | } |
| 945 | |
| 946 | /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. |
| 947 | SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) { |
| 948 | if (DAG->top() == DAG->bottom()) { |
| 949 | assert(Top.Available.empty() && Top.Pending.empty() && |
| 950 | Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage" ); |
| 951 | return nullptr; |
| 952 | } |
| 953 | SUnit *SU; |
| 954 | if (PreRADirection == MISched::TopDown) { |
| 955 | SU = Top.pickOnlyChoice(); |
| 956 | if (!SU) { |
| 957 | SchedCandidate TopCand; |
| 958 | CandResult TopResult = |
| 959 | pickNodeFromQueue(Zone&: Top, RPTracker: DAG->getTopRPTracker(), Candidate&: TopCand); |
| 960 | assert(TopResult != NoCand && "failed to find the first candidate" ); |
| 961 | (void)TopResult; |
| 962 | SU = TopCand.SU; |
| 963 | } |
| 964 | IsTopNode = true; |
| 965 | } else if (PreRADirection == MISched::BottomUp) { |
| 966 | SU = Bot.pickOnlyChoice(); |
| 967 | if (!SU) { |
| 968 | SchedCandidate BotCand; |
| 969 | CandResult BotResult = |
| 970 | pickNodeFromQueue(Zone&: Bot, RPTracker: DAG->getBotRPTracker(), Candidate&: BotCand); |
| 971 | assert(BotResult != NoCand && "failed to find the first candidate" ); |
| 972 | (void)BotResult; |
| 973 | SU = BotCand.SU; |
| 974 | } |
| 975 | IsTopNode = false; |
| 976 | } else { |
| 977 | SU = pickNodeBidrectional(IsTopNode); |
| 978 | } |
| 979 | if (SU->isTopReady()) |
| 980 | Top.removeReady(SU); |
| 981 | if (SU->isBottomReady()) |
| 982 | Bot.removeReady(SU); |
| 983 | |
| 984 | LLVM_DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom" ) |
| 985 | << " Scheduling instruction in cycle " |
| 986 | << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << " (" |
| 987 | << reportPackets() << ")\n" ; |
| 988 | DAG->dumpNode(*SU)); |
| 989 | return SU; |
| 990 | } |
| 991 | |
| 992 | /// Update the scheduler's state after scheduling a node. This is the same node |
| 993 | /// that was just returned by pickNode(). However, VLIWMachineScheduler needs |
| 994 | /// to update it's state based on the current cycle before MachineSchedStrategy |
| 995 | /// does. |
| 996 | void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) { |
| 997 | if (IsTopNode) { |
| 998 | Top.bumpNode(SU); |
| 999 | SU->TopReadyCycle = Top.CurrCycle; |
| 1000 | } else { |
| 1001 | Bot.bumpNode(SU); |
| 1002 | SU->BotReadyCycle = Bot.CurrCycle; |
| 1003 | } |
| 1004 | } |
| 1005 | |