| 1 | //===-- WinEHPrepare - Prepare exception handling for code generation ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass lowers LLVM IR exception handling into something closer to what the |
| 10 | // backend wants for functions using a personality function from a runtime |
| 11 | // provided by MSVC. Functions with other personality functions are left alone |
| 12 | // and may be prepared by other passes. In particular, all supported MSVC |
| 13 | // personality functions require cleanup code to be outlined, and the C++ |
| 14 | // personality requires catch handler code to be outlined. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "llvm/CodeGen/WinEHPrepare.h" |
| 19 | #include "llvm/ADT/DenseMap.h" |
| 20 | #include "llvm/ADT/MapVector.h" |
| 21 | #include "llvm/ADT/STLExtras.h" |
| 22 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 23 | #include "llvm/CodeGen/Passes.h" |
| 24 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
| 25 | #include "llvm/IR/Constants.h" |
| 26 | #include "llvm/IR/EHPersonalities.h" |
| 27 | #include "llvm/IR/Instructions.h" |
| 28 | #include "llvm/IR/Module.h" |
| 29 | #include "llvm/IR/Verifier.h" |
| 30 | #include "llvm/InitializePasses.h" |
| 31 | #include "llvm/Pass.h" |
| 32 | #include "llvm/Support/CommandLine.h" |
| 33 | #include "llvm/Support/Debug.h" |
| 34 | #include "llvm/Support/raw_ostream.h" |
| 35 | #include "llvm/TargetParser/Triple.h" |
| 36 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 37 | #include "llvm/Transforms/Utils/Cloning.h" |
| 38 | #include "llvm/Transforms/Utils/Local.h" |
| 39 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
| 40 | |
| 41 | using namespace llvm; |
| 42 | |
| 43 | #define DEBUG_TYPE "win-eh-prepare" |
| 44 | |
| 45 | static cl::opt<bool> DisableDemotion( |
| 46 | "disable-demotion" , cl::Hidden, |
| 47 | cl::desc( |
| 48 | "Clone multicolor basic blocks but do not demote cross scopes" ), |
| 49 | cl::init(Val: false)); |
| 50 | |
| 51 | static cl::opt<bool> DisableCleanups( |
| 52 | "disable-cleanups" , cl::Hidden, |
| 53 | cl::desc("Do not remove implausible terminators or other similar cleanups" ), |
| 54 | cl::init(Val: false)); |
| 55 | |
| 56 | // TODO: Remove this option when we fully migrate to new pass manager |
| 57 | static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt( |
| 58 | "demote-catchswitch-only" , cl::Hidden, |
| 59 | cl::desc("Demote catchswitch BBs only (for wasm EH)" ), cl::init(Val: false)); |
| 60 | |
| 61 | namespace { |
| 62 | |
| 63 | class WinEHPrepareImpl { |
| 64 | public: |
| 65 | WinEHPrepareImpl(bool DemoteCatchSwitchPHIOnly) |
| 66 | : DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} |
| 67 | |
| 68 | bool runOnFunction(Function &Fn); |
| 69 | |
| 70 | private: |
| 71 | void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot); |
| 72 | void |
| 73 | insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, |
| 74 | SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist); |
| 75 | AllocaInst *insertPHILoads(PHINode *PN, Function &F); |
| 76 | void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, |
| 77 | DenseMap<BasicBlock *, Value *> &Loads, Function &F); |
| 78 | bool prepareExplicitEH(Function &F); |
| 79 | void colorFunclets(Function &F); |
| 80 | |
| 81 | bool demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly); |
| 82 | bool cloneCommonBlocks(Function &F); |
| 83 | bool removeImplausibleInstructions(Function &F); |
| 84 | bool cleanupPreparedFunclets(Function &F); |
| 85 | void verifyPreparedFunclets(Function &F); |
| 86 | |
| 87 | bool DemoteCatchSwitchPHIOnly; |
| 88 | |
| 89 | // All fields are reset by runOnFunction. |
| 90 | EHPersonality Personality = EHPersonality::Unknown; |
| 91 | |
| 92 | const DataLayout *DL = nullptr; |
| 93 | DenseMap<BasicBlock *, ColorVector> BlockColors; |
| 94 | MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks; |
| 95 | }; |
| 96 | |
| 97 | class WinEHPrepare : public FunctionPass { |
| 98 | bool DemoteCatchSwitchPHIOnly; |
| 99 | |
| 100 | public: |
| 101 | static char ID; // Pass identification, replacement for typeid. |
| 102 | |
| 103 | WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false) |
| 104 | : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} |
| 105 | |
| 106 | StringRef getPassName() const override { |
| 107 | return "Windows exception handling preparation" ; |
| 108 | } |
| 109 | |
| 110 | bool runOnFunction(Function &Fn) override { |
| 111 | return WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(Fn); |
| 112 | } |
| 113 | }; |
| 114 | |
| 115 | } // end anonymous namespace |
| 116 | |
| 117 | PreservedAnalyses WinEHPreparePass::run(Function &F, |
| 118 | FunctionAnalysisManager &) { |
| 119 | bool Changed = WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(Fn&: F); |
| 120 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
| 121 | } |
| 122 | |
| 123 | char WinEHPrepare::ID = 0; |
| 124 | INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions" , false, |
| 125 | false) |
| 126 | |
| 127 | FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) { |
| 128 | return new WinEHPrepare(DemoteCatchSwitchPHIOnly); |
| 129 | } |
| 130 | |
| 131 | bool WinEHPrepareImpl::runOnFunction(Function &Fn) { |
| 132 | if (!Fn.hasPersonalityFn()) |
| 133 | return false; |
| 134 | |
| 135 | // Classify the personality to see what kind of preparation we need. |
| 136 | Personality = classifyEHPersonality(Pers: Fn.getPersonalityFn()); |
| 137 | |
| 138 | // Do nothing if this is not a scope-based personality. |
| 139 | if (!isScopedEHPersonality(Pers: Personality)) |
| 140 | return false; |
| 141 | |
| 142 | DL = &Fn.getDataLayout(); |
| 143 | return prepareExplicitEH(F&: Fn); |
| 144 | } |
| 145 | |
| 146 | static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState, |
| 147 | const BasicBlock *BB) { |
| 148 | CxxUnwindMapEntry UME; |
| 149 | UME.ToState = ToState; |
| 150 | UME.Cleanup = BB; |
| 151 | FuncInfo.CxxUnwindMap.push_back(Elt: UME); |
| 152 | return FuncInfo.getLastStateNumber(); |
| 153 | } |
| 154 | |
| 155 | static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow, |
| 156 | int TryHigh, int CatchHigh, |
| 157 | ArrayRef<const CatchPadInst *> Handlers) { |
| 158 | WinEHTryBlockMapEntry TBME; |
| 159 | TBME.TryLow = TryLow; |
| 160 | TBME.TryHigh = TryHigh; |
| 161 | TBME.CatchHigh = CatchHigh; |
| 162 | assert(TBME.TryLow <= TBME.TryHigh); |
| 163 | for (const CatchPadInst *CPI : Handlers) { |
| 164 | WinEHHandlerType HT; |
| 165 | Constant *TypeInfo = cast<Constant>(Val: CPI->getArgOperand(i: 0)); |
| 166 | if (TypeInfo->isNullValue()) |
| 167 | HT.TypeDescriptor = nullptr; |
| 168 | else |
| 169 | HT.TypeDescriptor = cast<GlobalVariable>(Val: TypeInfo->stripPointerCasts()); |
| 170 | HT.Adjectives = cast<ConstantInt>(Val: CPI->getArgOperand(i: 1))->getZExtValue(); |
| 171 | HT.Handler = CPI->getParent(); |
| 172 | if (auto *AI = |
| 173 | dyn_cast<AllocaInst>(Val: CPI->getArgOperand(i: 2)->stripPointerCasts())) |
| 174 | HT.CatchObj.Alloca = AI; |
| 175 | else |
| 176 | HT.CatchObj.Alloca = nullptr; |
| 177 | TBME.HandlerArray.push_back(Elt: HT); |
| 178 | } |
| 179 | FuncInfo.TryBlockMap.push_back(Elt: TBME); |
| 180 | } |
| 181 | |
| 182 | static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) { |
| 183 | for (const User *U : CleanupPad->users()) |
| 184 | if (const auto *CRI = dyn_cast<CleanupReturnInst>(Val: U)) |
| 185 | return CRI->getUnwindDest(); |
| 186 | return nullptr; |
| 187 | } |
| 188 | |
| 189 | static void calculateStateNumbersForInvokes(const Function *Fn, |
| 190 | WinEHFuncInfo &FuncInfo) { |
| 191 | auto *F = const_cast<Function *>(Fn); |
| 192 | DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(F&: *F); |
| 193 | for (BasicBlock &BB : *F) { |
| 194 | auto *II = dyn_cast<InvokeInst>(Val: BB.getTerminator()); |
| 195 | if (!II) |
| 196 | continue; |
| 197 | |
| 198 | auto &BBColors = BlockColors[&BB]; |
| 199 | assert(BBColors.size() == 1 && "multi-color BB not removed by preparation" ); |
| 200 | BasicBlock *FuncletEntryBB = BBColors.front(); |
| 201 | |
| 202 | BasicBlock *FuncletUnwindDest; |
| 203 | auto *FuncletPad = |
| 204 | dyn_cast<FuncletPadInst>(Val: FuncletEntryBB->getFirstNonPHIIt()); |
| 205 | assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()); |
| 206 | if (!FuncletPad) |
| 207 | FuncletUnwindDest = nullptr; |
| 208 | else if (auto *CatchPad = dyn_cast<CatchPadInst>(Val: FuncletPad)) |
| 209 | FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest(); |
| 210 | else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(Val: FuncletPad)) |
| 211 | FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad); |
| 212 | else |
| 213 | llvm_unreachable("unexpected funclet pad!" ); |
| 214 | |
| 215 | BasicBlock *InvokeUnwindDest = II->getUnwindDest(); |
| 216 | int BaseState = -1; |
| 217 | if (FuncletUnwindDest == InvokeUnwindDest) { |
| 218 | auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(Val: FuncletPad); |
| 219 | if (BaseStateI != FuncInfo.FuncletBaseStateMap.end()) |
| 220 | BaseState = BaseStateI->second; |
| 221 | } |
| 222 | |
| 223 | if (BaseState != -1) { |
| 224 | FuncInfo.InvokeStateMap[II] = BaseState; |
| 225 | } else { |
| 226 | Instruction *PadInst = &*InvokeUnwindDest->getFirstNonPHIIt(); |
| 227 | assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!" ); |
| 228 | FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst]; |
| 229 | } |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | // See comments below for calculateSEHStateForAsynchEH(). |
| 234 | // State - incoming State of normal paths |
| 235 | struct WorkItem { |
| 236 | const BasicBlock *Block; |
| 237 | int State; |
| 238 | WorkItem(const BasicBlock *BB, int St) { |
| 239 | Block = BB; |
| 240 | State = St; |
| 241 | } |
| 242 | }; |
| 243 | void llvm::calculateCXXStateForAsynchEH(const BasicBlock *BB, int State, |
| 244 | WinEHFuncInfo &EHInfo) { |
| 245 | SmallVector<struct WorkItem *, 8> WorkList; |
| 246 | struct WorkItem *WI = new WorkItem(BB, State); |
| 247 | WorkList.push_back(Elt: WI); |
| 248 | |
| 249 | while (!WorkList.empty()) { |
| 250 | WI = WorkList.pop_back_val(); |
| 251 | const BasicBlock *BB = WI->Block; |
| 252 | int State = WI->State; |
| 253 | delete WI; |
| 254 | auto [StateIt, Inserted] = EHInfo.BlockToStateMap.try_emplace(Key: BB); |
| 255 | if (!Inserted && StateIt->second <= State) |
| 256 | continue; // skip blocks already visited by lower State |
| 257 | |
| 258 | BasicBlock::const_iterator It = BB->getFirstNonPHIIt(); |
| 259 | const llvm::Instruction *TI = BB->getTerminator(); |
| 260 | if (It->isEHPad()) |
| 261 | State = EHInfo.EHPadStateMap[&*It]; |
| 262 | StateIt->second = State; // Record state, also flag visiting |
| 263 | |
| 264 | if ((isa<CleanupReturnInst>(Val: TI) || isa<CatchReturnInst>(Val: TI)) && State > 0) { |
| 265 | // Retrive the new State |
| 266 | State = EHInfo.CxxUnwindMap[State].ToState; // Retrive next State |
| 267 | } else if (isa<InvokeInst>(Val: TI)) { |
| 268 | auto *Call = cast<CallBase>(Val: TI); |
| 269 | const Function *Fn = Call->getCalledFunction(); |
| 270 | if (Fn && Fn->isIntrinsic() && |
| 271 | (Fn->getIntrinsicID() == Intrinsic::seh_scope_begin || |
| 272 | Fn->getIntrinsicID() == Intrinsic::seh_try_begin)) |
| 273 | // Retrive the new State from seh_scope_begin |
| 274 | State = EHInfo.InvokeStateMap[cast<InvokeInst>(Val: TI)]; |
| 275 | else if (Fn && Fn->isIntrinsic() && |
| 276 | (Fn->getIntrinsicID() == Intrinsic::seh_scope_end || |
| 277 | Fn->getIntrinsicID() == Intrinsic::seh_try_end)) { |
| 278 | // In case of conditional ctor, let's retrieve State from Invoke |
| 279 | State = EHInfo.InvokeStateMap[cast<InvokeInst>(Val: TI)]; |
| 280 | // end of current state, retrive new state from UnwindMap |
| 281 | State = EHInfo.CxxUnwindMap[State].ToState; |
| 282 | } |
| 283 | } |
| 284 | // Continue push successors into worklist |
| 285 | for (auto *SuccBB : successors(BB)) { |
| 286 | WI = new WorkItem(SuccBB, State); |
| 287 | WorkList.push_back(Elt: WI); |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | // The central theory of this routine is based on the following: |
| 293 | // A _try scope is always a SEME (Single Entry Multiple Exits) region |
| 294 | // as jumping into a _try is not allowed |
| 295 | // The single entry must start with a seh_try_begin() invoke with a |
| 296 | // correct State number that is the initial state of the SEME. |
| 297 | // Through control-flow, state number is propagated into all blocks. |
| 298 | // Side exits marked by seh_try_end() will unwind to parent state via |
| 299 | // existing SEHUnwindMap[]. |
| 300 | // Side exits can ONLY jump into parent scopes (lower state number). |
| 301 | // Thus, when a block succeeds various states from its predecessors, |
| 302 | // the lowest State trumphs others. |
| 303 | // If some exits flow to unreachable, propagation on those paths terminate, |
| 304 | // not affecting remaining blocks. |
| 305 | void llvm::calculateSEHStateForAsynchEH(const BasicBlock *BB, int State, |
| 306 | WinEHFuncInfo &EHInfo) { |
| 307 | SmallVector<struct WorkItem *, 8> WorkList; |
| 308 | struct WorkItem *WI = new WorkItem(BB, State); |
| 309 | WorkList.push_back(Elt: WI); |
| 310 | |
| 311 | while (!WorkList.empty()) { |
| 312 | WI = WorkList.pop_back_val(); |
| 313 | const BasicBlock *BB = WI->Block; |
| 314 | int State = WI->State; |
| 315 | delete WI; |
| 316 | if (auto It = EHInfo.BlockToStateMap.find(Val: BB); |
| 317 | It != EHInfo.BlockToStateMap.end() && It->second <= State) |
| 318 | continue; // skip blocks already visited by lower State |
| 319 | |
| 320 | BasicBlock::const_iterator It = BB->getFirstNonPHIIt(); |
| 321 | const llvm::Instruction *TI = BB->getTerminator(); |
| 322 | if (It->isEHPad()) |
| 323 | State = EHInfo.EHPadStateMap[&*It]; |
| 324 | EHInfo.BlockToStateMap[BB] = State; // Record state |
| 325 | |
| 326 | if (isa<CatchPadInst>(Val: It) && isa<CatchReturnInst>(Val: TI)) { |
| 327 | const Constant *FilterOrNull = cast<Constant>( |
| 328 | Val: cast<CatchPadInst>(Val&: It)->getArgOperand(i: 0)->stripPointerCasts()); |
| 329 | const Function *Filter = dyn_cast<Function>(Val: FilterOrNull); |
| 330 | if (!Filter || !Filter->getName().starts_with(Prefix: "__IsLocalUnwind" )) |
| 331 | State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State |
| 332 | } else if ((isa<CleanupReturnInst>(Val: TI) || isa<CatchReturnInst>(Val: TI)) && |
| 333 | State > 0) { |
| 334 | // Retrive the new State. |
| 335 | State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State |
| 336 | } else if (isa<InvokeInst>(Val: TI)) { |
| 337 | auto *Call = cast<CallBase>(Val: TI); |
| 338 | const Function *Fn = Call->getCalledFunction(); |
| 339 | if (Fn && Fn->isIntrinsic() && |
| 340 | Fn->getIntrinsicID() == Intrinsic::seh_try_begin) |
| 341 | // Retrive the new State from seh_try_begin |
| 342 | State = EHInfo.InvokeStateMap[cast<InvokeInst>(Val: TI)]; |
| 343 | else if (Fn && Fn->isIntrinsic() && |
| 344 | Fn->getIntrinsicID() == Intrinsic::seh_try_end) |
| 345 | // end of current state, retrive new state from UnwindMap |
| 346 | State = EHInfo.SEHUnwindMap[State].ToState; |
| 347 | } |
| 348 | // Continue push successors into worklist |
| 349 | for (auto *SuccBB : successors(BB)) { |
| 350 | WI = new WorkItem(SuccBB, State); |
| 351 | WorkList.push_back(Elt: WI); |
| 352 | } |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | // Given BB which ends in an unwind edge, return the EHPad that this BB belongs |
| 357 | // to. If the unwind edge came from an invoke, return null. |
| 358 | static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB, |
| 359 | Value *ParentPad) { |
| 360 | const Instruction *TI = BB->getTerminator(); |
| 361 | if (isa<InvokeInst>(Val: TI)) |
| 362 | return nullptr; |
| 363 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: TI)) { |
| 364 | if (CatchSwitch->getParentPad() != ParentPad) |
| 365 | return nullptr; |
| 366 | return BB; |
| 367 | } |
| 368 | assert(!TI->isEHPad() && "unexpected EHPad!" ); |
| 369 | auto *CleanupPad = cast<CleanupReturnInst>(Val: TI)->getCleanupPad(); |
| 370 | if (CleanupPad->getParentPad() != ParentPad) |
| 371 | return nullptr; |
| 372 | return CleanupPad->getParent(); |
| 373 | } |
| 374 | |
| 375 | // Starting from a EHPad, Backward walk through control-flow graph |
| 376 | // to produce two primary outputs: |
| 377 | // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[] |
| 378 | static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo, |
| 379 | const Instruction *FirstNonPHI, |
| 380 | int ParentState) { |
| 381 | const BasicBlock *BB = FirstNonPHI->getParent(); |
| 382 | assert(BB->isEHPad() && "not a funclet!" ); |
| 383 | |
| 384 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: FirstNonPHI)) { |
| 385 | assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && |
| 386 | "shouldn't revist catch funclets!" ); |
| 387 | |
| 388 | SmallVector<const CatchPadInst *, 2> Handlers; |
| 389 | for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { |
| 390 | auto *CatchPad = cast<CatchPadInst>(Val: CatchPadBB->getFirstNonPHIIt()); |
| 391 | Handlers.push_back(Elt: CatchPad); |
| 392 | } |
| 393 | int TryLow = addUnwindMapEntry(FuncInfo, ToState: ParentState, BB: nullptr); |
| 394 | FuncInfo.EHPadStateMap[CatchSwitch] = TryLow; |
| 395 | for (const BasicBlock *PredBlock : predecessors(BB)) |
| 396 | if ((PredBlock = getEHPadFromPredecessor(BB: PredBlock, |
| 397 | ParentPad: CatchSwitch->getParentPad()))) |
| 398 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: &*PredBlock->getFirstNonPHIIt(), |
| 399 | ParentState: TryLow); |
| 400 | int CatchLow = addUnwindMapEntry(FuncInfo, ToState: ParentState, BB: nullptr); |
| 401 | |
| 402 | // catchpads are separate funclets in C++ EH due to the way rethrow works. |
| 403 | int TryHigh = CatchLow - 1; |
| 404 | |
| 405 | // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$ |
| 406 | // stored in pre-order (outer first, inner next), not post-order |
| 407 | // Add to map here. Fix the CatchHigh after children are processed |
| 408 | const Module *Mod = BB->getParent()->getParent(); |
| 409 | bool IsPreOrder = Mod->getTargetTriple().isArch64Bit(); |
| 410 | if (IsPreOrder) |
| 411 | addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh: CatchLow, Handlers); |
| 412 | unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1; |
| 413 | |
| 414 | for (const auto *CatchPad : Handlers) { |
| 415 | FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow; |
| 416 | FuncInfo.EHPadStateMap[CatchPad] = CatchLow; |
| 417 | for (const User *U : CatchPad->users()) { |
| 418 | const auto *UserI = cast<Instruction>(Val: U); |
| 419 | if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(Val: UserI)) { |
| 420 | BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); |
| 421 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
| 422 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState: CatchLow); |
| 423 | } |
| 424 | if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(Val: UserI)) { |
| 425 | BasicBlock *UnwindDest = getCleanupRetUnwindDest(CleanupPad: InnerCleanupPad); |
| 426 | // If a nested cleanup pad reports a null unwind destination and the |
| 427 | // enclosing catch pad doesn't it must be post-dominated by an |
| 428 | // unreachable instruction. |
| 429 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
| 430 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState: CatchLow); |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | int CatchHigh = FuncInfo.getLastStateNumber(); |
| 435 | // Now child Catches are processed, update CatchHigh |
| 436 | if (IsPreOrder) |
| 437 | FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh; |
| 438 | else // PostOrder |
| 439 | addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers); |
| 440 | |
| 441 | LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n'); |
| 442 | LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh |
| 443 | << '\n'); |
| 444 | LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh |
| 445 | << '\n'); |
| 446 | } else { |
| 447 | auto *CleanupPad = cast<CleanupPadInst>(Val: FirstNonPHI); |
| 448 | |
| 449 | // It's possible for a cleanup to be visited twice: it might have multiple |
| 450 | // cleanupret instructions. |
| 451 | auto [It, Inserted] = FuncInfo.EHPadStateMap.try_emplace(Key: CleanupPad); |
| 452 | if (!Inserted) |
| 453 | return; |
| 454 | |
| 455 | int CleanupState = addUnwindMapEntry(FuncInfo, ToState: ParentState, BB); |
| 456 | It->second = CleanupState; |
| 457 | LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " |
| 458 | << BB->getName() << '\n'); |
| 459 | for (const BasicBlock *PredBlock : predecessors(BB)) { |
| 460 | if ((PredBlock = getEHPadFromPredecessor(BB: PredBlock, |
| 461 | ParentPad: CleanupPad->getParentPad()))) { |
| 462 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: &*PredBlock->getFirstNonPHIIt(), |
| 463 | ParentState: CleanupState); |
| 464 | } |
| 465 | } |
| 466 | for (const User *U : CleanupPad->users()) { |
| 467 | const auto *UserI = cast<Instruction>(Val: U); |
| 468 | if (UserI->isEHPad()) |
| 469 | report_fatal_error(reason: "Cleanup funclets for the MSVC++ personality cannot " |
| 470 | "contain exceptional actions" ); |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState, |
| 476 | const Function *Filter, const BasicBlock *Handler) { |
| 477 | SEHUnwindMapEntry Entry; |
| 478 | Entry.ToState = ParentState; |
| 479 | Entry.IsFinally = false; |
| 480 | Entry.Filter = Filter; |
| 481 | Entry.Handler = Handler; |
| 482 | FuncInfo.SEHUnwindMap.push_back(Elt: Entry); |
| 483 | return FuncInfo.SEHUnwindMap.size() - 1; |
| 484 | } |
| 485 | |
| 486 | static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState, |
| 487 | const BasicBlock *Handler) { |
| 488 | SEHUnwindMapEntry Entry; |
| 489 | Entry.ToState = ParentState; |
| 490 | Entry.IsFinally = true; |
| 491 | Entry.Filter = nullptr; |
| 492 | Entry.Handler = Handler; |
| 493 | FuncInfo.SEHUnwindMap.push_back(Elt: Entry); |
| 494 | return FuncInfo.SEHUnwindMap.size() - 1; |
| 495 | } |
| 496 | |
| 497 | // Starting from a EHPad, Backward walk through control-flow graph |
| 498 | // to produce two primary outputs: |
| 499 | // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[] |
| 500 | static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo, |
| 501 | const Instruction *FirstNonPHI, |
| 502 | int ParentState) { |
| 503 | const BasicBlock *BB = FirstNonPHI->getParent(); |
| 504 | assert(BB->isEHPad() && "no a funclet!" ); |
| 505 | |
| 506 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: FirstNonPHI)) { |
| 507 | assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && |
| 508 | "shouldn't revist catch funclets!" ); |
| 509 | |
| 510 | // Extract the filter function and the __except basic block and create a |
| 511 | // state for them. |
| 512 | assert(CatchSwitch->getNumHandlers() == 1 && |
| 513 | "SEH doesn't have multiple handlers per __try" ); |
| 514 | const auto *CatchPad = |
| 515 | cast<CatchPadInst>(Val: (*CatchSwitch->handler_begin())->getFirstNonPHIIt()); |
| 516 | const BasicBlock *CatchPadBB = CatchPad->getParent(); |
| 517 | const Constant *FilterOrNull = |
| 518 | cast<Constant>(Val: CatchPad->getArgOperand(i: 0)->stripPointerCasts()); |
| 519 | const Function *Filter = dyn_cast<Function>(Val: FilterOrNull); |
| 520 | assert((Filter || FilterOrNull->isNullValue()) && |
| 521 | "unexpected filter value" ); |
| 522 | int TryState = addSEHExcept(FuncInfo, ParentState, Filter, Handler: CatchPadBB); |
| 523 | |
| 524 | // Everything in the __try block uses TryState as its parent state. |
| 525 | FuncInfo.EHPadStateMap[CatchSwitch] = TryState; |
| 526 | FuncInfo.EHPadStateMap[CatchPad] = TryState; |
| 527 | LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB " |
| 528 | << CatchPadBB->getName() << '\n'); |
| 529 | for (const BasicBlock *PredBlock : predecessors(BB)) |
| 530 | if ((PredBlock = getEHPadFromPredecessor(BB: PredBlock, |
| 531 | ParentPad: CatchSwitch->getParentPad()))) |
| 532 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: &*PredBlock->getFirstNonPHIIt(), |
| 533 | ParentState: TryState); |
| 534 | |
| 535 | // Everything in the __except block unwinds to ParentState, just like code |
| 536 | // outside the __try. |
| 537 | for (const User *U : CatchPad->users()) { |
| 538 | const auto *UserI = cast<Instruction>(Val: U); |
| 539 | if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(Val: UserI)) { |
| 540 | BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); |
| 541 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
| 542 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState); |
| 543 | } |
| 544 | if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(Val: UserI)) { |
| 545 | BasicBlock *UnwindDest = getCleanupRetUnwindDest(CleanupPad: InnerCleanupPad); |
| 546 | // If a nested cleanup pad reports a null unwind destination and the |
| 547 | // enclosing catch pad doesn't it must be post-dominated by an |
| 548 | // unreachable instruction. |
| 549 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
| 550 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState); |
| 551 | } |
| 552 | } |
| 553 | } else { |
| 554 | auto *CleanupPad = cast<CleanupPadInst>(Val: FirstNonPHI); |
| 555 | |
| 556 | // It's possible for a cleanup to be visited twice: it might have multiple |
| 557 | // cleanupret instructions. |
| 558 | auto [It, Inserted] = FuncInfo.EHPadStateMap.try_emplace(Key: CleanupPad); |
| 559 | if (!Inserted) |
| 560 | return; |
| 561 | |
| 562 | int CleanupState = addSEHFinally(FuncInfo, ParentState, Handler: BB); |
| 563 | It->second = CleanupState; |
| 564 | LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " |
| 565 | << BB->getName() << '\n'); |
| 566 | for (const BasicBlock *PredBlock : predecessors(BB)) |
| 567 | if ((PredBlock = |
| 568 | getEHPadFromPredecessor(BB: PredBlock, ParentPad: CleanupPad->getParentPad()))) |
| 569 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: &*PredBlock->getFirstNonPHIIt(), |
| 570 | ParentState: CleanupState); |
| 571 | for (const User *U : CleanupPad->users()) { |
| 572 | const auto *UserI = cast<Instruction>(Val: U); |
| 573 | if (UserI->isEHPad()) |
| 574 | report_fatal_error(reason: "Cleanup funclets for the SEH personality cannot " |
| 575 | "contain exceptional actions" ); |
| 576 | } |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | static bool isTopLevelPadForMSVC(const Instruction *EHPad) { |
| 581 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: EHPad)) |
| 582 | return isa<ConstantTokenNone>(Val: CatchSwitch->getParentPad()) && |
| 583 | CatchSwitch->unwindsToCaller(); |
| 584 | if (auto *CleanupPad = dyn_cast<CleanupPadInst>(Val: EHPad)) |
| 585 | return isa<ConstantTokenNone>(Val: CleanupPad->getParentPad()) && |
| 586 | getCleanupRetUnwindDest(CleanupPad) == nullptr; |
| 587 | if (isa<CatchPadInst>(Val: EHPad)) |
| 588 | return false; |
| 589 | llvm_unreachable("unexpected EHPad!" ); |
| 590 | } |
| 591 | |
| 592 | void llvm::calculateSEHStateNumbers(const Function *Fn, |
| 593 | WinEHFuncInfo &FuncInfo) { |
| 594 | // Don't compute state numbers twice. |
| 595 | if (!FuncInfo.SEHUnwindMap.empty()) |
| 596 | return; |
| 597 | |
| 598 | for (const BasicBlock &BB : *Fn) { |
| 599 | if (!BB.isEHPad()) |
| 600 | continue; |
| 601 | const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt(); |
| 602 | if (!isTopLevelPadForMSVC(EHPad: FirstNonPHI)) |
| 603 | continue; |
| 604 | ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, ParentState: -1); |
| 605 | } |
| 606 | |
| 607 | calculateStateNumbersForInvokes(Fn, FuncInfo); |
| 608 | |
| 609 | bool IsEHa = Fn->getParent()->getModuleFlag(Key: "eh-asynch" ); |
| 610 | if (IsEHa) { |
| 611 | const BasicBlock *EntryBB = &(Fn->getEntryBlock()); |
| 612 | calculateSEHStateForAsynchEH(BB: EntryBB, State: -1, EHInfo&: FuncInfo); |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | void llvm::calculateWinCXXEHStateNumbers(const Function *Fn, |
| 617 | WinEHFuncInfo &FuncInfo) { |
| 618 | // Return if it's already been done. |
| 619 | if (!FuncInfo.EHPadStateMap.empty()) |
| 620 | return; |
| 621 | |
| 622 | for (const BasicBlock &BB : *Fn) { |
| 623 | if (!BB.isEHPad()) |
| 624 | continue; |
| 625 | const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt(); |
| 626 | if (!isTopLevelPadForMSVC(EHPad: FirstNonPHI)) |
| 627 | continue; |
| 628 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI, ParentState: -1); |
| 629 | } |
| 630 | |
| 631 | calculateStateNumbersForInvokes(Fn, FuncInfo); |
| 632 | |
| 633 | bool IsEHa = Fn->getParent()->getModuleFlag(Key: "eh-asynch" ); |
| 634 | if (IsEHa) { |
| 635 | const BasicBlock *EntryBB = &(Fn->getEntryBlock()); |
| 636 | calculateCXXStateForAsynchEH(BB: EntryBB, State: -1, EHInfo&: FuncInfo); |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState, |
| 641 | int TryParentState, ClrHandlerType HandlerType, |
| 642 | uint32_t TypeToken, const BasicBlock *Handler) { |
| 643 | ClrEHUnwindMapEntry Entry; |
| 644 | Entry.HandlerParentState = HandlerParentState; |
| 645 | Entry.TryParentState = TryParentState; |
| 646 | Entry.Handler = Handler; |
| 647 | Entry.HandlerType = HandlerType; |
| 648 | Entry.TypeToken = TypeToken; |
| 649 | FuncInfo.ClrEHUnwindMap.push_back(Elt: Entry); |
| 650 | return FuncInfo.ClrEHUnwindMap.size() - 1; |
| 651 | } |
| 652 | |
| 653 | void llvm::calculateClrEHStateNumbers(const Function *Fn, |
| 654 | WinEHFuncInfo &FuncInfo) { |
| 655 | // Return if it's already been done. |
| 656 | if (!FuncInfo.EHPadStateMap.empty()) |
| 657 | return; |
| 658 | |
| 659 | // This numbering assigns one state number to each catchpad and cleanuppad. |
| 660 | // It also computes two tree-like relations over states: |
| 661 | // 1) Each state has a "HandlerParentState", which is the state of the next |
| 662 | // outer handler enclosing this state's handler (same as nearest ancestor |
| 663 | // per the ParentPad linkage on EH pads, but skipping over catchswitches). |
| 664 | // 2) Each state has a "TryParentState", which: |
| 665 | // a) for a catchpad that's not the last handler on its catchswitch, is |
| 666 | // the state of the next catchpad on that catchswitch |
| 667 | // b) for all other pads, is the state of the pad whose try region is the |
| 668 | // next outer try region enclosing this state's try region. The "try |
| 669 | // regions are not present as such in the IR, but will be inferred |
| 670 | // based on the placement of invokes and pads which reach each other |
| 671 | // by exceptional exits |
| 672 | // Catchswitches do not get their own states, but each gets mapped to the |
| 673 | // state of its first catchpad. |
| 674 | |
| 675 | // Step one: walk down from outermost to innermost funclets, assigning each |
| 676 | // catchpad and cleanuppad a state number. Add an entry to the |
| 677 | // ClrEHUnwindMap for each state, recording its HandlerParentState and |
| 678 | // handler attributes. Record the TryParentState as well for each catchpad |
| 679 | // that's not the last on its catchswitch, but initialize all other entries' |
| 680 | // TryParentStates to a sentinel -1 value that the next pass will update. |
| 681 | |
| 682 | // Seed a worklist with pads that have no parent. |
| 683 | SmallVector<std::pair<const Instruction *, int>, 8> Worklist; |
| 684 | for (const BasicBlock &BB : *Fn) { |
| 685 | const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt(); |
| 686 | const Value *ParentPad; |
| 687 | if (const auto *CPI = dyn_cast<CleanupPadInst>(Val: FirstNonPHI)) |
| 688 | ParentPad = CPI->getParentPad(); |
| 689 | else if (const auto *CSI = dyn_cast<CatchSwitchInst>(Val: FirstNonPHI)) |
| 690 | ParentPad = CSI->getParentPad(); |
| 691 | else |
| 692 | continue; |
| 693 | if (isa<ConstantTokenNone>(Val: ParentPad)) |
| 694 | Worklist.emplace_back(Args&: FirstNonPHI, Args: -1); |
| 695 | } |
| 696 | |
| 697 | // Use the worklist to visit all pads, from outer to inner. Record |
| 698 | // HandlerParentState for all pads. Record TryParentState only for catchpads |
| 699 | // that aren't the last on their catchswitch (setting all other entries' |
| 700 | // TryParentStates to an initial value of -1). This loop is also responsible |
| 701 | // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and |
| 702 | // catchswitches. |
| 703 | while (!Worklist.empty()) { |
| 704 | const Instruction *Pad; |
| 705 | int HandlerParentState; |
| 706 | std::tie(args&: Pad, args&: HandlerParentState) = Worklist.pop_back_val(); |
| 707 | |
| 708 | if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Val: Pad)) { |
| 709 | // Create the entry for this cleanup with the appropriate handler |
| 710 | // properties. Finally and fault handlers are distinguished by arity. |
| 711 | ClrHandlerType HandlerType = |
| 712 | (Cleanup->arg_size() ? ClrHandlerType::Fault |
| 713 | : ClrHandlerType::Finally); |
| 714 | int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, TryParentState: -1, |
| 715 | HandlerType, TypeToken: 0, Handler: Pad->getParent()); |
| 716 | // Queue any child EH pads on the worklist. |
| 717 | for (const User *U : Cleanup->users()) |
| 718 | if (const auto *I = dyn_cast<Instruction>(Val: U)) |
| 719 | if (I->isEHPad()) |
| 720 | Worklist.emplace_back(Args&: I, Args&: CleanupState); |
| 721 | // Remember this pad's state. |
| 722 | FuncInfo.EHPadStateMap[Cleanup] = CleanupState; |
| 723 | } else { |
| 724 | // Walk the handlers of this catchswitch in reverse order since all but |
| 725 | // the last need to set the following one as its TryParentState. |
| 726 | const auto *CatchSwitch = cast<CatchSwitchInst>(Val: Pad); |
| 727 | int CatchState = -1, FollowerState = -1; |
| 728 | SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers()); |
| 729 | for (const BasicBlock *CatchBlock : llvm::reverse(C&: CatchBlocks)) { |
| 730 | // Create the entry for this catch with the appropriate handler |
| 731 | // properties. |
| 732 | const auto *Catch = cast<CatchPadInst>(Val: CatchBlock->getFirstNonPHIIt()); |
| 733 | uint32_t TypeToken = static_cast<uint32_t>( |
| 734 | cast<ConstantInt>(Val: Catch->getArgOperand(i: 0))->getZExtValue()); |
| 735 | CatchState = |
| 736 | addClrEHHandler(FuncInfo, HandlerParentState, TryParentState: FollowerState, |
| 737 | HandlerType: ClrHandlerType::Catch, TypeToken, Handler: CatchBlock); |
| 738 | // Queue any child EH pads on the worklist. |
| 739 | for (const User *U : Catch->users()) |
| 740 | if (const auto *I = dyn_cast<Instruction>(Val: U)) |
| 741 | if (I->isEHPad()) |
| 742 | Worklist.emplace_back(Args&: I, Args&: CatchState); |
| 743 | // Remember this catch's state. |
| 744 | FuncInfo.EHPadStateMap[Catch] = CatchState; |
| 745 | FollowerState = CatchState; |
| 746 | } |
| 747 | // Associate the catchswitch with the state of its first catch. |
| 748 | assert(CatchSwitch->getNumHandlers()); |
| 749 | FuncInfo.EHPadStateMap[CatchSwitch] = CatchState; |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | // Step two: record the TryParentState of each state. For cleanuppads that |
| 754 | // don't have cleanuprets, we may need to infer this from their child pads, |
| 755 | // so visit pads in descendant-most to ancestor-most order. |
| 756 | for (ClrEHUnwindMapEntry &Entry : llvm::reverse(C&: FuncInfo.ClrEHUnwindMap)) { |
| 757 | const Instruction *Pad = |
| 758 | &*cast<const BasicBlock *>(Val&: Entry.Handler)->getFirstNonPHIIt(); |
| 759 | // For most pads, the TryParentState is the state associated with the |
| 760 | // unwind dest of exceptional exits from it. |
| 761 | const BasicBlock *UnwindDest; |
| 762 | if (const auto *Catch = dyn_cast<CatchPadInst>(Val: Pad)) { |
| 763 | // If a catch is not the last in its catchswitch, its TryParentState is |
| 764 | // the state associated with the next catch in the switch, even though |
| 765 | // that's not the unwind dest of exceptions escaping the catch. Those |
| 766 | // cases were already assigned a TryParentState in the first pass, so |
| 767 | // skip them. |
| 768 | if (Entry.TryParentState != -1) |
| 769 | continue; |
| 770 | // Otherwise, get the unwind dest from the catchswitch. |
| 771 | UnwindDest = Catch->getCatchSwitch()->getUnwindDest(); |
| 772 | } else { |
| 773 | const auto *Cleanup = cast<CleanupPadInst>(Val: Pad); |
| 774 | UnwindDest = nullptr; |
| 775 | for (const User *U : Cleanup->users()) { |
| 776 | if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(Val: U)) { |
| 777 | // Common and unambiguous case -- cleanupret indicates cleanup's |
| 778 | // unwind dest. |
| 779 | UnwindDest = CleanupRet->getUnwindDest(); |
| 780 | break; |
| 781 | } |
| 782 | |
| 783 | // Get an unwind dest for the user |
| 784 | const BasicBlock *UserUnwindDest = nullptr; |
| 785 | if (auto *Invoke = dyn_cast<InvokeInst>(Val: U)) { |
| 786 | UserUnwindDest = Invoke->getUnwindDest(); |
| 787 | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: U)) { |
| 788 | UserUnwindDest = CatchSwitch->getUnwindDest(); |
| 789 | } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(Val: U)) { |
| 790 | int UserState = FuncInfo.EHPadStateMap[ChildCleanup]; |
| 791 | int UserUnwindState = |
| 792 | FuncInfo.ClrEHUnwindMap[UserState].TryParentState; |
| 793 | if (UserUnwindState != -1) |
| 794 | UserUnwindDest = cast<const BasicBlock *>( |
| 795 | Val&: FuncInfo.ClrEHUnwindMap[UserUnwindState].Handler); |
| 796 | } |
| 797 | |
| 798 | // Not having an unwind dest for this user might indicate that it |
| 799 | // doesn't unwind, so can't be taken as proof that the cleanup itself |
| 800 | // may unwind to caller (see e.g. SimplifyUnreachable and |
| 801 | // RemoveUnwindEdge). |
| 802 | if (!UserUnwindDest) |
| 803 | continue; |
| 804 | |
| 805 | // Now we have an unwind dest for the user, but we need to see if it |
| 806 | // unwinds all the way out of the cleanup or if it stays within it. |
| 807 | const Instruction *UserUnwindPad = &*UserUnwindDest->getFirstNonPHIIt(); |
| 808 | const Value *UserUnwindParent; |
| 809 | if (auto *CSI = dyn_cast<CatchSwitchInst>(Val: UserUnwindPad)) |
| 810 | UserUnwindParent = CSI->getParentPad(); |
| 811 | else |
| 812 | UserUnwindParent = |
| 813 | cast<CleanupPadInst>(Val: UserUnwindPad)->getParentPad(); |
| 814 | |
| 815 | // The unwind stays within the cleanup iff it targets a child of the |
| 816 | // cleanup. |
| 817 | if (UserUnwindParent == Cleanup) |
| 818 | continue; |
| 819 | |
| 820 | // This unwind exits the cleanup, so its dest is the cleanup's dest. |
| 821 | UnwindDest = UserUnwindDest; |
| 822 | break; |
| 823 | } |
| 824 | } |
| 825 | |
| 826 | // Record the state of the unwind dest as the TryParentState. |
| 827 | int UnwindDestState; |
| 828 | |
| 829 | // If UnwindDest is null at this point, either the pad in question can |
| 830 | // be exited by unwind to caller, or it cannot be exited by unwind. In |
| 831 | // either case, reporting such cases as unwinding to caller is correct. |
| 832 | // This can lead to EH tables that "look strange" -- if this pad's is in |
| 833 | // a parent funclet which has other children that do unwind to an enclosing |
| 834 | // pad, the try region for this pad will be missing the "duplicate" EH |
| 835 | // clause entries that you'd expect to see covering the whole parent. That |
| 836 | // should be benign, since the unwind never actually happens. If it were |
| 837 | // an issue, we could add a subsequent pass that pushes unwind dests down |
| 838 | // from parents that have them to children that appear to unwind to caller. |
| 839 | if (!UnwindDest) { |
| 840 | UnwindDestState = -1; |
| 841 | } else { |
| 842 | UnwindDestState = |
| 843 | FuncInfo.EHPadStateMap[&*UnwindDest->getFirstNonPHIIt()]; |
| 844 | } |
| 845 | |
| 846 | Entry.TryParentState = UnwindDestState; |
| 847 | } |
| 848 | |
| 849 | // Step three: transfer information from pads to invokes. |
| 850 | calculateStateNumbersForInvokes(Fn, FuncInfo); |
| 851 | } |
| 852 | |
| 853 | void WinEHPrepareImpl::colorFunclets(Function &F) { |
| 854 | BlockColors = colorEHFunclets(F); |
| 855 | |
| 856 | // Invert the map from BB to colors to color to BBs. |
| 857 | for (BasicBlock &BB : F) { |
| 858 | ColorVector &Colors = BlockColors[&BB]; |
| 859 | for (BasicBlock *Color : Colors) |
| 860 | FuncletBlocks[Color].push_back(x: &BB); |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | bool WinEHPrepareImpl::demotePHIsOnFunclets(Function &F, |
| 865 | bool DemoteCatchSwitchPHIOnly) { |
| 866 | bool Changed = false; |
| 867 | |
| 868 | // Strip PHI nodes off of EH pads. |
| 869 | SmallVector<PHINode *, 16> PHINodes; |
| 870 | for (BasicBlock &BB : make_early_inc_range(Range&: F)) { |
| 871 | if (!BB.isEHPad()) |
| 872 | continue; |
| 873 | |
| 874 | for (Instruction &I : make_early_inc_range(Range&: BB)) { |
| 875 | auto *PN = dyn_cast<PHINode>(Val: &I); |
| 876 | // Stop at the first non-PHI. |
| 877 | if (!PN) |
| 878 | break; |
| 879 | |
| 880 | // If DemoteCatchSwitchPHIOnly is true, we only demote a PHI when |
| 881 | // 1. The PHI is within a catchswitch BB |
| 882 | // 2. The PHI has a catchswitch BB has one of its incoming blocks |
| 883 | if (DemoteCatchSwitchPHIOnly) { |
| 884 | bool IsCatchSwitchBB = isa<CatchSwitchInst>(Val: BB.getFirstNonPHIIt()); |
| 885 | bool HasIncomingCatchSwitchBB = false; |
| 886 | for (unsigned I = 0, E = PN->getNumIncomingValues(); I < E; ++I) { |
| 887 | if (isa<CatchSwitchInst>( |
| 888 | Val: PN->getIncomingBlock(i: I)->getFirstNonPHIIt())) { |
| 889 | HasIncomingCatchSwitchBB = true; |
| 890 | break; |
| 891 | } |
| 892 | } |
| 893 | if (!IsCatchSwitchBB && !HasIncomingCatchSwitchBB) |
| 894 | break; |
| 895 | } |
| 896 | |
| 897 | Changed = true; |
| 898 | |
| 899 | AllocaInst *SpillSlot = insertPHILoads(PN, F); |
| 900 | if (SpillSlot) |
| 901 | insertPHIStores(OriginalPHI: PN, SpillSlot); |
| 902 | |
| 903 | PHINodes.push_back(Elt: PN); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | for (auto *PN : PHINodes) { |
| 908 | // There may be lingering uses on other EH PHIs being removed |
| 909 | PN->replaceAllUsesWith(V: PoisonValue::get(T: PN->getType())); |
| 910 | PN->eraseFromParent(); |
| 911 | } |
| 912 | |
| 913 | return Changed; |
| 914 | } |
| 915 | |
| 916 | bool WinEHPrepareImpl::cloneCommonBlocks(Function &F) { |
| 917 | bool Changed = false; |
| 918 | |
| 919 | // We need to clone all blocks which belong to multiple funclets. Values are |
| 920 | // remapped throughout the funclet to propagate both the new instructions |
| 921 | // *and* the new basic blocks themselves. |
| 922 | for (auto &Funclets : FuncletBlocks) { |
| 923 | BasicBlock *FuncletPadBB = Funclets.first; |
| 924 | std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second; |
| 925 | Value *FuncletToken; |
| 926 | if (FuncletPadBB == &F.getEntryBlock()) |
| 927 | FuncletToken = ConstantTokenNone::get(Context&: F.getContext()); |
| 928 | else |
| 929 | FuncletToken = &*FuncletPadBB->getFirstNonPHIIt(); |
| 930 | |
| 931 | std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone; |
| 932 | ValueToValueMapTy VMap; |
| 933 | for (BasicBlock *BB : BlocksInFunclet) { |
| 934 | ColorVector &ColorsForBB = BlockColors[BB]; |
| 935 | // We don't need to do anything if the block is monochromatic. |
| 936 | size_t NumColorsForBB = ColorsForBB.size(); |
| 937 | if (NumColorsForBB == 1) |
| 938 | continue; |
| 939 | |
| 940 | DEBUG_WITH_TYPE("win-eh-prepare-coloring" , |
| 941 | dbgs() << " Cloning block \'" << BB->getName() |
| 942 | << "\' for funclet \'" << FuncletPadBB->getName() |
| 943 | << "\'.\n" ); |
| 944 | |
| 945 | // Create a new basic block and copy instructions into it! |
| 946 | BasicBlock *CBB = |
| 947 | CloneBasicBlock(BB, VMap, NameSuffix: Twine(".for." , FuncletPadBB->getName())); |
| 948 | // Insert the clone immediately after the original to ensure determinism |
| 949 | // and to keep the same relative ordering of any funclet's blocks. |
| 950 | CBB->insertInto(Parent: &F, InsertBefore: BB->getNextNode()); |
| 951 | |
| 952 | // Add basic block mapping. |
| 953 | VMap[BB] = CBB; |
| 954 | |
| 955 | // Record delta operations that we need to perform to our color mappings. |
| 956 | Orig2Clone.emplace_back(args&: BB, args&: CBB); |
| 957 | } |
| 958 | |
| 959 | // If nothing was cloned, we're done cloning in this funclet. |
| 960 | if (Orig2Clone.empty()) |
| 961 | continue; |
| 962 | |
| 963 | Changed = true; |
| 964 | |
| 965 | // Update our color mappings to reflect that one block has lost a color and |
| 966 | // another has gained a color. |
| 967 | for (auto &BBMapping : Orig2Clone) { |
| 968 | BasicBlock *OldBlock = BBMapping.first; |
| 969 | BasicBlock *NewBlock = BBMapping.second; |
| 970 | |
| 971 | BlocksInFunclet.push_back(x: NewBlock); |
| 972 | ColorVector &NewColors = BlockColors[NewBlock]; |
| 973 | assert(NewColors.empty() && "A new block should only have one color!" ); |
| 974 | NewColors.push_back(NewVal: FuncletPadBB); |
| 975 | |
| 976 | DEBUG_WITH_TYPE("win-eh-prepare-coloring" , |
| 977 | dbgs() << " Assigned color \'" << FuncletPadBB->getName() |
| 978 | << "\' to block \'" << NewBlock->getName() |
| 979 | << "\'.\n" ); |
| 980 | |
| 981 | llvm::erase(C&: BlocksInFunclet, V: OldBlock); |
| 982 | ColorVector &OldColors = BlockColors[OldBlock]; |
| 983 | llvm::erase(C&: OldColors, V: FuncletPadBB); |
| 984 | |
| 985 | DEBUG_WITH_TYPE("win-eh-prepare-coloring" , |
| 986 | dbgs() << " Removed color \'" << FuncletPadBB->getName() |
| 987 | << "\' from block \'" << OldBlock->getName() |
| 988 | << "\'.\n" ); |
| 989 | } |
| 990 | |
| 991 | // Loop over all of the instructions in this funclet, fixing up operand |
| 992 | // references as we go. This uses VMap to do all the hard work. |
| 993 | for (BasicBlock *BB : BlocksInFunclet) |
| 994 | // Loop over all instructions, fixing each one as we find it... |
| 995 | for (Instruction &I : *BB) |
| 996 | RemapInstruction(I: &I, VM&: VMap, |
| 997 | Flags: RF_IgnoreMissingLocals | RF_NoModuleLevelChanges); |
| 998 | |
| 999 | // Catchrets targeting cloned blocks need to be updated separately from |
| 1000 | // the loop above because they are not in the current funclet. |
| 1001 | SmallVector<CatchReturnInst *, 2> FixupCatchrets; |
| 1002 | for (auto &BBMapping : Orig2Clone) { |
| 1003 | BasicBlock *OldBlock = BBMapping.first; |
| 1004 | BasicBlock *NewBlock = BBMapping.second; |
| 1005 | |
| 1006 | FixupCatchrets.clear(); |
| 1007 | for (BasicBlock *Pred : predecessors(BB: OldBlock)) |
| 1008 | if (auto *CatchRet = dyn_cast<CatchReturnInst>(Val: Pred->getTerminator())) |
| 1009 | if (CatchRet->getCatchSwitchParentPad() == FuncletToken) |
| 1010 | FixupCatchrets.push_back(Elt: CatchRet); |
| 1011 | |
| 1012 | for (CatchReturnInst *CatchRet : FixupCatchrets) |
| 1013 | CatchRet->setSuccessor(NewBlock); |
| 1014 | } |
| 1015 | |
| 1016 | auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) { |
| 1017 | unsigned NumPreds = PN->getNumIncomingValues(); |
| 1018 | for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd; |
| 1019 | ++PredIdx) { |
| 1020 | BasicBlock *IncomingBlock = PN->getIncomingBlock(i: PredIdx); |
| 1021 | bool EdgeTargetsFunclet; |
| 1022 | if (auto *CRI = |
| 1023 | dyn_cast<CatchReturnInst>(Val: IncomingBlock->getTerminator())) { |
| 1024 | EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken); |
| 1025 | } else { |
| 1026 | ColorVector &IncomingColors = BlockColors[IncomingBlock]; |
| 1027 | assert(!IncomingColors.empty() && "Block not colored!" ); |
| 1028 | assert((IncomingColors.size() == 1 || |
| 1029 | !llvm::is_contained(IncomingColors, FuncletPadBB)) && |
| 1030 | "Cloning should leave this funclet's blocks monochromatic" ); |
| 1031 | EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB); |
| 1032 | } |
| 1033 | if (IsForOldBlock != EdgeTargetsFunclet) |
| 1034 | continue; |
| 1035 | PN->removeIncomingValue(BB: IncomingBlock, /*DeletePHIIfEmpty=*/false); |
| 1036 | // Revisit the next entry. |
| 1037 | --PredIdx; |
| 1038 | --PredEnd; |
| 1039 | } |
| 1040 | }; |
| 1041 | |
| 1042 | for (auto &BBMapping : Orig2Clone) { |
| 1043 | BasicBlock *OldBlock = BBMapping.first; |
| 1044 | BasicBlock *NewBlock = BBMapping.second; |
| 1045 | for (PHINode &OldPN : OldBlock->phis()) { |
| 1046 | UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true); |
| 1047 | } |
| 1048 | for (PHINode &NewPN : NewBlock->phis()) { |
| 1049 | UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false); |
| 1050 | } |
| 1051 | } |
| 1052 | |
| 1053 | // Check to see if SuccBB has PHI nodes. If so, we need to add entries to |
| 1054 | // the PHI nodes for NewBB now. |
| 1055 | for (auto &BBMapping : Orig2Clone) { |
| 1056 | BasicBlock *OldBlock = BBMapping.first; |
| 1057 | BasicBlock *NewBlock = BBMapping.second; |
| 1058 | for (BasicBlock *SuccBB : successors(BB: NewBlock)) { |
| 1059 | for (PHINode &SuccPN : SuccBB->phis()) { |
| 1060 | // Ok, we have a PHI node. Figure out what the incoming value was for |
| 1061 | // the OldBlock. |
| 1062 | int OldBlockIdx = SuccPN.getBasicBlockIndex(BB: OldBlock); |
| 1063 | if (OldBlockIdx == -1) |
| 1064 | break; |
| 1065 | Value *IV = SuccPN.getIncomingValue(i: OldBlockIdx); |
| 1066 | |
| 1067 | // Remap the value if necessary. |
| 1068 | if (auto *Inst = dyn_cast<Instruction>(Val: IV)) { |
| 1069 | ValueToValueMapTy::iterator I = VMap.find(Val: Inst); |
| 1070 | if (I != VMap.end()) |
| 1071 | IV = I->second; |
| 1072 | } |
| 1073 | |
| 1074 | SuccPN.addIncoming(V: IV, BB: NewBlock); |
| 1075 | } |
| 1076 | } |
| 1077 | } |
| 1078 | |
| 1079 | for (ValueToValueMapTy::value_type VT : VMap) { |
| 1080 | // If there were values defined in BB that are used outside the funclet, |
| 1081 | // then we now have to update all uses of the value to use either the |
| 1082 | // original value, the cloned value, or some PHI derived value. This can |
| 1083 | // require arbitrary PHI insertion, of which we are prepared to do, clean |
| 1084 | // these up now. |
| 1085 | SmallVector<Use *, 16> UsesToRename; |
| 1086 | |
| 1087 | auto *OldI = dyn_cast<Instruction>(Val: const_cast<Value *>(VT.first)); |
| 1088 | if (!OldI) |
| 1089 | continue; |
| 1090 | auto *NewI = cast<Instruction>(Val&: VT.second); |
| 1091 | // Scan all uses of this instruction to see if it is used outside of its |
| 1092 | // funclet, and if so, record them in UsesToRename. |
| 1093 | for (Use &U : OldI->uses()) { |
| 1094 | Instruction *UserI = cast<Instruction>(Val: U.getUser()); |
| 1095 | BasicBlock *UserBB = UserI->getParent(); |
| 1096 | ColorVector &ColorsForUserBB = BlockColors[UserBB]; |
| 1097 | assert(!ColorsForUserBB.empty()); |
| 1098 | if (ColorsForUserBB.size() > 1 || |
| 1099 | *ColorsForUserBB.begin() != FuncletPadBB) |
| 1100 | UsesToRename.push_back(Elt: &U); |
| 1101 | } |
| 1102 | |
| 1103 | // If there are no uses outside the block, we're done with this |
| 1104 | // instruction. |
| 1105 | if (UsesToRename.empty()) |
| 1106 | continue; |
| 1107 | |
| 1108 | // We found a use of OldI outside of the funclet. Rename all uses of OldI |
| 1109 | // that are outside its funclet to be uses of the appropriate PHI node |
| 1110 | // etc. |
| 1111 | SSAUpdater SSAUpdate; |
| 1112 | SSAUpdate.Initialize(Ty: OldI->getType(), Name: OldI->getName()); |
| 1113 | SSAUpdate.AddAvailableValue(BB: OldI->getParent(), V: OldI); |
| 1114 | SSAUpdate.AddAvailableValue(BB: NewI->getParent(), V: NewI); |
| 1115 | |
| 1116 | while (!UsesToRename.empty()) |
| 1117 | SSAUpdate.RewriteUseAfterInsertions(U&: *UsesToRename.pop_back_val()); |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | return Changed; |
| 1122 | } |
| 1123 | |
| 1124 | bool WinEHPrepareImpl::removeImplausibleInstructions(Function &F) { |
| 1125 | bool Changed = false; |
| 1126 | |
| 1127 | // Remove implausible terminators and replace them with UnreachableInst. |
| 1128 | for (auto &Funclet : FuncletBlocks) { |
| 1129 | BasicBlock *FuncletPadBB = Funclet.first; |
| 1130 | std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second; |
| 1131 | Instruction *FirstNonPHI = &*FuncletPadBB->getFirstNonPHIIt(); |
| 1132 | auto *FuncletPad = dyn_cast<FuncletPadInst>(Val: FirstNonPHI); |
| 1133 | auto *CatchPad = dyn_cast_or_null<CatchPadInst>(Val: FuncletPad); |
| 1134 | auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(Val: FuncletPad); |
| 1135 | |
| 1136 | for (BasicBlock *BB : BlocksInFunclet) { |
| 1137 | for (Instruction &I : *BB) { |
| 1138 | auto *CB = dyn_cast<CallBase>(Val: &I); |
| 1139 | if (!CB) |
| 1140 | continue; |
| 1141 | |
| 1142 | Value *FuncletBundleOperand = nullptr; |
| 1143 | if (auto BU = CB->getOperandBundle(ID: LLVMContext::OB_funclet)) |
| 1144 | FuncletBundleOperand = BU->Inputs.front(); |
| 1145 | |
| 1146 | if (FuncletBundleOperand == FuncletPad) |
| 1147 | continue; |
| 1148 | |
| 1149 | // Skip call sites which are nounwind intrinsics or inline asm. |
| 1150 | auto *CalledFn = |
| 1151 | dyn_cast<Function>(Val: CB->getCalledOperand()->stripPointerCasts()); |
| 1152 | if (CB->isInlineAsm() || |
| 1153 | (CalledFn && CalledFn->isIntrinsic() && CB->doesNotThrow())) |
| 1154 | continue; |
| 1155 | |
| 1156 | Changed = true; |
| 1157 | |
| 1158 | // This call site was not part of this funclet, remove it. |
| 1159 | if (isa<InvokeInst>(Val: CB)) { |
| 1160 | // Remove the unwind edge if it was an invoke. |
| 1161 | removeUnwindEdge(BB); |
| 1162 | // Get a pointer to the new call. |
| 1163 | BasicBlock::iterator CallI = |
| 1164 | std::prev(x: BB->getTerminator()->getIterator()); |
| 1165 | auto *CI = cast<CallInst>(Val: &*CallI); |
| 1166 | changeToUnreachable(I: CI); |
| 1167 | } else { |
| 1168 | changeToUnreachable(I: &I); |
| 1169 | } |
| 1170 | |
| 1171 | // There are no more instructions in the block (except for unreachable), |
| 1172 | // we are done. |
| 1173 | break; |
| 1174 | } |
| 1175 | |
| 1176 | Instruction *TI = BB->getTerminator(); |
| 1177 | // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst. |
| 1178 | bool IsUnreachableRet = isa<ReturnInst>(Val: TI) && FuncletPad; |
| 1179 | // The token consumed by a CatchReturnInst must match the funclet token. |
| 1180 | bool IsUnreachableCatchret = false; |
| 1181 | if (auto *CRI = dyn_cast<CatchReturnInst>(Val: TI)) |
| 1182 | IsUnreachableCatchret = CRI->getCatchPad() != CatchPad; |
| 1183 | // The token consumed by a CleanupReturnInst must match the funclet token. |
| 1184 | bool IsUnreachableCleanupret = false; |
| 1185 | if (auto *CRI = dyn_cast<CleanupReturnInst>(Val: TI)) |
| 1186 | IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad; |
| 1187 | if (IsUnreachableRet || IsUnreachableCatchret || |
| 1188 | IsUnreachableCleanupret) { |
| 1189 | Changed = true; |
| 1190 | changeToUnreachable(I: TI); |
| 1191 | } else if (isa<InvokeInst>(Val: TI)) { |
| 1192 | if (Personality == EHPersonality::MSVC_CXX && CleanupPad) { |
| 1193 | Changed = true; |
| 1194 | // Invokes within a cleanuppad for the MSVC++ personality never |
| 1195 | // transfer control to their unwind edge: the personality will |
| 1196 | // terminate the program. |
| 1197 | removeUnwindEdge(BB); |
| 1198 | } |
| 1199 | } |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | return Changed; |
| 1204 | } |
| 1205 | |
| 1206 | bool WinEHPrepareImpl::cleanupPreparedFunclets(Function &F) { |
| 1207 | bool Changed = false; |
| 1208 | |
| 1209 | // Clean-up some of the mess we made by removing useles PHI nodes, trivial |
| 1210 | // branches, etc. |
| 1211 | for (BasicBlock &BB : llvm::make_early_inc_range(Range&: F)) { |
| 1212 | Changed |= SimplifyInstructionsInBlock(BB: &BB); |
| 1213 | Changed |= ConstantFoldTerminator(BB: &BB, /*DeleteDeadConditions=*/true); |
| 1214 | Changed |= MergeBlockIntoPredecessor(BB: &BB); |
| 1215 | } |
| 1216 | |
| 1217 | // We might have some unreachable blocks after cleaning up some impossible |
| 1218 | // control flow. |
| 1219 | Changed |= removeUnreachableBlocks(F); |
| 1220 | |
| 1221 | return Changed; |
| 1222 | } |
| 1223 | |
| 1224 | #ifndef NDEBUG |
| 1225 | void WinEHPrepareImpl::verifyPreparedFunclets(Function &F) { |
| 1226 | for (BasicBlock &BB : F) { |
| 1227 | size_t NumColors = BlockColors[&BB].size(); |
| 1228 | assert(NumColors == 1 && "Expected monochromatic BB!" ); |
| 1229 | if (NumColors == 0) |
| 1230 | report_fatal_error("Uncolored BB!" ); |
| 1231 | if (NumColors > 1) |
| 1232 | report_fatal_error("Multicolor BB!" ); |
| 1233 | assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && |
| 1234 | "EH Pad still has a PHI!" ); |
| 1235 | } |
| 1236 | } |
| 1237 | #endif |
| 1238 | |
| 1239 | bool WinEHPrepareImpl::prepareExplicitEH(Function &F) { |
| 1240 | // Remove unreachable blocks. It is not valuable to assign them a color and |
| 1241 | // their existence can trick us into thinking values are alive when they are |
| 1242 | // not. |
| 1243 | bool Changed = removeUnreachableBlocks(F); |
| 1244 | |
| 1245 | // Determine which blocks are reachable from which funclet entries. |
| 1246 | colorFunclets(F); |
| 1247 | |
| 1248 | Changed |= cloneCommonBlocks(F); |
| 1249 | |
| 1250 | if (!DisableDemotion) |
| 1251 | Changed |= demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly: DemoteCatchSwitchPHIOnly || |
| 1252 | DemoteCatchSwitchPHIOnlyOpt); |
| 1253 | |
| 1254 | if (!DisableCleanups) { |
| 1255 | assert(!verifyFunction(F, &dbgs())); |
| 1256 | Changed |= removeImplausibleInstructions(F); |
| 1257 | |
| 1258 | assert(!verifyFunction(F, &dbgs())); |
| 1259 | Changed |= cleanupPreparedFunclets(F); |
| 1260 | } |
| 1261 | |
| 1262 | LLVM_DEBUG(verifyPreparedFunclets(F)); |
| 1263 | // Recolor the CFG to verify that all is well. |
| 1264 | LLVM_DEBUG(colorFunclets(F)); |
| 1265 | LLVM_DEBUG(verifyPreparedFunclets(F)); |
| 1266 | |
| 1267 | return Changed; |
| 1268 | } |
| 1269 | |
| 1270 | // TODO: Share loads when one use dominates another, or when a catchpad exit |
| 1271 | // dominates uses (needs dominators). |
| 1272 | AllocaInst *WinEHPrepareImpl::insertPHILoads(PHINode *PN, Function &F) { |
| 1273 | BasicBlock *PHIBlock = PN->getParent(); |
| 1274 | AllocaInst *SpillSlot = nullptr; |
| 1275 | Instruction *EHPad = &*PHIBlock->getFirstNonPHIIt(); |
| 1276 | |
| 1277 | if (!EHPad->isTerminator()) { |
| 1278 | // If the EHPad isn't a terminator, then we can insert a load in this block |
| 1279 | // that will dominate all uses. |
| 1280 | SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr, |
| 1281 | Twine(PN->getName(), ".wineh.spillslot" ), |
| 1282 | F.getEntryBlock().begin()); |
| 1283 | Value *V = new LoadInst(PN->getType(), SpillSlot, |
| 1284 | Twine(PN->getName(), ".wineh.reload" ), |
| 1285 | PHIBlock->getFirstInsertionPt()); |
| 1286 | PN->replaceAllUsesWith(V); |
| 1287 | return SpillSlot; |
| 1288 | } |
| 1289 | |
| 1290 | // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert |
| 1291 | // loads of the slot before every use. |
| 1292 | DenseMap<BasicBlock *, Value *> Loads; |
| 1293 | for (Use &U : llvm::make_early_inc_range(Range: PN->uses())) { |
| 1294 | auto *UsingInst = cast<Instruction>(Val: U.getUser()); |
| 1295 | if (isa<PHINode>(Val: UsingInst) && UsingInst->getParent()->isEHPad()) { |
| 1296 | // Use is on an EH pad phi. Leave it alone; we'll insert loads and |
| 1297 | // stores for it separately. |
| 1298 | continue; |
| 1299 | } |
| 1300 | replaceUseWithLoad(V: PN, U, SpillSlot, Loads, F); |
| 1301 | } |
| 1302 | return SpillSlot; |
| 1303 | } |
| 1304 | |
| 1305 | // TODO: improve store placement. Inserting at def is probably good, but need |
| 1306 | // to be careful not to introduce interfering stores (needs liveness analysis). |
| 1307 | // TODO: identify related phi nodes that can share spill slots, and share them |
| 1308 | // (also needs liveness). |
| 1309 | void WinEHPrepareImpl::insertPHIStores(PHINode *OriginalPHI, |
| 1310 | AllocaInst *SpillSlot) { |
| 1311 | // Use a worklist of (Block, Value) pairs -- the given Value needs to be |
| 1312 | // stored to the spill slot by the end of the given Block. |
| 1313 | SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist; |
| 1314 | |
| 1315 | Worklist.push_back(Elt: {OriginalPHI->getParent(), OriginalPHI}); |
| 1316 | |
| 1317 | while (!Worklist.empty()) { |
| 1318 | BasicBlock *EHBlock; |
| 1319 | Value *InVal; |
| 1320 | std::tie(args&: EHBlock, args&: InVal) = Worklist.pop_back_val(); |
| 1321 | |
| 1322 | PHINode *PN = dyn_cast<PHINode>(Val: InVal); |
| 1323 | if (PN && PN->getParent() == EHBlock) { |
| 1324 | // The value is defined by another PHI we need to remove, with no room to |
| 1325 | // insert a store after the PHI, so each predecessor needs to store its |
| 1326 | // incoming value. |
| 1327 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { |
| 1328 | Value *PredVal = PN->getIncomingValue(i); |
| 1329 | |
| 1330 | // Undef can safely be skipped. |
| 1331 | if (isa<UndefValue>(Val: PredVal)) |
| 1332 | continue; |
| 1333 | |
| 1334 | insertPHIStore(PredBlock: PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist); |
| 1335 | } |
| 1336 | } else { |
| 1337 | // We need to store InVal, which dominates EHBlock, but can't put a store |
| 1338 | // in EHBlock, so need to put stores in each predecessor. |
| 1339 | for (BasicBlock *PredBlock : predecessors(BB: EHBlock)) { |
| 1340 | insertPHIStore(PredBlock, PredVal: InVal, SpillSlot, Worklist); |
| 1341 | } |
| 1342 | } |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | void WinEHPrepareImpl::insertPHIStore( |
| 1347 | BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, |
| 1348 | SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) { |
| 1349 | |
| 1350 | if (PredBlock->isEHPad() && PredBlock->getFirstNonPHIIt()->isTerminator()) { |
| 1351 | // Pred is unsplittable, so we need to queue it on the worklist. |
| 1352 | Worklist.push_back(Elt: {PredBlock, PredVal}); |
| 1353 | return; |
| 1354 | } |
| 1355 | |
| 1356 | // Otherwise, insert the store at the end of the basic block. |
| 1357 | new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator()->getIterator()); |
| 1358 | } |
| 1359 | |
| 1360 | void WinEHPrepareImpl::replaceUseWithLoad( |
| 1361 | Value *V, Use &U, AllocaInst *&SpillSlot, |
| 1362 | DenseMap<BasicBlock *, Value *> &Loads, Function &F) { |
| 1363 | // Lazilly create the spill slot. |
| 1364 | if (!SpillSlot) |
| 1365 | SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr, |
| 1366 | Twine(V->getName(), ".wineh.spillslot" ), |
| 1367 | F.getEntryBlock().begin()); |
| 1368 | |
| 1369 | auto *UsingInst = cast<Instruction>(Val: U.getUser()); |
| 1370 | if (auto *UsingPHI = dyn_cast<PHINode>(Val: UsingInst)) { |
| 1371 | // If this is a PHI node, we can't insert a load of the value before |
| 1372 | // the use. Instead insert the load in the predecessor block |
| 1373 | // corresponding to the incoming value. |
| 1374 | // |
| 1375 | // Note that if there are multiple edges from a basic block to this |
| 1376 | // PHI node that we cannot have multiple loads. The problem is that |
| 1377 | // the resulting PHI node will have multiple values (from each load) |
| 1378 | // coming in from the same block, which is illegal SSA form. |
| 1379 | // For this reason, we keep track of and reuse loads we insert. |
| 1380 | BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U); |
| 1381 | if (auto *CatchRet = |
| 1382 | dyn_cast<CatchReturnInst>(Val: IncomingBlock->getTerminator())) { |
| 1383 | // Putting a load above a catchret and use on the phi would still leave |
| 1384 | // a cross-funclet def/use. We need to split the edge, change the |
| 1385 | // catchret to target the new block, and put the load there. |
| 1386 | BasicBlock *PHIBlock = UsingInst->getParent(); |
| 1387 | BasicBlock *NewBlock = SplitEdge(From: IncomingBlock, To: PHIBlock); |
| 1388 | // SplitEdge gives us: |
| 1389 | // IncomingBlock: |
| 1390 | // ... |
| 1391 | // br label %NewBlock |
| 1392 | // NewBlock: |
| 1393 | // catchret label %PHIBlock |
| 1394 | // But we need: |
| 1395 | // IncomingBlock: |
| 1396 | // ... |
| 1397 | // catchret label %NewBlock |
| 1398 | // NewBlock: |
| 1399 | // br label %PHIBlock |
| 1400 | // So move the terminators to each others' blocks and swap their |
| 1401 | // successors. |
| 1402 | BranchInst *Goto = cast<BranchInst>(Val: IncomingBlock->getTerminator()); |
| 1403 | Goto->removeFromParent(); |
| 1404 | CatchRet->removeFromParent(); |
| 1405 | CatchRet->insertInto(ParentBB: IncomingBlock, It: IncomingBlock->end()); |
| 1406 | Goto->insertInto(ParentBB: NewBlock, It: NewBlock->end()); |
| 1407 | Goto->setSuccessor(idx: 0, NewSucc: PHIBlock); |
| 1408 | CatchRet->setSuccessor(NewBlock); |
| 1409 | // Update the color mapping for the newly split edge. |
| 1410 | // Grab a reference to the ColorVector to be inserted before getting the |
| 1411 | // reference to the vector we are copying because inserting the new |
| 1412 | // element in BlockColors might cause the map to be reallocated. |
| 1413 | ColorVector &ColorsForNewBlock = BlockColors[NewBlock]; |
| 1414 | ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock]; |
| 1415 | ColorsForNewBlock = ColorsForPHIBlock; |
| 1416 | for (BasicBlock *FuncletPad : ColorsForPHIBlock) |
| 1417 | FuncletBlocks[FuncletPad].push_back(x: NewBlock); |
| 1418 | // Treat the new block as incoming for load insertion. |
| 1419 | IncomingBlock = NewBlock; |
| 1420 | } |
| 1421 | Value *&Load = Loads[IncomingBlock]; |
| 1422 | // Insert the load into the predecessor block |
| 1423 | if (!Load) |
| 1424 | Load = new LoadInst( |
| 1425 | V->getType(), SpillSlot, Twine(V->getName(), ".wineh.reload" ), |
| 1426 | /*isVolatile=*/false, IncomingBlock->getTerminator()->getIterator()); |
| 1427 | |
| 1428 | U.set(Load); |
| 1429 | } else { |
| 1430 | // Reload right before the old use. |
| 1431 | auto *Load = new LoadInst(V->getType(), SpillSlot, |
| 1432 | Twine(V->getName(), ".wineh.reload" ), |
| 1433 | /*isVolatile=*/false, UsingInst->getIterator()); |
| 1434 | U.set(Load); |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II, |
| 1439 | MCSymbol *InvokeBegin, |
| 1440 | MCSymbol *InvokeEnd) { |
| 1441 | assert(InvokeStateMap.count(II) && |
| 1442 | "should get invoke with precomputed state" ); |
| 1443 | LabelToStateMap[InvokeBegin] = std::make_pair(x&: InvokeStateMap[II], y&: InvokeEnd); |
| 1444 | } |
| 1445 | |
| 1446 | void WinEHFuncInfo::addIPToStateRange(int State, MCSymbol* InvokeBegin, |
| 1447 | MCSymbol* InvokeEnd) { |
| 1448 | LabelToStateMap[InvokeBegin] = std::make_pair(x&: State, y&: InvokeEnd); |
| 1449 | } |
| 1450 | |
| 1451 | WinEHFuncInfo::WinEHFuncInfo() = default; |
| 1452 | |