1 | //===-- WinEHPrepare - Prepare exception handling for code generation ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass lowers LLVM IR exception handling into something closer to what the |
10 | // backend wants for functions using a personality function from a runtime |
11 | // provided by MSVC. Functions with other personality functions are left alone |
12 | // and may be prepared by other passes. In particular, all supported MSVC |
13 | // personality functions require cleanup code to be outlined, and the C++ |
14 | // personality requires catch handler code to be outlined. |
15 | // |
16 | //===----------------------------------------------------------------------===// |
17 | |
18 | #include "llvm/CodeGen/WinEHPrepare.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/ADT/MapVector.h" |
21 | #include "llvm/ADT/STLExtras.h" |
22 | #include "llvm/CodeGen/MachineBasicBlock.h" |
23 | #include "llvm/CodeGen/Passes.h" |
24 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
25 | #include "llvm/IR/Constants.h" |
26 | #include "llvm/IR/EHPersonalities.h" |
27 | #include "llvm/IR/Instructions.h" |
28 | #include "llvm/IR/Module.h" |
29 | #include "llvm/IR/Verifier.h" |
30 | #include "llvm/InitializePasses.h" |
31 | #include "llvm/Pass.h" |
32 | #include "llvm/Support/CommandLine.h" |
33 | #include "llvm/Support/Debug.h" |
34 | #include "llvm/Support/raw_ostream.h" |
35 | #include "llvm/TargetParser/Triple.h" |
36 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
37 | #include "llvm/Transforms/Utils/Cloning.h" |
38 | #include "llvm/Transforms/Utils/Local.h" |
39 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
40 | |
41 | using namespace llvm; |
42 | |
43 | #define DEBUG_TYPE "win-eh-prepare" |
44 | |
45 | static cl::opt<bool> DisableDemotion( |
46 | "disable-demotion" , cl::Hidden, |
47 | cl::desc( |
48 | "Clone multicolor basic blocks but do not demote cross scopes" ), |
49 | cl::init(Val: false)); |
50 | |
51 | static cl::opt<bool> DisableCleanups( |
52 | "disable-cleanups" , cl::Hidden, |
53 | cl::desc("Do not remove implausible terminators or other similar cleanups" ), |
54 | cl::init(Val: false)); |
55 | |
56 | // TODO: Remove this option when we fully migrate to new pass manager |
57 | static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt( |
58 | "demote-catchswitch-only" , cl::Hidden, |
59 | cl::desc("Demote catchswitch BBs only (for wasm EH)" ), cl::init(Val: false)); |
60 | |
61 | namespace { |
62 | |
63 | class WinEHPrepareImpl { |
64 | public: |
65 | WinEHPrepareImpl(bool DemoteCatchSwitchPHIOnly) |
66 | : DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} |
67 | |
68 | bool runOnFunction(Function &Fn); |
69 | |
70 | private: |
71 | void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot); |
72 | void |
73 | insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, |
74 | SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist); |
75 | AllocaInst *insertPHILoads(PHINode *PN, Function &F); |
76 | void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, |
77 | DenseMap<BasicBlock *, Value *> &Loads, Function &F); |
78 | bool prepareExplicitEH(Function &F); |
79 | void colorFunclets(Function &F); |
80 | |
81 | bool demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly); |
82 | bool cloneCommonBlocks(Function &F); |
83 | bool removeImplausibleInstructions(Function &F); |
84 | bool cleanupPreparedFunclets(Function &F); |
85 | void verifyPreparedFunclets(Function &F); |
86 | |
87 | bool DemoteCatchSwitchPHIOnly; |
88 | |
89 | // All fields are reset by runOnFunction. |
90 | EHPersonality Personality = EHPersonality::Unknown; |
91 | |
92 | const DataLayout *DL = nullptr; |
93 | DenseMap<BasicBlock *, ColorVector> BlockColors; |
94 | MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks; |
95 | }; |
96 | |
97 | class WinEHPrepare : public FunctionPass { |
98 | bool DemoteCatchSwitchPHIOnly; |
99 | |
100 | public: |
101 | static char ID; // Pass identification, replacement for typeid. |
102 | |
103 | WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false) |
104 | : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} |
105 | |
106 | StringRef getPassName() const override { |
107 | return "Windows exception handling preparation" ; |
108 | } |
109 | |
110 | bool runOnFunction(Function &Fn) override { |
111 | return WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(Fn); |
112 | } |
113 | }; |
114 | |
115 | } // end anonymous namespace |
116 | |
117 | PreservedAnalyses WinEHPreparePass::run(Function &F, |
118 | FunctionAnalysisManager &) { |
119 | bool Changed = WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(Fn&: F); |
120 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
121 | } |
122 | |
123 | char WinEHPrepare::ID = 0; |
124 | INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions" , false, |
125 | false) |
126 | |
127 | FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) { |
128 | return new WinEHPrepare(DemoteCatchSwitchPHIOnly); |
129 | } |
130 | |
131 | bool WinEHPrepareImpl::runOnFunction(Function &Fn) { |
132 | if (!Fn.hasPersonalityFn()) |
133 | return false; |
134 | |
135 | // Classify the personality to see what kind of preparation we need. |
136 | Personality = classifyEHPersonality(Pers: Fn.getPersonalityFn()); |
137 | |
138 | // Do nothing if this is not a scope-based personality. |
139 | if (!isScopedEHPersonality(Pers: Personality)) |
140 | return false; |
141 | |
142 | DL = &Fn.getDataLayout(); |
143 | return prepareExplicitEH(F&: Fn); |
144 | } |
145 | |
146 | static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState, |
147 | const BasicBlock *BB) { |
148 | CxxUnwindMapEntry UME; |
149 | UME.ToState = ToState; |
150 | UME.Cleanup = BB; |
151 | FuncInfo.CxxUnwindMap.push_back(Elt: UME); |
152 | return FuncInfo.getLastStateNumber(); |
153 | } |
154 | |
155 | static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow, |
156 | int TryHigh, int CatchHigh, |
157 | ArrayRef<const CatchPadInst *> Handlers) { |
158 | WinEHTryBlockMapEntry TBME; |
159 | TBME.TryLow = TryLow; |
160 | TBME.TryHigh = TryHigh; |
161 | TBME.CatchHigh = CatchHigh; |
162 | assert(TBME.TryLow <= TBME.TryHigh); |
163 | for (const CatchPadInst *CPI : Handlers) { |
164 | WinEHHandlerType HT; |
165 | Constant *TypeInfo = cast<Constant>(Val: CPI->getArgOperand(i: 0)); |
166 | if (TypeInfo->isNullValue()) |
167 | HT.TypeDescriptor = nullptr; |
168 | else |
169 | HT.TypeDescriptor = cast<GlobalVariable>(Val: TypeInfo->stripPointerCasts()); |
170 | HT.Adjectives = cast<ConstantInt>(Val: CPI->getArgOperand(i: 1))->getZExtValue(); |
171 | HT.Handler = CPI->getParent(); |
172 | if (auto *AI = |
173 | dyn_cast<AllocaInst>(Val: CPI->getArgOperand(i: 2)->stripPointerCasts())) |
174 | HT.CatchObj.Alloca = AI; |
175 | else |
176 | HT.CatchObj.Alloca = nullptr; |
177 | TBME.HandlerArray.push_back(Elt: HT); |
178 | } |
179 | FuncInfo.TryBlockMap.push_back(Elt: TBME); |
180 | } |
181 | |
182 | static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) { |
183 | for (const User *U : CleanupPad->users()) |
184 | if (const auto *CRI = dyn_cast<CleanupReturnInst>(Val: U)) |
185 | return CRI->getUnwindDest(); |
186 | return nullptr; |
187 | } |
188 | |
189 | static void calculateStateNumbersForInvokes(const Function *Fn, |
190 | WinEHFuncInfo &FuncInfo) { |
191 | auto *F = const_cast<Function *>(Fn); |
192 | DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(F&: *F); |
193 | for (BasicBlock &BB : *F) { |
194 | auto *II = dyn_cast<InvokeInst>(Val: BB.getTerminator()); |
195 | if (!II) |
196 | continue; |
197 | |
198 | auto &BBColors = BlockColors[&BB]; |
199 | assert(BBColors.size() == 1 && "multi-color BB not removed by preparation" ); |
200 | BasicBlock *FuncletEntryBB = BBColors.front(); |
201 | |
202 | BasicBlock *FuncletUnwindDest; |
203 | auto *FuncletPad = |
204 | dyn_cast<FuncletPadInst>(Val: FuncletEntryBB->getFirstNonPHIIt()); |
205 | assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()); |
206 | if (!FuncletPad) |
207 | FuncletUnwindDest = nullptr; |
208 | else if (auto *CatchPad = dyn_cast<CatchPadInst>(Val: FuncletPad)) |
209 | FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest(); |
210 | else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(Val: FuncletPad)) |
211 | FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad); |
212 | else |
213 | llvm_unreachable("unexpected funclet pad!" ); |
214 | |
215 | BasicBlock *InvokeUnwindDest = II->getUnwindDest(); |
216 | int BaseState = -1; |
217 | if (FuncletUnwindDest == InvokeUnwindDest) { |
218 | auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(Val: FuncletPad); |
219 | if (BaseStateI != FuncInfo.FuncletBaseStateMap.end()) |
220 | BaseState = BaseStateI->second; |
221 | } |
222 | |
223 | if (BaseState != -1) { |
224 | FuncInfo.InvokeStateMap[II] = BaseState; |
225 | } else { |
226 | Instruction *PadInst = &*InvokeUnwindDest->getFirstNonPHIIt(); |
227 | assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!" ); |
228 | FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst]; |
229 | } |
230 | } |
231 | } |
232 | |
233 | // See comments below for calculateSEHStateForAsynchEH(). |
234 | // State - incoming State of normal paths |
235 | struct WorkItem { |
236 | const BasicBlock *Block; |
237 | int State; |
238 | WorkItem(const BasicBlock *BB, int St) { |
239 | Block = BB; |
240 | State = St; |
241 | } |
242 | }; |
243 | void llvm::calculateCXXStateForAsynchEH(const BasicBlock *BB, int State, |
244 | WinEHFuncInfo &EHInfo) { |
245 | SmallVector<struct WorkItem *, 8> WorkList; |
246 | struct WorkItem *WI = new WorkItem(BB, State); |
247 | WorkList.push_back(Elt: WI); |
248 | |
249 | while (!WorkList.empty()) { |
250 | WI = WorkList.pop_back_val(); |
251 | const BasicBlock *BB = WI->Block; |
252 | int State = WI->State; |
253 | delete WI; |
254 | auto [StateIt, Inserted] = EHInfo.BlockToStateMap.try_emplace(Key: BB); |
255 | if (!Inserted && StateIt->second <= State) |
256 | continue; // skip blocks already visited by lower State |
257 | |
258 | BasicBlock::const_iterator It = BB->getFirstNonPHIIt(); |
259 | const llvm::Instruction *TI = BB->getTerminator(); |
260 | if (It->isEHPad()) |
261 | State = EHInfo.EHPadStateMap[&*It]; |
262 | StateIt->second = State; // Record state, also flag visiting |
263 | |
264 | if ((isa<CleanupReturnInst>(Val: TI) || isa<CatchReturnInst>(Val: TI)) && State > 0) { |
265 | // Retrive the new State |
266 | State = EHInfo.CxxUnwindMap[State].ToState; // Retrive next State |
267 | } else if (isa<InvokeInst>(Val: TI)) { |
268 | auto *Call = cast<CallBase>(Val: TI); |
269 | const Function *Fn = Call->getCalledFunction(); |
270 | if (Fn && Fn->isIntrinsic() && |
271 | (Fn->getIntrinsicID() == Intrinsic::seh_scope_begin || |
272 | Fn->getIntrinsicID() == Intrinsic::seh_try_begin)) |
273 | // Retrive the new State from seh_scope_begin |
274 | State = EHInfo.InvokeStateMap[cast<InvokeInst>(Val: TI)]; |
275 | else if (Fn && Fn->isIntrinsic() && |
276 | (Fn->getIntrinsicID() == Intrinsic::seh_scope_end || |
277 | Fn->getIntrinsicID() == Intrinsic::seh_try_end)) { |
278 | // In case of conditional ctor, let's retrieve State from Invoke |
279 | State = EHInfo.InvokeStateMap[cast<InvokeInst>(Val: TI)]; |
280 | // end of current state, retrive new state from UnwindMap |
281 | State = EHInfo.CxxUnwindMap[State].ToState; |
282 | } |
283 | } |
284 | // Continue push successors into worklist |
285 | for (auto *SuccBB : successors(BB)) { |
286 | WI = new WorkItem(SuccBB, State); |
287 | WorkList.push_back(Elt: WI); |
288 | } |
289 | } |
290 | } |
291 | |
292 | // The central theory of this routine is based on the following: |
293 | // A _try scope is always a SEME (Single Entry Multiple Exits) region |
294 | // as jumping into a _try is not allowed |
295 | // The single entry must start with a seh_try_begin() invoke with a |
296 | // correct State number that is the initial state of the SEME. |
297 | // Through control-flow, state number is propagated into all blocks. |
298 | // Side exits marked by seh_try_end() will unwind to parent state via |
299 | // existing SEHUnwindMap[]. |
300 | // Side exits can ONLY jump into parent scopes (lower state number). |
301 | // Thus, when a block succeeds various states from its predecessors, |
302 | // the lowest State trumphs others. |
303 | // If some exits flow to unreachable, propagation on those paths terminate, |
304 | // not affecting remaining blocks. |
305 | void llvm::calculateSEHStateForAsynchEH(const BasicBlock *BB, int State, |
306 | WinEHFuncInfo &EHInfo) { |
307 | SmallVector<struct WorkItem *, 8> WorkList; |
308 | struct WorkItem *WI = new WorkItem(BB, State); |
309 | WorkList.push_back(Elt: WI); |
310 | |
311 | while (!WorkList.empty()) { |
312 | WI = WorkList.pop_back_val(); |
313 | const BasicBlock *BB = WI->Block; |
314 | int State = WI->State; |
315 | delete WI; |
316 | if (auto It = EHInfo.BlockToStateMap.find(Val: BB); |
317 | It != EHInfo.BlockToStateMap.end() && It->second <= State) |
318 | continue; // skip blocks already visited by lower State |
319 | |
320 | BasicBlock::const_iterator It = BB->getFirstNonPHIIt(); |
321 | const llvm::Instruction *TI = BB->getTerminator(); |
322 | if (It->isEHPad()) |
323 | State = EHInfo.EHPadStateMap[&*It]; |
324 | EHInfo.BlockToStateMap[BB] = State; // Record state |
325 | |
326 | if (isa<CatchPadInst>(Val: It) && isa<CatchReturnInst>(Val: TI)) { |
327 | const Constant *FilterOrNull = cast<Constant>( |
328 | Val: cast<CatchPadInst>(Val&: It)->getArgOperand(i: 0)->stripPointerCasts()); |
329 | const Function *Filter = dyn_cast<Function>(Val: FilterOrNull); |
330 | if (!Filter || !Filter->getName().starts_with(Prefix: "__IsLocalUnwind" )) |
331 | State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State |
332 | } else if ((isa<CleanupReturnInst>(Val: TI) || isa<CatchReturnInst>(Val: TI)) && |
333 | State > 0) { |
334 | // Retrive the new State. |
335 | State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State |
336 | } else if (isa<InvokeInst>(Val: TI)) { |
337 | auto *Call = cast<CallBase>(Val: TI); |
338 | const Function *Fn = Call->getCalledFunction(); |
339 | if (Fn && Fn->isIntrinsic() && |
340 | Fn->getIntrinsicID() == Intrinsic::seh_try_begin) |
341 | // Retrive the new State from seh_try_begin |
342 | State = EHInfo.InvokeStateMap[cast<InvokeInst>(Val: TI)]; |
343 | else if (Fn && Fn->isIntrinsic() && |
344 | Fn->getIntrinsicID() == Intrinsic::seh_try_end) |
345 | // end of current state, retrive new state from UnwindMap |
346 | State = EHInfo.SEHUnwindMap[State].ToState; |
347 | } |
348 | // Continue push successors into worklist |
349 | for (auto *SuccBB : successors(BB)) { |
350 | WI = new WorkItem(SuccBB, State); |
351 | WorkList.push_back(Elt: WI); |
352 | } |
353 | } |
354 | } |
355 | |
356 | // Given BB which ends in an unwind edge, return the EHPad that this BB belongs |
357 | // to. If the unwind edge came from an invoke, return null. |
358 | static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB, |
359 | Value *ParentPad) { |
360 | const Instruction *TI = BB->getTerminator(); |
361 | if (isa<InvokeInst>(Val: TI)) |
362 | return nullptr; |
363 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: TI)) { |
364 | if (CatchSwitch->getParentPad() != ParentPad) |
365 | return nullptr; |
366 | return BB; |
367 | } |
368 | assert(!TI->isEHPad() && "unexpected EHPad!" ); |
369 | auto *CleanupPad = cast<CleanupReturnInst>(Val: TI)->getCleanupPad(); |
370 | if (CleanupPad->getParentPad() != ParentPad) |
371 | return nullptr; |
372 | return CleanupPad->getParent(); |
373 | } |
374 | |
375 | // Starting from a EHPad, Backward walk through control-flow graph |
376 | // to produce two primary outputs: |
377 | // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[] |
378 | static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo, |
379 | const Instruction *FirstNonPHI, |
380 | int ParentState) { |
381 | const BasicBlock *BB = FirstNonPHI->getParent(); |
382 | assert(BB->isEHPad() && "not a funclet!" ); |
383 | |
384 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: FirstNonPHI)) { |
385 | assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && |
386 | "shouldn't revist catch funclets!" ); |
387 | |
388 | SmallVector<const CatchPadInst *, 2> Handlers; |
389 | for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { |
390 | auto *CatchPad = cast<CatchPadInst>(Val: CatchPadBB->getFirstNonPHIIt()); |
391 | Handlers.push_back(Elt: CatchPad); |
392 | } |
393 | int TryLow = addUnwindMapEntry(FuncInfo, ToState: ParentState, BB: nullptr); |
394 | FuncInfo.EHPadStateMap[CatchSwitch] = TryLow; |
395 | for (const BasicBlock *PredBlock : predecessors(BB)) |
396 | if ((PredBlock = getEHPadFromPredecessor(BB: PredBlock, |
397 | ParentPad: CatchSwitch->getParentPad()))) |
398 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: &*PredBlock->getFirstNonPHIIt(), |
399 | ParentState: TryLow); |
400 | int CatchLow = addUnwindMapEntry(FuncInfo, ToState: ParentState, BB: nullptr); |
401 | |
402 | // catchpads are separate funclets in C++ EH due to the way rethrow works. |
403 | int TryHigh = CatchLow - 1; |
404 | |
405 | // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$ |
406 | // stored in pre-order (outer first, inner next), not post-order |
407 | // Add to map here. Fix the CatchHigh after children are processed |
408 | const Module *Mod = BB->getParent()->getParent(); |
409 | bool IsPreOrder = Mod->getTargetTriple().isArch64Bit(); |
410 | if (IsPreOrder) |
411 | addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh: CatchLow, Handlers); |
412 | unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1; |
413 | |
414 | for (const auto *CatchPad : Handlers) { |
415 | FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow; |
416 | FuncInfo.EHPadStateMap[CatchPad] = CatchLow; |
417 | for (const User *U : CatchPad->users()) { |
418 | const auto *UserI = cast<Instruction>(Val: U); |
419 | if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(Val: UserI)) { |
420 | BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); |
421 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
422 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState: CatchLow); |
423 | } |
424 | if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(Val: UserI)) { |
425 | BasicBlock *UnwindDest = getCleanupRetUnwindDest(CleanupPad: InnerCleanupPad); |
426 | // If a nested cleanup pad reports a null unwind destination and the |
427 | // enclosing catch pad doesn't it must be post-dominated by an |
428 | // unreachable instruction. |
429 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
430 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState: CatchLow); |
431 | } |
432 | } |
433 | } |
434 | int CatchHigh = FuncInfo.getLastStateNumber(); |
435 | // Now child Catches are processed, update CatchHigh |
436 | if (IsPreOrder) |
437 | FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh; |
438 | else // PostOrder |
439 | addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers); |
440 | |
441 | LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n'); |
442 | LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh |
443 | << '\n'); |
444 | LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh |
445 | << '\n'); |
446 | } else { |
447 | auto *CleanupPad = cast<CleanupPadInst>(Val: FirstNonPHI); |
448 | |
449 | // It's possible for a cleanup to be visited twice: it might have multiple |
450 | // cleanupret instructions. |
451 | auto [It, Inserted] = FuncInfo.EHPadStateMap.try_emplace(Key: CleanupPad); |
452 | if (!Inserted) |
453 | return; |
454 | |
455 | int CleanupState = addUnwindMapEntry(FuncInfo, ToState: ParentState, BB); |
456 | It->second = CleanupState; |
457 | LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " |
458 | << BB->getName() << '\n'); |
459 | for (const BasicBlock *PredBlock : predecessors(BB)) { |
460 | if ((PredBlock = getEHPadFromPredecessor(BB: PredBlock, |
461 | ParentPad: CleanupPad->getParentPad()))) { |
462 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: &*PredBlock->getFirstNonPHIIt(), |
463 | ParentState: CleanupState); |
464 | } |
465 | } |
466 | for (const User *U : CleanupPad->users()) { |
467 | const auto *UserI = cast<Instruction>(Val: U); |
468 | if (UserI->isEHPad()) |
469 | report_fatal_error(reason: "Cleanup funclets for the MSVC++ personality cannot " |
470 | "contain exceptional actions" ); |
471 | } |
472 | } |
473 | } |
474 | |
475 | static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState, |
476 | const Function *Filter, const BasicBlock *Handler) { |
477 | SEHUnwindMapEntry Entry; |
478 | Entry.ToState = ParentState; |
479 | Entry.IsFinally = false; |
480 | Entry.Filter = Filter; |
481 | Entry.Handler = Handler; |
482 | FuncInfo.SEHUnwindMap.push_back(Elt: Entry); |
483 | return FuncInfo.SEHUnwindMap.size() - 1; |
484 | } |
485 | |
486 | static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState, |
487 | const BasicBlock *Handler) { |
488 | SEHUnwindMapEntry Entry; |
489 | Entry.ToState = ParentState; |
490 | Entry.IsFinally = true; |
491 | Entry.Filter = nullptr; |
492 | Entry.Handler = Handler; |
493 | FuncInfo.SEHUnwindMap.push_back(Elt: Entry); |
494 | return FuncInfo.SEHUnwindMap.size() - 1; |
495 | } |
496 | |
497 | // Starting from a EHPad, Backward walk through control-flow graph |
498 | // to produce two primary outputs: |
499 | // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[] |
500 | static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo, |
501 | const Instruction *FirstNonPHI, |
502 | int ParentState) { |
503 | const BasicBlock *BB = FirstNonPHI->getParent(); |
504 | assert(BB->isEHPad() && "no a funclet!" ); |
505 | |
506 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: FirstNonPHI)) { |
507 | assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && |
508 | "shouldn't revist catch funclets!" ); |
509 | |
510 | // Extract the filter function and the __except basic block and create a |
511 | // state for them. |
512 | assert(CatchSwitch->getNumHandlers() == 1 && |
513 | "SEH doesn't have multiple handlers per __try" ); |
514 | const auto *CatchPad = |
515 | cast<CatchPadInst>(Val: (*CatchSwitch->handler_begin())->getFirstNonPHIIt()); |
516 | const BasicBlock *CatchPadBB = CatchPad->getParent(); |
517 | const Constant *FilterOrNull = |
518 | cast<Constant>(Val: CatchPad->getArgOperand(i: 0)->stripPointerCasts()); |
519 | const Function *Filter = dyn_cast<Function>(Val: FilterOrNull); |
520 | assert((Filter || FilterOrNull->isNullValue()) && |
521 | "unexpected filter value" ); |
522 | int TryState = addSEHExcept(FuncInfo, ParentState, Filter, Handler: CatchPadBB); |
523 | |
524 | // Everything in the __try block uses TryState as its parent state. |
525 | FuncInfo.EHPadStateMap[CatchSwitch] = TryState; |
526 | FuncInfo.EHPadStateMap[CatchPad] = TryState; |
527 | LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB " |
528 | << CatchPadBB->getName() << '\n'); |
529 | for (const BasicBlock *PredBlock : predecessors(BB)) |
530 | if ((PredBlock = getEHPadFromPredecessor(BB: PredBlock, |
531 | ParentPad: CatchSwitch->getParentPad()))) |
532 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: &*PredBlock->getFirstNonPHIIt(), |
533 | ParentState: TryState); |
534 | |
535 | // Everything in the __except block unwinds to ParentState, just like code |
536 | // outside the __try. |
537 | for (const User *U : CatchPad->users()) { |
538 | const auto *UserI = cast<Instruction>(Val: U); |
539 | if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(Val: UserI)) { |
540 | BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); |
541 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
542 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState); |
543 | } |
544 | if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(Val: UserI)) { |
545 | BasicBlock *UnwindDest = getCleanupRetUnwindDest(CleanupPad: InnerCleanupPad); |
546 | // If a nested cleanup pad reports a null unwind destination and the |
547 | // enclosing catch pad doesn't it must be post-dominated by an |
548 | // unreachable instruction. |
549 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
550 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState); |
551 | } |
552 | } |
553 | } else { |
554 | auto *CleanupPad = cast<CleanupPadInst>(Val: FirstNonPHI); |
555 | |
556 | // It's possible for a cleanup to be visited twice: it might have multiple |
557 | // cleanupret instructions. |
558 | auto [It, Inserted] = FuncInfo.EHPadStateMap.try_emplace(Key: CleanupPad); |
559 | if (!Inserted) |
560 | return; |
561 | |
562 | int CleanupState = addSEHFinally(FuncInfo, ParentState, Handler: BB); |
563 | It->second = CleanupState; |
564 | LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " |
565 | << BB->getName() << '\n'); |
566 | for (const BasicBlock *PredBlock : predecessors(BB)) |
567 | if ((PredBlock = |
568 | getEHPadFromPredecessor(BB: PredBlock, ParentPad: CleanupPad->getParentPad()))) |
569 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: &*PredBlock->getFirstNonPHIIt(), |
570 | ParentState: CleanupState); |
571 | for (const User *U : CleanupPad->users()) { |
572 | const auto *UserI = cast<Instruction>(Val: U); |
573 | if (UserI->isEHPad()) |
574 | report_fatal_error(reason: "Cleanup funclets for the SEH personality cannot " |
575 | "contain exceptional actions" ); |
576 | } |
577 | } |
578 | } |
579 | |
580 | static bool isTopLevelPadForMSVC(const Instruction *EHPad) { |
581 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: EHPad)) |
582 | return isa<ConstantTokenNone>(Val: CatchSwitch->getParentPad()) && |
583 | CatchSwitch->unwindsToCaller(); |
584 | if (auto *CleanupPad = dyn_cast<CleanupPadInst>(Val: EHPad)) |
585 | return isa<ConstantTokenNone>(Val: CleanupPad->getParentPad()) && |
586 | getCleanupRetUnwindDest(CleanupPad) == nullptr; |
587 | if (isa<CatchPadInst>(Val: EHPad)) |
588 | return false; |
589 | llvm_unreachable("unexpected EHPad!" ); |
590 | } |
591 | |
592 | void llvm::calculateSEHStateNumbers(const Function *Fn, |
593 | WinEHFuncInfo &FuncInfo) { |
594 | // Don't compute state numbers twice. |
595 | if (!FuncInfo.SEHUnwindMap.empty()) |
596 | return; |
597 | |
598 | for (const BasicBlock &BB : *Fn) { |
599 | if (!BB.isEHPad()) |
600 | continue; |
601 | const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt(); |
602 | if (!isTopLevelPadForMSVC(EHPad: FirstNonPHI)) |
603 | continue; |
604 | ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, ParentState: -1); |
605 | } |
606 | |
607 | calculateStateNumbersForInvokes(Fn, FuncInfo); |
608 | |
609 | bool IsEHa = Fn->getParent()->getModuleFlag(Key: "eh-asynch" ); |
610 | if (IsEHa) { |
611 | const BasicBlock *EntryBB = &(Fn->getEntryBlock()); |
612 | calculateSEHStateForAsynchEH(BB: EntryBB, State: -1, EHInfo&: FuncInfo); |
613 | } |
614 | } |
615 | |
616 | void llvm::calculateWinCXXEHStateNumbers(const Function *Fn, |
617 | WinEHFuncInfo &FuncInfo) { |
618 | // Return if it's already been done. |
619 | if (!FuncInfo.EHPadStateMap.empty()) |
620 | return; |
621 | |
622 | for (const BasicBlock &BB : *Fn) { |
623 | if (!BB.isEHPad()) |
624 | continue; |
625 | const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt(); |
626 | if (!isTopLevelPadForMSVC(EHPad: FirstNonPHI)) |
627 | continue; |
628 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI, ParentState: -1); |
629 | } |
630 | |
631 | calculateStateNumbersForInvokes(Fn, FuncInfo); |
632 | |
633 | bool IsEHa = Fn->getParent()->getModuleFlag(Key: "eh-asynch" ); |
634 | if (IsEHa) { |
635 | const BasicBlock *EntryBB = &(Fn->getEntryBlock()); |
636 | calculateCXXStateForAsynchEH(BB: EntryBB, State: -1, EHInfo&: FuncInfo); |
637 | } |
638 | } |
639 | |
640 | static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState, |
641 | int TryParentState, ClrHandlerType HandlerType, |
642 | uint32_t TypeToken, const BasicBlock *Handler) { |
643 | ClrEHUnwindMapEntry Entry; |
644 | Entry.HandlerParentState = HandlerParentState; |
645 | Entry.TryParentState = TryParentState; |
646 | Entry.Handler = Handler; |
647 | Entry.HandlerType = HandlerType; |
648 | Entry.TypeToken = TypeToken; |
649 | FuncInfo.ClrEHUnwindMap.push_back(Elt: Entry); |
650 | return FuncInfo.ClrEHUnwindMap.size() - 1; |
651 | } |
652 | |
653 | void llvm::calculateClrEHStateNumbers(const Function *Fn, |
654 | WinEHFuncInfo &FuncInfo) { |
655 | // Return if it's already been done. |
656 | if (!FuncInfo.EHPadStateMap.empty()) |
657 | return; |
658 | |
659 | // This numbering assigns one state number to each catchpad and cleanuppad. |
660 | // It also computes two tree-like relations over states: |
661 | // 1) Each state has a "HandlerParentState", which is the state of the next |
662 | // outer handler enclosing this state's handler (same as nearest ancestor |
663 | // per the ParentPad linkage on EH pads, but skipping over catchswitches). |
664 | // 2) Each state has a "TryParentState", which: |
665 | // a) for a catchpad that's not the last handler on its catchswitch, is |
666 | // the state of the next catchpad on that catchswitch |
667 | // b) for all other pads, is the state of the pad whose try region is the |
668 | // next outer try region enclosing this state's try region. The "try |
669 | // regions are not present as such in the IR, but will be inferred |
670 | // based on the placement of invokes and pads which reach each other |
671 | // by exceptional exits |
672 | // Catchswitches do not get their own states, but each gets mapped to the |
673 | // state of its first catchpad. |
674 | |
675 | // Step one: walk down from outermost to innermost funclets, assigning each |
676 | // catchpad and cleanuppad a state number. Add an entry to the |
677 | // ClrEHUnwindMap for each state, recording its HandlerParentState and |
678 | // handler attributes. Record the TryParentState as well for each catchpad |
679 | // that's not the last on its catchswitch, but initialize all other entries' |
680 | // TryParentStates to a sentinel -1 value that the next pass will update. |
681 | |
682 | // Seed a worklist with pads that have no parent. |
683 | SmallVector<std::pair<const Instruction *, int>, 8> Worklist; |
684 | for (const BasicBlock &BB : *Fn) { |
685 | const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt(); |
686 | const Value *ParentPad; |
687 | if (const auto *CPI = dyn_cast<CleanupPadInst>(Val: FirstNonPHI)) |
688 | ParentPad = CPI->getParentPad(); |
689 | else if (const auto *CSI = dyn_cast<CatchSwitchInst>(Val: FirstNonPHI)) |
690 | ParentPad = CSI->getParentPad(); |
691 | else |
692 | continue; |
693 | if (isa<ConstantTokenNone>(Val: ParentPad)) |
694 | Worklist.emplace_back(Args&: FirstNonPHI, Args: -1); |
695 | } |
696 | |
697 | // Use the worklist to visit all pads, from outer to inner. Record |
698 | // HandlerParentState for all pads. Record TryParentState only for catchpads |
699 | // that aren't the last on their catchswitch (setting all other entries' |
700 | // TryParentStates to an initial value of -1). This loop is also responsible |
701 | // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and |
702 | // catchswitches. |
703 | while (!Worklist.empty()) { |
704 | const Instruction *Pad; |
705 | int HandlerParentState; |
706 | std::tie(args&: Pad, args&: HandlerParentState) = Worklist.pop_back_val(); |
707 | |
708 | if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Val: Pad)) { |
709 | // Create the entry for this cleanup with the appropriate handler |
710 | // properties. Finally and fault handlers are distinguished by arity. |
711 | ClrHandlerType HandlerType = |
712 | (Cleanup->arg_size() ? ClrHandlerType::Fault |
713 | : ClrHandlerType::Finally); |
714 | int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, TryParentState: -1, |
715 | HandlerType, TypeToken: 0, Handler: Pad->getParent()); |
716 | // Queue any child EH pads on the worklist. |
717 | for (const User *U : Cleanup->users()) |
718 | if (const auto *I = dyn_cast<Instruction>(Val: U)) |
719 | if (I->isEHPad()) |
720 | Worklist.emplace_back(Args&: I, Args&: CleanupState); |
721 | // Remember this pad's state. |
722 | FuncInfo.EHPadStateMap[Cleanup] = CleanupState; |
723 | } else { |
724 | // Walk the handlers of this catchswitch in reverse order since all but |
725 | // the last need to set the following one as its TryParentState. |
726 | const auto *CatchSwitch = cast<CatchSwitchInst>(Val: Pad); |
727 | int CatchState = -1, FollowerState = -1; |
728 | SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers()); |
729 | for (const BasicBlock *CatchBlock : llvm::reverse(C&: CatchBlocks)) { |
730 | // Create the entry for this catch with the appropriate handler |
731 | // properties. |
732 | const auto *Catch = cast<CatchPadInst>(Val: CatchBlock->getFirstNonPHIIt()); |
733 | uint32_t TypeToken = static_cast<uint32_t>( |
734 | cast<ConstantInt>(Val: Catch->getArgOperand(i: 0))->getZExtValue()); |
735 | CatchState = |
736 | addClrEHHandler(FuncInfo, HandlerParentState, TryParentState: FollowerState, |
737 | HandlerType: ClrHandlerType::Catch, TypeToken, Handler: CatchBlock); |
738 | // Queue any child EH pads on the worklist. |
739 | for (const User *U : Catch->users()) |
740 | if (const auto *I = dyn_cast<Instruction>(Val: U)) |
741 | if (I->isEHPad()) |
742 | Worklist.emplace_back(Args&: I, Args&: CatchState); |
743 | // Remember this catch's state. |
744 | FuncInfo.EHPadStateMap[Catch] = CatchState; |
745 | FollowerState = CatchState; |
746 | } |
747 | // Associate the catchswitch with the state of its first catch. |
748 | assert(CatchSwitch->getNumHandlers()); |
749 | FuncInfo.EHPadStateMap[CatchSwitch] = CatchState; |
750 | } |
751 | } |
752 | |
753 | // Step two: record the TryParentState of each state. For cleanuppads that |
754 | // don't have cleanuprets, we may need to infer this from their child pads, |
755 | // so visit pads in descendant-most to ancestor-most order. |
756 | for (ClrEHUnwindMapEntry &Entry : llvm::reverse(C&: FuncInfo.ClrEHUnwindMap)) { |
757 | const Instruction *Pad = |
758 | &*cast<const BasicBlock *>(Val&: Entry.Handler)->getFirstNonPHIIt(); |
759 | // For most pads, the TryParentState is the state associated with the |
760 | // unwind dest of exceptional exits from it. |
761 | const BasicBlock *UnwindDest; |
762 | if (const auto *Catch = dyn_cast<CatchPadInst>(Val: Pad)) { |
763 | // If a catch is not the last in its catchswitch, its TryParentState is |
764 | // the state associated with the next catch in the switch, even though |
765 | // that's not the unwind dest of exceptions escaping the catch. Those |
766 | // cases were already assigned a TryParentState in the first pass, so |
767 | // skip them. |
768 | if (Entry.TryParentState != -1) |
769 | continue; |
770 | // Otherwise, get the unwind dest from the catchswitch. |
771 | UnwindDest = Catch->getCatchSwitch()->getUnwindDest(); |
772 | } else { |
773 | const auto *Cleanup = cast<CleanupPadInst>(Val: Pad); |
774 | UnwindDest = nullptr; |
775 | for (const User *U : Cleanup->users()) { |
776 | if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(Val: U)) { |
777 | // Common and unambiguous case -- cleanupret indicates cleanup's |
778 | // unwind dest. |
779 | UnwindDest = CleanupRet->getUnwindDest(); |
780 | break; |
781 | } |
782 | |
783 | // Get an unwind dest for the user |
784 | const BasicBlock *UserUnwindDest = nullptr; |
785 | if (auto *Invoke = dyn_cast<InvokeInst>(Val: U)) { |
786 | UserUnwindDest = Invoke->getUnwindDest(); |
787 | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: U)) { |
788 | UserUnwindDest = CatchSwitch->getUnwindDest(); |
789 | } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(Val: U)) { |
790 | int UserState = FuncInfo.EHPadStateMap[ChildCleanup]; |
791 | int UserUnwindState = |
792 | FuncInfo.ClrEHUnwindMap[UserState].TryParentState; |
793 | if (UserUnwindState != -1) |
794 | UserUnwindDest = cast<const BasicBlock *>( |
795 | Val&: FuncInfo.ClrEHUnwindMap[UserUnwindState].Handler); |
796 | } |
797 | |
798 | // Not having an unwind dest for this user might indicate that it |
799 | // doesn't unwind, so can't be taken as proof that the cleanup itself |
800 | // may unwind to caller (see e.g. SimplifyUnreachable and |
801 | // RemoveUnwindEdge). |
802 | if (!UserUnwindDest) |
803 | continue; |
804 | |
805 | // Now we have an unwind dest for the user, but we need to see if it |
806 | // unwinds all the way out of the cleanup or if it stays within it. |
807 | const Instruction *UserUnwindPad = &*UserUnwindDest->getFirstNonPHIIt(); |
808 | const Value *UserUnwindParent; |
809 | if (auto *CSI = dyn_cast<CatchSwitchInst>(Val: UserUnwindPad)) |
810 | UserUnwindParent = CSI->getParentPad(); |
811 | else |
812 | UserUnwindParent = |
813 | cast<CleanupPadInst>(Val: UserUnwindPad)->getParentPad(); |
814 | |
815 | // The unwind stays within the cleanup iff it targets a child of the |
816 | // cleanup. |
817 | if (UserUnwindParent == Cleanup) |
818 | continue; |
819 | |
820 | // This unwind exits the cleanup, so its dest is the cleanup's dest. |
821 | UnwindDest = UserUnwindDest; |
822 | break; |
823 | } |
824 | } |
825 | |
826 | // Record the state of the unwind dest as the TryParentState. |
827 | int UnwindDestState; |
828 | |
829 | // If UnwindDest is null at this point, either the pad in question can |
830 | // be exited by unwind to caller, or it cannot be exited by unwind. In |
831 | // either case, reporting such cases as unwinding to caller is correct. |
832 | // This can lead to EH tables that "look strange" -- if this pad's is in |
833 | // a parent funclet which has other children that do unwind to an enclosing |
834 | // pad, the try region for this pad will be missing the "duplicate" EH |
835 | // clause entries that you'd expect to see covering the whole parent. That |
836 | // should be benign, since the unwind never actually happens. If it were |
837 | // an issue, we could add a subsequent pass that pushes unwind dests down |
838 | // from parents that have them to children that appear to unwind to caller. |
839 | if (!UnwindDest) { |
840 | UnwindDestState = -1; |
841 | } else { |
842 | UnwindDestState = |
843 | FuncInfo.EHPadStateMap[&*UnwindDest->getFirstNonPHIIt()]; |
844 | } |
845 | |
846 | Entry.TryParentState = UnwindDestState; |
847 | } |
848 | |
849 | // Step three: transfer information from pads to invokes. |
850 | calculateStateNumbersForInvokes(Fn, FuncInfo); |
851 | } |
852 | |
853 | void WinEHPrepareImpl::colorFunclets(Function &F) { |
854 | BlockColors = colorEHFunclets(F); |
855 | |
856 | // Invert the map from BB to colors to color to BBs. |
857 | for (BasicBlock &BB : F) { |
858 | ColorVector &Colors = BlockColors[&BB]; |
859 | for (BasicBlock *Color : Colors) |
860 | FuncletBlocks[Color].push_back(x: &BB); |
861 | } |
862 | } |
863 | |
864 | bool WinEHPrepareImpl::demotePHIsOnFunclets(Function &F, |
865 | bool DemoteCatchSwitchPHIOnly) { |
866 | bool Changed = false; |
867 | |
868 | // Strip PHI nodes off of EH pads. |
869 | SmallVector<PHINode *, 16> PHINodes; |
870 | for (BasicBlock &BB : make_early_inc_range(Range&: F)) { |
871 | if (!BB.isEHPad()) |
872 | continue; |
873 | |
874 | for (Instruction &I : make_early_inc_range(Range&: BB)) { |
875 | auto *PN = dyn_cast<PHINode>(Val: &I); |
876 | // Stop at the first non-PHI. |
877 | if (!PN) |
878 | break; |
879 | |
880 | // If DemoteCatchSwitchPHIOnly is true, we only demote a PHI when |
881 | // 1. The PHI is within a catchswitch BB |
882 | // 2. The PHI has a catchswitch BB has one of its incoming blocks |
883 | if (DemoteCatchSwitchPHIOnly) { |
884 | bool IsCatchSwitchBB = isa<CatchSwitchInst>(Val: BB.getFirstNonPHIIt()); |
885 | bool HasIncomingCatchSwitchBB = false; |
886 | for (unsigned I = 0, E = PN->getNumIncomingValues(); I < E; ++I) { |
887 | if (isa<CatchSwitchInst>( |
888 | Val: PN->getIncomingBlock(i: I)->getFirstNonPHIIt())) { |
889 | HasIncomingCatchSwitchBB = true; |
890 | break; |
891 | } |
892 | } |
893 | if (!IsCatchSwitchBB && !HasIncomingCatchSwitchBB) |
894 | break; |
895 | } |
896 | |
897 | Changed = true; |
898 | |
899 | AllocaInst *SpillSlot = insertPHILoads(PN, F); |
900 | if (SpillSlot) |
901 | insertPHIStores(OriginalPHI: PN, SpillSlot); |
902 | |
903 | PHINodes.push_back(Elt: PN); |
904 | } |
905 | } |
906 | |
907 | for (auto *PN : PHINodes) { |
908 | // There may be lingering uses on other EH PHIs being removed |
909 | PN->replaceAllUsesWith(V: PoisonValue::get(T: PN->getType())); |
910 | PN->eraseFromParent(); |
911 | } |
912 | |
913 | return Changed; |
914 | } |
915 | |
916 | bool WinEHPrepareImpl::cloneCommonBlocks(Function &F) { |
917 | bool Changed = false; |
918 | |
919 | // We need to clone all blocks which belong to multiple funclets. Values are |
920 | // remapped throughout the funclet to propagate both the new instructions |
921 | // *and* the new basic blocks themselves. |
922 | for (auto &Funclets : FuncletBlocks) { |
923 | BasicBlock *FuncletPadBB = Funclets.first; |
924 | std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second; |
925 | Value *FuncletToken; |
926 | if (FuncletPadBB == &F.getEntryBlock()) |
927 | FuncletToken = ConstantTokenNone::get(Context&: F.getContext()); |
928 | else |
929 | FuncletToken = &*FuncletPadBB->getFirstNonPHIIt(); |
930 | |
931 | std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone; |
932 | ValueToValueMapTy VMap; |
933 | for (BasicBlock *BB : BlocksInFunclet) { |
934 | ColorVector &ColorsForBB = BlockColors[BB]; |
935 | // We don't need to do anything if the block is monochromatic. |
936 | size_t NumColorsForBB = ColorsForBB.size(); |
937 | if (NumColorsForBB == 1) |
938 | continue; |
939 | |
940 | DEBUG_WITH_TYPE("win-eh-prepare-coloring" , |
941 | dbgs() << " Cloning block \'" << BB->getName() |
942 | << "\' for funclet \'" << FuncletPadBB->getName() |
943 | << "\'.\n" ); |
944 | |
945 | // Create a new basic block and copy instructions into it! |
946 | BasicBlock *CBB = |
947 | CloneBasicBlock(BB, VMap, NameSuffix: Twine(".for." , FuncletPadBB->getName())); |
948 | // Insert the clone immediately after the original to ensure determinism |
949 | // and to keep the same relative ordering of any funclet's blocks. |
950 | CBB->insertInto(Parent: &F, InsertBefore: BB->getNextNode()); |
951 | |
952 | // Add basic block mapping. |
953 | VMap[BB] = CBB; |
954 | |
955 | // Record delta operations that we need to perform to our color mappings. |
956 | Orig2Clone.emplace_back(args&: BB, args&: CBB); |
957 | } |
958 | |
959 | // If nothing was cloned, we're done cloning in this funclet. |
960 | if (Orig2Clone.empty()) |
961 | continue; |
962 | |
963 | Changed = true; |
964 | |
965 | // Update our color mappings to reflect that one block has lost a color and |
966 | // another has gained a color. |
967 | for (auto &BBMapping : Orig2Clone) { |
968 | BasicBlock *OldBlock = BBMapping.first; |
969 | BasicBlock *NewBlock = BBMapping.second; |
970 | |
971 | BlocksInFunclet.push_back(x: NewBlock); |
972 | ColorVector &NewColors = BlockColors[NewBlock]; |
973 | assert(NewColors.empty() && "A new block should only have one color!" ); |
974 | NewColors.push_back(NewVal: FuncletPadBB); |
975 | |
976 | DEBUG_WITH_TYPE("win-eh-prepare-coloring" , |
977 | dbgs() << " Assigned color \'" << FuncletPadBB->getName() |
978 | << "\' to block \'" << NewBlock->getName() |
979 | << "\'.\n" ); |
980 | |
981 | llvm::erase(C&: BlocksInFunclet, V: OldBlock); |
982 | ColorVector &OldColors = BlockColors[OldBlock]; |
983 | llvm::erase(C&: OldColors, V: FuncletPadBB); |
984 | |
985 | DEBUG_WITH_TYPE("win-eh-prepare-coloring" , |
986 | dbgs() << " Removed color \'" << FuncletPadBB->getName() |
987 | << "\' from block \'" << OldBlock->getName() |
988 | << "\'.\n" ); |
989 | } |
990 | |
991 | // Loop over all of the instructions in this funclet, fixing up operand |
992 | // references as we go. This uses VMap to do all the hard work. |
993 | for (BasicBlock *BB : BlocksInFunclet) |
994 | // Loop over all instructions, fixing each one as we find it... |
995 | for (Instruction &I : *BB) |
996 | RemapInstruction(I: &I, VM&: VMap, |
997 | Flags: RF_IgnoreMissingLocals | RF_NoModuleLevelChanges); |
998 | |
999 | // Catchrets targeting cloned blocks need to be updated separately from |
1000 | // the loop above because they are not in the current funclet. |
1001 | SmallVector<CatchReturnInst *, 2> FixupCatchrets; |
1002 | for (auto &BBMapping : Orig2Clone) { |
1003 | BasicBlock *OldBlock = BBMapping.first; |
1004 | BasicBlock *NewBlock = BBMapping.second; |
1005 | |
1006 | FixupCatchrets.clear(); |
1007 | for (BasicBlock *Pred : predecessors(BB: OldBlock)) |
1008 | if (auto *CatchRet = dyn_cast<CatchReturnInst>(Val: Pred->getTerminator())) |
1009 | if (CatchRet->getCatchSwitchParentPad() == FuncletToken) |
1010 | FixupCatchrets.push_back(Elt: CatchRet); |
1011 | |
1012 | for (CatchReturnInst *CatchRet : FixupCatchrets) |
1013 | CatchRet->setSuccessor(NewBlock); |
1014 | } |
1015 | |
1016 | auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) { |
1017 | unsigned NumPreds = PN->getNumIncomingValues(); |
1018 | for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd; |
1019 | ++PredIdx) { |
1020 | BasicBlock *IncomingBlock = PN->getIncomingBlock(i: PredIdx); |
1021 | bool EdgeTargetsFunclet; |
1022 | if (auto *CRI = |
1023 | dyn_cast<CatchReturnInst>(Val: IncomingBlock->getTerminator())) { |
1024 | EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken); |
1025 | } else { |
1026 | ColorVector &IncomingColors = BlockColors[IncomingBlock]; |
1027 | assert(!IncomingColors.empty() && "Block not colored!" ); |
1028 | assert((IncomingColors.size() == 1 || |
1029 | !llvm::is_contained(IncomingColors, FuncletPadBB)) && |
1030 | "Cloning should leave this funclet's blocks monochromatic" ); |
1031 | EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB); |
1032 | } |
1033 | if (IsForOldBlock != EdgeTargetsFunclet) |
1034 | continue; |
1035 | PN->removeIncomingValue(BB: IncomingBlock, /*DeletePHIIfEmpty=*/false); |
1036 | // Revisit the next entry. |
1037 | --PredIdx; |
1038 | --PredEnd; |
1039 | } |
1040 | }; |
1041 | |
1042 | for (auto &BBMapping : Orig2Clone) { |
1043 | BasicBlock *OldBlock = BBMapping.first; |
1044 | BasicBlock *NewBlock = BBMapping.second; |
1045 | for (PHINode &OldPN : OldBlock->phis()) { |
1046 | UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true); |
1047 | } |
1048 | for (PHINode &NewPN : NewBlock->phis()) { |
1049 | UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false); |
1050 | } |
1051 | } |
1052 | |
1053 | // Check to see if SuccBB has PHI nodes. If so, we need to add entries to |
1054 | // the PHI nodes for NewBB now. |
1055 | for (auto &BBMapping : Orig2Clone) { |
1056 | BasicBlock *OldBlock = BBMapping.first; |
1057 | BasicBlock *NewBlock = BBMapping.second; |
1058 | for (BasicBlock *SuccBB : successors(BB: NewBlock)) { |
1059 | for (PHINode &SuccPN : SuccBB->phis()) { |
1060 | // Ok, we have a PHI node. Figure out what the incoming value was for |
1061 | // the OldBlock. |
1062 | int OldBlockIdx = SuccPN.getBasicBlockIndex(BB: OldBlock); |
1063 | if (OldBlockIdx == -1) |
1064 | break; |
1065 | Value *IV = SuccPN.getIncomingValue(i: OldBlockIdx); |
1066 | |
1067 | // Remap the value if necessary. |
1068 | if (auto *Inst = dyn_cast<Instruction>(Val: IV)) { |
1069 | ValueToValueMapTy::iterator I = VMap.find(Val: Inst); |
1070 | if (I != VMap.end()) |
1071 | IV = I->second; |
1072 | } |
1073 | |
1074 | SuccPN.addIncoming(V: IV, BB: NewBlock); |
1075 | } |
1076 | } |
1077 | } |
1078 | |
1079 | for (ValueToValueMapTy::value_type VT : VMap) { |
1080 | // If there were values defined in BB that are used outside the funclet, |
1081 | // then we now have to update all uses of the value to use either the |
1082 | // original value, the cloned value, or some PHI derived value. This can |
1083 | // require arbitrary PHI insertion, of which we are prepared to do, clean |
1084 | // these up now. |
1085 | SmallVector<Use *, 16> UsesToRename; |
1086 | |
1087 | auto *OldI = dyn_cast<Instruction>(Val: const_cast<Value *>(VT.first)); |
1088 | if (!OldI) |
1089 | continue; |
1090 | auto *NewI = cast<Instruction>(Val&: VT.second); |
1091 | // Scan all uses of this instruction to see if it is used outside of its |
1092 | // funclet, and if so, record them in UsesToRename. |
1093 | for (Use &U : OldI->uses()) { |
1094 | Instruction *UserI = cast<Instruction>(Val: U.getUser()); |
1095 | BasicBlock *UserBB = UserI->getParent(); |
1096 | ColorVector &ColorsForUserBB = BlockColors[UserBB]; |
1097 | assert(!ColorsForUserBB.empty()); |
1098 | if (ColorsForUserBB.size() > 1 || |
1099 | *ColorsForUserBB.begin() != FuncletPadBB) |
1100 | UsesToRename.push_back(Elt: &U); |
1101 | } |
1102 | |
1103 | // If there are no uses outside the block, we're done with this |
1104 | // instruction. |
1105 | if (UsesToRename.empty()) |
1106 | continue; |
1107 | |
1108 | // We found a use of OldI outside of the funclet. Rename all uses of OldI |
1109 | // that are outside its funclet to be uses of the appropriate PHI node |
1110 | // etc. |
1111 | SSAUpdater SSAUpdate; |
1112 | SSAUpdate.Initialize(Ty: OldI->getType(), Name: OldI->getName()); |
1113 | SSAUpdate.AddAvailableValue(BB: OldI->getParent(), V: OldI); |
1114 | SSAUpdate.AddAvailableValue(BB: NewI->getParent(), V: NewI); |
1115 | |
1116 | while (!UsesToRename.empty()) |
1117 | SSAUpdate.RewriteUseAfterInsertions(U&: *UsesToRename.pop_back_val()); |
1118 | } |
1119 | } |
1120 | |
1121 | return Changed; |
1122 | } |
1123 | |
1124 | bool WinEHPrepareImpl::removeImplausibleInstructions(Function &F) { |
1125 | bool Changed = false; |
1126 | |
1127 | // Remove implausible terminators and replace them with UnreachableInst. |
1128 | for (auto &Funclet : FuncletBlocks) { |
1129 | BasicBlock *FuncletPadBB = Funclet.first; |
1130 | std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second; |
1131 | Instruction *FirstNonPHI = &*FuncletPadBB->getFirstNonPHIIt(); |
1132 | auto *FuncletPad = dyn_cast<FuncletPadInst>(Val: FirstNonPHI); |
1133 | auto *CatchPad = dyn_cast_or_null<CatchPadInst>(Val: FuncletPad); |
1134 | auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(Val: FuncletPad); |
1135 | |
1136 | for (BasicBlock *BB : BlocksInFunclet) { |
1137 | for (Instruction &I : *BB) { |
1138 | auto *CB = dyn_cast<CallBase>(Val: &I); |
1139 | if (!CB) |
1140 | continue; |
1141 | |
1142 | Value *FuncletBundleOperand = nullptr; |
1143 | if (auto BU = CB->getOperandBundle(ID: LLVMContext::OB_funclet)) |
1144 | FuncletBundleOperand = BU->Inputs.front(); |
1145 | |
1146 | if (FuncletBundleOperand == FuncletPad) |
1147 | continue; |
1148 | |
1149 | // Skip call sites which are nounwind intrinsics or inline asm. |
1150 | auto *CalledFn = |
1151 | dyn_cast<Function>(Val: CB->getCalledOperand()->stripPointerCasts()); |
1152 | if (CB->isInlineAsm() || |
1153 | (CalledFn && CalledFn->isIntrinsic() && CB->doesNotThrow())) |
1154 | continue; |
1155 | |
1156 | Changed = true; |
1157 | |
1158 | // This call site was not part of this funclet, remove it. |
1159 | if (isa<InvokeInst>(Val: CB)) { |
1160 | // Remove the unwind edge if it was an invoke. |
1161 | removeUnwindEdge(BB); |
1162 | // Get a pointer to the new call. |
1163 | BasicBlock::iterator CallI = |
1164 | std::prev(x: BB->getTerminator()->getIterator()); |
1165 | auto *CI = cast<CallInst>(Val: &*CallI); |
1166 | changeToUnreachable(I: CI); |
1167 | } else { |
1168 | changeToUnreachable(I: &I); |
1169 | } |
1170 | |
1171 | // There are no more instructions in the block (except for unreachable), |
1172 | // we are done. |
1173 | break; |
1174 | } |
1175 | |
1176 | Instruction *TI = BB->getTerminator(); |
1177 | // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst. |
1178 | bool IsUnreachableRet = isa<ReturnInst>(Val: TI) && FuncletPad; |
1179 | // The token consumed by a CatchReturnInst must match the funclet token. |
1180 | bool IsUnreachableCatchret = false; |
1181 | if (auto *CRI = dyn_cast<CatchReturnInst>(Val: TI)) |
1182 | IsUnreachableCatchret = CRI->getCatchPad() != CatchPad; |
1183 | // The token consumed by a CleanupReturnInst must match the funclet token. |
1184 | bool IsUnreachableCleanupret = false; |
1185 | if (auto *CRI = dyn_cast<CleanupReturnInst>(Val: TI)) |
1186 | IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad; |
1187 | if (IsUnreachableRet || IsUnreachableCatchret || |
1188 | IsUnreachableCleanupret) { |
1189 | Changed = true; |
1190 | changeToUnreachable(I: TI); |
1191 | } else if (isa<InvokeInst>(Val: TI)) { |
1192 | if (Personality == EHPersonality::MSVC_CXX && CleanupPad) { |
1193 | Changed = true; |
1194 | // Invokes within a cleanuppad for the MSVC++ personality never |
1195 | // transfer control to their unwind edge: the personality will |
1196 | // terminate the program. |
1197 | removeUnwindEdge(BB); |
1198 | } |
1199 | } |
1200 | } |
1201 | } |
1202 | |
1203 | return Changed; |
1204 | } |
1205 | |
1206 | bool WinEHPrepareImpl::cleanupPreparedFunclets(Function &F) { |
1207 | bool Changed = false; |
1208 | |
1209 | // Clean-up some of the mess we made by removing useles PHI nodes, trivial |
1210 | // branches, etc. |
1211 | for (BasicBlock &BB : llvm::make_early_inc_range(Range&: F)) { |
1212 | Changed |= SimplifyInstructionsInBlock(BB: &BB); |
1213 | Changed |= ConstantFoldTerminator(BB: &BB, /*DeleteDeadConditions=*/true); |
1214 | Changed |= MergeBlockIntoPredecessor(BB: &BB); |
1215 | } |
1216 | |
1217 | // We might have some unreachable blocks after cleaning up some impossible |
1218 | // control flow. |
1219 | Changed |= removeUnreachableBlocks(F); |
1220 | |
1221 | return Changed; |
1222 | } |
1223 | |
1224 | #ifndef NDEBUG |
1225 | void WinEHPrepareImpl::verifyPreparedFunclets(Function &F) { |
1226 | for (BasicBlock &BB : F) { |
1227 | size_t NumColors = BlockColors[&BB].size(); |
1228 | assert(NumColors == 1 && "Expected monochromatic BB!" ); |
1229 | if (NumColors == 0) |
1230 | report_fatal_error("Uncolored BB!" ); |
1231 | if (NumColors > 1) |
1232 | report_fatal_error("Multicolor BB!" ); |
1233 | assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && |
1234 | "EH Pad still has a PHI!" ); |
1235 | } |
1236 | } |
1237 | #endif |
1238 | |
1239 | bool WinEHPrepareImpl::prepareExplicitEH(Function &F) { |
1240 | // Remove unreachable blocks. It is not valuable to assign them a color and |
1241 | // their existence can trick us into thinking values are alive when they are |
1242 | // not. |
1243 | bool Changed = removeUnreachableBlocks(F); |
1244 | |
1245 | // Determine which blocks are reachable from which funclet entries. |
1246 | colorFunclets(F); |
1247 | |
1248 | Changed |= cloneCommonBlocks(F); |
1249 | |
1250 | if (!DisableDemotion) |
1251 | Changed |= demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly: DemoteCatchSwitchPHIOnly || |
1252 | DemoteCatchSwitchPHIOnlyOpt); |
1253 | |
1254 | if (!DisableCleanups) { |
1255 | assert(!verifyFunction(F, &dbgs())); |
1256 | Changed |= removeImplausibleInstructions(F); |
1257 | |
1258 | assert(!verifyFunction(F, &dbgs())); |
1259 | Changed |= cleanupPreparedFunclets(F); |
1260 | } |
1261 | |
1262 | LLVM_DEBUG(verifyPreparedFunclets(F)); |
1263 | // Recolor the CFG to verify that all is well. |
1264 | LLVM_DEBUG(colorFunclets(F)); |
1265 | LLVM_DEBUG(verifyPreparedFunclets(F)); |
1266 | |
1267 | return Changed; |
1268 | } |
1269 | |
1270 | // TODO: Share loads when one use dominates another, or when a catchpad exit |
1271 | // dominates uses (needs dominators). |
1272 | AllocaInst *WinEHPrepareImpl::insertPHILoads(PHINode *PN, Function &F) { |
1273 | BasicBlock *PHIBlock = PN->getParent(); |
1274 | AllocaInst *SpillSlot = nullptr; |
1275 | Instruction *EHPad = &*PHIBlock->getFirstNonPHIIt(); |
1276 | |
1277 | if (!EHPad->isTerminator()) { |
1278 | // If the EHPad isn't a terminator, then we can insert a load in this block |
1279 | // that will dominate all uses. |
1280 | SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr, |
1281 | Twine(PN->getName(), ".wineh.spillslot" ), |
1282 | F.getEntryBlock().begin()); |
1283 | Value *V = new LoadInst(PN->getType(), SpillSlot, |
1284 | Twine(PN->getName(), ".wineh.reload" ), |
1285 | PHIBlock->getFirstInsertionPt()); |
1286 | PN->replaceAllUsesWith(V); |
1287 | return SpillSlot; |
1288 | } |
1289 | |
1290 | // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert |
1291 | // loads of the slot before every use. |
1292 | DenseMap<BasicBlock *, Value *> Loads; |
1293 | for (Use &U : llvm::make_early_inc_range(Range: PN->uses())) { |
1294 | auto *UsingInst = cast<Instruction>(Val: U.getUser()); |
1295 | if (isa<PHINode>(Val: UsingInst) && UsingInst->getParent()->isEHPad()) { |
1296 | // Use is on an EH pad phi. Leave it alone; we'll insert loads and |
1297 | // stores for it separately. |
1298 | continue; |
1299 | } |
1300 | replaceUseWithLoad(V: PN, U, SpillSlot, Loads, F); |
1301 | } |
1302 | return SpillSlot; |
1303 | } |
1304 | |
1305 | // TODO: improve store placement. Inserting at def is probably good, but need |
1306 | // to be careful not to introduce interfering stores (needs liveness analysis). |
1307 | // TODO: identify related phi nodes that can share spill slots, and share them |
1308 | // (also needs liveness). |
1309 | void WinEHPrepareImpl::insertPHIStores(PHINode *OriginalPHI, |
1310 | AllocaInst *SpillSlot) { |
1311 | // Use a worklist of (Block, Value) pairs -- the given Value needs to be |
1312 | // stored to the spill slot by the end of the given Block. |
1313 | SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist; |
1314 | |
1315 | Worklist.push_back(Elt: {OriginalPHI->getParent(), OriginalPHI}); |
1316 | |
1317 | while (!Worklist.empty()) { |
1318 | BasicBlock *EHBlock; |
1319 | Value *InVal; |
1320 | std::tie(args&: EHBlock, args&: InVal) = Worklist.pop_back_val(); |
1321 | |
1322 | PHINode *PN = dyn_cast<PHINode>(Val: InVal); |
1323 | if (PN && PN->getParent() == EHBlock) { |
1324 | // The value is defined by another PHI we need to remove, with no room to |
1325 | // insert a store after the PHI, so each predecessor needs to store its |
1326 | // incoming value. |
1327 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { |
1328 | Value *PredVal = PN->getIncomingValue(i); |
1329 | |
1330 | // Undef can safely be skipped. |
1331 | if (isa<UndefValue>(Val: PredVal)) |
1332 | continue; |
1333 | |
1334 | insertPHIStore(PredBlock: PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist); |
1335 | } |
1336 | } else { |
1337 | // We need to store InVal, which dominates EHBlock, but can't put a store |
1338 | // in EHBlock, so need to put stores in each predecessor. |
1339 | for (BasicBlock *PredBlock : predecessors(BB: EHBlock)) { |
1340 | insertPHIStore(PredBlock, PredVal: InVal, SpillSlot, Worklist); |
1341 | } |
1342 | } |
1343 | } |
1344 | } |
1345 | |
1346 | void WinEHPrepareImpl::insertPHIStore( |
1347 | BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, |
1348 | SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) { |
1349 | |
1350 | if (PredBlock->isEHPad() && PredBlock->getFirstNonPHIIt()->isTerminator()) { |
1351 | // Pred is unsplittable, so we need to queue it on the worklist. |
1352 | Worklist.push_back(Elt: {PredBlock, PredVal}); |
1353 | return; |
1354 | } |
1355 | |
1356 | // Otherwise, insert the store at the end of the basic block. |
1357 | new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator()->getIterator()); |
1358 | } |
1359 | |
1360 | void WinEHPrepareImpl::replaceUseWithLoad( |
1361 | Value *V, Use &U, AllocaInst *&SpillSlot, |
1362 | DenseMap<BasicBlock *, Value *> &Loads, Function &F) { |
1363 | // Lazilly create the spill slot. |
1364 | if (!SpillSlot) |
1365 | SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr, |
1366 | Twine(V->getName(), ".wineh.spillslot" ), |
1367 | F.getEntryBlock().begin()); |
1368 | |
1369 | auto *UsingInst = cast<Instruction>(Val: U.getUser()); |
1370 | if (auto *UsingPHI = dyn_cast<PHINode>(Val: UsingInst)) { |
1371 | // If this is a PHI node, we can't insert a load of the value before |
1372 | // the use. Instead insert the load in the predecessor block |
1373 | // corresponding to the incoming value. |
1374 | // |
1375 | // Note that if there are multiple edges from a basic block to this |
1376 | // PHI node that we cannot have multiple loads. The problem is that |
1377 | // the resulting PHI node will have multiple values (from each load) |
1378 | // coming in from the same block, which is illegal SSA form. |
1379 | // For this reason, we keep track of and reuse loads we insert. |
1380 | BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U); |
1381 | if (auto *CatchRet = |
1382 | dyn_cast<CatchReturnInst>(Val: IncomingBlock->getTerminator())) { |
1383 | // Putting a load above a catchret and use on the phi would still leave |
1384 | // a cross-funclet def/use. We need to split the edge, change the |
1385 | // catchret to target the new block, and put the load there. |
1386 | BasicBlock *PHIBlock = UsingInst->getParent(); |
1387 | BasicBlock *NewBlock = SplitEdge(From: IncomingBlock, To: PHIBlock); |
1388 | // SplitEdge gives us: |
1389 | // IncomingBlock: |
1390 | // ... |
1391 | // br label %NewBlock |
1392 | // NewBlock: |
1393 | // catchret label %PHIBlock |
1394 | // But we need: |
1395 | // IncomingBlock: |
1396 | // ... |
1397 | // catchret label %NewBlock |
1398 | // NewBlock: |
1399 | // br label %PHIBlock |
1400 | // So move the terminators to each others' blocks and swap their |
1401 | // successors. |
1402 | BranchInst *Goto = cast<BranchInst>(Val: IncomingBlock->getTerminator()); |
1403 | Goto->removeFromParent(); |
1404 | CatchRet->removeFromParent(); |
1405 | CatchRet->insertInto(ParentBB: IncomingBlock, It: IncomingBlock->end()); |
1406 | Goto->insertInto(ParentBB: NewBlock, It: NewBlock->end()); |
1407 | Goto->setSuccessor(idx: 0, NewSucc: PHIBlock); |
1408 | CatchRet->setSuccessor(NewBlock); |
1409 | // Update the color mapping for the newly split edge. |
1410 | // Grab a reference to the ColorVector to be inserted before getting the |
1411 | // reference to the vector we are copying because inserting the new |
1412 | // element in BlockColors might cause the map to be reallocated. |
1413 | ColorVector &ColorsForNewBlock = BlockColors[NewBlock]; |
1414 | ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock]; |
1415 | ColorsForNewBlock = ColorsForPHIBlock; |
1416 | for (BasicBlock *FuncletPad : ColorsForPHIBlock) |
1417 | FuncletBlocks[FuncletPad].push_back(x: NewBlock); |
1418 | // Treat the new block as incoming for load insertion. |
1419 | IncomingBlock = NewBlock; |
1420 | } |
1421 | Value *&Load = Loads[IncomingBlock]; |
1422 | // Insert the load into the predecessor block |
1423 | if (!Load) |
1424 | Load = new LoadInst( |
1425 | V->getType(), SpillSlot, Twine(V->getName(), ".wineh.reload" ), |
1426 | /*isVolatile=*/false, IncomingBlock->getTerminator()->getIterator()); |
1427 | |
1428 | U.set(Load); |
1429 | } else { |
1430 | // Reload right before the old use. |
1431 | auto *Load = new LoadInst(V->getType(), SpillSlot, |
1432 | Twine(V->getName(), ".wineh.reload" ), |
1433 | /*isVolatile=*/false, UsingInst->getIterator()); |
1434 | U.set(Load); |
1435 | } |
1436 | } |
1437 | |
1438 | void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II, |
1439 | MCSymbol *InvokeBegin, |
1440 | MCSymbol *InvokeEnd) { |
1441 | assert(InvokeStateMap.count(II) && |
1442 | "should get invoke with precomputed state" ); |
1443 | LabelToStateMap[InvokeBegin] = std::make_pair(x&: InvokeStateMap[II], y&: InvokeEnd); |
1444 | } |
1445 | |
1446 | void WinEHFuncInfo::addIPToStateRange(int State, MCSymbol* InvokeBegin, |
1447 | MCSymbol* InvokeEnd) { |
1448 | LabelToStateMap[InvokeBegin] = std::make_pair(x&: State, y&: InvokeEnd); |
1449 | } |
1450 | |
1451 | WinEHFuncInfo::WinEHFuncInfo() = default; |
1452 | |