1 | //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the common interface used by the various execution engine |
10 | // subclasses. |
11 | // |
12 | // FIXME: This file needs to be updated to support scalable vectors |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
17 | #include "llvm/ADT/SmallString.h" |
18 | #include "llvm/ADT/Statistic.h" |
19 | #include "llvm/ExecutionEngine/GenericValue.h" |
20 | #include "llvm/ExecutionEngine/JITEventListener.h" |
21 | #include "llvm/ExecutionEngine/ObjectCache.h" |
22 | #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" |
23 | #include "llvm/IR/Constants.h" |
24 | #include "llvm/IR/DataLayout.h" |
25 | #include "llvm/IR/DerivedTypes.h" |
26 | #include "llvm/IR/Mangler.h" |
27 | #include "llvm/IR/Module.h" |
28 | #include "llvm/IR/Operator.h" |
29 | #include "llvm/IR/ValueHandle.h" |
30 | #include "llvm/MC/TargetRegistry.h" |
31 | #include "llvm/Object/Archive.h" |
32 | #include "llvm/Object/ObjectFile.h" |
33 | #include "llvm/Support/Debug.h" |
34 | #include "llvm/Support/DynamicLibrary.h" |
35 | #include "llvm/Support/ErrorHandling.h" |
36 | #include "llvm/Support/raw_ostream.h" |
37 | #include "llvm/Target/TargetMachine.h" |
38 | #include "llvm/TargetParser/Host.h" |
39 | #include <cmath> |
40 | #include <cstring> |
41 | #include <mutex> |
42 | using namespace llvm; |
43 | |
44 | #define DEBUG_TYPE "jit" |
45 | |
46 | STATISTIC(NumInitBytes, "Number of bytes of global vars initialized" ); |
47 | STATISTIC(NumGlobals , "Number of global vars initialized" ); |
48 | |
49 | ExecutionEngine *(*ExecutionEngine::MCJITCtor)( |
50 | std::unique_ptr<Module> M, std::string *ErrorStr, |
51 | std::shared_ptr<MCJITMemoryManager> MemMgr, |
52 | std::shared_ptr<LegacyJITSymbolResolver> Resolver, |
53 | std::unique_ptr<TargetMachine> TM) = nullptr; |
54 | |
55 | ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, |
56 | std::string *ErrorStr) =nullptr; |
57 | |
58 | void JITEventListener::anchor() {} |
59 | |
60 | void ObjectCache::anchor() {} |
61 | |
62 | void ExecutionEngine::Init(std::unique_ptr<Module> M) { |
63 | CompilingLazily = false; |
64 | GVCompilationDisabled = false; |
65 | SymbolSearchingDisabled = false; |
66 | |
67 | // IR module verification is enabled by default in debug builds, and disabled |
68 | // by default in release builds. |
69 | #ifndef NDEBUG |
70 | VerifyModules = true; |
71 | #else |
72 | VerifyModules = false; |
73 | #endif |
74 | |
75 | assert(M && "Module is null?" ); |
76 | Modules.push_back(Elt: std::move(M)); |
77 | } |
78 | |
79 | ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) |
80 | : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { |
81 | Init(M: std::move(M)); |
82 | } |
83 | |
84 | ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) |
85 | : DL(std::move(DL)), LazyFunctionCreator(nullptr) { |
86 | Init(M: std::move(M)); |
87 | } |
88 | |
89 | ExecutionEngine::~ExecutionEngine() { |
90 | clearAllGlobalMappings(); |
91 | } |
92 | |
93 | namespace { |
94 | /// Helper class which uses a value handler to automatically deletes the |
95 | /// memory block when the GlobalVariable is destroyed. |
96 | class GVMemoryBlock final : public CallbackVH { |
97 | GVMemoryBlock(const GlobalVariable *GV) |
98 | : CallbackVH(const_cast<GlobalVariable*>(GV)) {} |
99 | |
100 | public: |
101 | /// Returns the address the GlobalVariable should be written into. The |
102 | /// GVMemoryBlock object prefixes that. |
103 | static char *Create(const GlobalVariable *GV, const DataLayout& TD) { |
104 | Type *ElTy = GV->getValueType(); |
105 | size_t GVSize = (size_t)TD.getTypeAllocSize(Ty: ElTy); |
106 | void *RawMemory = ::operator new( |
107 | alignTo(Size: sizeof(GVMemoryBlock), A: TD.getPreferredAlign(GV)) + GVSize); |
108 | new(RawMemory) GVMemoryBlock(GV); |
109 | return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); |
110 | } |
111 | |
112 | void deleted() override { |
113 | // We allocated with operator new and with some extra memory hanging off the |
114 | // end, so don't just delete this. I'm not sure if this is actually |
115 | // required. |
116 | this->~GVMemoryBlock(); |
117 | ::operator delete(this); |
118 | } |
119 | }; |
120 | } // anonymous namespace |
121 | |
122 | char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { |
123 | return GVMemoryBlock::Create(GV, TD: getDataLayout()); |
124 | } |
125 | |
126 | void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { |
127 | llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile." ); |
128 | } |
129 | |
130 | void |
131 | ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { |
132 | llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile." ); |
133 | } |
134 | |
135 | void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { |
136 | llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive." ); |
137 | } |
138 | |
139 | bool ExecutionEngine::removeModule(Module *M) { |
140 | for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { |
141 | Module *Found = I->get(); |
142 | if (Found == M) { |
143 | I->release(); |
144 | Modules.erase(CI: I); |
145 | clearGlobalMappingsFromModule(M); |
146 | return true; |
147 | } |
148 | } |
149 | return false; |
150 | } |
151 | |
152 | Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { |
153 | for (const auto &M : Modules) { |
154 | Function *F = M->getFunction(Name: FnName); |
155 | if (F && !F->isDeclaration()) |
156 | return F; |
157 | } |
158 | return nullptr; |
159 | } |
160 | |
161 | GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { |
162 | for (const auto &M : Modules) { |
163 | GlobalVariable *GV = M->getGlobalVariable(Name, AllowInternal); |
164 | if (GV && !GV->isDeclaration()) |
165 | return GV; |
166 | } |
167 | return nullptr; |
168 | } |
169 | |
170 | uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { |
171 | GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Key: Name); |
172 | uint64_t OldVal; |
173 | |
174 | // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the |
175 | // GlobalAddressMap. |
176 | if (I == GlobalAddressMap.end()) |
177 | OldVal = 0; |
178 | else { |
179 | GlobalAddressReverseMap.erase(x: I->second); |
180 | OldVal = I->second; |
181 | GlobalAddressMap.erase(I); |
182 | } |
183 | |
184 | return OldVal; |
185 | } |
186 | |
187 | std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { |
188 | assert(GV->hasName() && "Global must have name." ); |
189 | |
190 | std::lock_guard<sys::Mutex> locked(lock); |
191 | SmallString<128> FullName; |
192 | |
193 | const DataLayout &DL = |
194 | GV->getDataLayout().isDefault() |
195 | ? getDataLayout() |
196 | : GV->getDataLayout(); |
197 | |
198 | Mangler::getNameWithPrefix(OutName&: FullName, GVName: GV->getName(), DL); |
199 | return std::string(FullName); |
200 | } |
201 | |
202 | void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { |
203 | std::lock_guard<sys::Mutex> locked(lock); |
204 | addGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr); |
205 | } |
206 | |
207 | void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { |
208 | std::lock_guard<sys::Mutex> locked(lock); |
209 | |
210 | assert(!Name.empty() && "Empty GlobalMapping symbol name!" ); |
211 | |
212 | LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n" ;); |
213 | uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; |
214 | assert((!CurVal || !Addr) && "GlobalMapping already established!" ); |
215 | CurVal = Addr; |
216 | |
217 | // If we are using the reverse mapping, add it too. |
218 | if (!EEState.getGlobalAddressReverseMap().empty()) { |
219 | std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; |
220 | assert((!V.empty() || !Name.empty()) && |
221 | "GlobalMapping already established!" ); |
222 | V = std::string(Name); |
223 | } |
224 | } |
225 | |
226 | void ExecutionEngine::clearAllGlobalMappings() { |
227 | std::lock_guard<sys::Mutex> locked(lock); |
228 | |
229 | EEState.getGlobalAddressMap().clear(); |
230 | EEState.getGlobalAddressReverseMap().clear(); |
231 | } |
232 | |
233 | void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { |
234 | std::lock_guard<sys::Mutex> locked(lock); |
235 | |
236 | for (GlobalObject &GO : M->global_objects()) |
237 | EEState.RemoveMapping(Name: getMangledName(GV: &GO)); |
238 | } |
239 | |
240 | uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, |
241 | void *Addr) { |
242 | std::lock_guard<sys::Mutex> locked(lock); |
243 | return updateGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr); |
244 | } |
245 | |
246 | uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { |
247 | std::lock_guard<sys::Mutex> locked(lock); |
248 | |
249 | ExecutionEngineState::GlobalAddressMapTy &Map = |
250 | EEState.getGlobalAddressMap(); |
251 | |
252 | // Deleting from the mapping? |
253 | if (!Addr) |
254 | return EEState.RemoveMapping(Name); |
255 | |
256 | uint64_t &CurVal = Map[Name]; |
257 | uint64_t OldVal = CurVal; |
258 | |
259 | if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) |
260 | EEState.getGlobalAddressReverseMap().erase(x: CurVal); |
261 | CurVal = Addr; |
262 | |
263 | // If we are using the reverse mapping, add it too. |
264 | if (!EEState.getGlobalAddressReverseMap().empty()) { |
265 | std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; |
266 | assert((!V.empty() || !Name.empty()) && |
267 | "GlobalMapping already established!" ); |
268 | V = std::string(Name); |
269 | } |
270 | return OldVal; |
271 | } |
272 | |
273 | uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { |
274 | std::lock_guard<sys::Mutex> locked(lock); |
275 | uint64_t Address = 0; |
276 | ExecutionEngineState::GlobalAddressMapTy::iterator I = |
277 | EEState.getGlobalAddressMap().find(Key: S); |
278 | if (I != EEState.getGlobalAddressMap().end()) |
279 | Address = I->second; |
280 | return Address; |
281 | } |
282 | |
283 | |
284 | void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { |
285 | std::lock_guard<sys::Mutex> locked(lock); |
286 | if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) |
287 | return Address; |
288 | return nullptr; |
289 | } |
290 | |
291 | void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { |
292 | std::lock_guard<sys::Mutex> locked(lock); |
293 | return getPointerToGlobalIfAvailable(S: getMangledName(GV)); |
294 | } |
295 | |
296 | const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { |
297 | std::lock_guard<sys::Mutex> locked(lock); |
298 | |
299 | // If we haven't computed the reverse mapping yet, do so first. |
300 | if (EEState.getGlobalAddressReverseMap().empty()) { |
301 | for (ExecutionEngineState::GlobalAddressMapTy::iterator |
302 | I = EEState.getGlobalAddressMap().begin(), |
303 | E = EEState.getGlobalAddressMap().end(); I != E; ++I) { |
304 | StringRef Name = I->first(); |
305 | uint64_t Addr = I->second; |
306 | EEState.getGlobalAddressReverseMap().insert( |
307 | x: std::make_pair(x&: Addr, y: std::string(Name))); |
308 | } |
309 | } |
310 | |
311 | std::map<uint64_t, std::string>::iterator I = |
312 | EEState.getGlobalAddressReverseMap().find(x: (uint64_t) Addr); |
313 | |
314 | if (I != EEState.getGlobalAddressReverseMap().end()) { |
315 | StringRef Name = I->second; |
316 | for (const auto &M : Modules) |
317 | if (GlobalValue *GV = M->getNamedValue(Name)) |
318 | return GV; |
319 | } |
320 | return nullptr; |
321 | } |
322 | |
323 | namespace { |
324 | class ArgvArray { |
325 | std::unique_ptr<char[]> Array; |
326 | std::vector<std::unique_ptr<char[]>> Values; |
327 | public: |
328 | /// Turn a vector of strings into a nice argv style array of pointers to null |
329 | /// terminated strings. |
330 | void *reset(LLVMContext &C, ExecutionEngine *EE, |
331 | const std::vector<std::string> &InputArgv); |
332 | }; |
333 | } // anonymous namespace |
334 | void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, |
335 | const std::vector<std::string> &InputArgv) { |
336 | Values.clear(); // Free the old contents. |
337 | Values.reserve(n: InputArgv.size()); |
338 | unsigned PtrSize = EE->getDataLayout().getPointerSize(); |
339 | Array = std::make_unique<char[]>(num: (InputArgv.size()+1)*PtrSize); |
340 | |
341 | LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n" ); |
342 | Type *SBytePtr = PointerType::getUnqual(C); |
343 | |
344 | for (unsigned i = 0; i != InputArgv.size(); ++i) { |
345 | unsigned Size = InputArgv[i].size()+1; |
346 | auto Dest = std::make_unique<char[]>(num: Size); |
347 | LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() |
348 | << "\n" ); |
349 | |
350 | llvm::copy(Range: InputArgv[i], Out: Dest.get()); |
351 | Dest[Size-1] = 0; |
352 | |
353 | // Endian safe: Array[i] = (PointerTy)Dest; |
354 | EE->StoreValueToMemory(Val: PTOGV(P: Dest.get()), |
355 | Ptr: (GenericValue*)(&Array[i*PtrSize]), Ty: SBytePtr); |
356 | Values.push_back(x: std::move(Dest)); |
357 | } |
358 | |
359 | // Null terminate it |
360 | EE->StoreValueToMemory(Val: PTOGV(P: nullptr), |
361 | Ptr: (GenericValue*)(&Array[InputArgv.size()*PtrSize]), |
362 | Ty: SBytePtr); |
363 | return Array.get(); |
364 | } |
365 | |
366 | void ExecutionEngine::runStaticConstructorsDestructors(Module &module, |
367 | bool isDtors) { |
368 | StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors" ); |
369 | GlobalVariable *GV = module.getNamedGlobal(Name); |
370 | |
371 | // If this global has internal linkage, or if it has a use, then it must be |
372 | // an old-style (llvmgcc3) static ctor with __main linked in and in use. If |
373 | // this is the case, don't execute any of the global ctors, __main will do |
374 | // it. |
375 | if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; |
376 | |
377 | // Should be an array of '{ i32, void ()* }' structs. The first value is |
378 | // the init priority, which we ignore. |
379 | ConstantArray *InitList = dyn_cast<ConstantArray>(Val: GV->getInitializer()); |
380 | if (!InitList) |
381 | return; |
382 | for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
383 | ConstantStruct *CS = dyn_cast<ConstantStruct>(Val: InitList->getOperand(i_nocapture: i)); |
384 | if (!CS) continue; |
385 | |
386 | Constant *FP = CS->getOperand(i_nocapture: 1); |
387 | if (FP->isNullValue()) |
388 | continue; // Found a sentinel value, ignore. |
389 | |
390 | // Strip off constant expression casts. |
391 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: FP)) |
392 | if (CE->isCast()) |
393 | FP = CE->getOperand(i_nocapture: 0); |
394 | |
395 | // Execute the ctor/dtor function! |
396 | if (Function *F = dyn_cast<Function>(Val: FP)) |
397 | runFunction(F, ArgValues: {}); |
398 | |
399 | // FIXME: It is marginally lame that we just do nothing here if we see an |
400 | // entry we don't recognize. It might not be unreasonable for the verifier |
401 | // to not even allow this and just assert here. |
402 | } |
403 | } |
404 | |
405 | void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { |
406 | // Execute global ctors/dtors for each module in the program. |
407 | for (std::unique_ptr<Module> &M : Modules) |
408 | runStaticConstructorsDestructors(module&: *M, isDtors); |
409 | } |
410 | |
411 | #ifndef NDEBUG |
412 | /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. |
413 | static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { |
414 | unsigned PtrSize = EE->getDataLayout().getPointerSize(); |
415 | for (unsigned i = 0; i < PtrSize; ++i) |
416 | if (*(i + (uint8_t*)Loc)) |
417 | return false; |
418 | return true; |
419 | } |
420 | #endif |
421 | |
422 | int ExecutionEngine::runFunctionAsMain(Function *Fn, |
423 | const std::vector<std::string> &argv, |
424 | const char * const * envp) { |
425 | std::vector<GenericValue> GVArgs; |
426 | GenericValue GVArgc; |
427 | GVArgc.IntVal = APInt(32, argv.size()); |
428 | |
429 | // Check main() type |
430 | unsigned NumArgs = Fn->getFunctionType()->getNumParams(); |
431 | FunctionType *FTy = Fn->getFunctionType(); |
432 | Type *PPInt8Ty = PointerType::get(C&: Fn->getContext(), AddressSpace: 0); |
433 | |
434 | // Check the argument types. |
435 | if (NumArgs > 3) |
436 | report_fatal_error(reason: "Invalid number of arguments of main() supplied" ); |
437 | if (NumArgs >= 3 && FTy->getParamType(i: 2) != PPInt8Ty) |
438 | report_fatal_error(reason: "Invalid type for third argument of main() supplied" ); |
439 | if (NumArgs >= 2 && FTy->getParamType(i: 1) != PPInt8Ty) |
440 | report_fatal_error(reason: "Invalid type for second argument of main() supplied" ); |
441 | if (NumArgs >= 1 && !FTy->getParamType(i: 0)->isIntegerTy(Bitwidth: 32)) |
442 | report_fatal_error(reason: "Invalid type for first argument of main() supplied" ); |
443 | if (!FTy->getReturnType()->isIntegerTy() && |
444 | !FTy->getReturnType()->isVoidTy()) |
445 | report_fatal_error(reason: "Invalid return type of main() supplied" ); |
446 | |
447 | ArgvArray CArgv; |
448 | ArgvArray CEnv; |
449 | if (NumArgs) { |
450 | GVArgs.push_back(x: GVArgc); // Arg #0 = argc. |
451 | if (NumArgs > 1) { |
452 | // Arg #1 = argv. |
453 | GVArgs.push_back(x: PTOGV(P: CArgv.reset(C&: Fn->getContext(), EE: this, InputArgv: argv))); |
454 | assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && |
455 | "argv[0] was null after CreateArgv" ); |
456 | if (NumArgs > 2) { |
457 | std::vector<std::string> EnvVars; |
458 | for (unsigned i = 0; envp[i]; ++i) |
459 | EnvVars.emplace_back(args: envp[i]); |
460 | // Arg #2 = envp. |
461 | GVArgs.push_back(x: PTOGV(P: CEnv.reset(C&: Fn->getContext(), EE: this, InputArgv: EnvVars))); |
462 | } |
463 | } |
464 | } |
465 | |
466 | return runFunction(F: Fn, ArgValues: GVArgs).IntVal.getZExtValue(); |
467 | } |
468 | |
469 | EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} |
470 | |
471 | EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) |
472 | : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), |
473 | OptLevel(CodeGenOptLevel::Default), MemMgr(nullptr), Resolver(nullptr) { |
474 | // IR module verification is enabled by default in debug builds, and disabled |
475 | // by default in release builds. |
476 | #ifndef NDEBUG |
477 | VerifyModules = true; |
478 | #else |
479 | VerifyModules = false; |
480 | #endif |
481 | } |
482 | |
483 | EngineBuilder::~EngineBuilder() = default; |
484 | |
485 | EngineBuilder &EngineBuilder::setMCJITMemoryManager( |
486 | std::unique_ptr<RTDyldMemoryManager> mcjmm) { |
487 | auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); |
488 | MemMgr = SharedMM; |
489 | Resolver = SharedMM; |
490 | return *this; |
491 | } |
492 | |
493 | EngineBuilder& |
494 | EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { |
495 | MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); |
496 | return *this; |
497 | } |
498 | |
499 | EngineBuilder & |
500 | EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { |
501 | Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); |
502 | return *this; |
503 | } |
504 | |
505 | ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { |
506 | std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. |
507 | |
508 | // Make sure we can resolve symbols in the program as well. The zero arg |
509 | // to the function tells DynamicLibrary to load the program, not a library. |
510 | if (sys::DynamicLibrary::LoadLibraryPermanently(Filename: nullptr, ErrMsg: ErrorStr)) |
511 | return nullptr; |
512 | |
513 | // If the user specified a memory manager but didn't specify which engine to |
514 | // create, we assume they only want the JIT, and we fail if they only want |
515 | // the interpreter. |
516 | if (MemMgr) { |
517 | if (WhichEngine & EngineKind::JIT) |
518 | WhichEngine = EngineKind::JIT; |
519 | else { |
520 | if (ErrorStr) |
521 | *ErrorStr = "Cannot create an interpreter with a memory manager." ; |
522 | return nullptr; |
523 | } |
524 | } |
525 | |
526 | // Unless the interpreter was explicitly selected or the JIT is not linked, |
527 | // try making a JIT. |
528 | if ((WhichEngine & EngineKind::JIT) && TheTM) { |
529 | if (!TM->getTarget().hasJIT()) { |
530 | errs() << "WARNING: This target JIT is not designed for the host" |
531 | << " you are running. If bad things happen, please choose" |
532 | << " a different -march switch.\n" ; |
533 | } |
534 | |
535 | ExecutionEngine *EE = nullptr; |
536 | if (ExecutionEngine::MCJITCtor) |
537 | EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), |
538 | std::move(Resolver), std::move(TheTM)); |
539 | |
540 | if (EE) { |
541 | EE->setVerifyModules(VerifyModules); |
542 | return EE; |
543 | } |
544 | } |
545 | |
546 | // If we can't make a JIT and we didn't request one specifically, try making |
547 | // an interpreter instead. |
548 | if (WhichEngine & EngineKind::Interpreter) { |
549 | if (ExecutionEngine::InterpCtor) |
550 | return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); |
551 | if (ErrorStr) |
552 | *ErrorStr = "Interpreter has not been linked in." ; |
553 | return nullptr; |
554 | } |
555 | |
556 | if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { |
557 | if (ErrorStr) |
558 | *ErrorStr = "JIT has not been linked in." ; |
559 | } |
560 | |
561 | return nullptr; |
562 | } |
563 | |
564 | void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { |
565 | if (Function *F = const_cast<Function*>(dyn_cast<Function>(Val: GV))) |
566 | return getPointerToFunction(F); |
567 | |
568 | std::lock_guard<sys::Mutex> locked(lock); |
569 | if (void* P = getPointerToGlobalIfAvailable(GV)) |
570 | return P; |
571 | |
572 | // Global variable might have been added since interpreter started. |
573 | if (GlobalVariable *GVar = |
574 | const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(Val: GV))) |
575 | emitGlobalVariable(GV: GVar); |
576 | else |
577 | llvm_unreachable("Global hasn't had an address allocated yet!" ); |
578 | |
579 | return getPointerToGlobalIfAvailable(GV); |
580 | } |
581 | |
582 | /// Converts a Constant* into a GenericValue, including handling of |
583 | /// ConstantExpr values. |
584 | GenericValue ExecutionEngine::getConstantValue(const Constant *C) { |
585 | // If its undefined, return the garbage. |
586 | if (isa<UndefValue>(Val: C)) { |
587 | GenericValue Result; |
588 | switch (C->getType()->getTypeID()) { |
589 | default: |
590 | break; |
591 | case Type::IntegerTyID: |
592 | case Type::X86_FP80TyID: |
593 | case Type::FP128TyID: |
594 | case Type::PPC_FP128TyID: |
595 | // Although the value is undefined, we still have to construct an APInt |
596 | // with the correct bit width. |
597 | Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); |
598 | break; |
599 | case Type::StructTyID: { |
600 | // if the whole struct is 'undef' just reserve memory for the value. |
601 | if(StructType *STy = dyn_cast<StructType>(Val: C->getType())) { |
602 | unsigned int elemNum = STy->getNumElements(); |
603 | Result.AggregateVal.resize(new_size: elemNum); |
604 | for (unsigned int i = 0; i < elemNum; ++i) { |
605 | Type *ElemTy = STy->getElementType(N: i); |
606 | if (ElemTy->isIntegerTy()) |
607 | Result.AggregateVal[i].IntVal = |
608 | APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
609 | else if (ElemTy->isAggregateType()) { |
610 | const Constant *ElemUndef = UndefValue::get(T: ElemTy); |
611 | Result.AggregateVal[i] = getConstantValue(C: ElemUndef); |
612 | } |
613 | } |
614 | } |
615 | } |
616 | break; |
617 | case Type::ScalableVectorTyID: |
618 | report_fatal_error( |
619 | reason: "Scalable vector support not yet implemented in ExecutionEngine" ); |
620 | case Type::ArrayTyID: { |
621 | auto *ArrTy = cast<ArrayType>(Val: C->getType()); |
622 | Type *ElemTy = ArrTy->getElementType(); |
623 | unsigned int elemNum = ArrTy->getNumElements(); |
624 | Result.AggregateVal.resize(new_size: elemNum); |
625 | if (ElemTy->isIntegerTy()) |
626 | for (unsigned int i = 0; i < elemNum; ++i) |
627 | Result.AggregateVal[i].IntVal = |
628 | APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
629 | break; |
630 | } |
631 | case Type::FixedVectorTyID: { |
632 | // if the whole vector is 'undef' just reserve memory for the value. |
633 | auto *VTy = cast<FixedVectorType>(Val: C->getType()); |
634 | Type *ElemTy = VTy->getElementType(); |
635 | unsigned int elemNum = VTy->getNumElements(); |
636 | Result.AggregateVal.resize(new_size: elemNum); |
637 | if (ElemTy->isIntegerTy()) |
638 | for (unsigned int i = 0; i < elemNum; ++i) |
639 | Result.AggregateVal[i].IntVal = |
640 | APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
641 | break; |
642 | } |
643 | } |
644 | return Result; |
645 | } |
646 | |
647 | // Otherwise, if the value is a ConstantExpr... |
648 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) { |
649 | Constant *Op0 = CE->getOperand(i_nocapture: 0); |
650 | switch (CE->getOpcode()) { |
651 | case Instruction::GetElementPtr: { |
652 | // Compute the index |
653 | GenericValue Result = getConstantValue(C: Op0); |
654 | APInt Offset(DL.getPointerSizeInBits(), 0); |
655 | cast<GEPOperator>(Val: CE)->accumulateConstantOffset(DL, Offset); |
656 | |
657 | char* tmp = (char*) Result.PointerVal; |
658 | Result = PTOGV(P: tmp + Offset.getSExtValue()); |
659 | return Result; |
660 | } |
661 | case Instruction::Trunc: { |
662 | GenericValue GV = getConstantValue(C: Op0); |
663 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
664 | GV.IntVal = GV.IntVal.trunc(width: BitWidth); |
665 | return GV; |
666 | } |
667 | case Instruction::ZExt: { |
668 | GenericValue GV = getConstantValue(C: Op0); |
669 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
670 | GV.IntVal = GV.IntVal.zext(width: BitWidth); |
671 | return GV; |
672 | } |
673 | case Instruction::SExt: { |
674 | GenericValue GV = getConstantValue(C: Op0); |
675 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
676 | GV.IntVal = GV.IntVal.sext(width: BitWidth); |
677 | return GV; |
678 | } |
679 | case Instruction::FPTrunc: { |
680 | // FIXME long double |
681 | GenericValue GV = getConstantValue(C: Op0); |
682 | GV.FloatVal = float(GV.DoubleVal); |
683 | return GV; |
684 | } |
685 | case Instruction::FPExt:{ |
686 | // FIXME long double |
687 | GenericValue GV = getConstantValue(C: Op0); |
688 | GV.DoubleVal = double(GV.FloatVal); |
689 | return GV; |
690 | } |
691 | case Instruction::UIToFP: { |
692 | GenericValue GV = getConstantValue(C: Op0); |
693 | if (CE->getType()->isFloatTy()) |
694 | GV.FloatVal = float(GV.IntVal.roundToDouble()); |
695 | else if (CE->getType()->isDoubleTy()) |
696 | GV.DoubleVal = GV.IntVal.roundToDouble(); |
697 | else if (CE->getType()->isX86_FP80Ty()) { |
698 | APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended()); |
699 | (void)apf.convertFromAPInt(Input: GV.IntVal, |
700 | IsSigned: false, |
701 | RM: APFloat::rmNearestTiesToEven); |
702 | GV.IntVal = apf.bitcastToAPInt(); |
703 | } |
704 | return GV; |
705 | } |
706 | case Instruction::SIToFP: { |
707 | GenericValue GV = getConstantValue(C: Op0); |
708 | if (CE->getType()->isFloatTy()) |
709 | GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); |
710 | else if (CE->getType()->isDoubleTy()) |
711 | GV.DoubleVal = GV.IntVal.signedRoundToDouble(); |
712 | else if (CE->getType()->isX86_FP80Ty()) { |
713 | APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended()); |
714 | (void)apf.convertFromAPInt(Input: GV.IntVal, |
715 | IsSigned: true, |
716 | RM: APFloat::rmNearestTiesToEven); |
717 | GV.IntVal = apf.bitcastToAPInt(); |
718 | } |
719 | return GV; |
720 | } |
721 | case Instruction::FPToUI: // double->APInt conversion handles sign |
722 | case Instruction::FPToSI: { |
723 | GenericValue GV = getConstantValue(C: Op0); |
724 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
725 | if (Op0->getType()->isFloatTy()) |
726 | GV.IntVal = APIntOps::RoundFloatToAPInt(Float: GV.FloatVal, width: BitWidth); |
727 | else if (Op0->getType()->isDoubleTy()) |
728 | GV.IntVal = APIntOps::RoundDoubleToAPInt(Double: GV.DoubleVal, width: BitWidth); |
729 | else if (Op0->getType()->isX86_FP80Ty()) { |
730 | APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); |
731 | uint64_t v; |
732 | bool ignored; |
733 | (void)apf.convertToInteger(Input: MutableArrayRef(v), Width: BitWidth, |
734 | IsSigned: CE->getOpcode()==Instruction::FPToSI, |
735 | RM: APFloat::rmTowardZero, IsExact: &ignored); |
736 | GV.IntVal = v; // endian? |
737 | } |
738 | return GV; |
739 | } |
740 | case Instruction::PtrToInt: { |
741 | GenericValue GV = getConstantValue(C: Op0); |
742 | uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: Op0->getType()); |
743 | assert(PtrWidth <= 64 && "Bad pointer width" ); |
744 | GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); |
745 | uint32_t IntWidth = DL.getTypeSizeInBits(Ty: CE->getType()); |
746 | GV.IntVal = GV.IntVal.zextOrTrunc(width: IntWidth); |
747 | return GV; |
748 | } |
749 | case Instruction::IntToPtr: { |
750 | GenericValue GV = getConstantValue(C: Op0); |
751 | uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: CE->getType()); |
752 | GV.IntVal = GV.IntVal.zextOrTrunc(width: PtrWidth); |
753 | assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width" ); |
754 | GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); |
755 | return GV; |
756 | } |
757 | case Instruction::BitCast: { |
758 | GenericValue GV = getConstantValue(C: Op0); |
759 | Type* DestTy = CE->getType(); |
760 | switch (Op0->getType()->getTypeID()) { |
761 | default: llvm_unreachable("Invalid bitcast operand" ); |
762 | case Type::IntegerTyID: |
763 | assert(DestTy->isFloatingPointTy() && "invalid bitcast" ); |
764 | if (DestTy->isFloatTy()) |
765 | GV.FloatVal = GV.IntVal.bitsToFloat(); |
766 | else if (DestTy->isDoubleTy()) |
767 | GV.DoubleVal = GV.IntVal.bitsToDouble(); |
768 | break; |
769 | case Type::FloatTyID: |
770 | assert(DestTy->isIntegerTy(32) && "Invalid bitcast" ); |
771 | GV.IntVal = APInt::floatToBits(V: GV.FloatVal); |
772 | break; |
773 | case Type::DoubleTyID: |
774 | assert(DestTy->isIntegerTy(64) && "Invalid bitcast" ); |
775 | GV.IntVal = APInt::doubleToBits(V: GV.DoubleVal); |
776 | break; |
777 | case Type::PointerTyID: |
778 | assert(DestTy->isPointerTy() && "Invalid bitcast" ); |
779 | break; // getConstantValue(Op0) above already converted it |
780 | } |
781 | return GV; |
782 | } |
783 | case Instruction::Add: |
784 | case Instruction::FAdd: |
785 | case Instruction::Sub: |
786 | case Instruction::FSub: |
787 | case Instruction::Mul: |
788 | case Instruction::FMul: |
789 | case Instruction::UDiv: |
790 | case Instruction::SDiv: |
791 | case Instruction::URem: |
792 | case Instruction::SRem: |
793 | case Instruction::And: |
794 | case Instruction::Or: |
795 | case Instruction::Xor: { |
796 | GenericValue LHS = getConstantValue(C: Op0); |
797 | GenericValue RHS = getConstantValue(C: CE->getOperand(i_nocapture: 1)); |
798 | GenericValue GV; |
799 | switch (CE->getOperand(i_nocapture: 0)->getType()->getTypeID()) { |
800 | default: llvm_unreachable("Bad add type!" ); |
801 | case Type::IntegerTyID: |
802 | switch (CE->getOpcode()) { |
803 | default: llvm_unreachable("Invalid integer opcode" ); |
804 | case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; |
805 | case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; |
806 | case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; |
807 | case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS: RHS.IntVal); break; |
808 | case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS: RHS.IntVal); break; |
809 | case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS: RHS.IntVal); break; |
810 | case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS: RHS.IntVal); break; |
811 | case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; |
812 | case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; |
813 | case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; |
814 | } |
815 | break; |
816 | case Type::FloatTyID: |
817 | switch (CE->getOpcode()) { |
818 | default: llvm_unreachable("Invalid float opcode" ); |
819 | case Instruction::FAdd: |
820 | GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; |
821 | case Instruction::FSub: |
822 | GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; |
823 | case Instruction::FMul: |
824 | GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; |
825 | case Instruction::FDiv: |
826 | GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; |
827 | case Instruction::FRem: |
828 | GV.FloatVal = std::fmod(x: LHS.FloatVal,y: RHS.FloatVal); break; |
829 | } |
830 | break; |
831 | case Type::DoubleTyID: |
832 | switch (CE->getOpcode()) { |
833 | default: llvm_unreachable("Invalid double opcode" ); |
834 | case Instruction::FAdd: |
835 | GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; |
836 | case Instruction::FSub: |
837 | GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; |
838 | case Instruction::FMul: |
839 | GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; |
840 | case Instruction::FDiv: |
841 | GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; |
842 | case Instruction::FRem: |
843 | GV.DoubleVal = std::fmod(x: LHS.DoubleVal,y: RHS.DoubleVal); break; |
844 | } |
845 | break; |
846 | case Type::X86_FP80TyID: |
847 | case Type::PPC_FP128TyID: |
848 | case Type::FP128TyID: { |
849 | const fltSemantics &Sem = CE->getOperand(i_nocapture: 0)->getType()->getFltSemantics(); |
850 | APFloat apfLHS = APFloat(Sem, LHS.IntVal); |
851 | switch (CE->getOpcode()) { |
852 | default: llvm_unreachable("Invalid long double opcode" ); |
853 | case Instruction::FAdd: |
854 | apfLHS.add(RHS: APFloat(Sem, RHS.IntVal), RM: APFloat::rmNearestTiesToEven); |
855 | GV.IntVal = apfLHS.bitcastToAPInt(); |
856 | break; |
857 | case Instruction::FSub: |
858 | apfLHS.subtract(RHS: APFloat(Sem, RHS.IntVal), |
859 | RM: APFloat::rmNearestTiesToEven); |
860 | GV.IntVal = apfLHS.bitcastToAPInt(); |
861 | break; |
862 | case Instruction::FMul: |
863 | apfLHS.multiply(RHS: APFloat(Sem, RHS.IntVal), |
864 | RM: APFloat::rmNearestTiesToEven); |
865 | GV.IntVal = apfLHS.bitcastToAPInt(); |
866 | break; |
867 | case Instruction::FDiv: |
868 | apfLHS.divide(RHS: APFloat(Sem, RHS.IntVal), |
869 | RM: APFloat::rmNearestTiesToEven); |
870 | GV.IntVal = apfLHS.bitcastToAPInt(); |
871 | break; |
872 | case Instruction::FRem: |
873 | apfLHS.mod(RHS: APFloat(Sem, RHS.IntVal)); |
874 | GV.IntVal = apfLHS.bitcastToAPInt(); |
875 | break; |
876 | } |
877 | } |
878 | break; |
879 | } |
880 | return GV; |
881 | } |
882 | default: |
883 | break; |
884 | } |
885 | |
886 | SmallString<256> Msg; |
887 | raw_svector_ostream OS(Msg); |
888 | OS << "ConstantExpr not handled: " << *CE; |
889 | report_fatal_error(reason: OS.str()); |
890 | } |
891 | |
892 | if (auto *TETy = dyn_cast<TargetExtType>(Val: C->getType())) { |
893 | assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() && |
894 | "TargetExtType only supports null constant value" ); |
895 | C = Constant::getNullValue(Ty: TETy->getLayoutType()); |
896 | } |
897 | |
898 | // Otherwise, we have a simple constant. |
899 | GenericValue Result; |
900 | switch (C->getType()->getTypeID()) { |
901 | case Type::FloatTyID: |
902 | Result.FloatVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToFloat(); |
903 | break; |
904 | case Type::DoubleTyID: |
905 | Result.DoubleVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToDouble(); |
906 | break; |
907 | case Type::X86_FP80TyID: |
908 | case Type::FP128TyID: |
909 | case Type::PPC_FP128TyID: |
910 | Result.IntVal = cast <ConstantFP>(Val: C)->getValueAPF().bitcastToAPInt(); |
911 | break; |
912 | case Type::IntegerTyID: |
913 | Result.IntVal = cast<ConstantInt>(Val: C)->getValue(); |
914 | break; |
915 | case Type::PointerTyID: |
916 | while (auto *A = dyn_cast<GlobalAlias>(Val: C)) { |
917 | C = A->getAliasee(); |
918 | } |
919 | if (isa<ConstantPointerNull>(Val: C)) |
920 | Result.PointerVal = nullptr; |
921 | else if (const Function *F = dyn_cast<Function>(Val: C)) |
922 | Result = PTOGV(P: getPointerToFunctionOrStub(F: const_cast<Function*>(F))); |
923 | else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: C)) |
924 | Result = PTOGV(P: getOrEmitGlobalVariable(GV: const_cast<GlobalVariable*>(GV))); |
925 | else |
926 | llvm_unreachable("Unknown constant pointer type!" ); |
927 | break; |
928 | case Type::ScalableVectorTyID: |
929 | report_fatal_error( |
930 | reason: "Scalable vector support not yet implemented in ExecutionEngine" ); |
931 | case Type::FixedVectorTyID: { |
932 | unsigned elemNum; |
933 | Type* ElemTy; |
934 | const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(Val: C); |
935 | const ConstantVector *CV = dyn_cast<ConstantVector>(Val: C); |
936 | const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(Val: C); |
937 | |
938 | if (CDV) { |
939 | elemNum = CDV->getNumElements(); |
940 | ElemTy = CDV->getElementType(); |
941 | } else if (CV || CAZ) { |
942 | auto *VTy = cast<FixedVectorType>(Val: C->getType()); |
943 | elemNum = VTy->getNumElements(); |
944 | ElemTy = VTy->getElementType(); |
945 | } else { |
946 | llvm_unreachable("Unknown constant vector type!" ); |
947 | } |
948 | |
949 | Result.AggregateVal.resize(new_size: elemNum); |
950 | // Check if vector holds floats. |
951 | if(ElemTy->isFloatTy()) { |
952 | if (CAZ) { |
953 | GenericValue floatZero; |
954 | floatZero.FloatVal = 0.f; |
955 | llvm::fill(Range&: Result.AggregateVal, Value&: floatZero); |
956 | break; |
957 | } |
958 | if(CV) { |
959 | for (unsigned i = 0; i < elemNum; ++i) |
960 | if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i))) |
961 | Result.AggregateVal[i].FloatVal = cast<ConstantFP>( |
962 | Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToFloat(); |
963 | break; |
964 | } |
965 | if(CDV) |
966 | for (unsigned i = 0; i < elemNum; ++i) |
967 | Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); |
968 | |
969 | break; |
970 | } |
971 | // Check if vector holds doubles. |
972 | if (ElemTy->isDoubleTy()) { |
973 | if (CAZ) { |
974 | GenericValue doubleZero; |
975 | doubleZero.DoubleVal = 0.0; |
976 | llvm::fill(Range&: Result.AggregateVal, Value&: doubleZero); |
977 | break; |
978 | } |
979 | if(CV) { |
980 | for (unsigned i = 0; i < elemNum; ++i) |
981 | if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i))) |
982 | Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( |
983 | Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToDouble(); |
984 | break; |
985 | } |
986 | if(CDV) |
987 | for (unsigned i = 0; i < elemNum; ++i) |
988 | Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); |
989 | |
990 | break; |
991 | } |
992 | // Check if vector holds integers. |
993 | if (ElemTy->isIntegerTy()) { |
994 | if (CAZ) { |
995 | GenericValue intZero; |
996 | intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); |
997 | llvm::fill(Range&: Result.AggregateVal, Value&: intZero); |
998 | break; |
999 | } |
1000 | if(CV) { |
1001 | for (unsigned i = 0; i < elemNum; ++i) |
1002 | if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i))) |
1003 | Result.AggregateVal[i].IntVal = cast<ConstantInt>( |
1004 | Val: CV->getOperand(i_nocapture: i))->getValue(); |
1005 | else { |
1006 | Result.AggregateVal[i].IntVal = |
1007 | APInt(CV->getOperand(i_nocapture: i)->getType()->getPrimitiveSizeInBits(), 0); |
1008 | } |
1009 | break; |
1010 | } |
1011 | if(CDV) |
1012 | for (unsigned i = 0; i < elemNum; ++i) |
1013 | Result.AggregateVal[i].IntVal = APInt( |
1014 | CDV->getElementType()->getPrimitiveSizeInBits(), |
1015 | CDV->getElementAsInteger(i)); |
1016 | |
1017 | break; |
1018 | } |
1019 | llvm_unreachable("Unknown constant pointer type!" ); |
1020 | } break; |
1021 | |
1022 | default: |
1023 | SmallString<256> Msg; |
1024 | raw_svector_ostream OS(Msg); |
1025 | OS << "ERROR: Constant unimplemented for type: " << *C->getType(); |
1026 | report_fatal_error(reason: OS.str()); |
1027 | } |
1028 | |
1029 | return Result; |
1030 | } |
1031 | |
1032 | void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, |
1033 | GenericValue *Ptr, Type *Ty) { |
1034 | // It is safe to treat TargetExtType as its layout type since the underlying |
1035 | // bits are only copied and are not inspected. |
1036 | if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty)) |
1037 | Ty = TETy->getLayoutType(); |
1038 | |
1039 | const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); |
1040 | |
1041 | switch (Ty->getTypeID()) { |
1042 | default: |
1043 | dbgs() << "Cannot store value of type " << *Ty << "!\n" ; |
1044 | break; |
1045 | case Type::IntegerTyID: |
1046 | StoreIntToMemory(IntVal: Val.IntVal, Dst: (uint8_t*)Ptr, StoreBytes); |
1047 | break; |
1048 | case Type::FloatTyID: |
1049 | *((float*)Ptr) = Val.FloatVal; |
1050 | break; |
1051 | case Type::DoubleTyID: |
1052 | *((double*)Ptr) = Val.DoubleVal; |
1053 | break; |
1054 | case Type::X86_FP80TyID: |
1055 | memcpy(dest: static_cast<void *>(Ptr), src: Val.IntVal.getRawData(), n: 10); |
1056 | break; |
1057 | case Type::PointerTyID: |
1058 | // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. |
1059 | if (StoreBytes != sizeof(PointerTy)) |
1060 | memset(s: &(Ptr->PointerVal), c: 0, n: StoreBytes); |
1061 | |
1062 | *((PointerTy*)Ptr) = Val.PointerVal; |
1063 | break; |
1064 | case Type::FixedVectorTyID: |
1065 | case Type::ScalableVectorTyID: |
1066 | for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { |
1067 | if (cast<VectorType>(Val: Ty)->getElementType()->isDoubleTy()) |
1068 | *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; |
1069 | if (cast<VectorType>(Val: Ty)->getElementType()->isFloatTy()) |
1070 | *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; |
1071 | if (cast<VectorType>(Val: Ty)->getElementType()->isIntegerTy()) { |
1072 | unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; |
1073 | StoreIntToMemory(IntVal: Val.AggregateVal[i].IntVal, |
1074 | Dst: (uint8_t*)Ptr + numOfBytes*i, StoreBytes: numOfBytes); |
1075 | } |
1076 | } |
1077 | break; |
1078 | } |
1079 | |
1080 | if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) |
1081 | // Host and target are different endian - reverse the stored bytes. |
1082 | std::reverse(first: (uint8_t*)Ptr, last: StoreBytes + (uint8_t*)Ptr); |
1083 | } |
1084 | |
1085 | /// FIXME: document |
1086 | /// |
1087 | void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, |
1088 | GenericValue *Ptr, |
1089 | Type *Ty) { |
1090 | if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty)) |
1091 | Ty = TETy->getLayoutType(); |
1092 | |
1093 | const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); |
1094 | |
1095 | switch (Ty->getTypeID()) { |
1096 | case Type::IntegerTyID: |
1097 | // An APInt with all words initially zero. |
1098 | Result.IntVal = APInt(cast<IntegerType>(Val: Ty)->getBitWidth(), 0); |
1099 | LoadIntFromMemory(IntVal&: Result.IntVal, Src: (uint8_t*)Ptr, LoadBytes); |
1100 | break; |
1101 | case Type::FloatTyID: |
1102 | Result.FloatVal = *((float*)Ptr); |
1103 | break; |
1104 | case Type::DoubleTyID: |
1105 | Result.DoubleVal = *((double*)Ptr); |
1106 | break; |
1107 | case Type::PointerTyID: |
1108 | Result.PointerVal = *((PointerTy*)Ptr); |
1109 | break; |
1110 | case Type::X86_FP80TyID: { |
1111 | // This is endian dependent, but it will only work on x86 anyway. |
1112 | // FIXME: Will not trap if loading a signaling NaN. |
1113 | uint64_t y[2]; |
1114 | memcpy(dest: y, src: Ptr, n: 10); |
1115 | Result.IntVal = APInt(80, y); |
1116 | break; |
1117 | } |
1118 | case Type::ScalableVectorTyID: |
1119 | report_fatal_error( |
1120 | reason: "Scalable vector support not yet implemented in ExecutionEngine" ); |
1121 | case Type::FixedVectorTyID: { |
1122 | auto *VT = cast<FixedVectorType>(Val: Ty); |
1123 | Type *ElemT = VT->getElementType(); |
1124 | const unsigned numElems = VT->getNumElements(); |
1125 | if (ElemT->isFloatTy()) { |
1126 | Result.AggregateVal.resize(new_size: numElems); |
1127 | for (unsigned i = 0; i < numElems; ++i) |
1128 | Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); |
1129 | } |
1130 | if (ElemT->isDoubleTy()) { |
1131 | Result.AggregateVal.resize(new_size: numElems); |
1132 | for (unsigned i = 0; i < numElems; ++i) |
1133 | Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); |
1134 | } |
1135 | if (ElemT->isIntegerTy()) { |
1136 | GenericValue intZero; |
1137 | const unsigned elemBitWidth = cast<IntegerType>(Val: ElemT)->getBitWidth(); |
1138 | intZero.IntVal = APInt(elemBitWidth, 0); |
1139 | Result.AggregateVal.resize(new_size: numElems, x: intZero); |
1140 | for (unsigned i = 0; i < numElems; ++i) |
1141 | LoadIntFromMemory(IntVal&: Result.AggregateVal[i].IntVal, |
1142 | Src: (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, LoadBytes: (elemBitWidth+7)/8); |
1143 | } |
1144 | break; |
1145 | } |
1146 | default: |
1147 | SmallString<256> Msg; |
1148 | raw_svector_ostream OS(Msg); |
1149 | OS << "Cannot load value of type " << *Ty << "!" ; |
1150 | report_fatal_error(reason: OS.str()); |
1151 | } |
1152 | } |
1153 | |
1154 | void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { |
1155 | LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " " ); |
1156 | LLVM_DEBUG(Init->dump()); |
1157 | if (isa<UndefValue>(Val: Init)) |
1158 | return; |
1159 | |
1160 | if (const ConstantVector *CP = dyn_cast<ConstantVector>(Val: Init)) { |
1161 | unsigned ElementSize = |
1162 | getDataLayout().getTypeAllocSize(Ty: CP->getType()->getElementType()); |
1163 | for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
1164 | InitializeMemory(Init: CP->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize); |
1165 | return; |
1166 | } |
1167 | |
1168 | if (isa<ConstantAggregateZero>(Val: Init)) { |
1169 | memset(s: Addr, c: 0, n: (size_t)getDataLayout().getTypeAllocSize(Ty: Init->getType())); |
1170 | return; |
1171 | } |
1172 | |
1173 | if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Val: Init)) { |
1174 | unsigned ElementSize = |
1175 | getDataLayout().getTypeAllocSize(Ty: CPA->getType()->getElementType()); |
1176 | for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
1177 | InitializeMemory(Init: CPA->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize); |
1178 | return; |
1179 | } |
1180 | |
1181 | if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Val: Init)) { |
1182 | const StructLayout *SL = |
1183 | getDataLayout().getStructLayout(Ty: cast<StructType>(Val: CPS->getType())); |
1184 | for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
1185 | InitializeMemory(Init: CPS->getOperand(i_nocapture: i), Addr: (char*)Addr+SL->getElementOffset(Idx: i)); |
1186 | return; |
1187 | } |
1188 | |
1189 | if (const ConstantDataSequential *CDS = |
1190 | dyn_cast<ConstantDataSequential>(Val: Init)) { |
1191 | // CDS is already laid out in host memory order. |
1192 | StringRef Data = CDS->getRawDataValues(); |
1193 | memcpy(dest: Addr, src: Data.data(), n: Data.size()); |
1194 | return; |
1195 | } |
1196 | |
1197 | if (Init->getType()->isFirstClassType()) { |
1198 | GenericValue Val = getConstantValue(C: Init); |
1199 | StoreValueToMemory(Val, Ptr: (GenericValue*)Addr, Ty: Init->getType()); |
1200 | return; |
1201 | } |
1202 | |
1203 | LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n" ); |
1204 | llvm_unreachable("Unknown constant type to initialize memory with!" ); |
1205 | } |
1206 | |
1207 | /// EmitGlobals - Emit all of the global variables to memory, storing their |
1208 | /// addresses into GlobalAddress. This must make sure to copy the contents of |
1209 | /// their initializers into the memory. |
1210 | void ExecutionEngine::emitGlobals() { |
1211 | // Loop over all of the global variables in the program, allocating the memory |
1212 | // to hold them. If there is more than one module, do a prepass over globals |
1213 | // to figure out how the different modules should link together. |
1214 | std::map<std::pair<std::string, Type*>, |
1215 | const GlobalValue*> LinkedGlobalsMap; |
1216 | |
1217 | if (Modules.size() != 1) { |
1218 | for (const auto &M : Modules) { |
1219 | for (const auto &GV : M->globals()) { |
1220 | if (GV.hasLocalLinkage() || GV.isDeclaration() || |
1221 | GV.hasAppendingLinkage() || !GV.hasName()) |
1222 | continue;// Ignore external globals and globals with internal linkage. |
1223 | |
1224 | const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair( |
1225 | x: std::string(GV.getName()), y: GV.getType())]; |
1226 | |
1227 | // If this is the first time we've seen this global, it is the canonical |
1228 | // version. |
1229 | if (!GVEntry) { |
1230 | GVEntry = &GV; |
1231 | continue; |
1232 | } |
1233 | |
1234 | // If the existing global is strong, never replace it. |
1235 | if (GVEntry->hasExternalLinkage()) |
1236 | continue; |
1237 | |
1238 | // Otherwise, we know it's linkonce/weak, replace it if this is a strong |
1239 | // symbol. FIXME is this right for common? |
1240 | if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) |
1241 | GVEntry = &GV; |
1242 | } |
1243 | } |
1244 | } |
1245 | |
1246 | std::vector<const GlobalValue*> NonCanonicalGlobals; |
1247 | for (const auto &M : Modules) { |
1248 | for (const auto &GV : M->globals()) { |
1249 | // In the multi-module case, see what this global maps to. |
1250 | if (!LinkedGlobalsMap.empty()) { |
1251 | if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( |
1252 | x: std::string(GV.getName()), y: GV.getType())]) { |
1253 | // If something else is the canonical global, ignore this one. |
1254 | if (GVEntry != &GV) { |
1255 | NonCanonicalGlobals.push_back(x: &GV); |
1256 | continue; |
1257 | } |
1258 | } |
1259 | } |
1260 | |
1261 | if (!GV.isDeclaration()) { |
1262 | addGlobalMapping(GV: &GV, Addr: getMemoryForGV(GV: &GV)); |
1263 | } else { |
1264 | // External variable reference. Try to use the dynamic loader to |
1265 | // get a pointer to it. |
1266 | if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( |
1267 | symbolName: std::string(GV.getName()))) |
1268 | addGlobalMapping(GV: &GV, Addr: SymAddr); |
1269 | else { |
1270 | report_fatal_error(reason: "Could not resolve external global address: " |
1271 | +GV.getName()); |
1272 | } |
1273 | } |
1274 | } |
1275 | |
1276 | // If there are multiple modules, map the non-canonical globals to their |
1277 | // canonical location. |
1278 | if (!NonCanonicalGlobals.empty()) { |
1279 | for (const GlobalValue *GV : NonCanonicalGlobals) { |
1280 | const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair( |
1281 | x: std::string(GV->getName()), y: GV->getType())]; |
1282 | void *Ptr = getPointerToGlobalIfAvailable(GV: CGV); |
1283 | assert(Ptr && "Canonical global wasn't codegen'd!" ); |
1284 | addGlobalMapping(GV, Addr: Ptr); |
1285 | } |
1286 | } |
1287 | |
1288 | // Now that all of the globals are set up in memory, loop through them all |
1289 | // and initialize their contents. |
1290 | for (const auto &GV : M->globals()) { |
1291 | if (!GV.isDeclaration()) { |
1292 | if (!LinkedGlobalsMap.empty()) { |
1293 | if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( |
1294 | x: std::string(GV.getName()), y: GV.getType())]) |
1295 | if (GVEntry != &GV) // Not the canonical variable. |
1296 | continue; |
1297 | } |
1298 | emitGlobalVariable(GV: &GV); |
1299 | } |
1300 | } |
1301 | } |
1302 | } |
1303 | |
1304 | // EmitGlobalVariable - This method emits the specified global variable to the |
1305 | // address specified in GlobalAddresses, or allocates new memory if it's not |
1306 | // already in the map. |
1307 | void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) { |
1308 | void *GA = getPointerToGlobalIfAvailable(GV); |
1309 | |
1310 | if (!GA) { |
1311 | // If it's not already specified, allocate memory for the global. |
1312 | GA = getMemoryForGV(GV); |
1313 | |
1314 | // If we failed to allocate memory for this global, return. |
1315 | if (!GA) return; |
1316 | |
1317 | addGlobalMapping(GV, Addr: GA); |
1318 | } |
1319 | |
1320 | // Don't initialize if it's thread local, let the client do it. |
1321 | if (!GV->isThreadLocal()) |
1322 | InitializeMemory(Init: GV->getInitializer(), Addr: GA); |
1323 | |
1324 | Type *ElTy = GV->getValueType(); |
1325 | size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(Ty: ElTy); |
1326 | NumInitBytes += (unsigned)GVSize; |
1327 | ++NumGlobals; |
1328 | } |
1329 | |