| 1 | //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the common interface used by the various execution engine |
| 10 | // subclasses. |
| 11 | // |
| 12 | // FIXME: This file needs to be updated to support scalable vectors |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| 17 | #include "llvm/ADT/SmallString.h" |
| 18 | #include "llvm/ADT/Statistic.h" |
| 19 | #include "llvm/ExecutionEngine/GenericValue.h" |
| 20 | #include "llvm/ExecutionEngine/JITEventListener.h" |
| 21 | #include "llvm/ExecutionEngine/ObjectCache.h" |
| 22 | #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" |
| 23 | #include "llvm/IR/Constants.h" |
| 24 | #include "llvm/IR/DataLayout.h" |
| 25 | #include "llvm/IR/DerivedTypes.h" |
| 26 | #include "llvm/IR/Mangler.h" |
| 27 | #include "llvm/IR/Module.h" |
| 28 | #include "llvm/IR/Operator.h" |
| 29 | #include "llvm/IR/ValueHandle.h" |
| 30 | #include "llvm/MC/TargetRegistry.h" |
| 31 | #include "llvm/Object/Archive.h" |
| 32 | #include "llvm/Object/ObjectFile.h" |
| 33 | #include "llvm/Support/Debug.h" |
| 34 | #include "llvm/Support/DynamicLibrary.h" |
| 35 | #include "llvm/Support/ErrorHandling.h" |
| 36 | #include "llvm/Support/raw_ostream.h" |
| 37 | #include "llvm/Target/TargetMachine.h" |
| 38 | #include "llvm/TargetParser/Host.h" |
| 39 | #include <cmath> |
| 40 | #include <cstring> |
| 41 | #include <mutex> |
| 42 | using namespace llvm; |
| 43 | |
| 44 | #define DEBUG_TYPE "jit" |
| 45 | |
| 46 | STATISTIC(NumInitBytes, "Number of bytes of global vars initialized" ); |
| 47 | STATISTIC(NumGlobals , "Number of global vars initialized" ); |
| 48 | |
| 49 | ExecutionEngine *(*ExecutionEngine::MCJITCtor)( |
| 50 | std::unique_ptr<Module> M, std::string *ErrorStr, |
| 51 | std::shared_ptr<MCJITMemoryManager> MemMgr, |
| 52 | std::shared_ptr<LegacyJITSymbolResolver> Resolver, |
| 53 | std::unique_ptr<TargetMachine> TM) = nullptr; |
| 54 | |
| 55 | ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, |
| 56 | std::string *ErrorStr) =nullptr; |
| 57 | |
| 58 | void JITEventListener::anchor() {} |
| 59 | |
| 60 | void ObjectCache::anchor() {} |
| 61 | |
| 62 | void ExecutionEngine::Init(std::unique_ptr<Module> M) { |
| 63 | CompilingLazily = false; |
| 64 | GVCompilationDisabled = false; |
| 65 | SymbolSearchingDisabled = false; |
| 66 | |
| 67 | // IR module verification is enabled by default in debug builds, and disabled |
| 68 | // by default in release builds. |
| 69 | #ifndef NDEBUG |
| 70 | VerifyModules = true; |
| 71 | #else |
| 72 | VerifyModules = false; |
| 73 | #endif |
| 74 | |
| 75 | assert(M && "Module is null?" ); |
| 76 | Modules.push_back(Elt: std::move(M)); |
| 77 | } |
| 78 | |
| 79 | ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) |
| 80 | : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { |
| 81 | Init(M: std::move(M)); |
| 82 | } |
| 83 | |
| 84 | ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) |
| 85 | : DL(std::move(DL)), LazyFunctionCreator(nullptr) { |
| 86 | Init(M: std::move(M)); |
| 87 | } |
| 88 | |
| 89 | ExecutionEngine::~ExecutionEngine() { |
| 90 | clearAllGlobalMappings(); |
| 91 | } |
| 92 | |
| 93 | namespace { |
| 94 | /// Helper class which uses a value handler to automatically deletes the |
| 95 | /// memory block when the GlobalVariable is destroyed. |
| 96 | class GVMemoryBlock final : public CallbackVH { |
| 97 | GVMemoryBlock(const GlobalVariable *GV) |
| 98 | : CallbackVH(const_cast<GlobalVariable*>(GV)) {} |
| 99 | |
| 100 | public: |
| 101 | /// Returns the address the GlobalVariable should be written into. The |
| 102 | /// GVMemoryBlock object prefixes that. |
| 103 | static char *Create(const GlobalVariable *GV, const DataLayout& TD) { |
| 104 | Type *ElTy = GV->getValueType(); |
| 105 | size_t GVSize = (size_t)TD.getTypeAllocSize(Ty: ElTy); |
| 106 | void *RawMemory = ::operator new( |
| 107 | alignTo(Size: sizeof(GVMemoryBlock), A: TD.getPreferredAlign(GV)) + GVSize); |
| 108 | new(RawMemory) GVMemoryBlock(GV); |
| 109 | return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); |
| 110 | } |
| 111 | |
| 112 | void deleted() override { |
| 113 | // We allocated with operator new and with some extra memory hanging off the |
| 114 | // end, so don't just delete this. I'm not sure if this is actually |
| 115 | // required. |
| 116 | this->~GVMemoryBlock(); |
| 117 | ::operator delete(this); |
| 118 | } |
| 119 | }; |
| 120 | } // anonymous namespace |
| 121 | |
| 122 | char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { |
| 123 | return GVMemoryBlock::Create(GV, TD: getDataLayout()); |
| 124 | } |
| 125 | |
| 126 | void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { |
| 127 | llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile." ); |
| 128 | } |
| 129 | |
| 130 | void |
| 131 | ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { |
| 132 | llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile." ); |
| 133 | } |
| 134 | |
| 135 | void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { |
| 136 | llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive." ); |
| 137 | } |
| 138 | |
| 139 | bool ExecutionEngine::removeModule(Module *M) { |
| 140 | for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { |
| 141 | Module *Found = I->get(); |
| 142 | if (Found == M) { |
| 143 | I->release(); |
| 144 | Modules.erase(CI: I); |
| 145 | clearGlobalMappingsFromModule(M); |
| 146 | return true; |
| 147 | } |
| 148 | } |
| 149 | return false; |
| 150 | } |
| 151 | |
| 152 | Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { |
| 153 | for (const auto &M : Modules) { |
| 154 | Function *F = M->getFunction(Name: FnName); |
| 155 | if (F && !F->isDeclaration()) |
| 156 | return F; |
| 157 | } |
| 158 | return nullptr; |
| 159 | } |
| 160 | |
| 161 | GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { |
| 162 | for (const auto &M : Modules) { |
| 163 | GlobalVariable *GV = M->getGlobalVariable(Name, AllowInternal); |
| 164 | if (GV && !GV->isDeclaration()) |
| 165 | return GV; |
| 166 | } |
| 167 | return nullptr; |
| 168 | } |
| 169 | |
| 170 | uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { |
| 171 | GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Key: Name); |
| 172 | uint64_t OldVal; |
| 173 | |
| 174 | // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the |
| 175 | // GlobalAddressMap. |
| 176 | if (I == GlobalAddressMap.end()) |
| 177 | OldVal = 0; |
| 178 | else { |
| 179 | GlobalAddressReverseMap.erase(x: I->second); |
| 180 | OldVal = I->second; |
| 181 | GlobalAddressMap.erase(I); |
| 182 | } |
| 183 | |
| 184 | return OldVal; |
| 185 | } |
| 186 | |
| 187 | std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { |
| 188 | assert(GV->hasName() && "Global must have name." ); |
| 189 | |
| 190 | std::lock_guard<sys::Mutex> locked(lock); |
| 191 | SmallString<128> FullName; |
| 192 | |
| 193 | const DataLayout &DL = |
| 194 | GV->getDataLayout().isDefault() |
| 195 | ? getDataLayout() |
| 196 | : GV->getDataLayout(); |
| 197 | |
| 198 | Mangler::getNameWithPrefix(OutName&: FullName, GVName: GV->getName(), DL); |
| 199 | return std::string(FullName); |
| 200 | } |
| 201 | |
| 202 | void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { |
| 203 | std::lock_guard<sys::Mutex> locked(lock); |
| 204 | addGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr); |
| 205 | } |
| 206 | |
| 207 | void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { |
| 208 | std::lock_guard<sys::Mutex> locked(lock); |
| 209 | |
| 210 | assert(!Name.empty() && "Empty GlobalMapping symbol name!" ); |
| 211 | |
| 212 | LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n" ;); |
| 213 | uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; |
| 214 | assert((!CurVal || !Addr) && "GlobalMapping already established!" ); |
| 215 | CurVal = Addr; |
| 216 | |
| 217 | // If we are using the reverse mapping, add it too. |
| 218 | if (!EEState.getGlobalAddressReverseMap().empty()) { |
| 219 | std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; |
| 220 | assert((!V.empty() || !Name.empty()) && |
| 221 | "GlobalMapping already established!" ); |
| 222 | V = std::string(Name); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | void ExecutionEngine::clearAllGlobalMappings() { |
| 227 | std::lock_guard<sys::Mutex> locked(lock); |
| 228 | |
| 229 | EEState.getGlobalAddressMap().clear(); |
| 230 | EEState.getGlobalAddressReverseMap().clear(); |
| 231 | } |
| 232 | |
| 233 | void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { |
| 234 | std::lock_guard<sys::Mutex> locked(lock); |
| 235 | |
| 236 | for (GlobalObject &GO : M->global_objects()) |
| 237 | EEState.RemoveMapping(Name: getMangledName(GV: &GO)); |
| 238 | } |
| 239 | |
| 240 | uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, |
| 241 | void *Addr) { |
| 242 | std::lock_guard<sys::Mutex> locked(lock); |
| 243 | return updateGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr); |
| 244 | } |
| 245 | |
| 246 | uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { |
| 247 | std::lock_guard<sys::Mutex> locked(lock); |
| 248 | |
| 249 | ExecutionEngineState::GlobalAddressMapTy &Map = |
| 250 | EEState.getGlobalAddressMap(); |
| 251 | |
| 252 | // Deleting from the mapping? |
| 253 | if (!Addr) |
| 254 | return EEState.RemoveMapping(Name); |
| 255 | |
| 256 | uint64_t &CurVal = Map[Name]; |
| 257 | uint64_t OldVal = CurVal; |
| 258 | |
| 259 | if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) |
| 260 | EEState.getGlobalAddressReverseMap().erase(x: CurVal); |
| 261 | CurVal = Addr; |
| 262 | |
| 263 | // If we are using the reverse mapping, add it too. |
| 264 | if (!EEState.getGlobalAddressReverseMap().empty()) { |
| 265 | std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; |
| 266 | assert((!V.empty() || !Name.empty()) && |
| 267 | "GlobalMapping already established!" ); |
| 268 | V = std::string(Name); |
| 269 | } |
| 270 | return OldVal; |
| 271 | } |
| 272 | |
| 273 | uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { |
| 274 | std::lock_guard<sys::Mutex> locked(lock); |
| 275 | uint64_t Address = 0; |
| 276 | ExecutionEngineState::GlobalAddressMapTy::iterator I = |
| 277 | EEState.getGlobalAddressMap().find(Key: S); |
| 278 | if (I != EEState.getGlobalAddressMap().end()) |
| 279 | Address = I->second; |
| 280 | return Address; |
| 281 | } |
| 282 | |
| 283 | |
| 284 | void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { |
| 285 | std::lock_guard<sys::Mutex> locked(lock); |
| 286 | if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) |
| 287 | return Address; |
| 288 | return nullptr; |
| 289 | } |
| 290 | |
| 291 | void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { |
| 292 | std::lock_guard<sys::Mutex> locked(lock); |
| 293 | return getPointerToGlobalIfAvailable(S: getMangledName(GV)); |
| 294 | } |
| 295 | |
| 296 | const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { |
| 297 | std::lock_guard<sys::Mutex> locked(lock); |
| 298 | |
| 299 | // If we haven't computed the reverse mapping yet, do so first. |
| 300 | if (EEState.getGlobalAddressReverseMap().empty()) { |
| 301 | for (ExecutionEngineState::GlobalAddressMapTy::iterator |
| 302 | I = EEState.getGlobalAddressMap().begin(), |
| 303 | E = EEState.getGlobalAddressMap().end(); I != E; ++I) { |
| 304 | StringRef Name = I->first(); |
| 305 | uint64_t Addr = I->second; |
| 306 | EEState.getGlobalAddressReverseMap().insert( |
| 307 | x: std::make_pair(x&: Addr, y: std::string(Name))); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | std::map<uint64_t, std::string>::iterator I = |
| 312 | EEState.getGlobalAddressReverseMap().find(x: (uint64_t) Addr); |
| 313 | |
| 314 | if (I != EEState.getGlobalAddressReverseMap().end()) { |
| 315 | StringRef Name = I->second; |
| 316 | for (const auto &M : Modules) |
| 317 | if (GlobalValue *GV = M->getNamedValue(Name)) |
| 318 | return GV; |
| 319 | } |
| 320 | return nullptr; |
| 321 | } |
| 322 | |
| 323 | namespace { |
| 324 | class ArgvArray { |
| 325 | std::unique_ptr<char[]> Array; |
| 326 | std::vector<std::unique_ptr<char[]>> Values; |
| 327 | public: |
| 328 | /// Turn a vector of strings into a nice argv style array of pointers to null |
| 329 | /// terminated strings. |
| 330 | void *reset(LLVMContext &C, ExecutionEngine *EE, |
| 331 | const std::vector<std::string> &InputArgv); |
| 332 | }; |
| 333 | } // anonymous namespace |
| 334 | void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, |
| 335 | const std::vector<std::string> &InputArgv) { |
| 336 | Values.clear(); // Free the old contents. |
| 337 | Values.reserve(n: InputArgv.size()); |
| 338 | unsigned PtrSize = EE->getDataLayout().getPointerSize(); |
| 339 | Array = std::make_unique<char[]>(num: (InputArgv.size()+1)*PtrSize); |
| 340 | |
| 341 | LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n" ); |
| 342 | Type *SBytePtr = PointerType::getUnqual(C); |
| 343 | |
| 344 | for (unsigned i = 0; i != InputArgv.size(); ++i) { |
| 345 | unsigned Size = InputArgv[i].size()+1; |
| 346 | auto Dest = std::make_unique<char[]>(num: Size); |
| 347 | LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() |
| 348 | << "\n" ); |
| 349 | |
| 350 | llvm::copy(Range: InputArgv[i], Out: Dest.get()); |
| 351 | Dest[Size-1] = 0; |
| 352 | |
| 353 | // Endian safe: Array[i] = (PointerTy)Dest; |
| 354 | EE->StoreValueToMemory(Val: PTOGV(P: Dest.get()), |
| 355 | Ptr: (GenericValue*)(&Array[i*PtrSize]), Ty: SBytePtr); |
| 356 | Values.push_back(x: std::move(Dest)); |
| 357 | } |
| 358 | |
| 359 | // Null terminate it |
| 360 | EE->StoreValueToMemory(Val: PTOGV(P: nullptr), |
| 361 | Ptr: (GenericValue*)(&Array[InputArgv.size()*PtrSize]), |
| 362 | Ty: SBytePtr); |
| 363 | return Array.get(); |
| 364 | } |
| 365 | |
| 366 | void ExecutionEngine::runStaticConstructorsDestructors(Module &module, |
| 367 | bool isDtors) { |
| 368 | StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors" ); |
| 369 | GlobalVariable *GV = module.getNamedGlobal(Name); |
| 370 | |
| 371 | // If this global has internal linkage, or if it has a use, then it must be |
| 372 | // an old-style (llvmgcc3) static ctor with __main linked in and in use. If |
| 373 | // this is the case, don't execute any of the global ctors, __main will do |
| 374 | // it. |
| 375 | if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; |
| 376 | |
| 377 | // Should be an array of '{ i32, void ()* }' structs. The first value is |
| 378 | // the init priority, which we ignore. |
| 379 | ConstantArray *InitList = dyn_cast<ConstantArray>(Val: GV->getInitializer()); |
| 380 | if (!InitList) |
| 381 | return; |
| 382 | for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| 383 | ConstantStruct *CS = dyn_cast<ConstantStruct>(Val: InitList->getOperand(i_nocapture: i)); |
| 384 | if (!CS) continue; |
| 385 | |
| 386 | Constant *FP = CS->getOperand(i_nocapture: 1); |
| 387 | if (FP->isNullValue()) |
| 388 | continue; // Found a sentinel value, ignore. |
| 389 | |
| 390 | // Strip off constant expression casts. |
| 391 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: FP)) |
| 392 | if (CE->isCast()) |
| 393 | FP = CE->getOperand(i_nocapture: 0); |
| 394 | |
| 395 | // Execute the ctor/dtor function! |
| 396 | if (Function *F = dyn_cast<Function>(Val: FP)) |
| 397 | runFunction(F, ArgValues: {}); |
| 398 | |
| 399 | // FIXME: It is marginally lame that we just do nothing here if we see an |
| 400 | // entry we don't recognize. It might not be unreasonable for the verifier |
| 401 | // to not even allow this and just assert here. |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { |
| 406 | // Execute global ctors/dtors for each module in the program. |
| 407 | for (std::unique_ptr<Module> &M : Modules) |
| 408 | runStaticConstructorsDestructors(module&: *M, isDtors); |
| 409 | } |
| 410 | |
| 411 | #ifndef NDEBUG |
| 412 | /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. |
| 413 | static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { |
| 414 | unsigned PtrSize = EE->getDataLayout().getPointerSize(); |
| 415 | for (unsigned i = 0; i < PtrSize; ++i) |
| 416 | if (*(i + (uint8_t*)Loc)) |
| 417 | return false; |
| 418 | return true; |
| 419 | } |
| 420 | #endif |
| 421 | |
| 422 | int ExecutionEngine::runFunctionAsMain(Function *Fn, |
| 423 | const std::vector<std::string> &argv, |
| 424 | const char * const * envp) { |
| 425 | std::vector<GenericValue> GVArgs; |
| 426 | GenericValue GVArgc; |
| 427 | GVArgc.IntVal = APInt(32, argv.size()); |
| 428 | |
| 429 | // Check main() type |
| 430 | unsigned NumArgs = Fn->getFunctionType()->getNumParams(); |
| 431 | FunctionType *FTy = Fn->getFunctionType(); |
| 432 | Type *PPInt8Ty = PointerType::get(C&: Fn->getContext(), AddressSpace: 0); |
| 433 | |
| 434 | // Check the argument types. |
| 435 | if (NumArgs > 3) |
| 436 | report_fatal_error(reason: "Invalid number of arguments of main() supplied" ); |
| 437 | if (NumArgs >= 3 && FTy->getParamType(i: 2) != PPInt8Ty) |
| 438 | report_fatal_error(reason: "Invalid type for third argument of main() supplied" ); |
| 439 | if (NumArgs >= 2 && FTy->getParamType(i: 1) != PPInt8Ty) |
| 440 | report_fatal_error(reason: "Invalid type for second argument of main() supplied" ); |
| 441 | if (NumArgs >= 1 && !FTy->getParamType(i: 0)->isIntegerTy(Bitwidth: 32)) |
| 442 | report_fatal_error(reason: "Invalid type for first argument of main() supplied" ); |
| 443 | if (!FTy->getReturnType()->isIntegerTy() && |
| 444 | !FTy->getReturnType()->isVoidTy()) |
| 445 | report_fatal_error(reason: "Invalid return type of main() supplied" ); |
| 446 | |
| 447 | ArgvArray CArgv; |
| 448 | ArgvArray CEnv; |
| 449 | if (NumArgs) { |
| 450 | GVArgs.push_back(x: GVArgc); // Arg #0 = argc. |
| 451 | if (NumArgs > 1) { |
| 452 | // Arg #1 = argv. |
| 453 | GVArgs.push_back(x: PTOGV(P: CArgv.reset(C&: Fn->getContext(), EE: this, InputArgv: argv))); |
| 454 | assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && |
| 455 | "argv[0] was null after CreateArgv" ); |
| 456 | if (NumArgs > 2) { |
| 457 | std::vector<std::string> EnvVars; |
| 458 | for (unsigned i = 0; envp[i]; ++i) |
| 459 | EnvVars.emplace_back(args: envp[i]); |
| 460 | // Arg #2 = envp. |
| 461 | GVArgs.push_back(x: PTOGV(P: CEnv.reset(C&: Fn->getContext(), EE: this, InputArgv: EnvVars))); |
| 462 | } |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | return runFunction(F: Fn, ArgValues: GVArgs).IntVal.getZExtValue(); |
| 467 | } |
| 468 | |
| 469 | EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} |
| 470 | |
| 471 | EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) |
| 472 | : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), |
| 473 | OptLevel(CodeGenOptLevel::Default), MemMgr(nullptr), Resolver(nullptr) { |
| 474 | // IR module verification is enabled by default in debug builds, and disabled |
| 475 | // by default in release builds. |
| 476 | #ifndef NDEBUG |
| 477 | VerifyModules = true; |
| 478 | #else |
| 479 | VerifyModules = false; |
| 480 | #endif |
| 481 | } |
| 482 | |
| 483 | EngineBuilder::~EngineBuilder() = default; |
| 484 | |
| 485 | EngineBuilder &EngineBuilder::setMCJITMemoryManager( |
| 486 | std::unique_ptr<RTDyldMemoryManager> mcjmm) { |
| 487 | auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); |
| 488 | MemMgr = SharedMM; |
| 489 | Resolver = SharedMM; |
| 490 | return *this; |
| 491 | } |
| 492 | |
| 493 | EngineBuilder& |
| 494 | EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { |
| 495 | MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); |
| 496 | return *this; |
| 497 | } |
| 498 | |
| 499 | EngineBuilder & |
| 500 | EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { |
| 501 | Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); |
| 502 | return *this; |
| 503 | } |
| 504 | |
| 505 | ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { |
| 506 | std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. |
| 507 | |
| 508 | // Make sure we can resolve symbols in the program as well. The zero arg |
| 509 | // to the function tells DynamicLibrary to load the program, not a library. |
| 510 | if (sys::DynamicLibrary::LoadLibraryPermanently(Filename: nullptr, ErrMsg: ErrorStr)) |
| 511 | return nullptr; |
| 512 | |
| 513 | // If the user specified a memory manager but didn't specify which engine to |
| 514 | // create, we assume they only want the JIT, and we fail if they only want |
| 515 | // the interpreter. |
| 516 | if (MemMgr) { |
| 517 | if (WhichEngine & EngineKind::JIT) |
| 518 | WhichEngine = EngineKind::JIT; |
| 519 | else { |
| 520 | if (ErrorStr) |
| 521 | *ErrorStr = "Cannot create an interpreter with a memory manager." ; |
| 522 | return nullptr; |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | // Unless the interpreter was explicitly selected or the JIT is not linked, |
| 527 | // try making a JIT. |
| 528 | if ((WhichEngine & EngineKind::JIT) && TheTM) { |
| 529 | if (!TM->getTarget().hasJIT()) { |
| 530 | errs() << "WARNING: This target JIT is not designed for the host" |
| 531 | << " you are running. If bad things happen, please choose" |
| 532 | << " a different -march switch.\n" ; |
| 533 | } |
| 534 | |
| 535 | ExecutionEngine *EE = nullptr; |
| 536 | if (ExecutionEngine::MCJITCtor) |
| 537 | EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), |
| 538 | std::move(Resolver), std::move(TheTM)); |
| 539 | |
| 540 | if (EE) { |
| 541 | EE->setVerifyModules(VerifyModules); |
| 542 | return EE; |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | // If we can't make a JIT and we didn't request one specifically, try making |
| 547 | // an interpreter instead. |
| 548 | if (WhichEngine & EngineKind::Interpreter) { |
| 549 | if (ExecutionEngine::InterpCtor) |
| 550 | return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); |
| 551 | if (ErrorStr) |
| 552 | *ErrorStr = "Interpreter has not been linked in." ; |
| 553 | return nullptr; |
| 554 | } |
| 555 | |
| 556 | if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { |
| 557 | if (ErrorStr) |
| 558 | *ErrorStr = "JIT has not been linked in." ; |
| 559 | } |
| 560 | |
| 561 | return nullptr; |
| 562 | } |
| 563 | |
| 564 | void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { |
| 565 | if (Function *F = const_cast<Function*>(dyn_cast<Function>(Val: GV))) |
| 566 | return getPointerToFunction(F); |
| 567 | |
| 568 | std::lock_guard<sys::Mutex> locked(lock); |
| 569 | if (void* P = getPointerToGlobalIfAvailable(GV)) |
| 570 | return P; |
| 571 | |
| 572 | // Global variable might have been added since interpreter started. |
| 573 | if (GlobalVariable *GVar = |
| 574 | const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(Val: GV))) |
| 575 | emitGlobalVariable(GV: GVar); |
| 576 | else |
| 577 | llvm_unreachable("Global hasn't had an address allocated yet!" ); |
| 578 | |
| 579 | return getPointerToGlobalIfAvailable(GV); |
| 580 | } |
| 581 | |
| 582 | /// Converts a Constant* into a GenericValue, including handling of |
| 583 | /// ConstantExpr values. |
| 584 | GenericValue ExecutionEngine::getConstantValue(const Constant *C) { |
| 585 | // If its undefined, return the garbage. |
| 586 | if (isa<UndefValue>(Val: C)) { |
| 587 | GenericValue Result; |
| 588 | switch (C->getType()->getTypeID()) { |
| 589 | default: |
| 590 | break; |
| 591 | case Type::IntegerTyID: |
| 592 | case Type::X86_FP80TyID: |
| 593 | case Type::FP128TyID: |
| 594 | case Type::PPC_FP128TyID: |
| 595 | // Although the value is undefined, we still have to construct an APInt |
| 596 | // with the correct bit width. |
| 597 | Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); |
| 598 | break; |
| 599 | case Type::StructTyID: { |
| 600 | // if the whole struct is 'undef' just reserve memory for the value. |
| 601 | if(StructType *STy = dyn_cast<StructType>(Val: C->getType())) { |
| 602 | unsigned int elemNum = STy->getNumElements(); |
| 603 | Result.AggregateVal.resize(new_size: elemNum); |
| 604 | for (unsigned int i = 0; i < elemNum; ++i) { |
| 605 | Type *ElemTy = STy->getElementType(N: i); |
| 606 | if (ElemTy->isIntegerTy()) |
| 607 | Result.AggregateVal[i].IntVal = |
| 608 | APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
| 609 | else if (ElemTy->isAggregateType()) { |
| 610 | const Constant *ElemUndef = UndefValue::get(T: ElemTy); |
| 611 | Result.AggregateVal[i] = getConstantValue(C: ElemUndef); |
| 612 | } |
| 613 | } |
| 614 | } |
| 615 | } |
| 616 | break; |
| 617 | case Type::ScalableVectorTyID: |
| 618 | report_fatal_error( |
| 619 | reason: "Scalable vector support not yet implemented in ExecutionEngine" ); |
| 620 | case Type::ArrayTyID: { |
| 621 | auto *ArrTy = cast<ArrayType>(Val: C->getType()); |
| 622 | Type *ElemTy = ArrTy->getElementType(); |
| 623 | unsigned int elemNum = ArrTy->getNumElements(); |
| 624 | Result.AggregateVal.resize(new_size: elemNum); |
| 625 | if (ElemTy->isIntegerTy()) |
| 626 | for (unsigned int i = 0; i < elemNum; ++i) |
| 627 | Result.AggregateVal[i].IntVal = |
| 628 | APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
| 629 | break; |
| 630 | } |
| 631 | case Type::FixedVectorTyID: { |
| 632 | // if the whole vector is 'undef' just reserve memory for the value. |
| 633 | auto *VTy = cast<FixedVectorType>(Val: C->getType()); |
| 634 | Type *ElemTy = VTy->getElementType(); |
| 635 | unsigned int elemNum = VTy->getNumElements(); |
| 636 | Result.AggregateVal.resize(new_size: elemNum); |
| 637 | if (ElemTy->isIntegerTy()) |
| 638 | for (unsigned int i = 0; i < elemNum; ++i) |
| 639 | Result.AggregateVal[i].IntVal = |
| 640 | APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
| 641 | break; |
| 642 | } |
| 643 | } |
| 644 | return Result; |
| 645 | } |
| 646 | |
| 647 | // Otherwise, if the value is a ConstantExpr... |
| 648 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) { |
| 649 | Constant *Op0 = CE->getOperand(i_nocapture: 0); |
| 650 | switch (CE->getOpcode()) { |
| 651 | case Instruction::GetElementPtr: { |
| 652 | // Compute the index |
| 653 | GenericValue Result = getConstantValue(C: Op0); |
| 654 | APInt Offset(DL.getPointerSizeInBits(), 0); |
| 655 | cast<GEPOperator>(Val: CE)->accumulateConstantOffset(DL, Offset); |
| 656 | |
| 657 | char* tmp = (char*) Result.PointerVal; |
| 658 | Result = PTOGV(P: tmp + Offset.getSExtValue()); |
| 659 | return Result; |
| 660 | } |
| 661 | case Instruction::Trunc: { |
| 662 | GenericValue GV = getConstantValue(C: Op0); |
| 663 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
| 664 | GV.IntVal = GV.IntVal.trunc(width: BitWidth); |
| 665 | return GV; |
| 666 | } |
| 667 | case Instruction::ZExt: { |
| 668 | GenericValue GV = getConstantValue(C: Op0); |
| 669 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
| 670 | GV.IntVal = GV.IntVal.zext(width: BitWidth); |
| 671 | return GV; |
| 672 | } |
| 673 | case Instruction::SExt: { |
| 674 | GenericValue GV = getConstantValue(C: Op0); |
| 675 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
| 676 | GV.IntVal = GV.IntVal.sext(width: BitWidth); |
| 677 | return GV; |
| 678 | } |
| 679 | case Instruction::FPTrunc: { |
| 680 | // FIXME long double |
| 681 | GenericValue GV = getConstantValue(C: Op0); |
| 682 | GV.FloatVal = float(GV.DoubleVal); |
| 683 | return GV; |
| 684 | } |
| 685 | case Instruction::FPExt:{ |
| 686 | // FIXME long double |
| 687 | GenericValue GV = getConstantValue(C: Op0); |
| 688 | GV.DoubleVal = double(GV.FloatVal); |
| 689 | return GV; |
| 690 | } |
| 691 | case Instruction::UIToFP: { |
| 692 | GenericValue GV = getConstantValue(C: Op0); |
| 693 | if (CE->getType()->isFloatTy()) |
| 694 | GV.FloatVal = float(GV.IntVal.roundToDouble()); |
| 695 | else if (CE->getType()->isDoubleTy()) |
| 696 | GV.DoubleVal = GV.IntVal.roundToDouble(); |
| 697 | else if (CE->getType()->isX86_FP80Ty()) { |
| 698 | APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended()); |
| 699 | (void)apf.convertFromAPInt(Input: GV.IntVal, |
| 700 | IsSigned: false, |
| 701 | RM: APFloat::rmNearestTiesToEven); |
| 702 | GV.IntVal = apf.bitcastToAPInt(); |
| 703 | } |
| 704 | return GV; |
| 705 | } |
| 706 | case Instruction::SIToFP: { |
| 707 | GenericValue GV = getConstantValue(C: Op0); |
| 708 | if (CE->getType()->isFloatTy()) |
| 709 | GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); |
| 710 | else if (CE->getType()->isDoubleTy()) |
| 711 | GV.DoubleVal = GV.IntVal.signedRoundToDouble(); |
| 712 | else if (CE->getType()->isX86_FP80Ty()) { |
| 713 | APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended()); |
| 714 | (void)apf.convertFromAPInt(Input: GV.IntVal, |
| 715 | IsSigned: true, |
| 716 | RM: APFloat::rmNearestTiesToEven); |
| 717 | GV.IntVal = apf.bitcastToAPInt(); |
| 718 | } |
| 719 | return GV; |
| 720 | } |
| 721 | case Instruction::FPToUI: // double->APInt conversion handles sign |
| 722 | case Instruction::FPToSI: { |
| 723 | GenericValue GV = getConstantValue(C: Op0); |
| 724 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
| 725 | if (Op0->getType()->isFloatTy()) |
| 726 | GV.IntVal = APIntOps::RoundFloatToAPInt(Float: GV.FloatVal, width: BitWidth); |
| 727 | else if (Op0->getType()->isDoubleTy()) |
| 728 | GV.IntVal = APIntOps::RoundDoubleToAPInt(Double: GV.DoubleVal, width: BitWidth); |
| 729 | else if (Op0->getType()->isX86_FP80Ty()) { |
| 730 | APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); |
| 731 | uint64_t v; |
| 732 | bool ignored; |
| 733 | (void)apf.convertToInteger(Input: MutableArrayRef(v), Width: BitWidth, |
| 734 | IsSigned: CE->getOpcode()==Instruction::FPToSI, |
| 735 | RM: APFloat::rmTowardZero, IsExact: &ignored); |
| 736 | GV.IntVal = v; // endian? |
| 737 | } |
| 738 | return GV; |
| 739 | } |
| 740 | case Instruction::PtrToInt: { |
| 741 | GenericValue GV = getConstantValue(C: Op0); |
| 742 | uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: Op0->getType()); |
| 743 | assert(PtrWidth <= 64 && "Bad pointer width" ); |
| 744 | GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); |
| 745 | uint32_t IntWidth = DL.getTypeSizeInBits(Ty: CE->getType()); |
| 746 | GV.IntVal = GV.IntVal.zextOrTrunc(width: IntWidth); |
| 747 | return GV; |
| 748 | } |
| 749 | case Instruction::IntToPtr: { |
| 750 | GenericValue GV = getConstantValue(C: Op0); |
| 751 | uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: CE->getType()); |
| 752 | GV.IntVal = GV.IntVal.zextOrTrunc(width: PtrWidth); |
| 753 | assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width" ); |
| 754 | GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); |
| 755 | return GV; |
| 756 | } |
| 757 | case Instruction::BitCast: { |
| 758 | GenericValue GV = getConstantValue(C: Op0); |
| 759 | Type* DestTy = CE->getType(); |
| 760 | switch (Op0->getType()->getTypeID()) { |
| 761 | default: llvm_unreachable("Invalid bitcast operand" ); |
| 762 | case Type::IntegerTyID: |
| 763 | assert(DestTy->isFloatingPointTy() && "invalid bitcast" ); |
| 764 | if (DestTy->isFloatTy()) |
| 765 | GV.FloatVal = GV.IntVal.bitsToFloat(); |
| 766 | else if (DestTy->isDoubleTy()) |
| 767 | GV.DoubleVal = GV.IntVal.bitsToDouble(); |
| 768 | break; |
| 769 | case Type::FloatTyID: |
| 770 | assert(DestTy->isIntegerTy(32) && "Invalid bitcast" ); |
| 771 | GV.IntVal = APInt::floatToBits(V: GV.FloatVal); |
| 772 | break; |
| 773 | case Type::DoubleTyID: |
| 774 | assert(DestTy->isIntegerTy(64) && "Invalid bitcast" ); |
| 775 | GV.IntVal = APInt::doubleToBits(V: GV.DoubleVal); |
| 776 | break; |
| 777 | case Type::PointerTyID: |
| 778 | assert(DestTy->isPointerTy() && "Invalid bitcast" ); |
| 779 | break; // getConstantValue(Op0) above already converted it |
| 780 | } |
| 781 | return GV; |
| 782 | } |
| 783 | case Instruction::Add: |
| 784 | case Instruction::FAdd: |
| 785 | case Instruction::Sub: |
| 786 | case Instruction::FSub: |
| 787 | case Instruction::Mul: |
| 788 | case Instruction::FMul: |
| 789 | case Instruction::UDiv: |
| 790 | case Instruction::SDiv: |
| 791 | case Instruction::URem: |
| 792 | case Instruction::SRem: |
| 793 | case Instruction::And: |
| 794 | case Instruction::Or: |
| 795 | case Instruction::Xor: { |
| 796 | GenericValue LHS = getConstantValue(C: Op0); |
| 797 | GenericValue RHS = getConstantValue(C: CE->getOperand(i_nocapture: 1)); |
| 798 | GenericValue GV; |
| 799 | switch (CE->getOperand(i_nocapture: 0)->getType()->getTypeID()) { |
| 800 | default: llvm_unreachable("Bad add type!" ); |
| 801 | case Type::IntegerTyID: |
| 802 | switch (CE->getOpcode()) { |
| 803 | default: llvm_unreachable("Invalid integer opcode" ); |
| 804 | case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; |
| 805 | case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; |
| 806 | case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; |
| 807 | case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS: RHS.IntVal); break; |
| 808 | case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS: RHS.IntVal); break; |
| 809 | case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS: RHS.IntVal); break; |
| 810 | case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS: RHS.IntVal); break; |
| 811 | case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; |
| 812 | case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; |
| 813 | case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; |
| 814 | } |
| 815 | break; |
| 816 | case Type::FloatTyID: |
| 817 | switch (CE->getOpcode()) { |
| 818 | default: llvm_unreachable("Invalid float opcode" ); |
| 819 | case Instruction::FAdd: |
| 820 | GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; |
| 821 | case Instruction::FSub: |
| 822 | GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; |
| 823 | case Instruction::FMul: |
| 824 | GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; |
| 825 | case Instruction::FDiv: |
| 826 | GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; |
| 827 | case Instruction::FRem: |
| 828 | GV.FloatVal = std::fmod(x: LHS.FloatVal,y: RHS.FloatVal); break; |
| 829 | } |
| 830 | break; |
| 831 | case Type::DoubleTyID: |
| 832 | switch (CE->getOpcode()) { |
| 833 | default: llvm_unreachable("Invalid double opcode" ); |
| 834 | case Instruction::FAdd: |
| 835 | GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; |
| 836 | case Instruction::FSub: |
| 837 | GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; |
| 838 | case Instruction::FMul: |
| 839 | GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; |
| 840 | case Instruction::FDiv: |
| 841 | GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; |
| 842 | case Instruction::FRem: |
| 843 | GV.DoubleVal = std::fmod(x: LHS.DoubleVal,y: RHS.DoubleVal); break; |
| 844 | } |
| 845 | break; |
| 846 | case Type::X86_FP80TyID: |
| 847 | case Type::PPC_FP128TyID: |
| 848 | case Type::FP128TyID: { |
| 849 | const fltSemantics &Sem = CE->getOperand(i_nocapture: 0)->getType()->getFltSemantics(); |
| 850 | APFloat apfLHS = APFloat(Sem, LHS.IntVal); |
| 851 | switch (CE->getOpcode()) { |
| 852 | default: llvm_unreachable("Invalid long double opcode" ); |
| 853 | case Instruction::FAdd: |
| 854 | apfLHS.add(RHS: APFloat(Sem, RHS.IntVal), RM: APFloat::rmNearestTiesToEven); |
| 855 | GV.IntVal = apfLHS.bitcastToAPInt(); |
| 856 | break; |
| 857 | case Instruction::FSub: |
| 858 | apfLHS.subtract(RHS: APFloat(Sem, RHS.IntVal), |
| 859 | RM: APFloat::rmNearestTiesToEven); |
| 860 | GV.IntVal = apfLHS.bitcastToAPInt(); |
| 861 | break; |
| 862 | case Instruction::FMul: |
| 863 | apfLHS.multiply(RHS: APFloat(Sem, RHS.IntVal), |
| 864 | RM: APFloat::rmNearestTiesToEven); |
| 865 | GV.IntVal = apfLHS.bitcastToAPInt(); |
| 866 | break; |
| 867 | case Instruction::FDiv: |
| 868 | apfLHS.divide(RHS: APFloat(Sem, RHS.IntVal), |
| 869 | RM: APFloat::rmNearestTiesToEven); |
| 870 | GV.IntVal = apfLHS.bitcastToAPInt(); |
| 871 | break; |
| 872 | case Instruction::FRem: |
| 873 | apfLHS.mod(RHS: APFloat(Sem, RHS.IntVal)); |
| 874 | GV.IntVal = apfLHS.bitcastToAPInt(); |
| 875 | break; |
| 876 | } |
| 877 | } |
| 878 | break; |
| 879 | } |
| 880 | return GV; |
| 881 | } |
| 882 | default: |
| 883 | break; |
| 884 | } |
| 885 | |
| 886 | SmallString<256> Msg; |
| 887 | raw_svector_ostream OS(Msg); |
| 888 | OS << "ConstantExpr not handled: " << *CE; |
| 889 | report_fatal_error(reason: OS.str()); |
| 890 | } |
| 891 | |
| 892 | if (auto *TETy = dyn_cast<TargetExtType>(Val: C->getType())) { |
| 893 | assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() && |
| 894 | "TargetExtType only supports null constant value" ); |
| 895 | C = Constant::getNullValue(Ty: TETy->getLayoutType()); |
| 896 | } |
| 897 | |
| 898 | // Otherwise, we have a simple constant. |
| 899 | GenericValue Result; |
| 900 | switch (C->getType()->getTypeID()) { |
| 901 | case Type::FloatTyID: |
| 902 | Result.FloatVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToFloat(); |
| 903 | break; |
| 904 | case Type::DoubleTyID: |
| 905 | Result.DoubleVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToDouble(); |
| 906 | break; |
| 907 | case Type::X86_FP80TyID: |
| 908 | case Type::FP128TyID: |
| 909 | case Type::PPC_FP128TyID: |
| 910 | Result.IntVal = cast <ConstantFP>(Val: C)->getValueAPF().bitcastToAPInt(); |
| 911 | break; |
| 912 | case Type::IntegerTyID: |
| 913 | Result.IntVal = cast<ConstantInt>(Val: C)->getValue(); |
| 914 | break; |
| 915 | case Type::PointerTyID: |
| 916 | while (auto *A = dyn_cast<GlobalAlias>(Val: C)) { |
| 917 | C = A->getAliasee(); |
| 918 | } |
| 919 | if (isa<ConstantPointerNull>(Val: C)) |
| 920 | Result.PointerVal = nullptr; |
| 921 | else if (const Function *F = dyn_cast<Function>(Val: C)) |
| 922 | Result = PTOGV(P: getPointerToFunctionOrStub(F: const_cast<Function*>(F))); |
| 923 | else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: C)) |
| 924 | Result = PTOGV(P: getOrEmitGlobalVariable(GV: const_cast<GlobalVariable*>(GV))); |
| 925 | else |
| 926 | llvm_unreachable("Unknown constant pointer type!" ); |
| 927 | break; |
| 928 | case Type::ScalableVectorTyID: |
| 929 | report_fatal_error( |
| 930 | reason: "Scalable vector support not yet implemented in ExecutionEngine" ); |
| 931 | case Type::FixedVectorTyID: { |
| 932 | unsigned elemNum; |
| 933 | Type* ElemTy; |
| 934 | const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(Val: C); |
| 935 | const ConstantVector *CV = dyn_cast<ConstantVector>(Val: C); |
| 936 | const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(Val: C); |
| 937 | |
| 938 | if (CDV) { |
| 939 | elemNum = CDV->getNumElements(); |
| 940 | ElemTy = CDV->getElementType(); |
| 941 | } else if (CV || CAZ) { |
| 942 | auto *VTy = cast<FixedVectorType>(Val: C->getType()); |
| 943 | elemNum = VTy->getNumElements(); |
| 944 | ElemTy = VTy->getElementType(); |
| 945 | } else { |
| 946 | llvm_unreachable("Unknown constant vector type!" ); |
| 947 | } |
| 948 | |
| 949 | Result.AggregateVal.resize(new_size: elemNum); |
| 950 | // Check if vector holds floats. |
| 951 | if(ElemTy->isFloatTy()) { |
| 952 | if (CAZ) { |
| 953 | GenericValue floatZero; |
| 954 | floatZero.FloatVal = 0.f; |
| 955 | llvm::fill(Range&: Result.AggregateVal, Value&: floatZero); |
| 956 | break; |
| 957 | } |
| 958 | if(CV) { |
| 959 | for (unsigned i = 0; i < elemNum; ++i) |
| 960 | if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i))) |
| 961 | Result.AggregateVal[i].FloatVal = cast<ConstantFP>( |
| 962 | Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToFloat(); |
| 963 | break; |
| 964 | } |
| 965 | if(CDV) |
| 966 | for (unsigned i = 0; i < elemNum; ++i) |
| 967 | Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); |
| 968 | |
| 969 | break; |
| 970 | } |
| 971 | // Check if vector holds doubles. |
| 972 | if (ElemTy->isDoubleTy()) { |
| 973 | if (CAZ) { |
| 974 | GenericValue doubleZero; |
| 975 | doubleZero.DoubleVal = 0.0; |
| 976 | llvm::fill(Range&: Result.AggregateVal, Value&: doubleZero); |
| 977 | break; |
| 978 | } |
| 979 | if(CV) { |
| 980 | for (unsigned i = 0; i < elemNum; ++i) |
| 981 | if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i))) |
| 982 | Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( |
| 983 | Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToDouble(); |
| 984 | break; |
| 985 | } |
| 986 | if(CDV) |
| 987 | for (unsigned i = 0; i < elemNum; ++i) |
| 988 | Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); |
| 989 | |
| 990 | break; |
| 991 | } |
| 992 | // Check if vector holds integers. |
| 993 | if (ElemTy->isIntegerTy()) { |
| 994 | if (CAZ) { |
| 995 | GenericValue intZero; |
| 996 | intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); |
| 997 | llvm::fill(Range&: Result.AggregateVal, Value&: intZero); |
| 998 | break; |
| 999 | } |
| 1000 | if(CV) { |
| 1001 | for (unsigned i = 0; i < elemNum; ++i) |
| 1002 | if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i))) |
| 1003 | Result.AggregateVal[i].IntVal = cast<ConstantInt>( |
| 1004 | Val: CV->getOperand(i_nocapture: i))->getValue(); |
| 1005 | else { |
| 1006 | Result.AggregateVal[i].IntVal = |
| 1007 | APInt(CV->getOperand(i_nocapture: i)->getType()->getPrimitiveSizeInBits(), 0); |
| 1008 | } |
| 1009 | break; |
| 1010 | } |
| 1011 | if(CDV) |
| 1012 | for (unsigned i = 0; i < elemNum; ++i) |
| 1013 | Result.AggregateVal[i].IntVal = APInt( |
| 1014 | CDV->getElementType()->getPrimitiveSizeInBits(), |
| 1015 | CDV->getElementAsInteger(i)); |
| 1016 | |
| 1017 | break; |
| 1018 | } |
| 1019 | llvm_unreachable("Unknown constant pointer type!" ); |
| 1020 | } break; |
| 1021 | |
| 1022 | default: |
| 1023 | SmallString<256> Msg; |
| 1024 | raw_svector_ostream OS(Msg); |
| 1025 | OS << "ERROR: Constant unimplemented for type: " << *C->getType(); |
| 1026 | report_fatal_error(reason: OS.str()); |
| 1027 | } |
| 1028 | |
| 1029 | return Result; |
| 1030 | } |
| 1031 | |
| 1032 | void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, |
| 1033 | GenericValue *Ptr, Type *Ty) { |
| 1034 | // It is safe to treat TargetExtType as its layout type since the underlying |
| 1035 | // bits are only copied and are not inspected. |
| 1036 | if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty)) |
| 1037 | Ty = TETy->getLayoutType(); |
| 1038 | |
| 1039 | const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); |
| 1040 | |
| 1041 | switch (Ty->getTypeID()) { |
| 1042 | default: |
| 1043 | dbgs() << "Cannot store value of type " << *Ty << "!\n" ; |
| 1044 | break; |
| 1045 | case Type::IntegerTyID: |
| 1046 | StoreIntToMemory(IntVal: Val.IntVal, Dst: (uint8_t*)Ptr, StoreBytes); |
| 1047 | break; |
| 1048 | case Type::FloatTyID: |
| 1049 | *((float*)Ptr) = Val.FloatVal; |
| 1050 | break; |
| 1051 | case Type::DoubleTyID: |
| 1052 | *((double*)Ptr) = Val.DoubleVal; |
| 1053 | break; |
| 1054 | case Type::X86_FP80TyID: |
| 1055 | memcpy(dest: static_cast<void *>(Ptr), src: Val.IntVal.getRawData(), n: 10); |
| 1056 | break; |
| 1057 | case Type::PointerTyID: |
| 1058 | // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. |
| 1059 | if (StoreBytes != sizeof(PointerTy)) |
| 1060 | memset(s: &(Ptr->PointerVal), c: 0, n: StoreBytes); |
| 1061 | |
| 1062 | *((PointerTy*)Ptr) = Val.PointerVal; |
| 1063 | break; |
| 1064 | case Type::FixedVectorTyID: |
| 1065 | case Type::ScalableVectorTyID: |
| 1066 | for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { |
| 1067 | if (cast<VectorType>(Val: Ty)->getElementType()->isDoubleTy()) |
| 1068 | *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; |
| 1069 | if (cast<VectorType>(Val: Ty)->getElementType()->isFloatTy()) |
| 1070 | *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; |
| 1071 | if (cast<VectorType>(Val: Ty)->getElementType()->isIntegerTy()) { |
| 1072 | unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; |
| 1073 | StoreIntToMemory(IntVal: Val.AggregateVal[i].IntVal, |
| 1074 | Dst: (uint8_t*)Ptr + numOfBytes*i, StoreBytes: numOfBytes); |
| 1075 | } |
| 1076 | } |
| 1077 | break; |
| 1078 | } |
| 1079 | |
| 1080 | if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) |
| 1081 | // Host and target are different endian - reverse the stored bytes. |
| 1082 | std::reverse(first: (uint8_t*)Ptr, last: StoreBytes + (uint8_t*)Ptr); |
| 1083 | } |
| 1084 | |
| 1085 | /// FIXME: document |
| 1086 | /// |
| 1087 | void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, |
| 1088 | GenericValue *Ptr, |
| 1089 | Type *Ty) { |
| 1090 | if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty)) |
| 1091 | Ty = TETy->getLayoutType(); |
| 1092 | |
| 1093 | const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); |
| 1094 | |
| 1095 | switch (Ty->getTypeID()) { |
| 1096 | case Type::IntegerTyID: |
| 1097 | // An APInt with all words initially zero. |
| 1098 | Result.IntVal = APInt(cast<IntegerType>(Val: Ty)->getBitWidth(), 0); |
| 1099 | LoadIntFromMemory(IntVal&: Result.IntVal, Src: (uint8_t*)Ptr, LoadBytes); |
| 1100 | break; |
| 1101 | case Type::FloatTyID: |
| 1102 | Result.FloatVal = *((float*)Ptr); |
| 1103 | break; |
| 1104 | case Type::DoubleTyID: |
| 1105 | Result.DoubleVal = *((double*)Ptr); |
| 1106 | break; |
| 1107 | case Type::PointerTyID: |
| 1108 | Result.PointerVal = *((PointerTy*)Ptr); |
| 1109 | break; |
| 1110 | case Type::X86_FP80TyID: { |
| 1111 | // This is endian dependent, but it will only work on x86 anyway. |
| 1112 | // FIXME: Will not trap if loading a signaling NaN. |
| 1113 | uint64_t y[2]; |
| 1114 | memcpy(dest: y, src: Ptr, n: 10); |
| 1115 | Result.IntVal = APInt(80, y); |
| 1116 | break; |
| 1117 | } |
| 1118 | case Type::ScalableVectorTyID: |
| 1119 | report_fatal_error( |
| 1120 | reason: "Scalable vector support not yet implemented in ExecutionEngine" ); |
| 1121 | case Type::FixedVectorTyID: { |
| 1122 | auto *VT = cast<FixedVectorType>(Val: Ty); |
| 1123 | Type *ElemT = VT->getElementType(); |
| 1124 | const unsigned numElems = VT->getNumElements(); |
| 1125 | if (ElemT->isFloatTy()) { |
| 1126 | Result.AggregateVal.resize(new_size: numElems); |
| 1127 | for (unsigned i = 0; i < numElems; ++i) |
| 1128 | Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); |
| 1129 | } |
| 1130 | if (ElemT->isDoubleTy()) { |
| 1131 | Result.AggregateVal.resize(new_size: numElems); |
| 1132 | for (unsigned i = 0; i < numElems; ++i) |
| 1133 | Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); |
| 1134 | } |
| 1135 | if (ElemT->isIntegerTy()) { |
| 1136 | GenericValue intZero; |
| 1137 | const unsigned elemBitWidth = cast<IntegerType>(Val: ElemT)->getBitWidth(); |
| 1138 | intZero.IntVal = APInt(elemBitWidth, 0); |
| 1139 | Result.AggregateVal.resize(new_size: numElems, x: intZero); |
| 1140 | for (unsigned i = 0; i < numElems; ++i) |
| 1141 | LoadIntFromMemory(IntVal&: Result.AggregateVal[i].IntVal, |
| 1142 | Src: (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, LoadBytes: (elemBitWidth+7)/8); |
| 1143 | } |
| 1144 | break; |
| 1145 | } |
| 1146 | default: |
| 1147 | SmallString<256> Msg; |
| 1148 | raw_svector_ostream OS(Msg); |
| 1149 | OS << "Cannot load value of type " << *Ty << "!" ; |
| 1150 | report_fatal_error(reason: OS.str()); |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { |
| 1155 | LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " " ); |
| 1156 | LLVM_DEBUG(Init->dump()); |
| 1157 | if (isa<UndefValue>(Val: Init)) |
| 1158 | return; |
| 1159 | |
| 1160 | if (const ConstantVector *CP = dyn_cast<ConstantVector>(Val: Init)) { |
| 1161 | unsigned ElementSize = |
| 1162 | getDataLayout().getTypeAllocSize(Ty: CP->getType()->getElementType()); |
| 1163 | for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
| 1164 | InitializeMemory(Init: CP->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize); |
| 1165 | return; |
| 1166 | } |
| 1167 | |
| 1168 | if (isa<ConstantAggregateZero>(Val: Init)) { |
| 1169 | memset(s: Addr, c: 0, n: (size_t)getDataLayout().getTypeAllocSize(Ty: Init->getType())); |
| 1170 | return; |
| 1171 | } |
| 1172 | |
| 1173 | if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Val: Init)) { |
| 1174 | unsigned ElementSize = |
| 1175 | getDataLayout().getTypeAllocSize(Ty: CPA->getType()->getElementType()); |
| 1176 | for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
| 1177 | InitializeMemory(Init: CPA->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize); |
| 1178 | return; |
| 1179 | } |
| 1180 | |
| 1181 | if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Val: Init)) { |
| 1182 | const StructLayout *SL = |
| 1183 | getDataLayout().getStructLayout(Ty: cast<StructType>(Val: CPS->getType())); |
| 1184 | for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
| 1185 | InitializeMemory(Init: CPS->getOperand(i_nocapture: i), Addr: (char*)Addr+SL->getElementOffset(Idx: i)); |
| 1186 | return; |
| 1187 | } |
| 1188 | |
| 1189 | if (const ConstantDataSequential *CDS = |
| 1190 | dyn_cast<ConstantDataSequential>(Val: Init)) { |
| 1191 | // CDS is already laid out in host memory order. |
| 1192 | StringRef Data = CDS->getRawDataValues(); |
| 1193 | memcpy(dest: Addr, src: Data.data(), n: Data.size()); |
| 1194 | return; |
| 1195 | } |
| 1196 | |
| 1197 | if (Init->getType()->isFirstClassType()) { |
| 1198 | GenericValue Val = getConstantValue(C: Init); |
| 1199 | StoreValueToMemory(Val, Ptr: (GenericValue*)Addr, Ty: Init->getType()); |
| 1200 | return; |
| 1201 | } |
| 1202 | |
| 1203 | LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n" ); |
| 1204 | llvm_unreachable("Unknown constant type to initialize memory with!" ); |
| 1205 | } |
| 1206 | |
| 1207 | /// EmitGlobals - Emit all of the global variables to memory, storing their |
| 1208 | /// addresses into GlobalAddress. This must make sure to copy the contents of |
| 1209 | /// their initializers into the memory. |
| 1210 | void ExecutionEngine::emitGlobals() { |
| 1211 | // Loop over all of the global variables in the program, allocating the memory |
| 1212 | // to hold them. If there is more than one module, do a prepass over globals |
| 1213 | // to figure out how the different modules should link together. |
| 1214 | std::map<std::pair<std::string, Type*>, |
| 1215 | const GlobalValue*> LinkedGlobalsMap; |
| 1216 | |
| 1217 | if (Modules.size() != 1) { |
| 1218 | for (const auto &M : Modules) { |
| 1219 | for (const auto &GV : M->globals()) { |
| 1220 | if (GV.hasLocalLinkage() || GV.isDeclaration() || |
| 1221 | GV.hasAppendingLinkage() || !GV.hasName()) |
| 1222 | continue;// Ignore external globals and globals with internal linkage. |
| 1223 | |
| 1224 | const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair( |
| 1225 | x: std::string(GV.getName()), y: GV.getType())]; |
| 1226 | |
| 1227 | // If this is the first time we've seen this global, it is the canonical |
| 1228 | // version. |
| 1229 | if (!GVEntry) { |
| 1230 | GVEntry = &GV; |
| 1231 | continue; |
| 1232 | } |
| 1233 | |
| 1234 | // If the existing global is strong, never replace it. |
| 1235 | if (GVEntry->hasExternalLinkage()) |
| 1236 | continue; |
| 1237 | |
| 1238 | // Otherwise, we know it's linkonce/weak, replace it if this is a strong |
| 1239 | // symbol. FIXME is this right for common? |
| 1240 | if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) |
| 1241 | GVEntry = &GV; |
| 1242 | } |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | std::vector<const GlobalValue*> NonCanonicalGlobals; |
| 1247 | for (const auto &M : Modules) { |
| 1248 | for (const auto &GV : M->globals()) { |
| 1249 | // In the multi-module case, see what this global maps to. |
| 1250 | if (!LinkedGlobalsMap.empty()) { |
| 1251 | if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( |
| 1252 | x: std::string(GV.getName()), y: GV.getType())]) { |
| 1253 | // If something else is the canonical global, ignore this one. |
| 1254 | if (GVEntry != &GV) { |
| 1255 | NonCanonicalGlobals.push_back(x: &GV); |
| 1256 | continue; |
| 1257 | } |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | if (!GV.isDeclaration()) { |
| 1262 | addGlobalMapping(GV: &GV, Addr: getMemoryForGV(GV: &GV)); |
| 1263 | } else { |
| 1264 | // External variable reference. Try to use the dynamic loader to |
| 1265 | // get a pointer to it. |
| 1266 | if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( |
| 1267 | symbolName: std::string(GV.getName()))) |
| 1268 | addGlobalMapping(GV: &GV, Addr: SymAddr); |
| 1269 | else { |
| 1270 | report_fatal_error(reason: "Could not resolve external global address: " |
| 1271 | +GV.getName()); |
| 1272 | } |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | // If there are multiple modules, map the non-canonical globals to their |
| 1277 | // canonical location. |
| 1278 | if (!NonCanonicalGlobals.empty()) { |
| 1279 | for (const GlobalValue *GV : NonCanonicalGlobals) { |
| 1280 | const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair( |
| 1281 | x: std::string(GV->getName()), y: GV->getType())]; |
| 1282 | void *Ptr = getPointerToGlobalIfAvailable(GV: CGV); |
| 1283 | assert(Ptr && "Canonical global wasn't codegen'd!" ); |
| 1284 | addGlobalMapping(GV, Addr: Ptr); |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | // Now that all of the globals are set up in memory, loop through them all |
| 1289 | // and initialize their contents. |
| 1290 | for (const auto &GV : M->globals()) { |
| 1291 | if (!GV.isDeclaration()) { |
| 1292 | if (!LinkedGlobalsMap.empty()) { |
| 1293 | if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( |
| 1294 | x: std::string(GV.getName()), y: GV.getType())]) |
| 1295 | if (GVEntry != &GV) // Not the canonical variable. |
| 1296 | continue; |
| 1297 | } |
| 1298 | emitGlobalVariable(GV: &GV); |
| 1299 | } |
| 1300 | } |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | // EmitGlobalVariable - This method emits the specified global variable to the |
| 1305 | // address specified in GlobalAddresses, or allocates new memory if it's not |
| 1306 | // already in the map. |
| 1307 | void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) { |
| 1308 | void *GA = getPointerToGlobalIfAvailable(GV); |
| 1309 | |
| 1310 | if (!GA) { |
| 1311 | // If it's not already specified, allocate memory for the global. |
| 1312 | GA = getMemoryForGV(GV); |
| 1313 | |
| 1314 | // If we failed to allocate memory for this global, return. |
| 1315 | if (!GA) return; |
| 1316 | |
| 1317 | addGlobalMapping(GV, Addr: GA); |
| 1318 | } |
| 1319 | |
| 1320 | // Don't initialize if it's thread local, let the client do it. |
| 1321 | if (!GV->isThreadLocal()) |
| 1322 | InitializeMemory(Init: GV->getInitializer(), Addr: GA); |
| 1323 | |
| 1324 | Type *ElTy = GV->getValueType(); |
| 1325 | size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(Ty: ElTy); |
| 1326 | NumInitBytes += (unsigned)GVSize; |
| 1327 | ++NumGlobals; |
| 1328 | } |
| 1329 | |