1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the common interface used by the various execution engine
10// subclasses.
11//
12// FIXME: This file needs to be updated to support scalable vectors
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/ExecutionEngine/ExecutionEngine.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ExecutionEngine/GenericValue.h"
20#include "llvm/ExecutionEngine/JITEventListener.h"
21#include "llvm/ExecutionEngine/ObjectCache.h"
22#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Mangler.h"
27#include "llvm/IR/Module.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/IR/ValueHandle.h"
30#include "llvm/MC/TargetRegistry.h"
31#include "llvm/Object/Archive.h"
32#include "llvm/Object/ObjectFile.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/DynamicLibrary.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/TargetParser/Host.h"
39#include <cmath>
40#include <cstring>
41#include <mutex>
42using namespace llvm;
43
44#define DEBUG_TYPE "jit"
45
46STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
47STATISTIC(NumGlobals , "Number of global vars initialized");
48
49ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
50 std::unique_ptr<Module> M, std::string *ErrorStr,
51 std::shared_ptr<MCJITMemoryManager> MemMgr,
52 std::shared_ptr<LegacyJITSymbolResolver> Resolver,
53 std::unique_ptr<TargetMachine> TM) = nullptr;
54
55ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
56 std::string *ErrorStr) =nullptr;
57
58void JITEventListener::anchor() {}
59
60void ObjectCache::anchor() {}
61
62void ExecutionEngine::Init(std::unique_ptr<Module> M) {
63 CompilingLazily = false;
64 GVCompilationDisabled = false;
65 SymbolSearchingDisabled = false;
66
67 // IR module verification is enabled by default in debug builds, and disabled
68 // by default in release builds.
69#ifndef NDEBUG
70 VerifyModules = true;
71#else
72 VerifyModules = false;
73#endif
74
75 assert(M && "Module is null?");
76 Modules.push_back(Elt: std::move(M));
77}
78
79ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
80 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
81 Init(M: std::move(M));
82}
83
84ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
85 : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
86 Init(M: std::move(M));
87}
88
89ExecutionEngine::~ExecutionEngine() {
90 clearAllGlobalMappings();
91}
92
93namespace {
94/// Helper class which uses a value handler to automatically deletes the
95/// memory block when the GlobalVariable is destroyed.
96class GVMemoryBlock final : public CallbackVH {
97 GVMemoryBlock(const GlobalVariable *GV)
98 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
99
100public:
101 /// Returns the address the GlobalVariable should be written into. The
102 /// GVMemoryBlock object prefixes that.
103 static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
104 Type *ElTy = GV->getValueType();
105 size_t GVSize = (size_t)TD.getTypeAllocSize(Ty: ElTy);
106 void *RawMemory = ::operator new(
107 alignTo(Size: sizeof(GVMemoryBlock), A: TD.getPreferredAlign(GV)) + GVSize);
108 new(RawMemory) GVMemoryBlock(GV);
109 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
110 }
111
112 void deleted() override {
113 // We allocated with operator new and with some extra memory hanging off the
114 // end, so don't just delete this. I'm not sure if this is actually
115 // required.
116 this->~GVMemoryBlock();
117 ::operator delete(this);
118 }
119};
120} // anonymous namespace
121
122char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
123 return GVMemoryBlock::Create(GV, TD: getDataLayout());
124}
125
126void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
127 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
128}
129
130void
131ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
132 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
133}
134
135void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
136 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
137}
138
139bool ExecutionEngine::removeModule(Module *M) {
140 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
141 Module *Found = I->get();
142 if (Found == M) {
143 I->release();
144 Modules.erase(CI: I);
145 clearGlobalMappingsFromModule(M);
146 return true;
147 }
148 }
149 return false;
150}
151
152Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
153 for (const auto &M : Modules) {
154 Function *F = M->getFunction(Name: FnName);
155 if (F && !F->isDeclaration())
156 return F;
157 }
158 return nullptr;
159}
160
161GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
162 for (const auto &M : Modules) {
163 GlobalVariable *GV = M->getGlobalVariable(Name, AllowInternal);
164 if (GV && !GV->isDeclaration())
165 return GV;
166 }
167 return nullptr;
168}
169
170uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
171 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Key: Name);
172 uint64_t OldVal;
173
174 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
175 // GlobalAddressMap.
176 if (I == GlobalAddressMap.end())
177 OldVal = 0;
178 else {
179 GlobalAddressReverseMap.erase(x: I->second);
180 OldVal = I->second;
181 GlobalAddressMap.erase(I);
182 }
183
184 return OldVal;
185}
186
187std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
188 assert(GV->hasName() && "Global must have name.");
189
190 std::lock_guard<sys::Mutex> locked(lock);
191 SmallString<128> FullName;
192
193 const DataLayout &DL =
194 GV->getDataLayout().isDefault()
195 ? getDataLayout()
196 : GV->getDataLayout();
197
198 Mangler::getNameWithPrefix(OutName&: FullName, GVName: GV->getName(), DL);
199 return std::string(FullName);
200}
201
202void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
203 std::lock_guard<sys::Mutex> locked(lock);
204 addGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr);
205}
206
207void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
208 std::lock_guard<sys::Mutex> locked(lock);
209
210 assert(!Name.empty() && "Empty GlobalMapping symbol name!");
211
212 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
213 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
214 assert((!CurVal || !Addr) && "GlobalMapping already established!");
215 CurVal = Addr;
216
217 // If we are using the reverse mapping, add it too.
218 if (!EEState.getGlobalAddressReverseMap().empty()) {
219 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
220 assert((!V.empty() || !Name.empty()) &&
221 "GlobalMapping already established!");
222 V = std::string(Name);
223 }
224}
225
226void ExecutionEngine::clearAllGlobalMappings() {
227 std::lock_guard<sys::Mutex> locked(lock);
228
229 EEState.getGlobalAddressMap().clear();
230 EEState.getGlobalAddressReverseMap().clear();
231}
232
233void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
234 std::lock_guard<sys::Mutex> locked(lock);
235
236 for (GlobalObject &GO : M->global_objects())
237 EEState.RemoveMapping(Name: getMangledName(GV: &GO));
238}
239
240uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
241 void *Addr) {
242 std::lock_guard<sys::Mutex> locked(lock);
243 return updateGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr);
244}
245
246uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
247 std::lock_guard<sys::Mutex> locked(lock);
248
249 ExecutionEngineState::GlobalAddressMapTy &Map =
250 EEState.getGlobalAddressMap();
251
252 // Deleting from the mapping?
253 if (!Addr)
254 return EEState.RemoveMapping(Name);
255
256 uint64_t &CurVal = Map[Name];
257 uint64_t OldVal = CurVal;
258
259 if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
260 EEState.getGlobalAddressReverseMap().erase(x: CurVal);
261 CurVal = Addr;
262
263 // If we are using the reverse mapping, add it too.
264 if (!EEState.getGlobalAddressReverseMap().empty()) {
265 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
266 assert((!V.empty() || !Name.empty()) &&
267 "GlobalMapping already established!");
268 V = std::string(Name);
269 }
270 return OldVal;
271}
272
273uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
274 std::lock_guard<sys::Mutex> locked(lock);
275 uint64_t Address = 0;
276 ExecutionEngineState::GlobalAddressMapTy::iterator I =
277 EEState.getGlobalAddressMap().find(Key: S);
278 if (I != EEState.getGlobalAddressMap().end())
279 Address = I->second;
280 return Address;
281}
282
283
284void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
285 std::lock_guard<sys::Mutex> locked(lock);
286 if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
287 return Address;
288 return nullptr;
289}
290
291void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
292 std::lock_guard<sys::Mutex> locked(lock);
293 return getPointerToGlobalIfAvailable(S: getMangledName(GV));
294}
295
296const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
297 std::lock_guard<sys::Mutex> locked(lock);
298
299 // If we haven't computed the reverse mapping yet, do so first.
300 if (EEState.getGlobalAddressReverseMap().empty()) {
301 for (ExecutionEngineState::GlobalAddressMapTy::iterator
302 I = EEState.getGlobalAddressMap().begin(),
303 E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
304 StringRef Name = I->first();
305 uint64_t Addr = I->second;
306 EEState.getGlobalAddressReverseMap().insert(
307 x: std::make_pair(x&: Addr, y: std::string(Name)));
308 }
309 }
310
311 std::map<uint64_t, std::string>::iterator I =
312 EEState.getGlobalAddressReverseMap().find(x: (uint64_t) Addr);
313
314 if (I != EEState.getGlobalAddressReverseMap().end()) {
315 StringRef Name = I->second;
316 for (const auto &M : Modules)
317 if (GlobalValue *GV = M->getNamedValue(Name))
318 return GV;
319 }
320 return nullptr;
321}
322
323namespace {
324class ArgvArray {
325 std::unique_ptr<char[]> Array;
326 std::vector<std::unique_ptr<char[]>> Values;
327public:
328 /// Turn a vector of strings into a nice argv style array of pointers to null
329 /// terminated strings.
330 void *reset(LLVMContext &C, ExecutionEngine *EE,
331 const std::vector<std::string> &InputArgv);
332};
333} // anonymous namespace
334void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
335 const std::vector<std::string> &InputArgv) {
336 Values.clear(); // Free the old contents.
337 Values.reserve(n: InputArgv.size());
338 unsigned PtrSize = EE->getDataLayout().getPointerSize();
339 Array = std::make_unique<char[]>(num: (InputArgv.size()+1)*PtrSize);
340
341 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
342 Type *SBytePtr = PointerType::getUnqual(C);
343
344 for (unsigned i = 0; i != InputArgv.size(); ++i) {
345 unsigned Size = InputArgv[i].size()+1;
346 auto Dest = std::make_unique<char[]>(num: Size);
347 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
348 << "\n");
349
350 llvm::copy(Range: InputArgv[i], Out: Dest.get());
351 Dest[Size-1] = 0;
352
353 // Endian safe: Array[i] = (PointerTy)Dest;
354 EE->StoreValueToMemory(Val: PTOGV(P: Dest.get()),
355 Ptr: (GenericValue*)(&Array[i*PtrSize]), Ty: SBytePtr);
356 Values.push_back(x: std::move(Dest));
357 }
358
359 // Null terminate it
360 EE->StoreValueToMemory(Val: PTOGV(P: nullptr),
361 Ptr: (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
362 Ty: SBytePtr);
363 return Array.get();
364}
365
366void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
367 bool isDtors) {
368 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
369 GlobalVariable *GV = module.getNamedGlobal(Name);
370
371 // If this global has internal linkage, or if it has a use, then it must be
372 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
373 // this is the case, don't execute any of the global ctors, __main will do
374 // it.
375 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
376
377 // Should be an array of '{ i32, void ()* }' structs. The first value is
378 // the init priority, which we ignore.
379 ConstantArray *InitList = dyn_cast<ConstantArray>(Val: GV->getInitializer());
380 if (!InitList)
381 return;
382 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
383 ConstantStruct *CS = dyn_cast<ConstantStruct>(Val: InitList->getOperand(i_nocapture: i));
384 if (!CS) continue;
385
386 Constant *FP = CS->getOperand(i_nocapture: 1);
387 if (FP->isNullValue())
388 continue; // Found a sentinel value, ignore.
389
390 // Strip off constant expression casts.
391 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: FP))
392 if (CE->isCast())
393 FP = CE->getOperand(i_nocapture: 0);
394
395 // Execute the ctor/dtor function!
396 if (Function *F = dyn_cast<Function>(Val: FP))
397 runFunction(F, ArgValues: {});
398
399 // FIXME: It is marginally lame that we just do nothing here if we see an
400 // entry we don't recognize. It might not be unreasonable for the verifier
401 // to not even allow this and just assert here.
402 }
403}
404
405void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
406 // Execute global ctors/dtors for each module in the program.
407 for (std::unique_ptr<Module> &M : Modules)
408 runStaticConstructorsDestructors(module&: *M, isDtors);
409}
410
411#ifndef NDEBUG
412/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
413static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
414 unsigned PtrSize = EE->getDataLayout().getPointerSize();
415 for (unsigned i = 0; i < PtrSize; ++i)
416 if (*(i + (uint8_t*)Loc))
417 return false;
418 return true;
419}
420#endif
421
422int ExecutionEngine::runFunctionAsMain(Function *Fn,
423 const std::vector<std::string> &argv,
424 const char * const * envp) {
425 std::vector<GenericValue> GVArgs;
426 GenericValue GVArgc;
427 GVArgc.IntVal = APInt(32, argv.size());
428
429 // Check main() type
430 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
431 FunctionType *FTy = Fn->getFunctionType();
432 Type *PPInt8Ty = PointerType::get(C&: Fn->getContext(), AddressSpace: 0);
433
434 // Check the argument types.
435 if (NumArgs > 3)
436 report_fatal_error(reason: "Invalid number of arguments of main() supplied");
437 if (NumArgs >= 3 && FTy->getParamType(i: 2) != PPInt8Ty)
438 report_fatal_error(reason: "Invalid type for third argument of main() supplied");
439 if (NumArgs >= 2 && FTy->getParamType(i: 1) != PPInt8Ty)
440 report_fatal_error(reason: "Invalid type for second argument of main() supplied");
441 if (NumArgs >= 1 && !FTy->getParamType(i: 0)->isIntegerTy(Bitwidth: 32))
442 report_fatal_error(reason: "Invalid type for first argument of main() supplied");
443 if (!FTy->getReturnType()->isIntegerTy() &&
444 !FTy->getReturnType()->isVoidTy())
445 report_fatal_error(reason: "Invalid return type of main() supplied");
446
447 ArgvArray CArgv;
448 ArgvArray CEnv;
449 if (NumArgs) {
450 GVArgs.push_back(x: GVArgc); // Arg #0 = argc.
451 if (NumArgs > 1) {
452 // Arg #1 = argv.
453 GVArgs.push_back(x: PTOGV(P: CArgv.reset(C&: Fn->getContext(), EE: this, InputArgv: argv)));
454 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
455 "argv[0] was null after CreateArgv");
456 if (NumArgs > 2) {
457 std::vector<std::string> EnvVars;
458 for (unsigned i = 0; envp[i]; ++i)
459 EnvVars.emplace_back(args: envp[i]);
460 // Arg #2 = envp.
461 GVArgs.push_back(x: PTOGV(P: CEnv.reset(C&: Fn->getContext(), EE: this, InputArgv: EnvVars)));
462 }
463 }
464 }
465
466 return runFunction(F: Fn, ArgValues: GVArgs).IntVal.getZExtValue();
467}
468
469EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
470
471EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
472 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
473 OptLevel(CodeGenOptLevel::Default), MemMgr(nullptr), Resolver(nullptr) {
474// IR module verification is enabled by default in debug builds, and disabled
475// by default in release builds.
476#ifndef NDEBUG
477 VerifyModules = true;
478#else
479 VerifyModules = false;
480#endif
481}
482
483EngineBuilder::~EngineBuilder() = default;
484
485EngineBuilder &EngineBuilder::setMCJITMemoryManager(
486 std::unique_ptr<RTDyldMemoryManager> mcjmm) {
487 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
488 MemMgr = SharedMM;
489 Resolver = SharedMM;
490 return *this;
491}
492
493EngineBuilder&
494EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
495 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
496 return *this;
497}
498
499EngineBuilder &
500EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
501 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
502 return *this;
503}
504
505ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
506 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
507
508 // Make sure we can resolve symbols in the program as well. The zero arg
509 // to the function tells DynamicLibrary to load the program, not a library.
510 if (sys::DynamicLibrary::LoadLibraryPermanently(Filename: nullptr, ErrMsg: ErrorStr))
511 return nullptr;
512
513 // If the user specified a memory manager but didn't specify which engine to
514 // create, we assume they only want the JIT, and we fail if they only want
515 // the interpreter.
516 if (MemMgr) {
517 if (WhichEngine & EngineKind::JIT)
518 WhichEngine = EngineKind::JIT;
519 else {
520 if (ErrorStr)
521 *ErrorStr = "Cannot create an interpreter with a memory manager.";
522 return nullptr;
523 }
524 }
525
526 // Unless the interpreter was explicitly selected or the JIT is not linked,
527 // try making a JIT.
528 if ((WhichEngine & EngineKind::JIT) && TheTM) {
529 if (!TM->getTarget().hasJIT()) {
530 errs() << "WARNING: This target JIT is not designed for the host"
531 << " you are running. If bad things happen, please choose"
532 << " a different -march switch.\n";
533 }
534
535 ExecutionEngine *EE = nullptr;
536 if (ExecutionEngine::MCJITCtor)
537 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
538 std::move(Resolver), std::move(TheTM));
539
540 if (EE) {
541 EE->setVerifyModules(VerifyModules);
542 return EE;
543 }
544 }
545
546 // If we can't make a JIT and we didn't request one specifically, try making
547 // an interpreter instead.
548 if (WhichEngine & EngineKind::Interpreter) {
549 if (ExecutionEngine::InterpCtor)
550 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
551 if (ErrorStr)
552 *ErrorStr = "Interpreter has not been linked in.";
553 return nullptr;
554 }
555
556 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
557 if (ErrorStr)
558 *ErrorStr = "JIT has not been linked in.";
559 }
560
561 return nullptr;
562}
563
564void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
565 if (Function *F = const_cast<Function*>(dyn_cast<Function>(Val: GV)))
566 return getPointerToFunction(F);
567
568 std::lock_guard<sys::Mutex> locked(lock);
569 if (void* P = getPointerToGlobalIfAvailable(GV))
570 return P;
571
572 // Global variable might have been added since interpreter started.
573 if (GlobalVariable *GVar =
574 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(Val: GV)))
575 emitGlobalVariable(GV: GVar);
576 else
577 llvm_unreachable("Global hasn't had an address allocated yet!");
578
579 return getPointerToGlobalIfAvailable(GV);
580}
581
582/// Converts a Constant* into a GenericValue, including handling of
583/// ConstantExpr values.
584GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
585 // If its undefined, return the garbage.
586 if (isa<UndefValue>(Val: C)) {
587 GenericValue Result;
588 switch (C->getType()->getTypeID()) {
589 default:
590 break;
591 case Type::IntegerTyID:
592 case Type::X86_FP80TyID:
593 case Type::FP128TyID:
594 case Type::PPC_FP128TyID:
595 // Although the value is undefined, we still have to construct an APInt
596 // with the correct bit width.
597 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
598 break;
599 case Type::StructTyID: {
600 // if the whole struct is 'undef' just reserve memory for the value.
601 if(StructType *STy = dyn_cast<StructType>(Val: C->getType())) {
602 unsigned int elemNum = STy->getNumElements();
603 Result.AggregateVal.resize(new_size: elemNum);
604 for (unsigned int i = 0; i < elemNum; ++i) {
605 Type *ElemTy = STy->getElementType(N: i);
606 if (ElemTy->isIntegerTy())
607 Result.AggregateVal[i].IntVal =
608 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
609 else if (ElemTy->isAggregateType()) {
610 const Constant *ElemUndef = UndefValue::get(T: ElemTy);
611 Result.AggregateVal[i] = getConstantValue(C: ElemUndef);
612 }
613 }
614 }
615 }
616 break;
617 case Type::ScalableVectorTyID:
618 report_fatal_error(
619 reason: "Scalable vector support not yet implemented in ExecutionEngine");
620 case Type::ArrayTyID: {
621 auto *ArrTy = cast<ArrayType>(Val: C->getType());
622 Type *ElemTy = ArrTy->getElementType();
623 unsigned int elemNum = ArrTy->getNumElements();
624 Result.AggregateVal.resize(new_size: elemNum);
625 if (ElemTy->isIntegerTy())
626 for (unsigned int i = 0; i < elemNum; ++i)
627 Result.AggregateVal[i].IntVal =
628 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
629 break;
630 }
631 case Type::FixedVectorTyID: {
632 // if the whole vector is 'undef' just reserve memory for the value.
633 auto *VTy = cast<FixedVectorType>(Val: C->getType());
634 Type *ElemTy = VTy->getElementType();
635 unsigned int elemNum = VTy->getNumElements();
636 Result.AggregateVal.resize(new_size: elemNum);
637 if (ElemTy->isIntegerTy())
638 for (unsigned int i = 0; i < elemNum; ++i)
639 Result.AggregateVal[i].IntVal =
640 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
641 break;
642 }
643 }
644 return Result;
645 }
646
647 // Otherwise, if the value is a ConstantExpr...
648 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) {
649 Constant *Op0 = CE->getOperand(i_nocapture: 0);
650 switch (CE->getOpcode()) {
651 case Instruction::GetElementPtr: {
652 // Compute the index
653 GenericValue Result = getConstantValue(C: Op0);
654 APInt Offset(DL.getPointerSizeInBits(), 0);
655 cast<GEPOperator>(Val: CE)->accumulateConstantOffset(DL, Offset);
656
657 char* tmp = (char*) Result.PointerVal;
658 Result = PTOGV(P: tmp + Offset.getSExtValue());
659 return Result;
660 }
661 case Instruction::Trunc: {
662 GenericValue GV = getConstantValue(C: Op0);
663 uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth();
664 GV.IntVal = GV.IntVal.trunc(width: BitWidth);
665 return GV;
666 }
667 case Instruction::ZExt: {
668 GenericValue GV = getConstantValue(C: Op0);
669 uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth();
670 GV.IntVal = GV.IntVal.zext(width: BitWidth);
671 return GV;
672 }
673 case Instruction::SExt: {
674 GenericValue GV = getConstantValue(C: Op0);
675 uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth();
676 GV.IntVal = GV.IntVal.sext(width: BitWidth);
677 return GV;
678 }
679 case Instruction::FPTrunc: {
680 // FIXME long double
681 GenericValue GV = getConstantValue(C: Op0);
682 GV.FloatVal = float(GV.DoubleVal);
683 return GV;
684 }
685 case Instruction::FPExt:{
686 // FIXME long double
687 GenericValue GV = getConstantValue(C: Op0);
688 GV.DoubleVal = double(GV.FloatVal);
689 return GV;
690 }
691 case Instruction::UIToFP: {
692 GenericValue GV = getConstantValue(C: Op0);
693 if (CE->getType()->isFloatTy())
694 GV.FloatVal = float(GV.IntVal.roundToDouble());
695 else if (CE->getType()->isDoubleTy())
696 GV.DoubleVal = GV.IntVal.roundToDouble();
697 else if (CE->getType()->isX86_FP80Ty()) {
698 APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended());
699 (void)apf.convertFromAPInt(Input: GV.IntVal,
700 IsSigned: false,
701 RM: APFloat::rmNearestTiesToEven);
702 GV.IntVal = apf.bitcastToAPInt();
703 }
704 return GV;
705 }
706 case Instruction::SIToFP: {
707 GenericValue GV = getConstantValue(C: Op0);
708 if (CE->getType()->isFloatTy())
709 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
710 else if (CE->getType()->isDoubleTy())
711 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
712 else if (CE->getType()->isX86_FP80Ty()) {
713 APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended());
714 (void)apf.convertFromAPInt(Input: GV.IntVal,
715 IsSigned: true,
716 RM: APFloat::rmNearestTiesToEven);
717 GV.IntVal = apf.bitcastToAPInt();
718 }
719 return GV;
720 }
721 case Instruction::FPToUI: // double->APInt conversion handles sign
722 case Instruction::FPToSI: {
723 GenericValue GV = getConstantValue(C: Op0);
724 uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth();
725 if (Op0->getType()->isFloatTy())
726 GV.IntVal = APIntOps::RoundFloatToAPInt(Float: GV.FloatVal, width: BitWidth);
727 else if (Op0->getType()->isDoubleTy())
728 GV.IntVal = APIntOps::RoundDoubleToAPInt(Double: GV.DoubleVal, width: BitWidth);
729 else if (Op0->getType()->isX86_FP80Ty()) {
730 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
731 uint64_t v;
732 bool ignored;
733 (void)apf.convertToInteger(Input: MutableArrayRef(v), Width: BitWidth,
734 IsSigned: CE->getOpcode()==Instruction::FPToSI,
735 RM: APFloat::rmTowardZero, IsExact: &ignored);
736 GV.IntVal = v; // endian?
737 }
738 return GV;
739 }
740 case Instruction::PtrToInt: {
741 GenericValue GV = getConstantValue(C: Op0);
742 uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: Op0->getType());
743 assert(PtrWidth <= 64 && "Bad pointer width");
744 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
745 uint32_t IntWidth = DL.getTypeSizeInBits(Ty: CE->getType());
746 GV.IntVal = GV.IntVal.zextOrTrunc(width: IntWidth);
747 return GV;
748 }
749 case Instruction::IntToPtr: {
750 GenericValue GV = getConstantValue(C: Op0);
751 uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: CE->getType());
752 GV.IntVal = GV.IntVal.zextOrTrunc(width: PtrWidth);
753 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
754 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
755 return GV;
756 }
757 case Instruction::BitCast: {
758 GenericValue GV = getConstantValue(C: Op0);
759 Type* DestTy = CE->getType();
760 switch (Op0->getType()->getTypeID()) {
761 default: llvm_unreachable("Invalid bitcast operand");
762 case Type::IntegerTyID:
763 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
764 if (DestTy->isFloatTy())
765 GV.FloatVal = GV.IntVal.bitsToFloat();
766 else if (DestTy->isDoubleTy())
767 GV.DoubleVal = GV.IntVal.bitsToDouble();
768 break;
769 case Type::FloatTyID:
770 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
771 GV.IntVal = APInt::floatToBits(V: GV.FloatVal);
772 break;
773 case Type::DoubleTyID:
774 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
775 GV.IntVal = APInt::doubleToBits(V: GV.DoubleVal);
776 break;
777 case Type::PointerTyID:
778 assert(DestTy->isPointerTy() && "Invalid bitcast");
779 break; // getConstantValue(Op0) above already converted it
780 }
781 return GV;
782 }
783 case Instruction::Add:
784 case Instruction::FAdd:
785 case Instruction::Sub:
786 case Instruction::FSub:
787 case Instruction::Mul:
788 case Instruction::FMul:
789 case Instruction::UDiv:
790 case Instruction::SDiv:
791 case Instruction::URem:
792 case Instruction::SRem:
793 case Instruction::And:
794 case Instruction::Or:
795 case Instruction::Xor: {
796 GenericValue LHS = getConstantValue(C: Op0);
797 GenericValue RHS = getConstantValue(C: CE->getOperand(i_nocapture: 1));
798 GenericValue GV;
799 switch (CE->getOperand(i_nocapture: 0)->getType()->getTypeID()) {
800 default: llvm_unreachable("Bad add type!");
801 case Type::IntegerTyID:
802 switch (CE->getOpcode()) {
803 default: llvm_unreachable("Invalid integer opcode");
804 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
805 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
806 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
807 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS: RHS.IntVal); break;
808 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS: RHS.IntVal); break;
809 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS: RHS.IntVal); break;
810 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS: RHS.IntVal); break;
811 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
812 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
813 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
814 }
815 break;
816 case Type::FloatTyID:
817 switch (CE->getOpcode()) {
818 default: llvm_unreachable("Invalid float opcode");
819 case Instruction::FAdd:
820 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
821 case Instruction::FSub:
822 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
823 case Instruction::FMul:
824 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
825 case Instruction::FDiv:
826 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
827 case Instruction::FRem:
828 GV.FloatVal = std::fmod(x: LHS.FloatVal,y: RHS.FloatVal); break;
829 }
830 break;
831 case Type::DoubleTyID:
832 switch (CE->getOpcode()) {
833 default: llvm_unreachable("Invalid double opcode");
834 case Instruction::FAdd:
835 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
836 case Instruction::FSub:
837 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
838 case Instruction::FMul:
839 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
840 case Instruction::FDiv:
841 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
842 case Instruction::FRem:
843 GV.DoubleVal = std::fmod(x: LHS.DoubleVal,y: RHS.DoubleVal); break;
844 }
845 break;
846 case Type::X86_FP80TyID:
847 case Type::PPC_FP128TyID:
848 case Type::FP128TyID: {
849 const fltSemantics &Sem = CE->getOperand(i_nocapture: 0)->getType()->getFltSemantics();
850 APFloat apfLHS = APFloat(Sem, LHS.IntVal);
851 switch (CE->getOpcode()) {
852 default: llvm_unreachable("Invalid long double opcode");
853 case Instruction::FAdd:
854 apfLHS.add(RHS: APFloat(Sem, RHS.IntVal), RM: APFloat::rmNearestTiesToEven);
855 GV.IntVal = apfLHS.bitcastToAPInt();
856 break;
857 case Instruction::FSub:
858 apfLHS.subtract(RHS: APFloat(Sem, RHS.IntVal),
859 RM: APFloat::rmNearestTiesToEven);
860 GV.IntVal = apfLHS.bitcastToAPInt();
861 break;
862 case Instruction::FMul:
863 apfLHS.multiply(RHS: APFloat(Sem, RHS.IntVal),
864 RM: APFloat::rmNearestTiesToEven);
865 GV.IntVal = apfLHS.bitcastToAPInt();
866 break;
867 case Instruction::FDiv:
868 apfLHS.divide(RHS: APFloat(Sem, RHS.IntVal),
869 RM: APFloat::rmNearestTiesToEven);
870 GV.IntVal = apfLHS.bitcastToAPInt();
871 break;
872 case Instruction::FRem:
873 apfLHS.mod(RHS: APFloat(Sem, RHS.IntVal));
874 GV.IntVal = apfLHS.bitcastToAPInt();
875 break;
876 }
877 }
878 break;
879 }
880 return GV;
881 }
882 default:
883 break;
884 }
885
886 SmallString<256> Msg;
887 raw_svector_ostream OS(Msg);
888 OS << "ConstantExpr not handled: " << *CE;
889 report_fatal_error(reason: OS.str());
890 }
891
892 if (auto *TETy = dyn_cast<TargetExtType>(Val: C->getType())) {
893 assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() &&
894 "TargetExtType only supports null constant value");
895 C = Constant::getNullValue(Ty: TETy->getLayoutType());
896 }
897
898 // Otherwise, we have a simple constant.
899 GenericValue Result;
900 switch (C->getType()->getTypeID()) {
901 case Type::FloatTyID:
902 Result.FloatVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToFloat();
903 break;
904 case Type::DoubleTyID:
905 Result.DoubleVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToDouble();
906 break;
907 case Type::X86_FP80TyID:
908 case Type::FP128TyID:
909 case Type::PPC_FP128TyID:
910 Result.IntVal = cast <ConstantFP>(Val: C)->getValueAPF().bitcastToAPInt();
911 break;
912 case Type::IntegerTyID:
913 Result.IntVal = cast<ConstantInt>(Val: C)->getValue();
914 break;
915 case Type::PointerTyID:
916 while (auto *A = dyn_cast<GlobalAlias>(Val: C)) {
917 C = A->getAliasee();
918 }
919 if (isa<ConstantPointerNull>(Val: C))
920 Result.PointerVal = nullptr;
921 else if (const Function *F = dyn_cast<Function>(Val: C))
922 Result = PTOGV(P: getPointerToFunctionOrStub(F: const_cast<Function*>(F)));
923 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: C))
924 Result = PTOGV(P: getOrEmitGlobalVariable(GV: const_cast<GlobalVariable*>(GV)));
925 else
926 llvm_unreachable("Unknown constant pointer type!");
927 break;
928 case Type::ScalableVectorTyID:
929 report_fatal_error(
930 reason: "Scalable vector support not yet implemented in ExecutionEngine");
931 case Type::FixedVectorTyID: {
932 unsigned elemNum;
933 Type* ElemTy;
934 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(Val: C);
935 const ConstantVector *CV = dyn_cast<ConstantVector>(Val: C);
936 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(Val: C);
937
938 if (CDV) {
939 elemNum = CDV->getNumElements();
940 ElemTy = CDV->getElementType();
941 } else if (CV || CAZ) {
942 auto *VTy = cast<FixedVectorType>(Val: C->getType());
943 elemNum = VTy->getNumElements();
944 ElemTy = VTy->getElementType();
945 } else {
946 llvm_unreachable("Unknown constant vector type!");
947 }
948
949 Result.AggregateVal.resize(new_size: elemNum);
950 // Check if vector holds floats.
951 if(ElemTy->isFloatTy()) {
952 if (CAZ) {
953 GenericValue floatZero;
954 floatZero.FloatVal = 0.f;
955 llvm::fill(Range&: Result.AggregateVal, Value&: floatZero);
956 break;
957 }
958 if(CV) {
959 for (unsigned i = 0; i < elemNum; ++i)
960 if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i)))
961 Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
962 Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToFloat();
963 break;
964 }
965 if(CDV)
966 for (unsigned i = 0; i < elemNum; ++i)
967 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
968
969 break;
970 }
971 // Check if vector holds doubles.
972 if (ElemTy->isDoubleTy()) {
973 if (CAZ) {
974 GenericValue doubleZero;
975 doubleZero.DoubleVal = 0.0;
976 llvm::fill(Range&: Result.AggregateVal, Value&: doubleZero);
977 break;
978 }
979 if(CV) {
980 for (unsigned i = 0; i < elemNum; ++i)
981 if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i)))
982 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
983 Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToDouble();
984 break;
985 }
986 if(CDV)
987 for (unsigned i = 0; i < elemNum; ++i)
988 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
989
990 break;
991 }
992 // Check if vector holds integers.
993 if (ElemTy->isIntegerTy()) {
994 if (CAZ) {
995 GenericValue intZero;
996 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
997 llvm::fill(Range&: Result.AggregateVal, Value&: intZero);
998 break;
999 }
1000 if(CV) {
1001 for (unsigned i = 0; i < elemNum; ++i)
1002 if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i)))
1003 Result.AggregateVal[i].IntVal = cast<ConstantInt>(
1004 Val: CV->getOperand(i_nocapture: i))->getValue();
1005 else {
1006 Result.AggregateVal[i].IntVal =
1007 APInt(CV->getOperand(i_nocapture: i)->getType()->getPrimitiveSizeInBits(), 0);
1008 }
1009 break;
1010 }
1011 if(CDV)
1012 for (unsigned i = 0; i < elemNum; ++i)
1013 Result.AggregateVal[i].IntVal = APInt(
1014 CDV->getElementType()->getPrimitiveSizeInBits(),
1015 CDV->getElementAsInteger(i));
1016
1017 break;
1018 }
1019 llvm_unreachable("Unknown constant pointer type!");
1020 } break;
1021
1022 default:
1023 SmallString<256> Msg;
1024 raw_svector_ostream OS(Msg);
1025 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1026 report_fatal_error(reason: OS.str());
1027 }
1028
1029 return Result;
1030}
1031
1032void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1033 GenericValue *Ptr, Type *Ty) {
1034 // It is safe to treat TargetExtType as its layout type since the underlying
1035 // bits are only copied and are not inspected.
1036 if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty))
1037 Ty = TETy->getLayoutType();
1038
1039 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1040
1041 switch (Ty->getTypeID()) {
1042 default:
1043 dbgs() << "Cannot store value of type " << *Ty << "!\n";
1044 break;
1045 case Type::IntegerTyID:
1046 StoreIntToMemory(IntVal: Val.IntVal, Dst: (uint8_t*)Ptr, StoreBytes);
1047 break;
1048 case Type::FloatTyID:
1049 *((float*)Ptr) = Val.FloatVal;
1050 break;
1051 case Type::DoubleTyID:
1052 *((double*)Ptr) = Val.DoubleVal;
1053 break;
1054 case Type::X86_FP80TyID:
1055 memcpy(dest: static_cast<void *>(Ptr), src: Val.IntVal.getRawData(), n: 10);
1056 break;
1057 case Type::PointerTyID:
1058 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1059 if (StoreBytes != sizeof(PointerTy))
1060 memset(s: &(Ptr->PointerVal), c: 0, n: StoreBytes);
1061
1062 *((PointerTy*)Ptr) = Val.PointerVal;
1063 break;
1064 case Type::FixedVectorTyID:
1065 case Type::ScalableVectorTyID:
1066 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1067 if (cast<VectorType>(Val: Ty)->getElementType()->isDoubleTy())
1068 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1069 if (cast<VectorType>(Val: Ty)->getElementType()->isFloatTy())
1070 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1071 if (cast<VectorType>(Val: Ty)->getElementType()->isIntegerTy()) {
1072 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1073 StoreIntToMemory(IntVal: Val.AggregateVal[i].IntVal,
1074 Dst: (uint8_t*)Ptr + numOfBytes*i, StoreBytes: numOfBytes);
1075 }
1076 }
1077 break;
1078 }
1079
1080 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1081 // Host and target are different endian - reverse the stored bytes.
1082 std::reverse(first: (uint8_t*)Ptr, last: StoreBytes + (uint8_t*)Ptr);
1083}
1084
1085/// FIXME: document
1086///
1087void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1088 GenericValue *Ptr,
1089 Type *Ty) {
1090 if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty))
1091 Ty = TETy->getLayoutType();
1092
1093 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1094
1095 switch (Ty->getTypeID()) {
1096 case Type::IntegerTyID:
1097 // An APInt with all words initially zero.
1098 Result.IntVal = APInt(cast<IntegerType>(Val: Ty)->getBitWidth(), 0);
1099 LoadIntFromMemory(IntVal&: Result.IntVal, Src: (uint8_t*)Ptr, LoadBytes);
1100 break;
1101 case Type::FloatTyID:
1102 Result.FloatVal = *((float*)Ptr);
1103 break;
1104 case Type::DoubleTyID:
1105 Result.DoubleVal = *((double*)Ptr);
1106 break;
1107 case Type::PointerTyID:
1108 Result.PointerVal = *((PointerTy*)Ptr);
1109 break;
1110 case Type::X86_FP80TyID: {
1111 // This is endian dependent, but it will only work on x86 anyway.
1112 // FIXME: Will not trap if loading a signaling NaN.
1113 uint64_t y[2];
1114 memcpy(dest: y, src: Ptr, n: 10);
1115 Result.IntVal = APInt(80, y);
1116 break;
1117 }
1118 case Type::ScalableVectorTyID:
1119 report_fatal_error(
1120 reason: "Scalable vector support not yet implemented in ExecutionEngine");
1121 case Type::FixedVectorTyID: {
1122 auto *VT = cast<FixedVectorType>(Val: Ty);
1123 Type *ElemT = VT->getElementType();
1124 const unsigned numElems = VT->getNumElements();
1125 if (ElemT->isFloatTy()) {
1126 Result.AggregateVal.resize(new_size: numElems);
1127 for (unsigned i = 0; i < numElems; ++i)
1128 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1129 }
1130 if (ElemT->isDoubleTy()) {
1131 Result.AggregateVal.resize(new_size: numElems);
1132 for (unsigned i = 0; i < numElems; ++i)
1133 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1134 }
1135 if (ElemT->isIntegerTy()) {
1136 GenericValue intZero;
1137 const unsigned elemBitWidth = cast<IntegerType>(Val: ElemT)->getBitWidth();
1138 intZero.IntVal = APInt(elemBitWidth, 0);
1139 Result.AggregateVal.resize(new_size: numElems, x: intZero);
1140 for (unsigned i = 0; i < numElems; ++i)
1141 LoadIntFromMemory(IntVal&: Result.AggregateVal[i].IntVal,
1142 Src: (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, LoadBytes: (elemBitWidth+7)/8);
1143 }
1144 break;
1145 }
1146 default:
1147 SmallString<256> Msg;
1148 raw_svector_ostream OS(Msg);
1149 OS << "Cannot load value of type " << *Ty << "!";
1150 report_fatal_error(reason: OS.str());
1151 }
1152}
1153
1154void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1155 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1156 LLVM_DEBUG(Init->dump());
1157 if (isa<UndefValue>(Val: Init))
1158 return;
1159
1160 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Val: Init)) {
1161 unsigned ElementSize =
1162 getDataLayout().getTypeAllocSize(Ty: CP->getType()->getElementType());
1163 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1164 InitializeMemory(Init: CP->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize);
1165 return;
1166 }
1167
1168 if (isa<ConstantAggregateZero>(Val: Init)) {
1169 memset(s: Addr, c: 0, n: (size_t)getDataLayout().getTypeAllocSize(Ty: Init->getType()));
1170 return;
1171 }
1172
1173 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Val: Init)) {
1174 unsigned ElementSize =
1175 getDataLayout().getTypeAllocSize(Ty: CPA->getType()->getElementType());
1176 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1177 InitializeMemory(Init: CPA->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize);
1178 return;
1179 }
1180
1181 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Val: Init)) {
1182 const StructLayout *SL =
1183 getDataLayout().getStructLayout(Ty: cast<StructType>(Val: CPS->getType()));
1184 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1185 InitializeMemory(Init: CPS->getOperand(i_nocapture: i), Addr: (char*)Addr+SL->getElementOffset(Idx: i));
1186 return;
1187 }
1188
1189 if (const ConstantDataSequential *CDS =
1190 dyn_cast<ConstantDataSequential>(Val: Init)) {
1191 // CDS is already laid out in host memory order.
1192 StringRef Data = CDS->getRawDataValues();
1193 memcpy(dest: Addr, src: Data.data(), n: Data.size());
1194 return;
1195 }
1196
1197 if (Init->getType()->isFirstClassType()) {
1198 GenericValue Val = getConstantValue(C: Init);
1199 StoreValueToMemory(Val, Ptr: (GenericValue*)Addr, Ty: Init->getType());
1200 return;
1201 }
1202
1203 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1204 llvm_unreachable("Unknown constant type to initialize memory with!");
1205}
1206
1207/// EmitGlobals - Emit all of the global variables to memory, storing their
1208/// addresses into GlobalAddress. This must make sure to copy the contents of
1209/// their initializers into the memory.
1210void ExecutionEngine::emitGlobals() {
1211 // Loop over all of the global variables in the program, allocating the memory
1212 // to hold them. If there is more than one module, do a prepass over globals
1213 // to figure out how the different modules should link together.
1214 std::map<std::pair<std::string, Type*>,
1215 const GlobalValue*> LinkedGlobalsMap;
1216
1217 if (Modules.size() != 1) {
1218 for (const auto &M : Modules) {
1219 for (const auto &GV : M->globals()) {
1220 if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1221 GV.hasAppendingLinkage() || !GV.hasName())
1222 continue;// Ignore external globals and globals with internal linkage.
1223
1224 const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
1225 x: std::string(GV.getName()), y: GV.getType())];
1226
1227 // If this is the first time we've seen this global, it is the canonical
1228 // version.
1229 if (!GVEntry) {
1230 GVEntry = &GV;
1231 continue;
1232 }
1233
1234 // If the existing global is strong, never replace it.
1235 if (GVEntry->hasExternalLinkage())
1236 continue;
1237
1238 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1239 // symbol. FIXME is this right for common?
1240 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1241 GVEntry = &GV;
1242 }
1243 }
1244 }
1245
1246 std::vector<const GlobalValue*> NonCanonicalGlobals;
1247 for (const auto &M : Modules) {
1248 for (const auto &GV : M->globals()) {
1249 // In the multi-module case, see what this global maps to.
1250 if (!LinkedGlobalsMap.empty()) {
1251 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1252 x: std::string(GV.getName()), y: GV.getType())]) {
1253 // If something else is the canonical global, ignore this one.
1254 if (GVEntry != &GV) {
1255 NonCanonicalGlobals.push_back(x: &GV);
1256 continue;
1257 }
1258 }
1259 }
1260
1261 if (!GV.isDeclaration()) {
1262 addGlobalMapping(GV: &GV, Addr: getMemoryForGV(GV: &GV));
1263 } else {
1264 // External variable reference. Try to use the dynamic loader to
1265 // get a pointer to it.
1266 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
1267 symbolName: std::string(GV.getName())))
1268 addGlobalMapping(GV: &GV, Addr: SymAddr);
1269 else {
1270 report_fatal_error(reason: "Could not resolve external global address: "
1271 +GV.getName());
1272 }
1273 }
1274 }
1275
1276 // If there are multiple modules, map the non-canonical globals to their
1277 // canonical location.
1278 if (!NonCanonicalGlobals.empty()) {
1279 for (const GlobalValue *GV : NonCanonicalGlobals) {
1280 const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
1281 x: std::string(GV->getName()), y: GV->getType())];
1282 void *Ptr = getPointerToGlobalIfAvailable(GV: CGV);
1283 assert(Ptr && "Canonical global wasn't codegen'd!");
1284 addGlobalMapping(GV, Addr: Ptr);
1285 }
1286 }
1287
1288 // Now that all of the globals are set up in memory, loop through them all
1289 // and initialize their contents.
1290 for (const auto &GV : M->globals()) {
1291 if (!GV.isDeclaration()) {
1292 if (!LinkedGlobalsMap.empty()) {
1293 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1294 x: std::string(GV.getName()), y: GV.getType())])
1295 if (GVEntry != &GV) // Not the canonical variable.
1296 continue;
1297 }
1298 emitGlobalVariable(GV: &GV);
1299 }
1300 }
1301 }
1302}
1303
1304// EmitGlobalVariable - This method emits the specified global variable to the
1305// address specified in GlobalAddresses, or allocates new memory if it's not
1306// already in the map.
1307void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) {
1308 void *GA = getPointerToGlobalIfAvailable(GV);
1309
1310 if (!GA) {
1311 // If it's not already specified, allocate memory for the global.
1312 GA = getMemoryForGV(GV);
1313
1314 // If we failed to allocate memory for this global, return.
1315 if (!GA) return;
1316
1317 addGlobalMapping(GV, Addr: GA);
1318 }
1319
1320 // Don't initialize if it's thread local, let the client do it.
1321 if (!GV->isThreadLocal())
1322 InitializeMemory(Init: GV->getInitializer(), Addr: GA);
1323
1324 Type *ElTy = GV->getValueType();
1325 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(Ty: ElTy);
1326 NumInitBytes += (unsigned)GVSize;
1327 ++NumGlobals;
1328}
1329