| 1 | //===-- Execution.cpp - Implement code to simulate the program ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the actual instruction interpreter. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "Interpreter.h" |
| 14 | #include "llvm/ADT/APInt.h" |
| 15 | #include "llvm/ADT/Statistic.h" |
| 16 | #include "llvm/CodeGen/IntrinsicLowering.h" |
| 17 | #include "llvm/IR/Constants.h" |
| 18 | #include "llvm/IR/DerivedTypes.h" |
| 19 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 20 | #include "llvm/IR/Instructions.h" |
| 21 | #include "llvm/Support/CommandLine.h" |
| 22 | #include "llvm/Support/Debug.h" |
| 23 | #include "llvm/Support/ErrorHandling.h" |
| 24 | #include "llvm/Support/MathExtras.h" |
| 25 | #include "llvm/Support/raw_ostream.h" |
| 26 | #include <algorithm> |
| 27 | #include <cmath> |
| 28 | using namespace llvm; |
| 29 | |
| 30 | #define DEBUG_TYPE "interpreter" |
| 31 | |
| 32 | STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed" ); |
| 33 | |
| 34 | static cl::opt<bool> PrintVolatile("interpreter-print-volatile" , cl::Hidden, |
| 35 | cl::desc("make the interpreter print every volatile load and store" )); |
| 36 | |
| 37 | //===----------------------------------------------------------------------===// |
| 38 | // Various Helper Functions |
| 39 | //===----------------------------------------------------------------------===// |
| 40 | |
| 41 | static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { |
| 42 | SF.Values[V] = Val; |
| 43 | } |
| 44 | |
| 45 | //===----------------------------------------------------------------------===// |
| 46 | // Unary Instruction Implementations |
| 47 | //===----------------------------------------------------------------------===// |
| 48 | |
| 49 | static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) { |
| 50 | switch (Ty->getTypeID()) { |
| 51 | case Type::FloatTyID: |
| 52 | Dest.FloatVal = -Src.FloatVal; |
| 53 | break; |
| 54 | case Type::DoubleTyID: |
| 55 | Dest.DoubleVal = -Src.DoubleVal; |
| 56 | break; |
| 57 | default: |
| 58 | llvm_unreachable("Unhandled type for FNeg instruction" ); |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | void Interpreter::visitUnaryOperator(UnaryOperator &I) { |
| 63 | ExecutionContext &SF = ECStack.back(); |
| 64 | Type *Ty = I.getOperand(i_nocapture: 0)->getType(); |
| 65 | GenericValue Src = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 66 | GenericValue R; // Result |
| 67 | |
| 68 | // First process vector operation |
| 69 | if (Ty->isVectorTy()) { |
| 70 | R.AggregateVal.resize(new_size: Src.AggregateVal.size()); |
| 71 | |
| 72 | switch(I.getOpcode()) { |
| 73 | default: |
| 74 | llvm_unreachable("Don't know how to handle this unary operator" ); |
| 75 | break; |
| 76 | case Instruction::FNeg: |
| 77 | if (cast<VectorType>(Val: Ty)->getElementType()->isFloatTy()) { |
| 78 | for (unsigned i = 0; i < R.AggregateVal.size(); ++i) |
| 79 | R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal; |
| 80 | } else if (cast<VectorType>(Val: Ty)->getElementType()->isDoubleTy()) { |
| 81 | for (unsigned i = 0; i < R.AggregateVal.size(); ++i) |
| 82 | R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal; |
| 83 | } else { |
| 84 | llvm_unreachable("Unhandled type for FNeg instruction" ); |
| 85 | } |
| 86 | break; |
| 87 | } |
| 88 | } else { |
| 89 | switch (I.getOpcode()) { |
| 90 | default: |
| 91 | llvm_unreachable("Don't know how to handle this unary operator" ); |
| 92 | break; |
| 93 | case Instruction::FNeg: executeFNegInst(Dest&: R, Src, Ty); break; |
| 94 | } |
| 95 | } |
| 96 | SetValue(V: &I, Val: R, SF); |
| 97 | } |
| 98 | |
| 99 | //===----------------------------------------------------------------------===// |
| 100 | // Binary Instruction Implementations |
| 101 | //===----------------------------------------------------------------------===// |
| 102 | |
| 103 | #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ |
| 104 | case Type::TY##TyID: \ |
| 105 | Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ |
| 106 | break |
| 107 | |
| 108 | static void executeFAddInst(GenericValue &Dest, GenericValue Src1, |
| 109 | GenericValue Src2, Type *Ty) { |
| 110 | switch (Ty->getTypeID()) { |
| 111 | IMPLEMENT_BINARY_OPERATOR(+, Float); |
| 112 | IMPLEMENT_BINARY_OPERATOR(+, Double); |
| 113 | default: |
| 114 | dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n" ; |
| 115 | llvm_unreachable(nullptr); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | static void executeFSubInst(GenericValue &Dest, GenericValue Src1, |
| 120 | GenericValue Src2, Type *Ty) { |
| 121 | switch (Ty->getTypeID()) { |
| 122 | IMPLEMENT_BINARY_OPERATOR(-, Float); |
| 123 | IMPLEMENT_BINARY_OPERATOR(-, Double); |
| 124 | default: |
| 125 | dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n" ; |
| 126 | llvm_unreachable(nullptr); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | static void executeFMulInst(GenericValue &Dest, GenericValue Src1, |
| 131 | GenericValue Src2, Type *Ty) { |
| 132 | switch (Ty->getTypeID()) { |
| 133 | IMPLEMENT_BINARY_OPERATOR(*, Float); |
| 134 | IMPLEMENT_BINARY_OPERATOR(*, Double); |
| 135 | default: |
| 136 | dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n" ; |
| 137 | llvm_unreachable(nullptr); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | static void executeFDivInst(GenericValue &Dest, GenericValue Src1, |
| 142 | GenericValue Src2, Type *Ty) { |
| 143 | switch (Ty->getTypeID()) { |
| 144 | IMPLEMENT_BINARY_OPERATOR(/, Float); |
| 145 | IMPLEMENT_BINARY_OPERATOR(/, Double); |
| 146 | default: |
| 147 | dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n" ; |
| 148 | llvm_unreachable(nullptr); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | static void executeFRemInst(GenericValue &Dest, GenericValue Src1, |
| 153 | GenericValue Src2, Type *Ty) { |
| 154 | switch (Ty->getTypeID()) { |
| 155 | case Type::FloatTyID: |
| 156 | Dest.FloatVal = fmod(x: Src1.FloatVal, y: Src2.FloatVal); |
| 157 | break; |
| 158 | case Type::DoubleTyID: |
| 159 | Dest.DoubleVal = fmod(x: Src1.DoubleVal, y: Src2.DoubleVal); |
| 160 | break; |
| 161 | default: |
| 162 | dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n" ; |
| 163 | llvm_unreachable(nullptr); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ |
| 168 | case Type::IntegerTyID: \ |
| 169 | Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ |
| 170 | break; |
| 171 | |
| 172 | #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \ |
| 173 | case Type::FixedVectorTyID: \ |
| 174 | case Type::ScalableVectorTyID: { \ |
| 175 | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ |
| 176 | Dest.AggregateVal.resize(Src1.AggregateVal.size()); \ |
| 177 | for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \ |
| 178 | Dest.AggregateVal[_i].IntVal = APInt( \ |
| 179 | 1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal)); \ |
| 180 | } break; |
| 181 | |
| 182 | // Handle pointers specially because they must be compared with only as much |
| 183 | // width as the host has. We _do not_ want to be comparing 64 bit values when |
| 184 | // running on a 32-bit target, otherwise the upper 32 bits might mess up |
| 185 | // comparisons if they contain garbage. |
| 186 | #define IMPLEMENT_POINTER_ICMP(OP) \ |
| 187 | case Type::PointerTyID: \ |
| 188 | Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ |
| 189 | (void*)(intptr_t)Src2.PointerVal); \ |
| 190 | break; |
| 191 | |
| 192 | static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, |
| 193 | Type *Ty) { |
| 194 | GenericValue Dest; |
| 195 | switch (Ty->getTypeID()) { |
| 196 | IMPLEMENT_INTEGER_ICMP(eq,Ty); |
| 197 | IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty); |
| 198 | IMPLEMENT_POINTER_ICMP(==); |
| 199 | default: |
| 200 | dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n" ; |
| 201 | llvm_unreachable(nullptr); |
| 202 | } |
| 203 | return Dest; |
| 204 | } |
| 205 | |
| 206 | static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, |
| 207 | Type *Ty) { |
| 208 | GenericValue Dest; |
| 209 | switch (Ty->getTypeID()) { |
| 210 | IMPLEMENT_INTEGER_ICMP(ne,Ty); |
| 211 | IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty); |
| 212 | IMPLEMENT_POINTER_ICMP(!=); |
| 213 | default: |
| 214 | dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n" ; |
| 215 | llvm_unreachable(nullptr); |
| 216 | } |
| 217 | return Dest; |
| 218 | } |
| 219 | |
| 220 | static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, |
| 221 | Type *Ty) { |
| 222 | GenericValue Dest; |
| 223 | switch (Ty->getTypeID()) { |
| 224 | IMPLEMENT_INTEGER_ICMP(ult,Ty); |
| 225 | IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty); |
| 226 | IMPLEMENT_POINTER_ICMP(<); |
| 227 | default: |
| 228 | dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n" ; |
| 229 | llvm_unreachable(nullptr); |
| 230 | } |
| 231 | return Dest; |
| 232 | } |
| 233 | |
| 234 | static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, |
| 235 | Type *Ty) { |
| 236 | GenericValue Dest; |
| 237 | switch (Ty->getTypeID()) { |
| 238 | IMPLEMENT_INTEGER_ICMP(slt,Ty); |
| 239 | IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty); |
| 240 | IMPLEMENT_POINTER_ICMP(<); |
| 241 | default: |
| 242 | dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n" ; |
| 243 | llvm_unreachable(nullptr); |
| 244 | } |
| 245 | return Dest; |
| 246 | } |
| 247 | |
| 248 | static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, |
| 249 | Type *Ty) { |
| 250 | GenericValue Dest; |
| 251 | switch (Ty->getTypeID()) { |
| 252 | IMPLEMENT_INTEGER_ICMP(ugt,Ty); |
| 253 | IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty); |
| 254 | IMPLEMENT_POINTER_ICMP(>); |
| 255 | default: |
| 256 | dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n" ; |
| 257 | llvm_unreachable(nullptr); |
| 258 | } |
| 259 | return Dest; |
| 260 | } |
| 261 | |
| 262 | static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, |
| 263 | Type *Ty) { |
| 264 | GenericValue Dest; |
| 265 | switch (Ty->getTypeID()) { |
| 266 | IMPLEMENT_INTEGER_ICMP(sgt,Ty); |
| 267 | IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty); |
| 268 | IMPLEMENT_POINTER_ICMP(>); |
| 269 | default: |
| 270 | dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n" ; |
| 271 | llvm_unreachable(nullptr); |
| 272 | } |
| 273 | return Dest; |
| 274 | } |
| 275 | |
| 276 | static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, |
| 277 | Type *Ty) { |
| 278 | GenericValue Dest; |
| 279 | switch (Ty->getTypeID()) { |
| 280 | IMPLEMENT_INTEGER_ICMP(ule,Ty); |
| 281 | IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty); |
| 282 | IMPLEMENT_POINTER_ICMP(<=); |
| 283 | default: |
| 284 | dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n" ; |
| 285 | llvm_unreachable(nullptr); |
| 286 | } |
| 287 | return Dest; |
| 288 | } |
| 289 | |
| 290 | static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, |
| 291 | Type *Ty) { |
| 292 | GenericValue Dest; |
| 293 | switch (Ty->getTypeID()) { |
| 294 | IMPLEMENT_INTEGER_ICMP(sle,Ty); |
| 295 | IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty); |
| 296 | IMPLEMENT_POINTER_ICMP(<=); |
| 297 | default: |
| 298 | dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n" ; |
| 299 | llvm_unreachable(nullptr); |
| 300 | } |
| 301 | return Dest; |
| 302 | } |
| 303 | |
| 304 | static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, |
| 305 | Type *Ty) { |
| 306 | GenericValue Dest; |
| 307 | switch (Ty->getTypeID()) { |
| 308 | IMPLEMENT_INTEGER_ICMP(uge,Ty); |
| 309 | IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty); |
| 310 | IMPLEMENT_POINTER_ICMP(>=); |
| 311 | default: |
| 312 | dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n" ; |
| 313 | llvm_unreachable(nullptr); |
| 314 | } |
| 315 | return Dest; |
| 316 | } |
| 317 | |
| 318 | static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, |
| 319 | Type *Ty) { |
| 320 | GenericValue Dest; |
| 321 | switch (Ty->getTypeID()) { |
| 322 | IMPLEMENT_INTEGER_ICMP(sge,Ty); |
| 323 | IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty); |
| 324 | IMPLEMENT_POINTER_ICMP(>=); |
| 325 | default: |
| 326 | dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n" ; |
| 327 | llvm_unreachable(nullptr); |
| 328 | } |
| 329 | return Dest; |
| 330 | } |
| 331 | |
| 332 | void Interpreter::visitICmpInst(ICmpInst &I) { |
| 333 | ExecutionContext &SF = ECStack.back(); |
| 334 | Type *Ty = I.getOperand(i_nocapture: 0)->getType(); |
| 335 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 336 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 337 | GenericValue R; // Result |
| 338 | |
| 339 | switch (I.getPredicate()) { |
| 340 | case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; |
| 341 | case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; |
| 342 | case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; |
| 343 | case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; |
| 344 | case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; |
| 345 | case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; |
| 346 | case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; |
| 347 | case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; |
| 348 | case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; |
| 349 | case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; |
| 350 | default: |
| 351 | dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; |
| 352 | llvm_unreachable(nullptr); |
| 353 | } |
| 354 | |
| 355 | SetValue(V: &I, Val: R, SF); |
| 356 | } |
| 357 | |
| 358 | #define IMPLEMENT_FCMP(OP, TY) \ |
| 359 | case Type::TY##TyID: \ |
| 360 | Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ |
| 361 | break |
| 362 | |
| 363 | #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \ |
| 364 | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ |
| 365 | Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ |
| 366 | for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ |
| 367 | Dest.AggregateVal[_i].IntVal = APInt(1, \ |
| 368 | Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\ |
| 369 | break; |
| 370 | |
| 371 | #define IMPLEMENT_VECTOR_FCMP(OP) \ |
| 372 | case Type::FixedVectorTyID: \ |
| 373 | case Type::ScalableVectorTyID: \ |
| 374 | if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \ |
| 375 | IMPLEMENT_VECTOR_FCMP_T(OP, Float); \ |
| 376 | } else { \ |
| 377 | IMPLEMENT_VECTOR_FCMP_T(OP, Double); \ |
| 378 | } |
| 379 | |
| 380 | static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, |
| 381 | Type *Ty) { |
| 382 | GenericValue Dest; |
| 383 | switch (Ty->getTypeID()) { |
| 384 | IMPLEMENT_FCMP(==, Float); |
| 385 | IMPLEMENT_FCMP(==, Double); |
| 386 | IMPLEMENT_VECTOR_FCMP(==); |
| 387 | default: |
| 388 | dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n" ; |
| 389 | llvm_unreachable(nullptr); |
| 390 | } |
| 391 | return Dest; |
| 392 | } |
| 393 | |
| 394 | #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \ |
| 395 | if (TY->isFloatTy()) { \ |
| 396 | if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ |
| 397 | Dest.IntVal = APInt(1,false); \ |
| 398 | return Dest; \ |
| 399 | } \ |
| 400 | } else { \ |
| 401 | if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ |
| 402 | Dest.IntVal = APInt(1,false); \ |
| 403 | return Dest; \ |
| 404 | } \ |
| 405 | } |
| 406 | |
| 407 | #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \ |
| 408 | assert(X.AggregateVal.size() == Y.AggregateVal.size()); \ |
| 409 | Dest.AggregateVal.resize( X.AggregateVal.size() ); \ |
| 410 | for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \ |
| 411 | if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \ |
| 412 | Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \ |
| 413 | Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \ |
| 414 | else { \ |
| 415 | Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \ |
| 416 | } \ |
| 417 | } |
| 418 | |
| 419 | #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \ |
| 420 | if (TY->isVectorTy()) { \ |
| 421 | if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \ |
| 422 | MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \ |
| 423 | } else { \ |
| 424 | MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \ |
| 425 | } \ |
| 426 | } \ |
| 427 | |
| 428 | |
| 429 | |
| 430 | static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, |
| 431 | Type *Ty) |
| 432 | { |
| 433 | GenericValue Dest; |
| 434 | // if input is scalar value and Src1 or Src2 is NaN return false |
| 435 | IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2) |
| 436 | // if vector input detect NaNs and fill mask |
| 437 | MASK_VECTOR_NANS(Ty, Src1, Src2, false) |
| 438 | GenericValue DestMask = Dest; |
| 439 | switch (Ty->getTypeID()) { |
| 440 | IMPLEMENT_FCMP(!=, Float); |
| 441 | IMPLEMENT_FCMP(!=, Double); |
| 442 | IMPLEMENT_VECTOR_FCMP(!=); |
| 443 | default: |
| 444 | dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n" ; |
| 445 | llvm_unreachable(nullptr); |
| 446 | } |
| 447 | // in vector case mask out NaN elements |
| 448 | if (Ty->isVectorTy()) |
| 449 | for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) |
| 450 | if (DestMask.AggregateVal[_i].IntVal == false) |
| 451 | Dest.AggregateVal[_i].IntVal = APInt(1,false); |
| 452 | |
| 453 | return Dest; |
| 454 | } |
| 455 | |
| 456 | static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, |
| 457 | Type *Ty) { |
| 458 | GenericValue Dest; |
| 459 | switch (Ty->getTypeID()) { |
| 460 | IMPLEMENT_FCMP(<=, Float); |
| 461 | IMPLEMENT_FCMP(<=, Double); |
| 462 | IMPLEMENT_VECTOR_FCMP(<=); |
| 463 | default: |
| 464 | dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n" ; |
| 465 | llvm_unreachable(nullptr); |
| 466 | } |
| 467 | return Dest; |
| 468 | } |
| 469 | |
| 470 | static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, |
| 471 | Type *Ty) { |
| 472 | GenericValue Dest; |
| 473 | switch (Ty->getTypeID()) { |
| 474 | IMPLEMENT_FCMP(>=, Float); |
| 475 | IMPLEMENT_FCMP(>=, Double); |
| 476 | IMPLEMENT_VECTOR_FCMP(>=); |
| 477 | default: |
| 478 | dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n" ; |
| 479 | llvm_unreachable(nullptr); |
| 480 | } |
| 481 | return Dest; |
| 482 | } |
| 483 | |
| 484 | static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, |
| 485 | Type *Ty) { |
| 486 | GenericValue Dest; |
| 487 | switch (Ty->getTypeID()) { |
| 488 | IMPLEMENT_FCMP(<, Float); |
| 489 | IMPLEMENT_FCMP(<, Double); |
| 490 | IMPLEMENT_VECTOR_FCMP(<); |
| 491 | default: |
| 492 | dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n" ; |
| 493 | llvm_unreachable(nullptr); |
| 494 | } |
| 495 | return Dest; |
| 496 | } |
| 497 | |
| 498 | static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, |
| 499 | Type *Ty) { |
| 500 | GenericValue Dest; |
| 501 | switch (Ty->getTypeID()) { |
| 502 | IMPLEMENT_FCMP(>, Float); |
| 503 | IMPLEMENT_FCMP(>, Double); |
| 504 | IMPLEMENT_VECTOR_FCMP(>); |
| 505 | default: |
| 506 | dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n" ; |
| 507 | llvm_unreachable(nullptr); |
| 508 | } |
| 509 | return Dest; |
| 510 | } |
| 511 | |
| 512 | #define IMPLEMENT_UNORDERED(TY, X,Y) \ |
| 513 | if (TY->isFloatTy()) { \ |
| 514 | if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ |
| 515 | Dest.IntVal = APInt(1,true); \ |
| 516 | return Dest; \ |
| 517 | } \ |
| 518 | } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ |
| 519 | Dest.IntVal = APInt(1,true); \ |
| 520 | return Dest; \ |
| 521 | } |
| 522 | |
| 523 | #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \ |
| 524 | if (TY->isVectorTy()) { \ |
| 525 | GenericValue DestMask = Dest; \ |
| 526 | Dest = FUNC(Src1, Src2, Ty); \ |
| 527 | for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \ |
| 528 | if (DestMask.AggregateVal[_i].IntVal == true) \ |
| 529 | Dest.AggregateVal[_i].IntVal = APInt(1, true); \ |
| 530 | return Dest; \ |
| 531 | } |
| 532 | |
| 533 | static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, |
| 534 | Type *Ty) { |
| 535 | GenericValue Dest; |
| 536 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 537 | MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| 538 | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ) |
| 539 | return executeFCMP_OEQ(Src1, Src2, Ty); |
| 540 | |
| 541 | } |
| 542 | |
| 543 | static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, |
| 544 | Type *Ty) { |
| 545 | GenericValue Dest; |
| 546 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 547 | MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| 548 | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE) |
| 549 | return executeFCMP_ONE(Src1, Src2, Ty); |
| 550 | } |
| 551 | |
| 552 | static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, |
| 553 | Type *Ty) { |
| 554 | GenericValue Dest; |
| 555 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 556 | MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| 557 | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE) |
| 558 | return executeFCMP_OLE(Src1, Src2, Ty); |
| 559 | } |
| 560 | |
| 561 | static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, |
| 562 | Type *Ty) { |
| 563 | GenericValue Dest; |
| 564 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 565 | MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| 566 | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE) |
| 567 | return executeFCMP_OGE(Src1, Src2, Ty); |
| 568 | } |
| 569 | |
| 570 | static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, |
| 571 | Type *Ty) { |
| 572 | GenericValue Dest; |
| 573 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 574 | MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| 575 | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT) |
| 576 | return executeFCMP_OLT(Src1, Src2, Ty); |
| 577 | } |
| 578 | |
| 579 | static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, |
| 580 | Type *Ty) { |
| 581 | GenericValue Dest; |
| 582 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 583 | MASK_VECTOR_NANS(Ty, Src1, Src2, true) |
| 584 | IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT) |
| 585 | return executeFCMP_OGT(Src1, Src2, Ty); |
| 586 | } |
| 587 | |
| 588 | static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, |
| 589 | Type *Ty) { |
| 590 | GenericValue Dest; |
| 591 | if(Ty->isVectorTy()) { |
| 592 | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| 593 | Dest.AggregateVal.resize( new_size: Src1.AggregateVal.size() ); |
| 594 | if (cast<VectorType>(Val: Ty)->getElementType()->isFloatTy()) { |
| 595 | for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) |
| 596 | Dest.AggregateVal[_i].IntVal = APInt(1, |
| 597 | ( (Src1.AggregateVal[_i].FloatVal == |
| 598 | Src1.AggregateVal[_i].FloatVal) && |
| 599 | (Src2.AggregateVal[_i].FloatVal == |
| 600 | Src2.AggregateVal[_i].FloatVal))); |
| 601 | } else { |
| 602 | for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) |
| 603 | Dest.AggregateVal[_i].IntVal = APInt(1, |
| 604 | ( (Src1.AggregateVal[_i].DoubleVal == |
| 605 | Src1.AggregateVal[_i].DoubleVal) && |
| 606 | (Src2.AggregateVal[_i].DoubleVal == |
| 607 | Src2.AggregateVal[_i].DoubleVal))); |
| 608 | } |
| 609 | } else if (Ty->isFloatTy()) |
| 610 | Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && |
| 611 | Src2.FloatVal == Src2.FloatVal)); |
| 612 | else { |
| 613 | Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && |
| 614 | Src2.DoubleVal == Src2.DoubleVal)); |
| 615 | } |
| 616 | return Dest; |
| 617 | } |
| 618 | |
| 619 | static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, |
| 620 | Type *Ty) { |
| 621 | GenericValue Dest; |
| 622 | if(Ty->isVectorTy()) { |
| 623 | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| 624 | Dest.AggregateVal.resize( new_size: Src1.AggregateVal.size() ); |
| 625 | if (cast<VectorType>(Val: Ty)->getElementType()->isFloatTy()) { |
| 626 | for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) |
| 627 | Dest.AggregateVal[_i].IntVal = APInt(1, |
| 628 | ( (Src1.AggregateVal[_i].FloatVal != |
| 629 | Src1.AggregateVal[_i].FloatVal) || |
| 630 | (Src2.AggregateVal[_i].FloatVal != |
| 631 | Src2.AggregateVal[_i].FloatVal))); |
| 632 | } else { |
| 633 | for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) |
| 634 | Dest.AggregateVal[_i].IntVal = APInt(1, |
| 635 | ( (Src1.AggregateVal[_i].DoubleVal != |
| 636 | Src1.AggregateVal[_i].DoubleVal) || |
| 637 | (Src2.AggregateVal[_i].DoubleVal != |
| 638 | Src2.AggregateVal[_i].DoubleVal))); |
| 639 | } |
| 640 | } else if (Ty->isFloatTy()) |
| 641 | Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || |
| 642 | Src2.FloatVal != Src2.FloatVal)); |
| 643 | else { |
| 644 | Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || |
| 645 | Src2.DoubleVal != Src2.DoubleVal)); |
| 646 | } |
| 647 | return Dest; |
| 648 | } |
| 649 | |
| 650 | static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, |
| 651 | Type *Ty, const bool val) { |
| 652 | GenericValue Dest; |
| 653 | if(Ty->isVectorTy()) { |
| 654 | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| 655 | Dest.AggregateVal.resize( new_size: Src1.AggregateVal.size() ); |
| 656 | for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) |
| 657 | Dest.AggregateVal[_i].IntVal = APInt(1,val); |
| 658 | } else { |
| 659 | Dest.IntVal = APInt(1, val); |
| 660 | } |
| 661 | |
| 662 | return Dest; |
| 663 | } |
| 664 | |
| 665 | void Interpreter::visitFCmpInst(FCmpInst &I) { |
| 666 | ExecutionContext &SF = ECStack.back(); |
| 667 | Type *Ty = I.getOperand(i_nocapture: 0)->getType(); |
| 668 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 669 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 670 | GenericValue R; // Result |
| 671 | |
| 672 | switch (I.getPredicate()) { |
| 673 | default: |
| 674 | dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; |
| 675 | llvm_unreachable(nullptr); |
| 676 | break; |
| 677 | case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, val: false); |
| 678 | break; |
| 679 | case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, val: true); |
| 680 | break; |
| 681 | case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; |
| 682 | case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; |
| 683 | case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; |
| 684 | case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; |
| 685 | case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; |
| 686 | case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; |
| 687 | case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; |
| 688 | case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; |
| 689 | case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; |
| 690 | case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; |
| 691 | case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; |
| 692 | case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; |
| 693 | case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; |
| 694 | case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; |
| 695 | } |
| 696 | |
| 697 | SetValue(V: &I, Val: R, SF); |
| 698 | } |
| 699 | |
| 700 | void Interpreter::visitBinaryOperator(BinaryOperator &I) { |
| 701 | ExecutionContext &SF = ECStack.back(); |
| 702 | Type *Ty = I.getOperand(i_nocapture: 0)->getType(); |
| 703 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 704 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 705 | GenericValue R; // Result |
| 706 | |
| 707 | // First process vector operation |
| 708 | if (Ty->isVectorTy()) { |
| 709 | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| 710 | R.AggregateVal.resize(new_size: Src1.AggregateVal.size()); |
| 711 | |
| 712 | // Macros to execute binary operation 'OP' over integer vectors |
| 713 | #define INTEGER_VECTOR_OPERATION(OP) \ |
| 714 | for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ |
| 715 | R.AggregateVal[i].IntVal = \ |
| 716 | Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal; |
| 717 | |
| 718 | // Additional macros to execute binary operations udiv/sdiv/urem/srem since |
| 719 | // they have different notation. |
| 720 | #define INTEGER_VECTOR_FUNCTION(OP) \ |
| 721 | for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ |
| 722 | R.AggregateVal[i].IntVal = \ |
| 723 | Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal); |
| 724 | |
| 725 | // Macros to execute binary operation 'OP' over floating point type TY |
| 726 | // (float or double) vectors |
| 727 | #define FLOAT_VECTOR_FUNCTION(OP, TY) \ |
| 728 | for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ |
| 729 | R.AggregateVal[i].TY = \ |
| 730 | Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY; |
| 731 | |
| 732 | // Macros to choose appropriate TY: float or double and run operation |
| 733 | // execution |
| 734 | #define FLOAT_VECTOR_OP(OP) { \ |
| 735 | if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \ |
| 736 | FLOAT_VECTOR_FUNCTION(OP, FloatVal) \ |
| 737 | else { \ |
| 738 | if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \ |
| 739 | FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \ |
| 740 | else { \ |
| 741 | dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \ |
| 742 | llvm_unreachable(0); \ |
| 743 | } \ |
| 744 | } \ |
| 745 | } |
| 746 | |
| 747 | switch(I.getOpcode()){ |
| 748 | default: |
| 749 | dbgs() << "Don't know how to handle this binary operator!\n-->" << I; |
| 750 | llvm_unreachable(nullptr); |
| 751 | break; |
| 752 | case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break; |
| 753 | case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break; |
| 754 | case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break; |
| 755 | case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break; |
| 756 | case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break; |
| 757 | case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break; |
| 758 | case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break; |
| 759 | case Instruction::And: INTEGER_VECTOR_OPERATION(&) break; |
| 760 | case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break; |
| 761 | case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break; |
| 762 | case Instruction::FAdd: FLOAT_VECTOR_OP(+) break; |
| 763 | case Instruction::FSub: FLOAT_VECTOR_OP(-) break; |
| 764 | case Instruction::FMul: FLOAT_VECTOR_OP(*) break; |
| 765 | case Instruction::FDiv: FLOAT_VECTOR_OP(/) break; |
| 766 | case Instruction::FRem: |
| 767 | if (cast<VectorType>(Val: Ty)->getElementType()->isFloatTy()) |
| 768 | for (unsigned i = 0; i < R.AggregateVal.size(); ++i) |
| 769 | R.AggregateVal[i].FloatVal = |
| 770 | fmod(x: Src1.AggregateVal[i].FloatVal, y: Src2.AggregateVal[i].FloatVal); |
| 771 | else { |
| 772 | if (cast<VectorType>(Val: Ty)->getElementType()->isDoubleTy()) |
| 773 | for (unsigned i = 0; i < R.AggregateVal.size(); ++i) |
| 774 | R.AggregateVal[i].DoubleVal = |
| 775 | fmod(x: Src1.AggregateVal[i].DoubleVal, y: Src2.AggregateVal[i].DoubleVal); |
| 776 | else { |
| 777 | dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n" ; |
| 778 | llvm_unreachable(nullptr); |
| 779 | } |
| 780 | } |
| 781 | break; |
| 782 | } |
| 783 | } else { |
| 784 | switch (I.getOpcode()) { |
| 785 | default: |
| 786 | dbgs() << "Don't know how to handle this binary operator!\n-->" << I; |
| 787 | llvm_unreachable(nullptr); |
| 788 | break; |
| 789 | case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; |
| 790 | case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; |
| 791 | case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break; |
| 792 | case Instruction::FAdd: executeFAddInst(Dest&: R, Src1, Src2, Ty); break; |
| 793 | case Instruction::FSub: executeFSubInst(Dest&: R, Src1, Src2, Ty); break; |
| 794 | case Instruction::FMul: executeFMulInst(Dest&: R, Src1, Src2, Ty); break; |
| 795 | case Instruction::FDiv: executeFDivInst(Dest&: R, Src1, Src2, Ty); break; |
| 796 | case Instruction::FRem: executeFRemInst(Dest&: R, Src1, Src2, Ty); break; |
| 797 | case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(RHS: Src2.IntVal); break; |
| 798 | case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(RHS: Src2.IntVal); break; |
| 799 | case Instruction::URem: R.IntVal = Src1.IntVal.urem(RHS: Src2.IntVal); break; |
| 800 | case Instruction::SRem: R.IntVal = Src1.IntVal.srem(RHS: Src2.IntVal); break; |
| 801 | case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; |
| 802 | case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; |
| 803 | case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; |
| 804 | } |
| 805 | } |
| 806 | SetValue(V: &I, Val: R, SF); |
| 807 | } |
| 808 | |
| 809 | static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, |
| 810 | GenericValue Src3, Type *Ty) { |
| 811 | GenericValue Dest; |
| 812 | if(Ty->isVectorTy()) { |
| 813 | assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); |
| 814 | assert(Src2.AggregateVal.size() == Src3.AggregateVal.size()); |
| 815 | Dest.AggregateVal.resize( new_size: Src1.AggregateVal.size() ); |
| 816 | for (size_t i = 0; i < Src1.AggregateVal.size(); ++i) |
| 817 | Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ? |
| 818 | Src3.AggregateVal[i] : Src2.AggregateVal[i]; |
| 819 | } else { |
| 820 | Dest = (Src1.IntVal == 0) ? Src3 : Src2; |
| 821 | } |
| 822 | return Dest; |
| 823 | } |
| 824 | |
| 825 | void Interpreter::visitSelectInst(SelectInst &I) { |
| 826 | ExecutionContext &SF = ECStack.back(); |
| 827 | Type * Ty = I.getOperand(i_nocapture: 0)->getType(); |
| 828 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 829 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 830 | GenericValue Src3 = getOperandValue(V: I.getOperand(i_nocapture: 2), SF); |
| 831 | GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty); |
| 832 | SetValue(V: &I, Val: R, SF); |
| 833 | } |
| 834 | |
| 835 | //===----------------------------------------------------------------------===// |
| 836 | // Terminator Instruction Implementations |
| 837 | //===----------------------------------------------------------------------===// |
| 838 | |
| 839 | void Interpreter::exitCalled(GenericValue GV) { |
| 840 | // runAtExitHandlers() assumes there are no stack frames, but |
| 841 | // if exit() was called, then it had a stack frame. Blow away |
| 842 | // the stack before interpreting atexit handlers. |
| 843 | ECStack.clear(); |
| 844 | runAtExitHandlers(); |
| 845 | exit(status: GV.IntVal.zextOrTrunc(width: 32).getZExtValue()); |
| 846 | } |
| 847 | |
| 848 | /// Pop the last stack frame off of ECStack and then copy the result |
| 849 | /// back into the result variable if we are not returning void. The |
| 850 | /// result variable may be the ExitValue, or the Value of the calling |
| 851 | /// CallInst if there was a previous stack frame. This method may |
| 852 | /// invalidate any ECStack iterators you have. This method also takes |
| 853 | /// care of switching to the normal destination BB, if we are returning |
| 854 | /// from an invoke. |
| 855 | /// |
| 856 | void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, |
| 857 | GenericValue Result) { |
| 858 | // Pop the current stack frame. |
| 859 | ECStack.pop_back(); |
| 860 | |
| 861 | if (ECStack.empty()) { // Finished main. Put result into exit code... |
| 862 | if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type? |
| 863 | ExitValue = Result; // Capture the exit value of the program |
| 864 | } else { |
| 865 | memset(s: &ExitValue.Untyped, c: 0, n: sizeof(ExitValue.Untyped)); |
| 866 | } |
| 867 | } else { |
| 868 | // If we have a previous stack frame, and we have a previous call, |
| 869 | // fill in the return value... |
| 870 | ExecutionContext &CallingSF = ECStack.back(); |
| 871 | if (CallingSF.Caller) { |
| 872 | // Save result... |
| 873 | if (!CallingSF.Caller->getType()->isVoidTy()) |
| 874 | SetValue(V: CallingSF.Caller, Val: Result, SF&: CallingSF); |
| 875 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: CallingSF.Caller)) |
| 876 | SwitchToNewBasicBlock (Dest: II->getNormalDest (), SF&: CallingSF); |
| 877 | CallingSF.Caller = nullptr; // We returned from the call... |
| 878 | } |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | void Interpreter::visitReturnInst(ReturnInst &I) { |
| 883 | ExecutionContext &SF = ECStack.back(); |
| 884 | Type *RetTy = Type::getVoidTy(C&: I.getContext()); |
| 885 | GenericValue Result; |
| 886 | |
| 887 | // Save away the return value... (if we are not 'ret void') |
| 888 | if (I.getNumOperands()) { |
| 889 | RetTy = I.getReturnValue()->getType(); |
| 890 | Result = getOperandValue(V: I.getReturnValue(), SF); |
| 891 | } |
| 892 | |
| 893 | popStackAndReturnValueToCaller(RetTy, Result); |
| 894 | } |
| 895 | |
| 896 | void Interpreter::visitUnreachableInst(UnreachableInst &I) { |
| 897 | report_fatal_error(reason: "Program executed an 'unreachable' instruction!" ); |
| 898 | } |
| 899 | |
| 900 | void Interpreter::visitBranchInst(BranchInst &I) { |
| 901 | ExecutionContext &SF = ECStack.back(); |
| 902 | BasicBlock *Dest; |
| 903 | |
| 904 | Dest = I.getSuccessor(i: 0); // Uncond branches have a fixed dest... |
| 905 | if (!I.isUnconditional()) { |
| 906 | Value *Cond = I.getCondition(); |
| 907 | if (getOperandValue(V: Cond, SF).IntVal == 0) // If false cond... |
| 908 | Dest = I.getSuccessor(i: 1); |
| 909 | } |
| 910 | SwitchToNewBasicBlock(Dest, SF); |
| 911 | } |
| 912 | |
| 913 | void Interpreter::visitSwitchInst(SwitchInst &I) { |
| 914 | ExecutionContext &SF = ECStack.back(); |
| 915 | Value* Cond = I.getCondition(); |
| 916 | Type *ElTy = Cond->getType(); |
| 917 | GenericValue CondVal = getOperandValue(V: Cond, SF); |
| 918 | |
| 919 | // Check to see if any of the cases match... |
| 920 | BasicBlock *Dest = nullptr; |
| 921 | for (auto Case : I.cases()) { |
| 922 | GenericValue CaseVal = getOperandValue(V: Case.getCaseValue(), SF); |
| 923 | if (executeICMP_EQ(Src1: CondVal, Src2: CaseVal, Ty: ElTy).IntVal != 0) { |
| 924 | Dest = cast<BasicBlock>(Val: Case.getCaseSuccessor()); |
| 925 | break; |
| 926 | } |
| 927 | } |
| 928 | if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default |
| 929 | SwitchToNewBasicBlock(Dest, SF); |
| 930 | } |
| 931 | |
| 932 | void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { |
| 933 | ExecutionContext &SF = ECStack.back(); |
| 934 | void *Dest = GVTOP(GV: getOperandValue(V: I.getAddress(), SF)); |
| 935 | SwitchToNewBasicBlock(Dest: (BasicBlock*)Dest, SF); |
| 936 | } |
| 937 | |
| 938 | |
| 939 | // SwitchToNewBasicBlock - This method is used to jump to a new basic block. |
| 940 | // This function handles the actual updating of block and instruction iterators |
| 941 | // as well as execution of all of the PHI nodes in the destination block. |
| 942 | // |
| 943 | // This method does this because all of the PHI nodes must be executed |
| 944 | // atomically, reading their inputs before any of the results are updated. Not |
| 945 | // doing this can cause problems if the PHI nodes depend on other PHI nodes for |
| 946 | // their inputs. If the input PHI node is updated before it is read, incorrect |
| 947 | // results can happen. Thus we use a two phase approach. |
| 948 | // |
| 949 | void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ |
| 950 | BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... |
| 951 | SF.CurBB = Dest; // Update CurBB to branch destination |
| 952 | SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... |
| 953 | |
| 954 | if (!isa<PHINode>(Val: SF.CurInst)) return; // Nothing fancy to do |
| 955 | |
| 956 | // Loop over all of the PHI nodes in the current block, reading their inputs. |
| 957 | std::vector<GenericValue> ResultValues; |
| 958 | |
| 959 | for (; PHINode *PN = dyn_cast<PHINode>(Val&: SF.CurInst); ++SF.CurInst) { |
| 960 | // Search for the value corresponding to this previous bb... |
| 961 | int i = PN->getBasicBlockIndex(BB: PrevBB); |
| 962 | assert(i != -1 && "PHINode doesn't contain entry for predecessor??" ); |
| 963 | Value *IncomingValue = PN->getIncomingValue(i); |
| 964 | |
| 965 | // Save the incoming value for this PHI node... |
| 966 | ResultValues.push_back(x: getOperandValue(V: IncomingValue, SF)); |
| 967 | } |
| 968 | |
| 969 | // Now loop over all of the PHI nodes setting their values... |
| 970 | SF.CurInst = SF.CurBB->begin(); |
| 971 | for (unsigned i = 0; isa<PHINode>(Val: SF.CurInst); ++SF.CurInst, ++i) { |
| 972 | PHINode *PN = cast<PHINode>(Val&: SF.CurInst); |
| 973 | SetValue(V: PN, Val: ResultValues[i], SF); |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | //===----------------------------------------------------------------------===// |
| 978 | // Memory Instruction Implementations |
| 979 | //===----------------------------------------------------------------------===// |
| 980 | |
| 981 | void Interpreter::visitAllocaInst(AllocaInst &I) { |
| 982 | ExecutionContext &SF = ECStack.back(); |
| 983 | |
| 984 | Type *Ty = I.getAllocatedType(); // Type to be allocated |
| 985 | |
| 986 | // Get the number of elements being allocated by the array... |
| 987 | unsigned NumElements = |
| 988 | getOperandValue(V: I.getOperand(i_nocapture: 0), SF).IntVal.getZExtValue(); |
| 989 | |
| 990 | unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty); |
| 991 | |
| 992 | // Avoid malloc-ing zero bytes, use max()... |
| 993 | unsigned MemToAlloc = std::max(a: 1U, b: NumElements * TypeSize); |
| 994 | |
| 995 | // Allocate enough memory to hold the type... |
| 996 | void *Memory = safe_malloc(Sz: MemToAlloc); |
| 997 | |
| 998 | LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize |
| 999 | << " bytes) x " << NumElements << " (Total: " << MemToAlloc |
| 1000 | << ") at " << uintptr_t(Memory) << '\n'); |
| 1001 | |
| 1002 | GenericValue Result = PTOGV(P: Memory); |
| 1003 | assert(Result.PointerVal && "Null pointer returned by malloc!" ); |
| 1004 | SetValue(V: &I, Val: Result, SF); |
| 1005 | |
| 1006 | if (I.getOpcode() == Instruction::Alloca) |
| 1007 | ECStack.back().Allocas.add(Mem: Memory); |
| 1008 | } |
| 1009 | |
| 1010 | // getElementOffset - The workhorse for getelementptr. |
| 1011 | // |
| 1012 | GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, |
| 1013 | gep_type_iterator E, |
| 1014 | ExecutionContext &SF) { |
| 1015 | assert(Ptr->getType()->isPointerTy() && |
| 1016 | "Cannot getElementOffset of a nonpointer type!" ); |
| 1017 | |
| 1018 | uint64_t Total = 0; |
| 1019 | |
| 1020 | for (; I != E; ++I) { |
| 1021 | if (StructType *STy = I.getStructTypeOrNull()) { |
| 1022 | const StructLayout *SLO = getDataLayout().getStructLayout(Ty: STy); |
| 1023 | |
| 1024 | const ConstantInt *CPU = cast<ConstantInt>(Val: I.getOperand()); |
| 1025 | unsigned Index = unsigned(CPU->getZExtValue()); |
| 1026 | |
| 1027 | Total += SLO->getElementOffset(Idx: Index); |
| 1028 | } else { |
| 1029 | // Get the index number for the array... which must be long type... |
| 1030 | GenericValue IdxGV = getOperandValue(V: I.getOperand(), SF); |
| 1031 | |
| 1032 | int64_t Idx; |
| 1033 | unsigned BitWidth = |
| 1034 | cast<IntegerType>(Val: I.getOperand()->getType())->getBitWidth(); |
| 1035 | if (BitWidth == 32) |
| 1036 | Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); |
| 1037 | else { |
| 1038 | assert(BitWidth == 64 && "Invalid index type for getelementptr" ); |
| 1039 | Idx = (int64_t)IdxGV.IntVal.getZExtValue(); |
| 1040 | } |
| 1041 | Total += I.getSequentialElementStride(DL: getDataLayout()) * Idx; |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | GenericValue Result; |
| 1046 | Result.PointerVal = ((char*)getOperandValue(V: Ptr, SF).PointerVal) + Total; |
| 1047 | LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n" ); |
| 1048 | return Result; |
| 1049 | } |
| 1050 | |
| 1051 | void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { |
| 1052 | ExecutionContext &SF = ECStack.back(); |
| 1053 | SetValue(V: &I, Val: executeGEPOperation(Ptr: I.getPointerOperand(), |
| 1054 | I: gep_type_begin(GEP: I), E: gep_type_end(GEP: I), SF), SF); |
| 1055 | } |
| 1056 | |
| 1057 | void Interpreter::visitLoadInst(LoadInst &I) { |
| 1058 | ExecutionContext &SF = ECStack.back(); |
| 1059 | GenericValue SRC = getOperandValue(V: I.getPointerOperand(), SF); |
| 1060 | GenericValue *Ptr = (GenericValue*)GVTOP(GV: SRC); |
| 1061 | GenericValue Result; |
| 1062 | LoadValueFromMemory(Result, Ptr, Ty: I.getType()); |
| 1063 | SetValue(V: &I, Val: Result, SF); |
| 1064 | if (I.isVolatile() && PrintVolatile) |
| 1065 | dbgs() << "Volatile load " << I; |
| 1066 | } |
| 1067 | |
| 1068 | void Interpreter::visitStoreInst(StoreInst &I) { |
| 1069 | ExecutionContext &SF = ECStack.back(); |
| 1070 | GenericValue Val = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 1071 | GenericValue SRC = getOperandValue(V: I.getPointerOperand(), SF); |
| 1072 | StoreValueToMemory(Val, Ptr: (GenericValue *)GVTOP(GV: SRC), |
| 1073 | Ty: I.getOperand(i_nocapture: 0)->getType()); |
| 1074 | if (I.isVolatile() && PrintVolatile) |
| 1075 | dbgs() << "Volatile store: " << I; |
| 1076 | } |
| 1077 | |
| 1078 | //===----------------------------------------------------------------------===// |
| 1079 | // Miscellaneous Instruction Implementations |
| 1080 | //===----------------------------------------------------------------------===// |
| 1081 | |
| 1082 | void Interpreter::visitVAStartInst(VAStartInst &I) { |
| 1083 | ExecutionContext &SF = ECStack.back(); |
| 1084 | GenericValue ArgIndex; |
| 1085 | ArgIndex.UIntPairVal.first = ECStack.size() - 1; |
| 1086 | ArgIndex.UIntPairVal.second = 0; |
| 1087 | SetValue(V: &I, Val: ArgIndex, SF); |
| 1088 | } |
| 1089 | |
| 1090 | void Interpreter::visitVAEndInst(VAEndInst &I) { |
| 1091 | // va_end is a noop for the interpreter |
| 1092 | } |
| 1093 | |
| 1094 | void Interpreter::visitVACopyInst(VACopyInst &I) { |
| 1095 | ExecutionContext &SF = ECStack.back(); |
| 1096 | SetValue(V: &I, Val: getOperandValue(V: *I.arg_begin(), SF), SF); |
| 1097 | } |
| 1098 | |
| 1099 | void Interpreter::visitIntrinsicInst(IntrinsicInst &I) { |
| 1100 | ExecutionContext &SF = ECStack.back(); |
| 1101 | |
| 1102 | // If it is an unknown intrinsic function, use the intrinsic lowering |
| 1103 | // class to transform it into hopefully tasty LLVM code. |
| 1104 | // |
| 1105 | BasicBlock::iterator Me(&I); |
| 1106 | BasicBlock *Parent = I.getParent(); |
| 1107 | bool atBegin(Parent->begin() == Me); |
| 1108 | if (!atBegin) |
| 1109 | --Me; |
| 1110 | IL->LowerIntrinsicCall(CI: &I); |
| 1111 | |
| 1112 | // Restore the CurInst pointer to the first instruction newly inserted, if |
| 1113 | // any. |
| 1114 | if (atBegin) { |
| 1115 | SF.CurInst = Parent->begin(); |
| 1116 | } else { |
| 1117 | SF.CurInst = Me; |
| 1118 | ++SF.CurInst; |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | void Interpreter::visitCallBase(CallBase &I) { |
| 1123 | ExecutionContext &SF = ECStack.back(); |
| 1124 | |
| 1125 | SF.Caller = &I; |
| 1126 | std::vector<GenericValue> ArgVals; |
| 1127 | const unsigned NumArgs = SF.Caller->arg_size(); |
| 1128 | ArgVals.reserve(n: NumArgs); |
| 1129 | for (Value *V : SF.Caller->args()) |
| 1130 | ArgVals.push_back(x: getOperandValue(V, SF)); |
| 1131 | |
| 1132 | // To handle indirect calls, we must get the pointer value from the argument |
| 1133 | // and treat it as a function pointer. |
| 1134 | GenericValue SRC = getOperandValue(V: SF.Caller->getCalledOperand(), SF); |
| 1135 | callFunction(F: (Function*)GVTOP(GV: SRC), ArgVals); |
| 1136 | } |
| 1137 | |
| 1138 | // auxiliary function for shift operations |
| 1139 | static unsigned getShiftAmount(uint64_t orgShiftAmount, |
| 1140 | llvm::APInt valueToShift) { |
| 1141 | unsigned valueWidth = valueToShift.getBitWidth(); |
| 1142 | if (orgShiftAmount < (uint64_t)valueWidth) |
| 1143 | return orgShiftAmount; |
| 1144 | // according to the llvm documentation, if orgShiftAmount > valueWidth, |
| 1145 | // the result is undfeined. but we do shift by this rule: |
| 1146 | return (NextPowerOf2(A: valueWidth-1) - 1) & orgShiftAmount; |
| 1147 | } |
| 1148 | |
| 1149 | |
| 1150 | void Interpreter::visitShl(BinaryOperator &I) { |
| 1151 | ExecutionContext &SF = ECStack.back(); |
| 1152 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 1153 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 1154 | GenericValue Dest; |
| 1155 | Type *Ty = I.getType(); |
| 1156 | |
| 1157 | if (Ty->isVectorTy()) { |
| 1158 | uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); |
| 1159 | assert(src1Size == Src2.AggregateVal.size()); |
| 1160 | for (unsigned i = 0; i < src1Size; i++) { |
| 1161 | GenericValue Result; |
| 1162 | uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); |
| 1163 | llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; |
| 1164 | Result.IntVal = valueToShift.shl(shiftAmt: getShiftAmount(orgShiftAmount: shiftAmount, valueToShift)); |
| 1165 | Dest.AggregateVal.push_back(x: Result); |
| 1166 | } |
| 1167 | } else { |
| 1168 | // scalar |
| 1169 | uint64_t shiftAmount = Src2.IntVal.getZExtValue(); |
| 1170 | llvm::APInt valueToShift = Src1.IntVal; |
| 1171 | Dest.IntVal = valueToShift.shl(shiftAmt: getShiftAmount(orgShiftAmount: shiftAmount, valueToShift)); |
| 1172 | } |
| 1173 | |
| 1174 | SetValue(V: &I, Val: Dest, SF); |
| 1175 | } |
| 1176 | |
| 1177 | void Interpreter::visitLShr(BinaryOperator &I) { |
| 1178 | ExecutionContext &SF = ECStack.back(); |
| 1179 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 1180 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 1181 | GenericValue Dest; |
| 1182 | Type *Ty = I.getType(); |
| 1183 | |
| 1184 | if (Ty->isVectorTy()) { |
| 1185 | uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); |
| 1186 | assert(src1Size == Src2.AggregateVal.size()); |
| 1187 | for (unsigned i = 0; i < src1Size; i++) { |
| 1188 | GenericValue Result; |
| 1189 | uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); |
| 1190 | llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; |
| 1191 | Result.IntVal = valueToShift.lshr(shiftAmt: getShiftAmount(orgShiftAmount: shiftAmount, valueToShift)); |
| 1192 | Dest.AggregateVal.push_back(x: Result); |
| 1193 | } |
| 1194 | } else { |
| 1195 | // scalar |
| 1196 | uint64_t shiftAmount = Src2.IntVal.getZExtValue(); |
| 1197 | llvm::APInt valueToShift = Src1.IntVal; |
| 1198 | Dest.IntVal = valueToShift.lshr(shiftAmt: getShiftAmount(orgShiftAmount: shiftAmount, valueToShift)); |
| 1199 | } |
| 1200 | |
| 1201 | SetValue(V: &I, Val: Dest, SF); |
| 1202 | } |
| 1203 | |
| 1204 | void Interpreter::visitAShr(BinaryOperator &I) { |
| 1205 | ExecutionContext &SF = ECStack.back(); |
| 1206 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 1207 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 1208 | GenericValue Dest; |
| 1209 | Type *Ty = I.getType(); |
| 1210 | |
| 1211 | if (Ty->isVectorTy()) { |
| 1212 | size_t src1Size = Src1.AggregateVal.size(); |
| 1213 | assert(src1Size == Src2.AggregateVal.size()); |
| 1214 | for (unsigned i = 0; i < src1Size; i++) { |
| 1215 | GenericValue Result; |
| 1216 | uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); |
| 1217 | llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; |
| 1218 | Result.IntVal = valueToShift.ashr(ShiftAmt: getShiftAmount(orgShiftAmount: shiftAmount, valueToShift)); |
| 1219 | Dest.AggregateVal.push_back(x: Result); |
| 1220 | } |
| 1221 | } else { |
| 1222 | // scalar |
| 1223 | uint64_t shiftAmount = Src2.IntVal.getZExtValue(); |
| 1224 | llvm::APInt valueToShift = Src1.IntVal; |
| 1225 | Dest.IntVal = valueToShift.ashr(ShiftAmt: getShiftAmount(orgShiftAmount: shiftAmount, valueToShift)); |
| 1226 | } |
| 1227 | |
| 1228 | SetValue(V: &I, Val: Dest, SF); |
| 1229 | } |
| 1230 | |
| 1231 | GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, |
| 1232 | ExecutionContext &SF) { |
| 1233 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1234 | Type *SrcTy = SrcVal->getType(); |
| 1235 | if (SrcTy->isVectorTy()) { |
| 1236 | Type *DstVecTy = DstTy->getScalarType(); |
| 1237 | unsigned DBitWidth = cast<IntegerType>(Val: DstVecTy)->getBitWidth(); |
| 1238 | unsigned NumElts = Src.AggregateVal.size(); |
| 1239 | // the sizes of src and dst vectors must be equal |
| 1240 | Dest.AggregateVal.resize(new_size: NumElts); |
| 1241 | for (unsigned i = 0; i < NumElts; i++) |
| 1242 | Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(width: DBitWidth); |
| 1243 | } else { |
| 1244 | IntegerType *DITy = cast<IntegerType>(Val: DstTy); |
| 1245 | unsigned DBitWidth = DITy->getBitWidth(); |
| 1246 | Dest.IntVal = Src.IntVal.trunc(width: DBitWidth); |
| 1247 | } |
| 1248 | return Dest; |
| 1249 | } |
| 1250 | |
| 1251 | GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, |
| 1252 | ExecutionContext &SF) { |
| 1253 | Type *SrcTy = SrcVal->getType(); |
| 1254 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1255 | if (SrcTy->isVectorTy()) { |
| 1256 | Type *DstVecTy = DstTy->getScalarType(); |
| 1257 | unsigned DBitWidth = cast<IntegerType>(Val: DstVecTy)->getBitWidth(); |
| 1258 | unsigned size = Src.AggregateVal.size(); |
| 1259 | // the sizes of src and dst vectors must be equal. |
| 1260 | Dest.AggregateVal.resize(new_size: size); |
| 1261 | for (unsigned i = 0; i < size; i++) |
| 1262 | Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(width: DBitWidth); |
| 1263 | } else { |
| 1264 | auto *DITy = cast<IntegerType>(Val: DstTy); |
| 1265 | unsigned DBitWidth = DITy->getBitWidth(); |
| 1266 | Dest.IntVal = Src.IntVal.sext(width: DBitWidth); |
| 1267 | } |
| 1268 | return Dest; |
| 1269 | } |
| 1270 | |
| 1271 | GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, |
| 1272 | ExecutionContext &SF) { |
| 1273 | Type *SrcTy = SrcVal->getType(); |
| 1274 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1275 | if (SrcTy->isVectorTy()) { |
| 1276 | Type *DstVecTy = DstTy->getScalarType(); |
| 1277 | unsigned DBitWidth = cast<IntegerType>(Val: DstVecTy)->getBitWidth(); |
| 1278 | |
| 1279 | unsigned size = Src.AggregateVal.size(); |
| 1280 | // the sizes of src and dst vectors must be equal. |
| 1281 | Dest.AggregateVal.resize(new_size: size); |
| 1282 | for (unsigned i = 0; i < size; i++) |
| 1283 | Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(width: DBitWidth); |
| 1284 | } else { |
| 1285 | auto *DITy = cast<IntegerType>(Val: DstTy); |
| 1286 | unsigned DBitWidth = DITy->getBitWidth(); |
| 1287 | Dest.IntVal = Src.IntVal.zext(width: DBitWidth); |
| 1288 | } |
| 1289 | return Dest; |
| 1290 | } |
| 1291 | |
| 1292 | GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, |
| 1293 | ExecutionContext &SF) { |
| 1294 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1295 | |
| 1296 | if (isa<VectorType>(Val: SrcVal->getType())) { |
| 1297 | assert(SrcVal->getType()->getScalarType()->isDoubleTy() && |
| 1298 | DstTy->getScalarType()->isFloatTy() && |
| 1299 | "Invalid FPTrunc instruction" ); |
| 1300 | |
| 1301 | unsigned size = Src.AggregateVal.size(); |
| 1302 | // the sizes of src and dst vectors must be equal. |
| 1303 | Dest.AggregateVal.resize(new_size: size); |
| 1304 | for (unsigned i = 0; i < size; i++) |
| 1305 | Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal; |
| 1306 | } else { |
| 1307 | assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && |
| 1308 | "Invalid FPTrunc instruction" ); |
| 1309 | Dest.FloatVal = (float)Src.DoubleVal; |
| 1310 | } |
| 1311 | |
| 1312 | return Dest; |
| 1313 | } |
| 1314 | |
| 1315 | GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, |
| 1316 | ExecutionContext &SF) { |
| 1317 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1318 | |
| 1319 | if (isa<VectorType>(Val: SrcVal->getType())) { |
| 1320 | assert(SrcVal->getType()->getScalarType()->isFloatTy() && |
| 1321 | DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction" ); |
| 1322 | |
| 1323 | unsigned size = Src.AggregateVal.size(); |
| 1324 | // the sizes of src and dst vectors must be equal. |
| 1325 | Dest.AggregateVal.resize(new_size: size); |
| 1326 | for (unsigned i = 0; i < size; i++) |
| 1327 | Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal; |
| 1328 | } else { |
| 1329 | assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && |
| 1330 | "Invalid FPExt instruction" ); |
| 1331 | Dest.DoubleVal = (double)Src.FloatVal; |
| 1332 | } |
| 1333 | |
| 1334 | return Dest; |
| 1335 | } |
| 1336 | |
| 1337 | GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, |
| 1338 | ExecutionContext &SF) { |
| 1339 | Type *SrcTy = SrcVal->getType(); |
| 1340 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1341 | |
| 1342 | if (isa<VectorType>(Val: SrcTy)) { |
| 1343 | Type *DstVecTy = DstTy->getScalarType(); |
| 1344 | Type *SrcVecTy = SrcTy->getScalarType(); |
| 1345 | uint32_t DBitWidth = cast<IntegerType>(Val: DstVecTy)->getBitWidth(); |
| 1346 | unsigned size = Src.AggregateVal.size(); |
| 1347 | // the sizes of src and dst vectors must be equal. |
| 1348 | Dest.AggregateVal.resize(new_size: size); |
| 1349 | |
| 1350 | if (SrcVecTy->getTypeID() == Type::FloatTyID) { |
| 1351 | assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction" ); |
| 1352 | for (unsigned i = 0; i < size; i++) |
| 1353 | Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( |
| 1354 | Float: Src.AggregateVal[i].FloatVal, width: DBitWidth); |
| 1355 | } else { |
| 1356 | for (unsigned i = 0; i < size; i++) |
| 1357 | Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( |
| 1358 | Double: Src.AggregateVal[i].DoubleVal, width: DBitWidth); |
| 1359 | } |
| 1360 | } else { |
| 1361 | // scalar |
| 1362 | uint32_t DBitWidth = cast<IntegerType>(Val: DstTy)->getBitWidth(); |
| 1363 | assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction" ); |
| 1364 | |
| 1365 | if (SrcTy->getTypeID() == Type::FloatTyID) |
| 1366 | Dest.IntVal = APIntOps::RoundFloatToAPInt(Float: Src.FloatVal, width: DBitWidth); |
| 1367 | else { |
| 1368 | Dest.IntVal = APIntOps::RoundDoubleToAPInt(Double: Src.DoubleVal, width: DBitWidth); |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | return Dest; |
| 1373 | } |
| 1374 | |
| 1375 | GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, |
| 1376 | ExecutionContext &SF) { |
| 1377 | Type *SrcTy = SrcVal->getType(); |
| 1378 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1379 | |
| 1380 | if (isa<VectorType>(Val: SrcTy)) { |
| 1381 | Type *DstVecTy = DstTy->getScalarType(); |
| 1382 | Type *SrcVecTy = SrcTy->getScalarType(); |
| 1383 | uint32_t DBitWidth = cast<IntegerType>(Val: DstVecTy)->getBitWidth(); |
| 1384 | unsigned size = Src.AggregateVal.size(); |
| 1385 | // the sizes of src and dst vectors must be equal |
| 1386 | Dest.AggregateVal.resize(new_size: size); |
| 1387 | |
| 1388 | if (SrcVecTy->getTypeID() == Type::FloatTyID) { |
| 1389 | assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction" ); |
| 1390 | for (unsigned i = 0; i < size; i++) |
| 1391 | Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( |
| 1392 | Float: Src.AggregateVal[i].FloatVal, width: DBitWidth); |
| 1393 | } else { |
| 1394 | for (unsigned i = 0; i < size; i++) |
| 1395 | Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( |
| 1396 | Double: Src.AggregateVal[i].DoubleVal, width: DBitWidth); |
| 1397 | } |
| 1398 | } else { |
| 1399 | // scalar |
| 1400 | unsigned DBitWidth = cast<IntegerType>(Val: DstTy)->getBitWidth(); |
| 1401 | assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction" ); |
| 1402 | |
| 1403 | if (SrcTy->getTypeID() == Type::FloatTyID) |
| 1404 | Dest.IntVal = APIntOps::RoundFloatToAPInt(Float: Src.FloatVal, width: DBitWidth); |
| 1405 | else { |
| 1406 | Dest.IntVal = APIntOps::RoundDoubleToAPInt(Double: Src.DoubleVal, width: DBitWidth); |
| 1407 | } |
| 1408 | } |
| 1409 | return Dest; |
| 1410 | } |
| 1411 | |
| 1412 | GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, |
| 1413 | ExecutionContext &SF) { |
| 1414 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1415 | |
| 1416 | if (isa<VectorType>(Val: SrcVal->getType())) { |
| 1417 | Type *DstVecTy = DstTy->getScalarType(); |
| 1418 | unsigned size = Src.AggregateVal.size(); |
| 1419 | // the sizes of src and dst vectors must be equal |
| 1420 | Dest.AggregateVal.resize(new_size: size); |
| 1421 | |
| 1422 | if (DstVecTy->getTypeID() == Type::FloatTyID) { |
| 1423 | assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction" ); |
| 1424 | for (unsigned i = 0; i < size; i++) |
| 1425 | Dest.AggregateVal[i].FloatVal = |
| 1426 | APIntOps::RoundAPIntToFloat(APIVal: Src.AggregateVal[i].IntVal); |
| 1427 | } else { |
| 1428 | for (unsigned i = 0; i < size; i++) |
| 1429 | Dest.AggregateVal[i].DoubleVal = |
| 1430 | APIntOps::RoundAPIntToDouble(APIVal: Src.AggregateVal[i].IntVal); |
| 1431 | } |
| 1432 | } else { |
| 1433 | // scalar |
| 1434 | assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction" ); |
| 1435 | if (DstTy->getTypeID() == Type::FloatTyID) |
| 1436 | Dest.FloatVal = APIntOps::RoundAPIntToFloat(APIVal: Src.IntVal); |
| 1437 | else { |
| 1438 | Dest.DoubleVal = APIntOps::RoundAPIntToDouble(APIVal: Src.IntVal); |
| 1439 | } |
| 1440 | } |
| 1441 | return Dest; |
| 1442 | } |
| 1443 | |
| 1444 | GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, |
| 1445 | ExecutionContext &SF) { |
| 1446 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1447 | |
| 1448 | if (isa<VectorType>(Val: SrcVal->getType())) { |
| 1449 | Type *DstVecTy = DstTy->getScalarType(); |
| 1450 | unsigned size = Src.AggregateVal.size(); |
| 1451 | // the sizes of src and dst vectors must be equal |
| 1452 | Dest.AggregateVal.resize(new_size: size); |
| 1453 | |
| 1454 | if (DstVecTy->getTypeID() == Type::FloatTyID) { |
| 1455 | assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction" ); |
| 1456 | for (unsigned i = 0; i < size; i++) |
| 1457 | Dest.AggregateVal[i].FloatVal = |
| 1458 | APIntOps::RoundSignedAPIntToFloat(APIVal: Src.AggregateVal[i].IntVal); |
| 1459 | } else { |
| 1460 | for (unsigned i = 0; i < size; i++) |
| 1461 | Dest.AggregateVal[i].DoubleVal = |
| 1462 | APIntOps::RoundSignedAPIntToDouble(APIVal: Src.AggregateVal[i].IntVal); |
| 1463 | } |
| 1464 | } else { |
| 1465 | // scalar |
| 1466 | assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction" ); |
| 1467 | |
| 1468 | if (DstTy->getTypeID() == Type::FloatTyID) |
| 1469 | Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(APIVal: Src.IntVal); |
| 1470 | else { |
| 1471 | Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(APIVal: Src.IntVal); |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | return Dest; |
| 1476 | } |
| 1477 | |
| 1478 | GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, |
| 1479 | ExecutionContext &SF) { |
| 1480 | uint32_t DBitWidth = cast<IntegerType>(Val: DstTy)->getBitWidth(); |
| 1481 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1482 | assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction" ); |
| 1483 | |
| 1484 | Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); |
| 1485 | return Dest; |
| 1486 | } |
| 1487 | |
| 1488 | GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, |
| 1489 | ExecutionContext &SF) { |
| 1490 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1491 | assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction" ); |
| 1492 | |
| 1493 | uint32_t PtrSize = getDataLayout().getPointerSizeInBits(); |
| 1494 | if (PtrSize != Src.IntVal.getBitWidth()) |
| 1495 | Src.IntVal = Src.IntVal.zextOrTrunc(width: PtrSize); |
| 1496 | |
| 1497 | Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); |
| 1498 | return Dest; |
| 1499 | } |
| 1500 | |
| 1501 | GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, |
| 1502 | ExecutionContext &SF) { |
| 1503 | |
| 1504 | // This instruction supports bitwise conversion of vectors to integers and |
| 1505 | // to vectors of other types (as long as they have the same size) |
| 1506 | Type *SrcTy = SrcVal->getType(); |
| 1507 | GenericValue Dest, Src = getOperandValue(V: SrcVal, SF); |
| 1508 | |
| 1509 | if (isa<VectorType>(Val: SrcTy) || isa<VectorType>(Val: DstTy)) { |
| 1510 | // vector src bitcast to vector dst or vector src bitcast to scalar dst or |
| 1511 | // scalar src bitcast to vector dst |
| 1512 | bool isLittleEndian = getDataLayout().isLittleEndian(); |
| 1513 | GenericValue TempDst, TempSrc, SrcVec; |
| 1514 | Type *SrcElemTy; |
| 1515 | Type *DstElemTy; |
| 1516 | unsigned SrcBitSize; |
| 1517 | unsigned DstBitSize; |
| 1518 | unsigned SrcNum; |
| 1519 | unsigned DstNum; |
| 1520 | |
| 1521 | if (isa<VectorType>(Val: SrcTy)) { |
| 1522 | SrcElemTy = SrcTy->getScalarType(); |
| 1523 | SrcBitSize = SrcTy->getScalarSizeInBits(); |
| 1524 | SrcNum = Src.AggregateVal.size(); |
| 1525 | SrcVec = Src; |
| 1526 | } else { |
| 1527 | // if src is scalar value, make it vector <1 x type> |
| 1528 | SrcElemTy = SrcTy; |
| 1529 | SrcBitSize = SrcTy->getPrimitiveSizeInBits(); |
| 1530 | SrcNum = 1; |
| 1531 | SrcVec.AggregateVal.push_back(x: Src); |
| 1532 | } |
| 1533 | |
| 1534 | if (isa<VectorType>(Val: DstTy)) { |
| 1535 | DstElemTy = DstTy->getScalarType(); |
| 1536 | DstBitSize = DstTy->getScalarSizeInBits(); |
| 1537 | DstNum = (SrcNum * SrcBitSize) / DstBitSize; |
| 1538 | } else { |
| 1539 | DstElemTy = DstTy; |
| 1540 | DstBitSize = DstTy->getPrimitiveSizeInBits(); |
| 1541 | DstNum = 1; |
| 1542 | } |
| 1543 | |
| 1544 | if (SrcNum * SrcBitSize != DstNum * DstBitSize) |
| 1545 | llvm_unreachable("Invalid BitCast" ); |
| 1546 | |
| 1547 | // If src is floating point, cast to integer first. |
| 1548 | TempSrc.AggregateVal.resize(new_size: SrcNum); |
| 1549 | if (SrcElemTy->isFloatTy()) { |
| 1550 | for (unsigned i = 0; i < SrcNum; i++) |
| 1551 | TempSrc.AggregateVal[i].IntVal = |
| 1552 | APInt::floatToBits(V: SrcVec.AggregateVal[i].FloatVal); |
| 1553 | |
| 1554 | } else if (SrcElemTy->isDoubleTy()) { |
| 1555 | for (unsigned i = 0; i < SrcNum; i++) |
| 1556 | TempSrc.AggregateVal[i].IntVal = |
| 1557 | APInt::doubleToBits(V: SrcVec.AggregateVal[i].DoubleVal); |
| 1558 | } else if (SrcElemTy->isIntegerTy()) { |
| 1559 | for (unsigned i = 0; i < SrcNum; i++) |
| 1560 | TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal; |
| 1561 | } else { |
| 1562 | // Pointers are not allowed as the element type of vector. |
| 1563 | llvm_unreachable("Invalid Bitcast" ); |
| 1564 | } |
| 1565 | |
| 1566 | // now TempSrc is integer type vector |
| 1567 | if (DstNum < SrcNum) { |
| 1568 | // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64> |
| 1569 | unsigned Ratio = SrcNum / DstNum; |
| 1570 | unsigned SrcElt = 0; |
| 1571 | for (unsigned i = 0; i < DstNum; i++) { |
| 1572 | GenericValue Elt; |
| 1573 | Elt.IntVal = 0; |
| 1574 | Elt.IntVal = Elt.IntVal.zext(width: DstBitSize); |
| 1575 | unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1); |
| 1576 | for (unsigned j = 0; j < Ratio; j++) { |
| 1577 | APInt Tmp; |
| 1578 | Tmp = Tmp.zext(width: SrcBitSize); |
| 1579 | Tmp = TempSrc.AggregateVal[SrcElt++].IntVal; |
| 1580 | Tmp = Tmp.zext(width: DstBitSize); |
| 1581 | Tmp <<= ShiftAmt; |
| 1582 | ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; |
| 1583 | Elt.IntVal |= Tmp; |
| 1584 | } |
| 1585 | TempDst.AggregateVal.push_back(x: Elt); |
| 1586 | } |
| 1587 | } else { |
| 1588 | // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32> |
| 1589 | unsigned Ratio = DstNum / SrcNum; |
| 1590 | for (unsigned i = 0; i < SrcNum; i++) { |
| 1591 | unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1); |
| 1592 | for (unsigned j = 0; j < Ratio; j++) { |
| 1593 | GenericValue Elt; |
| 1594 | Elt.IntVal = Elt.IntVal.zext(width: SrcBitSize); |
| 1595 | Elt.IntVal = TempSrc.AggregateVal[i].IntVal; |
| 1596 | Elt.IntVal.lshrInPlace(ShiftAmt); |
| 1597 | // it could be DstBitSize == SrcBitSize, so check it |
| 1598 | if (DstBitSize < SrcBitSize) |
| 1599 | Elt.IntVal = Elt.IntVal.trunc(width: DstBitSize); |
| 1600 | ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; |
| 1601 | TempDst.AggregateVal.push_back(x: Elt); |
| 1602 | } |
| 1603 | } |
| 1604 | } |
| 1605 | |
| 1606 | // convert result from integer to specified type |
| 1607 | if (isa<VectorType>(Val: DstTy)) { |
| 1608 | if (DstElemTy->isDoubleTy()) { |
| 1609 | Dest.AggregateVal.resize(new_size: DstNum); |
| 1610 | for (unsigned i = 0; i < DstNum; i++) |
| 1611 | Dest.AggregateVal[i].DoubleVal = |
| 1612 | TempDst.AggregateVal[i].IntVal.bitsToDouble(); |
| 1613 | } else if (DstElemTy->isFloatTy()) { |
| 1614 | Dest.AggregateVal.resize(new_size: DstNum); |
| 1615 | for (unsigned i = 0; i < DstNum; i++) |
| 1616 | Dest.AggregateVal[i].FloatVal = |
| 1617 | TempDst.AggregateVal[i].IntVal.bitsToFloat(); |
| 1618 | } else { |
| 1619 | Dest = TempDst; |
| 1620 | } |
| 1621 | } else { |
| 1622 | if (DstElemTy->isDoubleTy()) |
| 1623 | Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble(); |
| 1624 | else if (DstElemTy->isFloatTy()) { |
| 1625 | Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat(); |
| 1626 | } else { |
| 1627 | Dest.IntVal = TempDst.AggregateVal[0].IntVal; |
| 1628 | } |
| 1629 | } |
| 1630 | } else { // if (isa<VectorType>(SrcTy)) || isa<VectorType>(DstTy)) |
| 1631 | |
| 1632 | // scalar src bitcast to scalar dst |
| 1633 | if (DstTy->isPointerTy()) { |
| 1634 | assert(SrcTy->isPointerTy() && "Invalid BitCast" ); |
| 1635 | Dest.PointerVal = Src.PointerVal; |
| 1636 | } else if (DstTy->isIntegerTy()) { |
| 1637 | if (SrcTy->isFloatTy()) |
| 1638 | Dest.IntVal = APInt::floatToBits(V: Src.FloatVal); |
| 1639 | else if (SrcTy->isDoubleTy()) { |
| 1640 | Dest.IntVal = APInt::doubleToBits(V: Src.DoubleVal); |
| 1641 | } else if (SrcTy->isIntegerTy()) { |
| 1642 | Dest.IntVal = Src.IntVal; |
| 1643 | } else { |
| 1644 | llvm_unreachable("Invalid BitCast" ); |
| 1645 | } |
| 1646 | } else if (DstTy->isFloatTy()) { |
| 1647 | if (SrcTy->isIntegerTy()) |
| 1648 | Dest.FloatVal = Src.IntVal.bitsToFloat(); |
| 1649 | else { |
| 1650 | Dest.FloatVal = Src.FloatVal; |
| 1651 | } |
| 1652 | } else if (DstTy->isDoubleTy()) { |
| 1653 | if (SrcTy->isIntegerTy()) |
| 1654 | Dest.DoubleVal = Src.IntVal.bitsToDouble(); |
| 1655 | else { |
| 1656 | Dest.DoubleVal = Src.DoubleVal; |
| 1657 | } |
| 1658 | } else { |
| 1659 | llvm_unreachable("Invalid Bitcast" ); |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | return Dest; |
| 1664 | } |
| 1665 | |
| 1666 | void Interpreter::visitTruncInst(TruncInst &I) { |
| 1667 | ExecutionContext &SF = ECStack.back(); |
| 1668 | SetValue(V: &I, Val: executeTruncInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1669 | } |
| 1670 | |
| 1671 | void Interpreter::visitSExtInst(SExtInst &I) { |
| 1672 | ExecutionContext &SF = ECStack.back(); |
| 1673 | SetValue(V: &I, Val: executeSExtInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1674 | } |
| 1675 | |
| 1676 | void Interpreter::visitZExtInst(ZExtInst &I) { |
| 1677 | ExecutionContext &SF = ECStack.back(); |
| 1678 | SetValue(V: &I, Val: executeZExtInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1679 | } |
| 1680 | |
| 1681 | void Interpreter::visitFPTruncInst(FPTruncInst &I) { |
| 1682 | ExecutionContext &SF = ECStack.back(); |
| 1683 | SetValue(V: &I, Val: executeFPTruncInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1684 | } |
| 1685 | |
| 1686 | void Interpreter::visitFPExtInst(FPExtInst &I) { |
| 1687 | ExecutionContext &SF = ECStack.back(); |
| 1688 | SetValue(V: &I, Val: executeFPExtInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1689 | } |
| 1690 | |
| 1691 | void Interpreter::visitUIToFPInst(UIToFPInst &I) { |
| 1692 | ExecutionContext &SF = ECStack.back(); |
| 1693 | SetValue(V: &I, Val: executeUIToFPInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1694 | } |
| 1695 | |
| 1696 | void Interpreter::visitSIToFPInst(SIToFPInst &I) { |
| 1697 | ExecutionContext &SF = ECStack.back(); |
| 1698 | SetValue(V: &I, Val: executeSIToFPInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1699 | } |
| 1700 | |
| 1701 | void Interpreter::visitFPToUIInst(FPToUIInst &I) { |
| 1702 | ExecutionContext &SF = ECStack.back(); |
| 1703 | SetValue(V: &I, Val: executeFPToUIInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1704 | } |
| 1705 | |
| 1706 | void Interpreter::visitFPToSIInst(FPToSIInst &I) { |
| 1707 | ExecutionContext &SF = ECStack.back(); |
| 1708 | SetValue(V: &I, Val: executeFPToSIInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1709 | } |
| 1710 | |
| 1711 | void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { |
| 1712 | ExecutionContext &SF = ECStack.back(); |
| 1713 | SetValue(V: &I, Val: executePtrToIntInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1714 | } |
| 1715 | |
| 1716 | void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { |
| 1717 | ExecutionContext &SF = ECStack.back(); |
| 1718 | SetValue(V: &I, Val: executeIntToPtrInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1719 | } |
| 1720 | |
| 1721 | void Interpreter::visitBitCastInst(BitCastInst &I) { |
| 1722 | ExecutionContext &SF = ECStack.back(); |
| 1723 | SetValue(V: &I, Val: executeBitCastInst(SrcVal: I.getOperand(i_nocapture: 0), DstTy: I.getType(), SF), SF); |
| 1724 | } |
| 1725 | |
| 1726 | #define IMPLEMENT_VAARG(TY) \ |
| 1727 | case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break |
| 1728 | |
| 1729 | void Interpreter::visitVAArgInst(VAArgInst &I) { |
| 1730 | ExecutionContext &SF = ECStack.back(); |
| 1731 | |
| 1732 | // Get the incoming valist parameter. LLI treats the valist as a |
| 1733 | // (ec-stack-depth var-arg-index) pair. |
| 1734 | GenericValue VAList = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 1735 | GenericValue Dest; |
| 1736 | GenericValue Src = ECStack[VAList.UIntPairVal.first] |
| 1737 | .VarArgs[VAList.UIntPairVal.second]; |
| 1738 | Type *Ty = I.getType(); |
| 1739 | switch (Ty->getTypeID()) { |
| 1740 | case Type::IntegerTyID: |
| 1741 | Dest.IntVal = Src.IntVal; |
| 1742 | break; |
| 1743 | IMPLEMENT_VAARG(Pointer); |
| 1744 | IMPLEMENT_VAARG(Float); |
| 1745 | IMPLEMENT_VAARG(Double); |
| 1746 | default: |
| 1747 | dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n" ; |
| 1748 | llvm_unreachable(nullptr); |
| 1749 | } |
| 1750 | |
| 1751 | // Set the Value of this Instruction. |
| 1752 | SetValue(V: &I, Val: Dest, SF); |
| 1753 | |
| 1754 | // Move the pointer to the next vararg. |
| 1755 | ++VAList.UIntPairVal.second; |
| 1756 | } |
| 1757 | |
| 1758 | void Interpreter::(ExtractElementInst &I) { |
| 1759 | ExecutionContext &SF = ECStack.back(); |
| 1760 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 1761 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 1762 | GenericValue Dest; |
| 1763 | |
| 1764 | Type *Ty = I.getType(); |
| 1765 | const unsigned indx = unsigned(Src2.IntVal.getZExtValue()); |
| 1766 | |
| 1767 | if(Src1.AggregateVal.size() > indx) { |
| 1768 | switch (Ty->getTypeID()) { |
| 1769 | default: |
| 1770 | dbgs() << "Unhandled destination type for extractelement instruction: " |
| 1771 | << *Ty << "\n" ; |
| 1772 | llvm_unreachable(nullptr); |
| 1773 | break; |
| 1774 | case Type::IntegerTyID: |
| 1775 | Dest.IntVal = Src1.AggregateVal[indx].IntVal; |
| 1776 | break; |
| 1777 | case Type::FloatTyID: |
| 1778 | Dest.FloatVal = Src1.AggregateVal[indx].FloatVal; |
| 1779 | break; |
| 1780 | case Type::DoubleTyID: |
| 1781 | Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal; |
| 1782 | break; |
| 1783 | } |
| 1784 | } else { |
| 1785 | dbgs() << "Invalid index in extractelement instruction\n" ; |
| 1786 | } |
| 1787 | |
| 1788 | SetValue(V: &I, Val: Dest, SF); |
| 1789 | } |
| 1790 | |
| 1791 | void Interpreter::visitInsertElementInst(InsertElementInst &I) { |
| 1792 | ExecutionContext &SF = ECStack.back(); |
| 1793 | VectorType *Ty = cast<VectorType>(Val: I.getType()); |
| 1794 | |
| 1795 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 1796 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 1797 | GenericValue Src3 = getOperandValue(V: I.getOperand(i_nocapture: 2), SF); |
| 1798 | GenericValue Dest; |
| 1799 | |
| 1800 | Type *TyContained = Ty->getElementType(); |
| 1801 | |
| 1802 | const unsigned indx = unsigned(Src3.IntVal.getZExtValue()); |
| 1803 | Dest.AggregateVal = Src1.AggregateVal; |
| 1804 | |
| 1805 | if(Src1.AggregateVal.size() <= indx) |
| 1806 | llvm_unreachable("Invalid index in insertelement instruction" ); |
| 1807 | switch (TyContained->getTypeID()) { |
| 1808 | default: |
| 1809 | llvm_unreachable("Unhandled dest type for insertelement instruction" ); |
| 1810 | case Type::IntegerTyID: |
| 1811 | Dest.AggregateVal[indx].IntVal = Src2.IntVal; |
| 1812 | break; |
| 1813 | case Type::FloatTyID: |
| 1814 | Dest.AggregateVal[indx].FloatVal = Src2.FloatVal; |
| 1815 | break; |
| 1816 | case Type::DoubleTyID: |
| 1817 | Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal; |
| 1818 | break; |
| 1819 | } |
| 1820 | SetValue(V: &I, Val: Dest, SF); |
| 1821 | } |
| 1822 | |
| 1823 | void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){ |
| 1824 | ExecutionContext &SF = ECStack.back(); |
| 1825 | |
| 1826 | VectorType *Ty = cast<VectorType>(Val: I.getType()); |
| 1827 | |
| 1828 | GenericValue Src1 = getOperandValue(V: I.getOperand(i_nocapture: 0), SF); |
| 1829 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 1830 | GenericValue Dest; |
| 1831 | |
| 1832 | // There is no need to check types of src1 and src2, because the compiled |
| 1833 | // bytecode can't contain different types for src1 and src2 for a |
| 1834 | // shufflevector instruction. |
| 1835 | |
| 1836 | Type *TyContained = Ty->getElementType(); |
| 1837 | unsigned src1Size = (unsigned)Src1.AggregateVal.size(); |
| 1838 | unsigned src2Size = (unsigned)Src2.AggregateVal.size(); |
| 1839 | unsigned src3Size = I.getShuffleMask().size(); |
| 1840 | |
| 1841 | Dest.AggregateVal.resize(new_size: src3Size); |
| 1842 | |
| 1843 | switch (TyContained->getTypeID()) { |
| 1844 | default: |
| 1845 | llvm_unreachable("Unhandled dest type for insertelement instruction" ); |
| 1846 | break; |
| 1847 | case Type::IntegerTyID: |
| 1848 | for( unsigned i=0; i<src3Size; i++) { |
| 1849 | unsigned j = std::max(a: 0, b: I.getMaskValue(Elt: i)); |
| 1850 | if(j < src1Size) |
| 1851 | Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal; |
| 1852 | else if(j < src1Size + src2Size) |
| 1853 | Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal; |
| 1854 | else |
| 1855 | // The selector may not be greater than sum of lengths of first and |
| 1856 | // second operands and llasm should not allow situation like |
| 1857 | // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef, |
| 1858 | // <2 x i32> < i32 0, i32 5 >, |
| 1859 | // where i32 5 is invalid, but let it be additional check here: |
| 1860 | llvm_unreachable("Invalid mask in shufflevector instruction" ); |
| 1861 | } |
| 1862 | break; |
| 1863 | case Type::FloatTyID: |
| 1864 | for( unsigned i=0; i<src3Size; i++) { |
| 1865 | unsigned j = std::max(a: 0, b: I.getMaskValue(Elt: i)); |
| 1866 | if(j < src1Size) |
| 1867 | Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal; |
| 1868 | else if(j < src1Size + src2Size) |
| 1869 | Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal; |
| 1870 | else |
| 1871 | llvm_unreachable("Invalid mask in shufflevector instruction" ); |
| 1872 | } |
| 1873 | break; |
| 1874 | case Type::DoubleTyID: |
| 1875 | for( unsigned i=0; i<src3Size; i++) { |
| 1876 | unsigned j = std::max(a: 0, b: I.getMaskValue(Elt: i)); |
| 1877 | if(j < src1Size) |
| 1878 | Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal; |
| 1879 | else if(j < src1Size + src2Size) |
| 1880 | Dest.AggregateVal[i].DoubleVal = |
| 1881 | Src2.AggregateVal[j-src1Size].DoubleVal; |
| 1882 | else |
| 1883 | llvm_unreachable("Invalid mask in shufflevector instruction" ); |
| 1884 | } |
| 1885 | break; |
| 1886 | } |
| 1887 | SetValue(V: &I, Val: Dest, SF); |
| 1888 | } |
| 1889 | |
| 1890 | void Interpreter::(ExtractValueInst &I) { |
| 1891 | ExecutionContext &SF = ECStack.back(); |
| 1892 | Value *Agg = I.getAggregateOperand(); |
| 1893 | GenericValue Dest; |
| 1894 | GenericValue Src = getOperandValue(V: Agg, SF); |
| 1895 | |
| 1896 | ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); |
| 1897 | unsigned Num = I.getNumIndices(); |
| 1898 | GenericValue *pSrc = &Src; |
| 1899 | |
| 1900 | for (unsigned i = 0 ; i < Num; ++i) { |
| 1901 | pSrc = &pSrc->AggregateVal[*IdxBegin]; |
| 1902 | ++IdxBegin; |
| 1903 | } |
| 1904 | |
| 1905 | Type *IndexedType = ExtractValueInst::getIndexedType(Agg: Agg->getType(), Idxs: I.getIndices()); |
| 1906 | switch (IndexedType->getTypeID()) { |
| 1907 | default: |
| 1908 | llvm_unreachable("Unhandled dest type for extractelement instruction" ); |
| 1909 | break; |
| 1910 | case Type::IntegerTyID: |
| 1911 | Dest.IntVal = pSrc->IntVal; |
| 1912 | break; |
| 1913 | case Type::FloatTyID: |
| 1914 | Dest.FloatVal = pSrc->FloatVal; |
| 1915 | break; |
| 1916 | case Type::DoubleTyID: |
| 1917 | Dest.DoubleVal = pSrc->DoubleVal; |
| 1918 | break; |
| 1919 | case Type::ArrayTyID: |
| 1920 | case Type::StructTyID: |
| 1921 | case Type::FixedVectorTyID: |
| 1922 | case Type::ScalableVectorTyID: |
| 1923 | Dest.AggregateVal = pSrc->AggregateVal; |
| 1924 | break; |
| 1925 | case Type::PointerTyID: |
| 1926 | Dest.PointerVal = pSrc->PointerVal; |
| 1927 | break; |
| 1928 | } |
| 1929 | |
| 1930 | SetValue(V: &I, Val: Dest, SF); |
| 1931 | } |
| 1932 | |
| 1933 | void Interpreter::visitInsertValueInst(InsertValueInst &I) { |
| 1934 | |
| 1935 | ExecutionContext &SF = ECStack.back(); |
| 1936 | Value *Agg = I.getAggregateOperand(); |
| 1937 | |
| 1938 | GenericValue Src1 = getOperandValue(V: Agg, SF); |
| 1939 | GenericValue Src2 = getOperandValue(V: I.getOperand(i_nocapture: 1), SF); |
| 1940 | GenericValue Dest = Src1; // Dest is a slightly changed Src1 |
| 1941 | |
| 1942 | ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); |
| 1943 | unsigned Num = I.getNumIndices(); |
| 1944 | |
| 1945 | GenericValue *pDest = &Dest; |
| 1946 | for (unsigned i = 0 ; i < Num; ++i) { |
| 1947 | pDest = &pDest->AggregateVal[*IdxBegin]; |
| 1948 | ++IdxBegin; |
| 1949 | } |
| 1950 | // pDest points to the target value in the Dest now |
| 1951 | |
| 1952 | Type *IndexedType = ExtractValueInst::getIndexedType(Agg: Agg->getType(), Idxs: I.getIndices()); |
| 1953 | |
| 1954 | switch (IndexedType->getTypeID()) { |
| 1955 | default: |
| 1956 | llvm_unreachable("Unhandled dest type for insertelement instruction" ); |
| 1957 | break; |
| 1958 | case Type::IntegerTyID: |
| 1959 | pDest->IntVal = Src2.IntVal; |
| 1960 | break; |
| 1961 | case Type::FloatTyID: |
| 1962 | pDest->FloatVal = Src2.FloatVal; |
| 1963 | break; |
| 1964 | case Type::DoubleTyID: |
| 1965 | pDest->DoubleVal = Src2.DoubleVal; |
| 1966 | break; |
| 1967 | case Type::ArrayTyID: |
| 1968 | case Type::StructTyID: |
| 1969 | case Type::FixedVectorTyID: |
| 1970 | case Type::ScalableVectorTyID: |
| 1971 | pDest->AggregateVal = Src2.AggregateVal; |
| 1972 | break; |
| 1973 | case Type::PointerTyID: |
| 1974 | pDest->PointerVal = Src2.PointerVal; |
| 1975 | break; |
| 1976 | } |
| 1977 | |
| 1978 | SetValue(V: &I, Val: Dest, SF); |
| 1979 | } |
| 1980 | |
| 1981 | GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, |
| 1982 | ExecutionContext &SF) { |
| 1983 | switch (CE->getOpcode()) { |
| 1984 | case Instruction::Trunc: |
| 1985 | return executeTruncInst(SrcVal: CE->getOperand(i_nocapture: 0), DstTy: CE->getType(), SF); |
| 1986 | case Instruction::PtrToInt: |
| 1987 | return executePtrToIntInst(SrcVal: CE->getOperand(i_nocapture: 0), DstTy: CE->getType(), SF); |
| 1988 | case Instruction::IntToPtr: |
| 1989 | return executeIntToPtrInst(SrcVal: CE->getOperand(i_nocapture: 0), DstTy: CE->getType(), SF); |
| 1990 | case Instruction::BitCast: |
| 1991 | return executeBitCastInst(SrcVal: CE->getOperand(i_nocapture: 0), DstTy: CE->getType(), SF); |
| 1992 | case Instruction::GetElementPtr: |
| 1993 | return executeGEPOperation(Ptr: CE->getOperand(i_nocapture: 0), I: gep_type_begin(GEP: CE), |
| 1994 | E: gep_type_end(GEP: CE), SF); |
| 1995 | break; |
| 1996 | } |
| 1997 | |
| 1998 | // The cases below here require a GenericValue parameter for the result |
| 1999 | // so we initialize one, compute it and then return it. |
| 2000 | GenericValue Op0 = getOperandValue(V: CE->getOperand(i_nocapture: 0), SF); |
| 2001 | GenericValue Op1 = getOperandValue(V: CE->getOperand(i_nocapture: 1), SF); |
| 2002 | GenericValue Dest; |
| 2003 | switch (CE->getOpcode()) { |
| 2004 | case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break; |
| 2005 | case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break; |
| 2006 | case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break; |
| 2007 | case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; |
| 2008 | case Instruction::Shl: |
| 2009 | Dest.IntVal = Op0.IntVal.shl(shiftAmt: Op1.IntVal.getZExtValue()); |
| 2010 | break; |
| 2011 | default: |
| 2012 | dbgs() << "Unhandled ConstantExpr: " << *CE << "\n" ; |
| 2013 | llvm_unreachable("Unhandled ConstantExpr" ); |
| 2014 | } |
| 2015 | return Dest; |
| 2016 | } |
| 2017 | |
| 2018 | GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { |
| 2019 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: V)) { |
| 2020 | return getConstantExprValue(CE, SF); |
| 2021 | } else if (Constant *CPV = dyn_cast<Constant>(Val: V)) { |
| 2022 | return getConstantValue(C: CPV); |
| 2023 | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Val: V)) { |
| 2024 | return PTOGV(P: getPointerToGlobal(GV)); |
| 2025 | } else { |
| 2026 | return SF.Values[V]; |
| 2027 | } |
| 2028 | } |
| 2029 | |
| 2030 | //===----------------------------------------------------------------------===// |
| 2031 | // Dispatch and Execution Code |
| 2032 | //===----------------------------------------------------------------------===// |
| 2033 | |
| 2034 | //===----------------------------------------------------------------------===// |
| 2035 | // callFunction - Execute the specified function... |
| 2036 | // |
| 2037 | void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) { |
| 2038 | assert((ECStack.empty() || !ECStack.back().Caller || |
| 2039 | ECStack.back().Caller->arg_size() == ArgVals.size()) && |
| 2040 | "Incorrect number of arguments passed into function call!" ); |
| 2041 | // Make a new stack frame... and fill it in. |
| 2042 | ECStack.emplace_back(); |
| 2043 | ExecutionContext &StackFrame = ECStack.back(); |
| 2044 | StackFrame.CurFunction = F; |
| 2045 | |
| 2046 | // Special handling for external functions. |
| 2047 | if (F->isDeclaration()) { |
| 2048 | GenericValue Result = callExternalFunction (F, ArgVals); |
| 2049 | // Simulate a 'ret' instruction of the appropriate type. |
| 2050 | popStackAndReturnValueToCaller (RetTy: F->getReturnType (), Result); |
| 2051 | return; |
| 2052 | } |
| 2053 | |
| 2054 | // Get pointers to first LLVM BB & Instruction in function. |
| 2055 | StackFrame.CurBB = &F->front(); |
| 2056 | StackFrame.CurInst = StackFrame.CurBB->begin(); |
| 2057 | |
| 2058 | // Run through the function arguments and initialize their values... |
| 2059 | assert((ArgVals.size() == F->arg_size() || |
| 2060 | (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& |
| 2061 | "Invalid number of values passed to function invocation!" ); |
| 2062 | |
| 2063 | // Handle non-varargs arguments... |
| 2064 | unsigned i = 0; |
| 2065 | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| 2066 | AI != E; ++AI, ++i) |
| 2067 | SetValue(V: &*AI, Val: ArgVals[i], SF&: StackFrame); |
| 2068 | |
| 2069 | // Handle varargs arguments... |
| 2070 | StackFrame.VarArgs.assign(first: ArgVals.begin()+i, last: ArgVals.end()); |
| 2071 | } |
| 2072 | |
| 2073 | |
| 2074 | void Interpreter::run() { |
| 2075 | while (!ECStack.empty()) { |
| 2076 | // Interpret a single instruction & increment the "PC". |
| 2077 | ExecutionContext &SF = ECStack.back(); // Current stack frame |
| 2078 | Instruction &I = *SF.CurInst++; // Increment before execute |
| 2079 | |
| 2080 | // Track the number of dynamic instructions executed. |
| 2081 | ++NumDynamicInsts; |
| 2082 | |
| 2083 | LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n" ); |
| 2084 | visit(I); // Dispatch to one of the visit* methods... |
| 2085 | } |
| 2086 | } |
| 2087 | |