| 1 | //===-- ExternalFunctions.cpp - Implement External Functions --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains both code to deal with invoking "external" functions, but |
| 10 | // also contains code that implements "exported" external functions. |
| 11 | // |
| 12 | // There are currently two mechanisms for handling external functions in the |
| 13 | // Interpreter. The first is to implement lle_* wrapper functions that are |
| 14 | // specific to well-known library functions which manually translate the |
| 15 | // arguments from GenericValues and make the call. If such a wrapper does |
| 16 | // not exist, and libffi is available, then the Interpreter will attempt to |
| 17 | // invoke the function using libffi, after finding its address. |
| 18 | // |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | |
| 21 | #include "Interpreter.h" |
| 22 | #include "llvm/ADT/APInt.h" |
| 23 | #include "llvm/ADT/ArrayRef.h" |
| 24 | #include "llvm/Config/config.h" // Detect libffi |
| 25 | #include "llvm/ExecutionEngine/GenericValue.h" |
| 26 | #include "llvm/IR/DataLayout.h" |
| 27 | #include "llvm/IR/DerivedTypes.h" |
| 28 | #include "llvm/IR/Function.h" |
| 29 | #include "llvm/IR/Type.h" |
| 30 | #include "llvm/Support/Casting.h" |
| 31 | #include "llvm/Support/DynamicLibrary.h" |
| 32 | #include "llvm/Support/ErrorHandling.h" |
| 33 | #include "llvm/Support/Mutex.h" |
| 34 | #include "llvm/Support/raw_ostream.h" |
| 35 | #include <cassert> |
| 36 | #include <cmath> |
| 37 | #include <csignal> |
| 38 | #include <cstdint> |
| 39 | #include <cstdio> |
| 40 | #include <cstring> |
| 41 | #include <map> |
| 42 | #include <mutex> |
| 43 | #include <string> |
| 44 | #include <utility> |
| 45 | #include <vector> |
| 46 | |
| 47 | #ifdef HAVE_FFI_CALL |
| 48 | #ifdef HAVE_FFI_H |
| 49 | #include <ffi.h> |
| 50 | #define USE_LIBFFI |
| 51 | #elif HAVE_FFI_FFI_H |
| 52 | #include <ffi/ffi.h> |
| 53 | #define USE_LIBFFI |
| 54 | #endif |
| 55 | #endif |
| 56 | |
| 57 | using namespace llvm; |
| 58 | |
| 59 | namespace { |
| 60 | |
| 61 | typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>); |
| 62 | typedef void (*RawFunc)(); |
| 63 | |
| 64 | struct Functions { |
| 65 | sys::Mutex Lock; |
| 66 | std::map<const Function *, ExFunc> ExportedFunctions; |
| 67 | std::map<std::string, ExFunc> FuncNames; |
| 68 | #ifdef USE_LIBFFI |
| 69 | std::map<const Function *, RawFunc> RawFunctions; |
| 70 | #endif |
| 71 | }; |
| 72 | |
| 73 | Functions &getFunctions() { |
| 74 | static Functions F; |
| 75 | return F; |
| 76 | } |
| 77 | |
| 78 | } // anonymous namespace |
| 79 | |
| 80 | static Interpreter *TheInterpreter; |
| 81 | |
| 82 | static char getTypeID(Type *Ty) { |
| 83 | switch (Ty->getTypeID()) { |
| 84 | case Type::VoidTyID: return 'V'; |
| 85 | case Type::IntegerTyID: |
| 86 | switch (cast<IntegerType>(Val: Ty)->getBitWidth()) { |
| 87 | case 1: return 'o'; |
| 88 | case 8: return 'B'; |
| 89 | case 16: return 'S'; |
| 90 | case 32: return 'I'; |
| 91 | case 64: return 'L'; |
| 92 | default: return 'N'; |
| 93 | } |
| 94 | case Type::FloatTyID: return 'F'; |
| 95 | case Type::DoubleTyID: return 'D'; |
| 96 | case Type::PointerTyID: return 'P'; |
| 97 | case Type::FunctionTyID:return 'M'; |
| 98 | case Type::StructTyID: return 'T'; |
| 99 | case Type::ArrayTyID: return 'A'; |
| 100 | default: return 'U'; |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | // Try to find address of external function given a Function object. |
| 105 | // Please note, that interpreter doesn't know how to assemble a |
| 106 | // real call in general case (this is JIT job), that's why it assumes, |
| 107 | // that all external functions has the same (and pretty "general") signature. |
| 108 | // The typical example of such functions are "lle_X_" ones. |
| 109 | static ExFunc lookupFunction(const Function *F) { |
| 110 | // Function not found, look it up... start by figuring out what the |
| 111 | // composite function name should be. |
| 112 | std::string ExtName = "lle_" ; |
| 113 | FunctionType *FT = F->getFunctionType(); |
| 114 | ExtName += getTypeID(Ty: FT->getReturnType()); |
| 115 | for (Type *T : FT->params()) |
| 116 | ExtName += getTypeID(Ty: T); |
| 117 | ExtName += ("_" + F->getName()).str(); |
| 118 | |
| 119 | auto &Fns = getFunctions(); |
| 120 | sys::ScopedLock Writer(Fns.Lock); |
| 121 | ExFunc FnPtr = Fns.FuncNames[ExtName]; |
| 122 | if (!FnPtr) |
| 123 | FnPtr = Fns.FuncNames[("lle_X_" + F->getName()).str()]; |
| 124 | if (!FnPtr) // Try calling a generic function... if it exists... |
| 125 | FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( |
| 126 | symbolName: ("lle_X_" + F->getName()).str()); |
| 127 | if (FnPtr) |
| 128 | Fns.ExportedFunctions.insert(x: std::make_pair(x&: F, y&: FnPtr)); // Cache for later |
| 129 | return FnPtr; |
| 130 | } |
| 131 | |
| 132 | #ifdef USE_LIBFFI |
| 133 | static ffi_type *ffiTypeFor(Type *Ty) { |
| 134 | switch (Ty->getTypeID()) { |
| 135 | case Type::VoidTyID: return &ffi_type_void; |
| 136 | case Type::IntegerTyID: |
| 137 | switch (cast<IntegerType>(Ty)->getBitWidth()) { |
| 138 | case 8: return &ffi_type_sint8; |
| 139 | case 16: return &ffi_type_sint16; |
| 140 | case 32: return &ffi_type_sint32; |
| 141 | case 64: return &ffi_type_sint64; |
| 142 | } |
| 143 | llvm_unreachable("Unhandled integer type bitwidth" ); |
| 144 | case Type::FloatTyID: return &ffi_type_float; |
| 145 | case Type::DoubleTyID: return &ffi_type_double; |
| 146 | case Type::PointerTyID: return &ffi_type_pointer; |
| 147 | default: break; |
| 148 | } |
| 149 | // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. |
| 150 | report_fatal_error("Type could not be mapped for use with libffi." ); |
| 151 | return NULL; |
| 152 | } |
| 153 | |
| 154 | static void *ffiValueFor(Type *Ty, const GenericValue &AV, |
| 155 | void *ArgDataPtr) { |
| 156 | switch (Ty->getTypeID()) { |
| 157 | case Type::IntegerTyID: |
| 158 | switch (cast<IntegerType>(Ty)->getBitWidth()) { |
| 159 | case 8: { |
| 160 | int8_t *I8Ptr = (int8_t *) ArgDataPtr; |
| 161 | *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); |
| 162 | return ArgDataPtr; |
| 163 | } |
| 164 | case 16: { |
| 165 | int16_t *I16Ptr = (int16_t *) ArgDataPtr; |
| 166 | *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); |
| 167 | return ArgDataPtr; |
| 168 | } |
| 169 | case 32: { |
| 170 | int32_t *I32Ptr = (int32_t *) ArgDataPtr; |
| 171 | *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); |
| 172 | return ArgDataPtr; |
| 173 | } |
| 174 | case 64: { |
| 175 | int64_t *I64Ptr = (int64_t *) ArgDataPtr; |
| 176 | *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); |
| 177 | return ArgDataPtr; |
| 178 | } |
| 179 | } |
| 180 | llvm_unreachable("Unhandled integer type bitwidth" ); |
| 181 | case Type::FloatTyID: { |
| 182 | float *FloatPtr = (float *) ArgDataPtr; |
| 183 | *FloatPtr = AV.FloatVal; |
| 184 | return ArgDataPtr; |
| 185 | } |
| 186 | case Type::DoubleTyID: { |
| 187 | double *DoublePtr = (double *) ArgDataPtr; |
| 188 | *DoublePtr = AV.DoubleVal; |
| 189 | return ArgDataPtr; |
| 190 | } |
| 191 | case Type::PointerTyID: { |
| 192 | void **PtrPtr = (void **) ArgDataPtr; |
| 193 | *PtrPtr = GVTOP(AV); |
| 194 | return ArgDataPtr; |
| 195 | } |
| 196 | default: break; |
| 197 | } |
| 198 | // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. |
| 199 | report_fatal_error("Type value could not be mapped for use with libffi." ); |
| 200 | return NULL; |
| 201 | } |
| 202 | |
| 203 | static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals, |
| 204 | const DataLayout &TD, GenericValue &Result) { |
| 205 | ffi_cif cif; |
| 206 | FunctionType *FTy = F->getFunctionType(); |
| 207 | const unsigned NumArgs = F->arg_size(); |
| 208 | |
| 209 | // TODO: We don't have type information about the remaining arguments, because |
| 210 | // this information is never passed into ExecutionEngine::runFunction(). |
| 211 | if (ArgVals.size() > NumArgs && F->isVarArg()) { |
| 212 | report_fatal_error("Calling external var arg function '" + F->getName() |
| 213 | + "' is not supported by the Interpreter." ); |
| 214 | } |
| 215 | |
| 216 | unsigned ArgBytes = 0; |
| 217 | |
| 218 | std::vector<ffi_type*> args(NumArgs); |
| 219 | for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); |
| 220 | A != E; ++A) { |
| 221 | const unsigned ArgNo = A->getArgNo(); |
| 222 | Type *ArgTy = FTy->getParamType(ArgNo); |
| 223 | args[ArgNo] = ffiTypeFor(ArgTy); |
| 224 | ArgBytes += TD.getTypeStoreSize(ArgTy); |
| 225 | } |
| 226 | |
| 227 | SmallVector<uint8_t, 128> ArgData; |
| 228 | ArgData.resize(ArgBytes); |
| 229 | uint8_t *ArgDataPtr = ArgData.data(); |
| 230 | SmallVector<void*, 16> values(NumArgs); |
| 231 | for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); |
| 232 | A != E; ++A) { |
| 233 | const unsigned ArgNo = A->getArgNo(); |
| 234 | Type *ArgTy = FTy->getParamType(ArgNo); |
| 235 | values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); |
| 236 | ArgDataPtr += TD.getTypeStoreSize(ArgTy); |
| 237 | } |
| 238 | |
| 239 | Type *RetTy = FTy->getReturnType(); |
| 240 | ffi_type *rtype = ffiTypeFor(RetTy); |
| 241 | |
| 242 | if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) == |
| 243 | FFI_OK) { |
| 244 | SmallVector<uint8_t, 128> ret; |
| 245 | if (RetTy->getTypeID() != Type::VoidTyID) |
| 246 | ret.resize(TD.getTypeStoreSize(RetTy)); |
| 247 | ffi_call(&cif, Fn, ret.data(), values.data()); |
| 248 | switch (RetTy->getTypeID()) { |
| 249 | case Type::IntegerTyID: |
| 250 | switch (cast<IntegerType>(RetTy)->getBitWidth()) { |
| 251 | case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; |
| 252 | case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; |
| 253 | case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; |
| 254 | case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; |
| 255 | } |
| 256 | break; |
| 257 | case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; |
| 258 | case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; |
| 259 | case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; |
| 260 | default: break; |
| 261 | } |
| 262 | return true; |
| 263 | } |
| 264 | |
| 265 | return false; |
| 266 | } |
| 267 | #endif // USE_LIBFFI |
| 268 | |
| 269 | GenericValue Interpreter::callExternalFunction(Function *F, |
| 270 | ArrayRef<GenericValue> ArgVals) { |
| 271 | TheInterpreter = this; |
| 272 | |
| 273 | auto &Fns = getFunctions(); |
| 274 | std::unique_lock<sys::Mutex> Guard(Fns.Lock); |
| 275 | |
| 276 | // Do a lookup to see if the function is in our cache... this should just be a |
| 277 | // deferred annotation! |
| 278 | std::map<const Function *, ExFunc>::iterator FI = |
| 279 | Fns.ExportedFunctions.find(x: F); |
| 280 | if (ExFunc Fn = (FI == Fns.ExportedFunctions.end()) ? lookupFunction(F) |
| 281 | : FI->second) { |
| 282 | Guard.unlock(); |
| 283 | return Fn(F->getFunctionType(), ArgVals); |
| 284 | } |
| 285 | |
| 286 | #ifdef USE_LIBFFI |
| 287 | std::map<const Function *, RawFunc>::iterator RF = Fns.RawFunctions.find(F); |
| 288 | RawFunc RawFn; |
| 289 | if (RF == Fns.RawFunctions.end()) { |
| 290 | RawFn = (RawFunc)(intptr_t) |
| 291 | sys::DynamicLibrary::SearchForAddressOfSymbol(std::string(F->getName())); |
| 292 | if (!RawFn) |
| 293 | RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); |
| 294 | if (RawFn != 0) |
| 295 | Fns.RawFunctions.insert(std::make_pair(F, RawFn)); // Cache for later |
| 296 | } else { |
| 297 | RawFn = RF->second; |
| 298 | } |
| 299 | |
| 300 | Guard.unlock(); |
| 301 | |
| 302 | GenericValue Result; |
| 303 | if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) |
| 304 | return Result; |
| 305 | #endif // USE_LIBFFI |
| 306 | |
| 307 | if (F->getName() == "__main" ) |
| 308 | errs() << "Tried to execute an unknown external function: " |
| 309 | << *F->getType() << " __main\n" ; |
| 310 | else |
| 311 | report_fatal_error(reason: "Tried to execute an unknown external function: " + |
| 312 | F->getName()); |
| 313 | #ifndef USE_LIBFFI |
| 314 | errs() << "Recompiling LLVM with --enable-libffi might help.\n" ; |
| 315 | #endif |
| 316 | return GenericValue(); |
| 317 | } |
| 318 | |
| 319 | //===----------------------------------------------------------------------===// |
| 320 | // Functions "exported" to the running application... |
| 321 | // |
| 322 | |
| 323 | // void atexit(Function*) |
| 324 | static GenericValue lle_X_atexit(FunctionType *FT, |
| 325 | ArrayRef<GenericValue> Args) { |
| 326 | assert(Args.size() == 1); |
| 327 | TheInterpreter->addAtExitHandler(F: (Function*)GVTOP(GV: Args[0])); |
| 328 | GenericValue GV; |
| 329 | GV.IntVal = 0; |
| 330 | return GV; |
| 331 | } |
| 332 | |
| 333 | // void exit(int) |
| 334 | static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) { |
| 335 | TheInterpreter->exitCalled(GV: Args[0]); |
| 336 | return GenericValue(); |
| 337 | } |
| 338 | |
| 339 | // void abort(void) |
| 340 | static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) { |
| 341 | //FIXME: should we report or raise here? |
| 342 | //report_fatal_error("Interpreted program raised SIGABRT"); |
| 343 | raise (SIGABRT); |
| 344 | return GenericValue(); |
| 345 | } |
| 346 | |
| 347 | // Silence warnings about sprintf. (See also |
| 348 | // https://github.com/llvm/llvm-project/issues/58086) |
| 349 | #if defined(__clang__) |
| 350 | #pragma clang diagnostic push |
| 351 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| 352 | #endif |
| 353 | // int sprintf(char *, const char *, ...) - a very rough implementation to make |
| 354 | // output useful. |
| 355 | static GenericValue lle_X_sprintf(FunctionType *FT, |
| 356 | ArrayRef<GenericValue> Args) { |
| 357 | char *OutputBuffer = (char *)GVTOP(GV: Args[0]); |
| 358 | const char *FmtStr = (const char *)GVTOP(GV: Args[1]); |
| 359 | unsigned ArgNo = 2; |
| 360 | |
| 361 | // printf should return # chars printed. This is completely incorrect, but |
| 362 | // close enough for now. |
| 363 | GenericValue GV; |
| 364 | GV.IntVal = APInt(32, strlen(s: FmtStr)); |
| 365 | while (true) { |
| 366 | switch (*FmtStr) { |
| 367 | case 0: return GV; // Null terminator... |
| 368 | default: // Normal nonspecial character |
| 369 | sprintf(s: OutputBuffer++, format: "%c" , *FmtStr++); |
| 370 | break; |
| 371 | case '\\': { // Handle escape codes |
| 372 | sprintf(s: OutputBuffer, format: "%c%c" , *FmtStr, *(FmtStr+1)); |
| 373 | FmtStr += 2; OutputBuffer += 2; |
| 374 | break; |
| 375 | } |
| 376 | case '%': { // Handle format specifiers |
| 377 | char FmtBuf[100] = "" , Buffer[1000] = "" ; |
| 378 | char *FB = FmtBuf; |
| 379 | *FB++ = *FmtStr++; |
| 380 | char Last = *FB++ = *FmtStr++; |
| 381 | unsigned HowLong = 0; |
| 382 | while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && |
| 383 | Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && |
| 384 | Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && |
| 385 | Last != 'p' && Last != 's' && Last != '%') { |
| 386 | if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's |
| 387 | Last = *FB++ = *FmtStr++; |
| 388 | } |
| 389 | *FB = 0; |
| 390 | |
| 391 | switch (Last) { |
| 392 | case '%': |
| 393 | memcpy(dest: Buffer, src: "%" , n: 2); break; |
| 394 | case 'c': |
| 395 | sprintf(s: Buffer, format: FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); |
| 396 | break; |
| 397 | case 'd': case 'i': |
| 398 | case 'u': case 'o': |
| 399 | case 'x': case 'X': |
| 400 | if (HowLong >= 1) { |
| 401 | if (HowLong == 1 && |
| 402 | TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 && |
| 403 | sizeof(long) < sizeof(int64_t)) { |
| 404 | // Make sure we use %lld with a 64 bit argument because we might be |
| 405 | // compiling LLI on a 32 bit compiler. |
| 406 | unsigned Size = strlen(s: FmtBuf); |
| 407 | FmtBuf[Size] = FmtBuf[Size-1]; |
| 408 | FmtBuf[Size+1] = 0; |
| 409 | FmtBuf[Size-1] = 'l'; |
| 410 | } |
| 411 | sprintf(s: Buffer, format: FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); |
| 412 | } else |
| 413 | sprintf(s: Buffer, format: FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); |
| 414 | break; |
| 415 | case 'e': case 'E': case 'g': case 'G': case 'f': |
| 416 | sprintf(s: Buffer, format: FmtBuf, Args[ArgNo++].DoubleVal); break; |
| 417 | case 'p': |
| 418 | sprintf(s: Buffer, format: FmtBuf, (void*)GVTOP(GV: Args[ArgNo++])); break; |
| 419 | case 's': |
| 420 | sprintf(s: Buffer, format: FmtBuf, (char*)GVTOP(GV: Args[ArgNo++])); break; |
| 421 | default: |
| 422 | errs() << "<unknown printf code '" << *FmtStr << "'!>" ; |
| 423 | ArgNo++; break; |
| 424 | } |
| 425 | size_t Len = strlen(s: Buffer); |
| 426 | memcpy(dest: OutputBuffer, src: Buffer, n: Len + 1); |
| 427 | OutputBuffer += Len; |
| 428 | } |
| 429 | break; |
| 430 | } |
| 431 | } |
| 432 | return GV; |
| 433 | } |
| 434 | #if defined(__clang__) |
| 435 | #pragma clang diagnostic pop |
| 436 | #endif |
| 437 | |
| 438 | // int printf(const char *, ...) - a very rough implementation to make output |
| 439 | // useful. |
| 440 | static GenericValue lle_X_printf(FunctionType *FT, |
| 441 | ArrayRef<GenericValue> Args) { |
| 442 | char Buffer[10000]; |
| 443 | std::vector<GenericValue> NewArgs; |
| 444 | NewArgs.push_back(x: PTOGV(P: (void*)&Buffer[0])); |
| 445 | llvm::append_range(C&: NewArgs, R&: Args); |
| 446 | GenericValue GV = lle_X_sprintf(FT, Args: NewArgs); |
| 447 | outs() << Buffer; |
| 448 | return GV; |
| 449 | } |
| 450 | |
| 451 | // int sscanf(const char *format, ...); |
| 452 | static GenericValue lle_X_sscanf(FunctionType *FT, |
| 453 | ArrayRef<GenericValue> args) { |
| 454 | assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!" ); |
| 455 | |
| 456 | char *Args[10]; |
| 457 | for (unsigned i = 0; i < args.size(); ++i) |
| 458 | Args[i] = (char*)GVTOP(GV: args[i]); |
| 459 | |
| 460 | GenericValue GV; |
| 461 | GV.IntVal = APInt(32, sscanf(s: Args[0], format: Args[1], Args[2], Args[3], Args[4], |
| 462 | Args[5], Args[6], Args[7], Args[8], Args[9])); |
| 463 | return GV; |
| 464 | } |
| 465 | |
| 466 | // int scanf(const char *format, ...); |
| 467 | static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) { |
| 468 | assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!" ); |
| 469 | |
| 470 | char *Args[10]; |
| 471 | for (unsigned i = 0; i < args.size(); ++i) |
| 472 | Args[i] = (char*)GVTOP(GV: args[i]); |
| 473 | |
| 474 | GenericValue GV; |
| 475 | GV.IntVal = APInt(32, scanf( format: Args[0], Args[1], Args[2], Args[3], Args[4], |
| 476 | Args[5], Args[6], Args[7], Args[8], Args[9])); |
| 477 | return GV; |
| 478 | } |
| 479 | |
| 480 | // int fprintf(FILE *, const char *, ...) - a very rough implementation to make |
| 481 | // output useful. |
| 482 | static GenericValue lle_X_fprintf(FunctionType *FT, |
| 483 | ArrayRef<GenericValue> Args) { |
| 484 | assert(Args.size() >= 2); |
| 485 | char Buffer[10000]; |
| 486 | std::vector<GenericValue> NewArgs; |
| 487 | NewArgs.push_back(x: PTOGV(P: Buffer)); |
| 488 | llvm::append_range(C&: NewArgs, R: llvm::drop_begin(RangeOrContainer&: Args)); |
| 489 | GenericValue GV = lle_X_sprintf(FT, Args: NewArgs); |
| 490 | |
| 491 | fputs(s: Buffer, stream: (FILE *) GVTOP(GV: Args[0])); |
| 492 | return GV; |
| 493 | } |
| 494 | |
| 495 | static GenericValue lle_X_memset(FunctionType *FT, |
| 496 | ArrayRef<GenericValue> Args) { |
| 497 | int val = (int)Args[1].IntVal.getSExtValue(); |
| 498 | size_t len = (size_t)Args[2].IntVal.getZExtValue(); |
| 499 | memset(s: (void *)GVTOP(GV: Args[0]), c: val, n: len); |
| 500 | // llvm.memset.* returns void, lle_X_* returns GenericValue, |
| 501 | // so here we return GenericValue with IntVal set to zero |
| 502 | GenericValue GV; |
| 503 | GV.IntVal = 0; |
| 504 | return GV; |
| 505 | } |
| 506 | |
| 507 | static GenericValue lle_X_memcpy(FunctionType *FT, |
| 508 | ArrayRef<GenericValue> Args) { |
| 509 | memcpy(dest: GVTOP(GV: Args[0]), src: GVTOP(GV: Args[1]), |
| 510 | n: (size_t)(Args[2].IntVal.getLimitedValue())); |
| 511 | |
| 512 | // llvm.memcpy* returns void, lle_X_* returns GenericValue, |
| 513 | // so here we return GenericValue with IntVal set to zero |
| 514 | GenericValue GV; |
| 515 | GV.IntVal = 0; |
| 516 | return GV; |
| 517 | } |
| 518 | |
| 519 | void Interpreter::initializeExternalFunctions() { |
| 520 | auto &Fns = getFunctions(); |
| 521 | sys::ScopedLock Writer(Fns.Lock); |
| 522 | Fns.FuncNames["lle_X_atexit" ] = lle_X_atexit; |
| 523 | Fns.FuncNames["lle_X_exit" ] = lle_X_exit; |
| 524 | Fns.FuncNames["lle_X_abort" ] = lle_X_abort; |
| 525 | |
| 526 | Fns.FuncNames["lle_X_printf" ] = lle_X_printf; |
| 527 | Fns.FuncNames["lle_X_sprintf" ] = lle_X_sprintf; |
| 528 | Fns.FuncNames["lle_X_sscanf" ] = lle_X_sscanf; |
| 529 | Fns.FuncNames["lle_X_scanf" ] = lle_X_scanf; |
| 530 | Fns.FuncNames["lle_X_fprintf" ] = lle_X_fprintf; |
| 531 | Fns.FuncNames["lle_X_memset" ] = lle_X_memset; |
| 532 | Fns.FuncNames["lle_X_memcpy" ] = lle_X_memcpy; |
| 533 | } |
| 534 | |