1 | //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Implementation of ELF support for the MC-JIT runtime dynamic linker. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "RuntimeDyldELF.h" |
14 | #include "Targets/RuntimeDyldELFMips.h" |
15 | #include "llvm/ADT/StringRef.h" |
16 | #include "llvm/BinaryFormat/ELF.h" |
17 | #include "llvm/ExecutionEngine/Orc/SymbolStringPool.h" |
18 | #include "llvm/Object/ELFObjectFile.h" |
19 | #include "llvm/Object/ObjectFile.h" |
20 | #include "llvm/Support/Endian.h" |
21 | #include "llvm/Support/MemoryBuffer.h" |
22 | #include "llvm/TargetParser/Triple.h" |
23 | |
24 | using namespace llvm; |
25 | using namespace llvm::object; |
26 | using namespace llvm::support::endian; |
27 | |
28 | #define DEBUG_TYPE "dyld" |
29 | |
30 | static void or32le(void *P, int32_t V) { write32le(P, V: read32le(P) | V); } |
31 | |
32 | static void or32AArch64Imm(void *L, uint64_t Imm) { |
33 | or32le(P: L, V: (Imm & 0xFFF) << 10); |
34 | } |
35 | |
36 | template <class T> static void write(bool isBE, void *P, T V) { |
37 | isBE ? write<T, llvm::endianness::big>(P, V) |
38 | : write<T, llvm::endianness::little>(P, V); |
39 | } |
40 | |
41 | static void write32AArch64Addr(void *L, uint64_t Imm) { |
42 | uint32_t ImmLo = (Imm & 0x3) << 29; |
43 | uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; |
44 | uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); |
45 | write32le(P: L, V: (read32le(P: L) & ~Mask) | ImmLo | ImmHi); |
46 | } |
47 | |
48 | // Return the bits [Start, End] from Val shifted Start bits. |
49 | // For instance, getBits(0xF0, 4, 8) returns 0xF. |
50 | static uint64_t getBits(uint64_t Val, int Start, int End) { |
51 | uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1; |
52 | return (Val >> Start) & Mask; |
53 | } |
54 | |
55 | namespace { |
56 | |
57 | template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> { |
58 | LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
59 | |
60 | typedef typename ELFT::uint addr_type; |
61 | |
62 | DyldELFObject(ELFObjectFile<ELFT> &&Obj); |
63 | |
64 | public: |
65 | static Expected<std::unique_ptr<DyldELFObject>> |
66 | create(MemoryBufferRef Wrapper); |
67 | |
68 | void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); |
69 | |
70 | void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); |
71 | |
72 | // Methods for type inquiry through isa, cast and dyn_cast |
73 | static bool classof(const Binary *v) { |
74 | return (isa<ELFObjectFile<ELFT>>(v) && |
75 | classof(cast<ELFObjectFile<ELFT>>(v))); |
76 | } |
77 | static bool classof(const ELFObjectFile<ELFT> *v) { |
78 | return v->isDyldType(); |
79 | } |
80 | }; |
81 | |
82 | |
83 | |
84 | // The MemoryBuffer passed into this constructor is just a wrapper around the |
85 | // actual memory. Ultimately, the Binary parent class will take ownership of |
86 | // this MemoryBuffer object but not the underlying memory. |
87 | template <class ELFT> |
88 | DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj) |
89 | : ELFObjectFile<ELFT>(std::move(Obj)) { |
90 | this->isDyldELFObject = true; |
91 | } |
92 | |
93 | template <class ELFT> |
94 | Expected<std::unique_ptr<DyldELFObject<ELFT>>> |
95 | DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) { |
96 | auto Obj = ELFObjectFile<ELFT>::create(Wrapper); |
97 | if (auto E = Obj.takeError()) |
98 | return std::move(E); |
99 | std::unique_ptr<DyldELFObject<ELFT>> Ret( |
100 | new DyldELFObject<ELFT>(std::move(*Obj))); |
101 | return std::move(Ret); |
102 | } |
103 | |
104 | template <class ELFT> |
105 | void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec, |
106 | uint64_t Addr) { |
107 | DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); |
108 | Elf_Shdr *shdr = |
109 | const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); |
110 | |
111 | // This assumes the address passed in matches the target address bitness |
112 | // The template-based type cast handles everything else. |
113 | shdr->sh_addr = static_cast<addr_type>(Addr); |
114 | } |
115 | |
116 | template <class ELFT> |
117 | void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef, |
118 | uint64_t Addr) { |
119 | |
120 | Elf_Sym *sym = const_cast<Elf_Sym *>( |
121 | ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); |
122 | |
123 | // This assumes the address passed in matches the target address bitness |
124 | // The template-based type cast handles everything else. |
125 | sym->st_value = static_cast<addr_type>(Addr); |
126 | } |
127 | |
128 | class LoadedELFObjectInfo final |
129 | : public LoadedObjectInfoHelper<LoadedELFObjectInfo, |
130 | RuntimeDyld::LoadedObjectInfo> { |
131 | public: |
132 | LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap) |
133 | : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {} |
134 | |
135 | OwningBinary<ObjectFile> |
136 | getObjectForDebug(const ObjectFile &Obj) const override; |
137 | }; |
138 | |
139 | template <typename ELFT> |
140 | static Expected<std::unique_ptr<DyldELFObject<ELFT>>> |
141 | createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject, |
142 | const LoadedELFObjectInfo &L) { |
143 | typedef typename ELFT::Shdr Elf_Shdr; |
144 | typedef typename ELFT::uint addr_type; |
145 | |
146 | Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr = |
147 | DyldELFObject<ELFT>::create(Buffer); |
148 | if (Error E = ObjOrErr.takeError()) |
149 | return std::move(E); |
150 | |
151 | std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr); |
152 | |
153 | // Iterate over all sections in the object. |
154 | auto SI = SourceObject.section_begin(); |
155 | for (const auto &Sec : Obj->sections()) { |
156 | Expected<StringRef> NameOrErr = Sec.getName(); |
157 | if (!NameOrErr) { |
158 | consumeError(Err: NameOrErr.takeError()); |
159 | continue; |
160 | } |
161 | |
162 | if (*NameOrErr != "" ) { |
163 | DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); |
164 | Elf_Shdr *shdr = const_cast<Elf_Shdr *>( |
165 | reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); |
166 | |
167 | if (uint64_t SecLoadAddr = L.getSectionLoadAddress(Sec: *SI)) { |
168 | // This assumes that the address passed in matches the target address |
169 | // bitness. The template-based type cast handles everything else. |
170 | shdr->sh_addr = static_cast<addr_type>(SecLoadAddr); |
171 | } |
172 | } |
173 | ++SI; |
174 | } |
175 | |
176 | return std::move(Obj); |
177 | } |
178 | |
179 | static OwningBinary<ObjectFile> |
180 | createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) { |
181 | assert(Obj.isELF() && "Not an ELF object file." ); |
182 | |
183 | std::unique_ptr<MemoryBuffer> Buffer = |
184 | MemoryBuffer::getMemBufferCopy(InputData: Obj.getData(), BufferName: Obj.getFileName()); |
185 | |
186 | Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr); |
187 | handleAllErrors(E: DebugObj.takeError()); |
188 | if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) |
189 | DebugObj = |
190 | createRTDyldELFObject<ELF32LE>(Buffer: Buffer->getMemBufferRef(), SourceObject: Obj, L); |
191 | else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) |
192 | DebugObj = |
193 | createRTDyldELFObject<ELF32BE>(Buffer: Buffer->getMemBufferRef(), SourceObject: Obj, L); |
194 | else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) |
195 | DebugObj = |
196 | createRTDyldELFObject<ELF64BE>(Buffer: Buffer->getMemBufferRef(), SourceObject: Obj, L); |
197 | else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) |
198 | DebugObj = |
199 | createRTDyldELFObject<ELF64LE>(Buffer: Buffer->getMemBufferRef(), SourceObject: Obj, L); |
200 | else |
201 | llvm_unreachable("Unexpected ELF format" ); |
202 | |
203 | handleAllErrors(E: DebugObj.takeError()); |
204 | return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer)); |
205 | } |
206 | |
207 | OwningBinary<ObjectFile> |
208 | LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { |
209 | return createELFDebugObject(Obj, L: *this); |
210 | } |
211 | |
212 | } // anonymous namespace |
213 | |
214 | namespace llvm { |
215 | |
216 | RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, |
217 | JITSymbolResolver &Resolver) |
218 | : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {} |
219 | RuntimeDyldELF::~RuntimeDyldELF() = default; |
220 | |
221 | void RuntimeDyldELF::registerEHFrames() { |
222 | for (SID EHFrameSID : UnregisteredEHFrameSections) { |
223 | uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress(); |
224 | uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress(); |
225 | size_t EHFrameSize = Sections[EHFrameSID].getSize(); |
226 | MemMgr.registerEHFrames(Addr: EHFrameAddr, LoadAddr: EHFrameLoadAddr, Size: EHFrameSize); |
227 | } |
228 | UnregisteredEHFrameSections.clear(); |
229 | } |
230 | |
231 | std::unique_ptr<RuntimeDyldELF> |
232 | llvm::RuntimeDyldELF::create(Triple::ArchType Arch, |
233 | RuntimeDyld::MemoryManager &MemMgr, |
234 | JITSymbolResolver &Resolver) { |
235 | switch (Arch) { |
236 | default: |
237 | return std::make_unique<RuntimeDyldELF>(args&: MemMgr, args&: Resolver); |
238 | case Triple::mips: |
239 | case Triple::mipsel: |
240 | case Triple::mips64: |
241 | case Triple::mips64el: |
242 | return std::make_unique<RuntimeDyldELFMips>(args&: MemMgr, args&: Resolver); |
243 | } |
244 | } |
245 | |
246 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo> |
247 | RuntimeDyldELF::loadObject(const object::ObjectFile &O) { |
248 | if (auto ObjSectionToIDOrErr = loadObjectImpl(Obj: O)) |
249 | return std::make_unique<LoadedELFObjectInfo>(args&: *this, args&: *ObjSectionToIDOrErr); |
250 | else { |
251 | HasError = true; |
252 | raw_string_ostream ErrStream(ErrorStr); |
253 | logAllUnhandledErrors(E: ObjSectionToIDOrErr.takeError(), OS&: ErrStream); |
254 | return nullptr; |
255 | } |
256 | } |
257 | |
258 | void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, |
259 | uint64_t Offset, uint64_t Value, |
260 | uint32_t Type, int64_t Addend, |
261 | uint64_t SymOffset) { |
262 | switch (Type) { |
263 | default: |
264 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
265 | break; |
266 | case ELF::R_X86_64_NONE: |
267 | break; |
268 | case ELF::R_X86_64_8: { |
269 | Value += Addend; |
270 | assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN); |
271 | uint8_t TruncatedAddr = (Value & 0xFF); |
272 | *Section.getAddressWithOffset(OffsetBytes: Offset) = TruncatedAddr; |
273 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , TruncatedAddr) << " at " |
274 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
275 | break; |
276 | } |
277 | case ELF::R_X86_64_16: { |
278 | Value += Addend; |
279 | assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN); |
280 | uint16_t TruncatedAddr = (Value & 0xFFFF); |
281 | support::ulittle16_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
282 | TruncatedAddr; |
283 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , TruncatedAddr) << " at " |
284 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
285 | break; |
286 | } |
287 | case ELF::R_X86_64_64: { |
288 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
289 | Value + Addend; |
290 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , (Value + Addend)) << " at " |
291 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
292 | break; |
293 | } |
294 | case ELF::R_X86_64_32: |
295 | case ELF::R_X86_64_32S: { |
296 | Value += Addend; |
297 | assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || |
298 | (Type == ELF::R_X86_64_32S && |
299 | ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); |
300 | uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); |
301 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
302 | TruncatedAddr; |
303 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , TruncatedAddr) << " at " |
304 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
305 | break; |
306 | } |
307 | case ELF::R_X86_64_PC8: { |
308 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
309 | int64_t RealOffset = Value + Addend - FinalAddress; |
310 | assert(isInt<8>(RealOffset)); |
311 | int8_t TruncOffset = (RealOffset & 0xFF); |
312 | Section.getAddress()[Offset] = TruncOffset; |
313 | break; |
314 | } |
315 | case ELF::R_X86_64_PC32: { |
316 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
317 | int64_t RealOffset = Value + Addend - FinalAddress; |
318 | assert(isInt<32>(RealOffset)); |
319 | int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); |
320 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
321 | TruncOffset; |
322 | break; |
323 | } |
324 | case ELF::R_X86_64_PC64: { |
325 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
326 | int64_t RealOffset = Value + Addend - FinalAddress; |
327 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
328 | RealOffset; |
329 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , RealOffset) << " at " |
330 | << format("%p\n" , FinalAddress)); |
331 | break; |
332 | } |
333 | case ELF::R_X86_64_GOTOFF64: { |
334 | // Compute Value - GOTBase. |
335 | uint64_t GOTBase = 0; |
336 | for (const auto &Section : Sections) { |
337 | if (Section.getName() == ".got" ) { |
338 | GOTBase = Section.getLoadAddressWithOffset(OffsetBytes: 0); |
339 | break; |
340 | } |
341 | } |
342 | assert(GOTBase != 0 && "missing GOT" ); |
343 | int64_t GOTOffset = Value - GOTBase + Addend; |
344 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = GOTOffset; |
345 | break; |
346 | } |
347 | case ELF::R_X86_64_DTPMOD64: { |
348 | // We only have one DSO, so the module id is always 1. |
349 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = 1; |
350 | break; |
351 | } |
352 | case ELF::R_X86_64_DTPOFF64: |
353 | case ELF::R_X86_64_TPOFF64: { |
354 | // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the |
355 | // offset in the *initial* TLS block. Since we are statically linking, all |
356 | // TLS blocks already exist in the initial block, so resolve both |
357 | // relocations equally. |
358 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
359 | Value + Addend; |
360 | break; |
361 | } |
362 | case ELF::R_X86_64_DTPOFF32: |
363 | case ELF::R_X86_64_TPOFF32: { |
364 | // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can |
365 | // be resolved equally. |
366 | int64_t RealValue = Value + Addend; |
367 | assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX); |
368 | int32_t TruncValue = RealValue; |
369 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
370 | TruncValue; |
371 | break; |
372 | } |
373 | } |
374 | } |
375 | |
376 | void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, |
377 | uint64_t Offset, uint32_t Value, |
378 | uint32_t Type, int32_t Addend) { |
379 | switch (Type) { |
380 | case ELF::R_386_32: { |
381 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
382 | Value + Addend; |
383 | break; |
384 | } |
385 | // Handle R_386_PLT32 like R_386_PC32 since it should be able to |
386 | // reach any 32 bit address. |
387 | case ELF::R_386_PLT32: |
388 | case ELF::R_386_PC32: { |
389 | uint32_t FinalAddress = |
390 | Section.getLoadAddressWithOffset(OffsetBytes: Offset) & 0xFFFFFFFF; |
391 | uint32_t RealOffset = Value + Addend - FinalAddress; |
392 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
393 | RealOffset; |
394 | break; |
395 | } |
396 | default: |
397 | // There are other relocation types, but it appears these are the |
398 | // only ones currently used by the LLVM ELF object writer |
399 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
400 | break; |
401 | } |
402 | } |
403 | |
404 | void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, |
405 | uint64_t Offset, uint64_t Value, |
406 | uint32_t Type, int64_t Addend) { |
407 | uint32_t *TargetPtr = |
408 | reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(OffsetBytes: Offset)); |
409 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
410 | // Data should use target endian. Code should always use little endian. |
411 | bool isBE = Arch == Triple::aarch64_be; |
412 | |
413 | LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" |
414 | << format("%llx" , Section.getAddressWithOffset(Offset)) |
415 | << " FinalAddress: 0x" << format("%llx" , FinalAddress) |
416 | << " Value: 0x" << format("%llx" , Value) << " Type: 0x" |
417 | << format("%x" , Type) << " Addend: 0x" |
418 | << format("%llx" , Addend) << "\n" ); |
419 | |
420 | switch (Type) { |
421 | default: |
422 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
423 | break; |
424 | case ELF::R_AARCH64_NONE: |
425 | break; |
426 | case ELF::R_AARCH64_ABS16: { |
427 | uint64_t Result = Value + Addend; |
428 | assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) || |
429 | (Result >> 16) == 0); |
430 | write(isBE, P: TargetPtr, V: static_cast<uint16_t>(Result & 0xffffU)); |
431 | break; |
432 | } |
433 | case ELF::R_AARCH64_ABS32: { |
434 | uint64_t Result = Value + Addend; |
435 | assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) || |
436 | (Result >> 32) == 0); |
437 | write(isBE, P: TargetPtr, V: static_cast<uint32_t>(Result & 0xffffffffU)); |
438 | break; |
439 | } |
440 | case ELF::R_AARCH64_ABS64: |
441 | write(isBE, P: TargetPtr, V: Value + Addend); |
442 | break; |
443 | case ELF::R_AARCH64_PLT32: { |
444 | uint64_t Result = Value + Addend - FinalAddress; |
445 | assert(static_cast<int64_t>(Result) >= INT32_MIN && |
446 | static_cast<int64_t>(Result) <= INT32_MAX); |
447 | write(isBE, P: TargetPtr, V: static_cast<uint32_t>(Result)); |
448 | break; |
449 | } |
450 | case ELF::R_AARCH64_PREL16: { |
451 | uint64_t Result = Value + Addend - FinalAddress; |
452 | assert(static_cast<int64_t>(Result) >= INT16_MIN && |
453 | static_cast<int64_t>(Result) <= UINT16_MAX); |
454 | write(isBE, P: TargetPtr, V: static_cast<uint16_t>(Result & 0xffffU)); |
455 | break; |
456 | } |
457 | case ELF::R_AARCH64_PREL32: { |
458 | uint64_t Result = Value + Addend - FinalAddress; |
459 | assert(static_cast<int64_t>(Result) >= INT32_MIN && |
460 | static_cast<int64_t>(Result) <= UINT32_MAX); |
461 | write(isBE, P: TargetPtr, V: static_cast<uint32_t>(Result & 0xffffffffU)); |
462 | break; |
463 | } |
464 | case ELF::R_AARCH64_PREL64: |
465 | write(isBE, P: TargetPtr, V: Value + Addend - FinalAddress); |
466 | break; |
467 | case ELF::R_AARCH64_CONDBR19: { |
468 | uint64_t BranchImm = Value + Addend - FinalAddress; |
469 | |
470 | assert(isInt<21>(BranchImm)); |
471 | *TargetPtr &= 0xff00001fU; |
472 | // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ |
473 | or32le(P: TargetPtr, V: (BranchImm & 0x001FFFFC) << 3); |
474 | break; |
475 | } |
476 | case ELF::R_AARCH64_TSTBR14: { |
477 | uint64_t BranchImm = Value + Addend - FinalAddress; |
478 | |
479 | assert(isInt<16>(BranchImm)); |
480 | |
481 | uint32_t RawInstr = *(support::little32_t *)TargetPtr; |
482 | *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU; |
483 | |
484 | // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ |
485 | or32le(P: TargetPtr, V: (BranchImm & 0x0000FFFC) << 3); |
486 | break; |
487 | } |
488 | case ELF::R_AARCH64_CALL26: // fallthrough |
489 | case ELF::R_AARCH64_JUMP26: { |
490 | // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the |
491 | // calculation. |
492 | uint64_t BranchImm = Value + Addend - FinalAddress; |
493 | |
494 | // "Check that -2^27 <= result < 2^27". |
495 | assert(isInt<28>(BranchImm)); |
496 | or32le(P: TargetPtr, V: (BranchImm & 0x0FFFFFFC) >> 2); |
497 | break; |
498 | } |
499 | case ELF::R_AARCH64_MOVW_UABS_G3: |
500 | or32le(P: TargetPtr, V: ((Value + Addend) & 0xFFFF000000000000) >> 43); |
501 | break; |
502 | case ELF::R_AARCH64_MOVW_UABS_G2_NC: |
503 | or32le(P: TargetPtr, V: ((Value + Addend) & 0xFFFF00000000) >> 27); |
504 | break; |
505 | case ELF::R_AARCH64_MOVW_UABS_G1_NC: |
506 | or32le(P: TargetPtr, V: ((Value + Addend) & 0xFFFF0000) >> 11); |
507 | break; |
508 | case ELF::R_AARCH64_MOVW_UABS_G0_NC: |
509 | or32le(P: TargetPtr, V: ((Value + Addend) & 0xFFFF) << 5); |
510 | break; |
511 | case ELF::R_AARCH64_ADR_PREL_PG_HI21: { |
512 | // Operation: Page(S+A) - Page(P) |
513 | uint64_t Result = |
514 | ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); |
515 | |
516 | // Check that -2^32 <= X < 2^32 |
517 | assert(isInt<33>(Result) && "overflow check failed for relocation" ); |
518 | |
519 | // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken |
520 | // from bits 32:12 of X. |
521 | write32AArch64Addr(L: TargetPtr, Imm: Result >> 12); |
522 | break; |
523 | } |
524 | case ELF::R_AARCH64_ADD_ABS_LO12_NC: |
525 | // Operation: S + A |
526 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
527 | // from bits 11:0 of X |
528 | or32AArch64Imm(L: TargetPtr, Imm: Value + Addend); |
529 | break; |
530 | case ELF::R_AARCH64_LDST8_ABS_LO12_NC: |
531 | // Operation: S + A |
532 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
533 | // from bits 11:0 of X |
534 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 0, End: 11)); |
535 | break; |
536 | case ELF::R_AARCH64_LDST16_ABS_LO12_NC: |
537 | // Operation: S + A |
538 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
539 | // from bits 11:1 of X |
540 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 1, End: 11)); |
541 | break; |
542 | case ELF::R_AARCH64_LDST32_ABS_LO12_NC: |
543 | // Operation: S + A |
544 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
545 | // from bits 11:2 of X |
546 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 2, End: 11)); |
547 | break; |
548 | case ELF::R_AARCH64_LDST64_ABS_LO12_NC: |
549 | // Operation: S + A |
550 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
551 | // from bits 11:3 of X |
552 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 3, End: 11)); |
553 | break; |
554 | case ELF::R_AARCH64_LDST128_ABS_LO12_NC: |
555 | // Operation: S + A |
556 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
557 | // from bits 11:4 of X |
558 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 4, End: 11)); |
559 | break; |
560 | case ELF::R_AARCH64_LD_PREL_LO19: { |
561 | // Operation: S + A - P |
562 | uint64_t Result = Value + Addend - FinalAddress; |
563 | |
564 | // "Check that -2^20 <= result < 2^20". |
565 | assert(isInt<21>(Result)); |
566 | |
567 | *TargetPtr &= 0xff00001fU; |
568 | // Immediate goes in bits 23:5 of LD imm instruction, taken |
569 | // from bits 20:2 of X |
570 | *TargetPtr |= ((Result & 0xffc) << (5 - 2)); |
571 | break; |
572 | } |
573 | case ELF::R_AARCH64_ADR_PREL_LO21: { |
574 | // Operation: S + A - P |
575 | uint64_t Result = Value + Addend - FinalAddress; |
576 | |
577 | // "Check that -2^20 <= result < 2^20". |
578 | assert(isInt<21>(Result)); |
579 | |
580 | *TargetPtr &= 0x9f00001fU; |
581 | // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken |
582 | // from bits 20:0 of X |
583 | *TargetPtr |= ((Result & 0xffc) << (5 - 2)); |
584 | *TargetPtr |= (Result & 0x3) << 29; |
585 | break; |
586 | } |
587 | } |
588 | } |
589 | |
590 | void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, |
591 | uint64_t Offset, uint32_t Value, |
592 | uint32_t Type, int32_t Addend) { |
593 | // TODO: Add Thumb relocations. |
594 | uint32_t *TargetPtr = |
595 | reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(OffsetBytes: Offset)); |
596 | uint32_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset) & 0xFFFFFFFF; |
597 | Value += Addend; |
598 | |
599 | LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " |
600 | << Section.getAddressWithOffset(Offset) |
601 | << " FinalAddress: " << format("%p" , FinalAddress) |
602 | << " Value: " << format("%x" , Value) |
603 | << " Type: " << format("%x" , Type) |
604 | << " Addend: " << format("%x" , Addend) << "\n" ); |
605 | |
606 | switch (Type) { |
607 | default: |
608 | llvm_unreachable("Not implemented relocation type!" ); |
609 | |
610 | case ELF::R_ARM_NONE: |
611 | break; |
612 | // Write a 31bit signed offset |
613 | case ELF::R_ARM_PREL31: |
614 | support::ulittle32_t::ref{TargetPtr} = |
615 | (support::ulittle32_t::ref{TargetPtr} & 0x80000000) | |
616 | ((Value - FinalAddress) & ~0x80000000); |
617 | break; |
618 | case ELF::R_ARM_TARGET1: |
619 | case ELF::R_ARM_ABS32: |
620 | support::ulittle32_t::ref{TargetPtr} = Value; |
621 | break; |
622 | // Write first 16 bit of 32 bit value to the mov instruction. |
623 | // Last 4 bit should be shifted. |
624 | case ELF::R_ARM_MOVW_ABS_NC: |
625 | case ELF::R_ARM_MOVT_ABS: |
626 | if (Type == ELF::R_ARM_MOVW_ABS_NC) |
627 | Value = Value & 0xFFFF; |
628 | else if (Type == ELF::R_ARM_MOVT_ABS) |
629 | Value = (Value >> 16) & 0xFFFF; |
630 | support::ulittle32_t::ref{TargetPtr} = |
631 | (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) | |
632 | (((Value >> 12) & 0xF) << 16); |
633 | break; |
634 | // Write 24 bit relative value to the branch instruction. |
635 | case ELF::R_ARM_PC24: // Fall through. |
636 | case ELF::R_ARM_CALL: // Fall through. |
637 | case ELF::R_ARM_JUMP24: |
638 | int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); |
639 | RelValue = (RelValue & 0x03FFFFFC) >> 2; |
640 | assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE); |
641 | support::ulittle32_t::ref{TargetPtr} = |
642 | (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue; |
643 | break; |
644 | } |
645 | } |
646 | |
647 | bool RuntimeDyldELF::resolveLoongArch64ShortBranch( |
648 | unsigned SectionID, relocation_iterator RelI, |
649 | const RelocationValueRef &Value) { |
650 | uint64_t Address; |
651 | if (Value.SymbolName) { |
652 | auto Loc = GlobalSymbolTable.find(Key: Value.SymbolName); |
653 | // Don't create direct branch for external symbols. |
654 | if (Loc == GlobalSymbolTable.end()) |
655 | return false; |
656 | const auto &SymInfo = Loc->second; |
657 | Address = |
658 | uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset( |
659 | OffsetBytes: SymInfo.getOffset())); |
660 | } else { |
661 | Address = uint64_t(Sections[Value.SectionID].getLoadAddress()); |
662 | } |
663 | uint64_t Offset = RelI->getOffset(); |
664 | uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(OffsetBytes: Offset); |
665 | uint64_t Delta = Address + Value.Addend - SourceAddress; |
666 | // Normal call |
667 | if (RelI->getType() == ELF::R_LARCH_B26) { |
668 | if (!isInt<28>(x: Delta)) |
669 | return false; |
670 | resolveRelocation(Section: Sections[SectionID], Offset, Value: Address, Type: RelI->getType(), |
671 | Addend: Value.Addend); |
672 | return true; |
673 | } |
674 | // Medium call: R_LARCH_CALL36 |
675 | // Range: [-128G - 0x20000, +128G - 0x20000) |
676 | if (((int64_t)Delta + 0x20000) != llvm::SignExtend64(X: Delta + 0x20000, B: 38)) |
677 | return false; |
678 | resolveRelocation(Section: Sections[SectionID], Offset, Value: Address, Type: RelI->getType(), |
679 | Addend: Value.Addend); |
680 | return true; |
681 | } |
682 | |
683 | void RuntimeDyldELF::resolveLoongArch64Branch(unsigned SectionID, |
684 | const RelocationValueRef &Value, |
685 | relocation_iterator RelI, |
686 | StubMap &Stubs) { |
687 | LLVM_DEBUG(dbgs() << "\t\tThis is an LoongArch64 branch relocation.\n" ); |
688 | |
689 | if (resolveLoongArch64ShortBranch(SectionID, RelI, Value)) |
690 | return; |
691 | |
692 | SectionEntry &Section = Sections[SectionID]; |
693 | uint64_t Offset = RelI->getOffset(); |
694 | unsigned RelType = RelI->getType(); |
695 | // Look for an existing stub. |
696 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
697 | if (!Inserted) { |
698 | resolveRelocation(Section, Offset, |
699 | Value: (uint64_t)Section.getAddressWithOffset(OffsetBytes: It->second), |
700 | Type: RelType, Addend: 0); |
701 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
702 | return; |
703 | } |
704 | // Create a new stub function. |
705 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
706 | It->second = Section.getStubOffset(); |
707 | uint8_t *StubTargetAddr = |
708 | createStubFunction(Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset())); |
709 | RelocationEntry LU12I_W(SectionID, StubTargetAddr - Section.getAddress(), |
710 | ELF::R_LARCH_ABS_HI20, Value.Addend); |
711 | RelocationEntry ORI(SectionID, StubTargetAddr - Section.getAddress() + 4, |
712 | ELF::R_LARCH_ABS_LO12, Value.Addend); |
713 | RelocationEntry LU32I_D(SectionID, StubTargetAddr - Section.getAddress() + 8, |
714 | ELF::R_LARCH_ABS64_LO20, Value.Addend); |
715 | RelocationEntry LU52I_D(SectionID, StubTargetAddr - Section.getAddress() + 12, |
716 | ELF::R_LARCH_ABS64_HI12, Value.Addend); |
717 | if (Value.SymbolName) { |
718 | addRelocationForSymbol(RE: LU12I_W, SymbolName: Value.SymbolName); |
719 | addRelocationForSymbol(RE: ORI, SymbolName: Value.SymbolName); |
720 | addRelocationForSymbol(RE: LU32I_D, SymbolName: Value.SymbolName); |
721 | addRelocationForSymbol(RE: LU52I_D, SymbolName: Value.SymbolName); |
722 | } else { |
723 | addRelocationForSection(RE: LU12I_W, SectionID: Value.SectionID); |
724 | addRelocationForSection(RE: ORI, SectionID: Value.SectionID); |
725 | addRelocationForSection(RE: LU32I_D, SectionID: Value.SectionID); |
726 | |
727 | addRelocationForSection(RE: LU52I_D, SectionID: Value.SectionID); |
728 | } |
729 | resolveRelocation(Section, Offset, |
730 | Value: reinterpret_cast<uint64_t>( |
731 | Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset())), |
732 | Type: RelType, Addend: 0); |
733 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
734 | } |
735 | |
736 | // Returns extract bits Val[Hi:Lo]. |
737 | static inline uint32_t (uint64_t Val, uint32_t Hi, uint32_t Lo) { |
738 | return Hi == 63 ? Val >> Lo : (Val & (((1ULL << (Hi + 1)) - 1))) >> Lo; |
739 | } |
740 | |
741 | void RuntimeDyldELF::resolveLoongArch64Relocation(const SectionEntry &Section, |
742 | uint64_t Offset, |
743 | uint64_t Value, uint32_t Type, |
744 | int64_t Addend) { |
745 | auto *TargetPtr = Section.getAddressWithOffset(OffsetBytes: Offset); |
746 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
747 | |
748 | LLVM_DEBUG(dbgs() << "resolveLoongArch64Relocation, LocalAddress: 0x" |
749 | << format("%llx" , Section.getAddressWithOffset(Offset)) |
750 | << " FinalAddress: 0x" << format("%llx" , FinalAddress) |
751 | << " Value: 0x" << format("%llx" , Value) << " Type: 0x" |
752 | << format("%x" , Type) << " Addend: 0x" |
753 | << format("%llx" , Addend) << "\n" ); |
754 | |
755 | switch (Type) { |
756 | default: |
757 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
758 | break; |
759 | case ELF::R_LARCH_32: |
760 | support::ulittle32_t::ref{TargetPtr} = |
761 | static_cast<uint32_t>(Value + Addend); |
762 | break; |
763 | case ELF::R_LARCH_64: |
764 | support::ulittle64_t::ref{TargetPtr} = Value + Addend; |
765 | break; |
766 | case ELF::R_LARCH_32_PCREL: |
767 | support::ulittle32_t::ref{TargetPtr} = |
768 | static_cast<uint32_t>(Value + Addend - FinalAddress); |
769 | break; |
770 | case ELF::R_LARCH_B26: { |
771 | uint64_t B26 = (Value + Addend - FinalAddress) >> 2; |
772 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
773 | uint32_t Imm15_0 = extractBits(Val: B26, /*Hi=*/15, /*Lo=*/0) << 10; |
774 | uint32_t Imm25_16 = extractBits(Val: B26, /*Hi=*/25, /*Lo=*/16); |
775 | Instr = (Instr & 0xfc000000) | Imm15_0 | Imm25_16; |
776 | break; |
777 | } |
778 | case ELF::R_LARCH_CALL36: { |
779 | uint64_t Call36 = (Value + Addend - FinalAddress) >> 2; |
780 | auto Pcaddu18i = support::ulittle32_t::ref(TargetPtr); |
781 | uint32_t Imm35_16 = |
782 | extractBits(Val: (Call36 + (1UL << 15)), /*Hi=*/35, /*Lo=*/16) << 5; |
783 | Pcaddu18i = (Pcaddu18i & 0xfe00001f) | Imm35_16; |
784 | auto Jirl = support::ulittle32_t::ref(TargetPtr + 4); |
785 | uint32_t Imm15_0 = extractBits(Val: Call36, /*Hi=*/15, /*Lo=*/0) << 10; |
786 | Jirl = (Jirl & 0xfc0003ff) | Imm15_0; |
787 | break; |
788 | } |
789 | case ELF::R_LARCH_GOT_PC_HI20: |
790 | case ELF::R_LARCH_PCALA_HI20: { |
791 | uint64_t Target = Value + Addend; |
792 | uint64_t TargetPage = |
793 | (Target + (Target & 0x800)) & ~static_cast<uint64_t>(0xfff); |
794 | uint64_t PCPage = FinalAddress & ~static_cast<uint64_t>(0xfff); |
795 | int64_t PageDelta = TargetPage - PCPage; |
796 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
797 | uint32_t Imm31_12 = extractBits(Val: PageDelta, /*Hi=*/31, /*Lo=*/12) << 5; |
798 | Instr = (Instr & 0xfe00001f) | Imm31_12; |
799 | break; |
800 | } |
801 | case ELF::R_LARCH_GOT_PC_LO12: |
802 | case ELF::R_LARCH_PCALA_LO12: { |
803 | uint64_t TargetOffset = (Value + Addend) & 0xfff; |
804 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
805 | uint32_t Imm11_0 = TargetOffset << 10; |
806 | Instr = (Instr & 0xffc003ff) | Imm11_0; |
807 | break; |
808 | } |
809 | case ELF::R_LARCH_ABS_HI20: { |
810 | uint64_t Target = Value + Addend; |
811 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
812 | uint32_t Imm31_12 = extractBits(Val: Target, /*Hi=*/31, /*Lo=*/12) << 5; |
813 | Instr = (Instr & 0xfe00001f) | Imm31_12; |
814 | break; |
815 | } |
816 | case ELF::R_LARCH_ABS_LO12: { |
817 | uint64_t Target = Value + Addend; |
818 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
819 | uint32_t Imm11_0 = extractBits(Val: Target, /*Hi=*/11, /*Lo=*/0) << 10; |
820 | Instr = (Instr & 0xffc003ff) | Imm11_0; |
821 | break; |
822 | } |
823 | case ELF::R_LARCH_ABS64_LO20: { |
824 | uint64_t Target = Value + Addend; |
825 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
826 | uint32_t Imm51_32 = extractBits(Val: Target, /*Hi=*/51, /*Lo=*/32) << 5; |
827 | Instr = (Instr & 0xfe00001f) | Imm51_32; |
828 | break; |
829 | } |
830 | case ELF::R_LARCH_ABS64_HI12: { |
831 | uint64_t Target = Value + Addend; |
832 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
833 | uint32_t Imm63_52 = extractBits(Val: Target, /*Hi=*/63, /*Lo=*/52) << 10; |
834 | Instr = (Instr & 0xffc003ff) | Imm63_52; |
835 | break; |
836 | } |
837 | case ELF::R_LARCH_ADD32: |
838 | support::ulittle32_t::ref{TargetPtr} = |
839 | (support::ulittle32_t::ref{TargetPtr} + |
840 | static_cast<uint32_t>(Value + Addend)); |
841 | break; |
842 | case ELF::R_LARCH_SUB32: |
843 | support::ulittle32_t::ref{TargetPtr} = |
844 | (support::ulittle32_t::ref{TargetPtr} - |
845 | static_cast<uint32_t>(Value + Addend)); |
846 | break; |
847 | case ELF::R_LARCH_ADD64: |
848 | support::ulittle64_t::ref{TargetPtr} = |
849 | (support::ulittle64_t::ref{TargetPtr} + Value + Addend); |
850 | break; |
851 | case ELF::R_LARCH_SUB64: |
852 | support::ulittle64_t::ref{TargetPtr} = |
853 | (support::ulittle64_t::ref{TargetPtr} - Value - Addend); |
854 | break; |
855 | } |
856 | } |
857 | |
858 | void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) { |
859 | if (Arch == Triple::UnknownArch || |
860 | Triple::getArchTypePrefix(Kind: Arch) != "mips" ) { |
861 | IsMipsO32ABI = false; |
862 | IsMipsN32ABI = false; |
863 | IsMipsN64ABI = false; |
864 | return; |
865 | } |
866 | if (auto *E = dyn_cast<ELFObjectFileBase>(Val: &Obj)) { |
867 | unsigned AbiVariant = E->getPlatformFlags(); |
868 | IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32; |
869 | IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2; |
870 | } |
871 | IsMipsN64ABI = Obj.getFileFormatName() == "elf64-mips" ; |
872 | } |
873 | |
874 | // Return the .TOC. section and offset. |
875 | Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj, |
876 | ObjSectionToIDMap &LocalSections, |
877 | RelocationValueRef &Rel) { |
878 | // Set a default SectionID in case we do not find a TOC section below. |
879 | // This may happen for references to TOC base base (sym@toc, .odp |
880 | // relocation) without a .toc directive. In this case just use the |
881 | // first section (which is usually the .odp) since the code won't |
882 | // reference the .toc base directly. |
883 | Rel.SymbolName = nullptr; |
884 | Rel.SectionID = 0; |
885 | |
886 | // The TOC consists of sections .got, .toc, .tocbss, .plt in that |
887 | // order. The TOC starts where the first of these sections starts. |
888 | for (auto &Section : Obj.sections()) { |
889 | Expected<StringRef> NameOrErr = Section.getName(); |
890 | if (!NameOrErr) |
891 | return NameOrErr.takeError(); |
892 | StringRef SectionName = *NameOrErr; |
893 | |
894 | if (SectionName == ".got" |
895 | || SectionName == ".toc" |
896 | || SectionName == ".tocbss" |
897 | || SectionName == ".plt" ) { |
898 | if (auto SectionIDOrErr = |
899 | findOrEmitSection(Obj, Section, IsCode: false, LocalSections)) |
900 | Rel.SectionID = *SectionIDOrErr; |
901 | else |
902 | return SectionIDOrErr.takeError(); |
903 | break; |
904 | } |
905 | } |
906 | |
907 | // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 |
908 | // thus permitting a full 64 Kbytes segment. |
909 | Rel.Addend = 0x8000; |
910 | |
911 | return Error::success(); |
912 | } |
913 | |
914 | // Returns the sections and offset associated with the ODP entry referenced |
915 | // by Symbol. |
916 | Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj, |
917 | ObjSectionToIDMap &LocalSections, |
918 | RelocationValueRef &Rel) { |
919 | // Get the ELF symbol value (st_value) to compare with Relocation offset in |
920 | // .opd entries |
921 | for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); |
922 | si != se; ++si) { |
923 | |
924 | Expected<section_iterator> RelSecOrErr = si->getRelocatedSection(); |
925 | if (!RelSecOrErr) |
926 | report_fatal_error(reason: Twine(toString(E: RelSecOrErr.takeError()))); |
927 | |
928 | section_iterator RelSecI = *RelSecOrErr; |
929 | if (RelSecI == Obj.section_end()) |
930 | continue; |
931 | |
932 | Expected<StringRef> NameOrErr = RelSecI->getName(); |
933 | if (!NameOrErr) |
934 | return NameOrErr.takeError(); |
935 | StringRef RelSectionName = *NameOrErr; |
936 | |
937 | if (RelSectionName != ".opd" ) |
938 | continue; |
939 | |
940 | for (elf_relocation_iterator i = si->relocation_begin(), |
941 | e = si->relocation_end(); |
942 | i != e;) { |
943 | // The R_PPC64_ADDR64 relocation indicates the first field |
944 | // of a .opd entry |
945 | uint64_t TypeFunc = i->getType(); |
946 | if (TypeFunc != ELF::R_PPC64_ADDR64) { |
947 | ++i; |
948 | continue; |
949 | } |
950 | |
951 | uint64_t TargetSymbolOffset = i->getOffset(); |
952 | symbol_iterator TargetSymbol = i->getSymbol(); |
953 | int64_t Addend; |
954 | if (auto AddendOrErr = i->getAddend()) |
955 | Addend = *AddendOrErr; |
956 | else |
957 | return AddendOrErr.takeError(); |
958 | |
959 | ++i; |
960 | if (i == e) |
961 | break; |
962 | |
963 | // Just check if following relocation is a R_PPC64_TOC |
964 | uint64_t TypeTOC = i->getType(); |
965 | if (TypeTOC != ELF::R_PPC64_TOC) |
966 | continue; |
967 | |
968 | // Finally compares the Symbol value and the target symbol offset |
969 | // to check if this .opd entry refers to the symbol the relocation |
970 | // points to. |
971 | if (Rel.Addend != (int64_t)TargetSymbolOffset) |
972 | continue; |
973 | |
974 | section_iterator TSI = Obj.section_end(); |
975 | if (auto TSIOrErr = TargetSymbol->getSection()) |
976 | TSI = *TSIOrErr; |
977 | else |
978 | return TSIOrErr.takeError(); |
979 | assert(TSI != Obj.section_end() && "TSI should refer to a valid section" ); |
980 | |
981 | bool IsCode = TSI->isText(); |
982 | if (auto SectionIDOrErr = findOrEmitSection(Obj, Section: *TSI, IsCode, |
983 | LocalSections)) |
984 | Rel.SectionID = *SectionIDOrErr; |
985 | else |
986 | return SectionIDOrErr.takeError(); |
987 | Rel.Addend = (intptr_t)Addend; |
988 | return Error::success(); |
989 | } |
990 | } |
991 | llvm_unreachable("Attempting to get address of ODP entry!" ); |
992 | } |
993 | |
994 | // Relocation masks following the #lo(value), #hi(value), #ha(value), |
995 | // #higher(value), #highera(value), #highest(value), and #highesta(value) |
996 | // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi |
997 | // document. |
998 | |
999 | static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } |
1000 | |
1001 | static inline uint16_t applyPPChi(uint64_t value) { |
1002 | return (value >> 16) & 0xffff; |
1003 | } |
1004 | |
1005 | static inline uint16_t applyPPCha (uint64_t value) { |
1006 | return ((value + 0x8000) >> 16) & 0xffff; |
1007 | } |
1008 | |
1009 | static inline uint16_t applyPPChigher(uint64_t value) { |
1010 | return (value >> 32) & 0xffff; |
1011 | } |
1012 | |
1013 | static inline uint16_t applyPPChighera (uint64_t value) { |
1014 | return ((value + 0x8000) >> 32) & 0xffff; |
1015 | } |
1016 | |
1017 | static inline uint16_t applyPPChighest(uint64_t value) { |
1018 | return (value >> 48) & 0xffff; |
1019 | } |
1020 | |
1021 | static inline uint16_t applyPPChighesta (uint64_t value) { |
1022 | return ((value + 0x8000) >> 48) & 0xffff; |
1023 | } |
1024 | |
1025 | void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section, |
1026 | uint64_t Offset, uint64_t Value, |
1027 | uint32_t Type, int64_t Addend) { |
1028 | uint8_t *LocalAddress = Section.getAddressWithOffset(OffsetBytes: Offset); |
1029 | switch (Type) { |
1030 | default: |
1031 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
1032 | break; |
1033 | case ELF::R_PPC_ADDR16_LO: |
1034 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend)); |
1035 | break; |
1036 | case ELF::R_PPC_ADDR16_HI: |
1037 | writeInt16BE(Addr: LocalAddress, Value: applyPPChi(value: Value + Addend)); |
1038 | break; |
1039 | case ELF::R_PPC_ADDR16_HA: |
1040 | writeInt16BE(Addr: LocalAddress, Value: applyPPCha(value: Value + Addend)); |
1041 | break; |
1042 | } |
1043 | } |
1044 | |
1045 | void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, |
1046 | uint64_t Offset, uint64_t Value, |
1047 | uint32_t Type, int64_t Addend) { |
1048 | uint8_t *LocalAddress = Section.getAddressWithOffset(OffsetBytes: Offset); |
1049 | switch (Type) { |
1050 | default: |
1051 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
1052 | break; |
1053 | case ELF::R_PPC64_ADDR16: |
1054 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend)); |
1055 | break; |
1056 | case ELF::R_PPC64_ADDR16_DS: |
1057 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend) & ~3); |
1058 | break; |
1059 | case ELF::R_PPC64_ADDR16_LO: |
1060 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend)); |
1061 | break; |
1062 | case ELF::R_PPC64_ADDR16_LO_DS: |
1063 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend) & ~3); |
1064 | break; |
1065 | case ELF::R_PPC64_ADDR16_HI: |
1066 | case ELF::R_PPC64_ADDR16_HIGH: |
1067 | writeInt16BE(Addr: LocalAddress, Value: applyPPChi(value: Value + Addend)); |
1068 | break; |
1069 | case ELF::R_PPC64_ADDR16_HA: |
1070 | case ELF::R_PPC64_ADDR16_HIGHA: |
1071 | writeInt16BE(Addr: LocalAddress, Value: applyPPCha(value: Value + Addend)); |
1072 | break; |
1073 | case ELF::R_PPC64_ADDR16_HIGHER: |
1074 | writeInt16BE(Addr: LocalAddress, Value: applyPPChigher(value: Value + Addend)); |
1075 | break; |
1076 | case ELF::R_PPC64_ADDR16_HIGHERA: |
1077 | writeInt16BE(Addr: LocalAddress, Value: applyPPChighera(value: Value + Addend)); |
1078 | break; |
1079 | case ELF::R_PPC64_ADDR16_HIGHEST: |
1080 | writeInt16BE(Addr: LocalAddress, Value: applyPPChighest(value: Value + Addend)); |
1081 | break; |
1082 | case ELF::R_PPC64_ADDR16_HIGHESTA: |
1083 | writeInt16BE(Addr: LocalAddress, Value: applyPPChighesta(value: Value + Addend)); |
1084 | break; |
1085 | case ELF::R_PPC64_ADDR14: { |
1086 | assert(((Value + Addend) & 3) == 0); |
1087 | // Preserve the AA/LK bits in the branch instruction |
1088 | uint8_t aalk = *(LocalAddress + 3); |
1089 | writeInt16BE(Addr: LocalAddress + 2, Value: (aalk & 3) | ((Value + Addend) & 0xfffc)); |
1090 | } break; |
1091 | case ELF::R_PPC64_REL16_LO: { |
1092 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1093 | uint64_t Delta = Value - FinalAddress + Addend; |
1094 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Delta)); |
1095 | } break; |
1096 | case ELF::R_PPC64_REL16_HI: { |
1097 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1098 | uint64_t Delta = Value - FinalAddress + Addend; |
1099 | writeInt16BE(Addr: LocalAddress, Value: applyPPChi(value: Delta)); |
1100 | } break; |
1101 | case ELF::R_PPC64_REL16_HA: { |
1102 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1103 | uint64_t Delta = Value - FinalAddress + Addend; |
1104 | writeInt16BE(Addr: LocalAddress, Value: applyPPCha(value: Delta)); |
1105 | } break; |
1106 | case ELF::R_PPC64_ADDR32: { |
1107 | int64_t Result = static_cast<int64_t>(Value + Addend); |
1108 | if (SignExtend64<32>(x: Result) != Result) |
1109 | llvm_unreachable("Relocation R_PPC64_ADDR32 overflow" ); |
1110 | writeInt32BE(Addr: LocalAddress, Value: Result); |
1111 | } break; |
1112 | case ELF::R_PPC64_REL24: { |
1113 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1114 | int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); |
1115 | if (SignExtend64<26>(x: delta) != delta) |
1116 | llvm_unreachable("Relocation R_PPC64_REL24 overflow" ); |
1117 | // We preserve bits other than LI field, i.e. PO and AA/LK fields. |
1118 | uint32_t Inst = readBytesUnaligned(Src: LocalAddress, Size: 4); |
1119 | writeInt32BE(Addr: LocalAddress, Value: (Inst & 0xFC000003) | (delta & 0x03FFFFFC)); |
1120 | } break; |
1121 | case ELF::R_PPC64_REL32: { |
1122 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1123 | int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); |
1124 | if (SignExtend64<32>(x: delta) != delta) |
1125 | llvm_unreachable("Relocation R_PPC64_REL32 overflow" ); |
1126 | writeInt32BE(Addr: LocalAddress, Value: delta); |
1127 | } break; |
1128 | case ELF::R_PPC64_REL64: { |
1129 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1130 | uint64_t Delta = Value - FinalAddress + Addend; |
1131 | writeInt64BE(Addr: LocalAddress, Value: Delta); |
1132 | } break; |
1133 | case ELF::R_PPC64_ADDR64: |
1134 | writeInt64BE(Addr: LocalAddress, Value: Value + Addend); |
1135 | break; |
1136 | } |
1137 | } |
1138 | |
1139 | void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, |
1140 | uint64_t Offset, uint64_t Value, |
1141 | uint32_t Type, int64_t Addend) { |
1142 | uint8_t *LocalAddress = Section.getAddressWithOffset(OffsetBytes: Offset); |
1143 | switch (Type) { |
1144 | default: |
1145 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
1146 | break; |
1147 | case ELF::R_390_PC16DBL: |
1148 | case ELF::R_390_PLT16DBL: { |
1149 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1150 | assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow" ); |
1151 | writeInt16BE(Addr: LocalAddress, Value: Delta / 2); |
1152 | break; |
1153 | } |
1154 | case ELF::R_390_PC32DBL: |
1155 | case ELF::R_390_PLT32DBL: { |
1156 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1157 | assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow" ); |
1158 | writeInt32BE(Addr: LocalAddress, Value: Delta / 2); |
1159 | break; |
1160 | } |
1161 | case ELF::R_390_PC16: { |
1162 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1163 | assert(int16_t(Delta) == Delta && "R_390_PC16 overflow" ); |
1164 | writeInt16BE(Addr: LocalAddress, Value: Delta); |
1165 | break; |
1166 | } |
1167 | case ELF::R_390_PC32: { |
1168 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1169 | assert(int32_t(Delta) == Delta && "R_390_PC32 overflow" ); |
1170 | writeInt32BE(Addr: LocalAddress, Value: Delta); |
1171 | break; |
1172 | } |
1173 | case ELF::R_390_PC64: { |
1174 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1175 | writeInt64BE(Addr: LocalAddress, Value: Delta); |
1176 | break; |
1177 | } |
1178 | case ELF::R_390_8: |
1179 | *LocalAddress = (uint8_t)(Value + Addend); |
1180 | break; |
1181 | case ELF::R_390_16: |
1182 | writeInt16BE(Addr: LocalAddress, Value: Value + Addend); |
1183 | break; |
1184 | case ELF::R_390_32: |
1185 | writeInt32BE(Addr: LocalAddress, Value: Value + Addend); |
1186 | break; |
1187 | case ELF::R_390_64: |
1188 | writeInt64BE(Addr: LocalAddress, Value: Value + Addend); |
1189 | break; |
1190 | } |
1191 | } |
1192 | |
1193 | void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section, |
1194 | uint64_t Offset, uint64_t Value, |
1195 | uint32_t Type, int64_t Addend) { |
1196 | bool isBE = Arch == Triple::bpfeb; |
1197 | |
1198 | switch (Type) { |
1199 | default: |
1200 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
1201 | break; |
1202 | case ELF::R_BPF_NONE: |
1203 | case ELF::R_BPF_64_64: |
1204 | case ELF::R_BPF_64_32: |
1205 | case ELF::R_BPF_64_NODYLD32: |
1206 | break; |
1207 | case ELF::R_BPF_64_ABS64: { |
1208 | write(isBE, P: Section.getAddressWithOffset(OffsetBytes: Offset), V: Value + Addend); |
1209 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , (Value + Addend)) << " at " |
1210 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
1211 | break; |
1212 | } |
1213 | case ELF::R_BPF_64_ABS32: { |
1214 | Value += Addend; |
1215 | assert(Value <= UINT32_MAX); |
1216 | write(isBE, P: Section.getAddressWithOffset(OffsetBytes: Offset), V: static_cast<uint32_t>(Value)); |
1217 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , Value) << " at " |
1218 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
1219 | break; |
1220 | } |
1221 | } |
1222 | } |
1223 | |
1224 | static void applyUTypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm) { |
1225 | uint32_t UpperImm = (Imm + 0x800) & 0xfffff000; |
1226 | auto Instr = support::ulittle32_t::ref(InstrAddr); |
1227 | Instr = (Instr & 0xfff) | UpperImm; |
1228 | } |
1229 | |
1230 | static void applyITypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm) { |
1231 | uint32_t LowerImm = Imm & 0xfff; |
1232 | auto Instr = support::ulittle32_t::ref(InstrAddr); |
1233 | Instr = (Instr & 0xfffff) | (LowerImm << 20); |
1234 | } |
1235 | |
1236 | void RuntimeDyldELF::resolveRISCVRelocation(const SectionEntry &Section, |
1237 | uint64_t Offset, uint64_t Value, |
1238 | uint32_t Type, int64_t Addend, |
1239 | SID SectionID) { |
1240 | switch (Type) { |
1241 | default: { |
1242 | std::string Err = "Unimplemented reloc type: " + std::to_string(val: Type); |
1243 | llvm::report_fatal_error(reason: Err.c_str()); |
1244 | } |
1245 | // 32-bit PC-relative function call, macros call, tail (PIC) |
1246 | // Write first 20 bits of 32 bit value to the auipc instruction |
1247 | // Last 12 bits to the jalr instruction |
1248 | case ELF::R_RISCV_CALL: |
1249 | case ELF::R_RISCV_CALL_PLT: { |
1250 | uint64_t P = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1251 | uint64_t PCOffset = Value + Addend - P; |
1252 | applyUTypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
1253 | applyITypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset + 4), Imm: PCOffset); |
1254 | break; |
1255 | } |
1256 | // High 20 bits of 32-bit absolute address, %hi(symbol) |
1257 | case ELF::R_RISCV_HI20: { |
1258 | uint64_t PCOffset = Value + Addend; |
1259 | applyUTypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
1260 | break; |
1261 | } |
1262 | // Low 12 bits of 32-bit absolute address, %lo(symbol) |
1263 | case ELF::R_RISCV_LO12_I: { |
1264 | uint64_t PCOffset = Value + Addend; |
1265 | applyITypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
1266 | break; |
1267 | } |
1268 | // High 20 bits of 32-bit PC-relative reference, %pcrel_hi(symbol) |
1269 | case ELF::R_RISCV_GOT_HI20: |
1270 | case ELF::R_RISCV_PCREL_HI20: { |
1271 | uint64_t P = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1272 | uint64_t PCOffset = Value + Addend - P; |
1273 | applyUTypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
1274 | break; |
1275 | } |
1276 | |
1277 | // label: |
1278 | // auipc a0, %pcrel_hi(symbol) // R_RISCV_PCREL_HI20 |
1279 | // addi a0, a0, %pcrel_lo(label) // R_RISCV_PCREL_LO12_I |
1280 | // |
1281 | // The low 12 bits of relative address between pc and symbol. |
1282 | // The symbol is related to the high part instruction which is marked by |
1283 | // label. |
1284 | case ELF::R_RISCV_PCREL_LO12_I: { |
1285 | for (auto &&PendingReloc : PendingRelocs) { |
1286 | const RelocationValueRef &MatchingValue = PendingReloc.first; |
1287 | RelocationEntry &Reloc = PendingReloc.second; |
1288 | uint64_t HIRelocPC = |
1289 | getSectionLoadAddress(SectionID: Reloc.SectionID) + Reloc.Offset; |
1290 | if (Value + Addend == HIRelocPC) { |
1291 | uint64_t Symbol = getSectionLoadAddress(SectionID: MatchingValue.SectionID) + |
1292 | MatchingValue.Addend; |
1293 | auto PCOffset = Symbol - HIRelocPC; |
1294 | applyITypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
1295 | return; |
1296 | } |
1297 | } |
1298 | |
1299 | llvm::report_fatal_error( |
1300 | reason: "R_RISCV_PCREL_LO12_I without matching R_RISCV_PCREL_HI20" ); |
1301 | } |
1302 | case ELF::R_RISCV_32_PCREL: { |
1303 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
1304 | int64_t RealOffset = Value + Addend - FinalAddress; |
1305 | int32_t TruncOffset = Lo_32(Value: RealOffset); |
1306 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
1307 | TruncOffset; |
1308 | break; |
1309 | } |
1310 | case ELF::R_RISCV_32: { |
1311 | auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1312 | Ref = Value + Addend; |
1313 | break; |
1314 | } |
1315 | case ELF::R_RISCV_64: { |
1316 | auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1317 | Ref = Value + Addend; |
1318 | break; |
1319 | } |
1320 | case ELF::R_RISCV_ADD8: { |
1321 | auto Ref = support::ulittle8_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1322 | Ref = Ref + Value + Addend; |
1323 | break; |
1324 | } |
1325 | case ELF::R_RISCV_ADD16: { |
1326 | auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1327 | Ref = Ref + Value + Addend; |
1328 | break; |
1329 | } |
1330 | case ELF::R_RISCV_ADD32: { |
1331 | auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1332 | Ref = Ref + Value + Addend; |
1333 | break; |
1334 | } |
1335 | case ELF::R_RISCV_ADD64: { |
1336 | auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1337 | Ref = Ref + Value + Addend; |
1338 | break; |
1339 | } |
1340 | case ELF::R_RISCV_SUB8: { |
1341 | auto Ref = support::ulittle8_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1342 | Ref = Ref - Value - Addend; |
1343 | break; |
1344 | } |
1345 | case ELF::R_RISCV_SUB16: { |
1346 | auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1347 | Ref = Ref - Value - Addend; |
1348 | break; |
1349 | } |
1350 | case ELF::R_RISCV_SUB32: { |
1351 | auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1352 | Ref = Ref - Value - Addend; |
1353 | break; |
1354 | } |
1355 | case ELF::R_RISCV_SUB64: { |
1356 | auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1357 | Ref = Ref - Value - Addend; |
1358 | break; |
1359 | } |
1360 | case ELF::R_RISCV_SET8: { |
1361 | auto Ref = support::ulittle8_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1362 | Ref = Value + Addend; |
1363 | break; |
1364 | } |
1365 | case ELF::R_RISCV_SET16: { |
1366 | auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1367 | Ref = Value + Addend; |
1368 | break; |
1369 | } |
1370 | case ELF::R_RISCV_SET32: { |
1371 | auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
1372 | Ref = Value + Addend; |
1373 | break; |
1374 | } |
1375 | } |
1376 | } |
1377 | |
1378 | // The target location for the relocation is described by RE.SectionID and |
1379 | // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each |
1380 | // SectionEntry has three members describing its location. |
1381 | // SectionEntry::Address is the address at which the section has been loaded |
1382 | // into memory in the current (host) process. SectionEntry::LoadAddress is the |
1383 | // address that the section will have in the target process. |
1384 | // SectionEntry::ObjAddress is the address of the bits for this section in the |
1385 | // original emitted object image (also in the current address space). |
1386 | // |
1387 | // Relocations will be applied as if the section were loaded at |
1388 | // SectionEntry::LoadAddress, but they will be applied at an address based |
1389 | // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to |
1390 | // Target memory contents if they are required for value calculations. |
1391 | // |
1392 | // The Value parameter here is the load address of the symbol for the |
1393 | // relocation to be applied. For relocations which refer to symbols in the |
1394 | // current object Value will be the LoadAddress of the section in which |
1395 | // the symbol resides (RE.Addend provides additional information about the |
1396 | // symbol location). For external symbols, Value will be the address of the |
1397 | // symbol in the target address space. |
1398 | void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, |
1399 | uint64_t Value) { |
1400 | const SectionEntry &Section = Sections[RE.SectionID]; |
1401 | return resolveRelocation(Section, Offset: RE.Offset, Value, Type: RE.RelType, Addend: RE.Addend, |
1402 | SymOffset: RE.SymOffset, SectionID: RE.SectionID); |
1403 | } |
1404 | |
1405 | void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, |
1406 | uint64_t Offset, uint64_t Value, |
1407 | uint32_t Type, int64_t Addend, |
1408 | uint64_t SymOffset, SID SectionID) { |
1409 | switch (Arch) { |
1410 | case Triple::x86_64: |
1411 | resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); |
1412 | break; |
1413 | case Triple::x86: |
1414 | resolveX86Relocation(Section, Offset, Value: (uint32_t)(Value & 0xffffffffL), Type, |
1415 | Addend: (uint32_t)(Addend & 0xffffffffL)); |
1416 | break; |
1417 | case Triple::aarch64: |
1418 | case Triple::aarch64_be: |
1419 | resolveAArch64Relocation(Section, Offset, Value, Type, Addend); |
1420 | break; |
1421 | case Triple::arm: // Fall through. |
1422 | case Triple::armeb: |
1423 | case Triple::thumb: |
1424 | case Triple::thumbeb: |
1425 | resolveARMRelocation(Section, Offset, Value: (uint32_t)(Value & 0xffffffffL), Type, |
1426 | Addend: (uint32_t)(Addend & 0xffffffffL)); |
1427 | break; |
1428 | case Triple::loongarch64: |
1429 | resolveLoongArch64Relocation(Section, Offset, Value, Type, Addend); |
1430 | break; |
1431 | case Triple::ppc: // Fall through. |
1432 | case Triple::ppcle: |
1433 | resolvePPC32Relocation(Section, Offset, Value, Type, Addend); |
1434 | break; |
1435 | case Triple::ppc64: // Fall through. |
1436 | case Triple::ppc64le: |
1437 | resolvePPC64Relocation(Section, Offset, Value, Type, Addend); |
1438 | break; |
1439 | case Triple::systemz: |
1440 | resolveSystemZRelocation(Section, Offset, Value, Type, Addend); |
1441 | break; |
1442 | case Triple::bpfel: |
1443 | case Triple::bpfeb: |
1444 | resolveBPFRelocation(Section, Offset, Value, Type, Addend); |
1445 | break; |
1446 | case Triple::riscv32: // Fall through. |
1447 | case Triple::riscv64: |
1448 | resolveRISCVRelocation(Section, Offset, Value, Type, Addend, SectionID); |
1449 | break; |
1450 | default: |
1451 | llvm_unreachable("Unsupported CPU type!" ); |
1452 | } |
1453 | } |
1454 | |
1455 | void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, |
1456 | uint64_t Offset) const { |
1457 | return (void *)(Sections[SectionID].getObjAddress() + Offset); |
1458 | } |
1459 | |
1460 | void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) { |
1461 | RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); |
1462 | if (Value.SymbolName) |
1463 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
1464 | else |
1465 | addRelocationForSection(RE, SectionID: Value.SectionID); |
1466 | } |
1467 | |
1468 | uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType, |
1469 | bool IsLocal) const { |
1470 | switch (RelType) { |
1471 | case ELF::R_MICROMIPS_GOT16: |
1472 | if (IsLocal) |
1473 | return ELF::R_MICROMIPS_LO16; |
1474 | break; |
1475 | case ELF::R_MICROMIPS_HI16: |
1476 | return ELF::R_MICROMIPS_LO16; |
1477 | case ELF::R_MIPS_GOT16: |
1478 | if (IsLocal) |
1479 | return ELF::R_MIPS_LO16; |
1480 | break; |
1481 | case ELF::R_MIPS_HI16: |
1482 | return ELF::R_MIPS_LO16; |
1483 | case ELF::R_MIPS_PCHI16: |
1484 | return ELF::R_MIPS_PCLO16; |
1485 | default: |
1486 | break; |
1487 | } |
1488 | return ELF::R_MIPS_NONE; |
1489 | } |
1490 | |
1491 | // Sometimes we don't need to create thunk for a branch. |
1492 | // This typically happens when branch target is located |
1493 | // in the same object file. In such case target is either |
1494 | // a weak symbol or symbol in a different executable section. |
1495 | // This function checks if branch target is located in the |
1496 | // same object file and if distance between source and target |
1497 | // fits R_AARCH64_CALL26 relocation. If both conditions are |
1498 | // met, it emits direct jump to the target and returns true. |
1499 | // Otherwise false is returned and thunk is created. |
1500 | bool RuntimeDyldELF::resolveAArch64ShortBranch( |
1501 | unsigned SectionID, relocation_iterator RelI, |
1502 | const RelocationValueRef &Value) { |
1503 | uint64_t TargetOffset; |
1504 | unsigned TargetSectionID; |
1505 | if (Value.SymbolName) { |
1506 | auto Loc = GlobalSymbolTable.find(Key: Value.SymbolName); |
1507 | |
1508 | // Don't create direct branch for external symbols. |
1509 | if (Loc == GlobalSymbolTable.end()) |
1510 | return false; |
1511 | |
1512 | const auto &SymInfo = Loc->second; |
1513 | |
1514 | TargetSectionID = SymInfo.getSectionID(); |
1515 | TargetOffset = SymInfo.getOffset(); |
1516 | } else { |
1517 | TargetSectionID = Value.SectionID; |
1518 | TargetOffset = 0; |
1519 | } |
1520 | |
1521 | // We don't actually know the load addresses at this point, so if the |
1522 | // branch is cross-section, we don't know exactly how far away it is. |
1523 | if (TargetSectionID != SectionID) |
1524 | return false; |
1525 | |
1526 | uint64_t SourceOffset = RelI->getOffset(); |
1527 | |
1528 | // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27 |
1529 | // If distance between source and target is out of range then we should |
1530 | // create thunk. |
1531 | if (!isInt<28>(x: TargetOffset + Value.Addend - SourceOffset)) |
1532 | return false; |
1533 | |
1534 | RelocationEntry RE(SectionID, SourceOffset, RelI->getType(), Value.Addend); |
1535 | if (Value.SymbolName) |
1536 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
1537 | else |
1538 | addRelocationForSection(RE, SectionID: Value.SectionID); |
1539 | |
1540 | return true; |
1541 | } |
1542 | |
1543 | void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID, |
1544 | const RelocationValueRef &Value, |
1545 | relocation_iterator RelI, |
1546 | StubMap &Stubs) { |
1547 | |
1548 | LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation." ); |
1549 | SectionEntry &Section = Sections[SectionID]; |
1550 | |
1551 | uint64_t Offset = RelI->getOffset(); |
1552 | unsigned RelType = RelI->getType(); |
1553 | // Look for an existing stub. |
1554 | StubMap::const_iterator i = Stubs.find(x: Value); |
1555 | if (i != Stubs.end()) { |
1556 | resolveRelocation(Section, Offset, |
1557 | Value: Section.getLoadAddressWithOffset(OffsetBytes: i->second), Type: RelType, Addend: 0); |
1558 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
1559 | } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) { |
1560 | // Create a new stub function. |
1561 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
1562 | Stubs[Value] = Section.getStubOffset(); |
1563 | uint8_t *StubTargetAddr = createStubFunction( |
1564 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset())); |
1565 | |
1566 | RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(), |
1567 | ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); |
1568 | RelocationEntry REmovk_g2(SectionID, |
1569 | StubTargetAddr - Section.getAddress() + 4, |
1570 | ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); |
1571 | RelocationEntry REmovk_g1(SectionID, |
1572 | StubTargetAddr - Section.getAddress() + 8, |
1573 | ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); |
1574 | RelocationEntry REmovk_g0(SectionID, |
1575 | StubTargetAddr - Section.getAddress() + 12, |
1576 | ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); |
1577 | |
1578 | if (Value.SymbolName) { |
1579 | addRelocationForSymbol(RE: REmovz_g3, SymbolName: Value.SymbolName); |
1580 | addRelocationForSymbol(RE: REmovk_g2, SymbolName: Value.SymbolName); |
1581 | addRelocationForSymbol(RE: REmovk_g1, SymbolName: Value.SymbolName); |
1582 | addRelocationForSymbol(RE: REmovk_g0, SymbolName: Value.SymbolName); |
1583 | } else { |
1584 | addRelocationForSection(RE: REmovz_g3, SectionID: Value.SectionID); |
1585 | addRelocationForSection(RE: REmovk_g2, SectionID: Value.SectionID); |
1586 | addRelocationForSection(RE: REmovk_g1, SectionID: Value.SectionID); |
1587 | addRelocationForSection(RE: REmovk_g0, SectionID: Value.SectionID); |
1588 | } |
1589 | resolveRelocation(Section, Offset, |
1590 | Value: Section.getLoadAddressWithOffset(OffsetBytes: Section.getStubOffset()), |
1591 | Type: RelType, Addend: 0); |
1592 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
1593 | } |
1594 | } |
1595 | |
1596 | Expected<relocation_iterator> |
1597 | RuntimeDyldELF::processRelocationRef( |
1598 | unsigned SectionID, relocation_iterator RelI, const ObjectFile &O, |
1599 | ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) { |
1600 | const auto &Obj = cast<ELFObjectFileBase>(Val: O); |
1601 | uint64_t RelType = RelI->getType(); |
1602 | int64_t Addend = 0; |
1603 | if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend()) |
1604 | Addend = *AddendOrErr; |
1605 | else |
1606 | consumeError(Err: AddendOrErr.takeError()); |
1607 | elf_symbol_iterator Symbol = RelI->getSymbol(); |
1608 | |
1609 | // Obtain the symbol name which is referenced in the relocation |
1610 | StringRef TargetName; |
1611 | if (Symbol != Obj.symbol_end()) { |
1612 | if (auto TargetNameOrErr = Symbol->getName()) |
1613 | TargetName = *TargetNameOrErr; |
1614 | else |
1615 | return TargetNameOrErr.takeError(); |
1616 | } |
1617 | LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend |
1618 | << " TargetName: " << TargetName << "\n" ); |
1619 | RelocationValueRef Value; |
1620 | // First search for the symbol in the local symbol table |
1621 | SymbolRef::Type SymType = SymbolRef::ST_Unknown; |
1622 | |
1623 | // Search for the symbol in the global symbol table |
1624 | RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); |
1625 | if (Symbol != Obj.symbol_end()) { |
1626 | gsi = GlobalSymbolTable.find(Key: TargetName.data()); |
1627 | Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType(); |
1628 | if (!SymTypeOrErr) { |
1629 | std::string Buf; |
1630 | raw_string_ostream OS(Buf); |
1631 | logAllUnhandledErrors(E: SymTypeOrErr.takeError(), OS); |
1632 | report_fatal_error(reason: Twine(Buf)); |
1633 | } |
1634 | SymType = *SymTypeOrErr; |
1635 | } |
1636 | if (gsi != GlobalSymbolTable.end()) { |
1637 | const auto &SymInfo = gsi->second; |
1638 | Value.SectionID = SymInfo.getSectionID(); |
1639 | Value.Offset = SymInfo.getOffset(); |
1640 | Value.Addend = SymInfo.getOffset() + Addend; |
1641 | } else { |
1642 | switch (SymType) { |
1643 | case SymbolRef::ST_Debug: { |
1644 | // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously |
1645 | // and can be changed by another developers. Maybe best way is add |
1646 | // a new symbol type ST_Section to SymbolRef and use it. |
1647 | auto SectionOrErr = Symbol->getSection(); |
1648 | if (!SectionOrErr) { |
1649 | std::string Buf; |
1650 | raw_string_ostream OS(Buf); |
1651 | logAllUnhandledErrors(E: SectionOrErr.takeError(), OS); |
1652 | report_fatal_error(reason: Twine(Buf)); |
1653 | } |
1654 | section_iterator si = *SectionOrErr; |
1655 | if (si == Obj.section_end()) |
1656 | llvm_unreachable("Symbol section not found, bad object file format!" ); |
1657 | LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n" ); |
1658 | bool isCode = si->isText(); |
1659 | if (auto SectionIDOrErr = findOrEmitSection(Obj, Section: (*si), IsCode: isCode, |
1660 | LocalSections&: ObjSectionToID)) |
1661 | Value.SectionID = *SectionIDOrErr; |
1662 | else |
1663 | return SectionIDOrErr.takeError(); |
1664 | Value.Addend = Addend; |
1665 | break; |
1666 | } |
1667 | case SymbolRef::ST_Data: |
1668 | case SymbolRef::ST_Function: |
1669 | case SymbolRef::ST_Other: |
1670 | case SymbolRef::ST_Unknown: { |
1671 | Value.SymbolName = TargetName.data(); |
1672 | Value.Addend = Addend; |
1673 | |
1674 | // Absolute relocations will have a zero symbol ID (STN_UNDEF), which |
1675 | // will manifest here as a NULL symbol name. |
1676 | // We can set this as a valid (but empty) symbol name, and rely |
1677 | // on addRelocationForSymbol to handle this. |
1678 | if (!Value.SymbolName) |
1679 | Value.SymbolName = "" ; |
1680 | break; |
1681 | } |
1682 | default: |
1683 | llvm_unreachable("Unresolved symbol type!" ); |
1684 | break; |
1685 | } |
1686 | } |
1687 | |
1688 | uint64_t Offset = RelI->getOffset(); |
1689 | |
1690 | LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset |
1691 | << "\n" ); |
1692 | if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) { |
1693 | if ((RelType == ELF::R_AARCH64_CALL26 || |
1694 | RelType == ELF::R_AARCH64_JUMP26) && |
1695 | MemMgr.allowStubAllocation()) { |
1696 | resolveAArch64Branch(SectionID, Value, RelI, Stubs); |
1697 | } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) { |
1698 | // Create new GOT entry or find existing one. If GOT entry is |
1699 | // to be created, then we also emit ABS64 relocation for it. |
1700 | uint64_t GOTOffset = findOrAllocGOTEntry(Value, GOTRelType: ELF::R_AARCH64_ABS64); |
1701 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
1702 | Type: ELF::R_AARCH64_ADR_PREL_PG_HI21); |
1703 | |
1704 | } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) { |
1705 | uint64_t GOTOffset = findOrAllocGOTEntry(Value, GOTRelType: ELF::R_AARCH64_ABS64); |
1706 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
1707 | Type: ELF::R_AARCH64_LDST64_ABS_LO12_NC); |
1708 | } else { |
1709 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
1710 | } |
1711 | } else if (Arch == Triple::arm) { |
1712 | if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || |
1713 | RelType == ELF::R_ARM_JUMP24) { |
1714 | // This is an ARM branch relocation, need to use a stub function. |
1715 | LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n" ); |
1716 | SectionEntry &Section = Sections[SectionID]; |
1717 | |
1718 | // Look for an existing stub. |
1719 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
1720 | if (!Inserted) { |
1721 | resolveRelocation(Section, Offset, |
1722 | Value: Section.getLoadAddressWithOffset(OffsetBytes: It->second), Type: RelType, |
1723 | Addend: 0); |
1724 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
1725 | } else { |
1726 | // Create a new stub function. |
1727 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
1728 | It->second = Section.getStubOffset(); |
1729 | uint8_t *StubTargetAddr = createStubFunction( |
1730 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset())); |
1731 | RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), |
1732 | ELF::R_ARM_ABS32, Value.Addend); |
1733 | if (Value.SymbolName) |
1734 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
1735 | else |
1736 | addRelocationForSection(RE, SectionID: Value.SectionID); |
1737 | |
1738 | resolveRelocation( |
1739 | Section, Offset, |
1740 | Value: Section.getLoadAddressWithOffset(OffsetBytes: Section.getStubOffset()), Type: RelType, |
1741 | Addend: 0); |
1742 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
1743 | } |
1744 | } else { |
1745 | uint32_t *Placeholder = |
1746 | reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset)); |
1747 | if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 || |
1748 | RelType == ELF::R_ARM_ABS32) { |
1749 | Value.Addend += *Placeholder; |
1750 | } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) { |
1751 | // See ELF for ARM documentation |
1752 | Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12)); |
1753 | } |
1754 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
1755 | } |
1756 | } else if (Arch == Triple::loongarch64) { |
1757 | if ((RelType == ELF::R_LARCH_B26 || RelType == ELF::R_LARCH_CALL36) && |
1758 | MemMgr.allowStubAllocation()) { |
1759 | resolveLoongArch64Branch(SectionID, Value, RelI, Stubs); |
1760 | } else if (RelType == ELF::R_LARCH_GOT_PC_HI20 || |
1761 | RelType == ELF::R_LARCH_GOT_PC_LO12) { |
1762 | uint64_t GOTOffset = findOrAllocGOTEntry(Value, GOTRelType: ELF::R_LARCH_64); |
1763 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
1764 | Type: RelType); |
1765 | } else { |
1766 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
1767 | } |
1768 | } else if (IsMipsO32ABI) { |
1769 | uint8_t *Placeholder = reinterpret_cast<uint8_t *>( |
1770 | computePlaceholderAddress(SectionID, Offset)); |
1771 | uint32_t Opcode = readBytesUnaligned(Src: Placeholder, Size: 4); |
1772 | if (RelType == ELF::R_MIPS_26) { |
1773 | // This is an Mips branch relocation, need to use a stub function. |
1774 | LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation." ); |
1775 | SectionEntry &Section = Sections[SectionID]; |
1776 | |
1777 | // Extract the addend from the instruction. |
1778 | // We shift up by two since the Value will be down shifted again |
1779 | // when applying the relocation. |
1780 | uint32_t Addend = (Opcode & 0x03ffffff) << 2; |
1781 | |
1782 | Value.Addend += Addend; |
1783 | |
1784 | // Look up for existing stub. |
1785 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
1786 | if (!Inserted) { |
1787 | RelocationEntry RE(SectionID, Offset, RelType, It->second); |
1788 | addRelocationForSection(RE, SectionID); |
1789 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
1790 | } else { |
1791 | // Create a new stub function. |
1792 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
1793 | It->second = Section.getStubOffset(); |
1794 | |
1795 | unsigned AbiVariant = Obj.getPlatformFlags(); |
1796 | |
1797 | uint8_t *StubTargetAddr = createStubFunction( |
1798 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset()), AbiVariant); |
1799 | |
1800 | // Creating Hi and Lo relocations for the filled stub instructions. |
1801 | RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), |
1802 | ELF::R_MIPS_HI16, Value.Addend); |
1803 | RelocationEntry RELo(SectionID, |
1804 | StubTargetAddr - Section.getAddress() + 4, |
1805 | ELF::R_MIPS_LO16, Value.Addend); |
1806 | |
1807 | if (Value.SymbolName) { |
1808 | addRelocationForSymbol(RE: REHi, SymbolName: Value.SymbolName); |
1809 | addRelocationForSymbol(RE: RELo, SymbolName: Value.SymbolName); |
1810 | } else { |
1811 | addRelocationForSection(RE: REHi, SectionID: Value.SectionID); |
1812 | addRelocationForSection(RE: RELo, SectionID: Value.SectionID); |
1813 | } |
1814 | |
1815 | RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); |
1816 | addRelocationForSection(RE, SectionID); |
1817 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
1818 | } |
1819 | } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) { |
1820 | int64_t Addend = (Opcode & 0x0000ffff) << 16; |
1821 | RelocationEntry RE(SectionID, Offset, RelType, Addend); |
1822 | PendingRelocs.push_back(Elt: std::make_pair(x&: Value, y&: RE)); |
1823 | } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) { |
1824 | int64_t Addend = Value.Addend + SignExtend32<16>(X: Opcode & 0x0000ffff); |
1825 | for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) { |
1826 | const RelocationValueRef &MatchingValue = I->first; |
1827 | RelocationEntry &Reloc = I->second; |
1828 | if (MatchingValue == Value && |
1829 | RelType == getMatchingLoRelocation(RelType: Reloc.RelType) && |
1830 | SectionID == Reloc.SectionID) { |
1831 | Reloc.Addend += Addend; |
1832 | if (Value.SymbolName) |
1833 | addRelocationForSymbol(RE: Reloc, SymbolName: Value.SymbolName); |
1834 | else |
1835 | addRelocationForSection(RE: Reloc, SectionID: Value.SectionID); |
1836 | I = PendingRelocs.erase(CI: I); |
1837 | } else |
1838 | ++I; |
1839 | } |
1840 | RelocationEntry RE(SectionID, Offset, RelType, Addend); |
1841 | if (Value.SymbolName) |
1842 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
1843 | else |
1844 | addRelocationForSection(RE, SectionID: Value.SectionID); |
1845 | } else { |
1846 | if (RelType == ELF::R_MIPS_32) |
1847 | Value.Addend += Opcode; |
1848 | else if (RelType == ELF::R_MIPS_PC16) |
1849 | Value.Addend += SignExtend32<18>(X: (Opcode & 0x0000ffff) << 2); |
1850 | else if (RelType == ELF::R_MIPS_PC19_S2) |
1851 | Value.Addend += SignExtend32<21>(X: (Opcode & 0x0007ffff) << 2); |
1852 | else if (RelType == ELF::R_MIPS_PC21_S2) |
1853 | Value.Addend += SignExtend32<23>(X: (Opcode & 0x001fffff) << 2); |
1854 | else if (RelType == ELF::R_MIPS_PC26_S2) |
1855 | Value.Addend += SignExtend32<28>(X: (Opcode & 0x03ffffff) << 2); |
1856 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
1857 | } |
1858 | } else if (IsMipsN32ABI || IsMipsN64ABI) { |
1859 | uint32_t r_type = RelType & 0xff; |
1860 | RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); |
1861 | if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE |
1862 | || r_type == ELF::R_MIPS_GOT_DISP) { |
1863 | auto [I, Inserted] = GOTSymbolOffsets.try_emplace(Key: TargetName); |
1864 | if (Inserted) |
1865 | I->second = allocateGOTEntries(no: 1); |
1866 | RE.SymOffset = I->second; |
1867 | if (Value.SymbolName) |
1868 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
1869 | else |
1870 | addRelocationForSection(RE, SectionID: Value.SectionID); |
1871 | } else if (RelType == ELF::R_MIPS_26) { |
1872 | // This is an Mips branch relocation, need to use a stub function. |
1873 | LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation." ); |
1874 | SectionEntry &Section = Sections[SectionID]; |
1875 | |
1876 | // Look up for existing stub. |
1877 | StubMap::const_iterator i = Stubs.find(x: Value); |
1878 | if (i != Stubs.end()) { |
1879 | RelocationEntry RE(SectionID, Offset, RelType, i->second); |
1880 | addRelocationForSection(RE, SectionID); |
1881 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
1882 | } else { |
1883 | // Create a new stub function. |
1884 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
1885 | Stubs[Value] = Section.getStubOffset(); |
1886 | |
1887 | unsigned AbiVariant = Obj.getPlatformFlags(); |
1888 | |
1889 | uint8_t *StubTargetAddr = createStubFunction( |
1890 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset()), AbiVariant); |
1891 | |
1892 | if (IsMipsN32ABI) { |
1893 | // Creating Hi and Lo relocations for the filled stub instructions. |
1894 | RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), |
1895 | ELF::R_MIPS_HI16, Value.Addend); |
1896 | RelocationEntry RELo(SectionID, |
1897 | StubTargetAddr - Section.getAddress() + 4, |
1898 | ELF::R_MIPS_LO16, Value.Addend); |
1899 | if (Value.SymbolName) { |
1900 | addRelocationForSymbol(RE: REHi, SymbolName: Value.SymbolName); |
1901 | addRelocationForSymbol(RE: RELo, SymbolName: Value.SymbolName); |
1902 | } else { |
1903 | addRelocationForSection(RE: REHi, SectionID: Value.SectionID); |
1904 | addRelocationForSection(RE: RELo, SectionID: Value.SectionID); |
1905 | } |
1906 | } else { |
1907 | // Creating Highest, Higher, Hi and Lo relocations for the filled stub |
1908 | // instructions. |
1909 | RelocationEntry REHighest(SectionID, |
1910 | StubTargetAddr - Section.getAddress(), |
1911 | ELF::R_MIPS_HIGHEST, Value.Addend); |
1912 | RelocationEntry REHigher(SectionID, |
1913 | StubTargetAddr - Section.getAddress() + 4, |
1914 | ELF::R_MIPS_HIGHER, Value.Addend); |
1915 | RelocationEntry REHi(SectionID, |
1916 | StubTargetAddr - Section.getAddress() + 12, |
1917 | ELF::R_MIPS_HI16, Value.Addend); |
1918 | RelocationEntry RELo(SectionID, |
1919 | StubTargetAddr - Section.getAddress() + 20, |
1920 | ELF::R_MIPS_LO16, Value.Addend); |
1921 | if (Value.SymbolName) { |
1922 | addRelocationForSymbol(RE: REHighest, SymbolName: Value.SymbolName); |
1923 | addRelocationForSymbol(RE: REHigher, SymbolName: Value.SymbolName); |
1924 | addRelocationForSymbol(RE: REHi, SymbolName: Value.SymbolName); |
1925 | addRelocationForSymbol(RE: RELo, SymbolName: Value.SymbolName); |
1926 | } else { |
1927 | addRelocationForSection(RE: REHighest, SectionID: Value.SectionID); |
1928 | addRelocationForSection(RE: REHigher, SectionID: Value.SectionID); |
1929 | addRelocationForSection(RE: REHi, SectionID: Value.SectionID); |
1930 | addRelocationForSection(RE: RELo, SectionID: Value.SectionID); |
1931 | } |
1932 | } |
1933 | RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); |
1934 | addRelocationForSection(RE, SectionID); |
1935 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
1936 | } |
1937 | } else { |
1938 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
1939 | } |
1940 | |
1941 | } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { |
1942 | if (RelType == ELF::R_PPC64_REL24) { |
1943 | // Determine ABI variant in use for this object. |
1944 | unsigned AbiVariant = Obj.getPlatformFlags(); |
1945 | AbiVariant &= ELF::EF_PPC64_ABI; |
1946 | // A PPC branch relocation will need a stub function if the target is |
1947 | // an external symbol (either Value.SymbolName is set, or SymType is |
1948 | // Symbol::ST_Unknown) or if the target address is not within the |
1949 | // signed 24-bits branch address. |
1950 | SectionEntry &Section = Sections[SectionID]; |
1951 | uint8_t *Target = Section.getAddressWithOffset(OffsetBytes: Offset); |
1952 | bool RangeOverflow = false; |
1953 | bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown; |
1954 | if (!IsExtern) { |
1955 | if (AbiVariant != 2) { |
1956 | // In the ELFv1 ABI, a function call may point to the .opd entry, |
1957 | // so the final symbol value is calculated based on the relocation |
1958 | // values in the .opd section. |
1959 | if (auto Err = findOPDEntrySection(Obj, LocalSections&: ObjSectionToID, Rel&: Value)) |
1960 | return std::move(Err); |
1961 | } else { |
1962 | // In the ELFv2 ABI, a function symbol may provide a local entry |
1963 | // point, which must be used for direct calls. |
1964 | if (Value.SectionID == SectionID){ |
1965 | uint8_t SymOther = Symbol->getOther(); |
1966 | Value.Addend += ELF::decodePPC64LocalEntryOffset(Other: SymOther); |
1967 | } |
1968 | } |
1969 | uint8_t *RelocTarget = |
1970 | Sections[Value.SectionID].getAddressWithOffset(OffsetBytes: Value.Addend); |
1971 | int64_t delta = static_cast<int64_t>(Target - RelocTarget); |
1972 | // If it is within 26-bits branch range, just set the branch target |
1973 | if (SignExtend64<26>(x: delta) != delta) { |
1974 | RangeOverflow = true; |
1975 | } else if ((AbiVariant != 2) || |
1976 | (AbiVariant == 2 && Value.SectionID == SectionID)) { |
1977 | RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); |
1978 | addRelocationForSection(RE, SectionID: Value.SectionID); |
1979 | } |
1980 | } |
1981 | if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) || |
1982 | RangeOverflow) { |
1983 | // It is an external symbol (either Value.SymbolName is set, or |
1984 | // SymType is SymbolRef::ST_Unknown) or out of range. |
1985 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
1986 | if (!Inserted) { |
1987 | // Symbol function stub already created, just relocate to it |
1988 | resolveRelocation(Section, Offset, |
1989 | Value: Section.getLoadAddressWithOffset(OffsetBytes: It->second), |
1990 | Type: RelType, Addend: 0); |
1991 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
1992 | } else { |
1993 | // Create a new stub function. |
1994 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
1995 | It->second = Section.getStubOffset(); |
1996 | uint8_t *StubTargetAddr = createStubFunction( |
1997 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset()), |
1998 | AbiVariant); |
1999 | RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), |
2000 | ELF::R_PPC64_ADDR64, Value.Addend); |
2001 | |
2002 | // Generates the 64-bits address loads as exemplified in section |
2003 | // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to |
2004 | // apply to the low part of the instructions, so we have to update |
2005 | // the offset according to the target endianness. |
2006 | uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress(); |
2007 | if (!IsTargetLittleEndian) |
2008 | StubRelocOffset += 2; |
2009 | |
2010 | RelocationEntry REhst(SectionID, StubRelocOffset + 0, |
2011 | ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); |
2012 | RelocationEntry REhr(SectionID, StubRelocOffset + 4, |
2013 | ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); |
2014 | RelocationEntry REh(SectionID, StubRelocOffset + 12, |
2015 | ELF::R_PPC64_ADDR16_HI, Value.Addend); |
2016 | RelocationEntry REl(SectionID, StubRelocOffset + 16, |
2017 | ELF::R_PPC64_ADDR16_LO, Value.Addend); |
2018 | |
2019 | if (Value.SymbolName) { |
2020 | addRelocationForSymbol(RE: REhst, SymbolName: Value.SymbolName); |
2021 | addRelocationForSymbol(RE: REhr, SymbolName: Value.SymbolName); |
2022 | addRelocationForSymbol(RE: REh, SymbolName: Value.SymbolName); |
2023 | addRelocationForSymbol(RE: REl, SymbolName: Value.SymbolName); |
2024 | } else { |
2025 | addRelocationForSection(RE: REhst, SectionID: Value.SectionID); |
2026 | addRelocationForSection(RE: REhr, SectionID: Value.SectionID); |
2027 | addRelocationForSection(RE: REh, SectionID: Value.SectionID); |
2028 | addRelocationForSection(RE: REl, SectionID: Value.SectionID); |
2029 | } |
2030 | |
2031 | resolveRelocation( |
2032 | Section, Offset, |
2033 | Value: Section.getLoadAddressWithOffset(OffsetBytes: Section.getStubOffset()), |
2034 | Type: RelType, Addend: 0); |
2035 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
2036 | } |
2037 | if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) { |
2038 | // Restore the TOC for external calls |
2039 | if (AbiVariant == 2) |
2040 | writeInt32BE(Addr: Target + 4, Value: 0xE8410018); // ld r2,24(r1) |
2041 | else |
2042 | writeInt32BE(Addr: Target + 4, Value: 0xE8410028); // ld r2,40(r1) |
2043 | } |
2044 | } |
2045 | } else if (RelType == ELF::R_PPC64_TOC16 || |
2046 | RelType == ELF::R_PPC64_TOC16_DS || |
2047 | RelType == ELF::R_PPC64_TOC16_LO || |
2048 | RelType == ELF::R_PPC64_TOC16_LO_DS || |
2049 | RelType == ELF::R_PPC64_TOC16_HI || |
2050 | RelType == ELF::R_PPC64_TOC16_HA) { |
2051 | // These relocations are supposed to subtract the TOC address from |
2052 | // the final value. This does not fit cleanly into the RuntimeDyld |
2053 | // scheme, since there may be *two* sections involved in determining |
2054 | // the relocation value (the section of the symbol referred to by the |
2055 | // relocation, and the TOC section associated with the current module). |
2056 | // |
2057 | // Fortunately, these relocations are currently only ever generated |
2058 | // referring to symbols that themselves reside in the TOC, which means |
2059 | // that the two sections are actually the same. Thus they cancel out |
2060 | // and we can immediately resolve the relocation right now. |
2061 | switch (RelType) { |
2062 | case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; |
2063 | case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; |
2064 | case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; |
2065 | case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; |
2066 | case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; |
2067 | case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; |
2068 | default: llvm_unreachable("Wrong relocation type." ); |
2069 | } |
2070 | |
2071 | RelocationValueRef TOCValue; |
2072 | if (auto Err = findPPC64TOCSection(Obj, LocalSections&: ObjSectionToID, Rel&: TOCValue)) |
2073 | return std::move(Err); |
2074 | if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) |
2075 | llvm_unreachable("Unsupported TOC relocation." ); |
2076 | Value.Addend -= TOCValue.Addend; |
2077 | resolveRelocation(Section: Sections[SectionID], Offset, Value: Value.Addend, Type: RelType, Addend: 0); |
2078 | } else { |
2079 | // There are two ways to refer to the TOC address directly: either |
2080 | // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are |
2081 | // ignored), or via any relocation that refers to the magic ".TOC." |
2082 | // symbols (in which case the addend is respected). |
2083 | if (RelType == ELF::R_PPC64_TOC) { |
2084 | RelType = ELF::R_PPC64_ADDR64; |
2085 | if (auto Err = findPPC64TOCSection(Obj, LocalSections&: ObjSectionToID, Rel&: Value)) |
2086 | return std::move(Err); |
2087 | } else if (TargetName == ".TOC." ) { |
2088 | if (auto Err = findPPC64TOCSection(Obj, LocalSections&: ObjSectionToID, Rel&: Value)) |
2089 | return std::move(Err); |
2090 | Value.Addend += Addend; |
2091 | } |
2092 | |
2093 | RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); |
2094 | |
2095 | if (Value.SymbolName) |
2096 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
2097 | else |
2098 | addRelocationForSection(RE, SectionID: Value.SectionID); |
2099 | } |
2100 | } else if (Arch == Triple::systemz && |
2101 | (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { |
2102 | // Create function stubs for both PLT and GOT references, regardless of |
2103 | // whether the GOT reference is to data or code. The stub contains the |
2104 | // full address of the symbol, as needed by GOT references, and the |
2105 | // executable part only adds an overhead of 8 bytes. |
2106 | // |
2107 | // We could try to conserve space by allocating the code and data |
2108 | // parts of the stub separately. However, as things stand, we allocate |
2109 | // a stub for every relocation, so using a GOT in JIT code should be |
2110 | // no less space efficient than using an explicit constant pool. |
2111 | LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation." ); |
2112 | SectionEntry &Section = Sections[SectionID]; |
2113 | |
2114 | // Look for an existing stub. |
2115 | StubMap::const_iterator i = Stubs.find(x: Value); |
2116 | uintptr_t StubAddress; |
2117 | if (i != Stubs.end()) { |
2118 | StubAddress = uintptr_t(Section.getAddressWithOffset(OffsetBytes: i->second)); |
2119 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
2120 | } else { |
2121 | // Create a new stub function. |
2122 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
2123 | |
2124 | uintptr_t BaseAddress = uintptr_t(Section.getAddress()); |
2125 | StubAddress = |
2126 | alignTo(Size: BaseAddress + Section.getStubOffset(), A: getStubAlignment()); |
2127 | unsigned StubOffset = StubAddress - BaseAddress; |
2128 | |
2129 | Stubs[Value] = StubOffset; |
2130 | createStubFunction(Addr: (uint8_t *)StubAddress); |
2131 | RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, |
2132 | Value.Offset); |
2133 | if (Value.SymbolName) |
2134 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
2135 | else |
2136 | addRelocationForSection(RE, SectionID: Value.SectionID); |
2137 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
2138 | } |
2139 | |
2140 | if (RelType == ELF::R_390_GOTENT) |
2141 | resolveRelocation(Section, Offset, Value: StubAddress + 8, Type: ELF::R_390_PC32DBL, |
2142 | Addend); |
2143 | else |
2144 | resolveRelocation(Section, Offset, Value: StubAddress, Type: RelType, Addend); |
2145 | } else if (Arch == Triple::x86_64) { |
2146 | if (RelType == ELF::R_X86_64_PLT32) { |
2147 | // The way the PLT relocations normally work is that the linker allocates |
2148 | // the |
2149 | // PLT and this relocation makes a PC-relative call into the PLT. The PLT |
2150 | // entry will then jump to an address provided by the GOT. On first call, |
2151 | // the |
2152 | // GOT address will point back into PLT code that resolves the symbol. After |
2153 | // the first call, the GOT entry points to the actual function. |
2154 | // |
2155 | // For local functions we're ignoring all of that here and just replacing |
2156 | // the PLT32 relocation type with PC32, which will translate the relocation |
2157 | // into a PC-relative call directly to the function. For external symbols we |
2158 | // can't be sure the function will be within 2^32 bytes of the call site, so |
2159 | // we need to create a stub, which calls into the GOT. This case is |
2160 | // equivalent to the usual PLT implementation except that we use the stub |
2161 | // mechanism in RuntimeDyld (which puts stubs at the end of the section) |
2162 | // rather than allocating a PLT section. |
2163 | if (Value.SymbolName && MemMgr.allowStubAllocation()) { |
2164 | // This is a call to an external function. |
2165 | // Look for an existing stub. |
2166 | SectionEntry *Section = &Sections[SectionID]; |
2167 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
2168 | uintptr_t StubAddress; |
2169 | if (!Inserted) { |
2170 | StubAddress = uintptr_t(Section->getAddress()) + It->second; |
2171 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
2172 | } else { |
2173 | // Create a new stub function (equivalent to a PLT entry). |
2174 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
2175 | |
2176 | uintptr_t BaseAddress = uintptr_t(Section->getAddress()); |
2177 | StubAddress = alignTo(Size: BaseAddress + Section->getStubOffset(), |
2178 | A: getStubAlignment()); |
2179 | unsigned StubOffset = StubAddress - BaseAddress; |
2180 | It->second = StubOffset; |
2181 | createStubFunction(Addr: (uint8_t *)StubAddress); |
2182 | |
2183 | // Bump our stub offset counter |
2184 | Section->advanceStubOffset(StubSize: getMaxStubSize()); |
2185 | |
2186 | // Allocate a GOT Entry |
2187 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
2188 | // This potentially creates a new Section which potentially |
2189 | // invalidates the Section pointer, so reload it. |
2190 | Section = &Sections[SectionID]; |
2191 | |
2192 | // The load of the GOT address has an addend of -4 |
2193 | resolveGOTOffsetRelocation(SectionID, Offset: StubOffset + 2, GOTOffset: GOTOffset - 4, |
2194 | Type: ELF::R_X86_64_PC32); |
2195 | |
2196 | // Fill in the value of the symbol we're targeting into the GOT |
2197 | addRelocationForSymbol( |
2198 | RE: computeGOTOffsetRE(GOTOffset, SymbolOffset: 0, Type: ELF::R_X86_64_64), |
2199 | SymbolName: Value.SymbolName); |
2200 | } |
2201 | |
2202 | // Make the target call a call into the stub table. |
2203 | resolveRelocation(Section: *Section, Offset, Value: StubAddress, Type: ELF::R_X86_64_PC32, |
2204 | Addend); |
2205 | } else { |
2206 | Value.Addend += support::ulittle32_t::ref( |
2207 | computePlaceholderAddress(SectionID, Offset)); |
2208 | processSimpleRelocation(SectionID, Offset, RelType: ELF::R_X86_64_PC32, Value); |
2209 | } |
2210 | } else if (RelType == ELF::R_X86_64_GOTPCREL || |
2211 | RelType == ELF::R_X86_64_GOTPCRELX || |
2212 | RelType == ELF::R_X86_64_REX_GOTPCRELX) { |
2213 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
2214 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
2215 | Type: ELF::R_X86_64_PC32); |
2216 | |
2217 | // Fill in the value of the symbol we're targeting into the GOT |
2218 | RelocationEntry RE = |
2219 | computeGOTOffsetRE(GOTOffset, SymbolOffset: Value.Offset, Type: ELF::R_X86_64_64); |
2220 | if (Value.SymbolName) |
2221 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
2222 | else |
2223 | addRelocationForSection(RE, SectionID: Value.SectionID); |
2224 | } else if (RelType == ELF::R_X86_64_GOT64) { |
2225 | // Fill in a 64-bit GOT offset. |
2226 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
2227 | resolveRelocation(Section: Sections[SectionID], Offset, Value: GOTOffset, |
2228 | Type: ELF::R_X86_64_64, Addend: 0); |
2229 | |
2230 | // Fill in the value of the symbol we're targeting into the GOT |
2231 | RelocationEntry RE = |
2232 | computeGOTOffsetRE(GOTOffset, SymbolOffset: Value.Offset, Type: ELF::R_X86_64_64); |
2233 | if (Value.SymbolName) |
2234 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
2235 | else |
2236 | addRelocationForSection(RE, SectionID: Value.SectionID); |
2237 | } else if (RelType == ELF::R_X86_64_GOTPC32) { |
2238 | // Materialize the address of the base of the GOT relative to the PC. |
2239 | // This doesn't create a GOT entry, but it does mean we need a GOT |
2240 | // section. |
2241 | (void)allocateGOTEntries(no: 0); |
2242 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: Addend, Type: ELF::R_X86_64_PC32); |
2243 | } else if (RelType == ELF::R_X86_64_GOTPC64) { |
2244 | (void)allocateGOTEntries(no: 0); |
2245 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: Addend, Type: ELF::R_X86_64_PC64); |
2246 | } else if (RelType == ELF::R_X86_64_GOTOFF64) { |
2247 | // GOTOFF relocations ultimately require a section difference relocation. |
2248 | (void)allocateGOTEntries(no: 0); |
2249 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
2250 | } else if (RelType == ELF::R_X86_64_PC32) { |
2251 | Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); |
2252 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
2253 | } else if (RelType == ELF::R_X86_64_PC64) { |
2254 | Value.Addend += support::ulittle64_t::ref( |
2255 | computePlaceholderAddress(SectionID, Offset)); |
2256 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
2257 | } else if (RelType == ELF::R_X86_64_GOTTPOFF) { |
2258 | processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend); |
2259 | } else if (RelType == ELF::R_X86_64_TLSGD || |
2260 | RelType == ELF::R_X86_64_TLSLD) { |
2261 | // The next relocation must be the relocation for __tls_get_addr. |
2262 | ++RelI; |
2263 | auto &GetAddrRelocation = *RelI; |
2264 | processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend, |
2265 | GetAddrRelocation); |
2266 | } else { |
2267 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
2268 | } |
2269 | } else if (Arch == Triple::riscv32 || Arch == Triple::riscv64) { |
2270 | // *_LO12 relocation receive information about a symbol from the |
2271 | // corresponding *_HI20 relocation, so we have to collect this information |
2272 | // before resolving |
2273 | if (RelType == ELF::R_RISCV_GOT_HI20 || |
2274 | RelType == ELF::R_RISCV_PCREL_HI20 || |
2275 | RelType == ELF::R_RISCV_TPREL_HI20 || |
2276 | RelType == ELF::R_RISCV_TLS_GD_HI20 || |
2277 | RelType == ELF::R_RISCV_TLS_GOT_HI20) { |
2278 | RelocationEntry RE(SectionID, Offset, RelType, Addend); |
2279 | PendingRelocs.push_back(Elt: {Value, RE}); |
2280 | } |
2281 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
2282 | } else { |
2283 | if (Arch == Triple::x86) { |
2284 | Value.Addend += support::ulittle32_t::ref( |
2285 | computePlaceholderAddress(SectionID, Offset)); |
2286 | } |
2287 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
2288 | } |
2289 | return ++RelI; |
2290 | } |
2291 | |
2292 | void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID, |
2293 | uint64_t Offset, |
2294 | RelocationValueRef Value, |
2295 | int64_t Addend) { |
2296 | // Use the approach from "x86-64 Linker Optimizations" from the TLS spec |
2297 | // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec |
2298 | // only mentions one optimization even though there are two different |
2299 | // code sequences for the Initial Exec TLS Model. We match the code to |
2300 | // find out which one was used. |
2301 | |
2302 | // A possible TLS code sequence and its replacement |
2303 | struct CodeSequence { |
2304 | // The expected code sequence |
2305 | ArrayRef<uint8_t> ExpectedCodeSequence; |
2306 | // The negative offset of the GOTTPOFF relocation to the beginning of |
2307 | // the sequence |
2308 | uint64_t TLSSequenceOffset; |
2309 | // The new code sequence |
2310 | ArrayRef<uint8_t> NewCodeSequence; |
2311 | // The offset of the new TPOFF relocation |
2312 | uint64_t TpoffRelocationOffset; |
2313 | }; |
2314 | |
2315 | std::array<CodeSequence, 2> CodeSequences; |
2316 | |
2317 | // Initial Exec Code Model Sequence |
2318 | { |
2319 | static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = { |
2320 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, |
2321 | 0x00, // mov %fs:0, %rax |
2322 | 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip), |
2323 | // %rax |
2324 | }; |
2325 | CodeSequences[0].ExpectedCodeSequence = |
2326 | ArrayRef<uint8_t>(ExpectedCodeSequenceList); |
2327 | CodeSequences[0].TLSSequenceOffset = 12; |
2328 | |
2329 | static const std::initializer_list<uint8_t> NewCodeSequenceList = { |
2330 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax |
2331 | 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax |
2332 | }; |
2333 | CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList); |
2334 | CodeSequences[0].TpoffRelocationOffset = 12; |
2335 | } |
2336 | |
2337 | // Initial Exec Code Model Sequence, II |
2338 | { |
2339 | static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = { |
2340 | 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax |
2341 | 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax |
2342 | }; |
2343 | CodeSequences[1].ExpectedCodeSequence = |
2344 | ArrayRef<uint8_t>(ExpectedCodeSequenceList); |
2345 | CodeSequences[1].TLSSequenceOffset = 3; |
2346 | |
2347 | static const std::initializer_list<uint8_t> NewCodeSequenceList = { |
2348 | 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop |
2349 | 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax |
2350 | }; |
2351 | CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList); |
2352 | CodeSequences[1].TpoffRelocationOffset = 10; |
2353 | } |
2354 | |
2355 | bool Resolved = false; |
2356 | auto &Section = Sections[SectionID]; |
2357 | for (const auto &C : CodeSequences) { |
2358 | assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() && |
2359 | "Old and new code sequences must have the same size" ); |
2360 | |
2361 | if (Offset < C.TLSSequenceOffset || |
2362 | (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) > |
2363 | Section.getSize()) { |
2364 | // This can't be a matching sequence as it doesn't fit in the current |
2365 | // section |
2366 | continue; |
2367 | } |
2368 | |
2369 | auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset; |
2370 | auto *TLSSequence = Section.getAddressWithOffset(OffsetBytes: TLSSequenceStartOffset); |
2371 | if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) != |
2372 | C.ExpectedCodeSequence) { |
2373 | continue; |
2374 | } |
2375 | |
2376 | memcpy(dest: TLSSequence, src: C.NewCodeSequence.data(), n: C.NewCodeSequence.size()); |
2377 | |
2378 | // The original GOTTPOFF relocation has an addend as it is PC relative, |
2379 | // so it needs to be corrected. The TPOFF32 relocation is used as an |
2380 | // absolute value (which is an offset from %fs:0), so remove the addend |
2381 | // again. |
2382 | RelocationEntry RE(SectionID, |
2383 | TLSSequenceStartOffset + C.TpoffRelocationOffset, |
2384 | ELF::R_X86_64_TPOFF32, Value.Addend - Addend); |
2385 | |
2386 | if (Value.SymbolName) |
2387 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
2388 | else |
2389 | addRelocationForSection(RE, SectionID: Value.SectionID); |
2390 | |
2391 | Resolved = true; |
2392 | break; |
2393 | } |
2394 | |
2395 | if (!Resolved) { |
2396 | // The GOTTPOFF relocation was not used in one of the sequences |
2397 | // described in the spec, so we can't optimize it to a TPOFF |
2398 | // relocation. |
2399 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
2400 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
2401 | Type: ELF::R_X86_64_PC32); |
2402 | RelocationEntry RE = |
2403 | computeGOTOffsetRE(GOTOffset, SymbolOffset: Value.Offset, Type: ELF::R_X86_64_TPOFF64); |
2404 | if (Value.SymbolName) |
2405 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
2406 | else |
2407 | addRelocationForSection(RE, SectionID: Value.SectionID); |
2408 | } |
2409 | } |
2410 | |
2411 | void RuntimeDyldELF::processX86_64TLSRelocation( |
2412 | unsigned SectionID, uint64_t Offset, uint64_t RelType, |
2413 | RelocationValueRef Value, int64_t Addend, |
2414 | const RelocationRef &GetAddrRelocation) { |
2415 | // Since we are statically linking and have no additional DSOs, we can resolve |
2416 | // the relocation directly without using __tls_get_addr. |
2417 | // Use the approach from "x86-64 Linker Optimizations" from the TLS spec |
2418 | // to replace it with the Local Exec relocation variant. |
2419 | |
2420 | // Find out whether the code was compiled with the large or small memory |
2421 | // model. For this we look at the next relocation which is the relocation |
2422 | // for the __tls_get_addr function. If it's a 32 bit relocation, it's the |
2423 | // small code model, with a 64 bit relocation it's the large code model. |
2424 | bool IsSmallCodeModel; |
2425 | // Is the relocation for the __tls_get_addr a PC-relative GOT relocation? |
2426 | bool IsGOTPCRel = false; |
2427 | |
2428 | switch (GetAddrRelocation.getType()) { |
2429 | case ELF::R_X86_64_GOTPCREL: |
2430 | case ELF::R_X86_64_REX_GOTPCRELX: |
2431 | case ELF::R_X86_64_GOTPCRELX: |
2432 | IsGOTPCRel = true; |
2433 | [[fallthrough]]; |
2434 | case ELF::R_X86_64_PLT32: |
2435 | IsSmallCodeModel = true; |
2436 | break; |
2437 | case ELF::R_X86_64_PLTOFF64: |
2438 | IsSmallCodeModel = false; |
2439 | break; |
2440 | default: |
2441 | report_fatal_error( |
2442 | reason: "invalid TLS relocations for General/Local Dynamic TLS Model: " |
2443 | "expected PLT or GOT relocation for __tls_get_addr function" ); |
2444 | } |
2445 | |
2446 | // The negative offset to the start of the TLS code sequence relative to |
2447 | // the offset of the TLSGD/TLSLD relocation |
2448 | uint64_t TLSSequenceOffset; |
2449 | // The expected start of the code sequence |
2450 | ArrayRef<uint8_t> ExpectedCodeSequence; |
2451 | // The new TLS code sequence that will replace the existing code |
2452 | ArrayRef<uint8_t> NewCodeSequence; |
2453 | |
2454 | if (RelType == ELF::R_X86_64_TLSGD) { |
2455 | // The offset of the new TPOFF32 relocation (offset starting from the |
2456 | // beginning of the whole TLS sequence) |
2457 | uint64_t TpoffRelocOffset; |
2458 | |
2459 | if (IsSmallCodeModel) { |
2460 | if (!IsGOTPCRel) { |
2461 | static const std::initializer_list<uint8_t> CodeSequence = { |
2462 | 0x66, // data16 (no-op prefix) |
2463 | 0x48, 0x8d, 0x3d, 0x00, 0x00, |
2464 | 0x00, 0x00, // lea <disp32>(%rip), %rdi |
2465 | 0x66, 0x66, // two data16 prefixes |
2466 | 0x48, // rex64 (no-op prefix) |
2467 | 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt |
2468 | }; |
2469 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
2470 | TLSSequenceOffset = 4; |
2471 | } else { |
2472 | // This code sequence is not described in the TLS spec but gcc |
2473 | // generates it sometimes. |
2474 | static const std::initializer_list<uint8_t> CodeSequence = { |
2475 | 0x66, // data16 (no-op prefix) |
2476 | 0x48, 0x8d, 0x3d, 0x00, 0x00, |
2477 | 0x00, 0x00, // lea <disp32>(%rip), %rdi |
2478 | 0x66, // data16 prefix (no-op prefix) |
2479 | 0x48, // rex64 (no-op prefix) |
2480 | 0xff, 0x15, 0x00, 0x00, 0x00, |
2481 | 0x00 // call *__tls_get_addr@gotpcrel(%rip) |
2482 | }; |
2483 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
2484 | TLSSequenceOffset = 4; |
2485 | } |
2486 | |
2487 | // The replacement code for the small code model. It's the same for |
2488 | // both sequences. |
2489 | static const std::initializer_list<uint8_t> SmallSequence = { |
2490 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, |
2491 | 0x00, // mov %fs:0, %rax |
2492 | 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), |
2493 | // %rax |
2494 | }; |
2495 | NewCodeSequence = ArrayRef<uint8_t>(SmallSequence); |
2496 | TpoffRelocOffset = 12; |
2497 | } else { |
2498 | static const std::initializer_list<uint8_t> CodeSequence = { |
2499 | 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip), |
2500 | // %rdi |
2501 | 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
2502 | 0x00, // movabs $__tls_get_addr@pltoff, %rax |
2503 | 0x48, 0x01, 0xd8, // add %rbx, %rax |
2504 | 0xff, 0xd0 // call *%rax |
2505 | }; |
2506 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
2507 | TLSSequenceOffset = 3; |
2508 | |
2509 | // The replacement code for the large code model |
2510 | static const std::initializer_list<uint8_t> LargeSequence = { |
2511 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, |
2512 | 0x00, // mov %fs:0, %rax |
2513 | 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax), |
2514 | // %rax |
2515 | 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1) |
2516 | }; |
2517 | NewCodeSequence = ArrayRef<uint8_t>(LargeSequence); |
2518 | TpoffRelocOffset = 12; |
2519 | } |
2520 | |
2521 | // The TLSGD/TLSLD relocations are PC-relative, so they have an addend. |
2522 | // The new TPOFF32 relocations is used as an absolute offset from |
2523 | // %fs:0, so remove the TLSGD/TLSLD addend again. |
2524 | RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset, |
2525 | ELF::R_X86_64_TPOFF32, Value.Addend - Addend); |
2526 | if (Value.SymbolName) |
2527 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
2528 | else |
2529 | addRelocationForSection(RE, SectionID: Value.SectionID); |
2530 | } else if (RelType == ELF::R_X86_64_TLSLD) { |
2531 | if (IsSmallCodeModel) { |
2532 | if (!IsGOTPCRel) { |
2533 | static const std::initializer_list<uint8_t> CodeSequence = { |
2534 | 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi |
2535 | 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt |
2536 | }; |
2537 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
2538 | TLSSequenceOffset = 3; |
2539 | |
2540 | // The replacement code for the small code model |
2541 | static const std::initializer_list<uint8_t> SmallSequence = { |
2542 | 0x66, 0x66, 0x66, // three data16 prefixes (no-op) |
2543 | 0x64, 0x48, 0x8b, 0x04, 0x25, |
2544 | 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax |
2545 | }; |
2546 | NewCodeSequence = ArrayRef<uint8_t>(SmallSequence); |
2547 | } else { |
2548 | // This code sequence is not described in the TLS spec but gcc |
2549 | // generates it sometimes. |
2550 | static const std::initializer_list<uint8_t> CodeSequence = { |
2551 | 0x48, 0x8d, 0x3d, 0x00, |
2552 | 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi |
2553 | 0xff, 0x15, 0x00, 0x00, |
2554 | 0x00, 0x00 // call |
2555 | // *__tls_get_addr@gotpcrel(%rip) |
2556 | }; |
2557 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
2558 | TLSSequenceOffset = 3; |
2559 | |
2560 | // The replacement is code is just like above but it needs to be |
2561 | // one byte longer. |
2562 | static const std::initializer_list<uint8_t> SmallSequence = { |
2563 | 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop |
2564 | 0x64, 0x48, 0x8b, 0x04, 0x25, |
2565 | 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax |
2566 | }; |
2567 | NewCodeSequence = ArrayRef<uint8_t>(SmallSequence); |
2568 | } |
2569 | } else { |
2570 | // This is the same sequence as for the TLSGD sequence with the large |
2571 | // memory model above |
2572 | static const std::initializer_list<uint8_t> CodeSequence = { |
2573 | 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip), |
2574 | // %rdi |
2575 | 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
2576 | 0x48, // movabs $__tls_get_addr@pltoff, %rax |
2577 | 0x01, 0xd8, // add %rbx, %rax |
2578 | 0xff, 0xd0 // call *%rax |
2579 | }; |
2580 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
2581 | TLSSequenceOffset = 3; |
2582 | |
2583 | // The replacement code for the large code model |
2584 | static const std::initializer_list<uint8_t> LargeSequence = { |
2585 | 0x66, 0x66, 0x66, // three data16 prefixes (no-op) |
2586 | 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, |
2587 | 0x00, // 10 byte nop |
2588 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax |
2589 | }; |
2590 | NewCodeSequence = ArrayRef<uint8_t>(LargeSequence); |
2591 | } |
2592 | } else { |
2593 | llvm_unreachable("both TLS relocations handled above" ); |
2594 | } |
2595 | |
2596 | assert(ExpectedCodeSequence.size() == NewCodeSequence.size() && |
2597 | "Old and new code sequences must have the same size" ); |
2598 | |
2599 | auto &Section = Sections[SectionID]; |
2600 | if (Offset < TLSSequenceOffset || |
2601 | (Offset - TLSSequenceOffset + NewCodeSequence.size()) > |
2602 | Section.getSize()) { |
2603 | report_fatal_error(reason: "unexpected end of section in TLS sequence" ); |
2604 | } |
2605 | |
2606 | auto *TLSSequence = Section.getAddressWithOffset(OffsetBytes: Offset - TLSSequenceOffset); |
2607 | if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) != |
2608 | ExpectedCodeSequence) { |
2609 | report_fatal_error( |
2610 | reason: "invalid TLS sequence for Global/Local Dynamic TLS Model" ); |
2611 | } |
2612 | |
2613 | memcpy(dest: TLSSequence, src: NewCodeSequence.data(), n: NewCodeSequence.size()); |
2614 | } |
2615 | |
2616 | size_t RuntimeDyldELF::getGOTEntrySize() { |
2617 | // We don't use the GOT in all of these cases, but it's essentially free |
2618 | // to put them all here. |
2619 | size_t Result = 0; |
2620 | switch (Arch) { |
2621 | case Triple::x86_64: |
2622 | case Triple::aarch64: |
2623 | case Triple::aarch64_be: |
2624 | case Triple::loongarch64: |
2625 | case Triple::ppc64: |
2626 | case Triple::ppc64le: |
2627 | case Triple::systemz: |
2628 | Result = sizeof(uint64_t); |
2629 | break; |
2630 | case Triple::x86: |
2631 | case Triple::arm: |
2632 | case Triple::thumb: |
2633 | Result = sizeof(uint32_t); |
2634 | break; |
2635 | case Triple::mips: |
2636 | case Triple::mipsel: |
2637 | case Triple::mips64: |
2638 | case Triple::mips64el: |
2639 | if (IsMipsO32ABI || IsMipsN32ABI) |
2640 | Result = sizeof(uint32_t); |
2641 | else if (IsMipsN64ABI) |
2642 | Result = sizeof(uint64_t); |
2643 | else |
2644 | llvm_unreachable("Mips ABI not handled" ); |
2645 | break; |
2646 | default: |
2647 | llvm_unreachable("Unsupported CPU type!" ); |
2648 | } |
2649 | return Result; |
2650 | } |
2651 | |
2652 | uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) { |
2653 | if (GOTSectionID == 0) { |
2654 | GOTSectionID = Sections.size(); |
2655 | // Reserve a section id. We'll allocate the section later |
2656 | // once we know the total size |
2657 | Sections.push_back(x: SectionEntry(".got" , nullptr, 0, 0, 0)); |
2658 | } |
2659 | uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize(); |
2660 | CurrentGOTIndex += no; |
2661 | return StartOffset; |
2662 | } |
2663 | |
2664 | uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value, |
2665 | unsigned GOTRelType) { |
2666 | auto E = GOTOffsetMap.insert(x: {Value, 0}); |
2667 | if (E.second) { |
2668 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
2669 | |
2670 | // Create relocation for newly created GOT entry |
2671 | RelocationEntry RE = |
2672 | computeGOTOffsetRE(GOTOffset, SymbolOffset: Value.Offset, Type: GOTRelType); |
2673 | if (Value.SymbolName) |
2674 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
2675 | else |
2676 | addRelocationForSection(RE, SectionID: Value.SectionID); |
2677 | |
2678 | E.first->second = GOTOffset; |
2679 | } |
2680 | |
2681 | return E.first->second; |
2682 | } |
2683 | |
2684 | void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, |
2685 | uint64_t Offset, |
2686 | uint64_t GOTOffset, |
2687 | uint32_t Type) { |
2688 | // Fill in the relative address of the GOT Entry into the stub |
2689 | RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset); |
2690 | addRelocationForSection(RE: GOTRE, SectionID: GOTSectionID); |
2691 | } |
2692 | |
2693 | RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset, |
2694 | uint64_t SymbolOffset, |
2695 | uint32_t Type) { |
2696 | return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset); |
2697 | } |
2698 | |
2699 | void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) { |
2700 | // This should never return an error as `processNewSymbol` wouldn't have been |
2701 | // called if getFlags() returned an error before. |
2702 | auto ObjSymbolFlags = cantFail(ValOrErr: ObjSymbol.getFlags()); |
2703 | |
2704 | if (ObjSymbolFlags & SymbolRef::SF_Indirect) { |
2705 | if (IFuncStubSectionID == 0) { |
2706 | // Create a dummy section for the ifunc stubs. It will be actually |
2707 | // allocated in finalizeLoad() below. |
2708 | IFuncStubSectionID = Sections.size(); |
2709 | Sections.push_back( |
2710 | x: SectionEntry(".text.__llvm_IFuncStubs" , nullptr, 0, 0, 0)); |
2711 | // First 64B are reserverd for the IFunc resolver |
2712 | IFuncStubOffset = 64; |
2713 | } |
2714 | |
2715 | IFuncStubs.push_back(Elt: IFuncStub{.StubOffset: IFuncStubOffset, .OriginalSymbol: Symbol}); |
2716 | // Modify the symbol so that it points to the ifunc stub instead of to the |
2717 | // resolver function. |
2718 | Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset, |
2719 | Symbol.getFlags()); |
2720 | IFuncStubOffset += getMaxIFuncStubSize(); |
2721 | } |
2722 | } |
2723 | |
2724 | Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, |
2725 | ObjSectionToIDMap &SectionMap) { |
2726 | if (IsMipsO32ABI) |
2727 | if (!PendingRelocs.empty()) |
2728 | return make_error<RuntimeDyldError>(Args: "Can't find matching LO16 reloc" ); |
2729 | |
2730 | // Create the IFunc stubs if necessary. This must be done before processing |
2731 | // the GOT entries, as the IFunc stubs may create some. |
2732 | if (IFuncStubSectionID != 0) { |
2733 | uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection( |
2734 | Size: IFuncStubOffset, Alignment: 1, SectionID: IFuncStubSectionID, SectionName: ".text.__llvm_IFuncStubs" ); |
2735 | if (!IFuncStubsAddr) |
2736 | return make_error<RuntimeDyldError>( |
2737 | Args: "Unable to allocate memory for IFunc stubs!" ); |
2738 | Sections[IFuncStubSectionID] = |
2739 | SectionEntry(".text.__llvm_IFuncStubs" , IFuncStubsAddr, IFuncStubOffset, |
2740 | IFuncStubOffset, 0); |
2741 | |
2742 | createIFuncResolver(Addr: IFuncStubsAddr); |
2743 | |
2744 | LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: " |
2745 | << IFuncStubSectionID << " Addr: " |
2746 | << Sections[IFuncStubSectionID].getAddress() << '\n'); |
2747 | for (auto &IFuncStub : IFuncStubs) { |
2748 | auto &Symbol = IFuncStub.OriginalSymbol; |
2749 | LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID() |
2750 | << " Offset: " << format("%p" , Symbol.getOffset()) |
2751 | << " IFuncStubOffset: " |
2752 | << format("%p\n" , IFuncStub.StubOffset)); |
2753 | createIFuncStub(IFuncStubSectionID, IFuncResolverOffset: 0, IFuncStubOffset: IFuncStub.StubOffset, |
2754 | IFuncSectionID: Symbol.getSectionID(), IFuncOffset: Symbol.getOffset()); |
2755 | } |
2756 | |
2757 | IFuncStubSectionID = 0; |
2758 | IFuncStubOffset = 0; |
2759 | IFuncStubs.clear(); |
2760 | } |
2761 | |
2762 | // If necessary, allocate the global offset table |
2763 | if (GOTSectionID != 0) { |
2764 | // Allocate memory for the section |
2765 | size_t TotalSize = CurrentGOTIndex * getGOTEntrySize(); |
2766 | uint8_t *Addr = MemMgr.allocateDataSection(Size: TotalSize, Alignment: getGOTEntrySize(), |
2767 | SectionID: GOTSectionID, SectionName: ".got" , IsReadOnly: false); |
2768 | if (!Addr) |
2769 | return make_error<RuntimeDyldError>(Args: "Unable to allocate memory for GOT!" ); |
2770 | |
2771 | Sections[GOTSectionID] = |
2772 | SectionEntry(".got" , Addr, TotalSize, TotalSize, 0); |
2773 | |
2774 | // For now, initialize all GOT entries to zero. We'll fill them in as |
2775 | // needed when GOT-based relocations are applied. |
2776 | memset(s: Addr, c: 0, n: TotalSize); |
2777 | if (IsMipsN32ABI || IsMipsN64ABI) { |
2778 | // To correctly resolve Mips GOT relocations, we need a mapping from |
2779 | // object's sections to GOTs. |
2780 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
2781 | SI != SE; ++SI) { |
2782 | if (SI->relocation_begin() != SI->relocation_end()) { |
2783 | Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); |
2784 | if (!RelSecOrErr) |
2785 | return make_error<RuntimeDyldError>( |
2786 | Args: toString(E: RelSecOrErr.takeError())); |
2787 | |
2788 | section_iterator RelocatedSection = *RelSecOrErr; |
2789 | ObjSectionToIDMap::iterator i = SectionMap.find(x: *RelocatedSection); |
2790 | assert(i != SectionMap.end()); |
2791 | SectionToGOTMap[i->second] = GOTSectionID; |
2792 | } |
2793 | } |
2794 | GOTSymbolOffsets.clear(); |
2795 | } |
2796 | } |
2797 | |
2798 | // Look for and record the EH frame section. |
2799 | ObjSectionToIDMap::iterator i, e; |
2800 | for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { |
2801 | const SectionRef &Section = i->first; |
2802 | |
2803 | StringRef Name; |
2804 | Expected<StringRef> NameOrErr = Section.getName(); |
2805 | if (NameOrErr) |
2806 | Name = *NameOrErr; |
2807 | else |
2808 | consumeError(Err: NameOrErr.takeError()); |
2809 | |
2810 | if (Name == ".eh_frame" ) { |
2811 | UnregisteredEHFrameSections.push_back(Elt: i->second); |
2812 | break; |
2813 | } |
2814 | } |
2815 | |
2816 | GOTOffsetMap.clear(); |
2817 | GOTSectionID = 0; |
2818 | CurrentGOTIndex = 0; |
2819 | |
2820 | return Error::success(); |
2821 | } |
2822 | |
2823 | bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { |
2824 | return Obj.isELF(); |
2825 | } |
2826 | |
2827 | void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const { |
2828 | if (Arch == Triple::x86_64) { |
2829 | // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8 |
2830 | // (see createIFuncStub() for details) |
2831 | // The following code first saves all registers that contain the original |
2832 | // function arguments as those registers are not saved by the resolver |
2833 | // function. %r11 is saved as well so that the GOT2 entry can be updated |
2834 | // afterwards. Then it calls the actual IFunc resolver function whose |
2835 | // address is stored in GOT2. After the resolver function returns, all |
2836 | // saved registers are restored and the return value is written to GOT1. |
2837 | // Finally, jump to the now resolved function. |
2838 | // clang-format off |
2839 | const uint8_t StubCode[] = { |
2840 | 0x57, // push %rdi |
2841 | 0x56, // push %rsi |
2842 | 0x52, // push %rdx |
2843 | 0x51, // push %rcx |
2844 | 0x41, 0x50, // push %r8 |
2845 | 0x41, 0x51, // push %r9 |
2846 | 0x41, 0x53, // push %r11 |
2847 | 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11) |
2848 | 0x41, 0x5b, // pop %r11 |
2849 | 0x41, 0x59, // pop %r9 |
2850 | 0x41, 0x58, // pop %r8 |
2851 | 0x59, // pop %rcx |
2852 | 0x5a, // pop %rdx |
2853 | 0x5e, // pop %rsi |
2854 | 0x5f, // pop %rdi |
2855 | 0x49, 0x89, 0x03, // mov %rax,(%r11) |
2856 | 0xff, 0xe0 // jmp *%rax |
2857 | }; |
2858 | // clang-format on |
2859 | static_assert(sizeof(StubCode) <= 64, |
2860 | "maximum size of the IFunc resolver is 64B" ); |
2861 | memcpy(dest: Addr, src: StubCode, n: sizeof(StubCode)); |
2862 | } else { |
2863 | report_fatal_error( |
2864 | reason: "IFunc resolver is not supported for target architecture" ); |
2865 | } |
2866 | } |
2867 | |
2868 | void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID, |
2869 | uint64_t IFuncResolverOffset, |
2870 | uint64_t IFuncStubOffset, |
2871 | unsigned IFuncSectionID, |
2872 | uint64_t IFuncOffset) { |
2873 | auto &IFuncStubSection = Sections[IFuncStubSectionID]; |
2874 | auto *Addr = IFuncStubSection.getAddressWithOffset(OffsetBytes: IFuncStubOffset); |
2875 | |
2876 | if (Arch == Triple::x86_64) { |
2877 | // The first instruction loads a PC-relative address into %r11 which is a |
2878 | // GOT entry for this stub. This initially contains the address to the |
2879 | // IFunc resolver. We can use %r11 here as it's caller saved but not used |
2880 | // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for |
2881 | // code in the PLT. The IFunc resolver will use %r11 to update the GOT |
2882 | // entry. |
2883 | // |
2884 | // The next instruction just jumps to the address contained in the GOT |
2885 | // entry. As mentioned above, we do this two-step jump by first setting |
2886 | // %r11 so that the IFunc resolver has access to it. |
2887 | // |
2888 | // The IFunc resolver of course also needs to know the actual address of |
2889 | // the actual IFunc resolver function. This will be stored in a GOT entry |
2890 | // right next to the first one for this stub. So, the IFunc resolver will |
2891 | // be able to call it with %r11+8. |
2892 | // |
2893 | // In total, two adjacent GOT entries (+relocation) and one additional |
2894 | // relocation are required: |
2895 | // GOT1: Address of the IFunc resolver. |
2896 | // GOT2: Address of the IFunc resolver function. |
2897 | // IFuncStubOffset+3: 32-bit PC-relative address of GOT1. |
2898 | uint64_t GOT1 = allocateGOTEntries(no: 2); |
2899 | uint64_t GOT2 = GOT1 + getGOTEntrySize(); |
2900 | |
2901 | RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64, |
2902 | IFuncResolverOffset, {}); |
2903 | addRelocationForSection(RE: RE1, SectionID: IFuncStubSectionID); |
2904 | RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {}); |
2905 | addRelocationForSection(RE: RE2, SectionID: IFuncSectionID); |
2906 | |
2907 | const uint8_t StubCode[] = { |
2908 | 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11 |
2909 | 0x41, 0xff, 0x23 // jmpq *(%r11) |
2910 | }; |
2911 | assert(sizeof(StubCode) <= getMaxIFuncStubSize() && |
2912 | "IFunc stub size must not exceed getMaxIFuncStubSize()" ); |
2913 | memcpy(dest: Addr, src: StubCode, n: sizeof(StubCode)); |
2914 | |
2915 | // The PC-relative value starts 4 bytes from the end of the leaq |
2916 | // instruction, so the addend is -4. |
2917 | resolveGOTOffsetRelocation(SectionID: IFuncStubSectionID, Offset: IFuncStubOffset + 3, |
2918 | GOTOffset: GOT1 - 4, Type: ELF::R_X86_64_PC32); |
2919 | } else { |
2920 | report_fatal_error(reason: "IFunc stub is not supported for target architecture" ); |
2921 | } |
2922 | } |
2923 | |
2924 | unsigned RuntimeDyldELF::getMaxIFuncStubSize() const { |
2925 | if (Arch == Triple::x86_64) { |
2926 | return 10; |
2927 | } |
2928 | return 0; |
2929 | } |
2930 | |
2931 | bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const { |
2932 | unsigned RelTy = R.getType(); |
2933 | if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) |
2934 | return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE || |
2935 | RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC; |
2936 | |
2937 | if (Arch == Triple::loongarch64) |
2938 | return RelTy == ELF::R_LARCH_GOT_PC_HI20 || |
2939 | RelTy == ELF::R_LARCH_GOT_PC_LO12; |
2940 | |
2941 | if (Arch == Triple::x86_64) |
2942 | return RelTy == ELF::R_X86_64_GOTPCREL || |
2943 | RelTy == ELF::R_X86_64_GOTPCRELX || |
2944 | RelTy == ELF::R_X86_64_GOT64 || |
2945 | RelTy == ELF::R_X86_64_REX_GOTPCRELX; |
2946 | return false; |
2947 | } |
2948 | |
2949 | bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const { |
2950 | if (Arch != Triple::x86_64) |
2951 | return true; // Conservative answer |
2952 | |
2953 | switch (R.getType()) { |
2954 | default: |
2955 | return true; // Conservative answer |
2956 | |
2957 | |
2958 | case ELF::R_X86_64_GOTPCREL: |
2959 | case ELF::R_X86_64_GOTPCRELX: |
2960 | case ELF::R_X86_64_REX_GOTPCRELX: |
2961 | case ELF::R_X86_64_GOTPC64: |
2962 | case ELF::R_X86_64_GOT64: |
2963 | case ELF::R_X86_64_GOTOFF64: |
2964 | case ELF::R_X86_64_PC32: |
2965 | case ELF::R_X86_64_PC64: |
2966 | case ELF::R_X86_64_64: |
2967 | // We know that these reloation types won't need a stub function. This list |
2968 | // can be extended as needed. |
2969 | return false; |
2970 | } |
2971 | } |
2972 | |
2973 | } // namespace llvm |
2974 | |