| 1 | //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Implementation of ELF support for the MC-JIT runtime dynamic linker. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "RuntimeDyldELF.h" |
| 14 | #include "Targets/RuntimeDyldELFMips.h" |
| 15 | #include "llvm/ADT/StringRef.h" |
| 16 | #include "llvm/BinaryFormat/ELF.h" |
| 17 | #include "llvm/ExecutionEngine/Orc/SymbolStringPool.h" |
| 18 | #include "llvm/Object/ELFObjectFile.h" |
| 19 | #include "llvm/Object/ObjectFile.h" |
| 20 | #include "llvm/Support/Endian.h" |
| 21 | #include "llvm/Support/MemoryBuffer.h" |
| 22 | #include "llvm/TargetParser/Triple.h" |
| 23 | |
| 24 | using namespace llvm; |
| 25 | using namespace llvm::object; |
| 26 | using namespace llvm::support::endian; |
| 27 | |
| 28 | #define DEBUG_TYPE "dyld" |
| 29 | |
| 30 | static void or32le(void *P, int32_t V) { write32le(P, V: read32le(P) | V); } |
| 31 | |
| 32 | static void or32AArch64Imm(void *L, uint64_t Imm) { |
| 33 | or32le(P: L, V: (Imm & 0xFFF) << 10); |
| 34 | } |
| 35 | |
| 36 | template <class T> static void write(bool isBE, void *P, T V) { |
| 37 | isBE ? write<T, llvm::endianness::big>(P, V) |
| 38 | : write<T, llvm::endianness::little>(P, V); |
| 39 | } |
| 40 | |
| 41 | static void write32AArch64Addr(void *L, uint64_t Imm) { |
| 42 | uint32_t ImmLo = (Imm & 0x3) << 29; |
| 43 | uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; |
| 44 | uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); |
| 45 | write32le(P: L, V: (read32le(P: L) & ~Mask) | ImmLo | ImmHi); |
| 46 | } |
| 47 | |
| 48 | // Return the bits [Start, End] from Val shifted Start bits. |
| 49 | // For instance, getBits(0xF0, 4, 8) returns 0xF. |
| 50 | static uint64_t getBits(uint64_t Val, int Start, int End) { |
| 51 | uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1; |
| 52 | return (Val >> Start) & Mask; |
| 53 | } |
| 54 | |
| 55 | namespace { |
| 56 | |
| 57 | template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> { |
| 58 | LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| 59 | |
| 60 | typedef typename ELFT::uint addr_type; |
| 61 | |
| 62 | DyldELFObject(ELFObjectFile<ELFT> &&Obj); |
| 63 | |
| 64 | public: |
| 65 | static Expected<std::unique_ptr<DyldELFObject>> |
| 66 | create(MemoryBufferRef Wrapper); |
| 67 | |
| 68 | void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); |
| 69 | |
| 70 | void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); |
| 71 | |
| 72 | // Methods for type inquiry through isa, cast and dyn_cast |
| 73 | static bool classof(const Binary *v) { |
| 74 | return (isa<ELFObjectFile<ELFT>>(v) && |
| 75 | classof(cast<ELFObjectFile<ELFT>>(v))); |
| 76 | } |
| 77 | static bool classof(const ELFObjectFile<ELFT> *v) { |
| 78 | return v->isDyldType(); |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | |
| 83 | |
| 84 | // The MemoryBuffer passed into this constructor is just a wrapper around the |
| 85 | // actual memory. Ultimately, the Binary parent class will take ownership of |
| 86 | // this MemoryBuffer object but not the underlying memory. |
| 87 | template <class ELFT> |
| 88 | DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj) |
| 89 | : ELFObjectFile<ELFT>(std::move(Obj)) { |
| 90 | this->isDyldELFObject = true; |
| 91 | } |
| 92 | |
| 93 | template <class ELFT> |
| 94 | Expected<std::unique_ptr<DyldELFObject<ELFT>>> |
| 95 | DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) { |
| 96 | auto Obj = ELFObjectFile<ELFT>::create(Wrapper); |
| 97 | if (auto E = Obj.takeError()) |
| 98 | return std::move(E); |
| 99 | std::unique_ptr<DyldELFObject<ELFT>> Ret( |
| 100 | new DyldELFObject<ELFT>(std::move(*Obj))); |
| 101 | return std::move(Ret); |
| 102 | } |
| 103 | |
| 104 | template <class ELFT> |
| 105 | void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec, |
| 106 | uint64_t Addr) { |
| 107 | DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); |
| 108 | Elf_Shdr *shdr = |
| 109 | const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); |
| 110 | |
| 111 | // This assumes the address passed in matches the target address bitness |
| 112 | // The template-based type cast handles everything else. |
| 113 | shdr->sh_addr = static_cast<addr_type>(Addr); |
| 114 | } |
| 115 | |
| 116 | template <class ELFT> |
| 117 | void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef, |
| 118 | uint64_t Addr) { |
| 119 | |
| 120 | Elf_Sym *sym = const_cast<Elf_Sym *>( |
| 121 | ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); |
| 122 | |
| 123 | // This assumes the address passed in matches the target address bitness |
| 124 | // The template-based type cast handles everything else. |
| 125 | sym->st_value = static_cast<addr_type>(Addr); |
| 126 | } |
| 127 | |
| 128 | class LoadedELFObjectInfo final |
| 129 | : public LoadedObjectInfoHelper<LoadedELFObjectInfo, |
| 130 | RuntimeDyld::LoadedObjectInfo> { |
| 131 | public: |
| 132 | LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap) |
| 133 | : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {} |
| 134 | |
| 135 | OwningBinary<ObjectFile> |
| 136 | getObjectForDebug(const ObjectFile &Obj) const override; |
| 137 | }; |
| 138 | |
| 139 | template <typename ELFT> |
| 140 | static Expected<std::unique_ptr<DyldELFObject<ELFT>>> |
| 141 | createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject, |
| 142 | const LoadedELFObjectInfo &L) { |
| 143 | typedef typename ELFT::Shdr Elf_Shdr; |
| 144 | typedef typename ELFT::uint addr_type; |
| 145 | |
| 146 | Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr = |
| 147 | DyldELFObject<ELFT>::create(Buffer); |
| 148 | if (Error E = ObjOrErr.takeError()) |
| 149 | return std::move(E); |
| 150 | |
| 151 | std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr); |
| 152 | |
| 153 | // Iterate over all sections in the object. |
| 154 | auto SI = SourceObject.section_begin(); |
| 155 | for (const auto &Sec : Obj->sections()) { |
| 156 | Expected<StringRef> NameOrErr = Sec.getName(); |
| 157 | if (!NameOrErr) { |
| 158 | consumeError(Err: NameOrErr.takeError()); |
| 159 | continue; |
| 160 | } |
| 161 | |
| 162 | if (*NameOrErr != "" ) { |
| 163 | DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); |
| 164 | Elf_Shdr *shdr = const_cast<Elf_Shdr *>( |
| 165 | reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); |
| 166 | |
| 167 | if (uint64_t SecLoadAddr = L.getSectionLoadAddress(Sec: *SI)) { |
| 168 | // This assumes that the address passed in matches the target address |
| 169 | // bitness. The template-based type cast handles everything else. |
| 170 | shdr->sh_addr = static_cast<addr_type>(SecLoadAddr); |
| 171 | } |
| 172 | } |
| 173 | ++SI; |
| 174 | } |
| 175 | |
| 176 | return std::move(Obj); |
| 177 | } |
| 178 | |
| 179 | static OwningBinary<ObjectFile> |
| 180 | createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) { |
| 181 | assert(Obj.isELF() && "Not an ELF object file." ); |
| 182 | |
| 183 | std::unique_ptr<MemoryBuffer> Buffer = |
| 184 | MemoryBuffer::getMemBufferCopy(InputData: Obj.getData(), BufferName: Obj.getFileName()); |
| 185 | |
| 186 | Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr); |
| 187 | handleAllErrors(E: DebugObj.takeError()); |
| 188 | if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) |
| 189 | DebugObj = |
| 190 | createRTDyldELFObject<ELF32LE>(Buffer: Buffer->getMemBufferRef(), SourceObject: Obj, L); |
| 191 | else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) |
| 192 | DebugObj = |
| 193 | createRTDyldELFObject<ELF32BE>(Buffer: Buffer->getMemBufferRef(), SourceObject: Obj, L); |
| 194 | else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) |
| 195 | DebugObj = |
| 196 | createRTDyldELFObject<ELF64BE>(Buffer: Buffer->getMemBufferRef(), SourceObject: Obj, L); |
| 197 | else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) |
| 198 | DebugObj = |
| 199 | createRTDyldELFObject<ELF64LE>(Buffer: Buffer->getMemBufferRef(), SourceObject: Obj, L); |
| 200 | else |
| 201 | llvm_unreachable("Unexpected ELF format" ); |
| 202 | |
| 203 | handleAllErrors(E: DebugObj.takeError()); |
| 204 | return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer)); |
| 205 | } |
| 206 | |
| 207 | OwningBinary<ObjectFile> |
| 208 | LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { |
| 209 | return createELFDebugObject(Obj, L: *this); |
| 210 | } |
| 211 | |
| 212 | } // anonymous namespace |
| 213 | |
| 214 | namespace llvm { |
| 215 | |
| 216 | RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, |
| 217 | JITSymbolResolver &Resolver) |
| 218 | : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {} |
| 219 | RuntimeDyldELF::~RuntimeDyldELF() = default; |
| 220 | |
| 221 | void RuntimeDyldELF::registerEHFrames() { |
| 222 | for (SID EHFrameSID : UnregisteredEHFrameSections) { |
| 223 | uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress(); |
| 224 | uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress(); |
| 225 | size_t EHFrameSize = Sections[EHFrameSID].getSize(); |
| 226 | MemMgr.registerEHFrames(Addr: EHFrameAddr, LoadAddr: EHFrameLoadAddr, Size: EHFrameSize); |
| 227 | } |
| 228 | UnregisteredEHFrameSections.clear(); |
| 229 | } |
| 230 | |
| 231 | std::unique_ptr<RuntimeDyldELF> |
| 232 | llvm::RuntimeDyldELF::create(Triple::ArchType Arch, |
| 233 | RuntimeDyld::MemoryManager &MemMgr, |
| 234 | JITSymbolResolver &Resolver) { |
| 235 | switch (Arch) { |
| 236 | default: |
| 237 | return std::make_unique<RuntimeDyldELF>(args&: MemMgr, args&: Resolver); |
| 238 | case Triple::mips: |
| 239 | case Triple::mipsel: |
| 240 | case Triple::mips64: |
| 241 | case Triple::mips64el: |
| 242 | return std::make_unique<RuntimeDyldELFMips>(args&: MemMgr, args&: Resolver); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo> |
| 247 | RuntimeDyldELF::loadObject(const object::ObjectFile &O) { |
| 248 | if (auto ObjSectionToIDOrErr = loadObjectImpl(Obj: O)) |
| 249 | return std::make_unique<LoadedELFObjectInfo>(args&: *this, args&: *ObjSectionToIDOrErr); |
| 250 | else { |
| 251 | HasError = true; |
| 252 | raw_string_ostream ErrStream(ErrorStr); |
| 253 | logAllUnhandledErrors(E: ObjSectionToIDOrErr.takeError(), OS&: ErrStream); |
| 254 | return nullptr; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, |
| 259 | uint64_t Offset, uint64_t Value, |
| 260 | uint32_t Type, int64_t Addend, |
| 261 | uint64_t SymOffset) { |
| 262 | switch (Type) { |
| 263 | default: |
| 264 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
| 265 | break; |
| 266 | case ELF::R_X86_64_NONE: |
| 267 | break; |
| 268 | case ELF::R_X86_64_8: { |
| 269 | Value += Addend; |
| 270 | assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN); |
| 271 | uint8_t TruncatedAddr = (Value & 0xFF); |
| 272 | *Section.getAddressWithOffset(OffsetBytes: Offset) = TruncatedAddr; |
| 273 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , TruncatedAddr) << " at " |
| 274 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
| 275 | break; |
| 276 | } |
| 277 | case ELF::R_X86_64_16: { |
| 278 | Value += Addend; |
| 279 | assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN); |
| 280 | uint16_t TruncatedAddr = (Value & 0xFFFF); |
| 281 | support::ulittle16_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 282 | TruncatedAddr; |
| 283 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , TruncatedAddr) << " at " |
| 284 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
| 285 | break; |
| 286 | } |
| 287 | case ELF::R_X86_64_64: { |
| 288 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 289 | Value + Addend; |
| 290 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , (Value + Addend)) << " at " |
| 291 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
| 292 | break; |
| 293 | } |
| 294 | case ELF::R_X86_64_32: |
| 295 | case ELF::R_X86_64_32S: { |
| 296 | Value += Addend; |
| 297 | assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || |
| 298 | (Type == ELF::R_X86_64_32S && |
| 299 | ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); |
| 300 | uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); |
| 301 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 302 | TruncatedAddr; |
| 303 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , TruncatedAddr) << " at " |
| 304 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
| 305 | break; |
| 306 | } |
| 307 | case ELF::R_X86_64_PC8: { |
| 308 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 309 | int64_t RealOffset = Value + Addend - FinalAddress; |
| 310 | assert(isInt<8>(RealOffset)); |
| 311 | int8_t TruncOffset = (RealOffset & 0xFF); |
| 312 | Section.getAddress()[Offset] = TruncOffset; |
| 313 | break; |
| 314 | } |
| 315 | case ELF::R_X86_64_PC32: { |
| 316 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 317 | int64_t RealOffset = Value + Addend - FinalAddress; |
| 318 | assert(isInt<32>(RealOffset)); |
| 319 | int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); |
| 320 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 321 | TruncOffset; |
| 322 | break; |
| 323 | } |
| 324 | case ELF::R_X86_64_PC64: { |
| 325 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 326 | int64_t RealOffset = Value + Addend - FinalAddress; |
| 327 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 328 | RealOffset; |
| 329 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , RealOffset) << " at " |
| 330 | << format("%p\n" , FinalAddress)); |
| 331 | break; |
| 332 | } |
| 333 | case ELF::R_X86_64_GOTOFF64: { |
| 334 | // Compute Value - GOTBase. |
| 335 | uint64_t GOTBase = 0; |
| 336 | for (const auto &Section : Sections) { |
| 337 | if (Section.getName() == ".got" ) { |
| 338 | GOTBase = Section.getLoadAddressWithOffset(OffsetBytes: 0); |
| 339 | break; |
| 340 | } |
| 341 | } |
| 342 | assert(GOTBase != 0 && "missing GOT" ); |
| 343 | int64_t GOTOffset = Value - GOTBase + Addend; |
| 344 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = GOTOffset; |
| 345 | break; |
| 346 | } |
| 347 | case ELF::R_X86_64_DTPMOD64: { |
| 348 | // We only have one DSO, so the module id is always 1. |
| 349 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = 1; |
| 350 | break; |
| 351 | } |
| 352 | case ELF::R_X86_64_DTPOFF64: |
| 353 | case ELF::R_X86_64_TPOFF64: { |
| 354 | // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the |
| 355 | // offset in the *initial* TLS block. Since we are statically linking, all |
| 356 | // TLS blocks already exist in the initial block, so resolve both |
| 357 | // relocations equally. |
| 358 | support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 359 | Value + Addend; |
| 360 | break; |
| 361 | } |
| 362 | case ELF::R_X86_64_DTPOFF32: |
| 363 | case ELF::R_X86_64_TPOFF32: { |
| 364 | // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can |
| 365 | // be resolved equally. |
| 366 | int64_t RealValue = Value + Addend; |
| 367 | assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX); |
| 368 | int32_t TruncValue = RealValue; |
| 369 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 370 | TruncValue; |
| 371 | break; |
| 372 | } |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, |
| 377 | uint64_t Offset, uint32_t Value, |
| 378 | uint32_t Type, int32_t Addend) { |
| 379 | switch (Type) { |
| 380 | case ELF::R_386_32: { |
| 381 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 382 | Value + Addend; |
| 383 | break; |
| 384 | } |
| 385 | // Handle R_386_PLT32 like R_386_PC32 since it should be able to |
| 386 | // reach any 32 bit address. |
| 387 | case ELF::R_386_PLT32: |
| 388 | case ELF::R_386_PC32: { |
| 389 | uint32_t FinalAddress = |
| 390 | Section.getLoadAddressWithOffset(OffsetBytes: Offset) & 0xFFFFFFFF; |
| 391 | uint32_t RealOffset = Value + Addend - FinalAddress; |
| 392 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 393 | RealOffset; |
| 394 | break; |
| 395 | } |
| 396 | default: |
| 397 | // There are other relocation types, but it appears these are the |
| 398 | // only ones currently used by the LLVM ELF object writer |
| 399 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
| 400 | break; |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, |
| 405 | uint64_t Offset, uint64_t Value, |
| 406 | uint32_t Type, int64_t Addend) { |
| 407 | uint32_t *TargetPtr = |
| 408 | reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 409 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 410 | // Data should use target endian. Code should always use little endian. |
| 411 | bool isBE = Arch == Triple::aarch64_be; |
| 412 | |
| 413 | LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" |
| 414 | << format("%llx" , Section.getAddressWithOffset(Offset)) |
| 415 | << " FinalAddress: 0x" << format("%llx" , FinalAddress) |
| 416 | << " Value: 0x" << format("%llx" , Value) << " Type: 0x" |
| 417 | << format("%x" , Type) << " Addend: 0x" |
| 418 | << format("%llx" , Addend) << "\n" ); |
| 419 | |
| 420 | switch (Type) { |
| 421 | default: |
| 422 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
| 423 | break; |
| 424 | case ELF::R_AARCH64_NONE: |
| 425 | break; |
| 426 | case ELF::R_AARCH64_ABS16: { |
| 427 | uint64_t Result = Value + Addend; |
| 428 | assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) || |
| 429 | (Result >> 16) == 0); |
| 430 | write(isBE, P: TargetPtr, V: static_cast<uint16_t>(Result & 0xffffU)); |
| 431 | break; |
| 432 | } |
| 433 | case ELF::R_AARCH64_ABS32: { |
| 434 | uint64_t Result = Value + Addend; |
| 435 | assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) || |
| 436 | (Result >> 32) == 0); |
| 437 | write(isBE, P: TargetPtr, V: static_cast<uint32_t>(Result & 0xffffffffU)); |
| 438 | break; |
| 439 | } |
| 440 | case ELF::R_AARCH64_ABS64: |
| 441 | write(isBE, P: TargetPtr, V: Value + Addend); |
| 442 | break; |
| 443 | case ELF::R_AARCH64_PLT32: { |
| 444 | uint64_t Result = Value + Addend - FinalAddress; |
| 445 | assert(static_cast<int64_t>(Result) >= INT32_MIN && |
| 446 | static_cast<int64_t>(Result) <= INT32_MAX); |
| 447 | write(isBE, P: TargetPtr, V: static_cast<uint32_t>(Result)); |
| 448 | break; |
| 449 | } |
| 450 | case ELF::R_AARCH64_PREL16: { |
| 451 | uint64_t Result = Value + Addend - FinalAddress; |
| 452 | assert(static_cast<int64_t>(Result) >= INT16_MIN && |
| 453 | static_cast<int64_t>(Result) <= UINT16_MAX); |
| 454 | write(isBE, P: TargetPtr, V: static_cast<uint16_t>(Result & 0xffffU)); |
| 455 | break; |
| 456 | } |
| 457 | case ELF::R_AARCH64_PREL32: { |
| 458 | uint64_t Result = Value + Addend - FinalAddress; |
| 459 | assert(static_cast<int64_t>(Result) >= INT32_MIN && |
| 460 | static_cast<int64_t>(Result) <= UINT32_MAX); |
| 461 | write(isBE, P: TargetPtr, V: static_cast<uint32_t>(Result & 0xffffffffU)); |
| 462 | break; |
| 463 | } |
| 464 | case ELF::R_AARCH64_PREL64: |
| 465 | write(isBE, P: TargetPtr, V: Value + Addend - FinalAddress); |
| 466 | break; |
| 467 | case ELF::R_AARCH64_CONDBR19: { |
| 468 | uint64_t BranchImm = Value + Addend - FinalAddress; |
| 469 | |
| 470 | assert(isInt<21>(BranchImm)); |
| 471 | *TargetPtr &= 0xff00001fU; |
| 472 | // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ |
| 473 | or32le(P: TargetPtr, V: (BranchImm & 0x001FFFFC) << 3); |
| 474 | break; |
| 475 | } |
| 476 | case ELF::R_AARCH64_TSTBR14: { |
| 477 | uint64_t BranchImm = Value + Addend - FinalAddress; |
| 478 | |
| 479 | assert(isInt<16>(BranchImm)); |
| 480 | |
| 481 | uint32_t RawInstr = *(support::little32_t *)TargetPtr; |
| 482 | *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU; |
| 483 | |
| 484 | // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ |
| 485 | or32le(P: TargetPtr, V: (BranchImm & 0x0000FFFC) << 3); |
| 486 | break; |
| 487 | } |
| 488 | case ELF::R_AARCH64_CALL26: // fallthrough |
| 489 | case ELF::R_AARCH64_JUMP26: { |
| 490 | // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the |
| 491 | // calculation. |
| 492 | uint64_t BranchImm = Value + Addend - FinalAddress; |
| 493 | |
| 494 | // "Check that -2^27 <= result < 2^27". |
| 495 | assert(isInt<28>(BranchImm)); |
| 496 | or32le(P: TargetPtr, V: (BranchImm & 0x0FFFFFFC) >> 2); |
| 497 | break; |
| 498 | } |
| 499 | case ELF::R_AARCH64_MOVW_UABS_G3: |
| 500 | or32le(P: TargetPtr, V: ((Value + Addend) & 0xFFFF000000000000) >> 43); |
| 501 | break; |
| 502 | case ELF::R_AARCH64_MOVW_UABS_G2_NC: |
| 503 | or32le(P: TargetPtr, V: ((Value + Addend) & 0xFFFF00000000) >> 27); |
| 504 | break; |
| 505 | case ELF::R_AARCH64_MOVW_UABS_G1_NC: |
| 506 | or32le(P: TargetPtr, V: ((Value + Addend) & 0xFFFF0000) >> 11); |
| 507 | break; |
| 508 | case ELF::R_AARCH64_MOVW_UABS_G0_NC: |
| 509 | or32le(P: TargetPtr, V: ((Value + Addend) & 0xFFFF) << 5); |
| 510 | break; |
| 511 | case ELF::R_AARCH64_ADR_PREL_PG_HI21: { |
| 512 | // Operation: Page(S+A) - Page(P) |
| 513 | uint64_t Result = |
| 514 | ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); |
| 515 | |
| 516 | // Check that -2^32 <= X < 2^32 |
| 517 | assert(isInt<33>(Result) && "overflow check failed for relocation" ); |
| 518 | |
| 519 | // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken |
| 520 | // from bits 32:12 of X. |
| 521 | write32AArch64Addr(L: TargetPtr, Imm: Result >> 12); |
| 522 | break; |
| 523 | } |
| 524 | case ELF::R_AARCH64_ADD_ABS_LO12_NC: |
| 525 | // Operation: S + A |
| 526 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
| 527 | // from bits 11:0 of X |
| 528 | or32AArch64Imm(L: TargetPtr, Imm: Value + Addend); |
| 529 | break; |
| 530 | case ELF::R_AARCH64_LDST8_ABS_LO12_NC: |
| 531 | // Operation: S + A |
| 532 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
| 533 | // from bits 11:0 of X |
| 534 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 0, End: 11)); |
| 535 | break; |
| 536 | case ELF::R_AARCH64_LDST16_ABS_LO12_NC: |
| 537 | // Operation: S + A |
| 538 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
| 539 | // from bits 11:1 of X |
| 540 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 1, End: 11)); |
| 541 | break; |
| 542 | case ELF::R_AARCH64_LDST32_ABS_LO12_NC: |
| 543 | // Operation: S + A |
| 544 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
| 545 | // from bits 11:2 of X |
| 546 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 2, End: 11)); |
| 547 | break; |
| 548 | case ELF::R_AARCH64_LDST64_ABS_LO12_NC: |
| 549 | // Operation: S + A |
| 550 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
| 551 | // from bits 11:3 of X |
| 552 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 3, End: 11)); |
| 553 | break; |
| 554 | case ELF::R_AARCH64_LDST128_ABS_LO12_NC: |
| 555 | // Operation: S + A |
| 556 | // Immediate goes in bits 21:10 of LD/ST instruction, taken |
| 557 | // from bits 11:4 of X |
| 558 | or32AArch64Imm(L: TargetPtr, Imm: getBits(Val: Value + Addend, Start: 4, End: 11)); |
| 559 | break; |
| 560 | case ELF::R_AARCH64_LD_PREL_LO19: { |
| 561 | // Operation: S + A - P |
| 562 | uint64_t Result = Value + Addend - FinalAddress; |
| 563 | |
| 564 | // "Check that -2^20 <= result < 2^20". |
| 565 | assert(isInt<21>(Result)); |
| 566 | |
| 567 | *TargetPtr &= 0xff00001fU; |
| 568 | // Immediate goes in bits 23:5 of LD imm instruction, taken |
| 569 | // from bits 20:2 of X |
| 570 | *TargetPtr |= ((Result & 0xffc) << (5 - 2)); |
| 571 | break; |
| 572 | } |
| 573 | case ELF::R_AARCH64_ADR_PREL_LO21: { |
| 574 | // Operation: S + A - P |
| 575 | uint64_t Result = Value + Addend - FinalAddress; |
| 576 | |
| 577 | // "Check that -2^20 <= result < 2^20". |
| 578 | assert(isInt<21>(Result)); |
| 579 | |
| 580 | *TargetPtr &= 0x9f00001fU; |
| 581 | // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken |
| 582 | // from bits 20:0 of X |
| 583 | *TargetPtr |= ((Result & 0xffc) << (5 - 2)); |
| 584 | *TargetPtr |= (Result & 0x3) << 29; |
| 585 | break; |
| 586 | } |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, |
| 591 | uint64_t Offset, uint32_t Value, |
| 592 | uint32_t Type, int32_t Addend) { |
| 593 | // TODO: Add Thumb relocations. |
| 594 | uint32_t *TargetPtr = |
| 595 | reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 596 | uint32_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset) & 0xFFFFFFFF; |
| 597 | Value += Addend; |
| 598 | |
| 599 | LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " |
| 600 | << Section.getAddressWithOffset(Offset) |
| 601 | << " FinalAddress: " << format("%p" , FinalAddress) |
| 602 | << " Value: " << format("%x" , Value) |
| 603 | << " Type: " << format("%x" , Type) |
| 604 | << " Addend: " << format("%x" , Addend) << "\n" ); |
| 605 | |
| 606 | switch (Type) { |
| 607 | default: |
| 608 | llvm_unreachable("Not implemented relocation type!" ); |
| 609 | |
| 610 | case ELF::R_ARM_NONE: |
| 611 | break; |
| 612 | // Write a 31bit signed offset |
| 613 | case ELF::R_ARM_PREL31: |
| 614 | support::ulittle32_t::ref{TargetPtr} = |
| 615 | (support::ulittle32_t::ref{TargetPtr} & 0x80000000) | |
| 616 | ((Value - FinalAddress) & ~0x80000000); |
| 617 | break; |
| 618 | case ELF::R_ARM_TARGET1: |
| 619 | case ELF::R_ARM_ABS32: |
| 620 | support::ulittle32_t::ref{TargetPtr} = Value; |
| 621 | break; |
| 622 | // Write first 16 bit of 32 bit value to the mov instruction. |
| 623 | // Last 4 bit should be shifted. |
| 624 | case ELF::R_ARM_MOVW_ABS_NC: |
| 625 | case ELF::R_ARM_MOVT_ABS: |
| 626 | if (Type == ELF::R_ARM_MOVW_ABS_NC) |
| 627 | Value = Value & 0xFFFF; |
| 628 | else if (Type == ELF::R_ARM_MOVT_ABS) |
| 629 | Value = (Value >> 16) & 0xFFFF; |
| 630 | support::ulittle32_t::ref{TargetPtr} = |
| 631 | (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) | |
| 632 | (((Value >> 12) & 0xF) << 16); |
| 633 | break; |
| 634 | // Write 24 bit relative value to the branch instruction. |
| 635 | case ELF::R_ARM_PC24: // Fall through. |
| 636 | case ELF::R_ARM_CALL: // Fall through. |
| 637 | case ELF::R_ARM_JUMP24: |
| 638 | int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); |
| 639 | RelValue = (RelValue & 0x03FFFFFC) >> 2; |
| 640 | assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE); |
| 641 | support::ulittle32_t::ref{TargetPtr} = |
| 642 | (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue; |
| 643 | break; |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | bool RuntimeDyldELF::resolveLoongArch64ShortBranch( |
| 648 | unsigned SectionID, relocation_iterator RelI, |
| 649 | const RelocationValueRef &Value) { |
| 650 | uint64_t Address; |
| 651 | if (Value.SymbolName) { |
| 652 | auto Loc = GlobalSymbolTable.find(Key: Value.SymbolName); |
| 653 | // Don't create direct branch for external symbols. |
| 654 | if (Loc == GlobalSymbolTable.end()) |
| 655 | return false; |
| 656 | const auto &SymInfo = Loc->second; |
| 657 | Address = |
| 658 | uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset( |
| 659 | OffsetBytes: SymInfo.getOffset())); |
| 660 | } else { |
| 661 | Address = uint64_t(Sections[Value.SectionID].getLoadAddress()); |
| 662 | } |
| 663 | uint64_t Offset = RelI->getOffset(); |
| 664 | uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(OffsetBytes: Offset); |
| 665 | uint64_t Delta = Address + Value.Addend - SourceAddress; |
| 666 | // Normal call |
| 667 | if (RelI->getType() == ELF::R_LARCH_B26) { |
| 668 | if (!isInt<28>(x: Delta)) |
| 669 | return false; |
| 670 | resolveRelocation(Section: Sections[SectionID], Offset, Value: Address, Type: RelI->getType(), |
| 671 | Addend: Value.Addend); |
| 672 | return true; |
| 673 | } |
| 674 | // Medium call: R_LARCH_CALL36 |
| 675 | // Range: [-128G - 0x20000, +128G - 0x20000) |
| 676 | if (((int64_t)Delta + 0x20000) != llvm::SignExtend64(X: Delta + 0x20000, B: 38)) |
| 677 | return false; |
| 678 | resolveRelocation(Section: Sections[SectionID], Offset, Value: Address, Type: RelI->getType(), |
| 679 | Addend: Value.Addend); |
| 680 | return true; |
| 681 | } |
| 682 | |
| 683 | void RuntimeDyldELF::resolveLoongArch64Branch(unsigned SectionID, |
| 684 | const RelocationValueRef &Value, |
| 685 | relocation_iterator RelI, |
| 686 | StubMap &Stubs) { |
| 687 | LLVM_DEBUG(dbgs() << "\t\tThis is an LoongArch64 branch relocation.\n" ); |
| 688 | |
| 689 | if (resolveLoongArch64ShortBranch(SectionID, RelI, Value)) |
| 690 | return; |
| 691 | |
| 692 | SectionEntry &Section = Sections[SectionID]; |
| 693 | uint64_t Offset = RelI->getOffset(); |
| 694 | unsigned RelType = RelI->getType(); |
| 695 | // Look for an existing stub. |
| 696 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
| 697 | if (!Inserted) { |
| 698 | resolveRelocation(Section, Offset, |
| 699 | Value: (uint64_t)Section.getAddressWithOffset(OffsetBytes: It->second), |
| 700 | Type: RelType, Addend: 0); |
| 701 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
| 702 | return; |
| 703 | } |
| 704 | // Create a new stub function. |
| 705 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
| 706 | It->second = Section.getStubOffset(); |
| 707 | uint8_t *StubTargetAddr = |
| 708 | createStubFunction(Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset())); |
| 709 | RelocationEntry LU12I_W(SectionID, StubTargetAddr - Section.getAddress(), |
| 710 | ELF::R_LARCH_ABS_HI20, Value.Addend); |
| 711 | RelocationEntry ORI(SectionID, StubTargetAddr - Section.getAddress() + 4, |
| 712 | ELF::R_LARCH_ABS_LO12, Value.Addend); |
| 713 | RelocationEntry LU32I_D(SectionID, StubTargetAddr - Section.getAddress() + 8, |
| 714 | ELF::R_LARCH_ABS64_LO20, Value.Addend); |
| 715 | RelocationEntry LU52I_D(SectionID, StubTargetAddr - Section.getAddress() + 12, |
| 716 | ELF::R_LARCH_ABS64_HI12, Value.Addend); |
| 717 | if (Value.SymbolName) { |
| 718 | addRelocationForSymbol(RE: LU12I_W, SymbolName: Value.SymbolName); |
| 719 | addRelocationForSymbol(RE: ORI, SymbolName: Value.SymbolName); |
| 720 | addRelocationForSymbol(RE: LU32I_D, SymbolName: Value.SymbolName); |
| 721 | addRelocationForSymbol(RE: LU52I_D, SymbolName: Value.SymbolName); |
| 722 | } else { |
| 723 | addRelocationForSection(RE: LU12I_W, SectionID: Value.SectionID); |
| 724 | addRelocationForSection(RE: ORI, SectionID: Value.SectionID); |
| 725 | addRelocationForSection(RE: LU32I_D, SectionID: Value.SectionID); |
| 726 | |
| 727 | addRelocationForSection(RE: LU52I_D, SectionID: Value.SectionID); |
| 728 | } |
| 729 | resolveRelocation(Section, Offset, |
| 730 | Value: reinterpret_cast<uint64_t>( |
| 731 | Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset())), |
| 732 | Type: RelType, Addend: 0); |
| 733 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
| 734 | } |
| 735 | |
| 736 | // Returns extract bits Val[Hi:Lo]. |
| 737 | static inline uint32_t (uint64_t Val, uint32_t Hi, uint32_t Lo) { |
| 738 | return Hi == 63 ? Val >> Lo : (Val & (((1ULL << (Hi + 1)) - 1))) >> Lo; |
| 739 | } |
| 740 | |
| 741 | void RuntimeDyldELF::resolveLoongArch64Relocation(const SectionEntry &Section, |
| 742 | uint64_t Offset, |
| 743 | uint64_t Value, uint32_t Type, |
| 744 | int64_t Addend) { |
| 745 | auto *TargetPtr = Section.getAddressWithOffset(OffsetBytes: Offset); |
| 746 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 747 | |
| 748 | LLVM_DEBUG(dbgs() << "resolveLoongArch64Relocation, LocalAddress: 0x" |
| 749 | << format("%llx" , Section.getAddressWithOffset(Offset)) |
| 750 | << " FinalAddress: 0x" << format("%llx" , FinalAddress) |
| 751 | << " Value: 0x" << format("%llx" , Value) << " Type: 0x" |
| 752 | << format("%x" , Type) << " Addend: 0x" |
| 753 | << format("%llx" , Addend) << "\n" ); |
| 754 | |
| 755 | switch (Type) { |
| 756 | default: |
| 757 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
| 758 | break; |
| 759 | case ELF::R_LARCH_32: |
| 760 | support::ulittle32_t::ref{TargetPtr} = |
| 761 | static_cast<uint32_t>(Value + Addend); |
| 762 | break; |
| 763 | case ELF::R_LARCH_64: |
| 764 | support::ulittle64_t::ref{TargetPtr} = Value + Addend; |
| 765 | break; |
| 766 | case ELF::R_LARCH_32_PCREL: |
| 767 | support::ulittle32_t::ref{TargetPtr} = |
| 768 | static_cast<uint32_t>(Value + Addend - FinalAddress); |
| 769 | break; |
| 770 | case ELF::R_LARCH_B26: { |
| 771 | uint64_t B26 = (Value + Addend - FinalAddress) >> 2; |
| 772 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
| 773 | uint32_t Imm15_0 = extractBits(Val: B26, /*Hi=*/15, /*Lo=*/0) << 10; |
| 774 | uint32_t Imm25_16 = extractBits(Val: B26, /*Hi=*/25, /*Lo=*/16); |
| 775 | Instr = (Instr & 0xfc000000) | Imm15_0 | Imm25_16; |
| 776 | break; |
| 777 | } |
| 778 | case ELF::R_LARCH_CALL36: { |
| 779 | uint64_t Call36 = (Value + Addend - FinalAddress) >> 2; |
| 780 | auto Pcaddu18i = support::ulittle32_t::ref(TargetPtr); |
| 781 | uint32_t Imm35_16 = |
| 782 | extractBits(Val: (Call36 + (1UL << 15)), /*Hi=*/35, /*Lo=*/16) << 5; |
| 783 | Pcaddu18i = (Pcaddu18i & 0xfe00001f) | Imm35_16; |
| 784 | auto Jirl = support::ulittle32_t::ref(TargetPtr + 4); |
| 785 | uint32_t Imm15_0 = extractBits(Val: Call36, /*Hi=*/15, /*Lo=*/0) << 10; |
| 786 | Jirl = (Jirl & 0xfc0003ff) | Imm15_0; |
| 787 | break; |
| 788 | } |
| 789 | case ELF::R_LARCH_GOT_PC_HI20: |
| 790 | case ELF::R_LARCH_PCALA_HI20: { |
| 791 | uint64_t Target = Value + Addend; |
| 792 | uint64_t TargetPage = |
| 793 | (Target + (Target & 0x800)) & ~static_cast<uint64_t>(0xfff); |
| 794 | uint64_t PCPage = FinalAddress & ~static_cast<uint64_t>(0xfff); |
| 795 | int64_t PageDelta = TargetPage - PCPage; |
| 796 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
| 797 | uint32_t Imm31_12 = extractBits(Val: PageDelta, /*Hi=*/31, /*Lo=*/12) << 5; |
| 798 | Instr = (Instr & 0xfe00001f) | Imm31_12; |
| 799 | break; |
| 800 | } |
| 801 | case ELF::R_LARCH_GOT_PC_LO12: |
| 802 | case ELF::R_LARCH_PCALA_LO12: { |
| 803 | uint64_t TargetOffset = (Value + Addend) & 0xfff; |
| 804 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
| 805 | uint32_t Imm11_0 = TargetOffset << 10; |
| 806 | Instr = (Instr & 0xffc003ff) | Imm11_0; |
| 807 | break; |
| 808 | } |
| 809 | case ELF::R_LARCH_ABS_HI20: { |
| 810 | uint64_t Target = Value + Addend; |
| 811 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
| 812 | uint32_t Imm31_12 = extractBits(Val: Target, /*Hi=*/31, /*Lo=*/12) << 5; |
| 813 | Instr = (Instr & 0xfe00001f) | Imm31_12; |
| 814 | break; |
| 815 | } |
| 816 | case ELF::R_LARCH_ABS_LO12: { |
| 817 | uint64_t Target = Value + Addend; |
| 818 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
| 819 | uint32_t Imm11_0 = extractBits(Val: Target, /*Hi=*/11, /*Lo=*/0) << 10; |
| 820 | Instr = (Instr & 0xffc003ff) | Imm11_0; |
| 821 | break; |
| 822 | } |
| 823 | case ELF::R_LARCH_ABS64_LO20: { |
| 824 | uint64_t Target = Value + Addend; |
| 825 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
| 826 | uint32_t Imm51_32 = extractBits(Val: Target, /*Hi=*/51, /*Lo=*/32) << 5; |
| 827 | Instr = (Instr & 0xfe00001f) | Imm51_32; |
| 828 | break; |
| 829 | } |
| 830 | case ELF::R_LARCH_ABS64_HI12: { |
| 831 | uint64_t Target = Value + Addend; |
| 832 | auto Instr = support::ulittle32_t::ref(TargetPtr); |
| 833 | uint32_t Imm63_52 = extractBits(Val: Target, /*Hi=*/63, /*Lo=*/52) << 10; |
| 834 | Instr = (Instr & 0xffc003ff) | Imm63_52; |
| 835 | break; |
| 836 | } |
| 837 | case ELF::R_LARCH_ADD32: |
| 838 | support::ulittle32_t::ref{TargetPtr} = |
| 839 | (support::ulittle32_t::ref{TargetPtr} + |
| 840 | static_cast<uint32_t>(Value + Addend)); |
| 841 | break; |
| 842 | case ELF::R_LARCH_SUB32: |
| 843 | support::ulittle32_t::ref{TargetPtr} = |
| 844 | (support::ulittle32_t::ref{TargetPtr} - |
| 845 | static_cast<uint32_t>(Value + Addend)); |
| 846 | break; |
| 847 | case ELF::R_LARCH_ADD64: |
| 848 | support::ulittle64_t::ref{TargetPtr} = |
| 849 | (support::ulittle64_t::ref{TargetPtr} + Value + Addend); |
| 850 | break; |
| 851 | case ELF::R_LARCH_SUB64: |
| 852 | support::ulittle64_t::ref{TargetPtr} = |
| 853 | (support::ulittle64_t::ref{TargetPtr} - Value - Addend); |
| 854 | break; |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) { |
| 859 | if (Arch == Triple::UnknownArch || |
| 860 | Triple::getArchTypePrefix(Kind: Arch) != "mips" ) { |
| 861 | IsMipsO32ABI = false; |
| 862 | IsMipsN32ABI = false; |
| 863 | IsMipsN64ABI = false; |
| 864 | return; |
| 865 | } |
| 866 | if (auto *E = dyn_cast<ELFObjectFileBase>(Val: &Obj)) { |
| 867 | unsigned AbiVariant = E->getPlatformFlags(); |
| 868 | IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32; |
| 869 | IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2; |
| 870 | } |
| 871 | IsMipsN64ABI = Obj.getFileFormatName() == "elf64-mips" ; |
| 872 | } |
| 873 | |
| 874 | // Return the .TOC. section and offset. |
| 875 | Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj, |
| 876 | ObjSectionToIDMap &LocalSections, |
| 877 | RelocationValueRef &Rel) { |
| 878 | // Set a default SectionID in case we do not find a TOC section below. |
| 879 | // This may happen for references to TOC base base (sym@toc, .odp |
| 880 | // relocation) without a .toc directive. In this case just use the |
| 881 | // first section (which is usually the .odp) since the code won't |
| 882 | // reference the .toc base directly. |
| 883 | Rel.SymbolName = nullptr; |
| 884 | Rel.SectionID = 0; |
| 885 | |
| 886 | // The TOC consists of sections .got, .toc, .tocbss, .plt in that |
| 887 | // order. The TOC starts where the first of these sections starts. |
| 888 | for (auto &Section : Obj.sections()) { |
| 889 | Expected<StringRef> NameOrErr = Section.getName(); |
| 890 | if (!NameOrErr) |
| 891 | return NameOrErr.takeError(); |
| 892 | StringRef SectionName = *NameOrErr; |
| 893 | |
| 894 | if (SectionName == ".got" |
| 895 | || SectionName == ".toc" |
| 896 | || SectionName == ".tocbss" |
| 897 | || SectionName == ".plt" ) { |
| 898 | if (auto SectionIDOrErr = |
| 899 | findOrEmitSection(Obj, Section, IsCode: false, LocalSections)) |
| 900 | Rel.SectionID = *SectionIDOrErr; |
| 901 | else |
| 902 | return SectionIDOrErr.takeError(); |
| 903 | break; |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 |
| 908 | // thus permitting a full 64 Kbytes segment. |
| 909 | Rel.Addend = 0x8000; |
| 910 | |
| 911 | return Error::success(); |
| 912 | } |
| 913 | |
| 914 | // Returns the sections and offset associated with the ODP entry referenced |
| 915 | // by Symbol. |
| 916 | Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj, |
| 917 | ObjSectionToIDMap &LocalSections, |
| 918 | RelocationValueRef &Rel) { |
| 919 | // Get the ELF symbol value (st_value) to compare with Relocation offset in |
| 920 | // .opd entries |
| 921 | for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); |
| 922 | si != se; ++si) { |
| 923 | |
| 924 | Expected<section_iterator> RelSecOrErr = si->getRelocatedSection(); |
| 925 | if (!RelSecOrErr) |
| 926 | report_fatal_error(reason: Twine(toString(E: RelSecOrErr.takeError()))); |
| 927 | |
| 928 | section_iterator RelSecI = *RelSecOrErr; |
| 929 | if (RelSecI == Obj.section_end()) |
| 930 | continue; |
| 931 | |
| 932 | Expected<StringRef> NameOrErr = RelSecI->getName(); |
| 933 | if (!NameOrErr) |
| 934 | return NameOrErr.takeError(); |
| 935 | StringRef RelSectionName = *NameOrErr; |
| 936 | |
| 937 | if (RelSectionName != ".opd" ) |
| 938 | continue; |
| 939 | |
| 940 | for (elf_relocation_iterator i = si->relocation_begin(), |
| 941 | e = si->relocation_end(); |
| 942 | i != e;) { |
| 943 | // The R_PPC64_ADDR64 relocation indicates the first field |
| 944 | // of a .opd entry |
| 945 | uint64_t TypeFunc = i->getType(); |
| 946 | if (TypeFunc != ELF::R_PPC64_ADDR64) { |
| 947 | ++i; |
| 948 | continue; |
| 949 | } |
| 950 | |
| 951 | uint64_t TargetSymbolOffset = i->getOffset(); |
| 952 | symbol_iterator TargetSymbol = i->getSymbol(); |
| 953 | int64_t Addend; |
| 954 | if (auto AddendOrErr = i->getAddend()) |
| 955 | Addend = *AddendOrErr; |
| 956 | else |
| 957 | return AddendOrErr.takeError(); |
| 958 | |
| 959 | ++i; |
| 960 | if (i == e) |
| 961 | break; |
| 962 | |
| 963 | // Just check if following relocation is a R_PPC64_TOC |
| 964 | uint64_t TypeTOC = i->getType(); |
| 965 | if (TypeTOC != ELF::R_PPC64_TOC) |
| 966 | continue; |
| 967 | |
| 968 | // Finally compares the Symbol value and the target symbol offset |
| 969 | // to check if this .opd entry refers to the symbol the relocation |
| 970 | // points to. |
| 971 | if (Rel.Addend != (int64_t)TargetSymbolOffset) |
| 972 | continue; |
| 973 | |
| 974 | section_iterator TSI = Obj.section_end(); |
| 975 | if (auto TSIOrErr = TargetSymbol->getSection()) |
| 976 | TSI = *TSIOrErr; |
| 977 | else |
| 978 | return TSIOrErr.takeError(); |
| 979 | assert(TSI != Obj.section_end() && "TSI should refer to a valid section" ); |
| 980 | |
| 981 | bool IsCode = TSI->isText(); |
| 982 | if (auto SectionIDOrErr = findOrEmitSection(Obj, Section: *TSI, IsCode, |
| 983 | LocalSections)) |
| 984 | Rel.SectionID = *SectionIDOrErr; |
| 985 | else |
| 986 | return SectionIDOrErr.takeError(); |
| 987 | Rel.Addend = (intptr_t)Addend; |
| 988 | return Error::success(); |
| 989 | } |
| 990 | } |
| 991 | llvm_unreachable("Attempting to get address of ODP entry!" ); |
| 992 | } |
| 993 | |
| 994 | // Relocation masks following the #lo(value), #hi(value), #ha(value), |
| 995 | // #higher(value), #highera(value), #highest(value), and #highesta(value) |
| 996 | // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi |
| 997 | // document. |
| 998 | |
| 999 | static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } |
| 1000 | |
| 1001 | static inline uint16_t applyPPChi(uint64_t value) { |
| 1002 | return (value >> 16) & 0xffff; |
| 1003 | } |
| 1004 | |
| 1005 | static inline uint16_t applyPPCha (uint64_t value) { |
| 1006 | return ((value + 0x8000) >> 16) & 0xffff; |
| 1007 | } |
| 1008 | |
| 1009 | static inline uint16_t applyPPChigher(uint64_t value) { |
| 1010 | return (value >> 32) & 0xffff; |
| 1011 | } |
| 1012 | |
| 1013 | static inline uint16_t applyPPChighera (uint64_t value) { |
| 1014 | return ((value + 0x8000) >> 32) & 0xffff; |
| 1015 | } |
| 1016 | |
| 1017 | static inline uint16_t applyPPChighest(uint64_t value) { |
| 1018 | return (value >> 48) & 0xffff; |
| 1019 | } |
| 1020 | |
| 1021 | static inline uint16_t applyPPChighesta (uint64_t value) { |
| 1022 | return ((value + 0x8000) >> 48) & 0xffff; |
| 1023 | } |
| 1024 | |
| 1025 | void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section, |
| 1026 | uint64_t Offset, uint64_t Value, |
| 1027 | uint32_t Type, int64_t Addend) { |
| 1028 | uint8_t *LocalAddress = Section.getAddressWithOffset(OffsetBytes: Offset); |
| 1029 | switch (Type) { |
| 1030 | default: |
| 1031 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
| 1032 | break; |
| 1033 | case ELF::R_PPC_ADDR16_LO: |
| 1034 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend)); |
| 1035 | break; |
| 1036 | case ELF::R_PPC_ADDR16_HI: |
| 1037 | writeInt16BE(Addr: LocalAddress, Value: applyPPChi(value: Value + Addend)); |
| 1038 | break; |
| 1039 | case ELF::R_PPC_ADDR16_HA: |
| 1040 | writeInt16BE(Addr: LocalAddress, Value: applyPPCha(value: Value + Addend)); |
| 1041 | break; |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, |
| 1046 | uint64_t Offset, uint64_t Value, |
| 1047 | uint32_t Type, int64_t Addend) { |
| 1048 | uint8_t *LocalAddress = Section.getAddressWithOffset(OffsetBytes: Offset); |
| 1049 | switch (Type) { |
| 1050 | default: |
| 1051 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
| 1052 | break; |
| 1053 | case ELF::R_PPC64_ADDR16: |
| 1054 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend)); |
| 1055 | break; |
| 1056 | case ELF::R_PPC64_ADDR16_DS: |
| 1057 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend) & ~3); |
| 1058 | break; |
| 1059 | case ELF::R_PPC64_ADDR16_LO: |
| 1060 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend)); |
| 1061 | break; |
| 1062 | case ELF::R_PPC64_ADDR16_LO_DS: |
| 1063 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Value + Addend) & ~3); |
| 1064 | break; |
| 1065 | case ELF::R_PPC64_ADDR16_HI: |
| 1066 | case ELF::R_PPC64_ADDR16_HIGH: |
| 1067 | writeInt16BE(Addr: LocalAddress, Value: applyPPChi(value: Value + Addend)); |
| 1068 | break; |
| 1069 | case ELF::R_PPC64_ADDR16_HA: |
| 1070 | case ELF::R_PPC64_ADDR16_HIGHA: |
| 1071 | writeInt16BE(Addr: LocalAddress, Value: applyPPCha(value: Value + Addend)); |
| 1072 | break; |
| 1073 | case ELF::R_PPC64_ADDR16_HIGHER: |
| 1074 | writeInt16BE(Addr: LocalAddress, Value: applyPPChigher(value: Value + Addend)); |
| 1075 | break; |
| 1076 | case ELF::R_PPC64_ADDR16_HIGHERA: |
| 1077 | writeInt16BE(Addr: LocalAddress, Value: applyPPChighera(value: Value + Addend)); |
| 1078 | break; |
| 1079 | case ELF::R_PPC64_ADDR16_HIGHEST: |
| 1080 | writeInt16BE(Addr: LocalAddress, Value: applyPPChighest(value: Value + Addend)); |
| 1081 | break; |
| 1082 | case ELF::R_PPC64_ADDR16_HIGHESTA: |
| 1083 | writeInt16BE(Addr: LocalAddress, Value: applyPPChighesta(value: Value + Addend)); |
| 1084 | break; |
| 1085 | case ELF::R_PPC64_ADDR14: { |
| 1086 | assert(((Value + Addend) & 3) == 0); |
| 1087 | // Preserve the AA/LK bits in the branch instruction |
| 1088 | uint8_t aalk = *(LocalAddress + 3); |
| 1089 | writeInt16BE(Addr: LocalAddress + 2, Value: (aalk & 3) | ((Value + Addend) & 0xfffc)); |
| 1090 | } break; |
| 1091 | case ELF::R_PPC64_REL16_LO: { |
| 1092 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1093 | uint64_t Delta = Value - FinalAddress + Addend; |
| 1094 | writeInt16BE(Addr: LocalAddress, Value: applyPPClo(value: Delta)); |
| 1095 | } break; |
| 1096 | case ELF::R_PPC64_REL16_HI: { |
| 1097 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1098 | uint64_t Delta = Value - FinalAddress + Addend; |
| 1099 | writeInt16BE(Addr: LocalAddress, Value: applyPPChi(value: Delta)); |
| 1100 | } break; |
| 1101 | case ELF::R_PPC64_REL16_HA: { |
| 1102 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1103 | uint64_t Delta = Value - FinalAddress + Addend; |
| 1104 | writeInt16BE(Addr: LocalAddress, Value: applyPPCha(value: Delta)); |
| 1105 | } break; |
| 1106 | case ELF::R_PPC64_ADDR32: { |
| 1107 | int64_t Result = static_cast<int64_t>(Value + Addend); |
| 1108 | if (SignExtend64<32>(x: Result) != Result) |
| 1109 | llvm_unreachable("Relocation R_PPC64_ADDR32 overflow" ); |
| 1110 | writeInt32BE(Addr: LocalAddress, Value: Result); |
| 1111 | } break; |
| 1112 | case ELF::R_PPC64_REL24: { |
| 1113 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1114 | int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); |
| 1115 | if (SignExtend64<26>(x: delta) != delta) |
| 1116 | llvm_unreachable("Relocation R_PPC64_REL24 overflow" ); |
| 1117 | // We preserve bits other than LI field, i.e. PO and AA/LK fields. |
| 1118 | uint32_t Inst = readBytesUnaligned(Src: LocalAddress, Size: 4); |
| 1119 | writeInt32BE(Addr: LocalAddress, Value: (Inst & 0xFC000003) | (delta & 0x03FFFFFC)); |
| 1120 | } break; |
| 1121 | case ELF::R_PPC64_REL32: { |
| 1122 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1123 | int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); |
| 1124 | if (SignExtend64<32>(x: delta) != delta) |
| 1125 | llvm_unreachable("Relocation R_PPC64_REL32 overflow" ); |
| 1126 | writeInt32BE(Addr: LocalAddress, Value: delta); |
| 1127 | } break; |
| 1128 | case ELF::R_PPC64_REL64: { |
| 1129 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1130 | uint64_t Delta = Value - FinalAddress + Addend; |
| 1131 | writeInt64BE(Addr: LocalAddress, Value: Delta); |
| 1132 | } break; |
| 1133 | case ELF::R_PPC64_ADDR64: |
| 1134 | writeInt64BE(Addr: LocalAddress, Value: Value + Addend); |
| 1135 | break; |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, |
| 1140 | uint64_t Offset, uint64_t Value, |
| 1141 | uint32_t Type, int64_t Addend) { |
| 1142 | uint8_t *LocalAddress = Section.getAddressWithOffset(OffsetBytes: Offset); |
| 1143 | switch (Type) { |
| 1144 | default: |
| 1145 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
| 1146 | break; |
| 1147 | case ELF::R_390_PC16DBL: |
| 1148 | case ELF::R_390_PLT16DBL: { |
| 1149 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1150 | assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow" ); |
| 1151 | writeInt16BE(Addr: LocalAddress, Value: Delta / 2); |
| 1152 | break; |
| 1153 | } |
| 1154 | case ELF::R_390_PC32DBL: |
| 1155 | case ELF::R_390_PLT32DBL: { |
| 1156 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1157 | assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow" ); |
| 1158 | writeInt32BE(Addr: LocalAddress, Value: Delta / 2); |
| 1159 | break; |
| 1160 | } |
| 1161 | case ELF::R_390_PC16: { |
| 1162 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1163 | assert(int16_t(Delta) == Delta && "R_390_PC16 overflow" ); |
| 1164 | writeInt16BE(Addr: LocalAddress, Value: Delta); |
| 1165 | break; |
| 1166 | } |
| 1167 | case ELF::R_390_PC32: { |
| 1168 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1169 | assert(int32_t(Delta) == Delta && "R_390_PC32 overflow" ); |
| 1170 | writeInt32BE(Addr: LocalAddress, Value: Delta); |
| 1171 | break; |
| 1172 | } |
| 1173 | case ELF::R_390_PC64: { |
| 1174 | int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1175 | writeInt64BE(Addr: LocalAddress, Value: Delta); |
| 1176 | break; |
| 1177 | } |
| 1178 | case ELF::R_390_8: |
| 1179 | *LocalAddress = (uint8_t)(Value + Addend); |
| 1180 | break; |
| 1181 | case ELF::R_390_16: |
| 1182 | writeInt16BE(Addr: LocalAddress, Value: Value + Addend); |
| 1183 | break; |
| 1184 | case ELF::R_390_32: |
| 1185 | writeInt32BE(Addr: LocalAddress, Value: Value + Addend); |
| 1186 | break; |
| 1187 | case ELF::R_390_64: |
| 1188 | writeInt64BE(Addr: LocalAddress, Value: Value + Addend); |
| 1189 | break; |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section, |
| 1194 | uint64_t Offset, uint64_t Value, |
| 1195 | uint32_t Type, int64_t Addend) { |
| 1196 | bool isBE = Arch == Triple::bpfeb; |
| 1197 | |
| 1198 | switch (Type) { |
| 1199 | default: |
| 1200 | report_fatal_error(reason: "Relocation type not implemented yet!" ); |
| 1201 | break; |
| 1202 | case ELF::R_BPF_NONE: |
| 1203 | case ELF::R_BPF_64_64: |
| 1204 | case ELF::R_BPF_64_32: |
| 1205 | case ELF::R_BPF_64_NODYLD32: |
| 1206 | break; |
| 1207 | case ELF::R_BPF_64_ABS64: { |
| 1208 | write(isBE, P: Section.getAddressWithOffset(OffsetBytes: Offset), V: Value + Addend); |
| 1209 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , (Value + Addend)) << " at " |
| 1210 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
| 1211 | break; |
| 1212 | } |
| 1213 | case ELF::R_BPF_64_ABS32: { |
| 1214 | Value += Addend; |
| 1215 | assert(Value <= UINT32_MAX); |
| 1216 | write(isBE, P: Section.getAddressWithOffset(OffsetBytes: Offset), V: static_cast<uint32_t>(Value)); |
| 1217 | LLVM_DEBUG(dbgs() << "Writing " << format("%p" , Value) << " at " |
| 1218 | << format("%p\n" , Section.getAddressWithOffset(Offset))); |
| 1219 | break; |
| 1220 | } |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | static void applyUTypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm) { |
| 1225 | uint32_t UpperImm = (Imm + 0x800) & 0xfffff000; |
| 1226 | auto Instr = support::ulittle32_t::ref(InstrAddr); |
| 1227 | Instr = (Instr & 0xfff) | UpperImm; |
| 1228 | } |
| 1229 | |
| 1230 | static void applyITypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm) { |
| 1231 | uint32_t LowerImm = Imm & 0xfff; |
| 1232 | auto Instr = support::ulittle32_t::ref(InstrAddr); |
| 1233 | Instr = (Instr & 0xfffff) | (LowerImm << 20); |
| 1234 | } |
| 1235 | |
| 1236 | void RuntimeDyldELF::resolveRISCVRelocation(const SectionEntry &Section, |
| 1237 | uint64_t Offset, uint64_t Value, |
| 1238 | uint32_t Type, int64_t Addend, |
| 1239 | SID SectionID) { |
| 1240 | switch (Type) { |
| 1241 | default: { |
| 1242 | std::string Err = "Unimplemented reloc type: " + std::to_string(val: Type); |
| 1243 | llvm::report_fatal_error(reason: Err.c_str()); |
| 1244 | } |
| 1245 | // 32-bit PC-relative function call, macros call, tail (PIC) |
| 1246 | // Write first 20 bits of 32 bit value to the auipc instruction |
| 1247 | // Last 12 bits to the jalr instruction |
| 1248 | case ELF::R_RISCV_CALL: |
| 1249 | case ELF::R_RISCV_CALL_PLT: { |
| 1250 | uint64_t P = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1251 | uint64_t PCOffset = Value + Addend - P; |
| 1252 | applyUTypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
| 1253 | applyITypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset + 4), Imm: PCOffset); |
| 1254 | break; |
| 1255 | } |
| 1256 | // High 20 bits of 32-bit absolute address, %hi(symbol) |
| 1257 | case ELF::R_RISCV_HI20: { |
| 1258 | uint64_t PCOffset = Value + Addend; |
| 1259 | applyUTypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
| 1260 | break; |
| 1261 | } |
| 1262 | // Low 12 bits of 32-bit absolute address, %lo(symbol) |
| 1263 | case ELF::R_RISCV_LO12_I: { |
| 1264 | uint64_t PCOffset = Value + Addend; |
| 1265 | applyITypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
| 1266 | break; |
| 1267 | } |
| 1268 | // High 20 bits of 32-bit PC-relative reference, %pcrel_hi(symbol) |
| 1269 | case ELF::R_RISCV_GOT_HI20: |
| 1270 | case ELF::R_RISCV_PCREL_HI20: { |
| 1271 | uint64_t P = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1272 | uint64_t PCOffset = Value + Addend - P; |
| 1273 | applyUTypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
| 1274 | break; |
| 1275 | } |
| 1276 | |
| 1277 | // label: |
| 1278 | // auipc a0, %pcrel_hi(symbol) // R_RISCV_PCREL_HI20 |
| 1279 | // addi a0, a0, %pcrel_lo(label) // R_RISCV_PCREL_LO12_I |
| 1280 | // |
| 1281 | // The low 12 bits of relative address between pc and symbol. |
| 1282 | // The symbol is related to the high part instruction which is marked by |
| 1283 | // label. |
| 1284 | case ELF::R_RISCV_PCREL_LO12_I: { |
| 1285 | for (auto &&PendingReloc : PendingRelocs) { |
| 1286 | const RelocationValueRef &MatchingValue = PendingReloc.first; |
| 1287 | RelocationEntry &Reloc = PendingReloc.second; |
| 1288 | uint64_t HIRelocPC = |
| 1289 | getSectionLoadAddress(SectionID: Reloc.SectionID) + Reloc.Offset; |
| 1290 | if (Value + Addend == HIRelocPC) { |
| 1291 | uint64_t Symbol = getSectionLoadAddress(SectionID: MatchingValue.SectionID) + |
| 1292 | MatchingValue.Addend; |
| 1293 | auto PCOffset = Symbol - HIRelocPC; |
| 1294 | applyITypeImmRISCV(InstrAddr: Section.getAddressWithOffset(OffsetBytes: Offset), Imm: PCOffset); |
| 1295 | return; |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | llvm::report_fatal_error( |
| 1300 | reason: "R_RISCV_PCREL_LO12_I without matching R_RISCV_PCREL_HI20" ); |
| 1301 | } |
| 1302 | case ELF::R_RISCV_32_PCREL: { |
| 1303 | uint64_t FinalAddress = Section.getLoadAddressWithOffset(OffsetBytes: Offset); |
| 1304 | int64_t RealOffset = Value + Addend - FinalAddress; |
| 1305 | int32_t TruncOffset = Lo_32(Value: RealOffset); |
| 1306 | support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)) = |
| 1307 | TruncOffset; |
| 1308 | break; |
| 1309 | } |
| 1310 | case ELF::R_RISCV_32: { |
| 1311 | auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1312 | Ref = Value + Addend; |
| 1313 | break; |
| 1314 | } |
| 1315 | case ELF::R_RISCV_64: { |
| 1316 | auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1317 | Ref = Value + Addend; |
| 1318 | break; |
| 1319 | } |
| 1320 | case ELF::R_RISCV_ADD8: { |
| 1321 | auto Ref = support::ulittle8_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1322 | Ref = Ref + Value + Addend; |
| 1323 | break; |
| 1324 | } |
| 1325 | case ELF::R_RISCV_ADD16: { |
| 1326 | auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1327 | Ref = Ref + Value + Addend; |
| 1328 | break; |
| 1329 | } |
| 1330 | case ELF::R_RISCV_ADD32: { |
| 1331 | auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1332 | Ref = Ref + Value + Addend; |
| 1333 | break; |
| 1334 | } |
| 1335 | case ELF::R_RISCV_ADD64: { |
| 1336 | auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1337 | Ref = Ref + Value + Addend; |
| 1338 | break; |
| 1339 | } |
| 1340 | case ELF::R_RISCV_SUB8: { |
| 1341 | auto Ref = support::ulittle8_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1342 | Ref = Ref - Value - Addend; |
| 1343 | break; |
| 1344 | } |
| 1345 | case ELF::R_RISCV_SUB16: { |
| 1346 | auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1347 | Ref = Ref - Value - Addend; |
| 1348 | break; |
| 1349 | } |
| 1350 | case ELF::R_RISCV_SUB32: { |
| 1351 | auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1352 | Ref = Ref - Value - Addend; |
| 1353 | break; |
| 1354 | } |
| 1355 | case ELF::R_RISCV_SUB64: { |
| 1356 | auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1357 | Ref = Ref - Value - Addend; |
| 1358 | break; |
| 1359 | } |
| 1360 | case ELF::R_RISCV_SET8: { |
| 1361 | auto Ref = support::ulittle8_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1362 | Ref = Value + Addend; |
| 1363 | break; |
| 1364 | } |
| 1365 | case ELF::R_RISCV_SET16: { |
| 1366 | auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1367 | Ref = Value + Addend; |
| 1368 | break; |
| 1369 | } |
| 1370 | case ELF::R_RISCV_SET32: { |
| 1371 | auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(OffsetBytes: Offset)); |
| 1372 | Ref = Value + Addend; |
| 1373 | break; |
| 1374 | } |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | // The target location for the relocation is described by RE.SectionID and |
| 1379 | // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each |
| 1380 | // SectionEntry has three members describing its location. |
| 1381 | // SectionEntry::Address is the address at which the section has been loaded |
| 1382 | // into memory in the current (host) process. SectionEntry::LoadAddress is the |
| 1383 | // address that the section will have in the target process. |
| 1384 | // SectionEntry::ObjAddress is the address of the bits for this section in the |
| 1385 | // original emitted object image (also in the current address space). |
| 1386 | // |
| 1387 | // Relocations will be applied as if the section were loaded at |
| 1388 | // SectionEntry::LoadAddress, but they will be applied at an address based |
| 1389 | // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to |
| 1390 | // Target memory contents if they are required for value calculations. |
| 1391 | // |
| 1392 | // The Value parameter here is the load address of the symbol for the |
| 1393 | // relocation to be applied. For relocations which refer to symbols in the |
| 1394 | // current object Value will be the LoadAddress of the section in which |
| 1395 | // the symbol resides (RE.Addend provides additional information about the |
| 1396 | // symbol location). For external symbols, Value will be the address of the |
| 1397 | // symbol in the target address space. |
| 1398 | void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, |
| 1399 | uint64_t Value) { |
| 1400 | const SectionEntry &Section = Sections[RE.SectionID]; |
| 1401 | return resolveRelocation(Section, Offset: RE.Offset, Value, Type: RE.RelType, Addend: RE.Addend, |
| 1402 | SymOffset: RE.SymOffset, SectionID: RE.SectionID); |
| 1403 | } |
| 1404 | |
| 1405 | void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, |
| 1406 | uint64_t Offset, uint64_t Value, |
| 1407 | uint32_t Type, int64_t Addend, |
| 1408 | uint64_t SymOffset, SID SectionID) { |
| 1409 | switch (Arch) { |
| 1410 | case Triple::x86_64: |
| 1411 | resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); |
| 1412 | break; |
| 1413 | case Triple::x86: |
| 1414 | resolveX86Relocation(Section, Offset, Value: (uint32_t)(Value & 0xffffffffL), Type, |
| 1415 | Addend: (uint32_t)(Addend & 0xffffffffL)); |
| 1416 | break; |
| 1417 | case Triple::aarch64: |
| 1418 | case Triple::aarch64_be: |
| 1419 | resolveAArch64Relocation(Section, Offset, Value, Type, Addend); |
| 1420 | break; |
| 1421 | case Triple::arm: // Fall through. |
| 1422 | case Triple::armeb: |
| 1423 | case Triple::thumb: |
| 1424 | case Triple::thumbeb: |
| 1425 | resolveARMRelocation(Section, Offset, Value: (uint32_t)(Value & 0xffffffffL), Type, |
| 1426 | Addend: (uint32_t)(Addend & 0xffffffffL)); |
| 1427 | break; |
| 1428 | case Triple::loongarch64: |
| 1429 | resolveLoongArch64Relocation(Section, Offset, Value, Type, Addend); |
| 1430 | break; |
| 1431 | case Triple::ppc: // Fall through. |
| 1432 | case Triple::ppcle: |
| 1433 | resolvePPC32Relocation(Section, Offset, Value, Type, Addend); |
| 1434 | break; |
| 1435 | case Triple::ppc64: // Fall through. |
| 1436 | case Triple::ppc64le: |
| 1437 | resolvePPC64Relocation(Section, Offset, Value, Type, Addend); |
| 1438 | break; |
| 1439 | case Triple::systemz: |
| 1440 | resolveSystemZRelocation(Section, Offset, Value, Type, Addend); |
| 1441 | break; |
| 1442 | case Triple::bpfel: |
| 1443 | case Triple::bpfeb: |
| 1444 | resolveBPFRelocation(Section, Offset, Value, Type, Addend); |
| 1445 | break; |
| 1446 | case Triple::riscv32: // Fall through. |
| 1447 | case Triple::riscv64: |
| 1448 | resolveRISCVRelocation(Section, Offset, Value, Type, Addend, SectionID); |
| 1449 | break; |
| 1450 | default: |
| 1451 | llvm_unreachable("Unsupported CPU type!" ); |
| 1452 | } |
| 1453 | } |
| 1454 | |
| 1455 | void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, |
| 1456 | uint64_t Offset) const { |
| 1457 | return (void *)(Sections[SectionID].getObjAddress() + Offset); |
| 1458 | } |
| 1459 | |
| 1460 | void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) { |
| 1461 | RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); |
| 1462 | if (Value.SymbolName) |
| 1463 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 1464 | else |
| 1465 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 1466 | } |
| 1467 | |
| 1468 | uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType, |
| 1469 | bool IsLocal) const { |
| 1470 | switch (RelType) { |
| 1471 | case ELF::R_MICROMIPS_GOT16: |
| 1472 | if (IsLocal) |
| 1473 | return ELF::R_MICROMIPS_LO16; |
| 1474 | break; |
| 1475 | case ELF::R_MICROMIPS_HI16: |
| 1476 | return ELF::R_MICROMIPS_LO16; |
| 1477 | case ELF::R_MIPS_GOT16: |
| 1478 | if (IsLocal) |
| 1479 | return ELF::R_MIPS_LO16; |
| 1480 | break; |
| 1481 | case ELF::R_MIPS_HI16: |
| 1482 | return ELF::R_MIPS_LO16; |
| 1483 | case ELF::R_MIPS_PCHI16: |
| 1484 | return ELF::R_MIPS_PCLO16; |
| 1485 | default: |
| 1486 | break; |
| 1487 | } |
| 1488 | return ELF::R_MIPS_NONE; |
| 1489 | } |
| 1490 | |
| 1491 | // Sometimes we don't need to create thunk for a branch. |
| 1492 | // This typically happens when branch target is located |
| 1493 | // in the same object file. In such case target is either |
| 1494 | // a weak symbol or symbol in a different executable section. |
| 1495 | // This function checks if branch target is located in the |
| 1496 | // same object file and if distance between source and target |
| 1497 | // fits R_AARCH64_CALL26 relocation. If both conditions are |
| 1498 | // met, it emits direct jump to the target and returns true. |
| 1499 | // Otherwise false is returned and thunk is created. |
| 1500 | bool RuntimeDyldELF::resolveAArch64ShortBranch( |
| 1501 | unsigned SectionID, relocation_iterator RelI, |
| 1502 | const RelocationValueRef &Value) { |
| 1503 | uint64_t TargetOffset; |
| 1504 | unsigned TargetSectionID; |
| 1505 | if (Value.SymbolName) { |
| 1506 | auto Loc = GlobalSymbolTable.find(Key: Value.SymbolName); |
| 1507 | |
| 1508 | // Don't create direct branch for external symbols. |
| 1509 | if (Loc == GlobalSymbolTable.end()) |
| 1510 | return false; |
| 1511 | |
| 1512 | const auto &SymInfo = Loc->second; |
| 1513 | |
| 1514 | TargetSectionID = SymInfo.getSectionID(); |
| 1515 | TargetOffset = SymInfo.getOffset(); |
| 1516 | } else { |
| 1517 | TargetSectionID = Value.SectionID; |
| 1518 | TargetOffset = 0; |
| 1519 | } |
| 1520 | |
| 1521 | // We don't actually know the load addresses at this point, so if the |
| 1522 | // branch is cross-section, we don't know exactly how far away it is. |
| 1523 | if (TargetSectionID != SectionID) |
| 1524 | return false; |
| 1525 | |
| 1526 | uint64_t SourceOffset = RelI->getOffset(); |
| 1527 | |
| 1528 | // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27 |
| 1529 | // If distance between source and target is out of range then we should |
| 1530 | // create thunk. |
| 1531 | if (!isInt<28>(x: TargetOffset + Value.Addend - SourceOffset)) |
| 1532 | return false; |
| 1533 | |
| 1534 | RelocationEntry RE(SectionID, SourceOffset, RelI->getType(), Value.Addend); |
| 1535 | if (Value.SymbolName) |
| 1536 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 1537 | else |
| 1538 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 1539 | |
| 1540 | return true; |
| 1541 | } |
| 1542 | |
| 1543 | void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID, |
| 1544 | const RelocationValueRef &Value, |
| 1545 | relocation_iterator RelI, |
| 1546 | StubMap &Stubs) { |
| 1547 | |
| 1548 | LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation." ); |
| 1549 | SectionEntry &Section = Sections[SectionID]; |
| 1550 | |
| 1551 | uint64_t Offset = RelI->getOffset(); |
| 1552 | unsigned RelType = RelI->getType(); |
| 1553 | // Look for an existing stub. |
| 1554 | StubMap::const_iterator i = Stubs.find(x: Value); |
| 1555 | if (i != Stubs.end()) { |
| 1556 | resolveRelocation(Section, Offset, |
| 1557 | Value: Section.getLoadAddressWithOffset(OffsetBytes: i->second), Type: RelType, Addend: 0); |
| 1558 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
| 1559 | } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) { |
| 1560 | // Create a new stub function. |
| 1561 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
| 1562 | Stubs[Value] = Section.getStubOffset(); |
| 1563 | uint8_t *StubTargetAddr = createStubFunction( |
| 1564 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset())); |
| 1565 | |
| 1566 | RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(), |
| 1567 | ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); |
| 1568 | RelocationEntry REmovk_g2(SectionID, |
| 1569 | StubTargetAddr - Section.getAddress() + 4, |
| 1570 | ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); |
| 1571 | RelocationEntry REmovk_g1(SectionID, |
| 1572 | StubTargetAddr - Section.getAddress() + 8, |
| 1573 | ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); |
| 1574 | RelocationEntry REmovk_g0(SectionID, |
| 1575 | StubTargetAddr - Section.getAddress() + 12, |
| 1576 | ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); |
| 1577 | |
| 1578 | if (Value.SymbolName) { |
| 1579 | addRelocationForSymbol(RE: REmovz_g3, SymbolName: Value.SymbolName); |
| 1580 | addRelocationForSymbol(RE: REmovk_g2, SymbolName: Value.SymbolName); |
| 1581 | addRelocationForSymbol(RE: REmovk_g1, SymbolName: Value.SymbolName); |
| 1582 | addRelocationForSymbol(RE: REmovk_g0, SymbolName: Value.SymbolName); |
| 1583 | } else { |
| 1584 | addRelocationForSection(RE: REmovz_g3, SectionID: Value.SectionID); |
| 1585 | addRelocationForSection(RE: REmovk_g2, SectionID: Value.SectionID); |
| 1586 | addRelocationForSection(RE: REmovk_g1, SectionID: Value.SectionID); |
| 1587 | addRelocationForSection(RE: REmovk_g0, SectionID: Value.SectionID); |
| 1588 | } |
| 1589 | resolveRelocation(Section, Offset, |
| 1590 | Value: Section.getLoadAddressWithOffset(OffsetBytes: Section.getStubOffset()), |
| 1591 | Type: RelType, Addend: 0); |
| 1592 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
| 1593 | } |
| 1594 | } |
| 1595 | |
| 1596 | Expected<relocation_iterator> |
| 1597 | RuntimeDyldELF::processRelocationRef( |
| 1598 | unsigned SectionID, relocation_iterator RelI, const ObjectFile &O, |
| 1599 | ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) { |
| 1600 | const auto &Obj = cast<ELFObjectFileBase>(Val: O); |
| 1601 | uint64_t RelType = RelI->getType(); |
| 1602 | int64_t Addend = 0; |
| 1603 | if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend()) |
| 1604 | Addend = *AddendOrErr; |
| 1605 | else |
| 1606 | consumeError(Err: AddendOrErr.takeError()); |
| 1607 | elf_symbol_iterator Symbol = RelI->getSymbol(); |
| 1608 | |
| 1609 | // Obtain the symbol name which is referenced in the relocation |
| 1610 | StringRef TargetName; |
| 1611 | if (Symbol != Obj.symbol_end()) { |
| 1612 | if (auto TargetNameOrErr = Symbol->getName()) |
| 1613 | TargetName = *TargetNameOrErr; |
| 1614 | else |
| 1615 | return TargetNameOrErr.takeError(); |
| 1616 | } |
| 1617 | LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend |
| 1618 | << " TargetName: " << TargetName << "\n" ); |
| 1619 | RelocationValueRef Value; |
| 1620 | // First search for the symbol in the local symbol table |
| 1621 | SymbolRef::Type SymType = SymbolRef::ST_Unknown; |
| 1622 | |
| 1623 | // Search for the symbol in the global symbol table |
| 1624 | RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); |
| 1625 | if (Symbol != Obj.symbol_end()) { |
| 1626 | gsi = GlobalSymbolTable.find(Key: TargetName.data()); |
| 1627 | Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType(); |
| 1628 | if (!SymTypeOrErr) { |
| 1629 | std::string Buf; |
| 1630 | raw_string_ostream OS(Buf); |
| 1631 | logAllUnhandledErrors(E: SymTypeOrErr.takeError(), OS); |
| 1632 | report_fatal_error(reason: Twine(Buf)); |
| 1633 | } |
| 1634 | SymType = *SymTypeOrErr; |
| 1635 | } |
| 1636 | if (gsi != GlobalSymbolTable.end()) { |
| 1637 | const auto &SymInfo = gsi->second; |
| 1638 | Value.SectionID = SymInfo.getSectionID(); |
| 1639 | Value.Offset = SymInfo.getOffset(); |
| 1640 | Value.Addend = SymInfo.getOffset() + Addend; |
| 1641 | } else { |
| 1642 | switch (SymType) { |
| 1643 | case SymbolRef::ST_Debug: { |
| 1644 | // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously |
| 1645 | // and can be changed by another developers. Maybe best way is add |
| 1646 | // a new symbol type ST_Section to SymbolRef and use it. |
| 1647 | auto SectionOrErr = Symbol->getSection(); |
| 1648 | if (!SectionOrErr) { |
| 1649 | std::string Buf; |
| 1650 | raw_string_ostream OS(Buf); |
| 1651 | logAllUnhandledErrors(E: SectionOrErr.takeError(), OS); |
| 1652 | report_fatal_error(reason: Twine(Buf)); |
| 1653 | } |
| 1654 | section_iterator si = *SectionOrErr; |
| 1655 | if (si == Obj.section_end()) |
| 1656 | llvm_unreachable("Symbol section not found, bad object file format!" ); |
| 1657 | LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n" ); |
| 1658 | bool isCode = si->isText(); |
| 1659 | if (auto SectionIDOrErr = findOrEmitSection(Obj, Section: (*si), IsCode: isCode, |
| 1660 | LocalSections&: ObjSectionToID)) |
| 1661 | Value.SectionID = *SectionIDOrErr; |
| 1662 | else |
| 1663 | return SectionIDOrErr.takeError(); |
| 1664 | Value.Addend = Addend; |
| 1665 | break; |
| 1666 | } |
| 1667 | case SymbolRef::ST_Data: |
| 1668 | case SymbolRef::ST_Function: |
| 1669 | case SymbolRef::ST_Other: |
| 1670 | case SymbolRef::ST_Unknown: { |
| 1671 | Value.SymbolName = TargetName.data(); |
| 1672 | Value.Addend = Addend; |
| 1673 | |
| 1674 | // Absolute relocations will have a zero symbol ID (STN_UNDEF), which |
| 1675 | // will manifest here as a NULL symbol name. |
| 1676 | // We can set this as a valid (but empty) symbol name, and rely |
| 1677 | // on addRelocationForSymbol to handle this. |
| 1678 | if (!Value.SymbolName) |
| 1679 | Value.SymbolName = "" ; |
| 1680 | break; |
| 1681 | } |
| 1682 | default: |
| 1683 | llvm_unreachable("Unresolved symbol type!" ); |
| 1684 | break; |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | uint64_t Offset = RelI->getOffset(); |
| 1689 | |
| 1690 | LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset |
| 1691 | << "\n" ); |
| 1692 | if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) { |
| 1693 | if ((RelType == ELF::R_AARCH64_CALL26 || |
| 1694 | RelType == ELF::R_AARCH64_JUMP26) && |
| 1695 | MemMgr.allowStubAllocation()) { |
| 1696 | resolveAArch64Branch(SectionID, Value, RelI, Stubs); |
| 1697 | } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) { |
| 1698 | // Create new GOT entry or find existing one. If GOT entry is |
| 1699 | // to be created, then we also emit ABS64 relocation for it. |
| 1700 | uint64_t GOTOffset = findOrAllocGOTEntry(Value, GOTRelType: ELF::R_AARCH64_ABS64); |
| 1701 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
| 1702 | Type: ELF::R_AARCH64_ADR_PREL_PG_HI21); |
| 1703 | |
| 1704 | } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) { |
| 1705 | uint64_t GOTOffset = findOrAllocGOTEntry(Value, GOTRelType: ELF::R_AARCH64_ABS64); |
| 1706 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
| 1707 | Type: ELF::R_AARCH64_LDST64_ABS_LO12_NC); |
| 1708 | } else { |
| 1709 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 1710 | } |
| 1711 | } else if (Arch == Triple::arm) { |
| 1712 | if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || |
| 1713 | RelType == ELF::R_ARM_JUMP24) { |
| 1714 | // This is an ARM branch relocation, need to use a stub function. |
| 1715 | LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n" ); |
| 1716 | SectionEntry &Section = Sections[SectionID]; |
| 1717 | |
| 1718 | // Look for an existing stub. |
| 1719 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
| 1720 | if (!Inserted) { |
| 1721 | resolveRelocation(Section, Offset, |
| 1722 | Value: Section.getLoadAddressWithOffset(OffsetBytes: It->second), Type: RelType, |
| 1723 | Addend: 0); |
| 1724 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
| 1725 | } else { |
| 1726 | // Create a new stub function. |
| 1727 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
| 1728 | It->second = Section.getStubOffset(); |
| 1729 | uint8_t *StubTargetAddr = createStubFunction( |
| 1730 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset())); |
| 1731 | RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), |
| 1732 | ELF::R_ARM_ABS32, Value.Addend); |
| 1733 | if (Value.SymbolName) |
| 1734 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 1735 | else |
| 1736 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 1737 | |
| 1738 | resolveRelocation( |
| 1739 | Section, Offset, |
| 1740 | Value: Section.getLoadAddressWithOffset(OffsetBytes: Section.getStubOffset()), Type: RelType, |
| 1741 | Addend: 0); |
| 1742 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
| 1743 | } |
| 1744 | } else { |
| 1745 | uint32_t *Placeholder = |
| 1746 | reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset)); |
| 1747 | if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 || |
| 1748 | RelType == ELF::R_ARM_ABS32) { |
| 1749 | Value.Addend += *Placeholder; |
| 1750 | } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) { |
| 1751 | // See ELF for ARM documentation |
| 1752 | Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12)); |
| 1753 | } |
| 1754 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 1755 | } |
| 1756 | } else if (Arch == Triple::loongarch64) { |
| 1757 | if ((RelType == ELF::R_LARCH_B26 || RelType == ELF::R_LARCH_CALL36) && |
| 1758 | MemMgr.allowStubAllocation()) { |
| 1759 | resolveLoongArch64Branch(SectionID, Value, RelI, Stubs); |
| 1760 | } else if (RelType == ELF::R_LARCH_GOT_PC_HI20 || |
| 1761 | RelType == ELF::R_LARCH_GOT_PC_LO12) { |
| 1762 | uint64_t GOTOffset = findOrAllocGOTEntry(Value, GOTRelType: ELF::R_LARCH_64); |
| 1763 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
| 1764 | Type: RelType); |
| 1765 | } else { |
| 1766 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 1767 | } |
| 1768 | } else if (IsMipsO32ABI) { |
| 1769 | uint8_t *Placeholder = reinterpret_cast<uint8_t *>( |
| 1770 | computePlaceholderAddress(SectionID, Offset)); |
| 1771 | uint32_t Opcode = readBytesUnaligned(Src: Placeholder, Size: 4); |
| 1772 | if (RelType == ELF::R_MIPS_26) { |
| 1773 | // This is an Mips branch relocation, need to use a stub function. |
| 1774 | LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation." ); |
| 1775 | SectionEntry &Section = Sections[SectionID]; |
| 1776 | |
| 1777 | // Extract the addend from the instruction. |
| 1778 | // We shift up by two since the Value will be down shifted again |
| 1779 | // when applying the relocation. |
| 1780 | uint32_t Addend = (Opcode & 0x03ffffff) << 2; |
| 1781 | |
| 1782 | Value.Addend += Addend; |
| 1783 | |
| 1784 | // Look up for existing stub. |
| 1785 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
| 1786 | if (!Inserted) { |
| 1787 | RelocationEntry RE(SectionID, Offset, RelType, It->second); |
| 1788 | addRelocationForSection(RE, SectionID); |
| 1789 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
| 1790 | } else { |
| 1791 | // Create a new stub function. |
| 1792 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
| 1793 | It->second = Section.getStubOffset(); |
| 1794 | |
| 1795 | unsigned AbiVariant = Obj.getPlatformFlags(); |
| 1796 | |
| 1797 | uint8_t *StubTargetAddr = createStubFunction( |
| 1798 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset()), AbiVariant); |
| 1799 | |
| 1800 | // Creating Hi and Lo relocations for the filled stub instructions. |
| 1801 | RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), |
| 1802 | ELF::R_MIPS_HI16, Value.Addend); |
| 1803 | RelocationEntry RELo(SectionID, |
| 1804 | StubTargetAddr - Section.getAddress() + 4, |
| 1805 | ELF::R_MIPS_LO16, Value.Addend); |
| 1806 | |
| 1807 | if (Value.SymbolName) { |
| 1808 | addRelocationForSymbol(RE: REHi, SymbolName: Value.SymbolName); |
| 1809 | addRelocationForSymbol(RE: RELo, SymbolName: Value.SymbolName); |
| 1810 | } else { |
| 1811 | addRelocationForSection(RE: REHi, SectionID: Value.SectionID); |
| 1812 | addRelocationForSection(RE: RELo, SectionID: Value.SectionID); |
| 1813 | } |
| 1814 | |
| 1815 | RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); |
| 1816 | addRelocationForSection(RE, SectionID); |
| 1817 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
| 1818 | } |
| 1819 | } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) { |
| 1820 | int64_t Addend = (Opcode & 0x0000ffff) << 16; |
| 1821 | RelocationEntry RE(SectionID, Offset, RelType, Addend); |
| 1822 | PendingRelocs.push_back(Elt: std::make_pair(x&: Value, y&: RE)); |
| 1823 | } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) { |
| 1824 | int64_t Addend = Value.Addend + SignExtend32<16>(X: Opcode & 0x0000ffff); |
| 1825 | for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) { |
| 1826 | const RelocationValueRef &MatchingValue = I->first; |
| 1827 | RelocationEntry &Reloc = I->second; |
| 1828 | if (MatchingValue == Value && |
| 1829 | RelType == getMatchingLoRelocation(RelType: Reloc.RelType) && |
| 1830 | SectionID == Reloc.SectionID) { |
| 1831 | Reloc.Addend += Addend; |
| 1832 | if (Value.SymbolName) |
| 1833 | addRelocationForSymbol(RE: Reloc, SymbolName: Value.SymbolName); |
| 1834 | else |
| 1835 | addRelocationForSection(RE: Reloc, SectionID: Value.SectionID); |
| 1836 | I = PendingRelocs.erase(CI: I); |
| 1837 | } else |
| 1838 | ++I; |
| 1839 | } |
| 1840 | RelocationEntry RE(SectionID, Offset, RelType, Addend); |
| 1841 | if (Value.SymbolName) |
| 1842 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 1843 | else |
| 1844 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 1845 | } else { |
| 1846 | if (RelType == ELF::R_MIPS_32) |
| 1847 | Value.Addend += Opcode; |
| 1848 | else if (RelType == ELF::R_MIPS_PC16) |
| 1849 | Value.Addend += SignExtend32<18>(X: (Opcode & 0x0000ffff) << 2); |
| 1850 | else if (RelType == ELF::R_MIPS_PC19_S2) |
| 1851 | Value.Addend += SignExtend32<21>(X: (Opcode & 0x0007ffff) << 2); |
| 1852 | else if (RelType == ELF::R_MIPS_PC21_S2) |
| 1853 | Value.Addend += SignExtend32<23>(X: (Opcode & 0x001fffff) << 2); |
| 1854 | else if (RelType == ELF::R_MIPS_PC26_S2) |
| 1855 | Value.Addend += SignExtend32<28>(X: (Opcode & 0x03ffffff) << 2); |
| 1856 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 1857 | } |
| 1858 | } else if (IsMipsN32ABI || IsMipsN64ABI) { |
| 1859 | uint32_t r_type = RelType & 0xff; |
| 1860 | RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); |
| 1861 | if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE |
| 1862 | || r_type == ELF::R_MIPS_GOT_DISP) { |
| 1863 | auto [I, Inserted] = GOTSymbolOffsets.try_emplace(Key: TargetName); |
| 1864 | if (Inserted) |
| 1865 | I->second = allocateGOTEntries(no: 1); |
| 1866 | RE.SymOffset = I->second; |
| 1867 | if (Value.SymbolName) |
| 1868 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 1869 | else |
| 1870 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 1871 | } else if (RelType == ELF::R_MIPS_26) { |
| 1872 | // This is an Mips branch relocation, need to use a stub function. |
| 1873 | LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation." ); |
| 1874 | SectionEntry &Section = Sections[SectionID]; |
| 1875 | |
| 1876 | // Look up for existing stub. |
| 1877 | StubMap::const_iterator i = Stubs.find(x: Value); |
| 1878 | if (i != Stubs.end()) { |
| 1879 | RelocationEntry RE(SectionID, Offset, RelType, i->second); |
| 1880 | addRelocationForSection(RE, SectionID); |
| 1881 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
| 1882 | } else { |
| 1883 | // Create a new stub function. |
| 1884 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
| 1885 | Stubs[Value] = Section.getStubOffset(); |
| 1886 | |
| 1887 | unsigned AbiVariant = Obj.getPlatformFlags(); |
| 1888 | |
| 1889 | uint8_t *StubTargetAddr = createStubFunction( |
| 1890 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset()), AbiVariant); |
| 1891 | |
| 1892 | if (IsMipsN32ABI) { |
| 1893 | // Creating Hi and Lo relocations for the filled stub instructions. |
| 1894 | RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), |
| 1895 | ELF::R_MIPS_HI16, Value.Addend); |
| 1896 | RelocationEntry RELo(SectionID, |
| 1897 | StubTargetAddr - Section.getAddress() + 4, |
| 1898 | ELF::R_MIPS_LO16, Value.Addend); |
| 1899 | if (Value.SymbolName) { |
| 1900 | addRelocationForSymbol(RE: REHi, SymbolName: Value.SymbolName); |
| 1901 | addRelocationForSymbol(RE: RELo, SymbolName: Value.SymbolName); |
| 1902 | } else { |
| 1903 | addRelocationForSection(RE: REHi, SectionID: Value.SectionID); |
| 1904 | addRelocationForSection(RE: RELo, SectionID: Value.SectionID); |
| 1905 | } |
| 1906 | } else { |
| 1907 | // Creating Highest, Higher, Hi and Lo relocations for the filled stub |
| 1908 | // instructions. |
| 1909 | RelocationEntry REHighest(SectionID, |
| 1910 | StubTargetAddr - Section.getAddress(), |
| 1911 | ELF::R_MIPS_HIGHEST, Value.Addend); |
| 1912 | RelocationEntry REHigher(SectionID, |
| 1913 | StubTargetAddr - Section.getAddress() + 4, |
| 1914 | ELF::R_MIPS_HIGHER, Value.Addend); |
| 1915 | RelocationEntry REHi(SectionID, |
| 1916 | StubTargetAddr - Section.getAddress() + 12, |
| 1917 | ELF::R_MIPS_HI16, Value.Addend); |
| 1918 | RelocationEntry RELo(SectionID, |
| 1919 | StubTargetAddr - Section.getAddress() + 20, |
| 1920 | ELF::R_MIPS_LO16, Value.Addend); |
| 1921 | if (Value.SymbolName) { |
| 1922 | addRelocationForSymbol(RE: REHighest, SymbolName: Value.SymbolName); |
| 1923 | addRelocationForSymbol(RE: REHigher, SymbolName: Value.SymbolName); |
| 1924 | addRelocationForSymbol(RE: REHi, SymbolName: Value.SymbolName); |
| 1925 | addRelocationForSymbol(RE: RELo, SymbolName: Value.SymbolName); |
| 1926 | } else { |
| 1927 | addRelocationForSection(RE: REHighest, SectionID: Value.SectionID); |
| 1928 | addRelocationForSection(RE: REHigher, SectionID: Value.SectionID); |
| 1929 | addRelocationForSection(RE: REHi, SectionID: Value.SectionID); |
| 1930 | addRelocationForSection(RE: RELo, SectionID: Value.SectionID); |
| 1931 | } |
| 1932 | } |
| 1933 | RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); |
| 1934 | addRelocationForSection(RE, SectionID); |
| 1935 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
| 1936 | } |
| 1937 | } else { |
| 1938 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 1939 | } |
| 1940 | |
| 1941 | } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { |
| 1942 | if (RelType == ELF::R_PPC64_REL24) { |
| 1943 | // Determine ABI variant in use for this object. |
| 1944 | unsigned AbiVariant = Obj.getPlatformFlags(); |
| 1945 | AbiVariant &= ELF::EF_PPC64_ABI; |
| 1946 | // A PPC branch relocation will need a stub function if the target is |
| 1947 | // an external symbol (either Value.SymbolName is set, or SymType is |
| 1948 | // Symbol::ST_Unknown) or if the target address is not within the |
| 1949 | // signed 24-bits branch address. |
| 1950 | SectionEntry &Section = Sections[SectionID]; |
| 1951 | uint8_t *Target = Section.getAddressWithOffset(OffsetBytes: Offset); |
| 1952 | bool RangeOverflow = false; |
| 1953 | bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown; |
| 1954 | if (!IsExtern) { |
| 1955 | if (AbiVariant != 2) { |
| 1956 | // In the ELFv1 ABI, a function call may point to the .opd entry, |
| 1957 | // so the final symbol value is calculated based on the relocation |
| 1958 | // values in the .opd section. |
| 1959 | if (auto Err = findOPDEntrySection(Obj, LocalSections&: ObjSectionToID, Rel&: Value)) |
| 1960 | return std::move(Err); |
| 1961 | } else { |
| 1962 | // In the ELFv2 ABI, a function symbol may provide a local entry |
| 1963 | // point, which must be used for direct calls. |
| 1964 | if (Value.SectionID == SectionID){ |
| 1965 | uint8_t SymOther = Symbol->getOther(); |
| 1966 | Value.Addend += ELF::decodePPC64LocalEntryOffset(Other: SymOther); |
| 1967 | } |
| 1968 | } |
| 1969 | uint8_t *RelocTarget = |
| 1970 | Sections[Value.SectionID].getAddressWithOffset(OffsetBytes: Value.Addend); |
| 1971 | int64_t delta = static_cast<int64_t>(Target - RelocTarget); |
| 1972 | // If it is within 26-bits branch range, just set the branch target |
| 1973 | if (SignExtend64<26>(x: delta) != delta) { |
| 1974 | RangeOverflow = true; |
| 1975 | } else if ((AbiVariant != 2) || |
| 1976 | (AbiVariant == 2 && Value.SectionID == SectionID)) { |
| 1977 | RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); |
| 1978 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 1979 | } |
| 1980 | } |
| 1981 | if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) || |
| 1982 | RangeOverflow) { |
| 1983 | // It is an external symbol (either Value.SymbolName is set, or |
| 1984 | // SymType is SymbolRef::ST_Unknown) or out of range. |
| 1985 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
| 1986 | if (!Inserted) { |
| 1987 | // Symbol function stub already created, just relocate to it |
| 1988 | resolveRelocation(Section, Offset, |
| 1989 | Value: Section.getLoadAddressWithOffset(OffsetBytes: It->second), |
| 1990 | Type: RelType, Addend: 0); |
| 1991 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
| 1992 | } else { |
| 1993 | // Create a new stub function. |
| 1994 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
| 1995 | It->second = Section.getStubOffset(); |
| 1996 | uint8_t *StubTargetAddr = createStubFunction( |
| 1997 | Addr: Section.getAddressWithOffset(OffsetBytes: Section.getStubOffset()), |
| 1998 | AbiVariant); |
| 1999 | RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), |
| 2000 | ELF::R_PPC64_ADDR64, Value.Addend); |
| 2001 | |
| 2002 | // Generates the 64-bits address loads as exemplified in section |
| 2003 | // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to |
| 2004 | // apply to the low part of the instructions, so we have to update |
| 2005 | // the offset according to the target endianness. |
| 2006 | uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress(); |
| 2007 | if (!IsTargetLittleEndian) |
| 2008 | StubRelocOffset += 2; |
| 2009 | |
| 2010 | RelocationEntry REhst(SectionID, StubRelocOffset + 0, |
| 2011 | ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); |
| 2012 | RelocationEntry REhr(SectionID, StubRelocOffset + 4, |
| 2013 | ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); |
| 2014 | RelocationEntry REh(SectionID, StubRelocOffset + 12, |
| 2015 | ELF::R_PPC64_ADDR16_HI, Value.Addend); |
| 2016 | RelocationEntry REl(SectionID, StubRelocOffset + 16, |
| 2017 | ELF::R_PPC64_ADDR16_LO, Value.Addend); |
| 2018 | |
| 2019 | if (Value.SymbolName) { |
| 2020 | addRelocationForSymbol(RE: REhst, SymbolName: Value.SymbolName); |
| 2021 | addRelocationForSymbol(RE: REhr, SymbolName: Value.SymbolName); |
| 2022 | addRelocationForSymbol(RE: REh, SymbolName: Value.SymbolName); |
| 2023 | addRelocationForSymbol(RE: REl, SymbolName: Value.SymbolName); |
| 2024 | } else { |
| 2025 | addRelocationForSection(RE: REhst, SectionID: Value.SectionID); |
| 2026 | addRelocationForSection(RE: REhr, SectionID: Value.SectionID); |
| 2027 | addRelocationForSection(RE: REh, SectionID: Value.SectionID); |
| 2028 | addRelocationForSection(RE: REl, SectionID: Value.SectionID); |
| 2029 | } |
| 2030 | |
| 2031 | resolveRelocation( |
| 2032 | Section, Offset, |
| 2033 | Value: Section.getLoadAddressWithOffset(OffsetBytes: Section.getStubOffset()), |
| 2034 | Type: RelType, Addend: 0); |
| 2035 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
| 2036 | } |
| 2037 | if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) { |
| 2038 | // Restore the TOC for external calls |
| 2039 | if (AbiVariant == 2) |
| 2040 | writeInt32BE(Addr: Target + 4, Value: 0xE8410018); // ld r2,24(r1) |
| 2041 | else |
| 2042 | writeInt32BE(Addr: Target + 4, Value: 0xE8410028); // ld r2,40(r1) |
| 2043 | } |
| 2044 | } |
| 2045 | } else if (RelType == ELF::R_PPC64_TOC16 || |
| 2046 | RelType == ELF::R_PPC64_TOC16_DS || |
| 2047 | RelType == ELF::R_PPC64_TOC16_LO || |
| 2048 | RelType == ELF::R_PPC64_TOC16_LO_DS || |
| 2049 | RelType == ELF::R_PPC64_TOC16_HI || |
| 2050 | RelType == ELF::R_PPC64_TOC16_HA) { |
| 2051 | // These relocations are supposed to subtract the TOC address from |
| 2052 | // the final value. This does not fit cleanly into the RuntimeDyld |
| 2053 | // scheme, since there may be *two* sections involved in determining |
| 2054 | // the relocation value (the section of the symbol referred to by the |
| 2055 | // relocation, and the TOC section associated with the current module). |
| 2056 | // |
| 2057 | // Fortunately, these relocations are currently only ever generated |
| 2058 | // referring to symbols that themselves reside in the TOC, which means |
| 2059 | // that the two sections are actually the same. Thus they cancel out |
| 2060 | // and we can immediately resolve the relocation right now. |
| 2061 | switch (RelType) { |
| 2062 | case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; |
| 2063 | case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; |
| 2064 | case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; |
| 2065 | case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; |
| 2066 | case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; |
| 2067 | case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; |
| 2068 | default: llvm_unreachable("Wrong relocation type." ); |
| 2069 | } |
| 2070 | |
| 2071 | RelocationValueRef TOCValue; |
| 2072 | if (auto Err = findPPC64TOCSection(Obj, LocalSections&: ObjSectionToID, Rel&: TOCValue)) |
| 2073 | return std::move(Err); |
| 2074 | if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) |
| 2075 | llvm_unreachable("Unsupported TOC relocation." ); |
| 2076 | Value.Addend -= TOCValue.Addend; |
| 2077 | resolveRelocation(Section: Sections[SectionID], Offset, Value: Value.Addend, Type: RelType, Addend: 0); |
| 2078 | } else { |
| 2079 | // There are two ways to refer to the TOC address directly: either |
| 2080 | // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are |
| 2081 | // ignored), or via any relocation that refers to the magic ".TOC." |
| 2082 | // symbols (in which case the addend is respected). |
| 2083 | if (RelType == ELF::R_PPC64_TOC) { |
| 2084 | RelType = ELF::R_PPC64_ADDR64; |
| 2085 | if (auto Err = findPPC64TOCSection(Obj, LocalSections&: ObjSectionToID, Rel&: Value)) |
| 2086 | return std::move(Err); |
| 2087 | } else if (TargetName == ".TOC." ) { |
| 2088 | if (auto Err = findPPC64TOCSection(Obj, LocalSections&: ObjSectionToID, Rel&: Value)) |
| 2089 | return std::move(Err); |
| 2090 | Value.Addend += Addend; |
| 2091 | } |
| 2092 | |
| 2093 | RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); |
| 2094 | |
| 2095 | if (Value.SymbolName) |
| 2096 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 2097 | else |
| 2098 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 2099 | } |
| 2100 | } else if (Arch == Triple::systemz && |
| 2101 | (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { |
| 2102 | // Create function stubs for both PLT and GOT references, regardless of |
| 2103 | // whether the GOT reference is to data or code. The stub contains the |
| 2104 | // full address of the symbol, as needed by GOT references, and the |
| 2105 | // executable part only adds an overhead of 8 bytes. |
| 2106 | // |
| 2107 | // We could try to conserve space by allocating the code and data |
| 2108 | // parts of the stub separately. However, as things stand, we allocate |
| 2109 | // a stub for every relocation, so using a GOT in JIT code should be |
| 2110 | // no less space efficient than using an explicit constant pool. |
| 2111 | LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation." ); |
| 2112 | SectionEntry &Section = Sections[SectionID]; |
| 2113 | |
| 2114 | // Look for an existing stub. |
| 2115 | StubMap::const_iterator i = Stubs.find(x: Value); |
| 2116 | uintptr_t StubAddress; |
| 2117 | if (i != Stubs.end()) { |
| 2118 | StubAddress = uintptr_t(Section.getAddressWithOffset(OffsetBytes: i->second)); |
| 2119 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
| 2120 | } else { |
| 2121 | // Create a new stub function. |
| 2122 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
| 2123 | |
| 2124 | uintptr_t BaseAddress = uintptr_t(Section.getAddress()); |
| 2125 | StubAddress = |
| 2126 | alignTo(Size: BaseAddress + Section.getStubOffset(), A: getStubAlignment()); |
| 2127 | unsigned StubOffset = StubAddress - BaseAddress; |
| 2128 | |
| 2129 | Stubs[Value] = StubOffset; |
| 2130 | createStubFunction(Addr: (uint8_t *)StubAddress); |
| 2131 | RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, |
| 2132 | Value.Offset); |
| 2133 | if (Value.SymbolName) |
| 2134 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 2135 | else |
| 2136 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 2137 | Section.advanceStubOffset(StubSize: getMaxStubSize()); |
| 2138 | } |
| 2139 | |
| 2140 | if (RelType == ELF::R_390_GOTENT) |
| 2141 | resolveRelocation(Section, Offset, Value: StubAddress + 8, Type: ELF::R_390_PC32DBL, |
| 2142 | Addend); |
| 2143 | else |
| 2144 | resolveRelocation(Section, Offset, Value: StubAddress, Type: RelType, Addend); |
| 2145 | } else if (Arch == Triple::x86_64) { |
| 2146 | if (RelType == ELF::R_X86_64_PLT32) { |
| 2147 | // The way the PLT relocations normally work is that the linker allocates |
| 2148 | // the |
| 2149 | // PLT and this relocation makes a PC-relative call into the PLT. The PLT |
| 2150 | // entry will then jump to an address provided by the GOT. On first call, |
| 2151 | // the |
| 2152 | // GOT address will point back into PLT code that resolves the symbol. After |
| 2153 | // the first call, the GOT entry points to the actual function. |
| 2154 | // |
| 2155 | // For local functions we're ignoring all of that here and just replacing |
| 2156 | // the PLT32 relocation type with PC32, which will translate the relocation |
| 2157 | // into a PC-relative call directly to the function. For external symbols we |
| 2158 | // can't be sure the function will be within 2^32 bytes of the call site, so |
| 2159 | // we need to create a stub, which calls into the GOT. This case is |
| 2160 | // equivalent to the usual PLT implementation except that we use the stub |
| 2161 | // mechanism in RuntimeDyld (which puts stubs at the end of the section) |
| 2162 | // rather than allocating a PLT section. |
| 2163 | if (Value.SymbolName && MemMgr.allowStubAllocation()) { |
| 2164 | // This is a call to an external function. |
| 2165 | // Look for an existing stub. |
| 2166 | SectionEntry *Section = &Sections[SectionID]; |
| 2167 | auto [It, Inserted] = Stubs.try_emplace(k: Value); |
| 2168 | uintptr_t StubAddress; |
| 2169 | if (!Inserted) { |
| 2170 | StubAddress = uintptr_t(Section->getAddress()) + It->second; |
| 2171 | LLVM_DEBUG(dbgs() << " Stub function found\n" ); |
| 2172 | } else { |
| 2173 | // Create a new stub function (equivalent to a PLT entry). |
| 2174 | LLVM_DEBUG(dbgs() << " Create a new stub function\n" ); |
| 2175 | |
| 2176 | uintptr_t BaseAddress = uintptr_t(Section->getAddress()); |
| 2177 | StubAddress = alignTo(Size: BaseAddress + Section->getStubOffset(), |
| 2178 | A: getStubAlignment()); |
| 2179 | unsigned StubOffset = StubAddress - BaseAddress; |
| 2180 | It->second = StubOffset; |
| 2181 | createStubFunction(Addr: (uint8_t *)StubAddress); |
| 2182 | |
| 2183 | // Bump our stub offset counter |
| 2184 | Section->advanceStubOffset(StubSize: getMaxStubSize()); |
| 2185 | |
| 2186 | // Allocate a GOT Entry |
| 2187 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
| 2188 | // This potentially creates a new Section which potentially |
| 2189 | // invalidates the Section pointer, so reload it. |
| 2190 | Section = &Sections[SectionID]; |
| 2191 | |
| 2192 | // The load of the GOT address has an addend of -4 |
| 2193 | resolveGOTOffsetRelocation(SectionID, Offset: StubOffset + 2, GOTOffset: GOTOffset - 4, |
| 2194 | Type: ELF::R_X86_64_PC32); |
| 2195 | |
| 2196 | // Fill in the value of the symbol we're targeting into the GOT |
| 2197 | addRelocationForSymbol( |
| 2198 | RE: computeGOTOffsetRE(GOTOffset, SymbolOffset: 0, Type: ELF::R_X86_64_64), |
| 2199 | SymbolName: Value.SymbolName); |
| 2200 | } |
| 2201 | |
| 2202 | // Make the target call a call into the stub table. |
| 2203 | resolveRelocation(Section: *Section, Offset, Value: StubAddress, Type: ELF::R_X86_64_PC32, |
| 2204 | Addend); |
| 2205 | } else { |
| 2206 | Value.Addend += support::ulittle32_t::ref( |
| 2207 | computePlaceholderAddress(SectionID, Offset)); |
| 2208 | processSimpleRelocation(SectionID, Offset, RelType: ELF::R_X86_64_PC32, Value); |
| 2209 | } |
| 2210 | } else if (RelType == ELF::R_X86_64_GOTPCREL || |
| 2211 | RelType == ELF::R_X86_64_GOTPCRELX || |
| 2212 | RelType == ELF::R_X86_64_REX_GOTPCRELX) { |
| 2213 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
| 2214 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
| 2215 | Type: ELF::R_X86_64_PC32); |
| 2216 | |
| 2217 | // Fill in the value of the symbol we're targeting into the GOT |
| 2218 | RelocationEntry RE = |
| 2219 | computeGOTOffsetRE(GOTOffset, SymbolOffset: Value.Offset, Type: ELF::R_X86_64_64); |
| 2220 | if (Value.SymbolName) |
| 2221 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 2222 | else |
| 2223 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 2224 | } else if (RelType == ELF::R_X86_64_GOT64) { |
| 2225 | // Fill in a 64-bit GOT offset. |
| 2226 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
| 2227 | resolveRelocation(Section: Sections[SectionID], Offset, Value: GOTOffset, |
| 2228 | Type: ELF::R_X86_64_64, Addend: 0); |
| 2229 | |
| 2230 | // Fill in the value of the symbol we're targeting into the GOT |
| 2231 | RelocationEntry RE = |
| 2232 | computeGOTOffsetRE(GOTOffset, SymbolOffset: Value.Offset, Type: ELF::R_X86_64_64); |
| 2233 | if (Value.SymbolName) |
| 2234 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 2235 | else |
| 2236 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 2237 | } else if (RelType == ELF::R_X86_64_GOTPC32) { |
| 2238 | // Materialize the address of the base of the GOT relative to the PC. |
| 2239 | // This doesn't create a GOT entry, but it does mean we need a GOT |
| 2240 | // section. |
| 2241 | (void)allocateGOTEntries(no: 0); |
| 2242 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: Addend, Type: ELF::R_X86_64_PC32); |
| 2243 | } else if (RelType == ELF::R_X86_64_GOTPC64) { |
| 2244 | (void)allocateGOTEntries(no: 0); |
| 2245 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: Addend, Type: ELF::R_X86_64_PC64); |
| 2246 | } else if (RelType == ELF::R_X86_64_GOTOFF64) { |
| 2247 | // GOTOFF relocations ultimately require a section difference relocation. |
| 2248 | (void)allocateGOTEntries(no: 0); |
| 2249 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 2250 | } else if (RelType == ELF::R_X86_64_PC32) { |
| 2251 | Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); |
| 2252 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 2253 | } else if (RelType == ELF::R_X86_64_PC64) { |
| 2254 | Value.Addend += support::ulittle64_t::ref( |
| 2255 | computePlaceholderAddress(SectionID, Offset)); |
| 2256 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 2257 | } else if (RelType == ELF::R_X86_64_GOTTPOFF) { |
| 2258 | processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend); |
| 2259 | } else if (RelType == ELF::R_X86_64_TLSGD || |
| 2260 | RelType == ELF::R_X86_64_TLSLD) { |
| 2261 | // The next relocation must be the relocation for __tls_get_addr. |
| 2262 | ++RelI; |
| 2263 | auto &GetAddrRelocation = *RelI; |
| 2264 | processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend, |
| 2265 | GetAddrRelocation); |
| 2266 | } else { |
| 2267 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 2268 | } |
| 2269 | } else if (Arch == Triple::riscv32 || Arch == Triple::riscv64) { |
| 2270 | // *_LO12 relocation receive information about a symbol from the |
| 2271 | // corresponding *_HI20 relocation, so we have to collect this information |
| 2272 | // before resolving |
| 2273 | if (RelType == ELF::R_RISCV_GOT_HI20 || |
| 2274 | RelType == ELF::R_RISCV_PCREL_HI20 || |
| 2275 | RelType == ELF::R_RISCV_TPREL_HI20 || |
| 2276 | RelType == ELF::R_RISCV_TLS_GD_HI20 || |
| 2277 | RelType == ELF::R_RISCV_TLS_GOT_HI20) { |
| 2278 | RelocationEntry RE(SectionID, Offset, RelType, Addend); |
| 2279 | PendingRelocs.push_back(Elt: {Value, RE}); |
| 2280 | } |
| 2281 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 2282 | } else { |
| 2283 | if (Arch == Triple::x86) { |
| 2284 | Value.Addend += support::ulittle32_t::ref( |
| 2285 | computePlaceholderAddress(SectionID, Offset)); |
| 2286 | } |
| 2287 | processSimpleRelocation(SectionID, Offset, RelType, Value); |
| 2288 | } |
| 2289 | return ++RelI; |
| 2290 | } |
| 2291 | |
| 2292 | void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID, |
| 2293 | uint64_t Offset, |
| 2294 | RelocationValueRef Value, |
| 2295 | int64_t Addend) { |
| 2296 | // Use the approach from "x86-64 Linker Optimizations" from the TLS spec |
| 2297 | // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec |
| 2298 | // only mentions one optimization even though there are two different |
| 2299 | // code sequences for the Initial Exec TLS Model. We match the code to |
| 2300 | // find out which one was used. |
| 2301 | |
| 2302 | // A possible TLS code sequence and its replacement |
| 2303 | struct CodeSequence { |
| 2304 | // The expected code sequence |
| 2305 | ArrayRef<uint8_t> ExpectedCodeSequence; |
| 2306 | // The negative offset of the GOTTPOFF relocation to the beginning of |
| 2307 | // the sequence |
| 2308 | uint64_t TLSSequenceOffset; |
| 2309 | // The new code sequence |
| 2310 | ArrayRef<uint8_t> NewCodeSequence; |
| 2311 | // The offset of the new TPOFF relocation |
| 2312 | uint64_t TpoffRelocationOffset; |
| 2313 | }; |
| 2314 | |
| 2315 | std::array<CodeSequence, 2> CodeSequences; |
| 2316 | |
| 2317 | // Initial Exec Code Model Sequence |
| 2318 | { |
| 2319 | static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = { |
| 2320 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, |
| 2321 | 0x00, // mov %fs:0, %rax |
| 2322 | 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip), |
| 2323 | // %rax |
| 2324 | }; |
| 2325 | CodeSequences[0].ExpectedCodeSequence = |
| 2326 | ArrayRef<uint8_t>(ExpectedCodeSequenceList); |
| 2327 | CodeSequences[0].TLSSequenceOffset = 12; |
| 2328 | |
| 2329 | static const std::initializer_list<uint8_t> NewCodeSequenceList = { |
| 2330 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax |
| 2331 | 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax |
| 2332 | }; |
| 2333 | CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList); |
| 2334 | CodeSequences[0].TpoffRelocationOffset = 12; |
| 2335 | } |
| 2336 | |
| 2337 | // Initial Exec Code Model Sequence, II |
| 2338 | { |
| 2339 | static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = { |
| 2340 | 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax |
| 2341 | 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax |
| 2342 | }; |
| 2343 | CodeSequences[1].ExpectedCodeSequence = |
| 2344 | ArrayRef<uint8_t>(ExpectedCodeSequenceList); |
| 2345 | CodeSequences[1].TLSSequenceOffset = 3; |
| 2346 | |
| 2347 | static const std::initializer_list<uint8_t> NewCodeSequenceList = { |
| 2348 | 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop |
| 2349 | 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax |
| 2350 | }; |
| 2351 | CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList); |
| 2352 | CodeSequences[1].TpoffRelocationOffset = 10; |
| 2353 | } |
| 2354 | |
| 2355 | bool Resolved = false; |
| 2356 | auto &Section = Sections[SectionID]; |
| 2357 | for (const auto &C : CodeSequences) { |
| 2358 | assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() && |
| 2359 | "Old and new code sequences must have the same size" ); |
| 2360 | |
| 2361 | if (Offset < C.TLSSequenceOffset || |
| 2362 | (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) > |
| 2363 | Section.getSize()) { |
| 2364 | // This can't be a matching sequence as it doesn't fit in the current |
| 2365 | // section |
| 2366 | continue; |
| 2367 | } |
| 2368 | |
| 2369 | auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset; |
| 2370 | auto *TLSSequence = Section.getAddressWithOffset(OffsetBytes: TLSSequenceStartOffset); |
| 2371 | if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) != |
| 2372 | C.ExpectedCodeSequence) { |
| 2373 | continue; |
| 2374 | } |
| 2375 | |
| 2376 | memcpy(dest: TLSSequence, src: C.NewCodeSequence.data(), n: C.NewCodeSequence.size()); |
| 2377 | |
| 2378 | // The original GOTTPOFF relocation has an addend as it is PC relative, |
| 2379 | // so it needs to be corrected. The TPOFF32 relocation is used as an |
| 2380 | // absolute value (which is an offset from %fs:0), so remove the addend |
| 2381 | // again. |
| 2382 | RelocationEntry RE(SectionID, |
| 2383 | TLSSequenceStartOffset + C.TpoffRelocationOffset, |
| 2384 | ELF::R_X86_64_TPOFF32, Value.Addend - Addend); |
| 2385 | |
| 2386 | if (Value.SymbolName) |
| 2387 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 2388 | else |
| 2389 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 2390 | |
| 2391 | Resolved = true; |
| 2392 | break; |
| 2393 | } |
| 2394 | |
| 2395 | if (!Resolved) { |
| 2396 | // The GOTTPOFF relocation was not used in one of the sequences |
| 2397 | // described in the spec, so we can't optimize it to a TPOFF |
| 2398 | // relocation. |
| 2399 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
| 2400 | resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset: GOTOffset + Addend, |
| 2401 | Type: ELF::R_X86_64_PC32); |
| 2402 | RelocationEntry RE = |
| 2403 | computeGOTOffsetRE(GOTOffset, SymbolOffset: Value.Offset, Type: ELF::R_X86_64_TPOFF64); |
| 2404 | if (Value.SymbolName) |
| 2405 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 2406 | else |
| 2407 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 2408 | } |
| 2409 | } |
| 2410 | |
| 2411 | void RuntimeDyldELF::processX86_64TLSRelocation( |
| 2412 | unsigned SectionID, uint64_t Offset, uint64_t RelType, |
| 2413 | RelocationValueRef Value, int64_t Addend, |
| 2414 | const RelocationRef &GetAddrRelocation) { |
| 2415 | // Since we are statically linking and have no additional DSOs, we can resolve |
| 2416 | // the relocation directly without using __tls_get_addr. |
| 2417 | // Use the approach from "x86-64 Linker Optimizations" from the TLS spec |
| 2418 | // to replace it with the Local Exec relocation variant. |
| 2419 | |
| 2420 | // Find out whether the code was compiled with the large or small memory |
| 2421 | // model. For this we look at the next relocation which is the relocation |
| 2422 | // for the __tls_get_addr function. If it's a 32 bit relocation, it's the |
| 2423 | // small code model, with a 64 bit relocation it's the large code model. |
| 2424 | bool IsSmallCodeModel; |
| 2425 | // Is the relocation for the __tls_get_addr a PC-relative GOT relocation? |
| 2426 | bool IsGOTPCRel = false; |
| 2427 | |
| 2428 | switch (GetAddrRelocation.getType()) { |
| 2429 | case ELF::R_X86_64_GOTPCREL: |
| 2430 | case ELF::R_X86_64_REX_GOTPCRELX: |
| 2431 | case ELF::R_X86_64_GOTPCRELX: |
| 2432 | IsGOTPCRel = true; |
| 2433 | [[fallthrough]]; |
| 2434 | case ELF::R_X86_64_PLT32: |
| 2435 | IsSmallCodeModel = true; |
| 2436 | break; |
| 2437 | case ELF::R_X86_64_PLTOFF64: |
| 2438 | IsSmallCodeModel = false; |
| 2439 | break; |
| 2440 | default: |
| 2441 | report_fatal_error( |
| 2442 | reason: "invalid TLS relocations for General/Local Dynamic TLS Model: " |
| 2443 | "expected PLT or GOT relocation for __tls_get_addr function" ); |
| 2444 | } |
| 2445 | |
| 2446 | // The negative offset to the start of the TLS code sequence relative to |
| 2447 | // the offset of the TLSGD/TLSLD relocation |
| 2448 | uint64_t TLSSequenceOffset; |
| 2449 | // The expected start of the code sequence |
| 2450 | ArrayRef<uint8_t> ExpectedCodeSequence; |
| 2451 | // The new TLS code sequence that will replace the existing code |
| 2452 | ArrayRef<uint8_t> NewCodeSequence; |
| 2453 | |
| 2454 | if (RelType == ELF::R_X86_64_TLSGD) { |
| 2455 | // The offset of the new TPOFF32 relocation (offset starting from the |
| 2456 | // beginning of the whole TLS sequence) |
| 2457 | uint64_t TpoffRelocOffset; |
| 2458 | |
| 2459 | if (IsSmallCodeModel) { |
| 2460 | if (!IsGOTPCRel) { |
| 2461 | static const std::initializer_list<uint8_t> CodeSequence = { |
| 2462 | 0x66, // data16 (no-op prefix) |
| 2463 | 0x48, 0x8d, 0x3d, 0x00, 0x00, |
| 2464 | 0x00, 0x00, // lea <disp32>(%rip), %rdi |
| 2465 | 0x66, 0x66, // two data16 prefixes |
| 2466 | 0x48, // rex64 (no-op prefix) |
| 2467 | 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt |
| 2468 | }; |
| 2469 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
| 2470 | TLSSequenceOffset = 4; |
| 2471 | } else { |
| 2472 | // This code sequence is not described in the TLS spec but gcc |
| 2473 | // generates it sometimes. |
| 2474 | static const std::initializer_list<uint8_t> CodeSequence = { |
| 2475 | 0x66, // data16 (no-op prefix) |
| 2476 | 0x48, 0x8d, 0x3d, 0x00, 0x00, |
| 2477 | 0x00, 0x00, // lea <disp32>(%rip), %rdi |
| 2478 | 0x66, // data16 prefix (no-op prefix) |
| 2479 | 0x48, // rex64 (no-op prefix) |
| 2480 | 0xff, 0x15, 0x00, 0x00, 0x00, |
| 2481 | 0x00 // call *__tls_get_addr@gotpcrel(%rip) |
| 2482 | }; |
| 2483 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
| 2484 | TLSSequenceOffset = 4; |
| 2485 | } |
| 2486 | |
| 2487 | // The replacement code for the small code model. It's the same for |
| 2488 | // both sequences. |
| 2489 | static const std::initializer_list<uint8_t> SmallSequence = { |
| 2490 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, |
| 2491 | 0x00, // mov %fs:0, %rax |
| 2492 | 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), |
| 2493 | // %rax |
| 2494 | }; |
| 2495 | NewCodeSequence = ArrayRef<uint8_t>(SmallSequence); |
| 2496 | TpoffRelocOffset = 12; |
| 2497 | } else { |
| 2498 | static const std::initializer_list<uint8_t> CodeSequence = { |
| 2499 | 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip), |
| 2500 | // %rdi |
| 2501 | 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 2502 | 0x00, // movabs $__tls_get_addr@pltoff, %rax |
| 2503 | 0x48, 0x01, 0xd8, // add %rbx, %rax |
| 2504 | 0xff, 0xd0 // call *%rax |
| 2505 | }; |
| 2506 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
| 2507 | TLSSequenceOffset = 3; |
| 2508 | |
| 2509 | // The replacement code for the large code model |
| 2510 | static const std::initializer_list<uint8_t> LargeSequence = { |
| 2511 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, |
| 2512 | 0x00, // mov %fs:0, %rax |
| 2513 | 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax), |
| 2514 | // %rax |
| 2515 | 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1) |
| 2516 | }; |
| 2517 | NewCodeSequence = ArrayRef<uint8_t>(LargeSequence); |
| 2518 | TpoffRelocOffset = 12; |
| 2519 | } |
| 2520 | |
| 2521 | // The TLSGD/TLSLD relocations are PC-relative, so they have an addend. |
| 2522 | // The new TPOFF32 relocations is used as an absolute offset from |
| 2523 | // %fs:0, so remove the TLSGD/TLSLD addend again. |
| 2524 | RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset, |
| 2525 | ELF::R_X86_64_TPOFF32, Value.Addend - Addend); |
| 2526 | if (Value.SymbolName) |
| 2527 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 2528 | else |
| 2529 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 2530 | } else if (RelType == ELF::R_X86_64_TLSLD) { |
| 2531 | if (IsSmallCodeModel) { |
| 2532 | if (!IsGOTPCRel) { |
| 2533 | static const std::initializer_list<uint8_t> CodeSequence = { |
| 2534 | 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi |
| 2535 | 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt |
| 2536 | }; |
| 2537 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
| 2538 | TLSSequenceOffset = 3; |
| 2539 | |
| 2540 | // The replacement code for the small code model |
| 2541 | static const std::initializer_list<uint8_t> SmallSequence = { |
| 2542 | 0x66, 0x66, 0x66, // three data16 prefixes (no-op) |
| 2543 | 0x64, 0x48, 0x8b, 0x04, 0x25, |
| 2544 | 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax |
| 2545 | }; |
| 2546 | NewCodeSequence = ArrayRef<uint8_t>(SmallSequence); |
| 2547 | } else { |
| 2548 | // This code sequence is not described in the TLS spec but gcc |
| 2549 | // generates it sometimes. |
| 2550 | static const std::initializer_list<uint8_t> CodeSequence = { |
| 2551 | 0x48, 0x8d, 0x3d, 0x00, |
| 2552 | 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi |
| 2553 | 0xff, 0x15, 0x00, 0x00, |
| 2554 | 0x00, 0x00 // call |
| 2555 | // *__tls_get_addr@gotpcrel(%rip) |
| 2556 | }; |
| 2557 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
| 2558 | TLSSequenceOffset = 3; |
| 2559 | |
| 2560 | // The replacement is code is just like above but it needs to be |
| 2561 | // one byte longer. |
| 2562 | static const std::initializer_list<uint8_t> SmallSequence = { |
| 2563 | 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop |
| 2564 | 0x64, 0x48, 0x8b, 0x04, 0x25, |
| 2565 | 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax |
| 2566 | }; |
| 2567 | NewCodeSequence = ArrayRef<uint8_t>(SmallSequence); |
| 2568 | } |
| 2569 | } else { |
| 2570 | // This is the same sequence as for the TLSGD sequence with the large |
| 2571 | // memory model above |
| 2572 | static const std::initializer_list<uint8_t> CodeSequence = { |
| 2573 | 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip), |
| 2574 | // %rdi |
| 2575 | 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 2576 | 0x48, // movabs $__tls_get_addr@pltoff, %rax |
| 2577 | 0x01, 0xd8, // add %rbx, %rax |
| 2578 | 0xff, 0xd0 // call *%rax |
| 2579 | }; |
| 2580 | ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence); |
| 2581 | TLSSequenceOffset = 3; |
| 2582 | |
| 2583 | // The replacement code for the large code model |
| 2584 | static const std::initializer_list<uint8_t> LargeSequence = { |
| 2585 | 0x66, 0x66, 0x66, // three data16 prefixes (no-op) |
| 2586 | 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, |
| 2587 | 0x00, // 10 byte nop |
| 2588 | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax |
| 2589 | }; |
| 2590 | NewCodeSequence = ArrayRef<uint8_t>(LargeSequence); |
| 2591 | } |
| 2592 | } else { |
| 2593 | llvm_unreachable("both TLS relocations handled above" ); |
| 2594 | } |
| 2595 | |
| 2596 | assert(ExpectedCodeSequence.size() == NewCodeSequence.size() && |
| 2597 | "Old and new code sequences must have the same size" ); |
| 2598 | |
| 2599 | auto &Section = Sections[SectionID]; |
| 2600 | if (Offset < TLSSequenceOffset || |
| 2601 | (Offset - TLSSequenceOffset + NewCodeSequence.size()) > |
| 2602 | Section.getSize()) { |
| 2603 | report_fatal_error(reason: "unexpected end of section in TLS sequence" ); |
| 2604 | } |
| 2605 | |
| 2606 | auto *TLSSequence = Section.getAddressWithOffset(OffsetBytes: Offset - TLSSequenceOffset); |
| 2607 | if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) != |
| 2608 | ExpectedCodeSequence) { |
| 2609 | report_fatal_error( |
| 2610 | reason: "invalid TLS sequence for Global/Local Dynamic TLS Model" ); |
| 2611 | } |
| 2612 | |
| 2613 | memcpy(dest: TLSSequence, src: NewCodeSequence.data(), n: NewCodeSequence.size()); |
| 2614 | } |
| 2615 | |
| 2616 | size_t RuntimeDyldELF::getGOTEntrySize() { |
| 2617 | // We don't use the GOT in all of these cases, but it's essentially free |
| 2618 | // to put them all here. |
| 2619 | size_t Result = 0; |
| 2620 | switch (Arch) { |
| 2621 | case Triple::x86_64: |
| 2622 | case Triple::aarch64: |
| 2623 | case Triple::aarch64_be: |
| 2624 | case Triple::loongarch64: |
| 2625 | case Triple::ppc64: |
| 2626 | case Triple::ppc64le: |
| 2627 | case Triple::systemz: |
| 2628 | Result = sizeof(uint64_t); |
| 2629 | break; |
| 2630 | case Triple::x86: |
| 2631 | case Triple::arm: |
| 2632 | case Triple::thumb: |
| 2633 | Result = sizeof(uint32_t); |
| 2634 | break; |
| 2635 | case Triple::mips: |
| 2636 | case Triple::mipsel: |
| 2637 | case Triple::mips64: |
| 2638 | case Triple::mips64el: |
| 2639 | if (IsMipsO32ABI || IsMipsN32ABI) |
| 2640 | Result = sizeof(uint32_t); |
| 2641 | else if (IsMipsN64ABI) |
| 2642 | Result = sizeof(uint64_t); |
| 2643 | else |
| 2644 | llvm_unreachable("Mips ABI not handled" ); |
| 2645 | break; |
| 2646 | default: |
| 2647 | llvm_unreachable("Unsupported CPU type!" ); |
| 2648 | } |
| 2649 | return Result; |
| 2650 | } |
| 2651 | |
| 2652 | uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) { |
| 2653 | if (GOTSectionID == 0) { |
| 2654 | GOTSectionID = Sections.size(); |
| 2655 | // Reserve a section id. We'll allocate the section later |
| 2656 | // once we know the total size |
| 2657 | Sections.push_back(x: SectionEntry(".got" , nullptr, 0, 0, 0)); |
| 2658 | } |
| 2659 | uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize(); |
| 2660 | CurrentGOTIndex += no; |
| 2661 | return StartOffset; |
| 2662 | } |
| 2663 | |
| 2664 | uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value, |
| 2665 | unsigned GOTRelType) { |
| 2666 | auto E = GOTOffsetMap.insert(x: {Value, 0}); |
| 2667 | if (E.second) { |
| 2668 | uint64_t GOTOffset = allocateGOTEntries(no: 1); |
| 2669 | |
| 2670 | // Create relocation for newly created GOT entry |
| 2671 | RelocationEntry RE = |
| 2672 | computeGOTOffsetRE(GOTOffset, SymbolOffset: Value.Offset, Type: GOTRelType); |
| 2673 | if (Value.SymbolName) |
| 2674 | addRelocationForSymbol(RE, SymbolName: Value.SymbolName); |
| 2675 | else |
| 2676 | addRelocationForSection(RE, SectionID: Value.SectionID); |
| 2677 | |
| 2678 | E.first->second = GOTOffset; |
| 2679 | } |
| 2680 | |
| 2681 | return E.first->second; |
| 2682 | } |
| 2683 | |
| 2684 | void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, |
| 2685 | uint64_t Offset, |
| 2686 | uint64_t GOTOffset, |
| 2687 | uint32_t Type) { |
| 2688 | // Fill in the relative address of the GOT Entry into the stub |
| 2689 | RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset); |
| 2690 | addRelocationForSection(RE: GOTRE, SectionID: GOTSectionID); |
| 2691 | } |
| 2692 | |
| 2693 | RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset, |
| 2694 | uint64_t SymbolOffset, |
| 2695 | uint32_t Type) { |
| 2696 | return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset); |
| 2697 | } |
| 2698 | |
| 2699 | void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) { |
| 2700 | // This should never return an error as `processNewSymbol` wouldn't have been |
| 2701 | // called if getFlags() returned an error before. |
| 2702 | auto ObjSymbolFlags = cantFail(ValOrErr: ObjSymbol.getFlags()); |
| 2703 | |
| 2704 | if (ObjSymbolFlags & SymbolRef::SF_Indirect) { |
| 2705 | if (IFuncStubSectionID == 0) { |
| 2706 | // Create a dummy section for the ifunc stubs. It will be actually |
| 2707 | // allocated in finalizeLoad() below. |
| 2708 | IFuncStubSectionID = Sections.size(); |
| 2709 | Sections.push_back( |
| 2710 | x: SectionEntry(".text.__llvm_IFuncStubs" , nullptr, 0, 0, 0)); |
| 2711 | // First 64B are reserverd for the IFunc resolver |
| 2712 | IFuncStubOffset = 64; |
| 2713 | } |
| 2714 | |
| 2715 | IFuncStubs.push_back(Elt: IFuncStub{.StubOffset: IFuncStubOffset, .OriginalSymbol: Symbol}); |
| 2716 | // Modify the symbol so that it points to the ifunc stub instead of to the |
| 2717 | // resolver function. |
| 2718 | Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset, |
| 2719 | Symbol.getFlags()); |
| 2720 | IFuncStubOffset += getMaxIFuncStubSize(); |
| 2721 | } |
| 2722 | } |
| 2723 | |
| 2724 | Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, |
| 2725 | ObjSectionToIDMap &SectionMap) { |
| 2726 | if (IsMipsO32ABI) |
| 2727 | if (!PendingRelocs.empty()) |
| 2728 | return make_error<RuntimeDyldError>(Args: "Can't find matching LO16 reloc" ); |
| 2729 | |
| 2730 | // Create the IFunc stubs if necessary. This must be done before processing |
| 2731 | // the GOT entries, as the IFunc stubs may create some. |
| 2732 | if (IFuncStubSectionID != 0) { |
| 2733 | uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection( |
| 2734 | Size: IFuncStubOffset, Alignment: 1, SectionID: IFuncStubSectionID, SectionName: ".text.__llvm_IFuncStubs" ); |
| 2735 | if (!IFuncStubsAddr) |
| 2736 | return make_error<RuntimeDyldError>( |
| 2737 | Args: "Unable to allocate memory for IFunc stubs!" ); |
| 2738 | Sections[IFuncStubSectionID] = |
| 2739 | SectionEntry(".text.__llvm_IFuncStubs" , IFuncStubsAddr, IFuncStubOffset, |
| 2740 | IFuncStubOffset, 0); |
| 2741 | |
| 2742 | createIFuncResolver(Addr: IFuncStubsAddr); |
| 2743 | |
| 2744 | LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: " |
| 2745 | << IFuncStubSectionID << " Addr: " |
| 2746 | << Sections[IFuncStubSectionID].getAddress() << '\n'); |
| 2747 | for (auto &IFuncStub : IFuncStubs) { |
| 2748 | auto &Symbol = IFuncStub.OriginalSymbol; |
| 2749 | LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID() |
| 2750 | << " Offset: " << format("%p" , Symbol.getOffset()) |
| 2751 | << " IFuncStubOffset: " |
| 2752 | << format("%p\n" , IFuncStub.StubOffset)); |
| 2753 | createIFuncStub(IFuncStubSectionID, IFuncResolverOffset: 0, IFuncStubOffset: IFuncStub.StubOffset, |
| 2754 | IFuncSectionID: Symbol.getSectionID(), IFuncOffset: Symbol.getOffset()); |
| 2755 | } |
| 2756 | |
| 2757 | IFuncStubSectionID = 0; |
| 2758 | IFuncStubOffset = 0; |
| 2759 | IFuncStubs.clear(); |
| 2760 | } |
| 2761 | |
| 2762 | // If necessary, allocate the global offset table |
| 2763 | if (GOTSectionID != 0) { |
| 2764 | // Allocate memory for the section |
| 2765 | size_t TotalSize = CurrentGOTIndex * getGOTEntrySize(); |
| 2766 | uint8_t *Addr = MemMgr.allocateDataSection(Size: TotalSize, Alignment: getGOTEntrySize(), |
| 2767 | SectionID: GOTSectionID, SectionName: ".got" , IsReadOnly: false); |
| 2768 | if (!Addr) |
| 2769 | return make_error<RuntimeDyldError>(Args: "Unable to allocate memory for GOT!" ); |
| 2770 | |
| 2771 | Sections[GOTSectionID] = |
| 2772 | SectionEntry(".got" , Addr, TotalSize, TotalSize, 0); |
| 2773 | |
| 2774 | // For now, initialize all GOT entries to zero. We'll fill them in as |
| 2775 | // needed when GOT-based relocations are applied. |
| 2776 | memset(s: Addr, c: 0, n: TotalSize); |
| 2777 | if (IsMipsN32ABI || IsMipsN64ABI) { |
| 2778 | // To correctly resolve Mips GOT relocations, we need a mapping from |
| 2779 | // object's sections to GOTs. |
| 2780 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
| 2781 | SI != SE; ++SI) { |
| 2782 | if (SI->relocation_begin() != SI->relocation_end()) { |
| 2783 | Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); |
| 2784 | if (!RelSecOrErr) |
| 2785 | return make_error<RuntimeDyldError>( |
| 2786 | Args: toString(E: RelSecOrErr.takeError())); |
| 2787 | |
| 2788 | section_iterator RelocatedSection = *RelSecOrErr; |
| 2789 | ObjSectionToIDMap::iterator i = SectionMap.find(x: *RelocatedSection); |
| 2790 | assert(i != SectionMap.end()); |
| 2791 | SectionToGOTMap[i->second] = GOTSectionID; |
| 2792 | } |
| 2793 | } |
| 2794 | GOTSymbolOffsets.clear(); |
| 2795 | } |
| 2796 | } |
| 2797 | |
| 2798 | // Look for and record the EH frame section. |
| 2799 | ObjSectionToIDMap::iterator i, e; |
| 2800 | for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { |
| 2801 | const SectionRef &Section = i->first; |
| 2802 | |
| 2803 | StringRef Name; |
| 2804 | Expected<StringRef> NameOrErr = Section.getName(); |
| 2805 | if (NameOrErr) |
| 2806 | Name = *NameOrErr; |
| 2807 | else |
| 2808 | consumeError(Err: NameOrErr.takeError()); |
| 2809 | |
| 2810 | if (Name == ".eh_frame" ) { |
| 2811 | UnregisteredEHFrameSections.push_back(Elt: i->second); |
| 2812 | break; |
| 2813 | } |
| 2814 | } |
| 2815 | |
| 2816 | GOTOffsetMap.clear(); |
| 2817 | GOTSectionID = 0; |
| 2818 | CurrentGOTIndex = 0; |
| 2819 | |
| 2820 | return Error::success(); |
| 2821 | } |
| 2822 | |
| 2823 | bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { |
| 2824 | return Obj.isELF(); |
| 2825 | } |
| 2826 | |
| 2827 | void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const { |
| 2828 | if (Arch == Triple::x86_64) { |
| 2829 | // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8 |
| 2830 | // (see createIFuncStub() for details) |
| 2831 | // The following code first saves all registers that contain the original |
| 2832 | // function arguments as those registers are not saved by the resolver |
| 2833 | // function. %r11 is saved as well so that the GOT2 entry can be updated |
| 2834 | // afterwards. Then it calls the actual IFunc resolver function whose |
| 2835 | // address is stored in GOT2. After the resolver function returns, all |
| 2836 | // saved registers are restored and the return value is written to GOT1. |
| 2837 | // Finally, jump to the now resolved function. |
| 2838 | // clang-format off |
| 2839 | const uint8_t StubCode[] = { |
| 2840 | 0x57, // push %rdi |
| 2841 | 0x56, // push %rsi |
| 2842 | 0x52, // push %rdx |
| 2843 | 0x51, // push %rcx |
| 2844 | 0x41, 0x50, // push %r8 |
| 2845 | 0x41, 0x51, // push %r9 |
| 2846 | 0x41, 0x53, // push %r11 |
| 2847 | 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11) |
| 2848 | 0x41, 0x5b, // pop %r11 |
| 2849 | 0x41, 0x59, // pop %r9 |
| 2850 | 0x41, 0x58, // pop %r8 |
| 2851 | 0x59, // pop %rcx |
| 2852 | 0x5a, // pop %rdx |
| 2853 | 0x5e, // pop %rsi |
| 2854 | 0x5f, // pop %rdi |
| 2855 | 0x49, 0x89, 0x03, // mov %rax,(%r11) |
| 2856 | 0xff, 0xe0 // jmp *%rax |
| 2857 | }; |
| 2858 | // clang-format on |
| 2859 | static_assert(sizeof(StubCode) <= 64, |
| 2860 | "maximum size of the IFunc resolver is 64B" ); |
| 2861 | memcpy(dest: Addr, src: StubCode, n: sizeof(StubCode)); |
| 2862 | } else { |
| 2863 | report_fatal_error( |
| 2864 | reason: "IFunc resolver is not supported for target architecture" ); |
| 2865 | } |
| 2866 | } |
| 2867 | |
| 2868 | void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID, |
| 2869 | uint64_t IFuncResolverOffset, |
| 2870 | uint64_t IFuncStubOffset, |
| 2871 | unsigned IFuncSectionID, |
| 2872 | uint64_t IFuncOffset) { |
| 2873 | auto &IFuncStubSection = Sections[IFuncStubSectionID]; |
| 2874 | auto *Addr = IFuncStubSection.getAddressWithOffset(OffsetBytes: IFuncStubOffset); |
| 2875 | |
| 2876 | if (Arch == Triple::x86_64) { |
| 2877 | // The first instruction loads a PC-relative address into %r11 which is a |
| 2878 | // GOT entry for this stub. This initially contains the address to the |
| 2879 | // IFunc resolver. We can use %r11 here as it's caller saved but not used |
| 2880 | // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for |
| 2881 | // code in the PLT. The IFunc resolver will use %r11 to update the GOT |
| 2882 | // entry. |
| 2883 | // |
| 2884 | // The next instruction just jumps to the address contained in the GOT |
| 2885 | // entry. As mentioned above, we do this two-step jump by first setting |
| 2886 | // %r11 so that the IFunc resolver has access to it. |
| 2887 | // |
| 2888 | // The IFunc resolver of course also needs to know the actual address of |
| 2889 | // the actual IFunc resolver function. This will be stored in a GOT entry |
| 2890 | // right next to the first one for this stub. So, the IFunc resolver will |
| 2891 | // be able to call it with %r11+8. |
| 2892 | // |
| 2893 | // In total, two adjacent GOT entries (+relocation) and one additional |
| 2894 | // relocation are required: |
| 2895 | // GOT1: Address of the IFunc resolver. |
| 2896 | // GOT2: Address of the IFunc resolver function. |
| 2897 | // IFuncStubOffset+3: 32-bit PC-relative address of GOT1. |
| 2898 | uint64_t GOT1 = allocateGOTEntries(no: 2); |
| 2899 | uint64_t GOT2 = GOT1 + getGOTEntrySize(); |
| 2900 | |
| 2901 | RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64, |
| 2902 | IFuncResolverOffset, {}); |
| 2903 | addRelocationForSection(RE: RE1, SectionID: IFuncStubSectionID); |
| 2904 | RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {}); |
| 2905 | addRelocationForSection(RE: RE2, SectionID: IFuncSectionID); |
| 2906 | |
| 2907 | const uint8_t StubCode[] = { |
| 2908 | 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11 |
| 2909 | 0x41, 0xff, 0x23 // jmpq *(%r11) |
| 2910 | }; |
| 2911 | assert(sizeof(StubCode) <= getMaxIFuncStubSize() && |
| 2912 | "IFunc stub size must not exceed getMaxIFuncStubSize()" ); |
| 2913 | memcpy(dest: Addr, src: StubCode, n: sizeof(StubCode)); |
| 2914 | |
| 2915 | // The PC-relative value starts 4 bytes from the end of the leaq |
| 2916 | // instruction, so the addend is -4. |
| 2917 | resolveGOTOffsetRelocation(SectionID: IFuncStubSectionID, Offset: IFuncStubOffset + 3, |
| 2918 | GOTOffset: GOT1 - 4, Type: ELF::R_X86_64_PC32); |
| 2919 | } else { |
| 2920 | report_fatal_error(reason: "IFunc stub is not supported for target architecture" ); |
| 2921 | } |
| 2922 | } |
| 2923 | |
| 2924 | unsigned RuntimeDyldELF::getMaxIFuncStubSize() const { |
| 2925 | if (Arch == Triple::x86_64) { |
| 2926 | return 10; |
| 2927 | } |
| 2928 | return 0; |
| 2929 | } |
| 2930 | |
| 2931 | bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const { |
| 2932 | unsigned RelTy = R.getType(); |
| 2933 | if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) |
| 2934 | return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE || |
| 2935 | RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC; |
| 2936 | |
| 2937 | if (Arch == Triple::loongarch64) |
| 2938 | return RelTy == ELF::R_LARCH_GOT_PC_HI20 || |
| 2939 | RelTy == ELF::R_LARCH_GOT_PC_LO12; |
| 2940 | |
| 2941 | if (Arch == Triple::x86_64) |
| 2942 | return RelTy == ELF::R_X86_64_GOTPCREL || |
| 2943 | RelTy == ELF::R_X86_64_GOTPCRELX || |
| 2944 | RelTy == ELF::R_X86_64_GOT64 || |
| 2945 | RelTy == ELF::R_X86_64_REX_GOTPCRELX; |
| 2946 | return false; |
| 2947 | } |
| 2948 | |
| 2949 | bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const { |
| 2950 | if (Arch != Triple::x86_64) |
| 2951 | return true; // Conservative answer |
| 2952 | |
| 2953 | switch (R.getType()) { |
| 2954 | default: |
| 2955 | return true; // Conservative answer |
| 2956 | |
| 2957 | |
| 2958 | case ELF::R_X86_64_GOTPCREL: |
| 2959 | case ELF::R_X86_64_GOTPCRELX: |
| 2960 | case ELF::R_X86_64_REX_GOTPCRELX: |
| 2961 | case ELF::R_X86_64_GOTPC64: |
| 2962 | case ELF::R_X86_64_GOT64: |
| 2963 | case ELF::R_X86_64_GOTOFF64: |
| 2964 | case ELF::R_X86_64_PC32: |
| 2965 | case ELF::R_X86_64_PC64: |
| 2966 | case ELF::R_X86_64_64: |
| 2967 | // We know that these reloation types won't need a stub function. This list |
| 2968 | // can be extended as needed. |
| 2969 | return false; |
| 2970 | } |
| 2971 | } |
| 2972 | |
| 2973 | } // namespace llvm |
| 2974 | |