| 1 | //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Run a basic correctness check on the IR to ensure that Safepoints - if |
| 10 | // they've been inserted - were inserted correctly. In particular, look for use |
| 11 | // of non-relocated values after a safepoint. It's primary use is to check the |
| 12 | // correctness of safepoint insertion immediately after insertion, but it can |
| 13 | // also be used to verify that later transforms have not found a way to break |
| 14 | // safepoint semenatics. |
| 15 | // |
| 16 | // In its current form, this verify checks a property which is sufficient, but |
| 17 | // not neccessary for correctness. There are some cases where an unrelocated |
| 18 | // pointer can be used after the safepoint. Consider this example: |
| 19 | // |
| 20 | // a = ... |
| 21 | // b = ... |
| 22 | // (a',b') = safepoint(a,b) |
| 23 | // c = cmp eq a b |
| 24 | // br c, ..., .... |
| 25 | // |
| 26 | // Because it is valid to reorder 'c' above the safepoint, this is legal. In |
| 27 | // practice, this is a somewhat uncommon transform, but CodeGenPrep does create |
| 28 | // idioms like this. The verifier knows about these cases and avoids reporting |
| 29 | // false positives. |
| 30 | // |
| 31 | //===----------------------------------------------------------------------===// |
| 32 | |
| 33 | #include "llvm/IR/SafepointIRVerifier.h" |
| 34 | #include "llvm/ADT/DenseSet.h" |
| 35 | #include "llvm/ADT/PostOrderIterator.h" |
| 36 | #include "llvm/ADT/SetOperations.h" |
| 37 | #include "llvm/ADT/SetVector.h" |
| 38 | #include "llvm/IR/BasicBlock.h" |
| 39 | #include "llvm/IR/Dominators.h" |
| 40 | #include "llvm/IR/Function.h" |
| 41 | #include "llvm/IR/InstrTypes.h" |
| 42 | #include "llvm/IR/Instructions.h" |
| 43 | #include "llvm/IR/Statepoint.h" |
| 44 | #include "llvm/IR/Value.h" |
| 45 | #include "llvm/InitializePasses.h" |
| 46 | #include "llvm/Support/Allocator.h" |
| 47 | #include "llvm/Support/CommandLine.h" |
| 48 | #include "llvm/Support/Debug.h" |
| 49 | #include "llvm/Support/raw_ostream.h" |
| 50 | |
| 51 | #define DEBUG_TYPE "safepoint-ir-verifier" |
| 52 | |
| 53 | using namespace llvm; |
| 54 | |
| 55 | /// This option is used for writing test cases. Instead of crashing the program |
| 56 | /// when verification fails, report a message to the console (for FileCheck |
| 57 | /// usage) and continue execution as if nothing happened. |
| 58 | static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only" , |
| 59 | cl::init(Val: false)); |
| 60 | |
| 61 | namespace { |
| 62 | |
| 63 | /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set |
| 64 | /// of blocks unreachable from entry then propagates deadness using foldable |
| 65 | /// conditional branches without modifying CFG. So GVN does but it changes CFG |
| 66 | /// by splitting critical edges. In most cases passes rely on SimplifyCFG to |
| 67 | /// clean up dead blocks, but in some cases, like verification or loop passes |
| 68 | /// it's not possible. |
| 69 | class CFGDeadness { |
| 70 | const DominatorTree *DT = nullptr; |
| 71 | SetVector<const BasicBlock *> DeadBlocks; |
| 72 | SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks. |
| 73 | |
| 74 | public: |
| 75 | /// Return the edge that coresponds to the predecessor. |
| 76 | static const Use& getEdge(const_pred_iterator &PredIt) { |
| 77 | auto &PU = PredIt.getUse(); |
| 78 | return PU.getUser()->getOperandUse(i: PU.getOperandNo()); |
| 79 | } |
| 80 | |
| 81 | /// Return true if there is at least one live edge that corresponds to the |
| 82 | /// basic block InBB listed in the phi node. |
| 83 | bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const { |
| 84 | assert(!isDeadBlock(InBB) && "block must be live" ); |
| 85 | const BasicBlock* BB = PN->getParent(); |
| 86 | bool Listed = false; |
| 87 | for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { |
| 88 | if (InBB == *PredIt) { |
| 89 | if (!isDeadEdge(U: &getEdge(PredIt))) |
| 90 | return true; |
| 91 | Listed = true; |
| 92 | } |
| 93 | } |
| 94 | (void)Listed; |
| 95 | assert(Listed && "basic block is not found among incoming blocks" ); |
| 96 | return false; |
| 97 | } |
| 98 | |
| 99 | |
| 100 | bool isDeadBlock(const BasicBlock *BB) const { |
| 101 | return DeadBlocks.count(key: BB); |
| 102 | } |
| 103 | |
| 104 | bool isDeadEdge(const Use *U) const { |
| 105 | assert(cast<Instruction>(U->getUser())->isTerminator() && |
| 106 | "edge must be operand of terminator" ); |
| 107 | assert(cast_or_null<BasicBlock>(U->get()) && |
| 108 | "edge must refer to basic block" ); |
| 109 | assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) && |
| 110 | "isDeadEdge() must be applied to edge from live block" ); |
| 111 | return DeadEdges.count(key: U); |
| 112 | } |
| 113 | |
| 114 | bool hasLiveIncomingEdges(const BasicBlock *BB) const { |
| 115 | // Check if all incoming edges are dead. |
| 116 | for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { |
| 117 | auto &PU = PredIt.getUse(); |
| 118 | const Use &U = PU.getUser()->getOperandUse(i: PU.getOperandNo()); |
| 119 | if (!isDeadBlock(BB: *PredIt) && !isDeadEdge(U: &U)) |
| 120 | return true; // Found a live edge. |
| 121 | } |
| 122 | return false; |
| 123 | } |
| 124 | |
| 125 | void processFunction(const Function &F, const DominatorTree &DT) { |
| 126 | this->DT = &DT; |
| 127 | |
| 128 | // Start with all blocks unreachable from entry. |
| 129 | for (const BasicBlock &BB : F) |
| 130 | if (!DT.isReachableFromEntry(A: &BB)) |
| 131 | DeadBlocks.insert(X: &BB); |
| 132 | |
| 133 | // Top-down walk of the dominator tree |
| 134 | ReversePostOrderTraversal<const Function *> RPOT(&F); |
| 135 | for (const BasicBlock *BB : RPOT) { |
| 136 | const Instruction *TI = BB->getTerminator(); |
| 137 | assert(TI && "blocks must be well formed" ); |
| 138 | |
| 139 | // For conditional branches, we can perform simple conditional propagation on |
| 140 | // the condition value itself. |
| 141 | const BranchInst *BI = dyn_cast<BranchInst>(Val: TI); |
| 142 | if (!BI || !BI->isConditional() || !isa<Constant>(Val: BI->getCondition())) |
| 143 | continue; |
| 144 | |
| 145 | // If a branch has two identical successors, we cannot declare either dead. |
| 146 | if (BI->getSuccessor(i: 0) == BI->getSuccessor(i: 1)) |
| 147 | continue; |
| 148 | |
| 149 | ConstantInt *Cond = dyn_cast<ConstantInt>(Val: BI->getCondition()); |
| 150 | if (!Cond) |
| 151 | continue; |
| 152 | |
| 153 | addDeadEdge(DeadEdge: BI->getOperandUse(i: Cond->getZExtValue() ? 1 : 2)); |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | protected: |
| 158 | void addDeadBlock(const BasicBlock *BB) { |
| 159 | SmallVector<const BasicBlock *, 4> NewDead; |
| 160 | |
| 161 | NewDead.push_back(Elt: BB); |
| 162 | while (!NewDead.empty()) { |
| 163 | const BasicBlock *D = NewDead.pop_back_val(); |
| 164 | if (isDeadBlock(BB: D)) |
| 165 | continue; |
| 166 | |
| 167 | // All blocks dominated by D are dead. |
| 168 | SmallVector<BasicBlock *, 8> Dom; |
| 169 | DT->getDescendants(R: const_cast<BasicBlock*>(D), Result&: Dom); |
| 170 | // Do not need to mark all in and out edges dead |
| 171 | // because BB is marked dead and this is enough |
| 172 | // to run further. |
| 173 | DeadBlocks.insert_range(R&: Dom); |
| 174 | |
| 175 | // Figure out the dominance-frontier(D). |
| 176 | for (BasicBlock *B : Dom) |
| 177 | for (BasicBlock *S : successors(BB: B)) |
| 178 | if (!isDeadBlock(BB: S) && !hasLiveIncomingEdges(BB: S)) |
| 179 | NewDead.push_back(Elt: S); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | void addDeadEdge(const Use &DeadEdge) { |
| 184 | if (!DeadEdges.insert(X: &DeadEdge)) |
| 185 | return; |
| 186 | |
| 187 | BasicBlock *BB = cast_or_null<BasicBlock>(Val: DeadEdge.get()); |
| 188 | if (hasLiveIncomingEdges(BB)) |
| 189 | return; |
| 190 | |
| 191 | addDeadBlock(BB); |
| 192 | } |
| 193 | }; |
| 194 | } // namespace |
| 195 | |
| 196 | static void Verify(const Function &F, const DominatorTree &DT, |
| 197 | const CFGDeadness &CD); |
| 198 | |
| 199 | namespace llvm { |
| 200 | PreservedAnalyses SafepointIRVerifierPass::run(Function &F, |
| 201 | FunctionAnalysisManager &AM) { |
| 202 | const auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 203 | CFGDeadness CD; |
| 204 | CD.processFunction(F, DT); |
| 205 | Verify(F, DT, CD); |
| 206 | return PreservedAnalyses::all(); |
| 207 | } |
| 208 | } // namespace llvm |
| 209 | |
| 210 | namespace { |
| 211 | |
| 212 | struct SafepointIRVerifier : public FunctionPass { |
| 213 | static char ID; // Pass identification, replacement for typeid |
| 214 | SafepointIRVerifier() : FunctionPass(ID) { |
| 215 | initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry()); |
| 216 | } |
| 217 | |
| 218 | bool runOnFunction(Function &F) override { |
| 219 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 220 | CFGDeadness CD; |
| 221 | CD.processFunction(F, DT); |
| 222 | Verify(F, DT, CD); |
| 223 | return false; // no modifications |
| 224 | } |
| 225 | |
| 226 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 227 | AU.addRequiredID(ID&: DominatorTreeWrapperPass::ID); |
| 228 | AU.setPreservesAll(); |
| 229 | } |
| 230 | |
| 231 | StringRef getPassName() const override { return "safepoint verifier" ; } |
| 232 | }; |
| 233 | } // namespace |
| 234 | |
| 235 | void llvm::verifySafepointIR(Function &F) { |
| 236 | SafepointIRVerifier pass; |
| 237 | pass.runOnFunction(F); |
| 238 | } |
| 239 | |
| 240 | char SafepointIRVerifier::ID = 0; |
| 241 | |
| 242 | FunctionPass *llvm::createSafepointIRVerifierPass() { |
| 243 | return new SafepointIRVerifier(); |
| 244 | } |
| 245 | |
| 246 | INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir" , |
| 247 | "Safepoint IR Verifier" , false, false) |
| 248 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 249 | INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir" , |
| 250 | "Safepoint IR Verifier" , false, false) |
| 251 | |
| 252 | static bool isGCPointerType(Type *T) { |
| 253 | if (auto *PT = dyn_cast<PointerType>(Val: T)) |
| 254 | // For the sake of this example GC, we arbitrarily pick addrspace(1) as our |
| 255 | // GC managed heap. We know that a pointer into this heap needs to be |
| 256 | // updated and that no other pointer does. |
| 257 | return (1 == PT->getAddressSpace()); |
| 258 | return false; |
| 259 | } |
| 260 | |
| 261 | static bool containsGCPtrType(Type *Ty) { |
| 262 | if (isGCPointerType(T: Ty)) |
| 263 | return true; |
| 264 | if (VectorType *VT = dyn_cast<VectorType>(Val: Ty)) |
| 265 | return isGCPointerType(T: VT->getScalarType()); |
| 266 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: Ty)) |
| 267 | return containsGCPtrType(Ty: AT->getElementType()); |
| 268 | if (StructType *ST = dyn_cast<StructType>(Val: Ty)) |
| 269 | return llvm::any_of(Range: ST->elements(), P: containsGCPtrType); |
| 270 | return false; |
| 271 | } |
| 272 | |
| 273 | // Debugging aid -- prints a [Begin, End) range of values. |
| 274 | template<typename IteratorTy> |
| 275 | static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) { |
| 276 | OS << "[ " ; |
| 277 | while (Begin != End) { |
| 278 | OS << **Begin << " " ; |
| 279 | ++Begin; |
| 280 | } |
| 281 | OS << "]" ; |
| 282 | } |
| 283 | |
| 284 | /// The verifier algorithm is phrased in terms of availability. The set of |
| 285 | /// values "available" at a given point in the control flow graph is the set of |
| 286 | /// correctly relocated value at that point, and is a subset of the set of |
| 287 | /// definitions dominating that point. |
| 288 | |
| 289 | using AvailableValueSet = DenseSet<const Value *>; |
| 290 | |
| 291 | namespace { |
| 292 | /// State we compute and track per basic block. |
| 293 | struct BasicBlockState { |
| 294 | // Set of values available coming in, before the phi nodes |
| 295 | AvailableValueSet AvailableIn; |
| 296 | |
| 297 | // Set of values available going out |
| 298 | AvailableValueSet AvailableOut; |
| 299 | |
| 300 | // AvailableOut minus AvailableIn. |
| 301 | // All elements are Instructions |
| 302 | AvailableValueSet Contribution; |
| 303 | |
| 304 | // True if this block contains a safepoint and thus AvailableIn does not |
| 305 | // contribute to AvailableOut. |
| 306 | bool Cleared = false; |
| 307 | }; |
| 308 | } // namespace |
| 309 | |
| 310 | /// A given derived pointer can have multiple base pointers through phi/selects. |
| 311 | /// This type indicates when the base pointer is exclusively constant |
| 312 | /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively |
| 313 | /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is |
| 314 | /// NonConstant. |
| 315 | enum BaseType { |
| 316 | NonConstant = 1, // Base pointers is not exclusively constant. |
| 317 | ExclusivelyNull, |
| 318 | ExclusivelySomeConstant // Base pointers for a given derived pointer is from a |
| 319 | // set of constants, but they are not exclusively |
| 320 | // null. |
| 321 | }; |
| 322 | |
| 323 | /// Return the baseType for Val which states whether Val is exclusively |
| 324 | /// derived from constant/null, or not exclusively derived from constant. |
| 325 | /// Val is exclusively derived off a constant base when all operands of phi and |
| 326 | /// selects are derived off a constant base. |
| 327 | static enum BaseType getBaseType(const Value *Val) { |
| 328 | |
| 329 | SmallVector<const Value *, 32> Worklist; |
| 330 | DenseSet<const Value *> Visited; |
| 331 | bool isExclusivelyDerivedFromNull = true; |
| 332 | Worklist.push_back(Elt: Val); |
| 333 | // Strip through all the bitcasts and geps to get base pointer. Also check for |
| 334 | // the exclusive value when there can be multiple base pointers (through phis |
| 335 | // or selects). |
| 336 | while(!Worklist.empty()) { |
| 337 | const Value *V = Worklist.pop_back_val(); |
| 338 | if (!Visited.insert(V).second) |
| 339 | continue; |
| 340 | |
| 341 | if (const auto *CI = dyn_cast<CastInst>(Val: V)) { |
| 342 | Worklist.push_back(Elt: CI->stripPointerCasts()); |
| 343 | continue; |
| 344 | } |
| 345 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(Val: V)) { |
| 346 | Worklist.push_back(Elt: GEP->getPointerOperand()); |
| 347 | continue; |
| 348 | } |
| 349 | // Push all the incoming values of phi node into the worklist for |
| 350 | // processing. |
| 351 | if (const auto *PN = dyn_cast<PHINode>(Val: V)) { |
| 352 | append_range(C&: Worklist, R: PN->incoming_values()); |
| 353 | continue; |
| 354 | } |
| 355 | if (const auto *SI = dyn_cast<SelectInst>(Val: V)) { |
| 356 | // Push in the true and false values |
| 357 | Worklist.push_back(Elt: SI->getTrueValue()); |
| 358 | Worklist.push_back(Elt: SI->getFalseValue()); |
| 359 | continue; |
| 360 | } |
| 361 | if (const auto *GCRelocate = dyn_cast<GCRelocateInst>(Val: V)) { |
| 362 | // GCRelocates do not change null-ness or constant-ness of the value. |
| 363 | // So we can continue with derived pointer this instruction relocates. |
| 364 | Worklist.push_back(Elt: GCRelocate->getDerivedPtr()); |
| 365 | continue; |
| 366 | } |
| 367 | if (const auto *FI = dyn_cast<FreezeInst>(Val: V)) { |
| 368 | // Freeze does not change null-ness or constant-ness of the value. |
| 369 | Worklist.push_back(Elt: FI->getOperand(i_nocapture: 0)); |
| 370 | continue; |
| 371 | } |
| 372 | if (isa<Constant>(Val: V)) { |
| 373 | // We found at least one base pointer which is non-null, so this derived |
| 374 | // pointer is not exclusively derived from null. |
| 375 | if (V != Constant::getNullValue(Ty: V->getType())) |
| 376 | isExclusivelyDerivedFromNull = false; |
| 377 | // Continue processing the remaining values to make sure it's exclusively |
| 378 | // constant. |
| 379 | continue; |
| 380 | } |
| 381 | // At this point, we know that the base pointer is not exclusively |
| 382 | // constant. |
| 383 | return BaseType::NonConstant; |
| 384 | } |
| 385 | // Now, we know that the base pointer is exclusively constant, but we need to |
| 386 | // differentiate between exclusive null constant and non-null constant. |
| 387 | return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull |
| 388 | : BaseType::ExclusivelySomeConstant; |
| 389 | } |
| 390 | |
| 391 | static bool isNotExclusivelyConstantDerived(const Value *V) { |
| 392 | return getBaseType(Val: V) == BaseType::NonConstant; |
| 393 | } |
| 394 | |
| 395 | namespace { |
| 396 | class InstructionVerifier; |
| 397 | |
| 398 | /// Builds BasicBlockState for each BB of the function. |
| 399 | /// It can traverse function for verification and provides all required |
| 400 | /// information. |
| 401 | /// |
| 402 | /// GC pointer may be in one of three states: relocated, unrelocated and |
| 403 | /// poisoned. |
| 404 | /// Relocated pointer may be used without any restrictions. |
| 405 | /// Unrelocated pointer cannot be dereferenced, passed as argument to any call |
| 406 | /// or returned. Unrelocated pointer may be safely compared against another |
| 407 | /// unrelocated pointer or against a pointer exclusively derived from null. |
| 408 | /// Poisoned pointers are produced when we somehow derive pointer from relocated |
| 409 | /// and unrelocated pointers (e.g. phi, select). This pointers may be safely |
| 410 | /// used in a very limited number of situations. Currently the only way to use |
| 411 | /// it is comparison against constant exclusively derived from null. All |
| 412 | /// limitations arise due to their undefined state: this pointers should be |
| 413 | /// treated as relocated and unrelocated simultaneously. |
| 414 | /// Rules of deriving: |
| 415 | /// R + U = P - that's where the poisoned pointers come from |
| 416 | /// P + X = P |
| 417 | /// U + U = U |
| 418 | /// R + R = R |
| 419 | /// X + C = X |
| 420 | /// Where "+" - any operation that somehow derive pointer, U - unrelocated, |
| 421 | /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or |
| 422 | /// nothing (in case when "+" is unary operation). |
| 423 | /// Deriving of pointers by itself is always safe. |
| 424 | /// NOTE: when we are making decision on the status of instruction's result: |
| 425 | /// a) for phi we need to check status of each input *at the end of |
| 426 | /// corresponding predecessor BB*. |
| 427 | /// b) for other instructions we need to check status of each input *at the |
| 428 | /// current point*. |
| 429 | /// |
| 430 | /// FIXME: This works fairly well except one case |
| 431 | /// bb1: |
| 432 | /// p = *some GC-ptr def* |
| 433 | /// p1 = gep p, offset |
| 434 | /// / | |
| 435 | /// / | |
| 436 | /// bb2: | |
| 437 | /// safepoint | |
| 438 | /// \ | |
| 439 | /// \ | |
| 440 | /// bb3: |
| 441 | /// p2 = phi [p, bb2] [p1, bb1] |
| 442 | /// p3 = phi [p, bb2] [p, bb1] |
| 443 | /// here p and p1 is unrelocated |
| 444 | /// p2 and p3 is poisoned (though they shouldn't be) |
| 445 | /// |
| 446 | /// This leads to some weird results: |
| 447 | /// cmp eq p, p2 - illegal instruction (false-positive) |
| 448 | /// cmp eq p1, p2 - illegal instruction (false-positive) |
| 449 | /// cmp eq p, p3 - illegal instruction (false-positive) |
| 450 | /// cmp eq p, p1 - ok |
| 451 | /// To fix this we need to introduce conception of generations and be able to |
| 452 | /// check if two values belong to one generation or not. This way p2 will be |
| 453 | /// considered to be unrelocated and no false alarm will happen. |
| 454 | class GCPtrTracker { |
| 455 | const Function &F; |
| 456 | const CFGDeadness &CD; |
| 457 | SpecificBumpPtrAllocator<BasicBlockState> BSAllocator; |
| 458 | DenseMap<const BasicBlock *, BasicBlockState *> BlockMap; |
| 459 | // This set contains defs of unrelocated pointers that are proved to be legal |
| 460 | // and don't need verification. |
| 461 | DenseSet<const Instruction *> ValidUnrelocatedDefs; |
| 462 | // This set contains poisoned defs. They can be safely ignored during |
| 463 | // verification too. |
| 464 | DenseSet<const Value *> PoisonedDefs; |
| 465 | |
| 466 | public: |
| 467 | GCPtrTracker(const Function &F, const DominatorTree &DT, |
| 468 | const CFGDeadness &CD); |
| 469 | |
| 470 | bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const { |
| 471 | return CD.hasLiveIncomingEdge(PN, InBB); |
| 472 | } |
| 473 | |
| 474 | BasicBlockState *getBasicBlockState(const BasicBlock *BB); |
| 475 | const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const; |
| 476 | |
| 477 | bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); } |
| 478 | |
| 479 | /// Traverse each BB of the function and call |
| 480 | /// InstructionVerifier::verifyInstruction for each possibly invalid |
| 481 | /// instruction. |
| 482 | /// It destructively modifies GCPtrTracker so it's passed via rvalue reference |
| 483 | /// in order to prohibit further usages of GCPtrTracker as it'll be in |
| 484 | /// inconsistent state. |
| 485 | static void verifyFunction(GCPtrTracker &&Tracker, |
| 486 | InstructionVerifier &Verifier); |
| 487 | |
| 488 | /// Returns true for reachable and live blocks. |
| 489 | bool isMapped(const BasicBlock *BB) const { return BlockMap.contains(Val: BB); } |
| 490 | |
| 491 | private: |
| 492 | /// Returns true if the instruction may be safely skipped during verification. |
| 493 | bool instructionMayBeSkipped(const Instruction *I) const; |
| 494 | |
| 495 | /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for |
| 496 | /// each of them until it converges. |
| 497 | void recalculateBBsStates(); |
| 498 | |
| 499 | /// Remove from Contribution all defs that legally produce unrelocated |
| 500 | /// pointers and saves them to ValidUnrelocatedDefs. |
| 501 | /// Though Contribution should belong to BBS it is passed separately with |
| 502 | /// different const-modifier in order to emphasize (and guarantee) that only |
| 503 | /// Contribution will be changed. |
| 504 | /// Returns true if Contribution was changed otherwise false. |
| 505 | bool removeValidUnrelocatedDefs(const BasicBlock *BB, |
| 506 | const BasicBlockState *BBS, |
| 507 | AvailableValueSet &Contribution); |
| 508 | |
| 509 | /// Gather all the definitions dominating the start of BB into Result. This is |
| 510 | /// simply the defs introduced by every dominating basic block and the |
| 511 | /// function arguments. |
| 512 | void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result, |
| 513 | const DominatorTree &DT); |
| 514 | |
| 515 | /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS, |
| 516 | /// which is the BasicBlockState for BB. |
| 517 | /// ContributionChanged is set when the verifier runs for the first time |
| 518 | /// (in this case Contribution was changed from 'empty' to its initial state) |
| 519 | /// or when Contribution of this BB was changed since last computation. |
| 520 | static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS, |
| 521 | bool ContributionChanged); |
| 522 | |
| 523 | /// Model the effect of an instruction on the set of available values. |
| 524 | static void transferInstruction(const Instruction &I, bool &Cleared, |
| 525 | AvailableValueSet &Available); |
| 526 | }; |
| 527 | |
| 528 | /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the |
| 529 | /// instruction (which uses heap reference) is legal or not, given our safepoint |
| 530 | /// semantics. |
| 531 | class InstructionVerifier { |
| 532 | bool AnyInvalidUses = false; |
| 533 | |
| 534 | public: |
| 535 | void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I, |
| 536 | const AvailableValueSet &AvailableSet); |
| 537 | |
| 538 | bool hasAnyInvalidUses() const { return AnyInvalidUses; } |
| 539 | |
| 540 | private: |
| 541 | void reportInvalidUse(const Value &V, const Instruction &I); |
| 542 | }; |
| 543 | } // end anonymous namespace |
| 544 | |
| 545 | GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT, |
| 546 | const CFGDeadness &CD) : F(F), CD(CD) { |
| 547 | // Calculate Contribution of each live BB. |
| 548 | // Allocate BB states for live blocks. |
| 549 | for (const BasicBlock &BB : F) |
| 550 | if (!CD.isDeadBlock(BB: &BB)) { |
| 551 | BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState; |
| 552 | for (const auto &I : BB) |
| 553 | transferInstruction(I, Cleared&: BBS->Cleared, Available&: BBS->Contribution); |
| 554 | BlockMap[&BB] = BBS; |
| 555 | } |
| 556 | |
| 557 | // Initialize AvailableIn/Out sets of each BB using only information about |
| 558 | // dominating BBs. |
| 559 | for (auto &BBI : BlockMap) { |
| 560 | gatherDominatingDefs(BB: BBI.first, Result&: BBI.second->AvailableIn, DT); |
| 561 | transferBlock(BB: BBI.first, BBS&: *BBI.second, ContributionChanged: true); |
| 562 | } |
| 563 | |
| 564 | // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out |
| 565 | // sets of each BB until it converges. If any def is proved to be an |
| 566 | // unrelocated pointer, it will be removed from all BBSs. |
| 567 | recalculateBBsStates(); |
| 568 | } |
| 569 | |
| 570 | BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) { |
| 571 | return BlockMap.lookup(Val: BB); |
| 572 | } |
| 573 | |
| 574 | const BasicBlockState *GCPtrTracker::getBasicBlockState( |
| 575 | const BasicBlock *BB) const { |
| 576 | return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB); |
| 577 | } |
| 578 | |
| 579 | bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const { |
| 580 | // Poisoned defs are skipped since they are always safe by itself by |
| 581 | // definition (for details see comment to this class). |
| 582 | return ValidUnrelocatedDefs.count(V: I) || PoisonedDefs.count(V: I); |
| 583 | } |
| 584 | |
| 585 | void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker, |
| 586 | InstructionVerifier &Verifier) { |
| 587 | // We need RPO here to a) report always the first error b) report errors in |
| 588 | // same order from run to run. |
| 589 | ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F); |
| 590 | for (const BasicBlock *BB : RPOT) { |
| 591 | BasicBlockState *BBS = Tracker.getBasicBlockState(BB); |
| 592 | if (!BBS) |
| 593 | continue; |
| 594 | |
| 595 | // We destructively modify AvailableIn as we traverse the block instruction |
| 596 | // by instruction. |
| 597 | AvailableValueSet &AvailableSet = BBS->AvailableIn; |
| 598 | for (const Instruction &I : *BB) { |
| 599 | if (Tracker.instructionMayBeSkipped(I: &I)) |
| 600 | continue; // This instruction shouldn't be added to AvailableSet. |
| 601 | |
| 602 | Verifier.verifyInstruction(Tracker: &Tracker, I, AvailableSet); |
| 603 | |
| 604 | // Model the effect of current instruction on AvailableSet to keep the set |
| 605 | // relevant at each point of BB. |
| 606 | bool Cleared = false; |
| 607 | transferInstruction(I, Cleared, Available&: AvailableSet); |
| 608 | (void)Cleared; |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | void GCPtrTracker::recalculateBBsStates() { |
| 614 | // TODO: This order is suboptimal, it's better to replace it with priority |
| 615 | // queue where priority is RPO number of BB. |
| 616 | SetVector<const BasicBlock *> Worklist(llvm::from_range, |
| 617 | llvm::make_first_range(c&: BlockMap)); |
| 618 | |
| 619 | // This loop iterates the AvailableIn/Out sets until it converges. |
| 620 | // The AvailableIn and AvailableOut sets decrease as we iterate. |
| 621 | while (!Worklist.empty()) { |
| 622 | const BasicBlock *BB = Worklist.pop_back_val(); |
| 623 | BasicBlockState *BBS = getBasicBlockState(BB); |
| 624 | if (!BBS) |
| 625 | continue; // Ignore dead successors. |
| 626 | |
| 627 | size_t OldInCount = BBS->AvailableIn.size(); |
| 628 | for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { |
| 629 | const BasicBlock *PBB = *PredIt; |
| 630 | BasicBlockState *PBBS = getBasicBlockState(BB: PBB); |
| 631 | if (PBBS && !CD.isDeadEdge(U: &CFGDeadness::getEdge(PredIt))) |
| 632 | set_intersect(S1&: BBS->AvailableIn, S2: PBBS->AvailableOut); |
| 633 | } |
| 634 | |
| 635 | assert(OldInCount >= BBS->AvailableIn.size() && "invariant!" ); |
| 636 | |
| 637 | bool InputsChanged = OldInCount != BBS->AvailableIn.size(); |
| 638 | bool ContributionChanged = |
| 639 | removeValidUnrelocatedDefs(BB, BBS, Contribution&: BBS->Contribution); |
| 640 | if (!InputsChanged && !ContributionChanged) |
| 641 | continue; |
| 642 | |
| 643 | size_t OldOutCount = BBS->AvailableOut.size(); |
| 644 | transferBlock(BB, BBS&: *BBS, ContributionChanged); |
| 645 | if (OldOutCount != BBS->AvailableOut.size()) { |
| 646 | assert(OldOutCount > BBS->AvailableOut.size() && "invariant!" ); |
| 647 | Worklist.insert_range(R: successors(BB)); |
| 648 | } |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB, |
| 653 | const BasicBlockState *BBS, |
| 654 | AvailableValueSet &Contribution) { |
| 655 | assert(&BBS->Contribution == &Contribution && |
| 656 | "Passed Contribution should be from the passed BasicBlockState!" ); |
| 657 | AvailableValueSet AvailableSet = BBS->AvailableIn; |
| 658 | bool ContributionChanged = false; |
| 659 | // For explanation why instructions are processed this way see |
| 660 | // "Rules of deriving" in the comment to this class. |
| 661 | for (const Instruction &I : *BB) { |
| 662 | bool ValidUnrelocatedPointerDef = false; |
| 663 | bool PoisonedPointerDef = false; |
| 664 | // TODO: `select` instructions should be handled here too. |
| 665 | if (const PHINode *PN = dyn_cast<PHINode>(Val: &I)) { |
| 666 | if (containsGCPtrType(Ty: PN->getType())) { |
| 667 | // If both is true, output is poisoned. |
| 668 | bool HasRelocatedInputs = false; |
| 669 | bool HasUnrelocatedInputs = false; |
| 670 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 671 | const BasicBlock *InBB = PN->getIncomingBlock(i); |
| 672 | if (!isMapped(BB: InBB) || |
| 673 | !CD.hasLiveIncomingEdge(PN, InBB)) |
| 674 | continue; // Skip dead block or dead edge. |
| 675 | |
| 676 | const Value *InValue = PN->getIncomingValue(i); |
| 677 | |
| 678 | if (isNotExclusivelyConstantDerived(V: InValue)) { |
| 679 | if (isValuePoisoned(V: InValue)) { |
| 680 | // If any of inputs is poisoned, output is always poisoned too. |
| 681 | HasRelocatedInputs = true; |
| 682 | HasUnrelocatedInputs = true; |
| 683 | break; |
| 684 | } |
| 685 | if (BlockMap[InBB]->AvailableOut.count(V: InValue)) |
| 686 | HasRelocatedInputs = true; |
| 687 | else |
| 688 | HasUnrelocatedInputs = true; |
| 689 | } |
| 690 | } |
| 691 | if (HasUnrelocatedInputs) { |
| 692 | if (HasRelocatedInputs) |
| 693 | PoisonedPointerDef = true; |
| 694 | else |
| 695 | ValidUnrelocatedPointerDef = true; |
| 696 | } |
| 697 | } |
| 698 | } else if ((isa<GetElementPtrInst>(Val: I) || isa<BitCastInst>(Val: I)) && |
| 699 | containsGCPtrType(Ty: I.getType())) { |
| 700 | // GEP/bitcast of unrelocated pointer is legal by itself but this def |
| 701 | // shouldn't appear in any AvailableSet. |
| 702 | for (const Value *V : I.operands()) |
| 703 | if (containsGCPtrType(Ty: V->getType()) && |
| 704 | isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) { |
| 705 | if (isValuePoisoned(V)) |
| 706 | PoisonedPointerDef = true; |
| 707 | else |
| 708 | ValidUnrelocatedPointerDef = true; |
| 709 | break; |
| 710 | } |
| 711 | } |
| 712 | assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) && |
| 713 | "Value cannot be both unrelocated and poisoned!" ); |
| 714 | if (ValidUnrelocatedPointerDef) { |
| 715 | // Remove def of unrelocated pointer from Contribution of this BB and |
| 716 | // trigger update of all its successors. |
| 717 | Contribution.erase(V: &I); |
| 718 | PoisonedDefs.erase(V: &I); |
| 719 | ValidUnrelocatedDefs.insert(V: &I); |
| 720 | LLVM_DEBUG(dbgs() << "Removing urelocated " << I |
| 721 | << " from Contribution of " << BB->getName() << "\n" ); |
| 722 | ContributionChanged = true; |
| 723 | } else if (PoisonedPointerDef) { |
| 724 | // Mark pointer as poisoned, remove its def from Contribution and trigger |
| 725 | // update of all successors. |
| 726 | Contribution.erase(V: &I); |
| 727 | PoisonedDefs.insert(V: &I); |
| 728 | LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of " |
| 729 | << BB->getName() << "\n" ); |
| 730 | ContributionChanged = true; |
| 731 | } else { |
| 732 | bool Cleared = false; |
| 733 | transferInstruction(I, Cleared, Available&: AvailableSet); |
| 734 | (void)Cleared; |
| 735 | } |
| 736 | } |
| 737 | return ContributionChanged; |
| 738 | } |
| 739 | |
| 740 | void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB, |
| 741 | AvailableValueSet &Result, |
| 742 | const DominatorTree &DT) { |
| 743 | DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)]; |
| 744 | |
| 745 | assert(DTN && "Unreachable blocks are ignored" ); |
| 746 | while (DTN->getIDom()) { |
| 747 | DTN = DTN->getIDom(); |
| 748 | auto BBS = getBasicBlockState(BB: DTN->getBlock()); |
| 749 | assert(BBS && "immediate dominator cannot be dead for a live block" ); |
| 750 | const auto &Defs = BBS->Contribution; |
| 751 | Result.insert_range(R: Defs); |
| 752 | // If this block is 'Cleared', then nothing LiveIn to this block can be |
| 753 | // available after this block completes. Note: This turns out to be |
| 754 | // really important for reducing memory consuption of the initial available |
| 755 | // sets and thus peak memory usage by this verifier. |
| 756 | if (BBS->Cleared) |
| 757 | return; |
| 758 | } |
| 759 | |
| 760 | for (const Argument &A : BB->getParent()->args()) |
| 761 | if (containsGCPtrType(Ty: A.getType())) |
| 762 | Result.insert(V: &A); |
| 763 | } |
| 764 | |
| 765 | void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS, |
| 766 | bool ContributionChanged) { |
| 767 | const AvailableValueSet &AvailableIn = BBS.AvailableIn; |
| 768 | AvailableValueSet &AvailableOut = BBS.AvailableOut; |
| 769 | |
| 770 | if (BBS.Cleared) { |
| 771 | // AvailableOut will change only when Contribution changed. |
| 772 | if (ContributionChanged) |
| 773 | AvailableOut = BBS.Contribution; |
| 774 | } else { |
| 775 | // Otherwise, we need to reduce the AvailableOut set by things which are no |
| 776 | // longer in our AvailableIn |
| 777 | AvailableValueSet Temp = BBS.Contribution; |
| 778 | set_union(S1&: Temp, S2: AvailableIn); |
| 779 | AvailableOut = std::move(Temp); |
| 780 | } |
| 781 | |
| 782 | LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from " ; |
| 783 | PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end()); |
| 784 | dbgs() << " to " ; |
| 785 | PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end()); |
| 786 | dbgs() << "\n" ;); |
| 787 | } |
| 788 | |
| 789 | void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared, |
| 790 | AvailableValueSet &Available) { |
| 791 | if (isa<GCStatepointInst>(Val: I)) { |
| 792 | Cleared = true; |
| 793 | Available.clear(); |
| 794 | } else if (containsGCPtrType(Ty: I.getType())) |
| 795 | Available.insert(V: &I); |
| 796 | } |
| 797 | |
| 798 | void InstructionVerifier::verifyInstruction( |
| 799 | const GCPtrTracker *Tracker, const Instruction &I, |
| 800 | const AvailableValueSet &AvailableSet) { |
| 801 | if (const PHINode *PN = dyn_cast<PHINode>(Val: &I)) { |
| 802 | if (containsGCPtrType(Ty: PN->getType())) |
| 803 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 804 | const BasicBlock *InBB = PN->getIncomingBlock(i); |
| 805 | const BasicBlockState *InBBS = Tracker->getBasicBlockState(BB: InBB); |
| 806 | if (!InBBS || |
| 807 | !Tracker->hasLiveIncomingEdge(PN, InBB)) |
| 808 | continue; // Skip dead block or dead edge. |
| 809 | |
| 810 | const Value *InValue = PN->getIncomingValue(i); |
| 811 | |
| 812 | if (isNotExclusivelyConstantDerived(V: InValue) && |
| 813 | !InBBS->AvailableOut.count(V: InValue)) |
| 814 | reportInvalidUse(V: *InValue, I: *PN); |
| 815 | } |
| 816 | } else if (isa<CmpInst>(Val: I) && |
| 817 | containsGCPtrType(Ty: I.getOperand(i: 0)->getType())) { |
| 818 | Value *LHS = I.getOperand(i: 0), *RHS = I.getOperand(i: 1); |
| 819 | enum BaseType baseTyLHS = getBaseType(Val: LHS), |
| 820 | baseTyRHS = getBaseType(Val: RHS); |
| 821 | |
| 822 | // Returns true if LHS and RHS are unrelocated pointers and they are |
| 823 | // valid unrelocated uses. |
| 824 | auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS, |
| 825 | &LHS, &RHS] () { |
| 826 | // A cmp instruction has valid unrelocated pointer operands only if |
| 827 | // both operands are unrelocated pointers. |
| 828 | // In the comparison between two pointers, if one is an unrelocated |
| 829 | // use, the other *should be* an unrelocated use, for this |
| 830 | // instruction to contain valid unrelocated uses. This unrelocated |
| 831 | // use can be a null constant as well, or another unrelocated |
| 832 | // pointer. |
| 833 | if (AvailableSet.count(V: LHS) || AvailableSet.count(V: RHS)) |
| 834 | return false; |
| 835 | // Constant pointers (that are not exclusively null) may have |
| 836 | // meaning in different VMs, so we cannot reorder the compare |
| 837 | // against constant pointers before the safepoint. In other words, |
| 838 | // comparison of an unrelocated use against a non-null constant |
| 839 | // maybe invalid. |
| 840 | if ((baseTyLHS == BaseType::ExclusivelySomeConstant && |
| 841 | baseTyRHS == BaseType::NonConstant) || |
| 842 | (baseTyLHS == BaseType::NonConstant && |
| 843 | baseTyRHS == BaseType::ExclusivelySomeConstant)) |
| 844 | return false; |
| 845 | |
| 846 | // If one of pointers is poisoned and other is not exclusively derived |
| 847 | // from null it is an invalid expression: it produces poisoned result |
| 848 | // and unless we want to track all defs (not only gc pointers) the only |
| 849 | // option is to prohibit such instructions. |
| 850 | if ((Tracker->isValuePoisoned(V: LHS) && baseTyRHS != ExclusivelyNull) || |
| 851 | (Tracker->isValuePoisoned(V: RHS) && baseTyLHS != ExclusivelyNull)) |
| 852 | return false; |
| 853 | |
| 854 | // All other cases are valid cases enumerated below: |
| 855 | // 1. Comparison between an exclusively derived null pointer and a |
| 856 | // constant base pointer. |
| 857 | // 2. Comparison between an exclusively derived null pointer and a |
| 858 | // non-constant unrelocated base pointer. |
| 859 | // 3. Comparison between 2 unrelocated pointers. |
| 860 | // 4. Comparison between a pointer exclusively derived from null and a |
| 861 | // non-constant poisoned pointer. |
| 862 | return true; |
| 863 | }; |
| 864 | if (!hasValidUnrelocatedUse()) { |
| 865 | // Print out all non-constant derived pointers that are unrelocated |
| 866 | // uses, which are invalid. |
| 867 | if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(V: LHS)) |
| 868 | reportInvalidUse(V: *LHS, I); |
| 869 | if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(V: RHS)) |
| 870 | reportInvalidUse(V: *RHS, I); |
| 871 | } |
| 872 | } else { |
| 873 | for (const Value *V : I.operands()) |
| 874 | if (containsGCPtrType(Ty: V->getType()) && |
| 875 | isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) |
| 876 | reportInvalidUse(V: *V, I); |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | void InstructionVerifier::reportInvalidUse(const Value &V, |
| 881 | const Instruction &I) { |
| 882 | errs() << "Illegal use of unrelocated value found!\n" ; |
| 883 | errs() << "Def: " << V << "\n" ; |
| 884 | errs() << "Use: " << I << "\n" ; |
| 885 | if (!PrintOnly) |
| 886 | abort(); |
| 887 | AnyInvalidUses = true; |
| 888 | } |
| 889 | |
| 890 | static void Verify(const Function &F, const DominatorTree &DT, |
| 891 | const CFGDeadness &CD) { |
| 892 | LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() |
| 893 | << "\n" ); |
| 894 | if (PrintOnly) |
| 895 | dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n" ; |
| 896 | |
| 897 | GCPtrTracker Tracker(F, DT, CD); |
| 898 | |
| 899 | // We now have all the information we need to decide if the use of a heap |
| 900 | // reference is legal or not, given our safepoint semantics. |
| 901 | |
| 902 | InstructionVerifier Verifier; |
| 903 | GCPtrTracker::verifyFunction(Tracker: std::move(Tracker), Verifier); |
| 904 | |
| 905 | if (PrintOnly && !Verifier.hasAnyInvalidUses()) { |
| 906 | dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName() |
| 907 | << "\n" ; |
| 908 | } |
| 909 | } |
| 910 | |