1 | //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements ELF object file writer information. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/ADT/ArrayRef.h" |
14 | #include "llvm/ADT/DenseMap.h" |
15 | #include "llvm/ADT/STLExtras.h" |
16 | #include "llvm/ADT/SmallVector.h" |
17 | #include "llvm/ADT/Statistic.h" |
18 | #include "llvm/ADT/StringExtras.h" |
19 | #include "llvm/ADT/StringRef.h" |
20 | #include "llvm/ADT/Twine.h" |
21 | #include "llvm/BinaryFormat/ELF.h" |
22 | #include "llvm/MC/MCAsmBackend.h" |
23 | #include "llvm/MC/MCAsmInfo.h" |
24 | #include "llvm/MC/MCAssembler.h" |
25 | #include "llvm/MC/MCContext.h" |
26 | #include "llvm/MC/MCELFExtras.h" |
27 | #include "llvm/MC/MCELFObjectWriter.h" |
28 | #include "llvm/MC/MCExpr.h" |
29 | #include "llvm/MC/MCFixup.h" |
30 | #include "llvm/MC/MCFixupKindInfo.h" |
31 | #include "llvm/MC/MCObjectWriter.h" |
32 | #include "llvm/MC/MCSection.h" |
33 | #include "llvm/MC/MCSectionELF.h" |
34 | #include "llvm/MC/MCSymbol.h" |
35 | #include "llvm/MC/MCSymbolELF.h" |
36 | #include "llvm/MC/MCTargetOptions.h" |
37 | #include "llvm/MC/MCValue.h" |
38 | #include "llvm/MC/StringTableBuilder.h" |
39 | #include "llvm/Support/Alignment.h" |
40 | #include "llvm/Support/Casting.h" |
41 | #include "llvm/Support/Compression.h" |
42 | #include "llvm/Support/Endian.h" |
43 | #include "llvm/Support/EndianStream.h" |
44 | #include "llvm/Support/ErrorHandling.h" |
45 | #include "llvm/Support/LEB128.h" |
46 | #include "llvm/Support/SMLoc.h" |
47 | #include "llvm/Support/raw_ostream.h" |
48 | #include "llvm/TargetParser/Host.h" |
49 | #include <cassert> |
50 | #include <cstddef> |
51 | #include <cstdint> |
52 | #include <memory> |
53 | #include <string> |
54 | #include <utility> |
55 | #include <vector> |
56 | |
57 | using namespace llvm; |
58 | |
59 | #define DEBUG_TYPE "elf-object-writer" |
60 | |
61 | namespace { |
62 | namespace stats { |
63 | |
64 | STATISTIC(, "Total size of ELF headers" ); |
65 | STATISTIC(, "Total size of section headers table" ); |
66 | STATISTIC(AllocTextBytes, "Total size of SHF_ALLOC text sections" ); |
67 | STATISTIC(AllocROBytes, "Total size of SHF_ALLOC readonly sections" ); |
68 | STATISTIC(AllocRWBytes, "Total size of SHF_ALLOC read-write sections" ); |
69 | STATISTIC(StrtabBytes, "Total size of SHT_STRTAB sections" ); |
70 | STATISTIC(SymtabBytes, "Total size of SHT_SYMTAB sections" ); |
71 | STATISTIC(RelocationBytes, "Total size of relocation sections" ); |
72 | STATISTIC(DynsymBytes, "Total size of SHT_DYNSYM sections" ); |
73 | STATISTIC( |
74 | DebugBytes, |
75 | "Total size of debug info sections (not including those written to .dwo)" ); |
76 | STATISTIC(UnwindBytes, "Total size of unwind sections" ); |
77 | STATISTIC(OtherBytes, "Total size of uncategorized sections" ); |
78 | STATISTIC(DwoBytes, "Total size of sections written to .dwo file" ); |
79 | |
80 | } // namespace stats |
81 | |
82 | struct ELFWriter; |
83 | |
84 | bool isDwoSection(const MCSectionELF &Sec) { |
85 | return Sec.getName().ends_with(Suffix: ".dwo" ); |
86 | } |
87 | |
88 | class SymbolTableWriter { |
89 | ELFWriter &EWriter; |
90 | bool Is64Bit; |
91 | |
92 | // indexes we are going to write to .symtab_shndx. |
93 | std::vector<uint32_t> ShndxIndexes; |
94 | |
95 | // The numbel of symbols written so far. |
96 | unsigned NumWritten; |
97 | |
98 | void createSymtabShndx(); |
99 | |
100 | template <typename T> void write(T Value); |
101 | |
102 | public: |
103 | SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); |
104 | |
105 | void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, |
106 | uint8_t other, uint32_t shndx, bool Reserved); |
107 | |
108 | ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } |
109 | }; |
110 | |
111 | struct ELFWriter { |
112 | MCAssembler &Asm; |
113 | ELFObjectWriter &OWriter; |
114 | support::endian::Writer W; |
115 | |
116 | enum DwoMode { |
117 | AllSections, |
118 | NonDwoOnly, |
119 | DwoOnly, |
120 | } Mode; |
121 | |
122 | uint64_t symbolValue(const MCSymbol &Sym); |
123 | bool isInSymtab(const MCSymbolELF &Symbol); |
124 | |
125 | /// Helper struct for containing some precomputed information on symbols. |
126 | struct ELFSymbolData { |
127 | const MCSymbolELF *Symbol; |
128 | StringRef Name; |
129 | uint32_t SectionIndex; |
130 | uint32_t Order; |
131 | }; |
132 | |
133 | /// @} |
134 | /// @name Symbol Table Data |
135 | /// @{ |
136 | |
137 | StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; |
138 | |
139 | /// @} |
140 | |
141 | // This holds the symbol table index of the last local symbol. |
142 | unsigned LastLocalSymbolIndex = ~0u; |
143 | // This holds the .strtab section index. |
144 | unsigned StringTableIndex = ~0u; |
145 | // This holds the .symtab section index. |
146 | unsigned SymbolTableIndex = ~0u; |
147 | |
148 | // Sections in the order they are to be output in the section table. |
149 | std::vector<MCSectionELF *> SectionTable; |
150 | unsigned addToSectionTable(MCSectionELF *Sec); |
151 | |
152 | // TargetObjectWriter wrappers. |
153 | bool is64Bit() const; |
154 | |
155 | uint64_t align(Align Alignment); |
156 | |
157 | bool maybeWriteCompression(uint32_t ChType, uint64_t Size, |
158 | SmallVectorImpl<uint8_t> &CompressedContents, |
159 | Align Alignment); |
160 | |
161 | public: |
162 | ELFWriter(MCAssembler &Asm, ELFObjectWriter &OWriter, raw_pwrite_stream &OS, |
163 | bool IsLittleEndian, DwoMode Mode) |
164 | : Asm(Asm), OWriter(OWriter), |
165 | W(OS, |
166 | IsLittleEndian ? llvm::endianness::little : llvm::endianness::big), |
167 | Mode(Mode) {} |
168 | |
169 | MCContext &getContext() const { return Asm.getContext(); } |
170 | |
171 | void writeWord(uint64_t Word) { |
172 | if (is64Bit()) |
173 | W.write<uint64_t>(Val: Word); |
174 | else |
175 | W.write<uint32_t>(Val: Word); |
176 | } |
177 | |
178 | template <typename T> void write(T Val) { |
179 | W.write(Val); |
180 | } |
181 | |
182 | void writeHeader(); |
183 | |
184 | void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, |
185 | ELFSymbolData &MSD); |
186 | |
187 | // Map from a signature symbol to the group section index |
188 | using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; |
189 | |
190 | /// Compute the symbol table data |
191 | /// |
192 | /// \param Asm - The assembler. |
193 | /// \param RevGroupMap - Maps a signature symbol to the group section. |
194 | void computeSymbolTable(const RevGroupMapTy &RevGroupMap); |
195 | |
196 | void writeAddrsigSection(); |
197 | |
198 | MCSectionELF *createRelocationSection(MCContext &Ctx, |
199 | const MCSectionELF &Sec); |
200 | |
201 | void writeSectionHeaders(); |
202 | |
203 | void writeSectionData(MCSection &Sec); |
204 | |
205 | void writeSectionHeaderEntry(uint32_t Name, uint32_t Type, uint64_t Flags, |
206 | uint64_t Address, uint64_t Offset, uint64_t Size, |
207 | uint32_t Link, uint32_t Info, |
208 | MaybeAlign Alignment, uint64_t EntrySize); |
209 | |
210 | void writeRelocations(const MCSectionELF &Sec); |
211 | |
212 | uint64_t writeObject(); |
213 | void writeSectionHeader(uint32_t GroupSymbolIndex, uint64_t Offset, |
214 | uint64_t Size, const MCSectionELF &Section); |
215 | }; |
216 | } // end anonymous namespace |
217 | |
218 | uint64_t ELFWriter::align(Align Alignment) { |
219 | uint64_t Offset = W.OS.tell(); |
220 | uint64_t NewOffset = alignTo(Size: Offset, A: Alignment); |
221 | W.OS.write_zeros(NumZeros: NewOffset - Offset); |
222 | return NewOffset; |
223 | } |
224 | |
225 | unsigned ELFWriter::addToSectionTable(MCSectionELF *Sec) { |
226 | SectionTable.push_back(x: Sec); |
227 | StrTabBuilder.add(S: Sec->getName()); |
228 | return SectionTable.size(); |
229 | } |
230 | |
231 | void SymbolTableWriter::createSymtabShndx() { |
232 | if (!ShndxIndexes.empty()) |
233 | return; |
234 | |
235 | ShndxIndexes.resize(new_size: NumWritten); |
236 | } |
237 | |
238 | template <typename T> void SymbolTableWriter::write(T Value) { |
239 | EWriter.write(Value); |
240 | } |
241 | |
242 | SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) |
243 | : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} |
244 | |
245 | void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, |
246 | uint64_t size, uint8_t other, |
247 | uint32_t shndx, bool Reserved) { |
248 | bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; |
249 | |
250 | if (LargeIndex) |
251 | createSymtabShndx(); |
252 | |
253 | if (!ShndxIndexes.empty()) { |
254 | if (LargeIndex) |
255 | ShndxIndexes.push_back(x: shndx); |
256 | else |
257 | ShndxIndexes.push_back(x: 0); |
258 | } |
259 | |
260 | uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; |
261 | |
262 | if (Is64Bit) { |
263 | write(Value: name); // st_name |
264 | write(Value: info); // st_info |
265 | write(Value: other); // st_other |
266 | write(Value: Index); // st_shndx |
267 | write(Value: value); // st_value |
268 | write(Value: size); // st_size |
269 | } else { |
270 | write(Value: name); // st_name |
271 | write(Value: uint32_t(value)); // st_value |
272 | write(Value: uint32_t(size)); // st_size |
273 | write(Value: info); // st_info |
274 | write(Value: other); // st_other |
275 | write(Value: Index); // st_shndx |
276 | } |
277 | |
278 | ++NumWritten; |
279 | } |
280 | |
281 | bool ELFWriter::is64Bit() const { |
282 | return OWriter.TargetObjectWriter->is64Bit(); |
283 | } |
284 | |
285 | // Emit the ELF header. |
286 | void ELFWriter::() { |
287 | // ELF Header |
288 | // ---------- |
289 | // |
290 | // Note |
291 | // ---- |
292 | // emitWord method behaves differently for ELF32 and ELF64, writing |
293 | // 4 bytes in the former and 8 in the latter. |
294 | |
295 | W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] |
296 | |
297 | W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] |
298 | |
299 | // e_ident[EI_DATA] |
300 | W.OS << char(W.Endian == llvm::endianness::little ? ELF::ELFDATA2LSB |
301 | : ELF::ELFDATA2MSB); |
302 | |
303 | W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] |
304 | // e_ident[EI_OSABI] |
305 | uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI(); |
306 | W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi() |
307 | ? int(ELF::ELFOSABI_GNU) |
308 | : OSABI); |
309 | // e_ident[EI_ABIVERSION] |
310 | W.OS << char(OWriter.OverrideABIVersion |
311 | ? *OWriter.OverrideABIVersion |
312 | : OWriter.TargetObjectWriter->getABIVersion()); |
313 | |
314 | W.OS.write_zeros(NumZeros: ELF::EI_NIDENT - ELF::EI_PAD); |
315 | |
316 | W.write<uint16_t>(Val: ELF::ET_REL); // e_type |
317 | |
318 | W.write<uint16_t>(Val: OWriter.TargetObjectWriter->getEMachine()); // e_machine = target |
319 | |
320 | W.write<uint32_t>(Val: ELF::EV_CURRENT); // e_version |
321 | writeWord(Word: 0); // e_entry, no entry point in .o file |
322 | writeWord(Word: 0); // e_phoff, no program header for .o |
323 | writeWord(Word: 0); // e_shoff = sec hdr table off in bytes |
324 | |
325 | // e_flags = whatever the target wants |
326 | W.write<uint32_t>(Val: OWriter.getELFHeaderEFlags()); |
327 | |
328 | // e_ehsize = ELF header size |
329 | W.write<uint16_t>(Val: is64Bit() ? sizeof(ELF::Elf64_Ehdr) |
330 | : sizeof(ELF::Elf32_Ehdr)); |
331 | |
332 | W.write<uint16_t>(Val: 0); // e_phentsize = prog header entry size |
333 | W.write<uint16_t>(Val: 0); // e_phnum = # prog header entries = 0 |
334 | |
335 | // e_shentsize = Section header entry size |
336 | W.write<uint16_t>(Val: is64Bit() ? sizeof(ELF::Elf64_Shdr) |
337 | : sizeof(ELF::Elf32_Shdr)); |
338 | |
339 | // e_shnum = # of section header ents |
340 | W.write<uint16_t>(Val: 0); |
341 | |
342 | // e_shstrndx = Section # of '.strtab' |
343 | assert(StringTableIndex < ELF::SHN_LORESERVE); |
344 | W.write<uint16_t>(Val: StringTableIndex); |
345 | } |
346 | |
347 | uint64_t ELFWriter::symbolValue(const MCSymbol &Sym) { |
348 | if (Sym.isCommon()) |
349 | return Sym.getCommonAlignment()->value(); |
350 | |
351 | uint64_t Res; |
352 | if (!Asm.getSymbolOffset(S: Sym, Val&: Res)) |
353 | return 0; |
354 | |
355 | if (Asm.isThumbFunc(Func: &Sym)) |
356 | Res |= 1; |
357 | |
358 | return Res; |
359 | } |
360 | |
361 | static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { |
362 | uint8_t Type = newType; |
363 | |
364 | // Propagation rules: |
365 | // IFUNC > FUNC > OBJECT > NOTYPE |
366 | // TLS_OBJECT > OBJECT > NOTYPE |
367 | // |
368 | // dont let the new type degrade the old type |
369 | switch (origType) { |
370 | default: |
371 | break; |
372 | case ELF::STT_GNU_IFUNC: |
373 | if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || |
374 | Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) |
375 | Type = ELF::STT_GNU_IFUNC; |
376 | break; |
377 | case ELF::STT_FUNC: |
378 | if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || |
379 | Type == ELF::STT_TLS) |
380 | Type = ELF::STT_FUNC; |
381 | break; |
382 | case ELF::STT_OBJECT: |
383 | if (Type == ELF::STT_NOTYPE) |
384 | Type = ELF::STT_OBJECT; |
385 | break; |
386 | case ELF::STT_TLS: |
387 | if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || |
388 | Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) |
389 | Type = ELF::STT_TLS; |
390 | break; |
391 | } |
392 | |
393 | return Type; |
394 | } |
395 | |
396 | static bool isIFunc(const MCSymbolELF *Symbol) { |
397 | while (Symbol->getType() != ELF::STT_GNU_IFUNC) { |
398 | const MCSymbolRefExpr *Value; |
399 | if (!Symbol->isVariable() || |
400 | !(Value = dyn_cast<MCSymbolRefExpr>(Val: Symbol->getVariableValue())) || |
401 | Value->getSpecifier() || |
402 | mergeTypeForSet(origType: Symbol->getType(), newType: ELF::STT_GNU_IFUNC) != |
403 | ELF::STT_GNU_IFUNC) |
404 | return false; |
405 | Symbol = &cast<MCSymbolELF>(Val: Value->getSymbol()); |
406 | } |
407 | return true; |
408 | } |
409 | |
410 | void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, |
411 | ELFSymbolData &MSD) { |
412 | const auto &Symbol = cast<MCSymbolELF>(Val: *MSD.Symbol); |
413 | const MCSymbolELF *Base = |
414 | cast_or_null<MCSymbolELF>(Val: Asm.getBaseSymbol(Symbol)); |
415 | |
416 | // This has to be in sync with when computeSymbolTable uses SHN_ABS or |
417 | // SHN_COMMON. |
418 | bool IsReserved = !Base || Symbol.isCommon(); |
419 | |
420 | // Binding and Type share the same byte as upper and lower nibbles |
421 | uint8_t Binding = Symbol.getBinding(); |
422 | uint8_t Type = Symbol.getType(); |
423 | if (isIFunc(Symbol: &Symbol)) |
424 | Type = ELF::STT_GNU_IFUNC; |
425 | if (Base) { |
426 | Type = mergeTypeForSet(origType: Type, newType: Base->getType()); |
427 | } |
428 | uint8_t Info = (Binding << 4) | Type; |
429 | |
430 | // Other and Visibility share the same byte with Visibility using the lower |
431 | // 2 bits |
432 | uint8_t Visibility = Symbol.getVisibility(); |
433 | uint8_t Other = Symbol.getOther() | Visibility; |
434 | |
435 | uint64_t Value = symbolValue(Sym: *MSD.Symbol); |
436 | uint64_t Size = 0; |
437 | |
438 | const MCExpr *ESize = MSD.Symbol->getSize(); |
439 | if (!ESize && Base) { |
440 | // For expressions like .set y, x+1, if y's size is unset, inherit from x. |
441 | ESize = Base->getSize(); |
442 | |
443 | // For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z, |
444 | // z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give |
445 | // us 2. Follow the MCSymbolRefExpr assignment chain, which covers most |
446 | // needs. MCBinaryExpr is not handled. |
447 | const MCSymbolELF *Sym = &Symbol; |
448 | while (Sym->isVariable()) { |
449 | if (auto *Expr = dyn_cast<MCSymbolRefExpr>(Val: Sym->getVariableValue())) { |
450 | Sym = cast<MCSymbolELF>(Val: &Expr->getSymbol()); |
451 | if (!Sym->getSize()) |
452 | continue; |
453 | ESize = Sym->getSize(); |
454 | } |
455 | break; |
456 | } |
457 | } |
458 | |
459 | if (ESize) { |
460 | int64_t Res; |
461 | if (!ESize->evaluateKnownAbsolute(Res, Asm)) |
462 | report_fatal_error(reason: "Size expression must be absolute." ); |
463 | Size = Res; |
464 | } |
465 | |
466 | // Write out the symbol table entry |
467 | Writer.writeSymbol(name: StringIndex, info: Info, value: Value, size: Size, other: Other, shndx: MSD.SectionIndex, |
468 | Reserved: IsReserved); |
469 | } |
470 | |
471 | bool ELFWriter::isInSymtab(const MCSymbolELF &Symbol) { |
472 | if (Symbol.isUsedInReloc() || Symbol.isSignature()) |
473 | return true; |
474 | |
475 | if (OWriter.Renames.count(Val: &Symbol)) |
476 | return false; |
477 | |
478 | if (Symbol.isVariable()) { |
479 | const MCExpr *Expr = Symbol.getVariableValue(); |
480 | // Target Expressions that are always inlined do not appear in the symtab |
481 | if (const auto *T = dyn_cast<MCTargetExpr>(Val: Expr)) |
482 | if (T->inlineAssignedExpr()) |
483 | return false; |
484 | // The .weakref alias does not appear in the symtab. |
485 | if (Symbol.isWeakref()) |
486 | return false; |
487 | |
488 | if (Symbol.isUndefined()) { |
489 | // FIXME: this is here just to diagnose the case of a var = commmon_sym. |
490 | Asm.getBaseSymbol(Symbol); |
491 | return false; |
492 | } |
493 | } |
494 | |
495 | if (Symbol.isTemporary()) |
496 | return false; |
497 | |
498 | return Symbol.getType() != ELF::STT_SECTION; |
499 | } |
500 | |
501 | void ELFWriter::computeSymbolTable(const RevGroupMapTy &RevGroupMap) { |
502 | MCContext &Ctx = Asm.getContext(); |
503 | SymbolTableWriter Writer(*this, is64Bit()); |
504 | |
505 | // Symbol table |
506 | unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; |
507 | MCSectionELF *SymtabSection = |
508 | Ctx.getELFSection(Section: ".symtab" , Type: ELF::SHT_SYMTAB, Flags: 0, EntrySize); |
509 | SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4)); |
510 | SymbolTableIndex = addToSectionTable(Sec: SymtabSection); |
511 | |
512 | uint64_t SecStart = align(Alignment: SymtabSection->getAlign()); |
513 | |
514 | // The first entry is the undefined symbol entry. |
515 | Writer.writeSymbol(name: 0, info: 0, value: 0, size: 0, other: 0, shndx: 0, Reserved: false); |
516 | |
517 | std::vector<ELFSymbolData> LocalSymbolData; |
518 | std::vector<ELFSymbolData> ExternalSymbolData; |
519 | MutableArrayRef<std::pair<std::string, size_t>> FileNames = |
520 | OWriter.getFileNames(); |
521 | for (const std::pair<std::string, size_t> &F : FileNames) |
522 | StrTabBuilder.add(S: F.first); |
523 | |
524 | // Add the data for the symbols. |
525 | bool HasLargeSectionIndex = false; |
526 | for (auto It : llvm::enumerate(First: Asm.symbols())) { |
527 | const auto &Symbol = cast<MCSymbolELF>(Val: It.value()); |
528 | if (!isInSymtab(Symbol)) |
529 | continue; |
530 | |
531 | if (Symbol.isTemporary() && Symbol.isUndefined()) { |
532 | Ctx.reportError(L: SMLoc(), Msg: "Undefined temporary symbol " + Symbol.getName()); |
533 | continue; |
534 | } |
535 | |
536 | ELFSymbolData MSD; |
537 | MSD.Symbol = cast<MCSymbolELF>(Val: &Symbol); |
538 | MSD.Order = It.index(); |
539 | |
540 | bool Local = Symbol.getBinding() == ELF::STB_LOCAL; |
541 | assert(Local || !Symbol.isTemporary()); |
542 | |
543 | if (Symbol.isAbsolute()) { |
544 | MSD.SectionIndex = ELF::SHN_ABS; |
545 | } else if (Symbol.isCommon()) { |
546 | if (Symbol.isTargetCommon()) { |
547 | MSD.SectionIndex = Symbol.getIndex(); |
548 | } else { |
549 | assert(!Local); |
550 | MSD.SectionIndex = ELF::SHN_COMMON; |
551 | } |
552 | } else if (Symbol.isUndefined()) { |
553 | if (Symbol.isSignature() && !Symbol.isUsedInReloc()) { |
554 | MSD.SectionIndex = RevGroupMap.lookup(Val: &Symbol); |
555 | if (MSD.SectionIndex >= ELF::SHN_LORESERVE) |
556 | HasLargeSectionIndex = true; |
557 | } else { |
558 | MSD.SectionIndex = ELF::SHN_UNDEF; |
559 | } |
560 | } else { |
561 | const MCSectionELF &Section = |
562 | static_cast<const MCSectionELF &>(Symbol.getSection()); |
563 | |
564 | // We may end up with a situation when section symbol is technically |
565 | // defined, but should not be. That happens because we explicitly |
566 | // pre-create few .debug_* sections to have accessors. |
567 | // And if these sections were not really defined in the code, but were |
568 | // referenced, we simply error out. |
569 | if (!Section.isRegistered()) { |
570 | assert(static_cast<const MCSymbolELF &>(Symbol).getType() == |
571 | ELF::STT_SECTION); |
572 | Ctx.reportError(L: SMLoc(), |
573 | Msg: "Undefined section reference: " + Symbol.getName()); |
574 | continue; |
575 | } |
576 | |
577 | if (Mode == NonDwoOnly && isDwoSection(Sec: Section)) |
578 | continue; |
579 | MSD.SectionIndex = Section.getOrdinal(); |
580 | assert(MSD.SectionIndex && "Invalid section index!" ); |
581 | if (MSD.SectionIndex >= ELF::SHN_LORESERVE) |
582 | HasLargeSectionIndex = true; |
583 | } |
584 | |
585 | // Temporary symbols generated for certain assembler features (.eh_frame, |
586 | // .debug_line) of an empty name may be referenced by relocations due to |
587 | // linker relaxation. Rename them to ".L0 " to match the gas fake label name |
588 | // and allow ld/objcopy --discard-locals to discard such symbols. |
589 | StringRef Name = Symbol.getName(); |
590 | if (Name.empty()) |
591 | Name = ".L0 " ; |
592 | |
593 | // Sections have their own string table |
594 | if (Symbol.getType() != ELF::STT_SECTION) { |
595 | MSD.Name = Name; |
596 | StrTabBuilder.add(S: Name); |
597 | } |
598 | |
599 | if (Local) |
600 | LocalSymbolData.push_back(x: MSD); |
601 | else |
602 | ExternalSymbolData.push_back(x: MSD); |
603 | } |
604 | |
605 | // This holds the .symtab_shndx section index. |
606 | unsigned SymtabShndxSectionIndex = 0; |
607 | |
608 | if (HasLargeSectionIndex) { |
609 | MCSectionELF *SymtabShndxSection = |
610 | Ctx.getELFSection(Section: ".symtab_shndx" , Type: ELF::SHT_SYMTAB_SHNDX, Flags: 0, EntrySize: 4); |
611 | SymtabShndxSectionIndex = addToSectionTable(Sec: SymtabShndxSection); |
612 | SymtabShndxSection->setAlignment(Align(4)); |
613 | } |
614 | |
615 | StrTabBuilder.finalize(); |
616 | |
617 | // Make the first STT_FILE precede previous local symbols. |
618 | unsigned Index = 1; |
619 | auto FileNameIt = FileNames.begin(); |
620 | if (!FileNames.empty()) |
621 | FileNames[0].second = 0; |
622 | |
623 | for (ELFSymbolData &MSD : LocalSymbolData) { |
624 | // Emit STT_FILE symbols before their associated local symbols. |
625 | for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order; |
626 | ++FileNameIt) { |
627 | Writer.writeSymbol(name: StrTabBuilder.getOffset(S: FileNameIt->first), |
628 | info: ELF::STT_FILE | ELF::STB_LOCAL, value: 0, size: 0, other: ELF::STV_DEFAULT, |
629 | shndx: ELF::SHN_ABS, Reserved: true); |
630 | ++Index; |
631 | } |
632 | |
633 | unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION |
634 | ? 0 |
635 | : StrTabBuilder.getOffset(S: MSD.Name); |
636 | MSD.Symbol->setIndex(Index++); |
637 | writeSymbol(Writer, StringIndex, MSD); |
638 | } |
639 | for (; FileNameIt != FileNames.end(); ++FileNameIt) { |
640 | Writer.writeSymbol(name: StrTabBuilder.getOffset(S: FileNameIt->first), |
641 | info: ELF::STT_FILE | ELF::STB_LOCAL, value: 0, size: 0, other: ELF::STV_DEFAULT, |
642 | shndx: ELF::SHN_ABS, Reserved: true); |
643 | ++Index; |
644 | } |
645 | |
646 | // Write the symbol table entries. |
647 | LastLocalSymbolIndex = Index; |
648 | |
649 | for (ELFSymbolData &MSD : ExternalSymbolData) { |
650 | unsigned StringIndex = StrTabBuilder.getOffset(S: MSD.Name); |
651 | MSD.Symbol->setIndex(Index++); |
652 | writeSymbol(Writer, StringIndex, MSD); |
653 | assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); |
654 | } |
655 | |
656 | uint64_t SecEnd = W.OS.tell(); |
657 | SymtabSection->setOffsets(Start: SecStart, End: SecEnd); |
658 | |
659 | ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); |
660 | if (ShndxIndexes.empty()) { |
661 | assert(SymtabShndxSectionIndex == 0); |
662 | return; |
663 | } |
664 | assert(SymtabShndxSectionIndex != 0); |
665 | |
666 | SecStart = W.OS.tell(); |
667 | MCSectionELF *SymtabShndxSection = SectionTable[SymtabShndxSectionIndex - 1]; |
668 | for (uint32_t Index : ShndxIndexes) |
669 | write(Val: Index); |
670 | SecEnd = W.OS.tell(); |
671 | SymtabShndxSection->setOffsets(Start: SecStart, End: SecEnd); |
672 | } |
673 | |
674 | void ELFWriter::writeAddrsigSection() { |
675 | for (const MCSymbol *Sym : OWriter.getAddrsigSyms()) |
676 | if (Sym->getIndex() != 0) |
677 | encodeULEB128(Value: Sym->getIndex(), OS&: W.OS); |
678 | } |
679 | |
680 | MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, |
681 | const MCSectionELF &Sec) { |
682 | if (OWriter.Relocations[&Sec].empty()) |
683 | return nullptr; |
684 | |
685 | unsigned Flags = ELF::SHF_INFO_LINK; |
686 | if (Sec.getFlags() & ELF::SHF_GROUP) |
687 | Flags = ELF::SHF_GROUP; |
688 | |
689 | const StringRef SectionName = Sec.getName(); |
690 | const MCTargetOptions *TO = Ctx.getTargetOptions(); |
691 | if (TO && TO->Crel) { |
692 | MCSectionELF *RelaSection = |
693 | Ctx.createELFRelSection(Name: ".crel" + SectionName, Type: ELF::SHT_CREL, Flags, |
694 | /*EntrySize=*/1, Group: Sec.getGroup(), RelInfoSection: &Sec); |
695 | return RelaSection; |
696 | } |
697 | |
698 | const bool Rela = OWriter.usesRela(TO, Sec); |
699 | unsigned EntrySize; |
700 | if (Rela) |
701 | EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); |
702 | else |
703 | EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); |
704 | |
705 | MCSectionELF *RelaSection = |
706 | Ctx.createELFRelSection(Name: ((Rela ? ".rela" : ".rel" ) + SectionName), |
707 | Type: Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, |
708 | EntrySize, Group: Sec.getGroup(), RelInfoSection: &Sec); |
709 | RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4)); |
710 | return RelaSection; |
711 | } |
712 | |
713 | // Include the debug info compression header. |
714 | bool ELFWriter::maybeWriteCompression( |
715 | uint32_t ChType, uint64_t Size, |
716 | SmallVectorImpl<uint8_t> &CompressedContents, Align Alignment) { |
717 | uint64_t HdrSize = |
718 | is64Bit() ? sizeof(ELF::Elf64_Chdr) : sizeof(ELF::Elf32_Chdr); |
719 | if (Size <= HdrSize + CompressedContents.size()) |
720 | return false; |
721 | // Platform specific header is followed by compressed data. |
722 | if (is64Bit()) { |
723 | // Write Elf64_Chdr header. |
724 | write(Val: static_cast<ELF::Elf64_Word>(ChType)); |
725 | write(Val: static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. |
726 | write(Val: static_cast<ELF::Elf64_Xword>(Size)); |
727 | write(Val: static_cast<ELF::Elf64_Xword>(Alignment.value())); |
728 | } else { |
729 | // Write Elf32_Chdr header otherwise. |
730 | write(Val: static_cast<ELF::Elf32_Word>(ChType)); |
731 | write(Val: static_cast<ELF::Elf32_Word>(Size)); |
732 | write(Val: static_cast<ELF::Elf32_Word>(Alignment.value())); |
733 | } |
734 | return true; |
735 | } |
736 | |
737 | void ELFWriter::writeSectionData(MCSection &Sec) { |
738 | MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); |
739 | StringRef SectionName = Section.getName(); |
740 | auto &Ctx = Asm.getContext(); |
741 | const DebugCompressionType CompressionType = |
742 | Ctx.getTargetOptions() ? Ctx.getTargetOptions()->CompressDebugSections |
743 | : DebugCompressionType::None; |
744 | if (CompressionType == DebugCompressionType::None || |
745 | !SectionName.starts_with(Prefix: ".debug_" )) { |
746 | Asm.writeSectionData(OS&: W.OS, Section: &Section); |
747 | return; |
748 | } |
749 | |
750 | SmallVector<char, 128> UncompressedData; |
751 | raw_svector_ostream VecOS(UncompressedData); |
752 | Asm.writeSectionData(OS&: VecOS, Section: &Section); |
753 | ArrayRef<uint8_t> Uncompressed = |
754 | ArrayRef(reinterpret_cast<uint8_t *>(UncompressedData.data()), |
755 | UncompressedData.size()); |
756 | |
757 | SmallVector<uint8_t, 128> Compressed; |
758 | uint32_t ChType; |
759 | switch (CompressionType) { |
760 | case DebugCompressionType::None: |
761 | llvm_unreachable("has been handled" ); |
762 | case DebugCompressionType::Zlib: |
763 | ChType = ELF::ELFCOMPRESS_ZLIB; |
764 | break; |
765 | case DebugCompressionType::Zstd: |
766 | ChType = ELF::ELFCOMPRESS_ZSTD; |
767 | break; |
768 | } |
769 | compression::compress(P: compression::Params(CompressionType), Input: Uncompressed, |
770 | Output&: Compressed); |
771 | if (!maybeWriteCompression(ChType, Size: UncompressedData.size(), CompressedContents&: Compressed, |
772 | Alignment: Sec.getAlign())) { |
773 | W.OS << UncompressedData; |
774 | return; |
775 | } |
776 | |
777 | Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); |
778 | // Alignment field should reflect the requirements of |
779 | // the compressed section header. |
780 | Section.setAlignment(is64Bit() ? Align(8) : Align(4)); |
781 | W.OS << toStringRef(Input: Compressed); |
782 | } |
783 | |
784 | void ELFWriter::(uint32_t Name, uint32_t Type, |
785 | uint64_t Flags, uint64_t Address, |
786 | uint64_t Offset, uint64_t Size, |
787 | uint32_t Link, uint32_t Info, |
788 | MaybeAlign Alignment, |
789 | uint64_t EntrySize) { |
790 | W.write<uint32_t>(Val: Name); // sh_name: index into string table |
791 | W.write<uint32_t>(Val: Type); // sh_type |
792 | writeWord(Word: Flags); // sh_flags |
793 | writeWord(Word: Address); // sh_addr |
794 | writeWord(Word: Offset); // sh_offset |
795 | writeWord(Word: Size); // sh_size |
796 | W.write<uint32_t>(Val: Link); // sh_link |
797 | W.write<uint32_t>(Val: Info); // sh_info |
798 | writeWord(Word: Alignment ? Alignment->value() : 0); // sh_addralign |
799 | writeWord(Word: EntrySize); // sh_entsize |
800 | } |
801 | |
802 | template <bool Is64> |
803 | static void encodeCrel(ArrayRef<ELFRelocationEntry> Relocs, raw_ostream &OS) { |
804 | using uint = std::conditional_t<Is64, uint64_t, uint32_t>; |
805 | ELF::encodeCrel<Is64>(OS, Relocs, [&](const ELFRelocationEntry &R) { |
806 | uint32_t SymIdx = R.Symbol ? R.Symbol->getIndex() : 0; |
807 | return ELF::Elf_Crel<Is64>{static_cast<uint>(R.Offset), SymIdx, R.Type, |
808 | std::make_signed_t<uint>(R.Addend)}; |
809 | }); |
810 | } |
811 | |
812 | void ELFWriter::writeRelocations(const MCSectionELF &Sec) { |
813 | std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; |
814 | const MCTargetOptions *TO = getContext().getTargetOptions(); |
815 | const bool Rela = OWriter.usesRela(TO, Sec); |
816 | |
817 | // Sort the relocation entries. MIPS needs this. |
818 | OWriter.TargetObjectWriter->sortRelocs(Relocs); |
819 | |
820 | if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { |
821 | for (const ELFRelocationEntry &Entry : Relocs) { |
822 | uint32_t SymIdx = Entry.Symbol ? Entry.Symbol->getIndex() : 0; |
823 | if (is64Bit()) { |
824 | write(Val: Entry.Offset); |
825 | write(Val: uint32_t(SymIdx)); |
826 | write(Val: OWriter.TargetObjectWriter->getRSsym(Type: Entry.Type)); |
827 | write(Val: OWriter.TargetObjectWriter->getRType3(Type: Entry.Type)); |
828 | write(Val: OWriter.TargetObjectWriter->getRType2(Type: Entry.Type)); |
829 | write(Val: OWriter.TargetObjectWriter->getRType(Type: Entry.Type)); |
830 | if (Rela) |
831 | write(Val: Entry.Addend); |
832 | } else { |
833 | write(Val: uint32_t(Entry.Offset)); |
834 | ELF::Elf32_Rela ERE32; |
835 | ERE32.setSymbolAndType(s: SymIdx, t: Entry.Type); |
836 | write(Val: ERE32.r_info); |
837 | if (Rela) |
838 | write(Val: uint32_t(Entry.Addend)); |
839 | if (uint32_t RType = |
840 | OWriter.TargetObjectWriter->getRType2(Type: Entry.Type)) { |
841 | write(Val: uint32_t(Entry.Offset)); |
842 | ERE32.setSymbolAndType(s: 0, t: RType); |
843 | write(Val: ERE32.r_info); |
844 | write(Val: uint32_t(0)); |
845 | } |
846 | if (uint32_t RType = |
847 | OWriter.TargetObjectWriter->getRType3(Type: Entry.Type)) { |
848 | write(Val: uint32_t(Entry.Offset)); |
849 | ERE32.setSymbolAndType(s: 0, t: RType); |
850 | write(Val: ERE32.r_info); |
851 | write(Val: uint32_t(0)); |
852 | } |
853 | } |
854 | } |
855 | } else if (TO && TO->Crel) { |
856 | if (is64Bit()) |
857 | encodeCrel<true>(Relocs, OS&: W.OS); |
858 | else |
859 | encodeCrel<false>(Relocs, OS&: W.OS); |
860 | } else { |
861 | for (const ELFRelocationEntry &Entry : Relocs) { |
862 | uint32_t Symidx = Entry.Symbol ? Entry.Symbol->getIndex() : 0; |
863 | if (is64Bit()) { |
864 | write(Val: Entry.Offset); |
865 | ELF::Elf64_Rela ERE; |
866 | ERE.setSymbolAndType(s: Symidx, t: Entry.Type); |
867 | write(Val: ERE.r_info); |
868 | if (Rela) |
869 | write(Val: Entry.Addend); |
870 | } else { |
871 | write(Val: uint32_t(Entry.Offset)); |
872 | ELF::Elf32_Rela ERE; |
873 | ERE.setSymbolAndType(s: Symidx, t: Entry.Type); |
874 | write(Val: ERE.r_info); |
875 | if (Rela) |
876 | write(Val: uint32_t(Entry.Addend)); |
877 | } |
878 | } |
879 | } |
880 | } |
881 | |
882 | void ELFWriter::(uint32_t GroupSymbolIndex, uint64_t Offset, |
883 | uint64_t Size, const MCSectionELF &Section) { |
884 | uint64_t sh_link = 0; |
885 | uint64_t sh_info = 0; |
886 | |
887 | switch(Section.getType()) { |
888 | default: |
889 | // Nothing to do. |
890 | break; |
891 | |
892 | case ELF::SHT_DYNAMIC: |
893 | llvm_unreachable("SHT_DYNAMIC in a relocatable object" ); |
894 | |
895 | case ELF::SHT_REL: |
896 | case ELF::SHT_RELA: |
897 | case ELF::SHT_CREL: { |
898 | sh_link = SymbolTableIndex; |
899 | assert(sh_link && ".symtab not found" ); |
900 | const MCSection *InfoSection = Section.getLinkedToSection(); |
901 | sh_info = InfoSection->getOrdinal(); |
902 | break; |
903 | } |
904 | |
905 | case ELF::SHT_SYMTAB: |
906 | sh_link = StringTableIndex; |
907 | sh_info = LastLocalSymbolIndex; |
908 | break; |
909 | |
910 | case ELF::SHT_SYMTAB_SHNDX: |
911 | case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: |
912 | case ELF::SHT_LLVM_ADDRSIG: |
913 | sh_link = SymbolTableIndex; |
914 | break; |
915 | |
916 | case ELF::SHT_GROUP: |
917 | sh_link = SymbolTableIndex; |
918 | sh_info = GroupSymbolIndex; |
919 | break; |
920 | } |
921 | |
922 | if (Section.getFlags() & ELF::SHF_LINK_ORDER) { |
923 | // If the value in the associated metadata is not a definition, Sym will be |
924 | // undefined. Represent this with sh_link=0. |
925 | const MCSymbol *Sym = Section.getLinkedToSymbol(); |
926 | if (Sym && Sym->isInSection()) |
927 | sh_link = Sym->getSection().getOrdinal(); |
928 | } |
929 | |
930 | writeSectionHeaderEntry(Name: StrTabBuilder.getOffset(S: Section.getName()), |
931 | Type: Section.getType(), Flags: Section.getFlags(), Address: 0, Offset, |
932 | Size, Link: sh_link, Info: sh_info, Alignment: Section.getAlign(), |
933 | EntrySize: Section.getEntrySize()); |
934 | } |
935 | |
936 | void ELFWriter::() { |
937 | uint64_t Start = W.OS.tell(); |
938 | const unsigned NumSections = SectionTable.size(); |
939 | |
940 | // Null section first. |
941 | uint64_t FirstSectionSize = |
942 | (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; |
943 | writeSectionHeaderEntry(Name: 0, Type: 0, Flags: 0, Address: 0, Offset: 0, Size: FirstSectionSize, Link: 0, Info: 0, Alignment: std::nullopt, |
944 | EntrySize: 0); |
945 | |
946 | for (const MCSectionELF *Section : SectionTable) { |
947 | uint32_t GroupSymbolIndex; |
948 | unsigned Type = Section->getType(); |
949 | if (Type != ELF::SHT_GROUP) |
950 | GroupSymbolIndex = 0; |
951 | else |
952 | GroupSymbolIndex = Section->getGroup()->getIndex(); |
953 | |
954 | std::pair<uint64_t, uint64_t> Offsets = Section->getOffsets(); |
955 | uint64_t Size; |
956 | if (Type == ELF::SHT_NOBITS) |
957 | Size = Asm.getSectionAddressSize(Sec: *Section); |
958 | else |
959 | Size = Offsets.second - Offsets.first; |
960 | |
961 | auto SectionHasFlag = [&](uint64_t Flag) -> bool { |
962 | return Section->getFlags() & Flag; |
963 | }; |
964 | |
965 | if (Mode == DwoOnly) { |
966 | stats::DwoBytes += Size; |
967 | } else if (Section->getName().starts_with(Prefix: ".debug" )) { |
968 | stats::DebugBytes += Size; |
969 | } else if (Section->getName().starts_with(Prefix: ".eh_frame" )) { |
970 | stats::UnwindBytes += Size; |
971 | } else if (SectionHasFlag(ELF::SHF_ALLOC)) { |
972 | if (SectionHasFlag(ELF::SHF_EXECINSTR)) { |
973 | stats::AllocTextBytes += Size; |
974 | } else if (SectionHasFlag(ELF::SHF_WRITE)) { |
975 | stats::AllocRWBytes += Size; |
976 | } else { |
977 | stats::AllocROBytes += Size; |
978 | } |
979 | } else { |
980 | switch (Section->getType()) { |
981 | case ELF::SHT_STRTAB: |
982 | stats::StrtabBytes += Size; |
983 | break; |
984 | case ELF::SHT_SYMTAB: |
985 | stats::SymtabBytes += Size; |
986 | break; |
987 | case ELF::SHT_DYNSYM: |
988 | stats::DynsymBytes += Size; |
989 | break; |
990 | case ELF::SHT_REL: |
991 | case ELF::SHT_RELA: |
992 | case ELF::SHT_CREL: |
993 | stats::RelocationBytes += Size; |
994 | break; |
995 | default: |
996 | stats::OtherBytes += Size; |
997 | break; |
998 | } |
999 | } |
1000 | |
1001 | writeSectionHeader(GroupSymbolIndex, Offset: Offsets.first, Size, Section: *Section); |
1002 | } |
1003 | |
1004 | stats::SectionHeaderBytes += W.OS.tell() - Start; |
1005 | } |
1006 | |
1007 | uint64_t ELFWriter::writeObject() { |
1008 | uint64_t StartOffset = W.OS.tell(); |
1009 | |
1010 | MCContext &Ctx = getContext(); |
1011 | MCSectionELF *StrtabSection = |
1012 | Ctx.getELFSection(Section: ".strtab" , Type: ELF::SHT_STRTAB, Flags: 0); |
1013 | StringTableIndex = addToSectionTable(Sec: StrtabSection); |
1014 | |
1015 | RevGroupMapTy RevGroupMap; |
1016 | |
1017 | // Write out the ELF header ... |
1018 | writeHeader(); |
1019 | |
1020 | stats::ELFHeaderBytes += W.OS.tell() - StartOffset; |
1021 | |
1022 | // ... then the sections ... |
1023 | SmallVector<std::pair<MCSectionELF *, SmallVector<unsigned>>, 0> Groups; |
1024 | // Map from group section index to group |
1025 | SmallVector<unsigned, 0> GroupMap; |
1026 | SmallVector<MCSectionELF *> Relocations; |
1027 | for (MCSection &Sec : Asm) { |
1028 | MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); |
1029 | if (Mode == NonDwoOnly && isDwoSection(Sec: Section)) |
1030 | continue; |
1031 | if (Mode == DwoOnly && !isDwoSection(Sec: Section)) |
1032 | continue; |
1033 | |
1034 | // Remember the offset into the file for this section. |
1035 | const uint64_t SecStart = align(Alignment: Section.getAlign()); |
1036 | |
1037 | const MCSymbolELF *SignatureSymbol = Section.getGroup(); |
1038 | writeSectionData(Sec&: Section); |
1039 | |
1040 | uint64_t SecEnd = W.OS.tell(); |
1041 | Section.setOffsets(Start: SecStart, End: SecEnd); |
1042 | |
1043 | MCSectionELF *RelSection = createRelocationSection(Ctx, Sec: Section); |
1044 | |
1045 | unsigned *GroupIdxEntry = nullptr; |
1046 | if (SignatureSymbol) { |
1047 | GroupIdxEntry = &RevGroupMap[SignatureSymbol]; |
1048 | if (!*GroupIdxEntry) { |
1049 | MCSectionELF *Group = |
1050 | Ctx.createELFGroupSection(Group: SignatureSymbol, IsComdat: Section.isComdat()); |
1051 | *GroupIdxEntry = addToSectionTable(Sec: Group); |
1052 | Group->setAlignment(Align(4)); |
1053 | |
1054 | GroupMap.resize(N: *GroupIdxEntry + 1); |
1055 | GroupMap[*GroupIdxEntry] = Groups.size(); |
1056 | Groups.emplace_back(Args&: Group, Args: SmallVector<unsigned>{}); |
1057 | } |
1058 | } |
1059 | |
1060 | Section.setOrdinal(addToSectionTable(Sec: &Section)); |
1061 | if (RelSection) { |
1062 | RelSection->setOrdinal(addToSectionTable(Sec: RelSection)); |
1063 | Relocations.push_back(Elt: RelSection); |
1064 | } |
1065 | |
1066 | if (GroupIdxEntry) { |
1067 | auto &Members = Groups[GroupMap[*GroupIdxEntry]]; |
1068 | Members.second.push_back(Elt: Section.getOrdinal()); |
1069 | if (RelSection) |
1070 | Members.second.push_back(Elt: RelSection->getOrdinal()); |
1071 | } |
1072 | } |
1073 | |
1074 | for (auto &[Group, Members] : Groups) { |
1075 | // Remember the offset into the file for this section. |
1076 | const uint64_t SecStart = align(Alignment: Group->getAlign()); |
1077 | |
1078 | write(Val: uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0)); |
1079 | W.write<unsigned>(Val: Members); |
1080 | |
1081 | uint64_t SecEnd = W.OS.tell(); |
1082 | Group->setOffsets(Start: SecStart, End: SecEnd); |
1083 | } |
1084 | |
1085 | if (Mode == DwoOnly) { |
1086 | // dwo files don't have symbol tables or relocations, but they do have |
1087 | // string tables. |
1088 | StrTabBuilder.finalize(); |
1089 | } else { |
1090 | MCSectionELF *AddrsigSection; |
1091 | if (OWriter.getEmitAddrsigSection()) { |
1092 | AddrsigSection = Ctx.getELFSection(Section: ".llvm_addrsig" , Type: ELF::SHT_LLVM_ADDRSIG, |
1093 | Flags: ELF::SHF_EXCLUDE); |
1094 | addToSectionTable(Sec: AddrsigSection); |
1095 | } |
1096 | |
1097 | // Compute symbol table information. |
1098 | computeSymbolTable(RevGroupMap); |
1099 | |
1100 | for (MCSectionELF *RelSection : Relocations) { |
1101 | // Remember the offset into the file for this section. |
1102 | const uint64_t SecStart = align(Alignment: RelSection->getAlign()); |
1103 | |
1104 | writeRelocations(Sec: cast<MCSectionELF>(Val: *RelSection->getLinkedToSection())); |
1105 | |
1106 | uint64_t SecEnd = W.OS.tell(); |
1107 | RelSection->setOffsets(Start: SecStart, End: SecEnd); |
1108 | } |
1109 | |
1110 | if (OWriter.getEmitAddrsigSection()) { |
1111 | uint64_t SecStart = W.OS.tell(); |
1112 | writeAddrsigSection(); |
1113 | uint64_t SecEnd = W.OS.tell(); |
1114 | AddrsigSection->setOffsets(Start: SecStart, End: SecEnd); |
1115 | } |
1116 | } |
1117 | |
1118 | { |
1119 | uint64_t SecStart = W.OS.tell(); |
1120 | StrTabBuilder.write(OS&: W.OS); |
1121 | StrtabSection->setOffsets(Start: SecStart, End: W.OS.tell()); |
1122 | } |
1123 | |
1124 | const uint64_t = align(Alignment: is64Bit() ? Align(8) : Align(4)); |
1125 | |
1126 | // ... then the section header table ... |
1127 | writeSectionHeaders(); |
1128 | |
1129 | uint16_t NumSections = support::endian::byte_swap<uint16_t>( |
1130 | value: (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF |
1131 | : SectionTable.size() + 1, |
1132 | endian: W.Endian); |
1133 | unsigned NumSectionsOffset; |
1134 | |
1135 | auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); |
1136 | if (is64Bit()) { |
1137 | uint64_t Val = |
1138 | support::endian::byte_swap<uint64_t>(value: SectionHeaderOffset, endian: W.Endian); |
1139 | Stream.pwrite(Ptr: reinterpret_cast<char *>(&Val), Size: sizeof(Val), |
1140 | offsetof(ELF::Elf64_Ehdr, e_shoff)); |
1141 | NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); |
1142 | } else { |
1143 | uint32_t Val = |
1144 | support::endian::byte_swap<uint32_t>(value: SectionHeaderOffset, endian: W.Endian); |
1145 | Stream.pwrite(Ptr: reinterpret_cast<char *>(&Val), Size: sizeof(Val), |
1146 | offsetof(ELF::Elf32_Ehdr, e_shoff)); |
1147 | NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); |
1148 | } |
1149 | Stream.pwrite(Ptr: reinterpret_cast<char *>(&NumSections), Size: sizeof(NumSections), |
1150 | Offset: NumSectionsOffset); |
1151 | |
1152 | return W.OS.tell() - StartOffset; |
1153 | } |
1154 | |
1155 | ELFObjectWriter::ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, |
1156 | raw_pwrite_stream &OS, bool IsLittleEndian) |
1157 | : TargetObjectWriter(std::move(MOTW)), OS(OS), |
1158 | IsLittleEndian(IsLittleEndian) {} |
1159 | ELFObjectWriter::ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, |
1160 | raw_pwrite_stream &OS, |
1161 | raw_pwrite_stream &DwoOS, bool IsLittleEndian) |
1162 | : TargetObjectWriter(std::move(MOTW)), OS(OS), DwoOS(&DwoOS), |
1163 | IsLittleEndian(IsLittleEndian) {} |
1164 | |
1165 | void ELFObjectWriter::reset() { |
1166 | ELFHeaderEFlags = 0; |
1167 | SeenGnuAbi = false; |
1168 | OverrideABIVersion.reset(); |
1169 | Relocations.clear(); |
1170 | Renames.clear(); |
1171 | Weakrefs.clear(); |
1172 | Symvers.clear(); |
1173 | SeenGnuAbi = false; |
1174 | MCObjectWriter::reset(); |
1175 | } |
1176 | |
1177 | void ELFObjectWriter::setAssembler(MCAssembler *Asm) { |
1178 | MCObjectWriter::setAssembler(Asm); |
1179 | TargetObjectWriter->setAssembler(Asm); |
1180 | } |
1181 | |
1182 | bool ELFObjectWriter::hasRelocationAddend() const { |
1183 | return TargetObjectWriter->hasRelocationAddend(); |
1184 | } |
1185 | |
1186 | void ELFObjectWriter::executePostLayoutBinding() { |
1187 | // The presence of symbol versions causes undefined symbols and |
1188 | // versions declared with @@@ to be renamed. |
1189 | for (const Symver &S : Symvers) { |
1190 | StringRef AliasName = S.Name; |
1191 | const auto &Symbol = cast<MCSymbolELF>(Val: *S.Sym); |
1192 | size_t Pos = AliasName.find(C: '@'); |
1193 | assert(Pos != StringRef::npos); |
1194 | |
1195 | StringRef Prefix = AliasName.substr(Start: 0, N: Pos); |
1196 | StringRef Rest = AliasName.substr(Start: Pos); |
1197 | StringRef Tail = Rest; |
1198 | if (Rest.starts_with(Prefix: "@@@" )) |
1199 | Tail = Rest.substr(Start: Symbol.isUndefined() ? 2 : 1); |
1200 | |
1201 | auto *Alias = |
1202 | cast<MCSymbolELF>(Val: Asm->getContext().getOrCreateSymbol(Name: Prefix + Tail)); |
1203 | Asm->registerSymbol(Symbol: *Alias); |
1204 | const MCExpr *Value = MCSymbolRefExpr::create(Symbol: &Symbol, Ctx&: Asm->getContext()); |
1205 | Alias->setVariableValue(Value); |
1206 | |
1207 | // Aliases defined with .symvar copy the binding from the symbol they alias. |
1208 | // This is the first place we are able to copy this information. |
1209 | Alias->setBinding(Symbol.getBinding()); |
1210 | Alias->setVisibility(Symbol.getVisibility()); |
1211 | Alias->setOther(Symbol.getOther()); |
1212 | |
1213 | if (!Symbol.isUndefined() && S.KeepOriginalSym) |
1214 | continue; |
1215 | |
1216 | if (Symbol.isUndefined() && Rest.starts_with(Prefix: "@@" ) && |
1217 | !Rest.starts_with(Prefix: "@@@" )) { |
1218 | Asm->getContext().reportError(L: S.Loc, Msg: "default version symbol " + |
1219 | AliasName + " must be defined" ); |
1220 | continue; |
1221 | } |
1222 | |
1223 | if (auto It = Renames.find(Val: &Symbol); |
1224 | It != Renames.end() && It->second != Alias) { |
1225 | Asm->getContext().reportError(L: S.Loc, Msg: Twine("multiple versions for " ) + |
1226 | Symbol.getName()); |
1227 | continue; |
1228 | } |
1229 | |
1230 | Renames.insert(KV: std::make_pair(x: &Symbol, y&: Alias)); |
1231 | } |
1232 | |
1233 | for (const MCSymbol *&Sym : AddrsigSyms) { |
1234 | if (const MCSymbol *R = Renames.lookup(Val: cast<MCSymbolELF>(Val: Sym))) |
1235 | Sym = R; |
1236 | if (Sym->isInSection() && Sym->getName().starts_with(Prefix: ".L" )) |
1237 | Sym = Sym->getSection().getBeginSymbol(); |
1238 | Sym->setUsedInReloc(); |
1239 | } |
1240 | |
1241 | // For each `.weakref alias, target`, if the variable `alias` is registered |
1242 | // (typically through MCObjectStreamer::visitUsedSymbol), register `target`. |
1243 | // If `target` was unregistered before (not directly referenced or defined), |
1244 | // make it weak. |
1245 | for (const MCSymbol *Alias : Weakrefs) { |
1246 | if (!Alias->isRegistered()) |
1247 | continue; |
1248 | auto *Expr = Alias->getVariableValue(); |
1249 | if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Val: Expr)) { |
1250 | auto &Sym = cast<MCSymbolELF>(Val: Inner->getSymbol()); |
1251 | if (Asm->registerSymbol(Symbol: Sym)) |
1252 | Sym.setBinding(ELF::STB_WEAK); |
1253 | } |
1254 | } |
1255 | } |
1256 | |
1257 | // It is always valid to create a relocation with a symbol. It is preferable |
1258 | // to use a relocation with a section if that is possible. Using the section |
1259 | // allows us to omit some local symbols from the symbol table. |
1260 | bool ELFObjectWriter::useSectionSymbol(const MCValue &Val, |
1261 | const MCSymbolELF *Sym, uint64_t C, |
1262 | unsigned Type) const { |
1263 | // Keep symbol type for a local ifunc because it may result in an IRELATIVE |
1264 | // reloc that the dynamic loader will use to resolve the address at startup |
1265 | // time. |
1266 | if (Sym->getType() == ELF::STT_GNU_IFUNC) |
1267 | return false; |
1268 | |
1269 | // If a relocation points to a mergeable section, we have to be careful. |
1270 | // If the offset is zero, a relocation with the section will encode the |
1271 | // same information. With a non-zero offset, the situation is different. |
1272 | // For example, a relocation can point 42 bytes past the end of a string. |
1273 | // If we change such a relocation to use the section, the linker would think |
1274 | // that it pointed to another string and subtracting 42 at runtime will |
1275 | // produce the wrong value. |
1276 | if (Sym->isInSection()) { |
1277 | auto &Sec = cast<MCSectionELF>(Val&: Sym->getSection()); |
1278 | unsigned Flags = Sec.getFlags(); |
1279 | if (Flags & ELF::SHF_MERGE) { |
1280 | if (C != 0) |
1281 | return false; |
1282 | |
1283 | // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9) |
1284 | // (http://sourceware.org/PR16794). |
1285 | if (TargetObjectWriter->getEMachine() == ELF::EM_386 && |
1286 | Type == ELF::R_386_GOTOFF) |
1287 | return false; |
1288 | |
1289 | // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so |
1290 | // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an |
1291 | // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in |
1292 | // range of a MergeInputSection. We could introduce a new RelExpr member |
1293 | // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12) |
1294 | // but the complexity is unnecessary given that GNU as keeps the original |
1295 | // symbol for this case as well. |
1296 | if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS && |
1297 | !hasRelocationAddend()) |
1298 | return false; |
1299 | } |
1300 | |
1301 | // Most TLS relocations use a got, so they need the symbol. Even those that |
1302 | // are just an offset (@tpoff), require a symbol in gold versions before |
1303 | // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed |
1304 | // http://sourceware.org/PR16773. |
1305 | if (Flags & ELF::SHF_TLS) |
1306 | return false; |
1307 | } |
1308 | |
1309 | return !TargetObjectWriter->needsRelocateWithSymbol(Val, Type); |
1310 | } |
1311 | |
1312 | bool ELFObjectWriter::checkRelocation(SMLoc Loc, const MCSectionELF *From, |
1313 | const MCSectionELF *To) { |
1314 | if (isDwoSection(Sec: *From)) { |
1315 | getContext().reportError(L: Loc, Msg: "A dwo section may not contain relocations" ); |
1316 | return false; |
1317 | } |
1318 | if (To && isDwoSection(Sec: *To)) { |
1319 | getContext().reportError(L: Loc, |
1320 | Msg: "A relocation may not refer to a dwo section" ); |
1321 | return false; |
1322 | } |
1323 | return true; |
1324 | } |
1325 | |
1326 | void ELFObjectWriter::recordRelocation(const MCFragment &F, |
1327 | const MCFixup &Fixup, MCValue Target, |
1328 | uint64_t &FixedValue) { |
1329 | const MCSectionELF &Section = cast<MCSectionELF>(Val&: *F.getParent()); |
1330 | MCContext &Ctx = getContext(); |
1331 | |
1332 | const auto *SymA = cast_or_null<MCSymbolELF>(Val: Target.getAddSym()); |
1333 | const MCSectionELF *SecA = (SymA && SymA->isInSection()) |
1334 | ? cast<MCSectionELF>(Val: &SymA->getSection()) |
1335 | : nullptr; |
1336 | if (DwoOS && !checkRelocation(Loc: Fixup.getLoc(), From: &Section, To: SecA)) |
1337 | return; |
1338 | |
1339 | bool IsPCRel = Fixup.isPCRel(); |
1340 | uint64_t FixupOffset = Asm->getFragmentOffset(F) + Fixup.getOffset(); |
1341 | uint64_t Addend = Target.getConstant(); |
1342 | if (auto *RefB = Target.getSubSym()) { |
1343 | const auto &SymB = cast<MCSymbolELF>(Val: *RefB); |
1344 | if (SymB.isUndefined()) { |
1345 | Ctx.reportError(L: Fixup.getLoc(), |
1346 | Msg: Twine("symbol '" ) + SymB.getName() + |
1347 | "' can not be undefined in a subtraction expression" ); |
1348 | return; |
1349 | } |
1350 | |
1351 | assert(!SymB.isAbsolute() && "Should have been folded" ); |
1352 | const MCSection &SecB = SymB.getSection(); |
1353 | if (&SecB != &Section) { |
1354 | Ctx.reportError(L: Fixup.getLoc(), |
1355 | Msg: "Cannot represent a difference across sections" ); |
1356 | return; |
1357 | } |
1358 | |
1359 | assert(!IsPCRel && "should have been folded" ); |
1360 | IsPCRel = true; |
1361 | Addend += FixupOffset - Asm->getSymbolOffset(S: SymB); |
1362 | } |
1363 | |
1364 | unsigned Type; |
1365 | if (mc::isRelocRelocation(FixupKind: Fixup.getKind())) |
1366 | Type = Fixup.getKind() - FirstLiteralRelocationKind; |
1367 | else |
1368 | Type = TargetObjectWriter->getRelocType(Fixup, Target, IsPCRel); |
1369 | |
1370 | // Convert SymA to an STT_SECTION symbol if it's defined, local, and meets |
1371 | // specific conditions, unless it's a .reloc directive, which disables |
1372 | // STT_SECTION adjustment. |
1373 | bool UseSectionSym = SymA && SymA->getBinding() == ELF::STB_LOCAL && |
1374 | !SymA->isUndefined() && |
1375 | !mc::isRelocRelocation(FixupKind: Fixup.getKind()); |
1376 | if (UseSectionSym && useSectionSymbol(Val: Target, Sym: SymA, C: Addend, Type)) { |
1377 | Addend += Asm->getSymbolOffset(S: *SymA); |
1378 | SymA = cast<MCSymbolELF>(Val: SecA->getBeginSymbol()); |
1379 | } else if (const MCSymbolELF *R = Renames.lookup(Val: SymA)) { |
1380 | SymA = R; |
1381 | } |
1382 | if (SymA) |
1383 | SymA->setUsedInReloc(); |
1384 | |
1385 | FixedValue = usesRela(TO: Ctx.getTargetOptions(), Sec: Section) ? 0 : Addend; |
1386 | Relocations[&Section].emplace_back(args&: FixupOffset, args&: SymA, args&: Type, args&: Addend); |
1387 | } |
1388 | |
1389 | bool ELFObjectWriter::usesRela(const MCTargetOptions *TO, |
1390 | const MCSectionELF &Sec) const { |
1391 | return (hasRelocationAddend() && |
1392 | Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE) || |
1393 | (TO && TO->Crel); |
1394 | } |
1395 | |
1396 | bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( |
1397 | const MCSymbol &SA, const MCFragment &FB, bool InSet, bool IsPCRel) const { |
1398 | const auto &SymA = cast<MCSymbolELF>(Val: SA); |
1399 | if (IsPCRel) { |
1400 | assert(!InSet); |
1401 | if (SymA.getBinding() != ELF::STB_LOCAL || |
1402 | SymA.getType() == ELF::STT_GNU_IFUNC) |
1403 | return false; |
1404 | } |
1405 | return &SymA.getSection() == FB.getParent(); |
1406 | } |
1407 | |
1408 | uint64_t ELFObjectWriter::writeObject() { |
1409 | uint64_t Size = |
1410 | ELFWriter(*Asm, *this, OS, IsLittleEndian, |
1411 | DwoOS ? ELFWriter::NonDwoOnly : ELFWriter::AllSections) |
1412 | .writeObject(); |
1413 | if (DwoOS) |
1414 | Size += ELFWriter(*Asm, *this, *DwoOS, IsLittleEndian, ELFWriter::DwoOnly) |
1415 | .writeObject(); |
1416 | return Size; |
1417 | } |
1418 | |