1 | //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements Wasm object file writer information. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/ADT/STLExtras.h" |
14 | #include "llvm/BinaryFormat/Wasm.h" |
15 | #include "llvm/BinaryFormat/WasmTraits.h" |
16 | #include "llvm/Config/llvm-config.h" |
17 | #include "llvm/MC/MCAsmBackend.h" |
18 | #include "llvm/MC/MCAssembler.h" |
19 | #include "llvm/MC/MCContext.h" |
20 | #include "llvm/MC/MCExpr.h" |
21 | #include "llvm/MC/MCFixupKindInfo.h" |
22 | #include "llvm/MC/MCObjectWriter.h" |
23 | #include "llvm/MC/MCSectionWasm.h" |
24 | #include "llvm/MC/MCSymbolWasm.h" |
25 | #include "llvm/MC/MCValue.h" |
26 | #include "llvm/MC/MCWasmObjectWriter.h" |
27 | #include "llvm/Support/Casting.h" |
28 | #include "llvm/Support/Debug.h" |
29 | #include "llvm/Support/EndianStream.h" |
30 | #include "llvm/Support/ErrorHandling.h" |
31 | #include "llvm/Support/LEB128.h" |
32 | #include <vector> |
33 | |
34 | using namespace llvm; |
35 | |
36 | #define DEBUG_TYPE "mc" |
37 | |
38 | namespace { |
39 | |
40 | // When we create the indirect function table we start at 1, so that there is |
41 | // and empty slot at 0 and therefore calling a null function pointer will trap. |
42 | static const uint32_t InitialTableOffset = 1; |
43 | |
44 | // For patching purposes, we need to remember where each section starts, both |
45 | // for patching up the section size field, and for patching up references to |
46 | // locations within the section. |
47 | struct SectionBookkeeping { |
48 | // Where the size of the section is written. |
49 | uint64_t SizeOffset; |
50 | // Where the section header ends (without custom section name). |
51 | uint64_t PayloadOffset; |
52 | // Where the contents of the section starts. |
53 | uint64_t ContentsOffset; |
54 | uint32_t Index; |
55 | }; |
56 | |
57 | // A wasm data segment. A wasm binary contains only a single data section |
58 | // but that can contain many segments, each with their own virtual location |
59 | // in memory. Each MCSection data created by llvm is modeled as its own |
60 | // wasm data segment. |
61 | struct WasmDataSegment { |
62 | MCSectionWasm *Section; |
63 | StringRef Name; |
64 | uint32_t InitFlags; |
65 | uint64_t Offset; |
66 | uint32_t Alignment; |
67 | uint32_t LinkingFlags; |
68 | SmallVector<char, 4> Data; |
69 | }; |
70 | |
71 | // A wasm function to be written into the function section. |
72 | struct WasmFunction { |
73 | uint32_t SigIndex; |
74 | MCSection *Section; |
75 | }; |
76 | |
77 | // A wasm global to be written into the global section. |
78 | struct WasmGlobal { |
79 | wasm::WasmGlobalType Type; |
80 | uint64_t InitialValue; |
81 | }; |
82 | |
83 | // Information about a single item which is part of a COMDAT. For each data |
84 | // segment or function which is in the COMDAT, there is a corresponding |
85 | // WasmComdatEntry. |
86 | struct WasmComdatEntry { |
87 | unsigned Kind; |
88 | uint32_t Index; |
89 | }; |
90 | |
91 | // Information about a single relocation. |
92 | struct WasmRelocationEntry { |
93 | uint64_t Offset; // Where is the relocation. |
94 | const MCSymbolWasm *Symbol; // The symbol to relocate with. |
95 | int64_t Addend; // A value to add to the symbol. |
96 | unsigned Type; // The type of the relocation. |
97 | const MCSectionWasm *FixupSection; // The section the relocation is targeting. |
98 | |
99 | WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, |
100 | int64_t Addend, unsigned Type, |
101 | const MCSectionWasm *FixupSection) |
102 | : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), |
103 | FixupSection(FixupSection) {} |
104 | |
105 | bool hasAddend() const { return wasm::relocTypeHasAddend(type: Type); } |
106 | |
107 | void print(raw_ostream &Out) const { |
108 | Out << wasm::relocTypetoString(type: Type) << " Off=" << Offset |
109 | << ", Sym=" << *Symbol << ", Addend=" << Addend |
110 | << ", FixupSection=" << FixupSection->getName(); |
111 | } |
112 | |
113 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
114 | LLVM_DUMP_METHOD void dump() const { print(dbgs()); } |
115 | #endif |
116 | }; |
117 | |
118 | static const uint32_t InvalidIndex = -1; |
119 | |
120 | struct WasmCustomSection { |
121 | |
122 | StringRef Name; |
123 | MCSectionWasm *Section; |
124 | |
125 | uint32_t OutputContentsOffset = 0; |
126 | uint32_t OutputIndex = InvalidIndex; |
127 | |
128 | WasmCustomSection(StringRef Name, MCSectionWasm *Section) |
129 | : Name(Name), Section(Section) {} |
130 | }; |
131 | |
132 | #if !defined(NDEBUG) |
133 | raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) { |
134 | Rel.print(OS); |
135 | return OS; |
136 | } |
137 | #endif |
138 | |
139 | // Write Value as an (unsigned) LEB value at offset Offset in Stream, padded |
140 | // to allow patching. |
141 | template <typename T, int W> |
142 | void writePatchableULEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) { |
143 | uint8_t Buffer[W]; |
144 | unsigned SizeLen = encodeULEB128(Value, Buffer, W); |
145 | assert(SizeLen == W); |
146 | Stream.pwrite(Ptr: (char *)Buffer, Size: SizeLen, Offset); |
147 | } |
148 | |
149 | // Write Value as an signed LEB value at offset Offset in Stream, padded |
150 | // to allow patching. |
151 | template <typename T, int W> |
152 | void writePatchableSLEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) { |
153 | uint8_t Buffer[W]; |
154 | unsigned SizeLen = encodeSLEB128(Value, Buffer, W); |
155 | assert(SizeLen == W); |
156 | Stream.pwrite(Ptr: (char *)Buffer, Size: SizeLen, Offset); |
157 | } |
158 | |
159 | static void writePatchableU32(raw_pwrite_stream &Stream, uint32_t Value, |
160 | uint64_t Offset) { |
161 | writePatchableULEB<uint32_t, 5>(Stream, Value, Offset); |
162 | } |
163 | |
164 | static void writePatchableS32(raw_pwrite_stream &Stream, int32_t Value, |
165 | uint64_t Offset) { |
166 | writePatchableSLEB<int32_t, 5>(Stream, Value, Offset); |
167 | } |
168 | |
169 | static void writePatchableU64(raw_pwrite_stream &Stream, uint64_t Value, |
170 | uint64_t Offset) { |
171 | writePatchableSLEB<uint64_t, 10>(Stream, Value, Offset); |
172 | } |
173 | |
174 | static void writePatchableS64(raw_pwrite_stream &Stream, int64_t Value, |
175 | uint64_t Offset) { |
176 | writePatchableSLEB<int64_t, 10>(Stream, Value, Offset); |
177 | } |
178 | |
179 | // Write Value as a plain integer value at offset Offset in Stream. |
180 | static void patchI32(raw_pwrite_stream &Stream, uint32_t Value, |
181 | uint64_t Offset) { |
182 | uint8_t Buffer[4]; |
183 | support::endian::write32le(P: Buffer, V: Value); |
184 | Stream.pwrite(Ptr: (char *)Buffer, Size: sizeof(Buffer), Offset); |
185 | } |
186 | |
187 | static void patchI64(raw_pwrite_stream &Stream, uint64_t Value, |
188 | uint64_t Offset) { |
189 | uint8_t Buffer[8]; |
190 | support::endian::write64le(P: Buffer, V: Value); |
191 | Stream.pwrite(Ptr: (char *)Buffer, Size: sizeof(Buffer), Offset); |
192 | } |
193 | |
194 | bool isDwoSection(const MCSection &Sec) { |
195 | return Sec.getName().ends_with(Suffix: ".dwo" ); |
196 | } |
197 | |
198 | class WasmObjectWriter : public MCObjectWriter { |
199 | support::endian::Writer *W = nullptr; |
200 | |
201 | /// The target specific Wasm writer instance. |
202 | std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter; |
203 | |
204 | // Relocations for fixing up references in the code section. |
205 | std::vector<WasmRelocationEntry> CodeRelocations; |
206 | // Relocations for fixing up references in the data section. |
207 | std::vector<WasmRelocationEntry> DataRelocations; |
208 | |
209 | // Index values to use for fixing up call_indirect type indices. |
210 | // Maps function symbols to the index of the type of the function |
211 | DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices; |
212 | // Maps function symbols to the table element index space. Used |
213 | // for TABLE_INDEX relocation types (i.e. address taken functions). |
214 | DenseMap<const MCSymbolWasm *, uint32_t> TableIndices; |
215 | // Maps function/global/table symbols to the |
216 | // function/global/table/tag/section index space. |
217 | DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices; |
218 | DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices; |
219 | // Maps data symbols to the Wasm segment and offset/size with the segment. |
220 | DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations; |
221 | |
222 | // Stores output data (index, relocations, content offset) for custom |
223 | // section. |
224 | std::vector<WasmCustomSection> CustomSections; |
225 | std::unique_ptr<WasmCustomSection> ; |
226 | std::unique_ptr<WasmCustomSection> TargetFeaturesSection; |
227 | // Relocations for fixing up references in the custom sections. |
228 | DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>> |
229 | CustomSectionsRelocations; |
230 | |
231 | // Map from section to defining function symbol. |
232 | DenseMap<const MCSection *, const MCSymbol *> SectionFunctions; |
233 | |
234 | DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices; |
235 | SmallVector<wasm::WasmSignature, 4> Signatures; |
236 | SmallVector<WasmDataSegment, 4> DataSegments; |
237 | unsigned NumFunctionImports = 0; |
238 | unsigned NumGlobalImports = 0; |
239 | unsigned NumTableImports = 0; |
240 | unsigned NumTagImports = 0; |
241 | uint32_t SectionCount = 0; |
242 | |
243 | enum class DwoMode { |
244 | AllSections, |
245 | NonDwoOnly, |
246 | DwoOnly, |
247 | }; |
248 | bool IsSplitDwarf = false; |
249 | raw_pwrite_stream *OS = nullptr; |
250 | raw_pwrite_stream *DwoOS = nullptr; |
251 | |
252 | // TargetObjectWriter wranppers. |
253 | bool is64Bit() const { return TargetObjectWriter->is64Bit(); } |
254 | bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); } |
255 | |
256 | void startSection(SectionBookkeeping &Section, unsigned SectionId); |
257 | void startCustomSection(SectionBookkeeping &Section, StringRef Name); |
258 | void endSection(SectionBookkeeping &Section); |
259 | |
260 | public: |
261 | WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, |
262 | raw_pwrite_stream &OS_) |
263 | : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {} |
264 | |
265 | WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, |
266 | raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_) |
267 | : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_), |
268 | DwoOS(&DwoOS_) {} |
269 | |
270 | private: |
271 | void reset() override { |
272 | CodeRelocations.clear(); |
273 | DataRelocations.clear(); |
274 | TypeIndices.clear(); |
275 | WasmIndices.clear(); |
276 | GOTIndices.clear(); |
277 | TableIndices.clear(); |
278 | DataLocations.clear(); |
279 | CustomSections.clear(); |
280 | ProducersSection.reset(); |
281 | TargetFeaturesSection.reset(); |
282 | CustomSectionsRelocations.clear(); |
283 | SignatureIndices.clear(); |
284 | Signatures.clear(); |
285 | DataSegments.clear(); |
286 | SectionFunctions.clear(); |
287 | NumFunctionImports = 0; |
288 | NumGlobalImports = 0; |
289 | NumTableImports = 0; |
290 | MCObjectWriter::reset(); |
291 | } |
292 | |
293 | void writeHeader(const MCAssembler &Asm); |
294 | |
295 | void recordRelocation(const MCFragment &F, const MCFixup &Fixup, |
296 | MCValue Target, uint64_t &FixedValue) override; |
297 | |
298 | void executePostLayoutBinding() override; |
299 | void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports, |
300 | MCAssembler &Asm); |
301 | uint64_t writeObject() override; |
302 | |
303 | uint64_t writeOneObject(MCAssembler &Asm, DwoMode Mode); |
304 | |
305 | void writeString(const StringRef Str) { |
306 | encodeULEB128(Value: Str.size(), OS&: W->OS); |
307 | W->OS << Str; |
308 | } |
309 | |
310 | void writeStringWithAlignment(const StringRef Str, unsigned Alignment); |
311 | |
312 | void writeI32(int32_t val) { |
313 | char Buffer[4]; |
314 | support::endian::write32le(P: Buffer, V: val); |
315 | W->OS.write(Ptr: Buffer, Size: sizeof(Buffer)); |
316 | } |
317 | |
318 | void writeI64(int64_t val) { |
319 | char Buffer[8]; |
320 | support::endian::write64le(P: Buffer, V: val); |
321 | W->OS.write(Ptr: Buffer, Size: sizeof(Buffer)); |
322 | } |
323 | |
324 | void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); } |
325 | |
326 | void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures); |
327 | void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize, |
328 | uint32_t NumElements); |
329 | void writeFunctionSection(ArrayRef<WasmFunction> Functions); |
330 | void writeExportSection(ArrayRef<wasm::WasmExport> Exports); |
331 | void writeElemSection(const MCSymbolWasm *IndirectFunctionTable, |
332 | ArrayRef<uint32_t> TableElems); |
333 | void writeDataCountSection(); |
334 | uint32_t writeCodeSection(const MCAssembler &Asm, |
335 | ArrayRef<WasmFunction> Functions); |
336 | uint32_t writeDataSection(const MCAssembler &Asm); |
337 | void writeTagSection(ArrayRef<uint32_t> TagTypes); |
338 | void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals); |
339 | void writeTableSection(ArrayRef<wasm::WasmTable> Tables); |
340 | void writeRelocSection(uint32_t SectionIndex, StringRef Name, |
341 | std::vector<WasmRelocationEntry> &Relocations); |
342 | void writeLinkingMetaDataSection( |
343 | ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, |
344 | ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, |
345 | const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats); |
346 | void writeCustomSection(WasmCustomSection &CustomSection, |
347 | const MCAssembler &Asm); |
348 | void writeCustomRelocSections(); |
349 | |
350 | uint64_t getProvisionalValue(const MCAssembler &Asm, |
351 | const WasmRelocationEntry &RelEntry); |
352 | void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations, |
353 | uint64_t ContentsOffset, const MCAssembler &Asm); |
354 | |
355 | uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); |
356 | uint32_t getFunctionType(const MCSymbolWasm &Symbol); |
357 | uint32_t getTagType(const MCSymbolWasm &Symbol); |
358 | void registerFunctionType(const MCSymbolWasm &Symbol); |
359 | void registerTagType(const MCSymbolWasm &Symbol); |
360 | }; |
361 | |
362 | } // end anonymous namespace |
363 | |
364 | // Write out a section header and a patchable section size field. |
365 | void WasmObjectWriter::startSection(SectionBookkeeping &Section, |
366 | unsigned SectionId) { |
367 | LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n" ); |
368 | W->OS << char(SectionId); |
369 | |
370 | Section.SizeOffset = W->OS.tell(); |
371 | |
372 | // The section size. We don't know the size yet, so reserve enough space |
373 | // for any 32-bit value; we'll patch it later. |
374 | encodeULEB128(Value: 0, OS&: W->OS, PadTo: 5); |
375 | |
376 | // The position where the section starts, for measuring its size. |
377 | Section.ContentsOffset = W->OS.tell(); |
378 | Section.PayloadOffset = W->OS.tell(); |
379 | Section.Index = SectionCount++; |
380 | } |
381 | |
382 | // Write a string with extra paddings for trailing alignment |
383 | // TODO: support alignment at asm and llvm level? |
384 | void WasmObjectWriter::writeStringWithAlignment(const StringRef Str, |
385 | unsigned Alignment) { |
386 | |
387 | // Calculate the encoded size of str length and add pads based on it and |
388 | // alignment. |
389 | raw_null_ostream NullOS; |
390 | uint64_t StrSizeLength = encodeULEB128(Value: Str.size(), OS&: NullOS); |
391 | uint64_t Offset = W->OS.tell() + StrSizeLength + Str.size(); |
392 | uint64_t Paddings = offsetToAlignment(Value: Offset, Alignment: Align(Alignment)); |
393 | Offset += Paddings; |
394 | |
395 | // LEB128 greater than 5 bytes is invalid |
396 | assert((StrSizeLength + Paddings) <= 5 && "too long string to align" ); |
397 | |
398 | encodeSLEB128(Value: Str.size(), OS&: W->OS, PadTo: StrSizeLength + Paddings); |
399 | W->OS << Str; |
400 | |
401 | assert(W->OS.tell() == Offset && "invalid padding" ); |
402 | } |
403 | |
404 | void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section, |
405 | StringRef Name) { |
406 | LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n" ); |
407 | startSection(Section, SectionId: wasm::WASM_SEC_CUSTOM); |
408 | |
409 | // The position where the section header ends, for measuring its size. |
410 | Section.PayloadOffset = W->OS.tell(); |
411 | |
412 | // Custom sections in wasm also have a string identifier. |
413 | if (Name != "__clangast" ) { |
414 | writeString(Str: Name); |
415 | } else { |
416 | // The on-disk hashtable in clangast needs to be aligned by 4 bytes. |
417 | writeStringWithAlignment(Str: Name, Alignment: 4); |
418 | } |
419 | |
420 | // The position where the custom section starts. |
421 | Section.ContentsOffset = W->OS.tell(); |
422 | } |
423 | |
424 | // Now that the section is complete and we know how big it is, patch up the |
425 | // section size field at the start of the section. |
426 | void WasmObjectWriter::endSection(SectionBookkeeping &Section) { |
427 | uint64_t Size = W->OS.tell(); |
428 | // /dev/null doesn't support seek/tell and can report offset of 0. |
429 | // Simply skip this patching in that case. |
430 | if (!Size) |
431 | return; |
432 | |
433 | Size -= Section.PayloadOffset; |
434 | if (uint32_t(Size) != Size) |
435 | report_fatal_error(reason: "section size does not fit in a uint32_t" ); |
436 | |
437 | LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n" ); |
438 | |
439 | // Write the final section size to the payload_len field, which follows |
440 | // the section id byte. |
441 | writePatchableU32(Stream&: static_cast<raw_pwrite_stream &>(W->OS), Value: Size, |
442 | Offset: Section.SizeOffset); |
443 | } |
444 | |
445 | // Emit the Wasm header. |
446 | void WasmObjectWriter::(const MCAssembler &Asm) { |
447 | W->OS.write(Ptr: wasm::WasmMagic, Size: sizeof(wasm::WasmMagic)); |
448 | W->write<uint32_t>(Val: wasm::WasmVersion); |
449 | } |
450 | |
451 | void WasmObjectWriter::executePostLayoutBinding() { |
452 | // Some compilation units require the indirect function table to be present |
453 | // but don't explicitly reference it. This is the case for call_indirect |
454 | // without the reference-types feature, and also function bitcasts in all |
455 | // cases. In those cases the __indirect_function_table has the |
456 | // WASM_SYMBOL_NO_STRIP attribute. Here we make sure this symbol makes it to |
457 | // the assembler, if needed. |
458 | if (auto *Sym = Asm->getContext().lookupSymbol(Name: "__indirect_function_table" )) { |
459 | const auto *WasmSym = static_cast<const MCSymbolWasm *>(Sym); |
460 | if (WasmSym->isNoStrip()) |
461 | Asm->registerSymbol(Symbol: *Sym); |
462 | } |
463 | |
464 | // Build a map of sections to the function that defines them, for use |
465 | // in recordRelocation. |
466 | for (const MCSymbol &S : Asm->symbols()) { |
467 | const auto &WS = static_cast<const MCSymbolWasm &>(S); |
468 | if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) { |
469 | const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection()); |
470 | auto Pair = SectionFunctions.insert(KV: std::make_pair(x: &Sec, y: &S)); |
471 | if (!Pair.second) |
472 | report_fatal_error(reason: "section already has a defining function: " + |
473 | Sec.getName()); |
474 | } |
475 | } |
476 | } |
477 | |
478 | void WasmObjectWriter::recordRelocation(const MCFragment &F, |
479 | const MCFixup &Fixup, MCValue Target, |
480 | uint64_t &FixedValue) { |
481 | // The WebAssembly backend should never generate FKF_IsPCRel fixups |
482 | assert(!Fixup.isPCRel()); |
483 | |
484 | const auto &FixupSection = cast<MCSectionWasm>(Val&: *F.getParent()); |
485 | uint64_t C = Target.getConstant(); |
486 | uint64_t FixupOffset = Asm->getFragmentOffset(F) + Fixup.getOffset(); |
487 | MCContext &Ctx = getContext(); |
488 | bool IsLocRel = false; |
489 | |
490 | if (const auto *RefB = Target.getSubSym()) { |
491 | const auto &SymB = cast<MCSymbolWasm>(Val: *RefB); |
492 | |
493 | if (FixupSection.isText()) { |
494 | Ctx.reportError(L: Fixup.getLoc(), |
495 | Msg: Twine("symbol '" ) + SymB.getName() + |
496 | "' unsupported subtraction expression used in " |
497 | "relocation in code section." ); |
498 | return; |
499 | } |
500 | |
501 | if (SymB.isUndefined()) { |
502 | Ctx.reportError(L: Fixup.getLoc(), |
503 | Msg: Twine("symbol '" ) + SymB.getName() + |
504 | "' can not be undefined in a subtraction expression" ); |
505 | return; |
506 | } |
507 | const MCSection &SecB = SymB.getSection(); |
508 | if (&SecB != &FixupSection) { |
509 | Ctx.reportError(L: Fixup.getLoc(), |
510 | Msg: Twine("symbol '" ) + SymB.getName() + |
511 | "' can not be placed in a different section" ); |
512 | return; |
513 | } |
514 | IsLocRel = true; |
515 | C += FixupOffset - Asm->getSymbolOffset(S: SymB); |
516 | } |
517 | |
518 | // We either rejected the fixup or folded B into C at this point. |
519 | const auto *SymA = cast<MCSymbolWasm>(Val: Target.getAddSym()); |
520 | |
521 | // The .init_array isn't translated as data, so don't do relocations in it. |
522 | if (FixupSection.getName().starts_with(Prefix: ".init_array" )) { |
523 | SymA->setUsedInInitArray(); |
524 | return; |
525 | } |
526 | |
527 | // Put any constant offset in an addend. Offsets can be negative, and |
528 | // LLVM expects wrapping, in contrast to wasm's immediates which can't |
529 | // be negative and don't wrap. |
530 | FixedValue = 0; |
531 | |
532 | unsigned Type = |
533 | TargetObjectWriter->getRelocType(Target, Fixup, FixupSection, IsLocRel); |
534 | |
535 | // Absolute offset within a section or a function. |
536 | // Currently only supported for metadata sections. |
537 | // See: test/MC/WebAssembly/blockaddress.ll |
538 | if ((Type == wasm::R_WASM_FUNCTION_OFFSET_I32 || |
539 | Type == wasm::R_WASM_FUNCTION_OFFSET_I64 || |
540 | Type == wasm::R_WASM_SECTION_OFFSET_I32) && |
541 | SymA->isDefined()) { |
542 | // SymA can be a temp data symbol that represents a function (in which case |
543 | // it needs to be replaced by the section symbol), [XXX and it apparently |
544 | // later gets changed again to a func symbol?] or it can be a real |
545 | // function symbol, in which case it can be left as-is. |
546 | |
547 | if (!FixupSection.isMetadata()) |
548 | report_fatal_error(reason: "relocations for function or section offsets are " |
549 | "only supported in metadata sections" ); |
550 | |
551 | const MCSymbol *SectionSymbol = nullptr; |
552 | const MCSection &SecA = SymA->getSection(); |
553 | if (SecA.isText()) { |
554 | auto SecSymIt = SectionFunctions.find(Val: &SecA); |
555 | if (SecSymIt == SectionFunctions.end()) |
556 | report_fatal_error(reason: "section doesn\'t have defining symbol" ); |
557 | SectionSymbol = SecSymIt->second; |
558 | } else { |
559 | SectionSymbol = SecA.getBeginSymbol(); |
560 | } |
561 | if (!SectionSymbol) |
562 | report_fatal_error(reason: "section symbol is required for relocation" ); |
563 | |
564 | C += Asm->getSymbolOffset(S: *SymA); |
565 | SymA = cast<MCSymbolWasm>(Val: SectionSymbol); |
566 | } |
567 | |
568 | if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || |
569 | Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64 || |
570 | Type == wasm::R_WASM_TABLE_INDEX_SLEB || |
571 | Type == wasm::R_WASM_TABLE_INDEX_SLEB64 || |
572 | Type == wasm::R_WASM_TABLE_INDEX_I32 || |
573 | Type == wasm::R_WASM_TABLE_INDEX_I64) { |
574 | // TABLE_INDEX relocs implicitly use the default indirect function table. |
575 | // We require the function table to have already been defined. |
576 | auto TableName = "__indirect_function_table" ; |
577 | MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Val: Ctx.lookupSymbol(Name: TableName)); |
578 | if (!Sym) { |
579 | report_fatal_error(reason: "missing indirect function table symbol" ); |
580 | } else { |
581 | if (!Sym->isFunctionTable()) |
582 | report_fatal_error(reason: "__indirect_function_table symbol has wrong type" ); |
583 | // Ensure that __indirect_function_table reaches the output. |
584 | Sym->setNoStrip(); |
585 | Asm->registerSymbol(Symbol: *Sym); |
586 | } |
587 | } |
588 | |
589 | // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be |
590 | // against a named symbol. |
591 | if (Type != wasm::R_WASM_TYPE_INDEX_LEB) { |
592 | if (SymA->getName().empty()) |
593 | report_fatal_error(reason: "relocations against un-named temporaries are not yet " |
594 | "supported by wasm" ); |
595 | |
596 | SymA->setUsedInReloc(); |
597 | } |
598 | |
599 | WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); |
600 | LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n" ); |
601 | |
602 | if (FixupSection.isWasmData()) { |
603 | DataRelocations.push_back(x: Rec); |
604 | } else if (FixupSection.isText()) { |
605 | CodeRelocations.push_back(x: Rec); |
606 | } else if (FixupSection.isMetadata()) { |
607 | CustomSectionsRelocations[&FixupSection].push_back(x: Rec); |
608 | } else { |
609 | llvm_unreachable("unexpected section type" ); |
610 | } |
611 | } |
612 | |
613 | // Compute a value to write into the code at the location covered |
614 | // by RelEntry. This value isn't used by the static linker; it just serves |
615 | // to make the object format more readable and more likely to be directly |
616 | // useable. |
617 | uint64_t |
618 | WasmObjectWriter::getProvisionalValue(const MCAssembler &Asm, |
619 | const WasmRelocationEntry &RelEntry) { |
620 | if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB || |
621 | RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) && |
622 | !RelEntry.Symbol->isGlobal()) { |
623 | assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space" ); |
624 | return GOTIndices[RelEntry.Symbol]; |
625 | } |
626 | |
627 | switch (RelEntry.Type) { |
628 | case wasm::R_WASM_TABLE_INDEX_REL_SLEB: |
629 | case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: |
630 | case wasm::R_WASM_TABLE_INDEX_SLEB: |
631 | case wasm::R_WASM_TABLE_INDEX_SLEB64: |
632 | case wasm::R_WASM_TABLE_INDEX_I32: |
633 | case wasm::R_WASM_TABLE_INDEX_I64: { |
634 | // Provisional value is table address of the resolved symbol itself |
635 | const MCSymbolWasm *Base = |
636 | cast<MCSymbolWasm>(Val: Asm.getBaseSymbol(Symbol: *RelEntry.Symbol)); |
637 | assert(Base->isFunction()); |
638 | if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || |
639 | RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64) |
640 | return TableIndices[Base] - InitialTableOffset; |
641 | else |
642 | return TableIndices[Base]; |
643 | } |
644 | case wasm::R_WASM_TYPE_INDEX_LEB: |
645 | // Provisional value is same as the index |
646 | return getRelocationIndexValue(RelEntry); |
647 | case wasm::R_WASM_FUNCTION_INDEX_LEB: |
648 | case wasm::R_WASM_FUNCTION_INDEX_I32: |
649 | case wasm::R_WASM_GLOBAL_INDEX_LEB: |
650 | case wasm::R_WASM_GLOBAL_INDEX_I32: |
651 | case wasm::R_WASM_TAG_INDEX_LEB: |
652 | case wasm::R_WASM_TABLE_NUMBER_LEB: |
653 | // Provisional value is function/global/tag Wasm index |
654 | assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space" ); |
655 | return WasmIndices[RelEntry.Symbol]; |
656 | case wasm::R_WASM_FUNCTION_OFFSET_I32: |
657 | case wasm::R_WASM_FUNCTION_OFFSET_I64: |
658 | case wasm::R_WASM_SECTION_OFFSET_I32: { |
659 | if (!RelEntry.Symbol->isDefined()) |
660 | return 0; |
661 | const auto &Section = |
662 | static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection()); |
663 | return Section.getSectionOffset() + RelEntry.Addend; |
664 | } |
665 | case wasm::R_WASM_MEMORY_ADDR_LEB: |
666 | case wasm::R_WASM_MEMORY_ADDR_LEB64: |
667 | case wasm::R_WASM_MEMORY_ADDR_SLEB: |
668 | case wasm::R_WASM_MEMORY_ADDR_SLEB64: |
669 | case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: |
670 | case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: |
671 | case wasm::R_WASM_MEMORY_ADDR_I32: |
672 | case wasm::R_WASM_MEMORY_ADDR_I64: |
673 | case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: |
674 | case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: |
675 | case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: { |
676 | // Provisional value is address of the global plus the offset |
677 | // For undefined symbols, use zero |
678 | if (!RelEntry.Symbol->isDefined()) |
679 | return 0; |
680 | const wasm::WasmDataReference &SymRef = DataLocations[RelEntry.Symbol]; |
681 | const WasmDataSegment &Segment = DataSegments[SymRef.Segment]; |
682 | // Ignore overflow. LLVM allows address arithmetic to silently wrap. |
683 | return Segment.Offset + SymRef.Offset + RelEntry.Addend; |
684 | } |
685 | default: |
686 | llvm_unreachable("invalid relocation type" ); |
687 | } |
688 | } |
689 | |
690 | static void addData(SmallVectorImpl<char> &DataBytes, |
691 | MCSectionWasm &DataSection) { |
692 | LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n" ); |
693 | |
694 | DataBytes.resize(N: alignTo(Size: DataBytes.size(), A: DataSection.getAlign())); |
695 | |
696 | for (const MCFragment &Frag : DataSection) { |
697 | if (Frag.hasInstructions()) |
698 | report_fatal_error(reason: "only data supported in data sections" ); |
699 | |
700 | if (auto *Align = dyn_cast<MCAlignFragment>(Val: &Frag)) { |
701 | if (Align->getValueSize() != 1) |
702 | report_fatal_error(reason: "only byte values supported for alignment" ); |
703 | // If nops are requested, use zeros, as this is the data section. |
704 | uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); |
705 | uint64_t Size = |
706 | std::min<uint64_t>(a: alignTo(Size: DataBytes.size(), A: Align->getAlignment()), |
707 | b: DataBytes.size() + Align->getMaxBytesToEmit()); |
708 | DataBytes.resize(N: Size, NV: Value); |
709 | } else if (auto *Fill = dyn_cast<MCFillFragment>(Val: &Frag)) { |
710 | int64_t NumValues; |
711 | if (!Fill->getNumValues().evaluateAsAbsolute(Res&: NumValues)) |
712 | llvm_unreachable("The fill should be an assembler constant" ); |
713 | DataBytes.insert(I: DataBytes.end(), NumToInsert: Fill->getValueSize() * NumValues, |
714 | Elt: Fill->getValue()); |
715 | } else if (auto *LEB = dyn_cast<MCLEBFragment>(Val: &Frag)) { |
716 | llvm::append_range(C&: DataBytes, R: LEB->getContents()); |
717 | } else { |
718 | llvm::append_range(C&: DataBytes, R: cast<MCDataFragment>(Val: Frag).getContents()); |
719 | } |
720 | } |
721 | |
722 | LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n" ); |
723 | } |
724 | |
725 | uint32_t |
726 | WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) { |
727 | if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) { |
728 | auto It = TypeIndices.find(Val: RelEntry.Symbol); |
729 | if (It == TypeIndices.end()) |
730 | report_fatal_error(reason: "symbol not found in type index space: " + |
731 | RelEntry.Symbol->getName()); |
732 | return It->second; |
733 | } |
734 | |
735 | return RelEntry.Symbol->getIndex(); |
736 | } |
737 | |
738 | // Apply the portions of the relocation records that we can handle ourselves |
739 | // directly. |
740 | void WasmObjectWriter::applyRelocations( |
741 | ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset, |
742 | const MCAssembler &Asm) { |
743 | auto &Stream = static_cast<raw_pwrite_stream &>(W->OS); |
744 | for (const WasmRelocationEntry &RelEntry : Relocations) { |
745 | uint64_t Offset = ContentsOffset + |
746 | RelEntry.FixupSection->getSectionOffset() + |
747 | RelEntry.Offset; |
748 | |
749 | LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n" ); |
750 | uint64_t Value = getProvisionalValue(Asm, RelEntry); |
751 | |
752 | switch (RelEntry.Type) { |
753 | case wasm::R_WASM_FUNCTION_INDEX_LEB: |
754 | case wasm::R_WASM_TYPE_INDEX_LEB: |
755 | case wasm::R_WASM_GLOBAL_INDEX_LEB: |
756 | case wasm::R_WASM_MEMORY_ADDR_LEB: |
757 | case wasm::R_WASM_TAG_INDEX_LEB: |
758 | case wasm::R_WASM_TABLE_NUMBER_LEB: |
759 | writePatchableU32(Stream, Value, Offset); |
760 | break; |
761 | case wasm::R_WASM_MEMORY_ADDR_LEB64: |
762 | writePatchableU64(Stream, Value, Offset); |
763 | break; |
764 | case wasm::R_WASM_TABLE_INDEX_I32: |
765 | case wasm::R_WASM_MEMORY_ADDR_I32: |
766 | case wasm::R_WASM_FUNCTION_OFFSET_I32: |
767 | case wasm::R_WASM_FUNCTION_INDEX_I32: |
768 | case wasm::R_WASM_SECTION_OFFSET_I32: |
769 | case wasm::R_WASM_GLOBAL_INDEX_I32: |
770 | case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: |
771 | patchI32(Stream, Value, Offset); |
772 | break; |
773 | case wasm::R_WASM_TABLE_INDEX_I64: |
774 | case wasm::R_WASM_MEMORY_ADDR_I64: |
775 | case wasm::R_WASM_FUNCTION_OFFSET_I64: |
776 | patchI64(Stream, Value, Offset); |
777 | break; |
778 | case wasm::R_WASM_TABLE_INDEX_SLEB: |
779 | case wasm::R_WASM_TABLE_INDEX_REL_SLEB: |
780 | case wasm::R_WASM_MEMORY_ADDR_SLEB: |
781 | case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: |
782 | case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: |
783 | writePatchableS32(Stream, Value, Offset); |
784 | break; |
785 | case wasm::R_WASM_TABLE_INDEX_SLEB64: |
786 | case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: |
787 | case wasm::R_WASM_MEMORY_ADDR_SLEB64: |
788 | case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: |
789 | case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: |
790 | writePatchableS64(Stream, Value, Offset); |
791 | break; |
792 | default: |
793 | llvm_unreachable("invalid relocation type" ); |
794 | } |
795 | } |
796 | } |
797 | |
798 | void WasmObjectWriter::writeTypeSection( |
799 | ArrayRef<wasm::WasmSignature> Signatures) { |
800 | if (Signatures.empty()) |
801 | return; |
802 | |
803 | SectionBookkeeping Section; |
804 | startSection(Section, SectionId: wasm::WASM_SEC_TYPE); |
805 | |
806 | encodeULEB128(Value: Signatures.size(), OS&: W->OS); |
807 | |
808 | for (const wasm::WasmSignature &Sig : Signatures) { |
809 | W->OS << char(wasm::WASM_TYPE_FUNC); |
810 | encodeULEB128(Value: Sig.Params.size(), OS&: W->OS); |
811 | for (wasm::ValType Ty : Sig.Params) |
812 | writeValueType(Ty); |
813 | encodeULEB128(Value: Sig.Returns.size(), OS&: W->OS); |
814 | for (wasm::ValType Ty : Sig.Returns) |
815 | writeValueType(Ty); |
816 | } |
817 | |
818 | endSection(Section); |
819 | } |
820 | |
821 | void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports, |
822 | uint64_t DataSize, |
823 | uint32_t NumElements) { |
824 | if (Imports.empty()) |
825 | return; |
826 | |
827 | uint64_t NumPages = |
828 | (DataSize + wasm::WasmDefaultPageSize - 1) / wasm::WasmDefaultPageSize; |
829 | |
830 | SectionBookkeeping Section; |
831 | startSection(Section, SectionId: wasm::WASM_SEC_IMPORT); |
832 | |
833 | encodeULEB128(Value: Imports.size(), OS&: W->OS); |
834 | for (const wasm::WasmImport &Import : Imports) { |
835 | writeString(Str: Import.Module); |
836 | writeString(Str: Import.Field); |
837 | W->OS << char(Import.Kind); |
838 | |
839 | switch (Import.Kind) { |
840 | case wasm::WASM_EXTERNAL_FUNCTION: |
841 | encodeULEB128(Value: Import.SigIndex, OS&: W->OS); |
842 | break; |
843 | case wasm::WASM_EXTERNAL_GLOBAL: |
844 | W->OS << char(Import.Global.Type); |
845 | W->OS << char(Import.Global.Mutable ? 1 : 0); |
846 | break; |
847 | case wasm::WASM_EXTERNAL_MEMORY: |
848 | encodeULEB128(Value: Import.Memory.Flags, OS&: W->OS); |
849 | encodeULEB128(Value: NumPages, OS&: W->OS); // initial |
850 | break; |
851 | case wasm::WASM_EXTERNAL_TABLE: |
852 | W->OS << char(Import.Table.ElemType); |
853 | encodeULEB128(Value: Import.Table.Limits.Flags, OS&: W->OS); |
854 | encodeULEB128(Value: NumElements, OS&: W->OS); // initial |
855 | break; |
856 | case wasm::WASM_EXTERNAL_TAG: |
857 | W->OS << char(0); // Reserved 'attribute' field |
858 | encodeULEB128(Value: Import.SigIndex, OS&: W->OS); |
859 | break; |
860 | default: |
861 | llvm_unreachable("unsupported import kind" ); |
862 | } |
863 | } |
864 | |
865 | endSection(Section); |
866 | } |
867 | |
868 | void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) { |
869 | if (Functions.empty()) |
870 | return; |
871 | |
872 | SectionBookkeeping Section; |
873 | startSection(Section, SectionId: wasm::WASM_SEC_FUNCTION); |
874 | |
875 | encodeULEB128(Value: Functions.size(), OS&: W->OS); |
876 | for (const WasmFunction &Func : Functions) |
877 | encodeULEB128(Value: Func.SigIndex, OS&: W->OS); |
878 | |
879 | endSection(Section); |
880 | } |
881 | |
882 | void WasmObjectWriter::writeTagSection(ArrayRef<uint32_t> TagTypes) { |
883 | if (TagTypes.empty()) |
884 | return; |
885 | |
886 | SectionBookkeeping Section; |
887 | startSection(Section, SectionId: wasm::WASM_SEC_TAG); |
888 | |
889 | encodeULEB128(Value: TagTypes.size(), OS&: W->OS); |
890 | for (uint32_t Index : TagTypes) { |
891 | W->OS << char(0); // Reserved 'attribute' field |
892 | encodeULEB128(Value: Index, OS&: W->OS); |
893 | } |
894 | |
895 | endSection(Section); |
896 | } |
897 | |
898 | void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) { |
899 | if (Globals.empty()) |
900 | return; |
901 | |
902 | SectionBookkeeping Section; |
903 | startSection(Section, SectionId: wasm::WASM_SEC_GLOBAL); |
904 | |
905 | encodeULEB128(Value: Globals.size(), OS&: W->OS); |
906 | for (const wasm::WasmGlobal &Global : Globals) { |
907 | encodeULEB128(Value: Global.Type.Type, OS&: W->OS); |
908 | W->OS << char(Global.Type.Mutable); |
909 | if (Global.InitExpr.Extended) { |
910 | llvm_unreachable("extected init expressions not supported" ); |
911 | } else { |
912 | W->OS << char(Global.InitExpr.Inst.Opcode); |
913 | switch (Global.Type.Type) { |
914 | case wasm::WASM_TYPE_I32: |
915 | encodeSLEB128(Value: 0, OS&: W->OS); |
916 | break; |
917 | case wasm::WASM_TYPE_I64: |
918 | encodeSLEB128(Value: 0, OS&: W->OS); |
919 | break; |
920 | case wasm::WASM_TYPE_F32: |
921 | writeI32(val: 0); |
922 | break; |
923 | case wasm::WASM_TYPE_F64: |
924 | writeI64(val: 0); |
925 | break; |
926 | case wasm::WASM_TYPE_EXTERNREF: |
927 | writeValueType(Ty: wasm::ValType::EXTERNREF); |
928 | break; |
929 | default: |
930 | llvm_unreachable("unexpected type" ); |
931 | } |
932 | } |
933 | W->OS << char(wasm::WASM_OPCODE_END); |
934 | } |
935 | |
936 | endSection(Section); |
937 | } |
938 | |
939 | void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) { |
940 | if (Tables.empty()) |
941 | return; |
942 | |
943 | SectionBookkeeping Section; |
944 | startSection(Section, SectionId: wasm::WASM_SEC_TABLE); |
945 | |
946 | encodeULEB128(Value: Tables.size(), OS&: W->OS); |
947 | for (const wasm::WasmTable &Table : Tables) { |
948 | assert(Table.Type.ElemType != wasm::ValType::OTHERREF && |
949 | "Cannot encode general ref-typed tables" ); |
950 | encodeULEB128(Value: (uint32_t)Table.Type.ElemType, OS&: W->OS); |
951 | encodeULEB128(Value: Table.Type.Limits.Flags, OS&: W->OS); |
952 | encodeULEB128(Value: Table.Type.Limits.Minimum, OS&: W->OS); |
953 | if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) |
954 | encodeULEB128(Value: Table.Type.Limits.Maximum, OS&: W->OS); |
955 | } |
956 | endSection(Section); |
957 | } |
958 | |
959 | void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) { |
960 | if (Exports.empty()) |
961 | return; |
962 | |
963 | SectionBookkeeping Section; |
964 | startSection(Section, SectionId: wasm::WASM_SEC_EXPORT); |
965 | |
966 | encodeULEB128(Value: Exports.size(), OS&: W->OS); |
967 | for (const wasm::WasmExport &Export : Exports) { |
968 | writeString(Str: Export.Name); |
969 | W->OS << char(Export.Kind); |
970 | encodeULEB128(Value: Export.Index, OS&: W->OS); |
971 | } |
972 | |
973 | endSection(Section); |
974 | } |
975 | |
976 | void WasmObjectWriter::writeElemSection( |
977 | const MCSymbolWasm *IndirectFunctionTable, ArrayRef<uint32_t> TableElems) { |
978 | if (TableElems.empty()) |
979 | return; |
980 | |
981 | assert(IndirectFunctionTable); |
982 | |
983 | SectionBookkeeping Section; |
984 | startSection(Section, SectionId: wasm::WASM_SEC_ELEM); |
985 | |
986 | encodeULEB128(Value: 1, OS&: W->OS); // number of "segments" |
987 | |
988 | assert(WasmIndices.count(IndirectFunctionTable)); |
989 | uint32_t TableNumber = WasmIndices.find(Val: IndirectFunctionTable)->second; |
990 | uint32_t Flags = 0; |
991 | if (TableNumber) |
992 | Flags |= wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER; |
993 | encodeULEB128(Value: Flags, OS&: W->OS); |
994 | if (Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER) |
995 | encodeULEB128(Value: TableNumber, OS&: W->OS); // the table number |
996 | |
997 | // init expr for starting offset |
998 | W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST |
999 | : wasm::WASM_OPCODE_I32_CONST); |
1000 | encodeSLEB128(Value: InitialTableOffset, OS&: W->OS); |
1001 | W->OS << char(wasm::WASM_OPCODE_END); |
1002 | |
1003 | if (Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_DESC) { |
1004 | // We only write active function table initializers, for which the elem kind |
1005 | // is specified to be written as 0x00 and interpreted to mean "funcref". |
1006 | const uint8_t ElemKind = 0; |
1007 | W->OS << ElemKind; |
1008 | } |
1009 | |
1010 | encodeULEB128(Value: TableElems.size(), OS&: W->OS); |
1011 | for (uint32_t Elem : TableElems) |
1012 | encodeULEB128(Value: Elem, OS&: W->OS); |
1013 | |
1014 | endSection(Section); |
1015 | } |
1016 | |
1017 | void WasmObjectWriter::writeDataCountSection() { |
1018 | if (DataSegments.empty()) |
1019 | return; |
1020 | |
1021 | SectionBookkeeping Section; |
1022 | startSection(Section, SectionId: wasm::WASM_SEC_DATACOUNT); |
1023 | encodeULEB128(Value: DataSegments.size(), OS&: W->OS); |
1024 | endSection(Section); |
1025 | } |
1026 | |
1027 | uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm, |
1028 | ArrayRef<WasmFunction> Functions) { |
1029 | if (Functions.empty()) |
1030 | return 0; |
1031 | |
1032 | SectionBookkeeping Section; |
1033 | startSection(Section, SectionId: wasm::WASM_SEC_CODE); |
1034 | |
1035 | encodeULEB128(Value: Functions.size(), OS&: W->OS); |
1036 | |
1037 | for (const WasmFunction &Func : Functions) { |
1038 | auto *FuncSection = static_cast<MCSectionWasm *>(Func.Section); |
1039 | |
1040 | int64_t Size = Asm.getSectionAddressSize(Sec: *FuncSection); |
1041 | encodeULEB128(Value: Size, OS&: W->OS); |
1042 | FuncSection->setSectionOffset(W->OS.tell() - Section.ContentsOffset); |
1043 | Asm.writeSectionData(OS&: W->OS, Section: FuncSection); |
1044 | } |
1045 | |
1046 | // Apply fixups. |
1047 | applyRelocations(Relocations: CodeRelocations, ContentsOffset: Section.ContentsOffset, Asm); |
1048 | |
1049 | endSection(Section); |
1050 | return Section.Index; |
1051 | } |
1052 | |
1053 | uint32_t WasmObjectWriter::writeDataSection(const MCAssembler &Asm) { |
1054 | if (DataSegments.empty()) |
1055 | return 0; |
1056 | |
1057 | SectionBookkeeping Section; |
1058 | startSection(Section, SectionId: wasm::WASM_SEC_DATA); |
1059 | |
1060 | encodeULEB128(Value: DataSegments.size(), OS&: W->OS); // count |
1061 | |
1062 | for (const WasmDataSegment &Segment : DataSegments) { |
1063 | encodeULEB128(Value: Segment.InitFlags, OS&: W->OS); // flags |
1064 | if (Segment.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX) |
1065 | encodeULEB128(Value: 0, OS&: W->OS); // memory index |
1066 | if ((Segment.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) { |
1067 | W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST |
1068 | : wasm::WASM_OPCODE_I32_CONST); |
1069 | encodeSLEB128(Value: Segment.Offset, OS&: W->OS); // offset |
1070 | W->OS << char(wasm::WASM_OPCODE_END); |
1071 | } |
1072 | encodeULEB128(Value: Segment.Data.size(), OS&: W->OS); // size |
1073 | Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset); |
1074 | W->OS << Segment.Data; // data |
1075 | } |
1076 | |
1077 | // Apply fixups. |
1078 | applyRelocations(Relocations: DataRelocations, ContentsOffset: Section.ContentsOffset, Asm); |
1079 | |
1080 | endSection(Section); |
1081 | return Section.Index; |
1082 | } |
1083 | |
1084 | void WasmObjectWriter::writeRelocSection( |
1085 | uint32_t SectionIndex, StringRef Name, |
1086 | std::vector<WasmRelocationEntry> &Relocs) { |
1087 | // See: https://github.com/WebAssembly/tool-conventions/blob/main/Linking.md |
1088 | // for descriptions of the reloc sections. |
1089 | |
1090 | if (Relocs.empty()) |
1091 | return; |
1092 | |
1093 | // First, ensure the relocations are sorted in offset order. In general they |
1094 | // should already be sorted since `recordRelocation` is called in offset |
1095 | // order, but for the code section we combine many MC sections into single |
1096 | // wasm section, and this order is determined by the order of Asm.Symbols() |
1097 | // not the sections order. |
1098 | llvm::stable_sort( |
1099 | Range&: Relocs, C: [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) { |
1100 | return (A.Offset + A.FixupSection->getSectionOffset()) < |
1101 | (B.Offset + B.FixupSection->getSectionOffset()); |
1102 | }); |
1103 | |
1104 | SectionBookkeeping Section; |
1105 | startCustomSection(Section, Name: std::string("reloc." ) + Name.str()); |
1106 | |
1107 | encodeULEB128(Value: SectionIndex, OS&: W->OS); |
1108 | encodeULEB128(Value: Relocs.size(), OS&: W->OS); |
1109 | for (const WasmRelocationEntry &RelEntry : Relocs) { |
1110 | uint64_t Offset = |
1111 | RelEntry.Offset + RelEntry.FixupSection->getSectionOffset(); |
1112 | uint32_t Index = getRelocationIndexValue(RelEntry); |
1113 | |
1114 | W->OS << char(RelEntry.Type); |
1115 | encodeULEB128(Value: Offset, OS&: W->OS); |
1116 | encodeULEB128(Value: Index, OS&: W->OS); |
1117 | if (RelEntry.hasAddend()) |
1118 | encodeSLEB128(Value: RelEntry.Addend, OS&: W->OS); |
1119 | } |
1120 | |
1121 | endSection(Section); |
1122 | } |
1123 | |
1124 | void WasmObjectWriter::writeCustomRelocSections() { |
1125 | for (const auto &Sec : CustomSections) { |
1126 | auto &Relocations = CustomSectionsRelocations[Sec.Section]; |
1127 | writeRelocSection(SectionIndex: Sec.OutputIndex, Name: Sec.Name, Relocs&: Relocations); |
1128 | } |
1129 | } |
1130 | |
1131 | void WasmObjectWriter::writeLinkingMetaDataSection( |
1132 | ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, |
1133 | ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, |
1134 | const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) { |
1135 | SectionBookkeeping Section; |
1136 | startCustomSection(Section, Name: "linking" ); |
1137 | encodeULEB128(Value: wasm::WasmMetadataVersion, OS&: W->OS); |
1138 | |
1139 | SectionBookkeeping SubSection; |
1140 | if (SymbolInfos.size() != 0) { |
1141 | startSection(Section&: SubSection, SectionId: wasm::WASM_SYMBOL_TABLE); |
1142 | encodeULEB128(Value: SymbolInfos.size(), OS&: W->OS); |
1143 | for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) { |
1144 | encodeULEB128(Value: Sym.Kind, OS&: W->OS); |
1145 | encodeULEB128(Value: Sym.Flags, OS&: W->OS); |
1146 | switch (Sym.Kind) { |
1147 | case wasm::WASM_SYMBOL_TYPE_FUNCTION: |
1148 | case wasm::WASM_SYMBOL_TYPE_GLOBAL: |
1149 | case wasm::WASM_SYMBOL_TYPE_TAG: |
1150 | case wasm::WASM_SYMBOL_TYPE_TABLE: |
1151 | encodeULEB128(Value: Sym.ElementIndex, OS&: W->OS); |
1152 | if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 || |
1153 | (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) |
1154 | writeString(Str: Sym.Name); |
1155 | break; |
1156 | case wasm::WASM_SYMBOL_TYPE_DATA: |
1157 | writeString(Str: Sym.Name); |
1158 | if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) { |
1159 | encodeULEB128(Value: Sym.DataRef.Segment, OS&: W->OS); |
1160 | encodeULEB128(Value: Sym.DataRef.Offset, OS&: W->OS); |
1161 | encodeULEB128(Value: Sym.DataRef.Size, OS&: W->OS); |
1162 | } |
1163 | break; |
1164 | case wasm::WASM_SYMBOL_TYPE_SECTION: { |
1165 | const uint32_t SectionIndex = |
1166 | CustomSections[Sym.ElementIndex].OutputIndex; |
1167 | encodeULEB128(Value: SectionIndex, OS&: W->OS); |
1168 | break; |
1169 | } |
1170 | default: |
1171 | llvm_unreachable("unexpected kind" ); |
1172 | } |
1173 | } |
1174 | endSection(Section&: SubSection); |
1175 | } |
1176 | |
1177 | if (DataSegments.size()) { |
1178 | startSection(Section&: SubSection, SectionId: wasm::WASM_SEGMENT_INFO); |
1179 | encodeULEB128(Value: DataSegments.size(), OS&: W->OS); |
1180 | for (const WasmDataSegment &Segment : DataSegments) { |
1181 | writeString(Str: Segment.Name); |
1182 | encodeULEB128(Value: Segment.Alignment, OS&: W->OS); |
1183 | encodeULEB128(Value: Segment.LinkingFlags, OS&: W->OS); |
1184 | } |
1185 | endSection(Section&: SubSection); |
1186 | } |
1187 | |
1188 | if (!InitFuncs.empty()) { |
1189 | startSection(Section&: SubSection, SectionId: wasm::WASM_INIT_FUNCS); |
1190 | encodeULEB128(Value: InitFuncs.size(), OS&: W->OS); |
1191 | for (auto &StartFunc : InitFuncs) { |
1192 | encodeULEB128(Value: StartFunc.first, OS&: W->OS); // priority |
1193 | encodeULEB128(Value: StartFunc.second, OS&: W->OS); // function index |
1194 | } |
1195 | endSection(Section&: SubSection); |
1196 | } |
1197 | |
1198 | if (Comdats.size()) { |
1199 | startSection(Section&: SubSection, SectionId: wasm::WASM_COMDAT_INFO); |
1200 | encodeULEB128(Value: Comdats.size(), OS&: W->OS); |
1201 | for (const auto &C : Comdats) { |
1202 | writeString(Str: C.first); |
1203 | encodeULEB128(Value: 0, OS&: W->OS); // flags for future use |
1204 | encodeULEB128(Value: C.second.size(), OS&: W->OS); |
1205 | for (const WasmComdatEntry &Entry : C.second) { |
1206 | encodeULEB128(Value: Entry.Kind, OS&: W->OS); |
1207 | encodeULEB128(Value: Entry.Index, OS&: W->OS); |
1208 | } |
1209 | } |
1210 | endSection(Section&: SubSection); |
1211 | } |
1212 | |
1213 | endSection(Section); |
1214 | } |
1215 | |
1216 | void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection, |
1217 | const MCAssembler &Asm) { |
1218 | SectionBookkeeping Section; |
1219 | auto *Sec = CustomSection.Section; |
1220 | startCustomSection(Section, Name: CustomSection.Name); |
1221 | |
1222 | Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset); |
1223 | Asm.writeSectionData(OS&: W->OS, Section: Sec); |
1224 | |
1225 | CustomSection.OutputContentsOffset = Section.ContentsOffset; |
1226 | CustomSection.OutputIndex = Section.Index; |
1227 | |
1228 | endSection(Section); |
1229 | |
1230 | // Apply fixups. |
1231 | auto &Relocations = CustomSectionsRelocations[CustomSection.Section]; |
1232 | applyRelocations(Relocations, ContentsOffset: CustomSection.OutputContentsOffset, Asm); |
1233 | } |
1234 | |
1235 | uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) { |
1236 | assert(Symbol.isFunction()); |
1237 | assert(TypeIndices.count(&Symbol)); |
1238 | return TypeIndices[&Symbol]; |
1239 | } |
1240 | |
1241 | uint32_t WasmObjectWriter::getTagType(const MCSymbolWasm &Symbol) { |
1242 | assert(Symbol.isTag()); |
1243 | assert(TypeIndices.count(&Symbol)); |
1244 | return TypeIndices[&Symbol]; |
1245 | } |
1246 | |
1247 | void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) { |
1248 | assert(Symbol.isFunction()); |
1249 | |
1250 | wasm::WasmSignature S; |
1251 | |
1252 | if (auto *Sig = Symbol.getSignature()) { |
1253 | S.Returns = Sig->Returns; |
1254 | S.Params = Sig->Params; |
1255 | } |
1256 | |
1257 | auto Pair = SignatureIndices.insert(KV: std::make_pair(x&: S, y: Signatures.size())); |
1258 | if (Pair.second) |
1259 | Signatures.push_back(Elt: S); |
1260 | TypeIndices[&Symbol] = Pair.first->second; |
1261 | |
1262 | LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol |
1263 | << " new:" << Pair.second << "\n" ); |
1264 | LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n" ); |
1265 | } |
1266 | |
1267 | void WasmObjectWriter::registerTagType(const MCSymbolWasm &Symbol) { |
1268 | assert(Symbol.isTag()); |
1269 | |
1270 | // TODO Currently we don't generate imported exceptions, but if we do, we |
1271 | // should have a way of infering types of imported exceptions. |
1272 | wasm::WasmSignature S; |
1273 | if (auto *Sig = Symbol.getSignature()) { |
1274 | S.Returns = Sig->Returns; |
1275 | S.Params = Sig->Params; |
1276 | } |
1277 | |
1278 | auto Pair = SignatureIndices.insert(KV: std::make_pair(x&: S, y: Signatures.size())); |
1279 | if (Pair.second) |
1280 | Signatures.push_back(Elt: S); |
1281 | TypeIndices[&Symbol] = Pair.first->second; |
1282 | |
1283 | LLVM_DEBUG(dbgs() << "registerTagType: " << Symbol << " new:" << Pair.second |
1284 | << "\n" ); |
1285 | LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n" ); |
1286 | } |
1287 | |
1288 | static bool isInSymtab(const MCSymbolWasm &Sym) { |
1289 | if (Sym.isUsedInReloc() || Sym.isUsedInInitArray()) |
1290 | return true; |
1291 | |
1292 | if (Sym.isComdat() && !Sym.isDefined()) |
1293 | return false; |
1294 | |
1295 | if (Sym.isTemporary()) |
1296 | return false; |
1297 | |
1298 | if (Sym.isSection()) |
1299 | return false; |
1300 | |
1301 | if (Sym.omitFromLinkingSection()) |
1302 | return false; |
1303 | |
1304 | return true; |
1305 | } |
1306 | |
1307 | static bool isSectionReferenced(MCAssembler &Asm, MCSectionWasm &Section) { |
1308 | StringRef SectionName = Section.getName(); |
1309 | |
1310 | for (const MCSymbol &S : Asm.symbols()) { |
1311 | const auto &WS = static_cast<const MCSymbolWasm &>(S); |
1312 | if (WS.isData() && WS.isInSection()) { |
1313 | auto &RefSection = static_cast<MCSectionWasm &>(WS.getSection()); |
1314 | if (RefSection.getName() == SectionName) { |
1315 | return true; |
1316 | } |
1317 | } |
1318 | } |
1319 | |
1320 | return false; |
1321 | } |
1322 | |
1323 | void WasmObjectWriter::prepareImports( |
1324 | SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm) { |
1325 | // For now, always emit the memory import, since loads and stores are not |
1326 | // valid without it. In the future, we could perhaps be more clever and omit |
1327 | // it if there are no loads or stores. |
1328 | wasm::WasmImport MemImport; |
1329 | MemImport.Module = "env" ; |
1330 | MemImport.Field = "__linear_memory" ; |
1331 | MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY; |
1332 | MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64 |
1333 | : wasm::WASM_LIMITS_FLAG_NONE; |
1334 | Imports.push_back(Elt: MemImport); |
1335 | |
1336 | // Populate SignatureIndices, and Imports and WasmIndices for undefined |
1337 | // symbols. This must be done before populating WasmIndices for defined |
1338 | // symbols. |
1339 | for (const MCSymbol &S : Asm.symbols()) { |
1340 | const auto &WS = static_cast<const MCSymbolWasm &>(S); |
1341 | |
1342 | // Register types for all functions, including those with private linkage |
1343 | // (because wasm always needs a type signature). |
1344 | if (WS.isFunction()) { |
1345 | const auto *BS = Asm.getBaseSymbol(Symbol: S); |
1346 | if (!BS) |
1347 | report_fatal_error(reason: Twine(S.getName()) + |
1348 | ": absolute addressing not supported!" ); |
1349 | registerFunctionType(Symbol: *cast<MCSymbolWasm>(Val: BS)); |
1350 | } |
1351 | |
1352 | if (WS.isTag()) |
1353 | registerTagType(Symbol: WS); |
1354 | |
1355 | if (WS.isTemporary()) |
1356 | continue; |
1357 | |
1358 | // If the symbol is not defined in this translation unit, import it. |
1359 | if (!WS.isDefined() && !WS.isComdat()) { |
1360 | if (WS.isFunction()) { |
1361 | wasm::WasmImport Import; |
1362 | Import.Module = WS.getImportModule(); |
1363 | Import.Field = WS.getImportName(); |
1364 | Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; |
1365 | Import.SigIndex = getFunctionType(Symbol: WS); |
1366 | Imports.push_back(Elt: Import); |
1367 | assert(WasmIndices.count(&WS) == 0); |
1368 | WasmIndices[&WS] = NumFunctionImports++; |
1369 | } else if (WS.isGlobal()) { |
1370 | if (WS.isWeak()) |
1371 | report_fatal_error(reason: "undefined global symbol cannot be weak" ); |
1372 | |
1373 | wasm::WasmImport Import; |
1374 | Import.Field = WS.getImportName(); |
1375 | Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; |
1376 | Import.Module = WS.getImportModule(); |
1377 | Import.Global = WS.getGlobalType(); |
1378 | Imports.push_back(Elt: Import); |
1379 | assert(WasmIndices.count(&WS) == 0); |
1380 | WasmIndices[&WS] = NumGlobalImports++; |
1381 | } else if (WS.isTag()) { |
1382 | if (WS.isWeak()) |
1383 | report_fatal_error(reason: "undefined tag symbol cannot be weak" ); |
1384 | |
1385 | wasm::WasmImport Import; |
1386 | Import.Module = WS.getImportModule(); |
1387 | Import.Field = WS.getImportName(); |
1388 | Import.Kind = wasm::WASM_EXTERNAL_TAG; |
1389 | Import.SigIndex = getTagType(Symbol: WS); |
1390 | Imports.push_back(Elt: Import); |
1391 | assert(WasmIndices.count(&WS) == 0); |
1392 | WasmIndices[&WS] = NumTagImports++; |
1393 | } else if (WS.isTable()) { |
1394 | if (WS.isWeak()) |
1395 | report_fatal_error(reason: "undefined table symbol cannot be weak" ); |
1396 | |
1397 | wasm::WasmImport Import; |
1398 | Import.Module = WS.getImportModule(); |
1399 | Import.Field = WS.getImportName(); |
1400 | Import.Kind = wasm::WASM_EXTERNAL_TABLE; |
1401 | Import.Table = WS.getTableType(); |
1402 | Imports.push_back(Elt: Import); |
1403 | assert(WasmIndices.count(&WS) == 0); |
1404 | WasmIndices[&WS] = NumTableImports++; |
1405 | } |
1406 | } |
1407 | } |
1408 | |
1409 | // Add imports for GOT globals |
1410 | for (const MCSymbol &S : Asm.symbols()) { |
1411 | const auto &WS = static_cast<const MCSymbolWasm &>(S); |
1412 | if (WS.isUsedInGOT()) { |
1413 | wasm::WasmImport Import; |
1414 | if (WS.isFunction()) |
1415 | Import.Module = "GOT.func" ; |
1416 | else |
1417 | Import.Module = "GOT.mem" ; |
1418 | Import.Field = WS.getName(); |
1419 | Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; |
1420 | Import.Global = {.Type: wasm::WASM_TYPE_I32, .Mutable: true}; |
1421 | Imports.push_back(Elt: Import); |
1422 | assert(GOTIndices.count(&WS) == 0); |
1423 | GOTIndices[&WS] = NumGlobalImports++; |
1424 | } |
1425 | } |
1426 | } |
1427 | |
1428 | uint64_t WasmObjectWriter::writeObject() { |
1429 | support::endian::Writer MainWriter(*OS, llvm::endianness::little); |
1430 | W = &MainWriter; |
1431 | if (IsSplitDwarf) { |
1432 | uint64_t TotalSize = writeOneObject(Asm&: *Asm, Mode: DwoMode::NonDwoOnly); |
1433 | assert(DwoOS); |
1434 | support::endian::Writer DwoWriter(*DwoOS, llvm::endianness::little); |
1435 | W = &DwoWriter; |
1436 | return TotalSize + writeOneObject(Asm&: *Asm, Mode: DwoMode::DwoOnly); |
1437 | } else { |
1438 | return writeOneObject(Asm&: *Asm, Mode: DwoMode::AllSections); |
1439 | } |
1440 | } |
1441 | |
1442 | uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm, |
1443 | DwoMode Mode) { |
1444 | uint64_t StartOffset = W->OS.tell(); |
1445 | SectionCount = 0; |
1446 | CustomSections.clear(); |
1447 | |
1448 | LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n" ); |
1449 | |
1450 | // Collect information from the available symbols. |
1451 | SmallVector<WasmFunction, 4> Functions; |
1452 | SmallVector<uint32_t, 4> TableElems; |
1453 | SmallVector<wasm::WasmImport, 4> Imports; |
1454 | SmallVector<wasm::WasmExport, 4> Exports; |
1455 | SmallVector<uint32_t, 2> TagTypes; |
1456 | SmallVector<wasm::WasmGlobal, 1> Globals; |
1457 | SmallVector<wasm::WasmTable, 1> Tables; |
1458 | SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos; |
1459 | SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs; |
1460 | std::map<StringRef, std::vector<WasmComdatEntry>> Comdats; |
1461 | uint64_t DataSize = 0; |
1462 | if (Mode != DwoMode::DwoOnly) |
1463 | prepareImports(Imports, Asm); |
1464 | |
1465 | // Populate DataSegments and CustomSections, which must be done before |
1466 | // populating DataLocations. |
1467 | for (MCSection &Sec : Asm) { |
1468 | auto &Section = static_cast<MCSectionWasm &>(Sec); |
1469 | StringRef SectionName = Section.getName(); |
1470 | |
1471 | if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec)) |
1472 | continue; |
1473 | if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec)) |
1474 | continue; |
1475 | |
1476 | LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << " group " |
1477 | << Section.getGroup() << "\n" ;); |
1478 | |
1479 | // .init_array sections are handled specially elsewhere, include them in |
1480 | // data segments if and only if referenced by a symbol. |
1481 | if (SectionName.starts_with(Prefix: ".init_array" ) && |
1482 | !isSectionReferenced(Asm, Section)) |
1483 | continue; |
1484 | |
1485 | // Code is handled separately |
1486 | if (Section.isText()) |
1487 | continue; |
1488 | |
1489 | if (Section.isWasmData()) { |
1490 | uint32_t SegmentIndex = DataSegments.size(); |
1491 | DataSize = alignTo(Size: DataSize, A: Section.getAlign()); |
1492 | DataSegments.emplace_back(); |
1493 | WasmDataSegment &Segment = DataSegments.back(); |
1494 | Segment.Name = SectionName; |
1495 | Segment.InitFlags = Section.getPassive() |
1496 | ? (uint32_t)wasm::WASM_DATA_SEGMENT_IS_PASSIVE |
1497 | : 0; |
1498 | Segment.Offset = DataSize; |
1499 | Segment.Section = &Section; |
1500 | addData(DataBytes&: Segment.Data, DataSection&: Section); |
1501 | Segment.Alignment = Log2(A: Section.getAlign()); |
1502 | Segment.LinkingFlags = Section.getSegmentFlags(); |
1503 | DataSize += Segment.Data.size(); |
1504 | Section.setSegmentIndex(SegmentIndex); |
1505 | |
1506 | if (const MCSymbolWasm *C = Section.getGroup()) { |
1507 | Comdats[C->getName()].emplace_back( |
1508 | args: WasmComdatEntry{.Kind: wasm::WASM_COMDAT_DATA, .Index: SegmentIndex}); |
1509 | } |
1510 | } else { |
1511 | // Create custom sections |
1512 | assert(Section.isMetadata()); |
1513 | |
1514 | StringRef Name = SectionName; |
1515 | |
1516 | // For user-defined custom sections, strip the prefix |
1517 | Name.consume_front(Prefix: ".custom_section." ); |
1518 | |
1519 | MCSymbol *Begin = Sec.getBeginSymbol(); |
1520 | if (Begin) { |
1521 | assert(WasmIndices.count(cast<MCSymbolWasm>(Begin)) == 0); |
1522 | WasmIndices[cast<MCSymbolWasm>(Val: Begin)] = CustomSections.size(); |
1523 | } |
1524 | |
1525 | // Separate out the producers and target features sections |
1526 | if (Name == "producers" ) { |
1527 | ProducersSection = std::make_unique<WasmCustomSection>(args&: Name, args: &Section); |
1528 | continue; |
1529 | } |
1530 | if (Name == "target_features" ) { |
1531 | TargetFeaturesSection = |
1532 | std::make_unique<WasmCustomSection>(args&: Name, args: &Section); |
1533 | continue; |
1534 | } |
1535 | |
1536 | // Custom sections can also belong to COMDAT groups. In this case the |
1537 | // decriptor's "index" field is the section index (in the final object |
1538 | // file), but that is not known until after layout, so it must be fixed up |
1539 | // later |
1540 | if (const MCSymbolWasm *C = Section.getGroup()) { |
1541 | Comdats[C->getName()].emplace_back( |
1542 | args: WasmComdatEntry{.Kind: wasm::WASM_COMDAT_SECTION, |
1543 | .Index: static_cast<uint32_t>(CustomSections.size())}); |
1544 | } |
1545 | |
1546 | CustomSections.emplace_back(args&: Name, args: &Section); |
1547 | } |
1548 | } |
1549 | |
1550 | if (Mode != DwoMode::DwoOnly) { |
1551 | // Populate WasmIndices and DataLocations for defined symbols. |
1552 | for (const MCSymbol &S : Asm.symbols()) { |
1553 | // Ignore unnamed temporary symbols, which aren't ever exported, imported, |
1554 | // or used in relocations. |
1555 | if (S.isTemporary() && S.getName().empty()) |
1556 | continue; |
1557 | |
1558 | const auto &WS = static_cast<const MCSymbolWasm &>(S); |
1559 | LLVM_DEBUG( |
1560 | dbgs() << "MCSymbol: " |
1561 | << toString(WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA)) |
1562 | << " '" << S << "'" |
1563 | << " isDefined=" << S.isDefined() << " isExternal=" |
1564 | << S.isExternal() << " isTemporary=" << S.isTemporary() |
1565 | << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden() |
1566 | << " isVariable=" << WS.isVariable() << "\n" ); |
1567 | |
1568 | if (WS.isVariable()) |
1569 | continue; |
1570 | if (WS.isComdat() && !WS.isDefined()) |
1571 | continue; |
1572 | |
1573 | if (WS.isFunction()) { |
1574 | unsigned Index; |
1575 | if (WS.isDefined()) { |
1576 | if (WS.getOffset() != 0) |
1577 | report_fatal_error( |
1578 | reason: "function sections must contain one function each" ); |
1579 | |
1580 | // A definition. Write out the function body. |
1581 | Index = NumFunctionImports + Functions.size(); |
1582 | WasmFunction Func; |
1583 | Func.SigIndex = getFunctionType(Symbol: WS); |
1584 | Func.Section = &WS.getSection(); |
1585 | assert(WasmIndices.count(&WS) == 0); |
1586 | WasmIndices[&WS] = Index; |
1587 | Functions.push_back(Elt: Func); |
1588 | |
1589 | auto &Section = static_cast<MCSectionWasm &>(WS.getSection()); |
1590 | if (const MCSymbolWasm *C = Section.getGroup()) { |
1591 | Comdats[C->getName()].emplace_back( |
1592 | args: WasmComdatEntry{.Kind: wasm::WASM_COMDAT_FUNCTION, .Index: Index}); |
1593 | } |
1594 | |
1595 | if (WS.hasExportName()) { |
1596 | wasm::WasmExport Export; |
1597 | Export.Name = WS.getExportName(); |
1598 | Export.Kind = wasm::WASM_EXTERNAL_FUNCTION; |
1599 | Export.Index = Index; |
1600 | Exports.push_back(Elt: Export); |
1601 | } |
1602 | } else { |
1603 | // An import; the index was assigned above. |
1604 | Index = WasmIndices.find(Val: &WS)->second; |
1605 | } |
1606 | |
1607 | LLVM_DEBUG(dbgs() << " -> function index: " << Index << "\n" ); |
1608 | |
1609 | } else if (WS.isData()) { |
1610 | if (!isInSymtab(Sym: WS)) |
1611 | continue; |
1612 | |
1613 | if (!WS.isDefined()) { |
1614 | LLVM_DEBUG(dbgs() << " -> segment index: -1" |
1615 | << "\n" ); |
1616 | continue; |
1617 | } |
1618 | |
1619 | if (!WS.getSize()) |
1620 | report_fatal_error(reason: "data symbols must have a size set with .size: " + |
1621 | WS.getName()); |
1622 | |
1623 | int64_t Size = 0; |
1624 | if (!WS.getSize()->evaluateAsAbsolute(Res&: Size, Asm)) |
1625 | report_fatal_error(reason: ".size expression must be evaluatable" ); |
1626 | |
1627 | auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); |
1628 | if (!DataSection.isWasmData()) |
1629 | report_fatal_error(reason: "data symbols must live in a data section: " + |
1630 | WS.getName()); |
1631 | |
1632 | // For each data symbol, export it in the symtab as a reference to the |
1633 | // corresponding Wasm data segment. |
1634 | wasm::WasmDataReference Ref = wasm::WasmDataReference{ |
1635 | .Segment: DataSection.getSegmentIndex(), .Offset: Asm.getSymbolOffset(S: WS), |
1636 | .Size: static_cast<uint64_t>(Size)}; |
1637 | assert(DataLocations.count(&WS) == 0); |
1638 | DataLocations[&WS] = Ref; |
1639 | LLVM_DEBUG(dbgs() << " -> segment index: " << Ref.Segment << "\n" ); |
1640 | |
1641 | } else if (WS.isGlobal()) { |
1642 | // A "true" Wasm global (currently just __stack_pointer) |
1643 | if (WS.isDefined()) { |
1644 | wasm::WasmGlobal Global; |
1645 | Global.Type = WS.getGlobalType(); |
1646 | Global.Index = NumGlobalImports + Globals.size(); |
1647 | Global.InitExpr.Extended = false; |
1648 | switch (Global.Type.Type) { |
1649 | case wasm::WASM_TYPE_I32: |
1650 | Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST; |
1651 | break; |
1652 | case wasm::WASM_TYPE_I64: |
1653 | Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I64_CONST; |
1654 | break; |
1655 | case wasm::WASM_TYPE_F32: |
1656 | Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F32_CONST; |
1657 | break; |
1658 | case wasm::WASM_TYPE_F64: |
1659 | Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F64_CONST; |
1660 | break; |
1661 | case wasm::WASM_TYPE_EXTERNREF: |
1662 | Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_REF_NULL; |
1663 | break; |
1664 | default: |
1665 | llvm_unreachable("unexpected type" ); |
1666 | } |
1667 | assert(WasmIndices.count(&WS) == 0); |
1668 | WasmIndices[&WS] = Global.Index; |
1669 | Globals.push_back(Elt: Global); |
1670 | } else { |
1671 | // An import; the index was assigned above |
1672 | LLVM_DEBUG(dbgs() << " -> global index: " |
1673 | << WasmIndices.find(&WS)->second << "\n" ); |
1674 | } |
1675 | } else if (WS.isTable()) { |
1676 | if (WS.isDefined()) { |
1677 | wasm::WasmTable Table; |
1678 | Table.Index = NumTableImports + Tables.size(); |
1679 | Table.Type = WS.getTableType(); |
1680 | assert(WasmIndices.count(&WS) == 0); |
1681 | WasmIndices[&WS] = Table.Index; |
1682 | Tables.push_back(Elt: Table); |
1683 | } |
1684 | LLVM_DEBUG(dbgs() << " -> table index: " |
1685 | << WasmIndices.find(&WS)->second << "\n" ); |
1686 | } else if (WS.isTag()) { |
1687 | // C++ exception symbol (__cpp_exception) or longjmp symbol |
1688 | // (__c_longjmp) |
1689 | unsigned Index; |
1690 | if (WS.isDefined()) { |
1691 | Index = NumTagImports + TagTypes.size(); |
1692 | uint32_t SigIndex = getTagType(Symbol: WS); |
1693 | assert(WasmIndices.count(&WS) == 0); |
1694 | WasmIndices[&WS] = Index; |
1695 | TagTypes.push_back(Elt: SigIndex); |
1696 | } else { |
1697 | // An import; the index was assigned above. |
1698 | assert(WasmIndices.count(&WS) > 0); |
1699 | } |
1700 | LLVM_DEBUG(dbgs() << " -> tag index: " << WasmIndices.find(&WS)->second |
1701 | << "\n" ); |
1702 | |
1703 | } else { |
1704 | assert(WS.isSection()); |
1705 | } |
1706 | } |
1707 | |
1708 | // Populate WasmIndices and DataLocations for aliased symbols. We need to |
1709 | // process these in a separate pass because we need to have processed the |
1710 | // target of the alias before the alias itself and the symbols are not |
1711 | // necessarily ordered in this way. |
1712 | for (const MCSymbol &S : Asm.symbols()) { |
1713 | if (!S.isVariable()) |
1714 | continue; |
1715 | |
1716 | assert(S.isDefined()); |
1717 | |
1718 | const auto *BS = Asm.getBaseSymbol(Symbol: S); |
1719 | if (!BS) |
1720 | report_fatal_error(reason: Twine(S.getName()) + |
1721 | ": absolute addressing not supported!" ); |
1722 | const MCSymbolWasm *Base = cast<MCSymbolWasm>(Val: BS); |
1723 | |
1724 | // Find the target symbol of this weak alias and export that index |
1725 | const auto &WS = static_cast<const MCSymbolWasm &>(S); |
1726 | LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base |
1727 | << "'\n" ); |
1728 | |
1729 | if (Base->isFunction()) { |
1730 | assert(WasmIndices.count(Base) > 0); |
1731 | uint32_t WasmIndex = WasmIndices.find(Val: Base)->second; |
1732 | assert(WasmIndices.count(&WS) == 0); |
1733 | WasmIndices[&WS] = WasmIndex; |
1734 | LLVM_DEBUG(dbgs() << " -> index:" << WasmIndex << "\n" ); |
1735 | } else if (Base->isData()) { |
1736 | auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); |
1737 | uint64_t Offset = Asm.getSymbolOffset(S); |
1738 | int64_t Size = 0; |
1739 | // For data symbol alias we use the size of the base symbol as the |
1740 | // size of the alias. When an offset from the base is involved this |
1741 | // can result in a offset + size goes past the end of the data section |
1742 | // which out object format doesn't support. So we must clamp it. |
1743 | if (!Base->getSize()->evaluateAsAbsolute(Res&: Size, Asm)) |
1744 | report_fatal_error(reason: ".size expression must be evaluatable" ); |
1745 | const WasmDataSegment &Segment = |
1746 | DataSegments[DataSection.getSegmentIndex()]; |
1747 | Size = |
1748 | std::min(a: static_cast<uint64_t>(Size), b: Segment.Data.size() - Offset); |
1749 | wasm::WasmDataReference Ref = wasm::WasmDataReference{ |
1750 | .Segment: DataSection.getSegmentIndex(), |
1751 | .Offset: static_cast<uint32_t>(Asm.getSymbolOffset(S)), |
1752 | .Size: static_cast<uint32_t>(Size)}; |
1753 | DataLocations[&WS] = Ref; |
1754 | LLVM_DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n" ); |
1755 | } else { |
1756 | report_fatal_error(reason: "don't yet support global/tag aliases" ); |
1757 | } |
1758 | } |
1759 | } |
1760 | |
1761 | // Finally, populate the symbol table itself, in its "natural" order. |
1762 | for (const MCSymbol &S : Asm.symbols()) { |
1763 | const auto &WS = static_cast<const MCSymbolWasm &>(S); |
1764 | if (!isInSymtab(Sym: WS)) { |
1765 | WS.setIndex(InvalidIndex); |
1766 | continue; |
1767 | } |
1768 | // In bitcode generated by split-LTO-unit mode in ThinLTO, these lines can |
1769 | // appear: |
1770 | // module asm ".lto_set_conditional symbolA,symbolA.[moduleId]" |
1771 | // ... |
1772 | // (Here [moduleId] will be replaced by a real module hash ID) |
1773 | // |
1774 | // Here the original symbol (symbolA here) has been renamed to the new name |
1775 | // created by attaching its module ID, so the original symbol does not |
1776 | // appear in the bitcode anymore, and thus not in DataLocations. We should |
1777 | // ignore them. |
1778 | if (WS.isData() && WS.isDefined() && !DataLocations.count(Val: &WS)) |
1779 | continue; |
1780 | LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n" ); |
1781 | |
1782 | uint32_t Flags = 0; |
1783 | if (WS.isWeak()) |
1784 | Flags |= wasm::WASM_SYMBOL_BINDING_WEAK; |
1785 | if (WS.isHidden()) |
1786 | Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN; |
1787 | if (!WS.isExternal() && WS.isDefined()) |
1788 | Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; |
1789 | if (WS.isUndefined()) |
1790 | Flags |= wasm::WASM_SYMBOL_UNDEFINED; |
1791 | if (WS.isNoStrip()) { |
1792 | Flags |= wasm::WASM_SYMBOL_NO_STRIP; |
1793 | if (isEmscripten()) { |
1794 | Flags |= wasm::WASM_SYMBOL_EXPORTED; |
1795 | } |
1796 | } |
1797 | if (WS.hasImportName()) |
1798 | Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME; |
1799 | if (WS.hasExportName()) |
1800 | Flags |= wasm::WASM_SYMBOL_EXPORTED; |
1801 | if (WS.isTLS()) |
1802 | Flags |= wasm::WASM_SYMBOL_TLS; |
1803 | |
1804 | wasm::WasmSymbolInfo Info; |
1805 | Info.Name = WS.getName(); |
1806 | Info.Kind = WS.getType().value_or(u: wasm::WASM_SYMBOL_TYPE_DATA); |
1807 | Info.Flags = Flags; |
1808 | if (!WS.isData()) { |
1809 | assert(WasmIndices.count(&WS) > 0); |
1810 | Info.ElementIndex = WasmIndices.find(Val: &WS)->second; |
1811 | } else if (WS.isDefined()) { |
1812 | assert(DataLocations.count(&WS) > 0); |
1813 | Info.DataRef = DataLocations.find(Val: &WS)->second; |
1814 | } |
1815 | WS.setIndex(SymbolInfos.size()); |
1816 | SymbolInfos.emplace_back(Args&: Info); |
1817 | } |
1818 | |
1819 | { |
1820 | auto HandleReloc = [&](const WasmRelocationEntry &Rel) { |
1821 | // Functions referenced by a relocation need to put in the table. This is |
1822 | // purely to make the object file's provisional values readable, and is |
1823 | // ignored by the linker, which re-calculates the relocations itself. |
1824 | if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 && |
1825 | Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 && |
1826 | Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB && |
1827 | Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 && |
1828 | Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB && |
1829 | Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB64) |
1830 | return; |
1831 | assert(Rel.Symbol->isFunction()); |
1832 | const MCSymbolWasm *Base = |
1833 | cast<MCSymbolWasm>(Val: Asm.getBaseSymbol(Symbol: *Rel.Symbol)); |
1834 | uint32_t FunctionIndex = WasmIndices.find(Val: Base)->second; |
1835 | uint32_t TableIndex = TableElems.size() + InitialTableOffset; |
1836 | if (TableIndices.try_emplace(Key: Base, Args&: TableIndex).second) { |
1837 | LLVM_DEBUG(dbgs() << " -> adding " << Base->getName() |
1838 | << " to table: " << TableIndex << "\n" ); |
1839 | TableElems.push_back(Elt: FunctionIndex); |
1840 | registerFunctionType(Symbol: *Base); |
1841 | } |
1842 | }; |
1843 | |
1844 | for (const WasmRelocationEntry &RelEntry : CodeRelocations) |
1845 | HandleReloc(RelEntry); |
1846 | for (const WasmRelocationEntry &RelEntry : DataRelocations) |
1847 | HandleReloc(RelEntry); |
1848 | } |
1849 | |
1850 | // Translate .init_array section contents into start functions. |
1851 | for (const MCSection &S : Asm) { |
1852 | const auto &WS = static_cast<const MCSectionWasm &>(S); |
1853 | if (WS.getName().starts_with(Prefix: ".fini_array" )) |
1854 | report_fatal_error(reason: ".fini_array sections are unsupported" ); |
1855 | if (!WS.getName().starts_with(Prefix: ".init_array" )) |
1856 | continue; |
1857 | auto IT = WS.begin(); |
1858 | if (IT == WS.end()) |
1859 | continue; |
1860 | const MCFragment &EmptyFrag = *IT; |
1861 | if (EmptyFrag.getKind() != MCFragment::FT_Data) |
1862 | report_fatal_error(reason: ".init_array section should be aligned" ); |
1863 | |
1864 | const MCFragment *nextFrag = EmptyFrag.getNext(); |
1865 | while (nextFrag != nullptr) { |
1866 | const MCFragment &AlignFrag = *nextFrag; |
1867 | if (AlignFrag.getKind() != MCFragment::FT_Align) |
1868 | report_fatal_error(reason: ".init_array section should be aligned" ); |
1869 | if (cast<MCAlignFragment>(Val: AlignFrag).getAlignment() != |
1870 | Align(is64Bit() ? 8 : 4)) |
1871 | report_fatal_error( |
1872 | reason: ".init_array section should be aligned for pointers" ); |
1873 | |
1874 | const MCFragment &Frag = *AlignFrag.getNext(); |
1875 | nextFrag = Frag.getNext(); |
1876 | if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) |
1877 | report_fatal_error(reason: "only data supported in .init_array section" ); |
1878 | |
1879 | uint16_t Priority = UINT16_MAX; |
1880 | unsigned PrefixLength = strlen(s: ".init_array" ); |
1881 | if (WS.getName().size() > PrefixLength) { |
1882 | if (WS.getName()[PrefixLength] != '.') |
1883 | report_fatal_error( |
1884 | reason: ".init_array section priority should start with '.'" ); |
1885 | if (WS.getName().substr(Start: PrefixLength + 1).getAsInteger(Radix: 10, Result&: Priority)) |
1886 | report_fatal_error(reason: "invalid .init_array section priority" ); |
1887 | } |
1888 | const auto &DataFrag = cast<MCDataFragment>(Val: Frag); |
1889 | assert(llvm::all_of(DataFrag.getContents(), [](char C) { return !C; })); |
1890 | for (const MCFixup &Fixup : DataFrag.getFixups()) { |
1891 | assert(Fixup.getKind() == |
1892 | MCFixup::getDataKindForSize(is64Bit() ? 8 : 4)); |
1893 | const MCExpr *Expr = Fixup.getValue(); |
1894 | auto *SymRef = dyn_cast<MCSymbolRefExpr>(Val: Expr); |
1895 | if (!SymRef) |
1896 | report_fatal_error( |
1897 | reason: "fixups in .init_array should be symbol references" ); |
1898 | const auto &TargetSym = cast<const MCSymbolWasm>(Val: SymRef->getSymbol()); |
1899 | if (TargetSym.getIndex() == InvalidIndex) |
1900 | report_fatal_error(reason: "symbols in .init_array should exist in symtab" ); |
1901 | if (!TargetSym.isFunction()) |
1902 | report_fatal_error(reason: "symbols in .init_array should be for functions" ); |
1903 | InitFuncs.push_back(Elt: std::make_pair(x&: Priority, y: TargetSym.getIndex())); |
1904 | } |
1905 | } |
1906 | } |
1907 | |
1908 | // Write out the Wasm header. |
1909 | writeHeader(Asm); |
1910 | |
1911 | uint32_t CodeSectionIndex, DataSectionIndex; |
1912 | if (Mode != DwoMode::DwoOnly) { |
1913 | writeTypeSection(Signatures); |
1914 | writeImportSection(Imports, DataSize, NumElements: TableElems.size()); |
1915 | writeFunctionSection(Functions); |
1916 | writeTableSection(Tables); |
1917 | // Skip the "memory" section; we import the memory instead. |
1918 | writeTagSection(TagTypes); |
1919 | writeGlobalSection(Globals); |
1920 | writeExportSection(Exports); |
1921 | const MCSymbol *IndirectFunctionTable = |
1922 | getContext().lookupSymbol(Name: "__indirect_function_table" ); |
1923 | writeElemSection(IndirectFunctionTable: cast_or_null<const MCSymbolWasm>(Val: IndirectFunctionTable), |
1924 | TableElems); |
1925 | writeDataCountSection(); |
1926 | |
1927 | CodeSectionIndex = writeCodeSection(Asm, Functions); |
1928 | DataSectionIndex = writeDataSection(Asm); |
1929 | } |
1930 | |
1931 | // The Sections in the COMDAT list have placeholder indices (their index among |
1932 | // custom sections, rather than among all sections). Fix them up here. |
1933 | for (auto &Group : Comdats) { |
1934 | for (auto &Entry : Group.second) { |
1935 | if (Entry.Kind == wasm::WASM_COMDAT_SECTION) { |
1936 | Entry.Index += SectionCount; |
1937 | } |
1938 | } |
1939 | } |
1940 | for (auto &CustomSection : CustomSections) |
1941 | writeCustomSection(CustomSection, Asm); |
1942 | |
1943 | if (Mode != DwoMode::DwoOnly) { |
1944 | writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats); |
1945 | |
1946 | writeRelocSection(SectionIndex: CodeSectionIndex, Name: "CODE" , Relocs&: CodeRelocations); |
1947 | writeRelocSection(SectionIndex: DataSectionIndex, Name: "DATA" , Relocs&: DataRelocations); |
1948 | } |
1949 | writeCustomRelocSections(); |
1950 | if (ProducersSection) |
1951 | writeCustomSection(CustomSection&: *ProducersSection, Asm); |
1952 | if (TargetFeaturesSection) |
1953 | writeCustomSection(CustomSection&: *TargetFeaturesSection, Asm); |
1954 | |
1955 | // TODO: Translate the .comment section to the output. |
1956 | return W->OS.tell() - StartOffset; |
1957 | } |
1958 | |
1959 | std::unique_ptr<MCObjectWriter> |
1960 | llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, |
1961 | raw_pwrite_stream &OS) { |
1962 | return std::make_unique<WasmObjectWriter>(args: std::move(MOTW), args&: OS); |
1963 | } |
1964 | |
1965 | std::unique_ptr<MCObjectWriter> |
1966 | llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, |
1967 | raw_pwrite_stream &OS, |
1968 | raw_pwrite_stream &DwoOS) { |
1969 | return std::make_unique<WasmObjectWriter>(args: std::move(MOTW), args&: OS, args&: DwoOS); |
1970 | } |
1971 | |