1 | //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains support for clang's and llvm's instrumentation based |
10 | // code coverage. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/ProfileData/Coverage/CoverageMapping.h" |
15 | #include "llvm/ADT/ArrayRef.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/SmallBitVector.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/StringExtras.h" |
21 | #include "llvm/ADT/StringRef.h" |
22 | #include "llvm/Object/BuildID.h" |
23 | #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" |
24 | #include "llvm/ProfileData/InstrProfReader.h" |
25 | #include "llvm/Support/Debug.h" |
26 | #include "llvm/Support/Errc.h" |
27 | #include "llvm/Support/Error.h" |
28 | #include "llvm/Support/ErrorHandling.h" |
29 | #include "llvm/Support/MemoryBuffer.h" |
30 | #include "llvm/Support/VirtualFileSystem.h" |
31 | #include "llvm/Support/raw_ostream.h" |
32 | #include <algorithm> |
33 | #include <cassert> |
34 | #include <cmath> |
35 | #include <cstdint> |
36 | #include <iterator> |
37 | #include <map> |
38 | #include <memory> |
39 | #include <optional> |
40 | #include <stack> |
41 | #include <string> |
42 | #include <system_error> |
43 | #include <utility> |
44 | #include <vector> |
45 | |
46 | using namespace llvm; |
47 | using namespace coverage; |
48 | |
49 | #define DEBUG_TYPE "coverage-mapping" |
50 | |
51 | Counter CounterExpressionBuilder::get(const CounterExpression &E) { |
52 | auto [It, Inserted] = ExpressionIndices.try_emplace(Key: E, Args: Expressions.size()); |
53 | if (Inserted) |
54 | Expressions.push_back(x: E); |
55 | return Counter::getExpression(ExpressionId: It->second); |
56 | } |
57 | |
58 | void CounterExpressionBuilder::(Counter C, int Factor, |
59 | SmallVectorImpl<Term> &Terms) { |
60 | switch (C.getKind()) { |
61 | case Counter::Zero: |
62 | break; |
63 | case Counter::CounterValueReference: |
64 | Terms.emplace_back(Args: C.getCounterID(), Args&: Factor); |
65 | break; |
66 | case Counter::Expression: |
67 | const auto &E = Expressions[C.getExpressionID()]; |
68 | extractTerms(C: E.LHS, Factor, Terms); |
69 | extractTerms( |
70 | C: E.RHS, Factor: E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); |
71 | break; |
72 | } |
73 | } |
74 | |
75 | Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { |
76 | // Gather constant terms. |
77 | SmallVector<Term, 32> Terms; |
78 | extractTerms(C: ExpressionTree, Factor: +1, Terms); |
79 | |
80 | // If there are no terms, this is just a zero. The algorithm below assumes at |
81 | // least one term. |
82 | if (Terms.size() == 0) |
83 | return Counter::getZero(); |
84 | |
85 | // Group the terms by counter ID. |
86 | llvm::sort(C&: Terms, Comp: [](const Term &LHS, const Term &RHS) { |
87 | return LHS.CounterID < RHS.CounterID; |
88 | }); |
89 | |
90 | // Combine terms by counter ID to eliminate counters that sum to zero. |
91 | auto Prev = Terms.begin(); |
92 | for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { |
93 | if (I->CounterID == Prev->CounterID) { |
94 | Prev->Factor += I->Factor; |
95 | continue; |
96 | } |
97 | ++Prev; |
98 | *Prev = *I; |
99 | } |
100 | Terms.erase(CS: ++Prev, CE: Terms.end()); |
101 | |
102 | Counter C; |
103 | // Create additions. We do this before subtractions to avoid constructs like |
104 | // ((0 - X) + Y), as opposed to (Y - X). |
105 | for (auto T : Terms) { |
106 | if (T.Factor <= 0) |
107 | continue; |
108 | for (int I = 0; I < T.Factor; ++I) |
109 | if (C.isZero()) |
110 | C = Counter::getCounter(CounterId: T.CounterID); |
111 | else |
112 | C = get(E: CounterExpression(CounterExpression::Add, C, |
113 | Counter::getCounter(CounterId: T.CounterID))); |
114 | } |
115 | |
116 | // Create subtractions. |
117 | for (auto T : Terms) { |
118 | if (T.Factor >= 0) |
119 | continue; |
120 | for (int I = 0; I < -T.Factor; ++I) |
121 | C = get(E: CounterExpression(CounterExpression::Subtract, C, |
122 | Counter::getCounter(CounterId: T.CounterID))); |
123 | } |
124 | return C; |
125 | } |
126 | |
127 | Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { |
128 | auto Cnt = get(E: CounterExpression(CounterExpression::Add, LHS, RHS)); |
129 | return Simplify ? simplify(ExpressionTree: Cnt) : Cnt; |
130 | } |
131 | |
132 | Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, |
133 | bool Simplify) { |
134 | auto Cnt = get(E: CounterExpression(CounterExpression::Subtract, LHS, RHS)); |
135 | return Simplify ? simplify(ExpressionTree: Cnt) : Cnt; |
136 | } |
137 | |
138 | Counter CounterExpressionBuilder::subst(Counter C, const SubstMap &Map) { |
139 | // Replace C with the value found in Map even if C is Expression. |
140 | if (auto I = Map.find(x: C); I != Map.end()) |
141 | return I->second; |
142 | |
143 | if (!C.isExpression()) |
144 | return C; |
145 | |
146 | auto CE = Expressions[C.getExpressionID()]; |
147 | auto NewLHS = subst(C: CE.LHS, Map); |
148 | auto NewRHS = subst(C: CE.RHS, Map); |
149 | |
150 | // Reconstruct Expression with induced subexpressions. |
151 | switch (CE.Kind) { |
152 | case CounterExpression::Add: |
153 | C = add(LHS: NewLHS, RHS: NewRHS); |
154 | break; |
155 | case CounterExpression::Subtract: |
156 | C = subtract(LHS: NewLHS, RHS: NewRHS); |
157 | break; |
158 | } |
159 | |
160 | return C; |
161 | } |
162 | |
163 | void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { |
164 | switch (C.getKind()) { |
165 | case Counter::Zero: |
166 | OS << '0'; |
167 | return; |
168 | case Counter::CounterValueReference: |
169 | OS << '#' << C.getCounterID(); |
170 | break; |
171 | case Counter::Expression: { |
172 | if (C.getExpressionID() >= Expressions.size()) |
173 | return; |
174 | const auto &E = Expressions[C.getExpressionID()]; |
175 | OS << '('; |
176 | dump(C: E.LHS, OS); |
177 | OS << (E.Kind == CounterExpression::Subtract ? " - " : " + " ); |
178 | dump(C: E.RHS, OS); |
179 | OS << ')'; |
180 | break; |
181 | } |
182 | } |
183 | if (CounterValues.empty()) |
184 | return; |
185 | Expected<int64_t> Value = evaluate(C); |
186 | if (auto E = Value.takeError()) { |
187 | consumeError(Err: std::move(E)); |
188 | return; |
189 | } |
190 | OS << '[' << *Value << ']'; |
191 | } |
192 | |
193 | Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { |
194 | struct StackElem { |
195 | Counter ICounter; |
196 | int64_t LHS = 0; |
197 | enum { |
198 | KNeverVisited = 0, |
199 | KVisitedOnce = 1, |
200 | KVisitedTwice = 2, |
201 | } VisitCount = KNeverVisited; |
202 | }; |
203 | |
204 | std::stack<StackElem> CounterStack; |
205 | CounterStack.push(x: {.ICounter: C}); |
206 | |
207 | int64_t LastPoppedValue; |
208 | |
209 | while (!CounterStack.empty()) { |
210 | StackElem &Current = CounterStack.top(); |
211 | |
212 | switch (Current.ICounter.getKind()) { |
213 | case Counter::Zero: |
214 | LastPoppedValue = 0; |
215 | CounterStack.pop(); |
216 | break; |
217 | case Counter::CounterValueReference: |
218 | if (Current.ICounter.getCounterID() >= CounterValues.size()) |
219 | return errorCodeToError(EC: errc::argument_out_of_domain); |
220 | LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; |
221 | CounterStack.pop(); |
222 | break; |
223 | case Counter::Expression: { |
224 | if (Current.ICounter.getExpressionID() >= Expressions.size()) |
225 | return errorCodeToError(EC: errc::argument_out_of_domain); |
226 | const auto &E = Expressions[Current.ICounter.getExpressionID()]; |
227 | if (Current.VisitCount == StackElem::KNeverVisited) { |
228 | CounterStack.push(x: StackElem{.ICounter: E.LHS}); |
229 | Current.VisitCount = StackElem::KVisitedOnce; |
230 | } else if (Current.VisitCount == StackElem::KVisitedOnce) { |
231 | Current.LHS = LastPoppedValue; |
232 | CounterStack.push(x: StackElem{.ICounter: E.RHS}); |
233 | Current.VisitCount = StackElem::KVisitedTwice; |
234 | } else { |
235 | int64_t LHS = Current.LHS; |
236 | int64_t RHS = LastPoppedValue; |
237 | LastPoppedValue = |
238 | E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; |
239 | CounterStack.pop(); |
240 | } |
241 | break; |
242 | } |
243 | } |
244 | } |
245 | |
246 | return LastPoppedValue; |
247 | } |
248 | |
249 | // Find an independence pair for each condition: |
250 | // - The condition is true in one test and false in the other. |
251 | // - The decision outcome is true one test and false in the other. |
252 | // - All other conditions' values must be equal or marked as "don't care". |
253 | void MCDCRecord::findIndependencePairs() { |
254 | if (IndependencePairs) |
255 | return; |
256 | |
257 | IndependencePairs.emplace(); |
258 | |
259 | unsigned NumTVs = TV.size(); |
260 | // Will be replaced to shorter expr. |
261 | unsigned TVTrueIdx = std::distance( |
262 | first: TV.begin(), |
263 | last: llvm::find_if(Range&: TV, |
264 | P: [&](auto I) { return (I.second == MCDCRecord::MCDC_True); }) |
265 | |
266 | ); |
267 | for (unsigned I = TVTrueIdx; I < NumTVs; ++I) { |
268 | const auto &[A, ACond] = TV[I]; |
269 | assert(ACond == MCDCRecord::MCDC_True); |
270 | for (unsigned J = 0; J < TVTrueIdx; ++J) { |
271 | const auto &[B, BCond] = TV[J]; |
272 | assert(BCond == MCDCRecord::MCDC_False); |
273 | // If the two vectors differ in exactly one condition, ignoring DontCare |
274 | // conditions, we have found an independence pair. |
275 | auto AB = A.getDifferences(B); |
276 | if (AB.count() == 1) |
277 | IndependencePairs->insert( |
278 | KV: {AB.find_first(), std::make_pair(x: J + 1, y: I + 1)}); |
279 | } |
280 | } |
281 | } |
282 | |
283 | mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs, |
284 | int Offset) |
285 | : Indices(NextIDs.size()) { |
286 | // Construct Nodes and set up each InCount |
287 | auto N = NextIDs.size(); |
288 | SmallVector<MCDCNode> Nodes(N); |
289 | for (unsigned ID = 0; ID < N; ++ID) { |
290 | for (unsigned C = 0; C < 2; ++C) { |
291 | #ifndef NDEBUG |
292 | Indices[ID][C] = INT_MIN; |
293 | #endif |
294 | auto NextID = NextIDs[ID][C]; |
295 | Nodes[ID].NextIDs[C] = NextID; |
296 | if (NextID >= 0) |
297 | ++Nodes[NextID].InCount; |
298 | } |
299 | } |
300 | |
301 | // Sort key ordered by <-Width, Ord> |
302 | SmallVector<std::tuple<int, /// -Width |
303 | unsigned, /// Ord |
304 | int, /// ID |
305 | unsigned /// Cond (0 or 1) |
306 | >> |
307 | Decisions; |
308 | |
309 | // Traverse Nodes to assign Idx |
310 | SmallVector<int> Q; |
311 | assert(Nodes[0].InCount == 0); |
312 | Nodes[0].Width = 1; |
313 | Q.push_back(Elt: 0); |
314 | |
315 | unsigned Ord = 0; |
316 | while (!Q.empty()) { |
317 | auto IID = Q.begin(); |
318 | int ID = *IID; |
319 | Q.erase(CI: IID); |
320 | auto &Node = Nodes[ID]; |
321 | assert(Node.Width > 0); |
322 | |
323 | for (unsigned I = 0; I < 2; ++I) { |
324 | auto NextID = Node.NextIDs[I]; |
325 | assert(NextID != 0 && "NextID should not point to the top" ); |
326 | if (NextID < 0) { |
327 | // Decision |
328 | Decisions.emplace_back(Args: -Node.Width, Args: Ord++, Args&: ID, Args&: I); |
329 | assert(Ord == Decisions.size()); |
330 | continue; |
331 | } |
332 | |
333 | // Inter Node |
334 | auto &NextNode = Nodes[NextID]; |
335 | assert(NextNode.InCount > 0); |
336 | |
337 | // Assign Idx |
338 | assert(Indices[ID][I] == INT_MIN); |
339 | Indices[ID][I] = NextNode.Width; |
340 | auto NextWidth = int64_t(NextNode.Width) + Node.Width; |
341 | if (NextWidth > HardMaxTVs) { |
342 | NumTestVectors = HardMaxTVs; // Overflow |
343 | return; |
344 | } |
345 | NextNode.Width = NextWidth; |
346 | |
347 | // Ready if all incomings are processed. |
348 | // Or NextNode.Width hasn't been confirmed yet. |
349 | if (--NextNode.InCount == 0) |
350 | Q.push_back(Elt: NextID); |
351 | } |
352 | } |
353 | |
354 | llvm::sort(C&: Decisions); |
355 | |
356 | // Assign TestVector Indices in Decision Nodes |
357 | int64_t CurIdx = 0; |
358 | for (auto [NegWidth, Ord, ID, C] : Decisions) { |
359 | int Width = -NegWidth; |
360 | assert(Nodes[ID].Width == Width); |
361 | assert(Nodes[ID].NextIDs[C] < 0); |
362 | assert(Indices[ID][C] == INT_MIN); |
363 | Indices[ID][C] = Offset + CurIdx; |
364 | CurIdx += Width; |
365 | if (CurIdx > HardMaxTVs) { |
366 | NumTestVectors = HardMaxTVs; // Overflow |
367 | return; |
368 | } |
369 | } |
370 | |
371 | assert(CurIdx < HardMaxTVs); |
372 | NumTestVectors = CurIdx; |
373 | |
374 | #ifndef NDEBUG |
375 | for (const auto &Idxs : Indices) |
376 | for (auto Idx : Idxs) |
377 | assert(Idx != INT_MIN); |
378 | SavedNodes = std::move(Nodes); |
379 | #endif |
380 | } |
381 | |
382 | namespace { |
383 | |
384 | /// Construct this->NextIDs with Branches for TVIdxBuilder to use it |
385 | /// before MCDCRecordProcessor(). |
386 | class NextIDsBuilder { |
387 | protected: |
388 | SmallVector<mcdc::ConditionIDs> NextIDs; |
389 | |
390 | public: |
391 | NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches) |
392 | : NextIDs(Branches.size()) { |
393 | #ifndef NDEBUG |
394 | DenseSet<mcdc::ConditionID> SeenIDs; |
395 | #endif |
396 | for (const auto *Branch : Branches) { |
397 | const auto &BranchParams = Branch->getBranchParams(); |
398 | assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID" ); |
399 | NextIDs[BranchParams.ID] = BranchParams.Conds; |
400 | } |
401 | assert(SeenIDs.size() == Branches.size()); |
402 | } |
403 | }; |
404 | |
405 | class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { |
406 | /// A bitmap representing the executed test vectors for a boolean expression. |
407 | /// Each index of the bitmap corresponds to a possible test vector. An index |
408 | /// with a bit value of '1' indicates that the corresponding Test Vector |
409 | /// identified by that index was executed. |
410 | const BitVector &Bitmap; |
411 | |
412 | /// Decision Region to which the ExecutedTestVectorBitmap applies. |
413 | const CounterMappingRegion &Region; |
414 | const mcdc::DecisionParameters &DecisionParams; |
415 | |
416 | /// Array of branch regions corresponding each conditions in the boolean |
417 | /// expression. |
418 | ArrayRef<const CounterMappingRegion *> Branches; |
419 | |
420 | /// Total number of conditions in the boolean expression. |
421 | unsigned NumConditions; |
422 | |
423 | /// Vector used to track whether a condition is constant folded. |
424 | MCDCRecord::BoolVector Folded; |
425 | |
426 | /// Mapping of calculated MC/DC Independence Pairs for each condition. |
427 | MCDCRecord::TVPairMap IndependencePairs; |
428 | |
429 | /// Storage for ExecVectors |
430 | /// ExecVectors is the alias of its 0th element. |
431 | std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond; |
432 | |
433 | /// Actual executed Test Vectors for the boolean expression, based on |
434 | /// ExecutedTestVectorBitmap. |
435 | MCDCRecord::TestVectors &ExecVectors; |
436 | |
437 | #ifndef NDEBUG |
438 | DenseSet<unsigned> TVIdxs; |
439 | #endif |
440 | |
441 | bool IsVersion11; |
442 | |
443 | public: |
444 | MCDCRecordProcessor(const BitVector &Bitmap, |
445 | const CounterMappingRegion &Region, |
446 | ArrayRef<const CounterMappingRegion *> Branches, |
447 | bool IsVersion11) |
448 | : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), |
449 | Region(Region), DecisionParams(Region.getDecisionParams()), |
450 | Branches(Branches), NumConditions(DecisionParams.NumConditions), |
451 | Folded{._M_elems: {BitVector(NumConditions), BitVector(NumConditions)}}, |
452 | IndependencePairs(NumConditions), ExecVectors(ExecVectorsByCond[false]), |
453 | IsVersion11(IsVersion11) {} |
454 | |
455 | private: |
456 | // Walk the binary decision diagram and try assigning both false and true to |
457 | // each node. When a terminal node (ID == 0) is reached, fill in the value in |
458 | // the truth table. |
459 | void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, |
460 | int TVIdx) { |
461 | for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { |
462 | static_assert(MCDCRecord::MCDC_False == 0); |
463 | static_assert(MCDCRecord::MCDC_True == 1); |
464 | TV.set(I: ID, Val: MCDCCond); |
465 | auto NextID = NextIDs[ID][MCDCCond]; |
466 | auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; |
467 | assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); |
468 | if (NextID >= 0) { |
469 | buildTestVector(TV, ID: NextID, TVIdx: NextTVIdx); |
470 | continue; |
471 | } |
472 | |
473 | assert(TVIdx < SavedNodes[ID].Width); |
474 | assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx" ); |
475 | |
476 | if (!Bitmap[IsVersion11 |
477 | ? DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex() |
478 | : DecisionParams.BitmapIdx - NumTestVectors + NextTVIdx]) |
479 | continue; |
480 | |
481 | // Copy the completed test vector to the vector of testvectors. |
482 | // The final value (T,F) is equal to the last non-dontcare state on the |
483 | // path (in a short-circuiting system). |
484 | ExecVectorsByCond[MCDCCond].push_back(Elt: {TV, MCDCCond}); |
485 | } |
486 | |
487 | // Reset back to DontCare. |
488 | TV.set(I: ID, Val: MCDCRecord::MCDC_DontCare); |
489 | } |
490 | |
491 | /// Walk the bits in the bitmap. A bit set to '1' indicates that the test |
492 | /// vector at the corresponding index was executed during a test run. |
493 | void findExecutedTestVectors() { |
494 | // Walk the binary decision diagram to enumerate all possible test vectors. |
495 | // We start at the root node (ID == 0) with all values being DontCare. |
496 | // `TVIdx` starts with 0 and is in the traversal. |
497 | // `Index` encodes the bitmask of true values and is initially 0. |
498 | MCDCRecord::TestVector TV(NumConditions); |
499 | buildTestVector(TV, ID: 0, TVIdx: 0); |
500 | assert(TVIdxs.size() == unsigned(NumTestVectors) && |
501 | "TVIdxs wasn't fulfilled" ); |
502 | |
503 | // Fill ExecVectors order by False items and True items. |
504 | // ExecVectors is the alias of ExecVectorsByCond[false], so |
505 | // Append ExecVectorsByCond[true] on it. |
506 | auto &ExecVectorsT = ExecVectorsByCond[true]; |
507 | ExecVectors.append(in_start: std::make_move_iterator(i: ExecVectorsT.begin()), |
508 | in_end: std::make_move_iterator(i: ExecVectorsT.end())); |
509 | } |
510 | |
511 | public: |
512 | /// Process the MC/DC Record in order to produce a result for a boolean |
513 | /// expression. This process includes tracking the conditions that comprise |
514 | /// the decision region, calculating the list of all possible test vectors, |
515 | /// marking the executed test vectors, and then finding an Independence Pair |
516 | /// out of the executed test vectors for each condition in the boolean |
517 | /// expression. A condition is tracked to ensure that its ID can be mapped to |
518 | /// its ordinal position in the boolean expression. The condition's source |
519 | /// location is also tracked, as well as whether it is constant folded (in |
520 | /// which case it is excuded from the metric). |
521 | MCDCRecord processMCDCRecord() { |
522 | MCDCRecord::CondIDMap PosToID; |
523 | MCDCRecord::LineColPairMap CondLoc; |
524 | |
525 | // Walk the Record's BranchRegions (representing Conditions) in order to: |
526 | // - Hash the condition based on its corresponding ID. This will be used to |
527 | // calculate the test vectors. |
528 | // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its |
529 | // actual ID. This will be used to visualize the conditions in the |
530 | // correct order. |
531 | // - Keep track of the condition source location. This will be used to |
532 | // visualize where the condition is. |
533 | // - Record whether the condition is constant folded so that we exclude it |
534 | // from being measured. |
535 | for (auto [I, B] : enumerate(First&: Branches)) { |
536 | const auto &BranchParams = B->getBranchParams(); |
537 | PosToID[I] = BranchParams.ID; |
538 | CondLoc[I] = B->startLoc(); |
539 | Folded[false][I] = B->FalseCount.isZero(); |
540 | Folded[true][I] = B->Count.isZero(); |
541 | } |
542 | |
543 | // Using Profile Bitmap from runtime, mark the executed test vectors. |
544 | findExecutedTestVectors(); |
545 | |
546 | // Record Test vectors, executed vectors, and independence pairs. |
547 | return MCDCRecord(Region, std::move(ExecVectors), std::move(Folded), |
548 | std::move(PosToID), std::move(CondLoc)); |
549 | } |
550 | }; |
551 | |
552 | } // namespace |
553 | |
554 | Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( |
555 | const CounterMappingRegion &Region, |
556 | ArrayRef<const CounterMappingRegion *> Branches, bool IsVersion11) { |
557 | |
558 | MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches, IsVersion11); |
559 | return MCDCProcessor.processMCDCRecord(); |
560 | } |
561 | |
562 | unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { |
563 | struct StackElem { |
564 | Counter ICounter; |
565 | int64_t LHS = 0; |
566 | enum { |
567 | KNeverVisited = 0, |
568 | KVisitedOnce = 1, |
569 | KVisitedTwice = 2, |
570 | } VisitCount = KNeverVisited; |
571 | }; |
572 | |
573 | std::stack<StackElem> CounterStack; |
574 | CounterStack.push(x: {.ICounter: C}); |
575 | |
576 | int64_t LastPoppedValue; |
577 | |
578 | while (!CounterStack.empty()) { |
579 | StackElem &Current = CounterStack.top(); |
580 | |
581 | switch (Current.ICounter.getKind()) { |
582 | case Counter::Zero: |
583 | LastPoppedValue = 0; |
584 | CounterStack.pop(); |
585 | break; |
586 | case Counter::CounterValueReference: |
587 | LastPoppedValue = Current.ICounter.getCounterID(); |
588 | CounterStack.pop(); |
589 | break; |
590 | case Counter::Expression: { |
591 | if (Current.ICounter.getExpressionID() >= Expressions.size()) { |
592 | LastPoppedValue = 0; |
593 | CounterStack.pop(); |
594 | } else { |
595 | const auto &E = Expressions[Current.ICounter.getExpressionID()]; |
596 | if (Current.VisitCount == StackElem::KNeverVisited) { |
597 | CounterStack.push(x: StackElem{.ICounter: E.LHS}); |
598 | Current.VisitCount = StackElem::KVisitedOnce; |
599 | } else if (Current.VisitCount == StackElem::KVisitedOnce) { |
600 | Current.LHS = LastPoppedValue; |
601 | CounterStack.push(x: StackElem{.ICounter: E.RHS}); |
602 | Current.VisitCount = StackElem::KVisitedTwice; |
603 | } else { |
604 | int64_t LHS = Current.LHS; |
605 | int64_t RHS = LastPoppedValue; |
606 | LastPoppedValue = std::max(a: LHS, b: RHS); |
607 | CounterStack.pop(); |
608 | } |
609 | } |
610 | break; |
611 | } |
612 | } |
613 | } |
614 | |
615 | return LastPoppedValue; |
616 | } |
617 | |
618 | void FunctionRecordIterator::skipOtherFiles() { |
619 | while (Current != Records.end() && !Filename.empty() && |
620 | Filename != Current->Filenames[0]) |
621 | advanceOne(); |
622 | if (Current == Records.end()) |
623 | *this = FunctionRecordIterator(); |
624 | } |
625 | |
626 | ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( |
627 | StringRef Filename) const { |
628 | size_t FilenameHash = hash_value(S: Filename); |
629 | auto RecordIt = FilenameHash2RecordIndices.find(Val: FilenameHash); |
630 | if (RecordIt == FilenameHash2RecordIndices.end()) |
631 | return {}; |
632 | return RecordIt->second; |
633 | } |
634 | |
635 | static unsigned getMaxCounterID(const CounterMappingContext &Ctx, |
636 | const CoverageMappingRecord &Record) { |
637 | unsigned MaxCounterID = 0; |
638 | for (const auto &Region : Record.MappingRegions) { |
639 | MaxCounterID = std::max(a: MaxCounterID, b: Ctx.getMaxCounterID(C: Region.Count)); |
640 | } |
641 | return MaxCounterID; |
642 | } |
643 | |
644 | /// Returns the bit count |
645 | static unsigned getMaxBitmapSize(const CoverageMappingRecord &Record, |
646 | bool IsVersion11) { |
647 | unsigned MaxBitmapIdx = 0; |
648 | unsigned NumConditions = 0; |
649 | // Scan max(BitmapIdx). |
650 | // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid |
651 | // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. |
652 | for (const auto &Region : reverse(C: Record.MappingRegions)) { |
653 | if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) |
654 | continue; |
655 | const auto &DecisionParams = Region.getDecisionParams(); |
656 | if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { |
657 | MaxBitmapIdx = DecisionParams.BitmapIdx; |
658 | NumConditions = DecisionParams.NumConditions; |
659 | } |
660 | } |
661 | |
662 | if (IsVersion11) |
663 | MaxBitmapIdx = MaxBitmapIdx * CHAR_BIT + |
664 | llvm::alignTo(Value: uint64_t(1) << NumConditions, CHAR_BIT); |
665 | |
666 | return MaxBitmapIdx; |
667 | } |
668 | |
669 | namespace { |
670 | |
671 | /// Collect Decisions, Branchs, and Expansions and associate them. |
672 | class MCDCDecisionRecorder { |
673 | private: |
674 | /// This holds the DecisionRegion and MCDCBranches under it. |
675 | /// Also traverses Expansion(s). |
676 | /// The Decision has the number of MCDCBranches and will complete |
677 | /// when it is filled with unique ConditionID of MCDCBranches. |
678 | struct DecisionRecord { |
679 | const CounterMappingRegion *DecisionRegion; |
680 | |
681 | /// They are reflected from DecisionRegion for convenience. |
682 | mcdc::DecisionParameters DecisionParams; |
683 | LineColPair DecisionStartLoc; |
684 | LineColPair DecisionEndLoc; |
685 | |
686 | /// This is passed to `MCDCRecordProcessor`, so this should be compatible |
687 | /// to`ArrayRef<const CounterMappingRegion *>`. |
688 | SmallVector<const CounterMappingRegion *> MCDCBranches; |
689 | |
690 | /// IDs that are stored in MCDCBranches |
691 | /// Complete when all IDs (1 to NumConditions) are met. |
692 | DenseSet<mcdc::ConditionID> ConditionIDs; |
693 | |
694 | /// Set of IDs of Expansion(s) that are relevant to DecisionRegion |
695 | /// and its children (via expansions). |
696 | /// FileID pointed by ExpandedFileID is dedicated to the expansion, so |
697 | /// the location in the expansion doesn't matter. |
698 | DenseSet<unsigned> ExpandedFileIDs; |
699 | |
700 | DecisionRecord(const CounterMappingRegion &Decision) |
701 | : DecisionRegion(&Decision), |
702 | DecisionParams(Decision.getDecisionParams()), |
703 | DecisionStartLoc(Decision.startLoc()), |
704 | DecisionEndLoc(Decision.endLoc()) { |
705 | assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); |
706 | } |
707 | |
708 | /// Determine whether DecisionRecord dominates `R`. |
709 | bool dominates(const CounterMappingRegion &R) const { |
710 | // Determine whether `R` is included in `DecisionRegion`. |
711 | if (R.FileID == DecisionRegion->FileID && |
712 | R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) |
713 | return true; |
714 | |
715 | // Determine whether `R` is pointed by any of Expansions. |
716 | return ExpandedFileIDs.contains(V: R.FileID); |
717 | } |
718 | |
719 | enum Result { |
720 | NotProcessed = 0, /// Irrelevant to this Decision |
721 | Processed, /// Added to this Decision |
722 | Completed, /// Added and filled this Decision |
723 | }; |
724 | |
725 | /// Add Branch into the Decision |
726 | /// \param Branch expects MCDCBranchRegion |
727 | /// \returns NotProcessed/Processed/Completed |
728 | Result addBranch(const CounterMappingRegion &Branch) { |
729 | assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); |
730 | |
731 | auto ConditionID = Branch.getBranchParams().ID; |
732 | |
733 | if (ConditionIDs.contains(V: ConditionID) || |
734 | ConditionID >= DecisionParams.NumConditions) |
735 | return NotProcessed; |
736 | |
737 | if (!this->dominates(R: Branch)) |
738 | return NotProcessed; |
739 | |
740 | assert(MCDCBranches.size() < DecisionParams.NumConditions); |
741 | |
742 | // Put `ID=0` in front of `MCDCBranches` for convenience |
743 | // even if `MCDCBranches` is not topological. |
744 | if (ConditionID == 0) |
745 | MCDCBranches.insert(I: MCDCBranches.begin(), Elt: &Branch); |
746 | else |
747 | MCDCBranches.push_back(Elt: &Branch); |
748 | |
749 | // Mark `ID` as `assigned`. |
750 | ConditionIDs.insert(V: ConditionID); |
751 | |
752 | // `Completed` when `MCDCBranches` is full |
753 | return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed |
754 | : Processed); |
755 | } |
756 | |
757 | /// Record Expansion if it is relevant to this Decision. |
758 | /// Each `Expansion` may nest. |
759 | /// \returns true if recorded. |
760 | bool recordExpansion(const CounterMappingRegion &Expansion) { |
761 | if (!this->dominates(R: Expansion)) |
762 | return false; |
763 | |
764 | ExpandedFileIDs.insert(V: Expansion.ExpandedFileID); |
765 | return true; |
766 | } |
767 | }; |
768 | |
769 | private: |
770 | /// Decisions in progress |
771 | /// DecisionRecord is added for each MCDCDecisionRegion. |
772 | /// DecisionRecord is removed when Decision is completed. |
773 | SmallVector<DecisionRecord> Decisions; |
774 | |
775 | public: |
776 | ~MCDCDecisionRecorder() { |
777 | assert(Decisions.empty() && "All Decisions have not been resolved" ); |
778 | } |
779 | |
780 | /// Register Region and start recording. |
781 | void registerDecision(const CounterMappingRegion &Decision) { |
782 | Decisions.emplace_back(Args: Decision); |
783 | } |
784 | |
785 | void recordExpansion(const CounterMappingRegion &Expansion) { |
786 | any_of(Range&: Decisions, P: [&Expansion](auto &Decision) { |
787 | return Decision.recordExpansion(Expansion); |
788 | }); |
789 | } |
790 | |
791 | using DecisionAndBranches = |
792 | std::pair<const CounterMappingRegion *, /// Decision |
793 | SmallVector<const CounterMappingRegion *> /// Branches |
794 | >; |
795 | |
796 | /// Add MCDCBranchRegion to DecisionRecord. |
797 | /// \param Branch to be processed |
798 | /// \returns DecisionsAndBranches if DecisionRecord completed. |
799 | /// Or returns nullopt. |
800 | std::optional<DecisionAndBranches> |
801 | processBranch(const CounterMappingRegion &Branch) { |
802 | // Seek each Decision and apply Region to it. |
803 | for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); |
804 | DecisionIter != DecisionEnd; ++DecisionIter) |
805 | switch (DecisionIter->addBranch(Branch)) { |
806 | case DecisionRecord::NotProcessed: |
807 | continue; |
808 | case DecisionRecord::Processed: |
809 | return std::nullopt; |
810 | case DecisionRecord::Completed: |
811 | DecisionAndBranches Result = |
812 | std::make_pair(x&: DecisionIter->DecisionRegion, |
813 | y: std::move(DecisionIter->MCDCBranches)); |
814 | Decisions.erase(CI: DecisionIter); // No longer used. |
815 | return Result; |
816 | } |
817 | |
818 | llvm_unreachable("Branch not found in Decisions" ); |
819 | } |
820 | }; |
821 | |
822 | } // namespace |
823 | |
824 | Error CoverageMapping::loadFunctionRecord( |
825 | const CoverageMappingRecord &Record, |
826 | const std::optional<std::reference_wrapper<IndexedInstrProfReader>> |
827 | &ProfileReader) { |
828 | StringRef OrigFuncName = Record.FunctionName; |
829 | if (OrigFuncName.empty()) |
830 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
831 | Args: "record function name is empty" ); |
832 | |
833 | if (Record.Filenames.empty()) |
834 | OrigFuncName = getFuncNameWithoutPrefix(PGOFuncName: OrigFuncName); |
835 | else |
836 | OrigFuncName = getFuncNameWithoutPrefix(PGOFuncName: OrigFuncName, FileName: Record.Filenames[0]); |
837 | |
838 | CounterMappingContext Ctx(Record.Expressions); |
839 | |
840 | std::vector<uint64_t> Counts; |
841 | if (ProfileReader) { |
842 | if (Error E = ProfileReader.value().get().getFunctionCounts( |
843 | FuncName: Record.FunctionName, FuncHash: Record.FunctionHash, Counts)) { |
844 | instrprof_error IPE = std::get<0>(in: InstrProfError::take(E: std::move(E))); |
845 | if (IPE == instrprof_error::hash_mismatch) { |
846 | FuncHashMismatches.emplace_back(args: std::string(Record.FunctionName), |
847 | args: Record.FunctionHash); |
848 | return Error::success(); |
849 | } |
850 | if (IPE != instrprof_error::unknown_function) |
851 | return make_error<InstrProfError>(Args&: IPE); |
852 | Counts.assign(n: getMaxCounterID(Ctx, Record) + 1, val: 0); |
853 | } |
854 | } else { |
855 | Counts.assign(n: getMaxCounterID(Ctx, Record) + 1, val: 0); |
856 | } |
857 | Ctx.setCounts(Counts); |
858 | |
859 | bool IsVersion11 = |
860 | ProfileReader && ProfileReader.value().get().getVersion() < |
861 | IndexedInstrProf::ProfVersion::Version12; |
862 | |
863 | BitVector Bitmap; |
864 | if (ProfileReader) { |
865 | if (Error E = ProfileReader.value().get().getFunctionBitmap( |
866 | FuncName: Record.FunctionName, FuncHash: Record.FunctionHash, Bitmap)) { |
867 | instrprof_error IPE = std::get<0>(in: InstrProfError::take(E: std::move(E))); |
868 | if (IPE == instrprof_error::hash_mismatch) { |
869 | FuncHashMismatches.emplace_back(args: std::string(Record.FunctionName), |
870 | args: Record.FunctionHash); |
871 | return Error::success(); |
872 | } |
873 | if (IPE != instrprof_error::unknown_function) |
874 | return make_error<InstrProfError>(Args&: IPE); |
875 | Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11)); |
876 | } |
877 | } else { |
878 | Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11: false)); |
879 | } |
880 | Ctx.setBitmap(std::move(Bitmap)); |
881 | |
882 | assert(!Record.MappingRegions.empty() && "Function has no regions" ); |
883 | |
884 | // This coverage record is a zero region for a function that's unused in |
885 | // some TU, but used in a different TU. Ignore it. The coverage maps from the |
886 | // the other TU will either be loaded (providing full region counts) or they |
887 | // won't (in which case we don't unintuitively report functions as uncovered |
888 | // when they have non-zero counts in the profile). |
889 | if (Record.MappingRegions.size() == 1 && |
890 | Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) |
891 | return Error::success(); |
892 | |
893 | MCDCDecisionRecorder MCDCDecisions; |
894 | FunctionRecord Function(OrigFuncName, Record.Filenames); |
895 | for (const auto &Region : Record.MappingRegions) { |
896 | // MCDCDecisionRegion should be handled first since it overlaps with |
897 | // others inside. |
898 | if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { |
899 | MCDCDecisions.registerDecision(Decision: Region); |
900 | continue; |
901 | } |
902 | Expected<int64_t> ExecutionCount = Ctx.evaluate(C: Region.Count); |
903 | if (auto E = ExecutionCount.takeError()) { |
904 | consumeError(Err: std::move(E)); |
905 | return Error::success(); |
906 | } |
907 | Expected<int64_t> AltExecutionCount = Ctx.evaluate(C: Region.FalseCount); |
908 | if (auto E = AltExecutionCount.takeError()) { |
909 | consumeError(Err: std::move(E)); |
910 | return Error::success(); |
911 | } |
912 | Function.pushRegion(Region, Count: *ExecutionCount, FalseCount: *AltExecutionCount); |
913 | |
914 | // Record ExpansionRegion. |
915 | if (Region.Kind == CounterMappingRegion::ExpansionRegion) { |
916 | MCDCDecisions.recordExpansion(Expansion: Region); |
917 | continue; |
918 | } |
919 | |
920 | // Do nothing unless MCDCBranchRegion. |
921 | if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) |
922 | continue; |
923 | |
924 | auto Result = MCDCDecisions.processBranch(Branch: Region); |
925 | if (!Result) // Any Decision doesn't complete. |
926 | continue; |
927 | |
928 | auto MCDCDecision = Result->first; |
929 | auto &MCDCBranches = Result->second; |
930 | |
931 | // Since the bitmap identifies the executed test vectors for an MC/DC |
932 | // DecisionRegion, all of the information is now available to process. |
933 | // This is where the bulk of the MC/DC progressing takes place. |
934 | Expected<MCDCRecord> Record = |
935 | Ctx.evaluateMCDCRegion(Region: *MCDCDecision, Branches: MCDCBranches, IsVersion11); |
936 | if (auto E = Record.takeError()) { |
937 | consumeError(Err: std::move(E)); |
938 | return Error::success(); |
939 | } |
940 | |
941 | // Save the MC/DC Record so that it can be visualized later. |
942 | Function.pushMCDCRecord(Record: std::move(*Record)); |
943 | } |
944 | |
945 | // Don't create records for (filenames, function) pairs we've already seen. |
946 | auto FilenamesHash = hash_combine_range(R: Record.Filenames); |
947 | if (!RecordProvenance[FilenamesHash].insert(V: hash_value(S: OrigFuncName)).second) |
948 | return Error::success(); |
949 | |
950 | Functions.push_back(x: std::move(Function)); |
951 | |
952 | // Performance optimization: keep track of the indices of the function records |
953 | // which correspond to each filename. This can be used to substantially speed |
954 | // up queries for coverage info in a file. |
955 | unsigned RecordIndex = Functions.size() - 1; |
956 | for (StringRef Filename : Record.Filenames) { |
957 | auto &RecordIndices = FilenameHash2RecordIndices[hash_value(S: Filename)]; |
958 | // Note that there may be duplicates in the filename set for a function |
959 | // record, because of e.g. macro expansions in the function in which both |
960 | // the macro and the function are defined in the same file. |
961 | if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) |
962 | RecordIndices.push_back(Elt: RecordIndex); |
963 | } |
964 | |
965 | return Error::success(); |
966 | } |
967 | |
968 | // This function is for memory optimization by shortening the lifetimes |
969 | // of CoverageMappingReader instances. |
970 | Error CoverageMapping::loadFromReaders( |
971 | ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, |
972 | std::optional<std::reference_wrapper<IndexedInstrProfReader>> |
973 | &ProfileReader, |
974 | CoverageMapping &Coverage) { |
975 | assert(!Coverage.SingleByteCoverage || !ProfileReader || |
976 | *Coverage.SingleByteCoverage == |
977 | ProfileReader.value().get().hasSingleByteCoverage()); |
978 | Coverage.SingleByteCoverage = |
979 | !ProfileReader || ProfileReader.value().get().hasSingleByteCoverage(); |
980 | for (const auto &CoverageReader : CoverageReaders) { |
981 | for (auto RecordOrErr : *CoverageReader) { |
982 | if (Error E = RecordOrErr.takeError()) |
983 | return E; |
984 | const auto &Record = *RecordOrErr; |
985 | if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) |
986 | return E; |
987 | } |
988 | } |
989 | return Error::success(); |
990 | } |
991 | |
992 | Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( |
993 | ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, |
994 | std::optional<std::reference_wrapper<IndexedInstrProfReader>> |
995 | &ProfileReader) { |
996 | auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); |
997 | if (Error E = loadFromReaders(CoverageReaders, ProfileReader, Coverage&: *Coverage)) |
998 | return std::move(E); |
999 | return std::move(Coverage); |
1000 | } |
1001 | |
1002 | // If E is a no_data_found error, returns success. Otherwise returns E. |
1003 | static Error handleMaybeNoDataFoundError(Error E) { |
1004 | return handleErrors(E: std::move(E), Hs: [](const CoverageMapError &CME) { |
1005 | if (CME.get() == coveragemap_error::no_data_found) |
1006 | return static_cast<Error>(Error::success()); |
1007 | return make_error<CoverageMapError>(Args: CME.get(), Args: CME.getMessage()); |
1008 | }); |
1009 | } |
1010 | |
1011 | Error CoverageMapping::loadFromFile( |
1012 | StringRef Filename, StringRef Arch, StringRef CompilationDir, |
1013 | std::optional<std::reference_wrapper<IndexedInstrProfReader>> |
1014 | &ProfileReader, |
1015 | CoverageMapping &Coverage, bool &DataFound, |
1016 | SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { |
1017 | auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( |
1018 | Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); |
1019 | if (std::error_code EC = CovMappingBufOrErr.getError()) |
1020 | return createFileError(F: Filename, E: errorCodeToError(EC)); |
1021 | MemoryBufferRef CovMappingBufRef = |
1022 | CovMappingBufOrErr.get()->getMemBufferRef(); |
1023 | SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; |
1024 | |
1025 | SmallVector<object::BuildIDRef> BinaryIDs; |
1026 | auto CoverageReadersOrErr = BinaryCoverageReader::create( |
1027 | ObjectBuffer: CovMappingBufRef, Arch, ObjectFileBuffers&: Buffers, CompilationDir, |
1028 | BinaryIDs: FoundBinaryIDs ? &BinaryIDs : nullptr); |
1029 | if (Error E = CoverageReadersOrErr.takeError()) { |
1030 | E = handleMaybeNoDataFoundError(E: std::move(E)); |
1031 | if (E) |
1032 | return createFileError(F: Filename, E: std::move(E)); |
1033 | return E; |
1034 | } |
1035 | |
1036 | SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; |
1037 | for (auto &Reader : CoverageReadersOrErr.get()) |
1038 | Readers.push_back(Elt: std::move(Reader)); |
1039 | if (FoundBinaryIDs && !Readers.empty()) { |
1040 | llvm::append_range(C&: *FoundBinaryIDs, |
1041 | R: llvm::map_range(C&: BinaryIDs, F: [](object::BuildIDRef BID) { |
1042 | return object::BuildID(BID); |
1043 | })); |
1044 | } |
1045 | DataFound |= !Readers.empty(); |
1046 | if (Error E = loadFromReaders(CoverageReaders: Readers, ProfileReader, Coverage)) |
1047 | return createFileError(F: Filename, E: std::move(E)); |
1048 | return Error::success(); |
1049 | } |
1050 | |
1051 | Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( |
1052 | ArrayRef<StringRef> ObjectFilenames, |
1053 | std::optional<StringRef> ProfileFilename, vfs::FileSystem &FS, |
1054 | ArrayRef<StringRef> Arches, StringRef CompilationDir, |
1055 | const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { |
1056 | std::unique_ptr<IndexedInstrProfReader> ProfileReader; |
1057 | if (ProfileFilename) { |
1058 | auto ProfileReaderOrErr = |
1059 | IndexedInstrProfReader::create(Path: ProfileFilename.value(), FS); |
1060 | if (Error E = ProfileReaderOrErr.takeError()) |
1061 | return createFileError(F: ProfileFilename.value(), E: std::move(E)); |
1062 | ProfileReader = std::move(ProfileReaderOrErr.get()); |
1063 | } |
1064 | auto ProfileReaderRef = |
1065 | ProfileReader |
1066 | ? std::optional<std::reference_wrapper<IndexedInstrProfReader>>( |
1067 | *ProfileReader) |
1068 | : std::nullopt; |
1069 | auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); |
1070 | bool DataFound = false; |
1071 | |
1072 | auto GetArch = [&](size_t Idx) { |
1073 | if (Arches.empty()) |
1074 | return StringRef(); |
1075 | if (Arches.size() == 1) |
1076 | return Arches.front(); |
1077 | return Arches[Idx]; |
1078 | }; |
1079 | |
1080 | SmallVector<object::BuildID> FoundBinaryIDs; |
1081 | for (const auto &File : llvm::enumerate(First&: ObjectFilenames)) { |
1082 | if (Error E = loadFromFile(Filename: File.value(), Arch: GetArch(File.index()), |
1083 | CompilationDir, ProfileReader&: ProfileReaderRef, Coverage&: *Coverage, |
1084 | DataFound, FoundBinaryIDs: &FoundBinaryIDs)) |
1085 | return std::move(E); |
1086 | } |
1087 | |
1088 | if (BIDFetcher) { |
1089 | std::vector<object::BuildID> ProfileBinaryIDs; |
1090 | if (ProfileReader) |
1091 | if (Error E = ProfileReader->readBinaryIds(BinaryIds&: ProfileBinaryIDs)) |
1092 | return createFileError(F: ProfileFilename.value(), E: std::move(E)); |
1093 | |
1094 | SmallVector<object::BuildIDRef> BinaryIDsToFetch; |
1095 | if (!ProfileBinaryIDs.empty()) { |
1096 | const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { |
1097 | return std::lexicographical_compare(first1: A.begin(), last1: A.end(), first2: B.begin(), |
1098 | last2: B.end()); |
1099 | }; |
1100 | llvm::sort(C&: FoundBinaryIDs, Comp: Compare); |
1101 | std::set_difference( |
1102 | first1: ProfileBinaryIDs.begin(), last1: ProfileBinaryIDs.end(), |
1103 | first2: FoundBinaryIDs.begin(), last2: FoundBinaryIDs.end(), |
1104 | result: std::inserter(x&: BinaryIDsToFetch, i: BinaryIDsToFetch.end()), comp: Compare); |
1105 | } |
1106 | |
1107 | for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { |
1108 | std::optional<std::string> PathOpt = BIDFetcher->fetch(BuildID: BinaryID); |
1109 | if (PathOpt) { |
1110 | std::string Path = std::move(*PathOpt); |
1111 | StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); |
1112 | if (Error E = loadFromFile(Filename: Path, Arch, CompilationDir, ProfileReader&: ProfileReaderRef, |
1113 | Coverage&: *Coverage, DataFound)) |
1114 | return std::move(E); |
1115 | } else if (CheckBinaryIDs) { |
1116 | return createFileError( |
1117 | F: ProfileFilename.value(), |
1118 | E: createStringError(EC: errc::no_such_file_or_directory, |
1119 | S: "Missing binary ID: " + |
1120 | llvm::toHex(Input: BinaryID, /*LowerCase=*/true))); |
1121 | } |
1122 | } |
1123 | } |
1124 | |
1125 | if (!DataFound) |
1126 | return createFileError( |
1127 | F: join(Begin: ObjectFilenames.begin(), End: ObjectFilenames.end(), Separator: ", " ), |
1128 | E: make_error<CoverageMapError>(Args: coveragemap_error::no_data_found)); |
1129 | return std::move(Coverage); |
1130 | } |
1131 | |
1132 | namespace { |
1133 | |
1134 | /// Distributes functions into instantiation sets. |
1135 | /// |
1136 | /// An instantiation set is a collection of functions that have the same source |
1137 | /// code, ie, template functions specializations. |
1138 | class FunctionInstantiationSetCollector { |
1139 | using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; |
1140 | MapT InstantiatedFunctions; |
1141 | |
1142 | public: |
1143 | void insert(const FunctionRecord &Function, unsigned FileID) { |
1144 | auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); |
1145 | while (I != E && I->FileID != FileID) |
1146 | ++I; |
1147 | assert(I != E && "function does not cover the given file" ); |
1148 | auto &Functions = InstantiatedFunctions[I->startLoc()]; |
1149 | Functions.push_back(x: &Function); |
1150 | } |
1151 | |
1152 | MapT::iterator begin() { return InstantiatedFunctions.begin(); } |
1153 | MapT::iterator end() { return InstantiatedFunctions.end(); } |
1154 | }; |
1155 | |
1156 | class SegmentBuilder { |
1157 | std::vector<CoverageSegment> &Segments; |
1158 | SmallVector<const CountedRegion *, 8> ActiveRegions; |
1159 | |
1160 | SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} |
1161 | |
1162 | /// Emit a segment with the count from \p Region starting at \p StartLoc. |
1163 | // |
1164 | /// \p IsRegionEntry: The segment is at the start of a new non-gap region. |
1165 | /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. |
1166 | void startSegment(const CountedRegion &Region, LineColPair StartLoc, |
1167 | bool IsRegionEntry, bool EmitSkippedRegion = false) { |
1168 | bool HasCount = !EmitSkippedRegion && |
1169 | (Region.Kind != CounterMappingRegion::SkippedRegion); |
1170 | |
1171 | // If the new segment wouldn't affect coverage rendering, skip it. |
1172 | if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { |
1173 | const auto &Last = Segments.back(); |
1174 | if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && |
1175 | !Last.IsRegionEntry) |
1176 | return; |
1177 | } |
1178 | |
1179 | if (HasCount) |
1180 | Segments.emplace_back(args&: StartLoc.first, args&: StartLoc.second, |
1181 | args: Region.ExecutionCount, args&: IsRegionEntry, |
1182 | args: Region.Kind == CounterMappingRegion::GapRegion); |
1183 | else |
1184 | Segments.emplace_back(args&: StartLoc.first, args&: StartLoc.second, args&: IsRegionEntry); |
1185 | |
1186 | LLVM_DEBUG({ |
1187 | const auto &Last = Segments.back(); |
1188 | dbgs() << "Segment at " << Last.Line << ":" << Last.Col |
1189 | << " (count = " << Last.Count << ")" |
1190 | << (Last.IsRegionEntry ? ", RegionEntry" : "" ) |
1191 | << (!Last.HasCount ? ", Skipped" : "" ) |
1192 | << (Last.IsGapRegion ? ", Gap" : "" ) << "\n" ; |
1193 | }); |
1194 | } |
1195 | |
1196 | /// Emit segments for active regions which end before \p Loc. |
1197 | /// |
1198 | /// \p Loc: The start location of the next region. If std::nullopt, all active |
1199 | /// regions are completed. |
1200 | /// \p FirstCompletedRegion: Index of the first completed region. |
1201 | void completeRegionsUntil(std::optional<LineColPair> Loc, |
1202 | unsigned FirstCompletedRegion) { |
1203 | // Sort the completed regions by end location. This makes it simple to |
1204 | // emit closing segments in sorted order. |
1205 | auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; |
1206 | std::stable_sort(first: CompletedRegionsIt, last: ActiveRegions.end(), |
1207 | comp: [](const CountedRegion *L, const CountedRegion *R) { |
1208 | return L->endLoc() < R->endLoc(); |
1209 | }); |
1210 | |
1211 | // Emit segments for all completed regions. |
1212 | for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; |
1213 | ++I) { |
1214 | const auto *CompletedRegion = ActiveRegions[I]; |
1215 | assert((!Loc || CompletedRegion->endLoc() <= *Loc) && |
1216 | "Completed region ends after start of new region" ); |
1217 | |
1218 | const auto *PrevCompletedRegion = ActiveRegions[I - 1]; |
1219 | auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); |
1220 | |
1221 | // Don't emit any more segments if they start where the new region begins. |
1222 | if (Loc && CompletedSegmentLoc == *Loc) |
1223 | break; |
1224 | |
1225 | // Don't emit a segment if the next completed region ends at the same |
1226 | // location as this one. |
1227 | if (CompletedSegmentLoc == CompletedRegion->endLoc()) |
1228 | continue; |
1229 | |
1230 | // Use the count from the last completed region which ends at this loc. |
1231 | for (unsigned J = I + 1; J < E; ++J) |
1232 | if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) |
1233 | CompletedRegion = ActiveRegions[J]; |
1234 | |
1235 | startSegment(Region: *CompletedRegion, StartLoc: CompletedSegmentLoc, IsRegionEntry: false); |
1236 | } |
1237 | |
1238 | auto Last = ActiveRegions.back(); |
1239 | if (FirstCompletedRegion && Last->endLoc() != *Loc) { |
1240 | // If there's a gap after the end of the last completed region and the |
1241 | // start of the new region, use the last active region to fill the gap. |
1242 | startSegment(Region: *ActiveRegions[FirstCompletedRegion - 1], StartLoc: Last->endLoc(), |
1243 | IsRegionEntry: false); |
1244 | } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { |
1245 | // Emit a skipped segment if there are no more active regions. This |
1246 | // ensures that gaps between functions are marked correctly. |
1247 | startSegment(Region: *Last, StartLoc: Last->endLoc(), IsRegionEntry: false, EmitSkippedRegion: true); |
1248 | } |
1249 | |
1250 | // Pop the completed regions. |
1251 | ActiveRegions.erase(CS: CompletedRegionsIt, CE: ActiveRegions.end()); |
1252 | } |
1253 | |
1254 | void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { |
1255 | for (const auto &CR : enumerate(First&: Regions)) { |
1256 | auto CurStartLoc = CR.value().startLoc(); |
1257 | |
1258 | // Active regions which end before the current region need to be popped. |
1259 | auto CompletedRegions = |
1260 | std::stable_partition(first: ActiveRegions.begin(), last: ActiveRegions.end(), |
1261 | pred: [&](const CountedRegion *Region) { |
1262 | return !(Region->endLoc() <= CurStartLoc); |
1263 | }); |
1264 | if (CompletedRegions != ActiveRegions.end()) { |
1265 | unsigned FirstCompletedRegion = |
1266 | std::distance(first: ActiveRegions.begin(), last: CompletedRegions); |
1267 | completeRegionsUntil(Loc: CurStartLoc, FirstCompletedRegion); |
1268 | } |
1269 | |
1270 | bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; |
1271 | |
1272 | // Try to emit a segment for the current region. |
1273 | if (CurStartLoc == CR.value().endLoc()) { |
1274 | // Avoid making zero-length regions active. If it's the last region, |
1275 | // emit a skipped segment. Otherwise use its predecessor's count. |
1276 | const bool Skipped = |
1277 | (CR.index() + 1) == Regions.size() || |
1278 | CR.value().Kind == CounterMappingRegion::SkippedRegion; |
1279 | startSegment(Region: ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), |
1280 | StartLoc: CurStartLoc, IsRegionEntry: !GapRegion, EmitSkippedRegion: Skipped); |
1281 | // If it is skipped segment, create a segment with last pushed |
1282 | // regions's count at CurStartLoc. |
1283 | if (Skipped && !ActiveRegions.empty()) |
1284 | startSegment(Region: *ActiveRegions.back(), StartLoc: CurStartLoc, IsRegionEntry: false); |
1285 | continue; |
1286 | } |
1287 | if (CR.index() + 1 == Regions.size() || |
1288 | CurStartLoc != Regions[CR.index() + 1].startLoc()) { |
1289 | // Emit a segment if the next region doesn't start at the same location |
1290 | // as this one. |
1291 | startSegment(Region: CR.value(), StartLoc: CurStartLoc, IsRegionEntry: !GapRegion); |
1292 | } |
1293 | |
1294 | // This region is active (i.e not completed). |
1295 | ActiveRegions.push_back(Elt: &CR.value()); |
1296 | } |
1297 | |
1298 | // Complete any remaining active regions. |
1299 | if (!ActiveRegions.empty()) |
1300 | completeRegionsUntil(Loc: std::nullopt, FirstCompletedRegion: 0); |
1301 | } |
1302 | |
1303 | /// Sort a nested sequence of regions from a single file. |
1304 | static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { |
1305 | llvm::sort(C&: Regions, Comp: [](const CountedRegion &LHS, const CountedRegion &RHS) { |
1306 | if (LHS.startLoc() != RHS.startLoc()) |
1307 | return LHS.startLoc() < RHS.startLoc(); |
1308 | if (LHS.endLoc() != RHS.endLoc()) |
1309 | // When LHS completely contains RHS, we sort LHS first. |
1310 | return RHS.endLoc() < LHS.endLoc(); |
1311 | // If LHS and RHS cover the same area, we need to sort them according |
1312 | // to their kinds so that the most suitable region will become "active" |
1313 | // in combineRegions(). Because we accumulate counter values only from |
1314 | // regions of the same kind as the first region of the area, prefer |
1315 | // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. |
1316 | static_assert(CounterMappingRegion::CodeRegion < |
1317 | CounterMappingRegion::ExpansionRegion && |
1318 | CounterMappingRegion::ExpansionRegion < |
1319 | CounterMappingRegion::SkippedRegion, |
1320 | "Unexpected order of region kind values" ); |
1321 | return LHS.Kind < RHS.Kind; |
1322 | }); |
1323 | } |
1324 | |
1325 | /// Combine counts of regions which cover the same area. |
1326 | static ArrayRef<CountedRegion> |
1327 | combineRegions(MutableArrayRef<CountedRegion> Regions) { |
1328 | if (Regions.empty()) |
1329 | return Regions; |
1330 | auto Active = Regions.begin(); |
1331 | auto End = Regions.end(); |
1332 | for (auto I = Regions.begin() + 1; I != End; ++I) { |
1333 | if (Active->startLoc() != I->startLoc() || |
1334 | Active->endLoc() != I->endLoc()) { |
1335 | // Shift to the next region. |
1336 | ++Active; |
1337 | if (Active != I) |
1338 | *Active = *I; |
1339 | continue; |
1340 | } |
1341 | // Merge duplicate region. |
1342 | // If CodeRegions and ExpansionRegions cover the same area, it's probably |
1343 | // a macro which is fully expanded to another macro. In that case, we need |
1344 | // to accumulate counts only from CodeRegions, or else the area will be |
1345 | // counted twice. |
1346 | // On the other hand, a macro may have a nested macro in its body. If the |
1347 | // outer macro is used several times, the ExpansionRegion for the nested |
1348 | // macro will also be added several times. These ExpansionRegions cover |
1349 | // the same source locations and have to be combined to reach the correct |
1350 | // value for that area. |
1351 | // We add counts of the regions of the same kind as the active region |
1352 | // to handle the both situations. |
1353 | if (I->Kind == Active->Kind) |
1354 | Active->ExecutionCount += I->ExecutionCount; |
1355 | } |
1356 | return Regions.drop_back(N: std::distance(first: ++Active, last: End)); |
1357 | } |
1358 | |
1359 | public: |
1360 | /// Build a sorted list of CoverageSegments from a list of Regions. |
1361 | static std::vector<CoverageSegment> |
1362 | buildSegments(MutableArrayRef<CountedRegion> Regions) { |
1363 | std::vector<CoverageSegment> Segments; |
1364 | SegmentBuilder Builder(Segments); |
1365 | |
1366 | sortNestedRegions(Regions); |
1367 | ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); |
1368 | |
1369 | LLVM_DEBUG({ |
1370 | dbgs() << "Combined regions:\n" ; |
1371 | for (const auto &CR : CombinedRegions) |
1372 | dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " |
1373 | << CR.LineEnd << ":" << CR.ColumnEnd |
1374 | << " (count=" << CR.ExecutionCount << ")\n" ; |
1375 | }); |
1376 | |
1377 | Builder.buildSegmentsImpl(Regions: CombinedRegions); |
1378 | |
1379 | #ifndef NDEBUG |
1380 | for (unsigned I = 1, E = Segments.size(); I < E; ++I) { |
1381 | const auto &L = Segments[I - 1]; |
1382 | const auto &R = Segments[I]; |
1383 | if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { |
1384 | if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) |
1385 | continue; |
1386 | LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col |
1387 | << " followed by " << R.Line << ":" << R.Col << "\n" ); |
1388 | assert(false && "Coverage segments not unique or sorted" ); |
1389 | } |
1390 | } |
1391 | #endif |
1392 | |
1393 | return Segments; |
1394 | } |
1395 | }; |
1396 | |
1397 | } // end anonymous namespace |
1398 | |
1399 | std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { |
1400 | std::vector<StringRef> Filenames; |
1401 | for (const auto &Function : getCoveredFunctions()) |
1402 | llvm::append_range(C&: Filenames, R: Function.Filenames); |
1403 | llvm::sort(C&: Filenames); |
1404 | auto Last = llvm::unique(R&: Filenames); |
1405 | Filenames.erase(first: Last, last: Filenames.end()); |
1406 | return Filenames; |
1407 | } |
1408 | |
1409 | static SmallBitVector gatherFileIDs(StringRef SourceFile, |
1410 | const FunctionRecord &Function) { |
1411 | SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); |
1412 | for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) |
1413 | if (SourceFile == Function.Filenames[I]) |
1414 | FilenameEquivalence[I] = true; |
1415 | return FilenameEquivalence; |
1416 | } |
1417 | |
1418 | /// Return the ID of the file where the definition of the function is located. |
1419 | static std::optional<unsigned> |
1420 | findMainViewFileID(const FunctionRecord &Function) { |
1421 | SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); |
1422 | for (const auto &CR : Function.CountedRegions) |
1423 | if (CR.Kind == CounterMappingRegion::ExpansionRegion) |
1424 | IsNotExpandedFile[CR.ExpandedFileID] = false; |
1425 | int I = IsNotExpandedFile.find_first(); |
1426 | if (I == -1) |
1427 | return std::nullopt; |
1428 | return I; |
1429 | } |
1430 | |
1431 | /// Check if SourceFile is the file that contains the definition of |
1432 | /// the Function. Return the ID of the file in that case or std::nullopt |
1433 | /// otherwise. |
1434 | static std::optional<unsigned> |
1435 | findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { |
1436 | std::optional<unsigned> I = findMainViewFileID(Function); |
1437 | if (I && SourceFile == Function.Filenames[*I]) |
1438 | return I; |
1439 | return std::nullopt; |
1440 | } |
1441 | |
1442 | static bool isExpansion(const CountedRegion &R, unsigned FileID) { |
1443 | return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; |
1444 | } |
1445 | |
1446 | CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { |
1447 | assert(SingleByteCoverage); |
1448 | CoverageData FileCoverage(*SingleByteCoverage, Filename); |
1449 | std::vector<CountedRegion> Regions; |
1450 | |
1451 | // Look up the function records in the given file. Due to hash collisions on |
1452 | // the filename, we may get back some records that are not in the file. |
1453 | ArrayRef<unsigned> RecordIndices = |
1454 | getImpreciseRecordIndicesForFilename(Filename); |
1455 | for (unsigned RecordIndex : RecordIndices) { |
1456 | const FunctionRecord &Function = Functions[RecordIndex]; |
1457 | auto MainFileID = findMainViewFileID(SourceFile: Filename, Function); |
1458 | auto FileIDs = gatherFileIDs(SourceFile: Filename, Function); |
1459 | for (const auto &CR : Function.CountedRegions) |
1460 | if (FileIDs.test(Idx: CR.FileID)) { |
1461 | Regions.push_back(x: CR); |
1462 | if (MainFileID && isExpansion(R: CR, FileID: *MainFileID)) |
1463 | FileCoverage.Expansions.emplace_back(args: CR, args: Function); |
1464 | } |
1465 | // Capture branch regions specific to the function (excluding expansions). |
1466 | for (const auto &CR : Function.CountedBranchRegions) |
1467 | if (FileIDs.test(Idx: CR.FileID)) |
1468 | FileCoverage.BranchRegions.push_back(x: CR); |
1469 | // Capture MCDC records specific to the function. |
1470 | for (const auto &MR : Function.MCDCRecords) |
1471 | if (FileIDs.test(Idx: MR.getDecisionRegion().FileID)) |
1472 | FileCoverage.MCDCRecords.push_back(x: MR); |
1473 | } |
1474 | |
1475 | LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n" ); |
1476 | FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
1477 | |
1478 | return FileCoverage; |
1479 | } |
1480 | |
1481 | std::vector<InstantiationGroup> |
1482 | CoverageMapping::getInstantiationGroups(StringRef Filename) const { |
1483 | FunctionInstantiationSetCollector InstantiationSetCollector; |
1484 | // Look up the function records in the given file. Due to hash collisions on |
1485 | // the filename, we may get back some records that are not in the file. |
1486 | ArrayRef<unsigned> RecordIndices = |
1487 | getImpreciseRecordIndicesForFilename(Filename); |
1488 | for (unsigned RecordIndex : RecordIndices) { |
1489 | const FunctionRecord &Function = Functions[RecordIndex]; |
1490 | auto MainFileID = findMainViewFileID(SourceFile: Filename, Function); |
1491 | if (!MainFileID) |
1492 | continue; |
1493 | InstantiationSetCollector.insert(Function, FileID: *MainFileID); |
1494 | } |
1495 | |
1496 | std::vector<InstantiationGroup> Result; |
1497 | for (auto &InstantiationSet : InstantiationSetCollector) { |
1498 | InstantiationGroup IG{InstantiationSet.first.first, |
1499 | InstantiationSet.first.second, |
1500 | std::move(InstantiationSet.second)}; |
1501 | Result.emplace_back(args: std::move(IG)); |
1502 | } |
1503 | return Result; |
1504 | } |
1505 | |
1506 | CoverageData |
1507 | CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { |
1508 | auto MainFileID = findMainViewFileID(Function); |
1509 | if (!MainFileID) |
1510 | return CoverageData(); |
1511 | |
1512 | assert(SingleByteCoverage); |
1513 | CoverageData FunctionCoverage(*SingleByteCoverage, |
1514 | Function.Filenames[*MainFileID]); |
1515 | std::vector<CountedRegion> Regions; |
1516 | for (const auto &CR : Function.CountedRegions) |
1517 | if (CR.FileID == *MainFileID) { |
1518 | Regions.push_back(x: CR); |
1519 | if (isExpansion(R: CR, FileID: *MainFileID)) |
1520 | FunctionCoverage.Expansions.emplace_back(args: CR, args: Function); |
1521 | } |
1522 | // Capture branch regions specific to the function (excluding expansions). |
1523 | for (const auto &CR : Function.CountedBranchRegions) |
1524 | if (CR.FileID == *MainFileID) |
1525 | FunctionCoverage.BranchRegions.push_back(x: CR); |
1526 | |
1527 | // Capture MCDC records specific to the function. |
1528 | for (const auto &MR : Function.MCDCRecords) |
1529 | if (MR.getDecisionRegion().FileID == *MainFileID) |
1530 | FunctionCoverage.MCDCRecords.push_back(x: MR); |
1531 | |
1532 | LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name |
1533 | << "\n" ); |
1534 | FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
1535 | |
1536 | return FunctionCoverage; |
1537 | } |
1538 | |
1539 | CoverageData CoverageMapping::getCoverageForExpansion( |
1540 | const ExpansionRecord &Expansion) const { |
1541 | assert(SingleByteCoverage); |
1542 | CoverageData ExpansionCoverage( |
1543 | *SingleByteCoverage, Expansion.Function.Filenames[Expansion.FileID]); |
1544 | std::vector<CountedRegion> Regions; |
1545 | for (const auto &CR : Expansion.Function.CountedRegions) |
1546 | if (CR.FileID == Expansion.FileID) { |
1547 | Regions.push_back(x: CR); |
1548 | if (isExpansion(R: CR, FileID: Expansion.FileID)) |
1549 | ExpansionCoverage.Expansions.emplace_back(args: CR, args: Expansion.Function); |
1550 | } |
1551 | for (const auto &CR : Expansion.Function.CountedBranchRegions) |
1552 | // Capture branch regions that only pertain to the corresponding expansion. |
1553 | if (CR.FileID == Expansion.FileID) |
1554 | ExpansionCoverage.BranchRegions.push_back(x: CR); |
1555 | |
1556 | LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " |
1557 | << Expansion.FileID << "\n" ); |
1558 | ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
1559 | |
1560 | return ExpansionCoverage; |
1561 | } |
1562 | |
1563 | LineCoverageStats::LineCoverageStats( |
1564 | ArrayRef<const CoverageSegment *> LineSegments, |
1565 | const CoverageSegment *WrappedSegment, unsigned Line) |
1566 | : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), |
1567 | LineSegments(LineSegments), WrappedSegment(WrappedSegment) { |
1568 | // Find the minimum number of regions which start in this line. |
1569 | unsigned MinRegionCount = 0; |
1570 | auto isStartOfRegion = [](const CoverageSegment *S) { |
1571 | return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; |
1572 | }; |
1573 | for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) |
1574 | if (isStartOfRegion(LineSegments[I])) |
1575 | ++MinRegionCount; |
1576 | |
1577 | bool StartOfSkippedRegion = !LineSegments.empty() && |
1578 | !LineSegments.front()->HasCount && |
1579 | LineSegments.front()->IsRegionEntry; |
1580 | |
1581 | HasMultipleRegions = MinRegionCount > 1; |
1582 | Mapped = |
1583 | !StartOfSkippedRegion && |
1584 | ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); |
1585 | |
1586 | // if there is any starting segment at this line with a counter, it must be |
1587 | // mapped |
1588 | Mapped |= any_of(Range&: LineSegments, P: [](const auto *Seq) { |
1589 | return Seq->IsRegionEntry && Seq->HasCount; |
1590 | }); |
1591 | |
1592 | if (!Mapped) { |
1593 | return; |
1594 | } |
1595 | |
1596 | // Pick the max count from the non-gap, region entry segments and the |
1597 | // wrapped count. |
1598 | if (WrappedSegment) |
1599 | ExecutionCount = WrappedSegment->Count; |
1600 | if (!MinRegionCount) |
1601 | return; |
1602 | for (const auto *LS : LineSegments) |
1603 | if (isStartOfRegion(LS)) |
1604 | ExecutionCount = std::max(a: ExecutionCount, b: LS->Count); |
1605 | } |
1606 | |
1607 | LineCoverageIterator &LineCoverageIterator::operator++() { |
1608 | if (Next == CD.end()) { |
1609 | Stats = LineCoverageStats(); |
1610 | Ended = true; |
1611 | return *this; |
1612 | } |
1613 | if (Segments.size()) |
1614 | WrappedSegment = Segments.back(); |
1615 | Segments.clear(); |
1616 | while (Next != CD.end() && Next->Line == Line) |
1617 | Segments.push_back(Elt: &*Next++); |
1618 | Stats = LineCoverageStats(Segments, WrappedSegment, Line); |
1619 | ++Line; |
1620 | return *this; |
1621 | } |
1622 | |
1623 | static std::string getCoverageMapErrString(coveragemap_error Err, |
1624 | const std::string &ErrMsg = "" ) { |
1625 | std::string Msg; |
1626 | raw_string_ostream OS(Msg); |
1627 | |
1628 | switch (Err) { |
1629 | case coveragemap_error::success: |
1630 | OS << "success" ; |
1631 | break; |
1632 | case coveragemap_error::eof: |
1633 | OS << "end of File" ; |
1634 | break; |
1635 | case coveragemap_error::no_data_found: |
1636 | OS << "no coverage data found" ; |
1637 | break; |
1638 | case coveragemap_error::unsupported_version: |
1639 | OS << "unsupported coverage format version" ; |
1640 | break; |
1641 | case coveragemap_error::truncated: |
1642 | OS << "truncated coverage data" ; |
1643 | break; |
1644 | case coveragemap_error::malformed: |
1645 | OS << "malformed coverage data" ; |
1646 | break; |
1647 | case coveragemap_error::decompression_failed: |
1648 | OS << "failed to decompress coverage data (zlib)" ; |
1649 | break; |
1650 | case coveragemap_error::invalid_or_missing_arch_specifier: |
1651 | OS << "`-arch` specifier is invalid or missing for universal binary" ; |
1652 | break; |
1653 | } |
1654 | |
1655 | // If optional error message is not empty, append it to the message. |
1656 | if (!ErrMsg.empty()) |
1657 | OS << ": " << ErrMsg; |
1658 | |
1659 | return Msg; |
1660 | } |
1661 | |
1662 | namespace { |
1663 | |
1664 | // FIXME: This class is only here to support the transition to llvm::Error. It |
1665 | // will be removed once this transition is complete. Clients should prefer to |
1666 | // deal with the Error value directly, rather than converting to error_code. |
1667 | class CoverageMappingErrorCategoryType : public std::error_category { |
1668 | const char *name() const noexcept override { return "llvm.coveragemap" ; } |
1669 | std::string message(int IE) const override { |
1670 | return getCoverageMapErrString(Err: static_cast<coveragemap_error>(IE)); |
1671 | } |
1672 | }; |
1673 | |
1674 | } // end anonymous namespace |
1675 | |
1676 | std::string CoverageMapError::message() const { |
1677 | return getCoverageMapErrString(Err, ErrMsg: Msg); |
1678 | } |
1679 | |
1680 | const std::error_category &llvm::coverage::coveragemap_category() { |
1681 | static CoverageMappingErrorCategoryType ErrorCategory; |
1682 | return ErrorCategory; |
1683 | } |
1684 | |
1685 | char CoverageMapError::ID = 0; |
1686 | |