1 | //===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains support for reading coverage mapping data for |
10 | // instrumentation based coverage. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" |
15 | #include "llvm/ADT/ArrayRef.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/SmallVector.h" |
18 | #include "llvm/ADT/Statistic.h" |
19 | #include "llvm/ADT/StringRef.h" |
20 | #include "llvm/BinaryFormat/Wasm.h" |
21 | #include "llvm/Object/Archive.h" |
22 | #include "llvm/Object/Binary.h" |
23 | #include "llvm/Object/COFF.h" |
24 | #include "llvm/Object/Error.h" |
25 | #include "llvm/Object/MachOUniversal.h" |
26 | #include "llvm/Object/ObjectFile.h" |
27 | #include "llvm/Object/Wasm.h" |
28 | #include "llvm/ProfileData/InstrProf.h" |
29 | #include "llvm/Support/Casting.h" |
30 | #include "llvm/Support/Compression.h" |
31 | #include "llvm/Support/Debug.h" |
32 | #include "llvm/Support/Endian.h" |
33 | #include "llvm/Support/Error.h" |
34 | #include "llvm/Support/ErrorHandling.h" |
35 | #include "llvm/Support/LEB128.h" |
36 | #include "llvm/Support/Path.h" |
37 | #include "llvm/Support/raw_ostream.h" |
38 | #include "llvm/TargetParser/Triple.h" |
39 | #include <vector> |
40 | |
41 | using namespace llvm; |
42 | using namespace coverage; |
43 | using namespace object; |
44 | |
45 | #define DEBUG_TYPE "coverage-mapping" |
46 | |
47 | STATISTIC(CovMapNumRecords, "The # of coverage function records" ); |
48 | STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records" ); |
49 | |
50 | void CoverageMappingIterator::increment() { |
51 | if (ReadErr != coveragemap_error::success) |
52 | return; |
53 | |
54 | // Check if all the records were read or if an error occurred while reading |
55 | // the next record. |
56 | if (auto E = Reader->readNextRecord(Record)) |
57 | handleAllErrors(E: std::move(E), Handlers: [&](const CoverageMapError &CME) { |
58 | if (CME.get() == coveragemap_error::eof) |
59 | *this = CoverageMappingIterator(); |
60 | else |
61 | ReadErr = CME.get(); |
62 | }); |
63 | } |
64 | |
65 | Error RawCoverageReader::readULEB128(uint64_t &Result) { |
66 | if (Data.empty()) |
67 | return make_error<CoverageMapError>(Args: coveragemap_error::truncated); |
68 | unsigned N = 0; |
69 | Result = decodeULEB128(p: Data.bytes_begin(), n: &N); |
70 | if (N > Data.size()) |
71 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
72 | Args: "the size of ULEB128 is too big" ); |
73 | Data = Data.substr(Start: N); |
74 | return Error::success(); |
75 | } |
76 | |
77 | Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) { |
78 | if (auto Err = readULEB128(Result)) |
79 | return Err; |
80 | if (Result >= MaxPlus1) |
81 | return make_error<CoverageMapError>( |
82 | Args: coveragemap_error::malformed, |
83 | Args: "the value of ULEB128 is greater than or equal to MaxPlus1" ); |
84 | return Error::success(); |
85 | } |
86 | |
87 | Error RawCoverageReader::readSize(uint64_t &Result) { |
88 | if (auto Err = readULEB128(Result)) |
89 | return Err; |
90 | if (Result > Data.size()) |
91 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
92 | Args: "the value of ULEB128 is too big" ); |
93 | return Error::success(); |
94 | } |
95 | |
96 | Error RawCoverageReader::readString(StringRef &Result) { |
97 | uint64_t Length; |
98 | if (auto Err = readSize(Result&: Length)) |
99 | return Err; |
100 | Result = Data.substr(Start: 0, N: Length); |
101 | Data = Data.substr(Start: Length); |
102 | return Error::success(); |
103 | } |
104 | |
105 | Error RawCoverageFilenamesReader::read(CovMapVersion Version) { |
106 | uint64_t NumFilenames; |
107 | if (auto Err = readSize(Result&: NumFilenames)) |
108 | return Err; |
109 | if (!NumFilenames) |
110 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
111 | Args: "number of filenames is zero" ); |
112 | |
113 | if (Version < CovMapVersion::Version4) |
114 | return readUncompressed(Version, NumFilenames); |
115 | |
116 | // The uncompressed length may exceed the size of the encoded filenames. |
117 | // Skip size validation. |
118 | uint64_t UncompressedLen; |
119 | if (auto Err = readULEB128(Result&: UncompressedLen)) |
120 | return Err; |
121 | |
122 | uint64_t CompressedLen; |
123 | if (auto Err = readSize(Result&: CompressedLen)) |
124 | return Err; |
125 | |
126 | if (CompressedLen > 0) { |
127 | if (!compression::zlib::isAvailable()) |
128 | return make_error<CoverageMapError>( |
129 | Args: coveragemap_error::decompression_failed); |
130 | |
131 | // Allocate memory for the decompressed filenames. |
132 | SmallVector<uint8_t, 0> StorageBuf; |
133 | |
134 | // Read compressed filenames. |
135 | StringRef CompressedFilenames = Data.substr(Start: 0, N: CompressedLen); |
136 | Data = Data.substr(Start: CompressedLen); |
137 | auto Err = compression::zlib::decompress( |
138 | Input: arrayRefFromStringRef(Input: CompressedFilenames), Output&: StorageBuf, |
139 | UncompressedSize: UncompressedLen); |
140 | if (Err) { |
141 | consumeError(Err: std::move(Err)); |
142 | return make_error<CoverageMapError>( |
143 | Args: coveragemap_error::decompression_failed); |
144 | } |
145 | |
146 | RawCoverageFilenamesReader Delegate(toStringRef(Input: StorageBuf), Filenames, |
147 | CompilationDir); |
148 | return Delegate.readUncompressed(Version, NumFilenames); |
149 | } |
150 | |
151 | return readUncompressed(Version, NumFilenames); |
152 | } |
153 | |
154 | Error RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version, |
155 | uint64_t NumFilenames) { |
156 | // Read uncompressed filenames. |
157 | if (Version < CovMapVersion::Version6) { |
158 | for (size_t I = 0; I < NumFilenames; ++I) { |
159 | StringRef Filename; |
160 | if (auto Err = readString(Result&: Filename)) |
161 | return Err; |
162 | Filenames.push_back(x: Filename.str()); |
163 | } |
164 | } else { |
165 | StringRef CWD; |
166 | if (auto Err = readString(Result&: CWD)) |
167 | return Err; |
168 | Filenames.push_back(x: CWD.str()); |
169 | |
170 | for (size_t I = 1; I < NumFilenames; ++I) { |
171 | StringRef Filename; |
172 | if (auto Err = readString(Result&: Filename)) |
173 | return Err; |
174 | if (sys::path::is_absolute(path: Filename)) { |
175 | Filenames.push_back(x: Filename.str()); |
176 | } else { |
177 | SmallString<256> P; |
178 | if (!CompilationDir.empty()) |
179 | P.assign(RHS: CompilationDir); |
180 | else |
181 | P.assign(RHS: CWD); |
182 | llvm::sys::path::append(path&: P, a: Filename); |
183 | sys::path::remove_dots(path&: P, /*remove_dot_dot=*/true); |
184 | Filenames.push_back(x: static_cast<std::string>(P.str())); |
185 | } |
186 | } |
187 | } |
188 | return Error::success(); |
189 | } |
190 | |
191 | Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) { |
192 | auto Tag = Value & Counter::EncodingTagMask; |
193 | switch (Tag) { |
194 | case Counter::Zero: |
195 | C = Counter::getZero(); |
196 | return Error::success(); |
197 | case Counter::CounterValueReference: |
198 | C = Counter::getCounter(CounterId: Value >> Counter::EncodingTagBits); |
199 | return Error::success(); |
200 | default: |
201 | break; |
202 | } |
203 | Tag -= Counter::Expression; |
204 | switch (Tag) { |
205 | case CounterExpression::Subtract: |
206 | case CounterExpression::Add: { |
207 | auto ID = Value >> Counter::EncodingTagBits; |
208 | if (ID >= Expressions.size()) |
209 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
210 | Args: "counter expression is invalid" ); |
211 | Expressions[ID].Kind = CounterExpression::ExprKind(Tag); |
212 | C = Counter::getExpression(ExpressionId: ID); |
213 | break; |
214 | } |
215 | default: |
216 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
217 | Args: "counter expression kind is invalid" ); |
218 | } |
219 | return Error::success(); |
220 | } |
221 | |
222 | Error RawCoverageMappingReader::readCounter(Counter &C) { |
223 | uint64_t EncodedCounter; |
224 | if (auto Err = |
225 | readIntMax(Result&: EncodedCounter, MaxPlus1: std::numeric_limits<unsigned>::max())) |
226 | return Err; |
227 | if (auto Err = decodeCounter(Value: EncodedCounter, C)) |
228 | return Err; |
229 | return Error::success(); |
230 | } |
231 | |
232 | static const unsigned EncodingExpansionRegionBit = 1 |
233 | << Counter::EncodingTagBits; |
234 | |
235 | /// Read the sub-array of regions for the given inferred file id. |
236 | /// \param NumFileIDs the number of file ids that are defined for this |
237 | /// function. |
238 | Error RawCoverageMappingReader::readMappingRegionsSubArray( |
239 | std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID, |
240 | size_t NumFileIDs) { |
241 | uint64_t NumRegions; |
242 | if (auto Err = readSize(Result&: NumRegions)) |
243 | return Err; |
244 | unsigned LineStart = 0; |
245 | for (size_t I = 0; I < NumRegions; ++I) { |
246 | Counter C, C2; |
247 | uint64_t BIDX, NC; |
248 | // They are stored as internal values plus 1 (min is -1) |
249 | uint64_t ID1, TID1, FID1; |
250 | mcdc::Parameters Params; |
251 | CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion; |
252 | |
253 | // Read the combined counter + region kind. |
254 | uint64_t EncodedCounterAndRegion; |
255 | if (auto Err = readIntMax(Result&: EncodedCounterAndRegion, |
256 | MaxPlus1: std::numeric_limits<unsigned>::max())) |
257 | return Err; |
258 | unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; |
259 | uint64_t ExpandedFileID = 0; |
260 | |
261 | // If Tag does not represent a ZeroCounter, then it is understood to refer |
262 | // to a counter or counter expression with region kind assumed to be |
263 | // "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the |
264 | // referenced counter or counter expression (and nothing else). |
265 | // |
266 | // If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set, |
267 | // then EncodedCounterAndRegion is interpreted to represent an |
268 | // ExpansionRegion. In all other cases, EncodedCounterAndRegion is |
269 | // interpreted to refer to a specific region kind, after which additional |
270 | // fields may be read (e.g. BranchRegions have two encoded counters that |
271 | // follow an encoded region kind value). |
272 | if (Tag != Counter::Zero) { |
273 | if (auto Err = decodeCounter(Value: EncodedCounterAndRegion, C)) |
274 | return Err; |
275 | } else { |
276 | // Is it an expansion region? |
277 | if (EncodedCounterAndRegion & EncodingExpansionRegionBit) { |
278 | Kind = CounterMappingRegion::ExpansionRegion; |
279 | ExpandedFileID = EncodedCounterAndRegion >> |
280 | Counter::EncodingCounterTagAndExpansionRegionTagBits; |
281 | if (ExpandedFileID >= NumFileIDs) |
282 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
283 | Args: "ExpandedFileID is invalid" ); |
284 | } else { |
285 | switch (EncodedCounterAndRegion >> |
286 | Counter::EncodingCounterTagAndExpansionRegionTagBits) { |
287 | case CounterMappingRegion::CodeRegion: |
288 | // Don't do anything when we have a code region with a zero counter. |
289 | break; |
290 | case CounterMappingRegion::SkippedRegion: |
291 | Kind = CounterMappingRegion::SkippedRegion; |
292 | break; |
293 | case CounterMappingRegion::BranchRegion: |
294 | // For a Branch Region, read two successive counters. |
295 | Kind = CounterMappingRegion::BranchRegion; |
296 | if (auto Err = readCounter(C)) |
297 | return Err; |
298 | if (auto Err = readCounter(C&: C2)) |
299 | return Err; |
300 | break; |
301 | case CounterMappingRegion::MCDCBranchRegion: |
302 | // For a MCDC Branch Region, read two successive counters and 3 IDs. |
303 | Kind = CounterMappingRegion::MCDCBranchRegion; |
304 | if (auto Err = readCounter(C)) |
305 | return Err; |
306 | if (auto Err = readCounter(C&: C2)) |
307 | return Err; |
308 | if (auto Err = readIntMax(Result&: ID1, MaxPlus1: std::numeric_limits<int16_t>::max())) |
309 | return Err; |
310 | if (auto Err = readIntMax(Result&: TID1, MaxPlus1: std::numeric_limits<int16_t>::max())) |
311 | return Err; |
312 | if (auto Err = readIntMax(Result&: FID1, MaxPlus1: std::numeric_limits<int16_t>::max())) |
313 | return Err; |
314 | if (ID1 == 0) |
315 | return make_error<CoverageMapError>( |
316 | Args: coveragemap_error::malformed, |
317 | Args: "MCDCConditionID shouldn't be zero" ); |
318 | Params = mcdc::BranchParameters{ |
319 | static_cast<int16_t>(static_cast<int16_t>(ID1) - 1), |
320 | {static_cast<int16_t>(static_cast<int16_t>(FID1) - 1), |
321 | static_cast<int16_t>(static_cast<int16_t>(TID1) - 1)}}; |
322 | break; |
323 | case CounterMappingRegion::MCDCDecisionRegion: |
324 | Kind = CounterMappingRegion::MCDCDecisionRegion; |
325 | if (auto Err = readIntMax(Result&: BIDX, MaxPlus1: std::numeric_limits<unsigned>::max())) |
326 | return Err; |
327 | if (auto Err = readIntMax(Result&: NC, MaxPlus1: std::numeric_limits<int16_t>::max())) |
328 | return Err; |
329 | Params = mcdc::DecisionParameters{static_cast<unsigned>(BIDX), |
330 | static_cast<uint16_t>(NC)}; |
331 | break; |
332 | default: |
333 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
334 | Args: "region kind is incorrect" ); |
335 | } |
336 | } |
337 | } |
338 | |
339 | // Read the source range. |
340 | uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd; |
341 | if (auto Err = |
342 | readIntMax(Result&: LineStartDelta, MaxPlus1: std::numeric_limits<unsigned>::max())) |
343 | return Err; |
344 | if (auto Err = readULEB128(Result&: ColumnStart)) |
345 | return Err; |
346 | if (ColumnStart > std::numeric_limits<unsigned>::max()) |
347 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
348 | Args: "start column is too big" ); |
349 | if (auto Err = readIntMax(Result&: NumLines, MaxPlus1: std::numeric_limits<unsigned>::max())) |
350 | return Err; |
351 | if (auto Err = readIntMax(Result&: ColumnEnd, MaxPlus1: std::numeric_limits<unsigned>::max())) |
352 | return Err; |
353 | LineStart += LineStartDelta; |
354 | |
355 | // If the high bit of ColumnEnd is set, this is a gap region. |
356 | if (ColumnEnd & (1U << 31)) { |
357 | Kind = CounterMappingRegion::GapRegion; |
358 | ColumnEnd &= ~(1U << 31); |
359 | } |
360 | |
361 | // Adjust the column locations for the empty regions that are supposed to |
362 | // cover whole lines. Those regions should be encoded with the |
363 | // column range (1 -> std::numeric_limits<unsigned>::max()), but because |
364 | // the encoded std::numeric_limits<unsigned>::max() is several bytes long, |
365 | // we set the column range to (0 -> 0) to ensure that the column start and |
366 | // column end take up one byte each. |
367 | // The std::numeric_limits<unsigned>::max() is used to represent a column |
368 | // position at the end of the line without knowing the length of that line. |
369 | if (ColumnStart == 0 && ColumnEnd == 0) { |
370 | ColumnStart = 1; |
371 | ColumnEnd = std::numeric_limits<unsigned>::max(); |
372 | } |
373 | |
374 | LLVM_DEBUG({ |
375 | dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":" |
376 | << ColumnStart << " -> " << (LineStart + NumLines) << ":" |
377 | << ColumnEnd << ", " ; |
378 | if (Kind == CounterMappingRegion::ExpansionRegion) |
379 | dbgs() << "Expands to file " << ExpandedFileID; |
380 | else |
381 | CounterMappingContext(Expressions).dump(C, dbgs()); |
382 | dbgs() << "\n" ; |
383 | }); |
384 | |
385 | auto CMR = CounterMappingRegion( |
386 | C, C2, InferredFileID, ExpandedFileID, LineStart, ColumnStart, |
387 | LineStart + NumLines, ColumnEnd, Kind, Params); |
388 | if (CMR.startLoc() > CMR.endLoc()) |
389 | return make_error<CoverageMapError>( |
390 | Args: coveragemap_error::malformed, |
391 | Args: "counter mapping region locations are incorrect" ); |
392 | MappingRegions.push_back(x: CMR); |
393 | } |
394 | return Error::success(); |
395 | } |
396 | |
397 | Error RawCoverageMappingReader::read() { |
398 | // Read the virtual file mapping. |
399 | SmallVector<unsigned, 8> VirtualFileMapping; |
400 | uint64_t NumFileMappings; |
401 | if (auto Err = readSize(Result&: NumFileMappings)) |
402 | return Err; |
403 | for (size_t I = 0; I < NumFileMappings; ++I) { |
404 | uint64_t FilenameIndex; |
405 | if (auto Err = readIntMax(Result&: FilenameIndex, MaxPlus1: TranslationUnitFilenames.size())) |
406 | return Err; |
407 | VirtualFileMapping.push_back(Elt: FilenameIndex); |
408 | } |
409 | |
410 | // Construct the files using unique filenames and virtual file mapping. |
411 | for (auto I : VirtualFileMapping) { |
412 | Filenames.push_back(x: TranslationUnitFilenames[I]); |
413 | } |
414 | |
415 | // Read the expressions. |
416 | uint64_t NumExpressions; |
417 | if (auto Err = readSize(Result&: NumExpressions)) |
418 | return Err; |
419 | // Create an array of dummy expressions that get the proper counters |
420 | // when the expressions are read, and the proper kinds when the counters |
421 | // are decoded. |
422 | Expressions.resize( |
423 | new_size: NumExpressions, |
424 | x: CounterExpression(CounterExpression::Subtract, Counter(), Counter())); |
425 | for (size_t I = 0; I < NumExpressions; ++I) { |
426 | if (auto Err = readCounter(C&: Expressions[I].LHS)) |
427 | return Err; |
428 | if (auto Err = readCounter(C&: Expressions[I].RHS)) |
429 | return Err; |
430 | } |
431 | |
432 | // Read the mapping regions sub-arrays. |
433 | for (unsigned InferredFileID = 0, S = VirtualFileMapping.size(); |
434 | InferredFileID < S; ++InferredFileID) { |
435 | if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID, |
436 | NumFileIDs: VirtualFileMapping.size())) |
437 | return Err; |
438 | } |
439 | |
440 | // Set the counters for the expansion regions. |
441 | // i.e. Counter of expansion region = counter of the first region |
442 | // from the expanded file. |
443 | // Perform multiple passes to correctly propagate the counters through |
444 | // all the nested expansion regions. |
445 | SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping; |
446 | FileIDExpansionRegionMapping.resize(N: VirtualFileMapping.size(), NV: nullptr); |
447 | for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) { |
448 | for (auto &R : MappingRegions) { |
449 | if (R.Kind != CounterMappingRegion::ExpansionRegion) |
450 | continue; |
451 | assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]); |
452 | FileIDExpansionRegionMapping[R.ExpandedFileID] = &R; |
453 | } |
454 | for (auto &R : MappingRegions) { |
455 | if (FileIDExpansionRegionMapping[R.FileID]) { |
456 | FileIDExpansionRegionMapping[R.FileID]->Count = R.Count; |
457 | FileIDExpansionRegionMapping[R.FileID] = nullptr; |
458 | } |
459 | } |
460 | } |
461 | |
462 | return Error::success(); |
463 | } |
464 | |
465 | Expected<bool> RawCoverageMappingDummyChecker::isDummy() { |
466 | // A dummy coverage mapping data consists of just one region with zero count. |
467 | uint64_t NumFileMappings; |
468 | if (Error Err = readSize(Result&: NumFileMappings)) |
469 | return std::move(Err); |
470 | if (NumFileMappings != 1) |
471 | return false; |
472 | // We don't expect any specific value for the filename index, just skip it. |
473 | uint64_t FilenameIndex; |
474 | if (Error Err = |
475 | readIntMax(Result&: FilenameIndex, MaxPlus1: std::numeric_limits<unsigned>::max())) |
476 | return std::move(Err); |
477 | uint64_t NumExpressions; |
478 | if (Error Err = readSize(Result&: NumExpressions)) |
479 | return std::move(Err); |
480 | if (NumExpressions != 0) |
481 | return false; |
482 | uint64_t NumRegions; |
483 | if (Error Err = readSize(Result&: NumRegions)) |
484 | return std::move(Err); |
485 | if (NumRegions != 1) |
486 | return false; |
487 | uint64_t EncodedCounterAndRegion; |
488 | if (Error Err = readIntMax(Result&: EncodedCounterAndRegion, |
489 | MaxPlus1: std::numeric_limits<unsigned>::max())) |
490 | return std::move(Err); |
491 | unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; |
492 | return Tag == Counter::Zero; |
493 | } |
494 | |
495 | /// Determine if we should skip the first byte of the section content |
496 | static bool shouldSkipSectionFirstByte(SectionRef &Section) { |
497 | const ObjectFile *Obj = Section.getObject(); |
498 | // If this is a linked PE/COFF file, then we have to skip over the null byte |
499 | // that is allocated in the .lprfn$A section in the LLVM profiling runtime. |
500 | // If the name section is .lprfcovnames, it doesn't have the null byte at the |
501 | // beginning. |
502 | if (isa<COFFObjectFile>(Val: Obj) && !Obj->isRelocatableObject()) |
503 | if (Expected<StringRef> NameOrErr = Section.getName()) |
504 | if (*NameOrErr != getInstrProfSectionName(IPSK: IPSK_covname, OF: Triple::COFF)) |
505 | return true; |
506 | return false; |
507 | } |
508 | |
509 | Error InstrProfSymtab::create(SectionRef &Section) { |
510 | Expected<StringRef> DataOrErr = Section.getContents(); |
511 | if (!DataOrErr) |
512 | return DataOrErr.takeError(); |
513 | Data = *DataOrErr; |
514 | Address = Section.getAddress(); |
515 | |
516 | if (shouldSkipSectionFirstByte(Section)) |
517 | Data = Data.substr(Start: 1); |
518 | |
519 | return Error::success(); |
520 | } |
521 | |
522 | StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) { |
523 | if (Pointer < Address) |
524 | return StringRef(); |
525 | auto Offset = Pointer - Address; |
526 | if (Offset + Size > Data.size()) |
527 | return StringRef(); |
528 | return Data.substr(Start: Pointer - Address, N: Size); |
529 | } |
530 | |
531 | // Check if the mapping data is a dummy, i.e. is emitted for an unused function. |
532 | static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) { |
533 | // The hash value of dummy mapping records is always zero. |
534 | if (Hash) |
535 | return false; |
536 | return RawCoverageMappingDummyChecker(Mapping).isDummy(); |
537 | } |
538 | |
539 | /// A range of filename indices. Used to specify the location of a batch of |
540 | /// filenames in a vector-like container. |
541 | struct FilenameRange { |
542 | unsigned StartingIndex; |
543 | unsigned Length; |
544 | |
545 | FilenameRange(unsigned StartingIndex, unsigned Length) |
546 | : StartingIndex(StartingIndex), Length(Length) {} |
547 | |
548 | void markInvalid() { Length = 0; } |
549 | bool isInvalid() const { return Length == 0; } |
550 | }; |
551 | |
552 | namespace { |
553 | |
554 | /// The interface to read coverage mapping function records for a module. |
555 | struct CovMapFuncRecordReader { |
556 | virtual ~CovMapFuncRecordReader() = default; |
557 | |
558 | // Read a coverage header. |
559 | // |
560 | // \p CovBuf points to the buffer containing the \c CovHeader of the coverage |
561 | // mapping data associated with the module. |
562 | // |
563 | // Returns a pointer to the next \c CovHeader if it exists, or to an address |
564 | // greater than \p CovEnd if not. |
565 | virtual Expected<const char *> (const char *CovBuf, |
566 | const char *CovBufEnd) = 0; |
567 | |
568 | // Read function records. |
569 | // |
570 | // \p FuncRecBuf points to the buffer containing a batch of function records. |
571 | // \p FuncRecBufEnd points past the end of the batch of records. |
572 | // |
573 | // Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames |
574 | // associated with the function records. It is unused in Version4. |
575 | // |
576 | // Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage |
577 | // mappings associated with the function records. It is unused in Version4. |
578 | virtual Error |
579 | readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, |
580 | std::optional<FilenameRange> OutOfLineFileRange, |
581 | const char *OutOfLineMappingBuf, |
582 | const char *OutOfLineMappingBufEnd) = 0; |
583 | |
584 | template <class IntPtrT, llvm::endianness Endian> |
585 | static Expected<std::unique_ptr<CovMapFuncRecordReader>> |
586 | get(CovMapVersion Version, InstrProfSymtab &P, |
587 | std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, |
588 | std::vector<std::string> &F); |
589 | }; |
590 | |
591 | // A class for reading coverage mapping function records for a module. |
592 | template <CovMapVersion Version, class IntPtrT, llvm::endianness Endian> |
593 | class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader { |
594 | using FuncRecordType = |
595 | typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType; |
596 | using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType; |
597 | |
598 | // Maps function's name references to the indexes of their records |
599 | // in \c Records. |
600 | DenseMap<NameRefType, size_t> FunctionRecords; |
601 | InstrProfSymtab &ProfileNames; |
602 | StringRef CompilationDir; |
603 | std::vector<std::string> &Filenames; |
604 | std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records; |
605 | |
606 | // Maps a hash of the filenames in a TU to a \c FileRange. The range |
607 | // specifies the location of the hashed filenames in \c Filenames. |
608 | DenseMap<uint64_t, FilenameRange> FileRangeMap; |
609 | |
610 | // Add the record to the collection if we don't already have a record that |
611 | // points to the same function name. This is useful to ignore the redundant |
612 | // records for the functions with ODR linkage. |
613 | // In addition, prefer records with real coverage mapping data to dummy |
614 | // records, which were emitted for inline functions which were seen but |
615 | // not used in the corresponding translation unit. |
616 | Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR, |
617 | StringRef Mapping, |
618 | FilenameRange FileRange) { |
619 | ++CovMapNumRecords; |
620 | uint64_t FuncHash = CFR->template getFuncHash<Endian>(); |
621 | NameRefType NameRef = CFR->template getFuncNameRef<Endian>(); |
622 | auto InsertResult = |
623 | FunctionRecords.insert(std::make_pair(NameRef, Records.size())); |
624 | if (InsertResult.second) { |
625 | StringRef FuncName; |
626 | if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName)) |
627 | return Err; |
628 | if (FuncName.empty()) |
629 | return make_error<InstrProfError>(Args: instrprof_error::malformed, |
630 | Args: "function name is empty" ); |
631 | ++CovMapNumUsedRecords; |
632 | Records.emplace_back(args: Version, args&: FuncName, args&: FuncHash, args&: Mapping, |
633 | args&: FileRange.StartingIndex, args&: FileRange.Length); |
634 | return Error::success(); |
635 | } |
636 | // Update the existing record if it's a dummy and the new record is real. |
637 | size_t OldRecordIndex = InsertResult.first->second; |
638 | BinaryCoverageReader::ProfileMappingRecord &OldRecord = |
639 | Records[OldRecordIndex]; |
640 | Expected<bool> OldIsDummyExpected = isCoverageMappingDummy( |
641 | Hash: OldRecord.FunctionHash, Mapping: OldRecord.CoverageMapping); |
642 | if (Error Err = OldIsDummyExpected.takeError()) |
643 | return Err; |
644 | if (!*OldIsDummyExpected) |
645 | return Error::success(); |
646 | Expected<bool> NewIsDummyExpected = |
647 | isCoverageMappingDummy(Hash: FuncHash, Mapping); |
648 | if (Error Err = NewIsDummyExpected.takeError()) |
649 | return Err; |
650 | if (*NewIsDummyExpected) |
651 | return Error::success(); |
652 | ++CovMapNumUsedRecords; |
653 | OldRecord.FunctionHash = FuncHash; |
654 | OldRecord.CoverageMapping = Mapping; |
655 | OldRecord.FilenamesBegin = FileRange.StartingIndex; |
656 | OldRecord.FilenamesSize = FileRange.Length; |
657 | return Error::success(); |
658 | } |
659 | |
660 | public: |
661 | VersionedCovMapFuncRecordReader( |
662 | InstrProfSymtab &P, |
663 | std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, |
664 | std::vector<std::string> &F) |
665 | : ProfileNames(P), CompilationDir(D), Filenames(F), Records(R) {} |
666 | |
667 | ~VersionedCovMapFuncRecordReader() override = default; |
668 | |
669 | Expected<const char *> (const char *CovBuf, |
670 | const char *CovBufEnd) override { |
671 | using namespace support; |
672 | |
673 | if (CovBuf + sizeof(CovMapHeader) > CovBufEnd) |
674 | return make_error<CoverageMapError>( |
675 | Args: coveragemap_error::malformed, |
676 | Args: "coverage mapping header section is larger than buffer size" ); |
677 | auto = reinterpret_cast<const CovMapHeader *>(CovBuf); |
678 | uint32_t NRecords = CovHeader->getNRecords<Endian>(); |
679 | uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>(); |
680 | uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>(); |
681 | assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version); |
682 | CovBuf = reinterpret_cast<const char *>(CovHeader + 1); |
683 | |
684 | // Skip past the function records, saving the start and end for later. |
685 | // This is a no-op in Version4 (function records are read after all headers |
686 | // are read). |
687 | const char *FuncRecBuf = nullptr; |
688 | const char *FuncRecBufEnd = nullptr; |
689 | if (Version < CovMapVersion::Version4) |
690 | FuncRecBuf = CovBuf; |
691 | CovBuf += NRecords * sizeof(FuncRecordType); |
692 | if (Version < CovMapVersion::Version4) |
693 | FuncRecBufEnd = CovBuf; |
694 | |
695 | // Get the filenames. |
696 | if (CovBuf + FilenamesSize > CovBufEnd) |
697 | return make_error<CoverageMapError>( |
698 | Args: coveragemap_error::malformed, |
699 | Args: "filenames section is larger than buffer size" ); |
700 | size_t FilenamesBegin = Filenames.size(); |
701 | StringRef FilenameRegion(CovBuf, FilenamesSize); |
702 | RawCoverageFilenamesReader Reader(FilenameRegion, Filenames, |
703 | CompilationDir); |
704 | if (auto Err = Reader.read(Version)) |
705 | return std::move(Err); |
706 | CovBuf += FilenamesSize; |
707 | FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin); |
708 | |
709 | if (Version >= CovMapVersion::Version4) { |
710 | // Map a hash of the filenames region to the filename range associated |
711 | // with this coverage header. |
712 | int64_t FilenamesRef = |
713 | llvm::IndexedInstrProf::ComputeHash(K: FilenameRegion); |
714 | auto Insert = |
715 | FileRangeMap.insert(KV: std::make_pair(x&: FilenamesRef, y&: FileRange)); |
716 | if (!Insert.second) { |
717 | // The same filenames ref was encountered twice. It's possible that |
718 | // the associated filenames are the same. |
719 | auto It = Filenames.begin(); |
720 | FilenameRange &OrigRange = Insert.first->getSecond(); |
721 | if (std::equal(first1: It + OrigRange.StartingIndex, |
722 | last1: It + OrigRange.StartingIndex + OrigRange.Length, |
723 | first2: It + FileRange.StartingIndex, |
724 | last2: It + FileRange.StartingIndex + FileRange.Length)) |
725 | // Map the new range to the original one. |
726 | FileRange = OrigRange; |
727 | else |
728 | // This is a hash collision. Mark the filenames ref invalid. |
729 | OrigRange.markInvalid(); |
730 | } |
731 | } |
732 | |
733 | // We'll read the coverage mapping records in the loop below. |
734 | // This is a no-op in Version4 (coverage mappings are not affixed to the |
735 | // coverage header). |
736 | const char *MappingBuf = CovBuf; |
737 | if (Version >= CovMapVersion::Version4 && CoverageSize != 0) |
738 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
739 | Args: "coverage mapping size is not zero" ); |
740 | CovBuf += CoverageSize; |
741 | const char *MappingEnd = CovBuf; |
742 | |
743 | if (CovBuf > CovBufEnd) |
744 | return make_error<CoverageMapError>( |
745 | Args: coveragemap_error::malformed, |
746 | Args: "function records section is larger than buffer size" ); |
747 | |
748 | if (Version < CovMapVersion::Version4) { |
749 | // Read each function record. |
750 | if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, OutOfLineFileRange: FileRange, |
751 | OutOfLineMappingBuf: MappingBuf, OutOfLineMappingBufEnd: MappingEnd)) |
752 | return std::move(E); |
753 | } |
754 | |
755 | // Each coverage map has an alignment of 8, so we need to adjust alignment |
756 | // before reading the next map. |
757 | CovBuf += offsetToAlignedAddr(Addr: CovBuf, Alignment: Align(8)); |
758 | |
759 | return CovBuf; |
760 | } |
761 | |
762 | Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, |
763 | std::optional<FilenameRange> OutOfLineFileRange, |
764 | const char *OutOfLineMappingBuf, |
765 | const char *OutOfLineMappingBufEnd) override { |
766 | auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf); |
767 | while ((const char *)CFR < FuncRecBufEnd) { |
768 | // Validate the length of the coverage mapping for this function. |
769 | const char *NextMappingBuf; |
770 | const FuncRecordType *NextCFR; |
771 | std::tie(NextMappingBuf, NextCFR) = |
772 | CFR->template advanceByOne<Endian>(OutOfLineMappingBuf); |
773 | if (Version < CovMapVersion::Version4) |
774 | if (NextMappingBuf > OutOfLineMappingBufEnd) |
775 | return make_error<CoverageMapError>( |
776 | Args: coveragemap_error::malformed, |
777 | Args: "next mapping buffer is larger than buffer size" ); |
778 | |
779 | // Look up the set of filenames associated with this function record. |
780 | std::optional<FilenameRange> FileRange; |
781 | if (Version < CovMapVersion::Version4) { |
782 | FileRange = OutOfLineFileRange; |
783 | } else { |
784 | uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>(); |
785 | auto It = FileRangeMap.find(Val: FilenamesRef); |
786 | if (It == FileRangeMap.end()) |
787 | return make_error<CoverageMapError>( |
788 | Args: coveragemap_error::malformed, |
789 | Args: "no filename found for function with hash=0x" + |
790 | Twine::utohexstr(Val: FilenamesRef)); |
791 | else |
792 | FileRange = It->getSecond(); |
793 | } |
794 | |
795 | // Now, read the coverage data. |
796 | if (FileRange && !FileRange->isInvalid()) { |
797 | StringRef Mapping = |
798 | CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf); |
799 | if (Version >= CovMapVersion::Version4 && |
800 | Mapping.data() + Mapping.size() > FuncRecBufEnd) |
801 | return make_error<CoverageMapError>( |
802 | Args: coveragemap_error::malformed, |
803 | Args: "coverage mapping data is larger than buffer size" ); |
804 | if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, FileRange: *FileRange)) |
805 | return Err; |
806 | } |
807 | |
808 | std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR); |
809 | } |
810 | return Error::success(); |
811 | } |
812 | }; |
813 | |
814 | } // end anonymous namespace |
815 | |
816 | template <class IntPtrT, llvm::endianness Endian> |
817 | Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get( |
818 | CovMapVersion Version, InstrProfSymtab &P, |
819 | std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, |
820 | std::vector<std::string> &F) { |
821 | using namespace coverage; |
822 | |
823 | switch (Version) { |
824 | case CovMapVersion::Version1: |
825 | return std::make_unique<VersionedCovMapFuncRecordReader< |
826 | CovMapVersion::Version1, IntPtrT, Endian>>(P, R, D, F); |
827 | case CovMapVersion::Version2: |
828 | case CovMapVersion::Version3: |
829 | case CovMapVersion::Version4: |
830 | case CovMapVersion::Version5: |
831 | case CovMapVersion::Version6: |
832 | case CovMapVersion::Version7: |
833 | // Decompress the name data. |
834 | if (Error E = P.create(NameStrings: P.getNameData())) |
835 | return std::move(E); |
836 | if (Version == CovMapVersion::Version2) |
837 | return std::make_unique<VersionedCovMapFuncRecordReader< |
838 | CovMapVersion::Version2, IntPtrT, Endian>>(P, R, D, F); |
839 | else if (Version == CovMapVersion::Version3) |
840 | return std::make_unique<VersionedCovMapFuncRecordReader< |
841 | CovMapVersion::Version3, IntPtrT, Endian>>(P, R, D, F); |
842 | else if (Version == CovMapVersion::Version4) |
843 | return std::make_unique<VersionedCovMapFuncRecordReader< |
844 | CovMapVersion::Version4, IntPtrT, Endian>>(P, R, D, F); |
845 | else if (Version == CovMapVersion::Version5) |
846 | return std::make_unique<VersionedCovMapFuncRecordReader< |
847 | CovMapVersion::Version5, IntPtrT, Endian>>(P, R, D, F); |
848 | else if (Version == CovMapVersion::Version6) |
849 | return std::make_unique<VersionedCovMapFuncRecordReader< |
850 | CovMapVersion::Version6, IntPtrT, Endian>>(P, R, D, F); |
851 | else if (Version == CovMapVersion::Version7) |
852 | return std::make_unique<VersionedCovMapFuncRecordReader< |
853 | CovMapVersion::Version7, IntPtrT, Endian>>(P, R, D, F); |
854 | } |
855 | llvm_unreachable("Unsupported version" ); |
856 | } |
857 | |
858 | template <typename T, llvm::endianness Endian> |
859 | static Error readCoverageMappingData( |
860 | InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords, |
861 | std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records, |
862 | StringRef CompilationDir, std::vector<std::string> &Filenames) { |
863 | using namespace coverage; |
864 | |
865 | // Read the records in the coverage data section. |
866 | auto = |
867 | reinterpret_cast<const CovMapHeader *>(CovMap.data()); |
868 | CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>(); |
869 | if (Version > CovMapVersion::CurrentVersion) |
870 | return make_error<CoverageMapError>(Args: coveragemap_error::unsupported_version); |
871 | Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected = |
872 | CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records, |
873 | CompilationDir, Filenames); |
874 | if (Error E = ReaderExpected.takeError()) |
875 | return E; |
876 | auto Reader = std::move(ReaderExpected.get()); |
877 | const char *CovBuf = CovMap.data(); |
878 | const char *CovBufEnd = CovBuf + CovMap.size(); |
879 | const char *FuncRecBuf = FuncRecords.data(); |
880 | const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size(); |
881 | while (CovBuf < CovBufEnd) { |
882 | // Read the current coverage header & filename data. |
883 | // |
884 | // Prior to Version4, this also reads all function records affixed to the |
885 | // header. |
886 | // |
887 | // Return a pointer to the next coverage header. |
888 | auto NextOrErr = Reader->readCoverageHeader(CovBuf, CovBufEnd); |
889 | if (auto E = NextOrErr.takeError()) |
890 | return E; |
891 | CovBuf = NextOrErr.get(); |
892 | } |
893 | // In Version4, function records are not affixed to coverage headers. Read |
894 | // the records from their dedicated section. |
895 | if (Version >= CovMapVersion::Version4) |
896 | return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, OutOfLineFileRange: std::nullopt, |
897 | OutOfLineMappingBuf: nullptr, OutOfLineMappingBufEnd: nullptr); |
898 | return Error::success(); |
899 | } |
900 | |
901 | Expected<std::unique_ptr<BinaryCoverageReader>> |
902 | BinaryCoverageReader::createCoverageReaderFromBuffer( |
903 | StringRef Coverage, FuncRecordsStorage &&FuncRecords, |
904 | CoverageMapCopyStorage &&CoverageMap, |
905 | std::unique_ptr<InstrProfSymtab> ProfileNamesPtr, uint8_t BytesInAddress, |
906 | llvm::endianness Endian, StringRef CompilationDir) { |
907 | if (ProfileNamesPtr == nullptr) |
908 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
909 | Args: "Caller must provide ProfileNames" ); |
910 | std::unique_ptr<BinaryCoverageReader> Reader( |
911 | new BinaryCoverageReader(std::move(ProfileNamesPtr), |
912 | std::move(FuncRecords), std::move(CoverageMap))); |
913 | InstrProfSymtab &ProfileNames = *Reader->ProfileNames; |
914 | StringRef FuncRecordsRef = Reader->FuncRecords->getBuffer(); |
915 | if (BytesInAddress == 4 && Endian == llvm::endianness::little) { |
916 | if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::little>( |
917 | ProfileNames, CovMap: Coverage, FuncRecords: FuncRecordsRef, Records&: Reader->MappingRecords, |
918 | CompilationDir, Filenames&: Reader->Filenames)) |
919 | return std::move(E); |
920 | } else if (BytesInAddress == 4 && Endian == llvm::endianness::big) { |
921 | if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::big>( |
922 | ProfileNames, CovMap: Coverage, FuncRecords: FuncRecordsRef, Records&: Reader->MappingRecords, |
923 | CompilationDir, Filenames&: Reader->Filenames)) |
924 | return std::move(E); |
925 | } else if (BytesInAddress == 8 && Endian == llvm::endianness::little) { |
926 | if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::little>( |
927 | ProfileNames, CovMap: Coverage, FuncRecords: FuncRecordsRef, Records&: Reader->MappingRecords, |
928 | CompilationDir, Filenames&: Reader->Filenames)) |
929 | return std::move(E); |
930 | } else if (BytesInAddress == 8 && Endian == llvm::endianness::big) { |
931 | if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::big>( |
932 | ProfileNames, CovMap: Coverage, FuncRecords: FuncRecordsRef, Records&: Reader->MappingRecords, |
933 | CompilationDir, Filenames&: Reader->Filenames)) |
934 | return std::move(E); |
935 | } else |
936 | return make_error<CoverageMapError>( |
937 | Args: coveragemap_error::malformed, |
938 | Args: "not supported endianness or bytes in address" ); |
939 | return std::move(Reader); |
940 | } |
941 | |
942 | static Expected<std::unique_ptr<BinaryCoverageReader>> |
943 | loadTestingFormat(StringRef Data, StringRef CompilationDir) { |
944 | uint8_t BytesInAddress = 8; |
945 | llvm::endianness Endian = llvm::endianness::little; |
946 | |
947 | // Read the magic and version. |
948 | Data = Data.substr(Start: sizeof(TestingFormatMagic)); |
949 | if (Data.size() < sizeof(uint64_t)) |
950 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
951 | Args: "the size of data is too small" ); |
952 | auto TestingVersion = |
953 | support::endian::byte_swap<uint64_t, llvm::endianness::little>( |
954 | value: *reinterpret_cast<const uint64_t *>(Data.data())); |
955 | Data = Data.substr(Start: sizeof(uint64_t)); |
956 | |
957 | // Read the ProfileNames data. |
958 | if (Data.empty()) |
959 | return make_error<CoverageMapError>(Args: coveragemap_error::truncated); |
960 | unsigned N = 0; |
961 | uint64_t ProfileNamesSize = decodeULEB128(p: Data.bytes_begin(), n: &N); |
962 | if (N > Data.size()) |
963 | return make_error<CoverageMapError>( |
964 | Args: coveragemap_error::malformed, |
965 | Args: "the size of TestingFormatMagic is too big" ); |
966 | Data = Data.substr(Start: N); |
967 | if (Data.empty()) |
968 | return make_error<CoverageMapError>(Args: coveragemap_error::truncated); |
969 | N = 0; |
970 | uint64_t Address = decodeULEB128(p: Data.bytes_begin(), n: &N); |
971 | if (N > Data.size()) |
972 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
973 | Args: "the size of ULEB128 is too big" ); |
974 | Data = Data.substr(Start: N); |
975 | if (Data.size() < ProfileNamesSize) |
976 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
977 | Args: "the size of ProfileNames is too big" ); |
978 | auto ProfileNames = std::make_unique<InstrProfSymtab>(); |
979 | if (Error E = ProfileNames->create(D: Data.substr(Start: 0, N: ProfileNamesSize), BaseAddr: Address)) |
980 | return std::move(E); |
981 | Data = Data.substr(Start: ProfileNamesSize); |
982 | |
983 | // In Version2, the size of CoverageMapping is stored directly. |
984 | uint64_t CoverageMappingSize; |
985 | if (TestingVersion == uint64_t(TestingFormatVersion::Version2)) { |
986 | N = 0; |
987 | CoverageMappingSize = decodeULEB128(p: Data.bytes_begin(), n: &N); |
988 | if (N > Data.size()) |
989 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
990 | Args: "the size of ULEB128 is too big" ); |
991 | Data = Data.substr(Start: N); |
992 | if (CoverageMappingSize < sizeof(CovMapHeader)) |
993 | return make_error<CoverageMapError>( |
994 | Args: coveragemap_error::malformed, |
995 | Args: "the size of CoverageMapping is teoo small" ); |
996 | } else if (TestingVersion != uint64_t(TestingFormatVersion::Version1)) { |
997 | return make_error<CoverageMapError>(Args: coveragemap_error::unsupported_version); |
998 | } |
999 | |
1000 | // Skip the padding bytes because coverage map data has an alignment of 8. |
1001 | auto Pad = offsetToAlignedAddr(Addr: Data.data(), Alignment: Align(8)); |
1002 | if (Data.size() < Pad) |
1003 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
1004 | Args: "insufficient padding" ); |
1005 | Data = Data.substr(Start: Pad); |
1006 | if (Data.size() < sizeof(CovMapHeader)) |
1007 | return make_error<CoverageMapError>( |
1008 | Args: coveragemap_error::malformed, |
1009 | Args: "coverage mapping header section is larger than data size" ); |
1010 | auto const * = reinterpret_cast<const CovMapHeader *>( |
1011 | Data.substr(Start: 0, N: sizeof(CovMapHeader)).data()); |
1012 | auto Version = |
1013 | CovMapVersion(CovHeader->getVersion<llvm::endianness::little>()); |
1014 | |
1015 | // In Version1, the size of CoverageMapping is calculated. |
1016 | if (TestingVersion == uint64_t(TestingFormatVersion::Version1)) { |
1017 | if (Version < CovMapVersion::Version4) { |
1018 | CoverageMappingSize = Data.size(); |
1019 | } else { |
1020 | auto FilenamesSize = |
1021 | CovHeader->getFilenamesSize<llvm::endianness::little>(); |
1022 | CoverageMappingSize = sizeof(CovMapHeader) + FilenamesSize; |
1023 | } |
1024 | } |
1025 | |
1026 | auto CoverageMapping = Data.substr(Start: 0, N: CoverageMappingSize); |
1027 | Data = Data.substr(Start: CoverageMappingSize); |
1028 | |
1029 | // Read the CoverageRecords data. |
1030 | if (Version < CovMapVersion::Version4) { |
1031 | if (!Data.empty()) |
1032 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
1033 | Args: "data is not empty" ); |
1034 | } else { |
1035 | // Skip the padding bytes because coverage records data has an alignment |
1036 | // of 8. |
1037 | Pad = offsetToAlignedAddr(Addr: Data.data(), Alignment: Align(8)); |
1038 | if (Data.size() < Pad) |
1039 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
1040 | Args: "insufficient padding" ); |
1041 | Data = Data.substr(Start: Pad); |
1042 | } |
1043 | BinaryCoverageReader::FuncRecordsStorage CoverageRecords = |
1044 | MemoryBuffer::getMemBuffer(InputData: Data); |
1045 | |
1046 | return BinaryCoverageReader::createCoverageReaderFromBuffer( |
1047 | Coverage: CoverageMapping, FuncRecords: std::move(CoverageRecords), CoverageMap: nullptr, |
1048 | ProfileNamesPtr: std::move(ProfileNames), BytesInAddress, Endian, CompilationDir); |
1049 | } |
1050 | |
1051 | /// Find all sections that match \p IPSK name. There may be more than one if |
1052 | /// comdats are in use, e.g. for the __llvm_covfun section on ELF. |
1053 | static Expected<std::vector<SectionRef>> |
1054 | lookupSections(ObjectFile &OF, InstrProfSectKind IPSK) { |
1055 | auto ObjFormat = OF.getTripleObjectFormat(); |
1056 | auto Name = |
1057 | getInstrProfSectionName(IPSK, OF: ObjFormat, /*AddSegmentInfo=*/false); |
1058 | // On COFF, the object file section name may end in "$M". This tells the |
1059 | // linker to sort these sections between "$A" and "$Z". The linker removes the |
1060 | // dollar and everything after it in the final binary. Do the same to match. |
1061 | bool IsCOFF = isa<COFFObjectFile>(Val: OF); |
1062 | auto stripSuffix = [IsCOFF](StringRef N) { |
1063 | return IsCOFF ? N.split(Separator: '$').first : N; |
1064 | }; |
1065 | Name = stripSuffix(Name); |
1066 | |
1067 | std::vector<SectionRef> Sections; |
1068 | for (const auto &Section : OF.sections()) { |
1069 | Expected<StringRef> NameOrErr = Section.getName(); |
1070 | if (!NameOrErr) |
1071 | return NameOrErr.takeError(); |
1072 | if (stripSuffix(*NameOrErr) == Name) { |
1073 | // Skip empty profile name section. |
1074 | // COFF profile name section contains two null bytes indicating the |
1075 | // start/end of the section. If its size is 2 bytes, it's empty. |
1076 | if (IPSK == IPSK_name && |
1077 | (Section.getSize() == 0 || (IsCOFF && Section.getSize() == 2))) |
1078 | continue; |
1079 | Sections.push_back(x: Section); |
1080 | } |
1081 | } |
1082 | if (Sections.empty()) |
1083 | return make_error<CoverageMapError>(Args: coveragemap_error::no_data_found); |
1084 | return Sections; |
1085 | } |
1086 | |
1087 | /// Find a section that matches \p Name and is allocatable at runtime. |
1088 | /// |
1089 | /// Returns the contents of the section and its start offset in the object file. |
1090 | static Expected<std::pair<StringRef, uint64_t>> |
1091 | lookupAllocatableSection(ObjectFile &OF, InstrProfSectKind IPSK) { |
1092 | // On Wasm, allocatable sections can live only in data segments. |
1093 | if (auto *WOF = dyn_cast<WasmObjectFile>(Val: &OF)) { |
1094 | std::vector<const WasmSegment *> Segments; |
1095 | auto ObjFormat = OF.getTripleObjectFormat(); |
1096 | auto Name = |
1097 | getInstrProfSectionName(IPSK, OF: ObjFormat, /*AddSegmentInfo=*/false); |
1098 | for (const auto &DebugName : WOF->debugNames()) { |
1099 | if (DebugName.Type != wasm::NameType::DATA_SEGMENT || |
1100 | DebugName.Name != Name) |
1101 | continue; |
1102 | if (DebugName.Index >= WOF->dataSegments().size()) |
1103 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed); |
1104 | auto &Segment = WOF->dataSegments()[DebugName.Index]; |
1105 | Segments.push_back(x: &Segment); |
1106 | } |
1107 | if (Segments.empty()) |
1108 | return make_error<CoverageMapError>(Args: coveragemap_error::no_data_found); |
1109 | if (Segments.size() != 1) |
1110 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed); |
1111 | |
1112 | const auto &Segment = *Segments.front(); |
1113 | auto &Data = Segment.Data; |
1114 | StringRef Content(reinterpret_cast<const char *>(Data.Content.data()), |
1115 | Data.Content.size()); |
1116 | return std::make_pair(x&: Content, y: Segment.SectionOffset); |
1117 | } |
1118 | |
1119 | // On other object file types, delegate to lookupSections to find the section. |
1120 | auto Sections = lookupSections(OF, IPSK); |
1121 | if (!Sections) |
1122 | return Sections.takeError(); |
1123 | if (Sections->size() != 1) |
1124 | return make_error<CoverageMapError>( |
1125 | Args: coveragemap_error::malformed, |
1126 | Args: "the size of coverage mapping section is not one" ); |
1127 | auto &Section = Sections->front(); |
1128 | auto ContentsOrErr = Section.getContents(); |
1129 | if (!ContentsOrErr) |
1130 | return ContentsOrErr.takeError(); |
1131 | auto Content = *ContentsOrErr; |
1132 | if (shouldSkipSectionFirstByte(Section)) |
1133 | Content = Content.drop_front(N: 1); |
1134 | return std::make_pair(x&: Content, y: Section.getAddress()); |
1135 | } |
1136 | |
1137 | static Expected<std::unique_ptr<BinaryCoverageReader>> |
1138 | loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch, |
1139 | StringRef CompilationDir = "" , |
1140 | object::BuildIDRef *BinaryID = nullptr) { |
1141 | std::unique_ptr<ObjectFile> OF; |
1142 | if (auto *Universal = dyn_cast<MachOUniversalBinary>(Val: Bin.get())) { |
1143 | // If we have a universal binary, try to look up the object for the |
1144 | // appropriate architecture. |
1145 | auto ObjectFileOrErr = Universal->getMachOObjectForArch(ArchName: Arch); |
1146 | if (!ObjectFileOrErr) |
1147 | return ObjectFileOrErr.takeError(); |
1148 | OF = std::move(ObjectFileOrErr.get()); |
1149 | } else if (isa<ObjectFile>(Val: Bin.get())) { |
1150 | // For any other object file, upcast and take ownership. |
1151 | OF.reset(p: cast<ObjectFile>(Val: Bin.release())); |
1152 | // If we've asked for a particular arch, make sure they match. |
1153 | if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch()) |
1154 | return errorCodeToError(EC: object_error::arch_not_found); |
1155 | } else |
1156 | // We can only handle object files. |
1157 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
1158 | Args: "binary is not an object file" ); |
1159 | |
1160 | // The coverage uses native pointer sizes for the object it's written in. |
1161 | uint8_t BytesInAddress = OF->getBytesInAddress(); |
1162 | llvm::endianness Endian = |
1163 | OF->isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; |
1164 | |
1165 | // Look for the sections that we are interested in. |
1166 | auto ProfileNames = std::make_unique<InstrProfSymtab>(); |
1167 | // If IPSK_name is not found, fallback to search for IPK_covname, which is |
1168 | // used when binary correlation is enabled. |
1169 | auto NamesSection = lookupAllocatableSection(OF&: *OF, IPSK: IPSK_name); |
1170 | if (auto E = NamesSection.takeError()) { |
1171 | consumeError(Err: std::move(E)); |
1172 | NamesSection = lookupAllocatableSection(OF&: *OF, IPSK: IPSK_covname); |
1173 | if (auto E = NamesSection.takeError()) |
1174 | return std::move(E); |
1175 | } |
1176 | |
1177 | uint64_t NamesAddress; |
1178 | StringRef NamesContent; |
1179 | std::tie(args&: NamesContent, args&: NamesAddress) = *NamesSection; |
1180 | if (Error E = ProfileNames->create(D: NamesContent, BaseAddr: NamesAddress)) |
1181 | return std::move(E); |
1182 | |
1183 | auto CoverageSection = lookupSections(OF&: *OF, IPSK: IPSK_covmap); |
1184 | if (auto E = CoverageSection.takeError()) |
1185 | return std::move(E); |
1186 | std::vector<SectionRef> CoverageSectionRefs = *CoverageSection; |
1187 | if (CoverageSectionRefs.size() != 1) |
1188 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
1189 | Args: "the size of name section is not one" ); |
1190 | auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents(); |
1191 | if (!CoverageMappingOrErr) |
1192 | return CoverageMappingOrErr.takeError(); |
1193 | StringRef CoverageMapping = CoverageMappingOrErr.get(); |
1194 | |
1195 | // If the coverage mapping section is not aligned to 8 bytes, copy it to a |
1196 | // new buffer that is. Wasm format typically has unaligned section contents |
1197 | // because it doesn't have a good way to insert padding bytes. |
1198 | std::unique_ptr<MemoryBuffer> CoverageMapCopy; |
1199 | if (!isAddrAligned(Lhs: Align(8), Addr: CoverageMapping.data())) { |
1200 | CoverageMapCopy = MemoryBuffer::getMemBufferCopy(InputData: CoverageMapping); |
1201 | CoverageMapping = CoverageMapCopy->getBuffer(); |
1202 | } |
1203 | |
1204 | // Look for the coverage records section (Version4 only). |
1205 | auto CoverageRecordsSections = lookupSections(OF&: *OF, IPSK: IPSK_covfun); |
1206 | |
1207 | BinaryCoverageReader::FuncRecordsStorage FuncRecords; |
1208 | if (auto E = CoverageRecordsSections.takeError()) { |
1209 | consumeError(Err: std::move(E)); |
1210 | FuncRecords = MemoryBuffer::getMemBuffer(InputData: "" ); |
1211 | } else { |
1212 | // Compute the FuncRecordsBuffer of the buffer, taking into account the |
1213 | // padding between each record, and making sure the first block is aligned |
1214 | // in memory to maintain consistency between buffer address and size |
1215 | // alignment. |
1216 | const Align RecordAlignment(8); |
1217 | uint64_t FuncRecordsSize = 0; |
1218 | for (SectionRef Section : *CoverageRecordsSections) { |
1219 | auto CoverageRecordsOrErr = Section.getContents(); |
1220 | if (!CoverageRecordsOrErr) |
1221 | return CoverageRecordsOrErr.takeError(); |
1222 | FuncRecordsSize += alignTo(Size: CoverageRecordsOrErr->size(), A: RecordAlignment); |
1223 | } |
1224 | auto WritableBuffer = |
1225 | WritableMemoryBuffer::getNewUninitMemBuffer(Size: FuncRecordsSize); |
1226 | char *FuncRecordsBuffer = WritableBuffer->getBufferStart(); |
1227 | assert(isAddrAligned(RecordAlignment, FuncRecordsBuffer) && |
1228 | "Allocated memory is correctly aligned" ); |
1229 | |
1230 | for (SectionRef Section : *CoverageRecordsSections) { |
1231 | auto CoverageRecordsOrErr = Section.getContents(); |
1232 | if (!CoverageRecordsOrErr) |
1233 | return CoverageRecordsOrErr.takeError(); |
1234 | const auto &CoverageRecords = CoverageRecordsOrErr.get(); |
1235 | FuncRecordsBuffer = std::copy(first: CoverageRecords.begin(), |
1236 | last: CoverageRecords.end(), result: FuncRecordsBuffer); |
1237 | FuncRecordsBuffer = |
1238 | std::fill_n(first: FuncRecordsBuffer, |
1239 | n: alignAddr(Addr: FuncRecordsBuffer, Alignment: RecordAlignment) - |
1240 | (uintptr_t)FuncRecordsBuffer, |
1241 | value: '\0'); |
1242 | } |
1243 | assert(FuncRecordsBuffer == WritableBuffer->getBufferEnd() && |
1244 | "consistent init" ); |
1245 | FuncRecords = std::move(WritableBuffer); |
1246 | } |
1247 | |
1248 | if (BinaryID) |
1249 | *BinaryID = getBuildID(Obj: OF.get()); |
1250 | |
1251 | return BinaryCoverageReader::createCoverageReaderFromBuffer( |
1252 | Coverage: CoverageMapping, FuncRecords: std::move(FuncRecords), CoverageMap: std::move(CoverageMapCopy), |
1253 | ProfileNamesPtr: std::move(ProfileNames), BytesInAddress, Endian, CompilationDir); |
1254 | } |
1255 | |
1256 | /// Determine whether \p Arch is invalid or empty, given \p Bin. |
1257 | static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) { |
1258 | // If we have a universal binary and Arch doesn't identify any of its slices, |
1259 | // it's user error. |
1260 | if (auto *Universal = dyn_cast<MachOUniversalBinary>(Val: Bin)) { |
1261 | for (auto &ObjForArch : Universal->objects()) |
1262 | if (Arch == ObjForArch.getArchFlagName()) |
1263 | return false; |
1264 | return true; |
1265 | } |
1266 | return false; |
1267 | } |
1268 | |
1269 | Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>> |
1270 | BinaryCoverageReader::create( |
1271 | MemoryBufferRef ObjectBuffer, StringRef Arch, |
1272 | SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers, |
1273 | StringRef CompilationDir, SmallVectorImpl<object::BuildIDRef> *BinaryIDs) { |
1274 | std::vector<std::unique_ptr<BinaryCoverageReader>> Readers; |
1275 | |
1276 | if (ObjectBuffer.getBuffer().size() > sizeof(TestingFormatMagic)) { |
1277 | uint64_t Magic = |
1278 | support::endian::byte_swap<uint64_t, llvm::endianness::little>( |
1279 | value: *reinterpret_cast<const uint64_t *>(ObjectBuffer.getBufferStart())); |
1280 | if (Magic == TestingFormatMagic) { |
1281 | // This is a special format used for testing. |
1282 | auto ReaderOrErr = |
1283 | loadTestingFormat(Data: ObjectBuffer.getBuffer(), CompilationDir); |
1284 | if (!ReaderOrErr) |
1285 | return ReaderOrErr.takeError(); |
1286 | Readers.push_back(x: std::move(ReaderOrErr.get())); |
1287 | return std::move(Readers); |
1288 | } |
1289 | } |
1290 | |
1291 | auto BinOrErr = createBinary(Source: ObjectBuffer); |
1292 | if (!BinOrErr) |
1293 | return BinOrErr.takeError(); |
1294 | std::unique_ptr<Binary> Bin = std::move(BinOrErr.get()); |
1295 | |
1296 | if (isArchSpecifierInvalidOrMissing(Bin: Bin.get(), Arch)) |
1297 | return make_error<CoverageMapError>( |
1298 | Args: coveragemap_error::invalid_or_missing_arch_specifier); |
1299 | |
1300 | // MachO universal binaries which contain archives need to be treated as |
1301 | // archives, not as regular binaries. |
1302 | if (auto *Universal = dyn_cast<MachOUniversalBinary>(Val: Bin.get())) { |
1303 | for (auto &ObjForArch : Universal->objects()) { |
1304 | // Skip slices within the universal binary which target the wrong arch. |
1305 | std::string ObjArch = ObjForArch.getArchFlagName(); |
1306 | if (Arch != ObjArch) |
1307 | continue; |
1308 | |
1309 | auto ArchiveOrErr = ObjForArch.getAsArchive(); |
1310 | if (!ArchiveOrErr) { |
1311 | // If this is not an archive, try treating it as a regular object. |
1312 | consumeError(Err: ArchiveOrErr.takeError()); |
1313 | break; |
1314 | } |
1315 | |
1316 | return BinaryCoverageReader::create( |
1317 | ObjectBuffer: ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers, |
1318 | CompilationDir, BinaryIDs); |
1319 | } |
1320 | } |
1321 | |
1322 | // Load coverage out of archive members. |
1323 | if (auto *Ar = dyn_cast<Archive>(Val: Bin.get())) { |
1324 | Error Err = Error::success(); |
1325 | for (auto &Child : Ar->children(Err)) { |
1326 | Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef(); |
1327 | if (!ChildBufOrErr) |
1328 | return ChildBufOrErr.takeError(); |
1329 | |
1330 | auto ChildReadersOrErr = BinaryCoverageReader::create( |
1331 | ObjectBuffer: ChildBufOrErr.get(), Arch, ObjectFileBuffers, CompilationDir, |
1332 | BinaryIDs); |
1333 | if (!ChildReadersOrErr) |
1334 | return ChildReadersOrErr.takeError(); |
1335 | for (auto &Reader : ChildReadersOrErr.get()) |
1336 | Readers.push_back(x: std::move(Reader)); |
1337 | } |
1338 | if (Err) |
1339 | return std::move(Err); |
1340 | |
1341 | // Thin archives reference object files outside of the archive file, i.e. |
1342 | // files which reside in memory not owned by the caller. Transfer ownership |
1343 | // to the caller. |
1344 | if (Ar->isThin()) |
1345 | for (auto &Buffer : Ar->takeThinBuffers()) |
1346 | ObjectFileBuffers.push_back(Elt: std::move(Buffer)); |
1347 | |
1348 | return std::move(Readers); |
1349 | } |
1350 | |
1351 | object::BuildIDRef BinaryID; |
1352 | auto ReaderOrErr = loadBinaryFormat(Bin: std::move(Bin), Arch, CompilationDir, |
1353 | BinaryID: BinaryIDs ? &BinaryID : nullptr); |
1354 | if (!ReaderOrErr) |
1355 | return ReaderOrErr.takeError(); |
1356 | Readers.push_back(x: std::move(ReaderOrErr.get())); |
1357 | if (!BinaryID.empty()) |
1358 | BinaryIDs->push_back(Elt: BinaryID); |
1359 | return std::move(Readers); |
1360 | } |
1361 | |
1362 | Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) { |
1363 | if (CurrentRecord >= MappingRecords.size()) |
1364 | return make_error<CoverageMapError>(Args: coveragemap_error::eof); |
1365 | |
1366 | FunctionsFilenames.clear(); |
1367 | Expressions.clear(); |
1368 | MappingRegions.clear(); |
1369 | auto &R = MappingRecords[CurrentRecord]; |
1370 | auto F = ArrayRef(Filenames).slice(N: R.FilenamesBegin, M: R.FilenamesSize); |
1371 | RawCoverageMappingReader Reader(R.CoverageMapping, F, FunctionsFilenames, |
1372 | Expressions, MappingRegions); |
1373 | if (auto Err = Reader.read()) |
1374 | return Err; |
1375 | |
1376 | Record.FunctionName = R.FunctionName; |
1377 | Record.FunctionHash = R.FunctionHash; |
1378 | Record.Filenames = FunctionsFilenames; |
1379 | Record.Expressions = Expressions; |
1380 | Record.MappingRegions = MappingRegions; |
1381 | |
1382 | ++CurrentRecord; |
1383 | return Error::success(); |
1384 | } |
1385 | |