1//===- InstrProf.cpp - Instrumented profiling format support --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for clang's instrumentation based PGO and
10// coverage.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ProfileData/InstrProf.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/Config/config.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/GlobalValue.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/IR/Instruction.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/IR/MDBuilder.h"
28#include "llvm/IR/Metadata.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/ProfDataUtils.h"
31#include "llvm/IR/Type.h"
32#include "llvm/ProfileData/InstrProfReader.h"
33#include "llvm/Support/Casting.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/Compression.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/Endian.h"
39#include "llvm/Support/Error.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/LEB128.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Path.h"
44#include "llvm/Support/SwapByteOrder.h"
45#include "llvm/Support/VirtualFileSystem.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/TargetParser/Triple.h"
48#include <algorithm>
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <memory>
54#include <string>
55#include <system_error>
56#include <type_traits>
57#include <utility>
58#include <vector>
59
60using namespace llvm;
61
62#define DEBUG_TYPE "instrprof"
63
64static cl::opt<bool> StaticFuncFullModulePrefix(
65 "static-func-full-module-prefix", cl::init(Val: true), cl::Hidden,
66 cl::desc("Use full module build paths in the profile counter names for "
67 "static functions."));
68
69// This option is tailored to users that have different top-level directory in
70// profile-gen and profile-use compilation. Users need to specific the number
71// of levels to strip. A value larger than the number of directories in the
72// source file will strip all the directory names and only leave the basename.
73//
74// Note current ThinLTO module importing for the indirect-calls assumes
75// the source directory name not being stripped. A non-zero option value here
76// can potentially prevent some inter-module indirect-call-promotions.
77static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
78 "static-func-strip-dirname-prefix", cl::init(Val: 0), cl::Hidden,
79 cl::desc("Strip specified level of directory name from source path in "
80 "the profile counter name for static functions."));
81
82static std::string getInstrProfErrString(instrprof_error Err,
83 const std::string &ErrMsg = "") {
84 std::string Msg;
85 raw_string_ostream OS(Msg);
86
87 switch (Err) {
88 case instrprof_error::success:
89 OS << "success";
90 break;
91 case instrprof_error::eof:
92 OS << "end of File";
93 break;
94 case instrprof_error::unrecognized_format:
95 OS << "unrecognized instrumentation profile encoding format";
96 break;
97 case instrprof_error::bad_magic:
98 OS << "invalid instrumentation profile data (bad magic)";
99 break;
100 case instrprof_error::bad_header:
101 OS << "invalid instrumentation profile data (file header is corrupt)";
102 break;
103 case instrprof_error::unsupported_version:
104 OS << "unsupported instrumentation profile format version";
105 break;
106 case instrprof_error::unsupported_hash_type:
107 OS << "unsupported instrumentation profile hash type";
108 break;
109 case instrprof_error::too_large:
110 OS << "too much profile data";
111 break;
112 case instrprof_error::truncated:
113 OS << "truncated profile data";
114 break;
115 case instrprof_error::malformed:
116 OS << "malformed instrumentation profile data";
117 break;
118 case instrprof_error::missing_correlation_info:
119 OS << "debug info/binary for correlation is required";
120 break;
121 case instrprof_error::unexpected_correlation_info:
122 OS << "debug info/binary for correlation is not necessary";
123 break;
124 case instrprof_error::unable_to_correlate_profile:
125 OS << "unable to correlate profile";
126 break;
127 case instrprof_error::invalid_prof:
128 OS << "invalid profile created. Please file a bug "
129 "at: " BUG_REPORT_URL
130 " and include the profraw files that caused this error.";
131 break;
132 case instrprof_error::unknown_function:
133 OS << "no profile data available for function";
134 break;
135 case instrprof_error::hash_mismatch:
136 OS << "function control flow change detected (hash mismatch)";
137 break;
138 case instrprof_error::count_mismatch:
139 OS << "function basic block count change detected (counter mismatch)";
140 break;
141 case instrprof_error::bitmap_mismatch:
142 OS << "function bitmap size change detected (bitmap size mismatch)";
143 break;
144 case instrprof_error::counter_overflow:
145 OS << "counter overflow";
146 break;
147 case instrprof_error::value_site_count_mismatch:
148 OS << "function value site count change detected (counter mismatch)";
149 break;
150 case instrprof_error::compress_failed:
151 OS << "failed to compress data (zlib)";
152 break;
153 case instrprof_error::uncompress_failed:
154 OS << "failed to uncompress data (zlib)";
155 break;
156 case instrprof_error::empty_raw_profile:
157 OS << "empty raw profile file";
158 break;
159 case instrprof_error::zlib_unavailable:
160 OS << "profile uses zlib compression but the profile reader was built "
161 "without zlib support";
162 break;
163 case instrprof_error::raw_profile_version_mismatch:
164 OS << "raw profile version mismatch";
165 break;
166 case instrprof_error::counter_value_too_large:
167 OS << "excessively large counter value suggests corrupted profile data";
168 break;
169 }
170
171 // If optional error message is not empty, append it to the message.
172 if (!ErrMsg.empty())
173 OS << ": " << ErrMsg;
174
175 return OS.str();
176}
177
178namespace {
179
180// FIXME: This class is only here to support the transition to llvm::Error. It
181// will be removed once this transition is complete. Clients should prefer to
182// deal with the Error value directly, rather than converting to error_code.
183class InstrProfErrorCategoryType : public std::error_category {
184 const char *name() const noexcept override { return "llvm.instrprof"; }
185
186 std::string message(int IE) const override {
187 return getInstrProfErrString(Err: static_cast<instrprof_error>(IE));
188 }
189};
190
191} // end anonymous namespace
192
193const std::error_category &llvm::instrprof_category() {
194 static InstrProfErrorCategoryType ErrorCategory;
195 return ErrorCategory;
196}
197
198namespace {
199
200const char *InstrProfSectNameCommon[] = {
201#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
202 SectNameCommon,
203#include "llvm/ProfileData/InstrProfData.inc"
204};
205
206const char *InstrProfSectNameCoff[] = {
207#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
208 SectNameCoff,
209#include "llvm/ProfileData/InstrProfData.inc"
210};
211
212const char *InstrProfSectNamePrefix[] = {
213#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
214 Prefix,
215#include "llvm/ProfileData/InstrProfData.inc"
216};
217
218} // namespace
219
220namespace llvm {
221
222cl::opt<bool> DoInstrProfNameCompression(
223 "enable-name-compression",
224 cl::desc("Enable name/filename string compression"), cl::init(Val: true));
225
226cl::opt<bool> EnableVTableValueProfiling(
227 "enable-vtable-value-profiling", cl::init(Val: false),
228 cl::desc("If true, the virtual table address will be instrumented to know "
229 "the types of a C++ pointer. The information is used in indirect "
230 "call promotion to do selective vtable-based comparison."));
231
232cl::opt<bool> EnableVTableProfileUse(
233 "enable-vtable-profile-use", cl::init(Val: false),
234 cl::desc("If ThinLTO and WPD is enabled and this option is true, vtable "
235 "profiles will be used by ICP pass for more efficient indirect "
236 "call sequence. If false, type profiles won't be used."));
237
238std::string getInstrProfSectionName(InstrProfSectKind IPSK,
239 Triple::ObjectFormatType OF,
240 bool AddSegmentInfo) {
241 std::string SectName;
242
243 if (OF == Triple::MachO && AddSegmentInfo)
244 SectName = InstrProfSectNamePrefix[IPSK];
245
246 if (OF == Triple::COFF)
247 SectName += InstrProfSectNameCoff[IPSK];
248 else
249 SectName += InstrProfSectNameCommon[IPSK];
250
251 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
252 SectName += ",regular,live_support";
253
254 return SectName;
255}
256
257std::string InstrProfError::message() const {
258 return getInstrProfErrString(Err, ErrMsg: Msg);
259}
260
261char InstrProfError::ID = 0;
262
263ProfOStream::ProfOStream(raw_fd_ostream &FD)
264 : IsFDOStream(true), OS(FD), LE(FD, llvm::endianness::little) {}
265
266ProfOStream::ProfOStream(raw_string_ostream &STR)
267 : IsFDOStream(false), OS(STR), LE(STR, llvm::endianness::little) {}
268
269uint64_t ProfOStream::tell() const { return OS.tell(); }
270void ProfOStream::write(uint64_t V) { LE.write<uint64_t>(Val: V); }
271void ProfOStream::write32(uint32_t V) { LE.write<uint32_t>(Val: V); }
272void ProfOStream::writeByte(uint8_t V) { LE.write<uint8_t>(Val: V); }
273
274void ProfOStream::patch(ArrayRef<PatchItem> P) {
275 using namespace support;
276
277 if (IsFDOStream) {
278 raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
279 const uint64_t LastPos = FDOStream.tell();
280 for (const auto &K : P) {
281 FDOStream.seek(off: K.Pos);
282 for (uint64_t Elem : K.D)
283 write(V: Elem);
284 }
285 // Reset the stream to the last position after patching so that users
286 // don't accidentally overwrite data. This makes it consistent with
287 // the string stream below which replaces the data directly.
288 FDOStream.seek(off: LastPos);
289 } else {
290 raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
291 std::string &Data = SOStream.str(); // with flush
292 for (const auto &K : P) {
293 for (int I = 0, E = K.D.size(); I != E; I++) {
294 uint64_t Bytes =
295 endian::byte_swap<uint64_t, llvm::endianness::little>(value: K.D[I]);
296 Data.replace(pos: K.Pos + I * sizeof(uint64_t), n1: sizeof(uint64_t),
297 s: (const char *)&Bytes, n2: sizeof(uint64_t));
298 }
299 }
300 }
301}
302
303std::string getPGOFuncName(StringRef Name, GlobalValue::LinkageTypes Linkage,
304 StringRef FileName,
305 uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
306 // Value names may be prefixed with a binary '1' to indicate
307 // that the backend should not modify the symbols due to any platform
308 // naming convention. Do not include that '1' in the PGO profile name.
309 if (Name[0] == '\1')
310 Name = Name.substr(Start: 1);
311
312 std::string NewName = std::string(Name);
313 if (llvm::GlobalValue::isLocalLinkage(Linkage)) {
314 // For local symbols, prepend the main file name to distinguish them.
315 // Do not include the full path in the file name since there's no guarantee
316 // that it will stay the same, e.g., if the files are checked out from
317 // version control in different locations.
318 if (FileName.empty())
319 NewName = NewName.insert(pos: 0, s: "<unknown>:");
320 else
321 NewName = NewName.insert(pos1: 0, str: FileName.str() + ":");
322 }
323 return NewName;
324}
325
326// Strip NumPrefix level of directory name from PathNameStr. If the number of
327// directory separators is less than NumPrefix, strip all the directories and
328// leave base file name only.
329static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
330 uint32_t Count = NumPrefix;
331 uint32_t Pos = 0, LastPos = 0;
332 for (const auto &CI : PathNameStr) {
333 ++Pos;
334 if (llvm::sys::path::is_separator(value: CI)) {
335 LastPos = Pos;
336 --Count;
337 }
338 if (Count == 0)
339 break;
340 }
341 return PathNameStr.substr(Start: LastPos);
342}
343
344static StringRef getStrippedSourceFileName(const GlobalObject &GO) {
345 StringRef FileName(GO.getParent()->getSourceFileName());
346 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
347 if (StripLevel < StaticFuncStripDirNamePrefix)
348 StripLevel = StaticFuncStripDirNamePrefix;
349 if (StripLevel)
350 FileName = stripDirPrefix(PathNameStr: FileName, NumPrefix: StripLevel);
351 return FileName;
352}
353
354// The PGO name has the format [<filepath>;]<mangled-name> where <filepath>; is
355// provided if linkage is local and is used to discriminate possibly identical
356// mangled names. ";" is used because it is unlikely to be found in either
357// <filepath> or <mangled-name>.
358//
359// Older compilers used getPGOFuncName() which has the format
360// [<filepath>:]<mangled-name>. This caused trouble for Objective-C functions
361// which commonly have :'s in their names. We still need to compute this name to
362// lookup functions from profiles built by older compilers.
363static std::string
364getIRPGONameForGlobalObject(const GlobalObject &GO,
365 GlobalValue::LinkageTypes Linkage,
366 StringRef FileName) {
367 return GlobalValue::getGlobalIdentifier(Name: GO.getName(), Linkage, FileName);
368}
369
370static std::optional<std::string> lookupPGONameFromMetadata(MDNode *MD) {
371 if (MD != nullptr) {
372 StringRef S = cast<MDString>(Val: MD->getOperand(I: 0))->getString();
373 return S.str();
374 }
375 return {};
376}
377
378// Returns the PGO object name. This function has some special handling
379// when called in LTO optimization. The following only applies when calling in
380// LTO passes (when \c InLTO is true): LTO's internalization privatizes many
381// global linkage symbols. This happens after value profile annotation, but
382// those internal linkage functions should not have a source prefix.
383// Additionally, for ThinLTO mode, exported internal functions are promoted
384// and renamed. We need to ensure that the original internal PGO name is
385// used when computing the GUID that is compared against the profiled GUIDs.
386// To differentiate compiler generated internal symbols from original ones,
387// PGOFuncName meta data are created and attached to the original internal
388// symbols in the value profile annotation step
389// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
390// data, its original linkage must be non-internal.
391static std::string getIRPGOObjectName(const GlobalObject &GO, bool InLTO,
392 MDNode *PGONameMetadata) {
393 if (!InLTO) {
394 auto FileName = getStrippedSourceFileName(GO);
395 return getIRPGONameForGlobalObject(GO, Linkage: GO.getLinkage(), FileName);
396 }
397
398 // In LTO mode (when InLTO is true), first check if there is a meta data.
399 if (auto IRPGOFuncName = lookupPGONameFromMetadata(MD: PGONameMetadata))
400 return *IRPGOFuncName;
401
402 // If there is no meta data, the function must be a global before the value
403 // profile annotation pass. Its current linkage may be internal if it is
404 // internalized in LTO mode.
405 return getIRPGONameForGlobalObject(GO, Linkage: GlobalValue::ExternalLinkage, FileName: "");
406}
407
408// Returns the IRPGO function name and does special handling when called
409// in LTO optimization. See the comments of `getIRPGOObjectName` for details.
410std::string getIRPGOFuncName(const Function &F, bool InLTO) {
411 return getIRPGOObjectName(GO: F, InLTO, PGONameMetadata: getPGOFuncNameMetadata(F));
412}
413
414// Please use getIRPGOFuncName for LLVM IR instrumentation. This function is
415// for front-end (Clang, etc) instrumentation.
416// The implementation is kept for profile matching from older profiles.
417// This is similar to `getIRPGOFuncName` except that this function calls
418// 'getPGOFuncName' to get a name and `getIRPGOFuncName` calls
419// 'getIRPGONameForGlobalObject'. See the difference between two callees in the
420// comments of `getIRPGONameForGlobalObject`.
421std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
422 if (!InLTO) {
423 auto FileName = getStrippedSourceFileName(GO: F);
424 return getPGOFuncName(Name: F.getName(), Linkage: F.getLinkage(), FileName, Version);
425 }
426
427 // In LTO mode (when InLTO is true), first check if there is a meta data.
428 if (auto PGOFuncName = lookupPGONameFromMetadata(MD: getPGOFuncNameMetadata(F)))
429 return *PGOFuncName;
430
431 // If there is no meta data, the function must be a global before the value
432 // profile annotation pass. Its current linkage may be internal if it is
433 // internalized in LTO mode.
434 return getPGOFuncName(Name: F.getName(), Linkage: GlobalValue::ExternalLinkage, FileName: "");
435}
436
437std::string getPGOName(const GlobalVariable &V, bool InLTO) {
438 // PGONameMetadata should be set by compiler at profile use time
439 // and read by symtab creation to look up symbols corresponding to
440 // a MD5 hash.
441 return getIRPGOObjectName(GO: V, InLTO, PGONameMetadata: V.getMetadata(Kind: getPGONameMetadataName()));
442}
443
444// See getIRPGOObjectName() for a discription of the format.
445std::pair<StringRef, StringRef> getParsedIRPGOName(StringRef IRPGOName) {
446 auto [FileName, MangledName] = IRPGOName.split(Separator: GlobalIdentifierDelimiter);
447 if (MangledName.empty())
448 return std::make_pair(x: StringRef(), y&: IRPGOName);
449 return std::make_pair(x&: FileName, y&: MangledName);
450}
451
452StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
453 if (FileName.empty())
454 return PGOFuncName;
455 // Drop the file name including ':' or ';'. See getIRPGONameForGlobalObject as
456 // well.
457 if (PGOFuncName.starts_with(Prefix: FileName))
458 PGOFuncName = PGOFuncName.drop_front(N: FileName.size() + 1);
459 return PGOFuncName;
460}
461
462// \p FuncName is the string used as profile lookup key for the function. A
463// symbol is created to hold the name. Return the legalized symbol name.
464std::string getPGOFuncNameVarName(StringRef FuncName,
465 GlobalValue::LinkageTypes Linkage) {
466 std::string VarName = std::string(getInstrProfNameVarPrefix());
467 VarName += FuncName;
468
469 if (!GlobalValue::isLocalLinkage(Linkage))
470 return VarName;
471
472 // Now fix up illegal chars in local VarName that may upset the assembler.
473 const char InvalidChars[] = "-:;<>/\"'";
474 size_t FoundPos = VarName.find_first_of(s: InvalidChars);
475 while (FoundPos != std::string::npos) {
476 VarName[FoundPos] = '_';
477 FoundPos = VarName.find_first_of(s: InvalidChars, pos: FoundPos + 1);
478 }
479 return VarName;
480}
481
482bool isGPUProfTarget(const Module &M) {
483 const Triple &T = M.getTargetTriple();
484 return T.isGPU();
485}
486
487void setPGOFuncVisibility(Module &M, GlobalVariable *FuncNameVar) {
488 // If the target is a GPU, make the symbol protected so it can
489 // be read from the host device
490 if (isGPUProfTarget(M))
491 FuncNameVar->setVisibility(GlobalValue::ProtectedVisibility);
492 // Hide the symbol so that we correctly get a copy for each executable.
493 else if (!GlobalValue::isLocalLinkage(Linkage: FuncNameVar->getLinkage()))
494 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
495}
496
497GlobalVariable *createPGOFuncNameVar(Module &M,
498 GlobalValue::LinkageTypes Linkage,
499 StringRef PGOFuncName) {
500 // Ensure profiling variables on GPU are visible to be read from host
501 if (isGPUProfTarget(M))
502 Linkage = GlobalValue::ExternalLinkage;
503 // We generally want to match the function's linkage, but available_externally
504 // and extern_weak both have the wrong semantics, and anything that doesn't
505 // need to link across compilation units doesn't need to be visible at all.
506 else if (Linkage == GlobalValue::ExternalWeakLinkage)
507 Linkage = GlobalValue::LinkOnceAnyLinkage;
508 else if (Linkage == GlobalValue::AvailableExternallyLinkage)
509 Linkage = GlobalValue::LinkOnceODRLinkage;
510 else if (Linkage == GlobalValue::InternalLinkage ||
511 Linkage == GlobalValue::ExternalLinkage)
512 Linkage = GlobalValue::PrivateLinkage;
513
514 auto *Value =
515 ConstantDataArray::getString(Context&: M.getContext(), Initializer: PGOFuncName, AddNull: false);
516 auto *FuncNameVar =
517 new GlobalVariable(M, Value->getType(), true, Linkage, Value,
518 getPGOFuncNameVarName(FuncName: PGOFuncName, Linkage));
519
520 setPGOFuncVisibility(M, FuncNameVar);
521 return FuncNameVar;
522}
523
524GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
525 return createPGOFuncNameVar(M&: *F.getParent(), Linkage: F.getLinkage(), PGOFuncName);
526}
527
528Error InstrProfSymtab::create(Module &M, bool InLTO, bool AddCanonical) {
529 for (Function &F : M) {
530 // Function may not have a name: like using asm("") to overwrite the name.
531 // Ignore in this case.
532 if (!F.hasName())
533 continue;
534 if (Error E = addFuncWithName(F, PGOFuncName: getIRPGOFuncName(F, InLTO), AddCanonical))
535 return E;
536 // Also use getPGOFuncName() so that we can find records from older profiles
537 if (Error E = addFuncWithName(F, PGOFuncName: getPGOFuncName(F, InLTO), AddCanonical))
538 return E;
539 }
540
541 for (GlobalVariable &G : M.globals()) {
542 if (!G.hasName() || !G.hasMetadata(KindID: LLVMContext::MD_type))
543 continue;
544 if (Error E = addVTableWithName(V&: G, PGOVTableName: getPGOName(V: G, InLTO)))
545 return E;
546 }
547
548 Sorted = false;
549 finalizeSymtab();
550 return Error::success();
551}
552
553Error InstrProfSymtab::addVTableWithName(GlobalVariable &VTable,
554 StringRef VTablePGOName) {
555 auto NameToGUIDMap = [&](StringRef Name) -> Error {
556 if (Error E = addSymbolName(SymbolName: Name))
557 return E;
558
559 bool Inserted = true;
560 std::tie(args: std::ignore, args&: Inserted) = MD5VTableMap.try_emplace(
561 Key: GlobalValue::getGUIDAssumingExternalLinkage(GlobalName: Name), Args: &VTable);
562 if (!Inserted)
563 LLVM_DEBUG(dbgs() << "GUID conflict within one module");
564 return Error::success();
565 };
566 if (Error E = NameToGUIDMap(VTablePGOName))
567 return E;
568
569 StringRef CanonicalName = getCanonicalName(PGOName: VTablePGOName);
570 if (CanonicalName != VTablePGOName)
571 return NameToGUIDMap(CanonicalName);
572
573 return Error::success();
574}
575
576Error readAndDecodeStrings(StringRef NameStrings,
577 std::function<Error(StringRef)> NameCallback) {
578 const uint8_t *P = NameStrings.bytes_begin();
579 const uint8_t *EndP = NameStrings.bytes_end();
580 while (P < EndP) {
581 uint32_t N;
582 uint64_t UncompressedSize = decodeULEB128(p: P, n: &N);
583 P += N;
584 uint64_t CompressedSize = decodeULEB128(p: P, n: &N);
585 P += N;
586 const bool IsCompressed = (CompressedSize != 0);
587 SmallVector<uint8_t, 128> UncompressedNameStrings;
588 StringRef NameStrings;
589 if (IsCompressed) {
590 if (!llvm::compression::zlib::isAvailable())
591 return make_error<InstrProfError>(Args: instrprof_error::zlib_unavailable);
592
593 if (Error E = compression::zlib::decompress(Input: ArrayRef(P, CompressedSize),
594 Output&: UncompressedNameStrings,
595 UncompressedSize)) {
596 consumeError(Err: std::move(E));
597 return make_error<InstrProfError>(Args: instrprof_error::uncompress_failed);
598 }
599 P += CompressedSize;
600 NameStrings = toStringRef(Input: UncompressedNameStrings);
601 } else {
602 NameStrings =
603 StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
604 P += UncompressedSize;
605 }
606 // Now parse the name strings.
607 SmallVector<StringRef, 0> Names;
608 NameStrings.split(A&: Names, Separator: getInstrProfNameSeparator());
609 for (StringRef &Name : Names)
610 if (Error E = NameCallback(Name))
611 return E;
612
613 while (P < EndP && *P == 0)
614 P++;
615 }
616 return Error::success();
617}
618
619Error InstrProfSymtab::create(StringRef NameStrings) {
620 return readAndDecodeStrings(NameStrings,
621 NameCallback: [&](StringRef S) { return addFuncName(FuncName: S); });
622}
623
624Error InstrProfSymtab::create(StringRef FuncNameStrings,
625 StringRef VTableNameStrings) {
626 if (Error E = readAndDecodeStrings(
627 NameStrings: FuncNameStrings, NameCallback: [&](StringRef S) { return addFuncName(FuncName: S); }))
628 return E;
629
630 return readAndDecodeStrings(NameStrings: VTableNameStrings,
631 NameCallback: [&](StringRef S) { return addVTableName(VTableName: S); });
632}
633
634Error InstrProfSymtab::initVTableNamesFromCompressedStrings(
635 StringRef CompressedVTableStrings) {
636 return readAndDecodeStrings(NameStrings: CompressedVTableStrings,
637 NameCallback: [&](StringRef S) { return addVTableName(VTableName: S); });
638}
639
640StringRef InstrProfSymtab::getCanonicalName(StringRef PGOName) {
641 // In ThinLTO, local function may have been promoted to global and have
642 // suffix ".llvm." added to the function name. We need to add the
643 // stripped function name to the symbol table so that we can find a match
644 // from profile.
645 //
646 // ".__uniq." suffix is used to differentiate internal linkage functions in
647 // different modules and should be kept. This is the only suffix with the
648 // pattern ".xxx" which is kept before matching, other suffixes similar as
649 // ".llvm." will be stripped.
650 const std::string UniqSuffix = ".__uniq.";
651 size_t Pos = PGOName.find(Str: UniqSuffix);
652 if (Pos != StringRef::npos)
653 Pos += UniqSuffix.length();
654 else
655 Pos = 0;
656
657 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise search '.' from
658 // the beginning.
659 Pos = PGOName.find(C: '.', From: Pos);
660 if (Pos != StringRef::npos && Pos != 0)
661 return PGOName.substr(Start: 0, N: Pos);
662
663 return PGOName;
664}
665
666Error InstrProfSymtab::addFuncWithName(Function &F, StringRef PGOFuncName,
667 bool AddCanonical) {
668 auto NameToGUIDMap = [&](StringRef Name) -> Error {
669 if (Error E = addFuncName(FuncName: Name))
670 return E;
671 MD5FuncMap.emplace_back(args: Function::getGUIDAssumingExternalLinkage(GlobalName: Name), args: &F);
672 return Error::success();
673 };
674 if (Error E = NameToGUIDMap(PGOFuncName))
675 return E;
676
677 if (!AddCanonical)
678 return Error::success();
679
680 StringRef CanonicalFuncName = getCanonicalName(PGOName: PGOFuncName);
681 if (CanonicalFuncName != PGOFuncName)
682 return NameToGUIDMap(CanonicalFuncName);
683
684 return Error::success();
685}
686
687uint64_t InstrProfSymtab::getVTableHashFromAddress(uint64_t Address) {
688 // Given a runtime address, look up the hash value in the interval map, and
689 // fallback to value 0 if a hash value is not found.
690 return VTableAddrMap.lookup(x: Address, NotFound: 0);
691}
692
693uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
694 finalizeSymtab();
695 auto It = partition_point(Range&: AddrToMD5Map, P: [=](std::pair<uint64_t, uint64_t> A) {
696 return A.first < Address;
697 });
698 // Raw function pointer collected by value profiler may be from
699 // external functions that are not instrumented. They won't have
700 // mapping data to be used by the deserializer. Force the value to
701 // be 0 in this case.
702 if (It != AddrToMD5Map.end() && It->first == Address)
703 return (uint64_t)It->second;
704 return 0;
705}
706
707void InstrProfSymtab::dumpNames(raw_ostream &OS) const {
708 SmallVector<StringRef, 0> Sorted(NameTab.keys());
709 llvm::sort(C&: Sorted);
710 for (StringRef S : Sorted)
711 OS << S << '\n';
712}
713
714Error collectGlobalObjectNameStrings(ArrayRef<std::string> NameStrs,
715 bool DoCompression, std::string &Result) {
716 assert(!NameStrs.empty() && "No name data to emit");
717
718 uint8_t Header[20], *P = Header;
719 std::string UncompressedNameStrings =
720 join(Begin: NameStrs.begin(), End: NameStrs.end(), Separator: getInstrProfNameSeparator());
721
722 assert(StringRef(UncompressedNameStrings)
723 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
724 "PGO name is invalid (contains separator token)");
725
726 unsigned EncLen = encodeULEB128(Value: UncompressedNameStrings.length(), p: P);
727 P += EncLen;
728
729 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
730 EncLen = encodeULEB128(Value: CompressedLen, p: P);
731 P += EncLen;
732 char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
733 unsigned HeaderLen = P - &Header[0];
734 Result.append(s: HeaderStr, n: HeaderLen);
735 Result += InputStr;
736 return Error::success();
737 };
738
739 if (!DoCompression) {
740 return WriteStringToResult(0, UncompressedNameStrings);
741 }
742
743 SmallVector<uint8_t, 128> CompressedNameStrings;
744 compression::zlib::compress(Input: arrayRefFromStringRef(Input: UncompressedNameStrings),
745 CompressedBuffer&: CompressedNameStrings,
746 Level: compression::zlib::BestSizeCompression);
747
748 return WriteStringToResult(CompressedNameStrings.size(),
749 toStringRef(Input: CompressedNameStrings));
750}
751
752StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
753 auto *Arr = cast<ConstantDataArray>(Val: NameVar->getInitializer());
754 StringRef NameStr =
755 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
756 return NameStr;
757}
758
759Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
760 std::string &Result, bool DoCompression) {
761 std::vector<std::string> NameStrs;
762 for (auto *NameVar : NameVars) {
763 NameStrs.push_back(x: std::string(getPGOFuncNameVarInitializer(NameVar)));
764 }
765 return collectGlobalObjectNameStrings(
766 NameStrs, DoCompression: compression::zlib::isAvailable() && DoCompression, Result);
767}
768
769Error collectVTableStrings(ArrayRef<GlobalVariable *> VTables,
770 std::string &Result, bool DoCompression) {
771 std::vector<std::string> VTableNameStrs;
772 for (auto *VTable : VTables)
773 VTableNameStrs.push_back(x: getPGOName(V: *VTable));
774 return collectGlobalObjectNameStrings(
775 NameStrs: VTableNameStrs, DoCompression: compression::zlib::isAvailable() && DoCompression,
776 Result);
777}
778
779void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
780 uint64_t FuncSum = 0;
781 Sum.NumEntries += Counts.size();
782 for (uint64_t Count : Counts)
783 FuncSum += Count;
784 Sum.CountSum += FuncSum;
785
786 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
787 uint64_t KindSum = 0;
788 uint32_t NumValueSites = getNumValueSites(ValueKind: VK);
789 for (size_t I = 0; I < NumValueSites; ++I) {
790 for (const auto &V : getValueArrayForSite(ValueKind: VK, Site: I))
791 KindSum += V.Count;
792 }
793 Sum.ValueCounts[VK] += KindSum;
794 }
795}
796
797void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
798 uint32_t ValueKind,
799 OverlapStats &Overlap,
800 OverlapStats &FuncLevelOverlap) {
801 this->sortByTargetValues();
802 Input.sortByTargetValues();
803 double Score = 0.0f, FuncLevelScore = 0.0f;
804 auto I = ValueData.begin();
805 auto IE = ValueData.end();
806 auto J = Input.ValueData.begin();
807 auto JE = Input.ValueData.end();
808 while (I != IE && J != JE) {
809 if (I->Value == J->Value) {
810 Score += OverlapStats::score(Val1: I->Count, Val2: J->Count,
811 Sum1: Overlap.Base.ValueCounts[ValueKind],
812 Sum2: Overlap.Test.ValueCounts[ValueKind]);
813 FuncLevelScore += OverlapStats::score(
814 Val1: I->Count, Val2: J->Count, Sum1: FuncLevelOverlap.Base.ValueCounts[ValueKind],
815 Sum2: FuncLevelOverlap.Test.ValueCounts[ValueKind]);
816 ++I;
817 } else if (I->Value < J->Value) {
818 ++I;
819 continue;
820 }
821 ++J;
822 }
823 Overlap.Overlap.ValueCounts[ValueKind] += Score;
824 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
825}
826
827// Return false on mismatch.
828void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
829 InstrProfRecord &Other,
830 OverlapStats &Overlap,
831 OverlapStats &FuncLevelOverlap) {
832 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
833 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
834 if (!ThisNumValueSites)
835 return;
836
837 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
838 getOrCreateValueSitesForKind(ValueKind);
839 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
840 Other.getValueSitesForKind(ValueKind);
841 for (uint32_t I = 0; I < ThisNumValueSites; I++)
842 ThisSiteRecords[I].overlap(Input&: OtherSiteRecords[I], ValueKind, Overlap,
843 FuncLevelOverlap);
844}
845
846void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
847 OverlapStats &FuncLevelOverlap,
848 uint64_t ValueCutoff) {
849 // FuncLevel CountSum for other should already computed and nonzero.
850 assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
851 accumulateCounts(Sum&: FuncLevelOverlap.Base);
852 bool Mismatch = (Counts.size() != Other.Counts.size());
853
854 // Check if the value profiles mismatch.
855 if (!Mismatch) {
856 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
857 uint32_t ThisNumValueSites = getNumValueSites(ValueKind: Kind);
858 uint32_t OtherNumValueSites = Other.getNumValueSites(ValueKind: Kind);
859 if (ThisNumValueSites != OtherNumValueSites) {
860 Mismatch = true;
861 break;
862 }
863 }
864 }
865 if (Mismatch) {
866 Overlap.addOneMismatch(MismatchFunc: FuncLevelOverlap.Test);
867 return;
868 }
869
870 // Compute overlap for value counts.
871 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
872 overlapValueProfData(ValueKind: Kind, Other, Overlap, FuncLevelOverlap);
873
874 double Score = 0.0;
875 uint64_t MaxCount = 0;
876 // Compute overlap for edge counts.
877 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
878 Score += OverlapStats::score(Val1: Counts[I], Val2: Other.Counts[I],
879 Sum1: Overlap.Base.CountSum, Sum2: Overlap.Test.CountSum);
880 MaxCount = std::max(a: Other.Counts[I], b: MaxCount);
881 }
882 Overlap.Overlap.CountSum += Score;
883 Overlap.Overlap.NumEntries += 1;
884
885 if (MaxCount >= ValueCutoff) {
886 double FuncScore = 0.0;
887 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
888 FuncScore += OverlapStats::score(Val1: Counts[I], Val2: Other.Counts[I],
889 Sum1: FuncLevelOverlap.Base.CountSum,
890 Sum2: FuncLevelOverlap.Test.CountSum);
891 FuncLevelOverlap.Overlap.CountSum = FuncScore;
892 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
893 FuncLevelOverlap.Valid = true;
894 }
895}
896
897void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
898 uint64_t Weight,
899 function_ref<void(instrprof_error)> Warn) {
900 this->sortByTargetValues();
901 Input.sortByTargetValues();
902 auto I = ValueData.begin();
903 auto IE = ValueData.end();
904 std::vector<InstrProfValueData> Merged;
905 Merged.reserve(n: std::max(a: ValueData.size(), b: Input.ValueData.size()));
906 for (const InstrProfValueData &J : Input.ValueData) {
907 while (I != IE && I->Value < J.Value) {
908 Merged.push_back(x: *I);
909 ++I;
910 }
911 if (I != IE && I->Value == J.Value) {
912 bool Overflowed;
913 I->Count = SaturatingMultiplyAdd(X: J.Count, Y: Weight, A: I->Count, ResultOverflowed: &Overflowed);
914 if (Overflowed)
915 Warn(instrprof_error::counter_overflow);
916 Merged.push_back(x: *I);
917 ++I;
918 continue;
919 }
920 Merged.push_back(x: J);
921 }
922 Merged.insert(position: Merged.end(), first: I, last: IE);
923 ValueData = std::move(Merged);
924}
925
926void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
927 function_ref<void(instrprof_error)> Warn) {
928 for (InstrProfValueData &I : ValueData) {
929 bool Overflowed;
930 I.Count = SaturatingMultiply(X: I.Count, Y: N, ResultOverflowed: &Overflowed) / D;
931 if (Overflowed)
932 Warn(instrprof_error::counter_overflow);
933 }
934}
935
936// Merge Value Profile data from Src record to this record for ValueKind.
937// Scale merged value counts by \p Weight.
938void InstrProfRecord::mergeValueProfData(
939 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
940 function_ref<void(instrprof_error)> Warn) {
941 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
942 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
943 if (ThisNumValueSites != OtherNumValueSites) {
944 Warn(instrprof_error::value_site_count_mismatch);
945 return;
946 }
947 if (!ThisNumValueSites)
948 return;
949 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
950 getOrCreateValueSitesForKind(ValueKind);
951 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
952 Src.getValueSitesForKind(ValueKind);
953 for (uint32_t I = 0; I < ThisNumValueSites; I++)
954 ThisSiteRecords[I].merge(Input&: OtherSiteRecords[I], Weight, Warn);
955}
956
957void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
958 function_ref<void(instrprof_error)> Warn) {
959 // If the number of counters doesn't match we either have bad data
960 // or a hash collision.
961 if (Counts.size() != Other.Counts.size()) {
962 Warn(instrprof_error::count_mismatch);
963 return;
964 }
965
966 // Special handling of the first count as the PseudoCount.
967 CountPseudoKind OtherKind = Other.getCountPseudoKind();
968 CountPseudoKind ThisKind = getCountPseudoKind();
969 if (OtherKind != NotPseudo || ThisKind != NotPseudo) {
970 // We don't allow the merge of a profile with pseudo counts and
971 // a normal profile (i.e. without pesudo counts).
972 // Profile supplimenation should be done after the profile merge.
973 if (OtherKind == NotPseudo || ThisKind == NotPseudo) {
974 Warn(instrprof_error::count_mismatch);
975 return;
976 }
977 if (OtherKind == PseudoHot || ThisKind == PseudoHot)
978 setPseudoCount(PseudoHot);
979 else
980 setPseudoCount(PseudoWarm);
981 return;
982 }
983
984 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
985 bool Overflowed;
986 uint64_t Value =
987 SaturatingMultiplyAdd(X: Other.Counts[I], Y: Weight, A: Counts[I], ResultOverflowed: &Overflowed);
988 if (Value > getInstrMaxCountValue()) {
989 Value = getInstrMaxCountValue();
990 Overflowed = true;
991 }
992 Counts[I] = Value;
993 if (Overflowed)
994 Warn(instrprof_error::counter_overflow);
995 }
996
997 // If the number of bitmap bytes doesn't match we either have bad data
998 // or a hash collision.
999 if (BitmapBytes.size() != Other.BitmapBytes.size()) {
1000 Warn(instrprof_error::bitmap_mismatch);
1001 return;
1002 }
1003
1004 // Bitmap bytes are merged by simply ORing them together.
1005 for (size_t I = 0, E = Other.BitmapBytes.size(); I < E; ++I) {
1006 BitmapBytes[I] = Other.BitmapBytes[I] | BitmapBytes[I];
1007 }
1008
1009 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1010 mergeValueProfData(ValueKind: Kind, Src&: Other, Weight, Warn);
1011}
1012
1013void InstrProfRecord::scaleValueProfData(
1014 uint32_t ValueKind, uint64_t N, uint64_t D,
1015 function_ref<void(instrprof_error)> Warn) {
1016 for (auto &R : getValueSitesForKind(ValueKind))
1017 R.scale(N, D, Warn);
1018}
1019
1020void InstrProfRecord::scale(uint64_t N, uint64_t D,
1021 function_ref<void(instrprof_error)> Warn) {
1022 assert(D != 0 && "D cannot be 0");
1023 for (auto &Count : this->Counts) {
1024 bool Overflowed;
1025 Count = SaturatingMultiply(X: Count, Y: N, ResultOverflowed: &Overflowed) / D;
1026 if (Count > getInstrMaxCountValue()) {
1027 Count = getInstrMaxCountValue();
1028 Overflowed = true;
1029 }
1030 if (Overflowed)
1031 Warn(instrprof_error::counter_overflow);
1032 }
1033 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1034 scaleValueProfData(ValueKind: Kind, N, D, Warn);
1035}
1036
1037// Map indirect call target name hash to name string.
1038uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
1039 InstrProfSymtab *SymTab) {
1040 if (!SymTab)
1041 return Value;
1042
1043 if (ValueKind == IPVK_IndirectCallTarget)
1044 return SymTab->getFunctionHashFromAddress(Address: Value);
1045
1046 if (ValueKind == IPVK_VTableTarget)
1047 return SymTab->getVTableHashFromAddress(Address: Value);
1048
1049 return Value;
1050}
1051
1052void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
1053 ArrayRef<InstrProfValueData> VData,
1054 InstrProfSymtab *ValueMap) {
1055 // Remap values.
1056 std::vector<InstrProfValueData> RemappedVD;
1057 RemappedVD.reserve(n: VData.size());
1058 for (const auto &V : VData) {
1059 uint64_t NewValue = remapValue(Value: V.Value, ValueKind, SymTab: ValueMap);
1060 RemappedVD.push_back(x: {.Value: NewValue, .Count: V.Count});
1061 }
1062
1063 std::vector<InstrProfValueSiteRecord> &ValueSites =
1064 getOrCreateValueSitesForKind(ValueKind);
1065 assert(ValueSites.size() == Site);
1066
1067 // Add a new value site with remapped value profiling data.
1068 ValueSites.emplace_back(args: std::move(RemappedVD));
1069}
1070
1071void TemporalProfTraceTy::createBPFunctionNodes(
1072 ArrayRef<TemporalProfTraceTy> Traces, std::vector<BPFunctionNode> &Nodes,
1073 bool RemoveOutlierUNs) {
1074 using IDT = BPFunctionNode::IDT;
1075 using UtilityNodeT = BPFunctionNode::UtilityNodeT;
1076 UtilityNodeT MaxUN = 0;
1077 DenseMap<IDT, size_t> IdToFirstTimestamp;
1078 DenseMap<IDT, UtilityNodeT> IdToFirstUN;
1079 DenseMap<IDT, SmallVector<UtilityNodeT>> IdToUNs;
1080 // TODO: We need to use the Trace.Weight field to give more weight to more
1081 // important utilities
1082 for (auto &Trace : Traces) {
1083 size_t CutoffTimestamp = 1;
1084 for (size_t Timestamp = 0; Timestamp < Trace.FunctionNameRefs.size();
1085 Timestamp++) {
1086 IDT Id = Trace.FunctionNameRefs[Timestamp];
1087 auto [It, WasInserted] = IdToFirstTimestamp.try_emplace(Key: Id, Args&: Timestamp);
1088 if (!WasInserted)
1089 It->getSecond() = std::min<size_t>(a: It->getSecond(), b: Timestamp);
1090 if (Timestamp >= CutoffTimestamp) {
1091 ++MaxUN;
1092 CutoffTimestamp = 2 * Timestamp;
1093 }
1094 IdToFirstUN.try_emplace(Key: Id, Args&: MaxUN);
1095 }
1096 for (auto &[Id, FirstUN] : IdToFirstUN)
1097 for (auto UN = FirstUN; UN <= MaxUN; ++UN)
1098 IdToUNs[Id].push_back(Elt: UN);
1099 ++MaxUN;
1100 IdToFirstUN.clear();
1101 }
1102
1103 if (RemoveOutlierUNs) {
1104 DenseMap<UtilityNodeT, unsigned> UNFrequency;
1105 for (auto &[Id, UNs] : IdToUNs)
1106 for (auto &UN : UNs)
1107 ++UNFrequency[UN];
1108 // Filter out utility nodes that are too infrequent or too prevalent to make
1109 // BalancedPartitioning more effective.
1110 for (auto &[Id, UNs] : IdToUNs)
1111 llvm::erase_if(C&: UNs, P: [&](auto &UN) {
1112 unsigned Freq = UNFrequency[UN];
1113 return Freq <= 1 || 2 * Freq > IdToUNs.size();
1114 });
1115 }
1116
1117 for (auto &[Id, UNs] : IdToUNs)
1118 Nodes.emplace_back(args&: Id, args&: UNs);
1119
1120 // Since BalancedPartitioning is sensitive to the initial order, we explicitly
1121 // order nodes by their earliest timestamp.
1122 llvm::sort(C&: Nodes, Comp: [&](auto &L, auto &R) {
1123 return std::make_pair(IdToFirstTimestamp[L.Id], L.Id) <
1124 std::make_pair(IdToFirstTimestamp[R.Id], R.Id);
1125 });
1126}
1127
1128#define INSTR_PROF_COMMON_API_IMPL
1129#include "llvm/ProfileData/InstrProfData.inc"
1130
1131/*!
1132 * ValueProfRecordClosure Interface implementation for InstrProfRecord
1133 * class. These C wrappers are used as adaptors so that C++ code can be
1134 * invoked as callbacks.
1135 */
1136uint32_t getNumValueKindsInstrProf(const void *Record) {
1137 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
1138}
1139
1140uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
1141 return reinterpret_cast<const InstrProfRecord *>(Record)
1142 ->getNumValueSites(ValueKind: VKind);
1143}
1144
1145uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
1146 return reinterpret_cast<const InstrProfRecord *>(Record)
1147 ->getNumValueData(ValueKind: VKind);
1148}
1149
1150uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
1151 uint32_t S) {
1152 const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
1153 return IPR->getValueArrayForSite(ValueKind: VK, Site: S).size();
1154}
1155
1156void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
1157 uint32_t K, uint32_t S) {
1158 const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
1159 llvm::copy(Range: IPR->getValueArrayForSite(ValueKind: K, Site: S), Out: Dst);
1160}
1161
1162ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
1163 ValueProfData *VD =
1164 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
1165 memset(s: VD, c: 0, n: TotalSizeInBytes);
1166 return VD;
1167}
1168
1169static ValueProfRecordClosure InstrProfRecordClosure = {
1170 .Record: nullptr,
1171 .GetNumValueKinds: getNumValueKindsInstrProf,
1172 .GetNumValueSites: getNumValueSitesInstrProf,
1173 .GetNumValueData: getNumValueDataInstrProf,
1174 .GetNumValueDataForSite: getNumValueDataForSiteInstrProf,
1175 .RemapValueData: nullptr,
1176 .GetValueForSite: getValueForSiteInstrProf,
1177 .AllocValueProfData: allocValueProfDataInstrProf};
1178
1179// Wrapper implementation using the closure mechanism.
1180uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
1181 auto Closure = InstrProfRecordClosure;
1182 Closure.Record = &Record;
1183 return getValueProfDataSize(Closure: &Closure);
1184}
1185
1186// Wrapper implementation using the closure mechanism.
1187std::unique_ptr<ValueProfData>
1188ValueProfData::serializeFrom(const InstrProfRecord &Record) {
1189 InstrProfRecordClosure.Record = &Record;
1190
1191 std::unique_ptr<ValueProfData> VPD(
1192 serializeValueProfDataFrom(Closure: &InstrProfRecordClosure, DstData: nullptr));
1193 return VPD;
1194}
1195
1196void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
1197 InstrProfSymtab *SymTab) {
1198 Record.reserveSites(ValueKind: Kind, NumValueSites);
1199
1200 InstrProfValueData *ValueData = getValueProfRecordValueData(This: this);
1201 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
1202 uint8_t ValueDataCount = this->SiteCountArray[VSite];
1203 ArrayRef<InstrProfValueData> VDs(ValueData, ValueDataCount);
1204 Record.addValueData(ValueKind: Kind, Site: VSite, VData: VDs, ValueMap: SymTab);
1205 ValueData += ValueDataCount;
1206 }
1207}
1208
1209// For writing/serializing, Old is the host endianness, and New is
1210// byte order intended on disk. For Reading/deserialization, Old
1211// is the on-disk source endianness, and New is the host endianness.
1212void ValueProfRecord::swapBytes(llvm::endianness Old, llvm::endianness New) {
1213 using namespace support;
1214
1215 if (Old == New)
1216 return;
1217
1218 if (llvm::endianness::native != Old) {
1219 sys::swapByteOrder<uint32_t>(Value&: NumValueSites);
1220 sys::swapByteOrder<uint32_t>(Value&: Kind);
1221 }
1222 uint32_t ND = getValueProfRecordNumValueData(This: this);
1223 InstrProfValueData *VD = getValueProfRecordValueData(This: this);
1224
1225 // No need to swap byte array: SiteCountArrray.
1226 for (uint32_t I = 0; I < ND; I++) {
1227 sys::swapByteOrder<uint64_t>(Value&: VD[I].Value);
1228 sys::swapByteOrder<uint64_t>(Value&: VD[I].Count);
1229 }
1230 if (llvm::endianness::native == Old) {
1231 sys::swapByteOrder<uint32_t>(Value&: NumValueSites);
1232 sys::swapByteOrder<uint32_t>(Value&: Kind);
1233 }
1234}
1235
1236void ValueProfData::deserializeTo(InstrProfRecord &Record,
1237 InstrProfSymtab *SymTab) {
1238 if (NumValueKinds == 0)
1239 return;
1240
1241 ValueProfRecord *VR = getFirstValueProfRecord(This: this);
1242 for (uint32_t K = 0; K < NumValueKinds; K++) {
1243 VR->deserializeTo(Record, SymTab);
1244 VR = getValueProfRecordNext(This: VR);
1245 }
1246}
1247
1248static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
1249 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
1250 ValueProfData());
1251}
1252
1253Error ValueProfData::checkIntegrity() {
1254 if (NumValueKinds > IPVK_Last + 1)
1255 return make_error<InstrProfError>(
1256 Args: instrprof_error::malformed, Args: "number of value profile kinds is invalid");
1257 // Total size needs to be multiple of quadword size.
1258 if (TotalSize % sizeof(uint64_t))
1259 return make_error<InstrProfError>(
1260 Args: instrprof_error::malformed, Args: "total size is not multiples of quardword");
1261
1262 ValueProfRecord *VR = getFirstValueProfRecord(This: this);
1263 for (uint32_t K = 0; K < this->NumValueKinds; K++) {
1264 if (VR->Kind > IPVK_Last)
1265 return make_error<InstrProfError>(Args: instrprof_error::malformed,
1266 Args: "value kind is invalid");
1267 VR = getValueProfRecordNext(This: VR);
1268 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
1269 return make_error<InstrProfError>(
1270 Args: instrprof_error::malformed,
1271 Args: "value profile address is greater than total size");
1272 }
1273 return Error::success();
1274}
1275
1276Expected<std::unique_ptr<ValueProfData>>
1277ValueProfData::getValueProfData(const unsigned char *D,
1278 const unsigned char *const BufferEnd,
1279 llvm::endianness Endianness) {
1280 using namespace support;
1281
1282 if (D + sizeof(ValueProfData) > BufferEnd)
1283 return make_error<InstrProfError>(Args: instrprof_error::truncated);
1284
1285 const unsigned char *Header = D;
1286 uint32_t TotalSize = endian::readNext<uint32_t>(memory&: Header, endian: Endianness);
1287
1288 if (D + TotalSize > BufferEnd)
1289 return make_error<InstrProfError>(Args: instrprof_error::too_large);
1290
1291 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
1292 memcpy(dest: VPD.get(), src: D, n: TotalSize);
1293 // Byte swap.
1294 VPD->swapBytesToHost(Endianness);
1295
1296 Error E = VPD->checkIntegrity();
1297 if (E)
1298 return std::move(E);
1299
1300 return std::move(VPD);
1301}
1302
1303void ValueProfData::swapBytesToHost(llvm::endianness Endianness) {
1304 using namespace support;
1305
1306 if (Endianness == llvm::endianness::native)
1307 return;
1308
1309 sys::swapByteOrder<uint32_t>(Value&: TotalSize);
1310 sys::swapByteOrder<uint32_t>(Value&: NumValueKinds);
1311
1312 ValueProfRecord *VR = getFirstValueProfRecord(This: this);
1313 for (uint32_t K = 0; K < NumValueKinds; K++) {
1314 VR->swapBytes(Old: Endianness, New: llvm::endianness::native);
1315 VR = getValueProfRecordNext(This: VR);
1316 }
1317}
1318
1319void ValueProfData::swapBytesFromHost(llvm::endianness Endianness) {
1320 using namespace support;
1321
1322 if (Endianness == llvm::endianness::native)
1323 return;
1324
1325 ValueProfRecord *VR = getFirstValueProfRecord(This: this);
1326 for (uint32_t K = 0; K < NumValueKinds; K++) {
1327 ValueProfRecord *NVR = getValueProfRecordNext(This: VR);
1328 VR->swapBytes(Old: llvm::endianness::native, New: Endianness);
1329 VR = NVR;
1330 }
1331 sys::swapByteOrder<uint32_t>(Value&: TotalSize);
1332 sys::swapByteOrder<uint32_t>(Value&: NumValueKinds);
1333}
1334
1335void annotateValueSite(Module &M, Instruction &Inst,
1336 const InstrProfRecord &InstrProfR,
1337 InstrProfValueKind ValueKind, uint32_t SiteIdx,
1338 uint32_t MaxMDCount) {
1339 auto VDs = InstrProfR.getValueArrayForSite(ValueKind, Site: SiteIdx);
1340 if (VDs.empty())
1341 return;
1342 uint64_t Sum = 0;
1343 for (const InstrProfValueData &V : VDs)
1344 Sum = SaturatingAdd(X: Sum, Y: V.Count);
1345 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
1346}
1347
1348void annotateValueSite(Module &M, Instruction &Inst,
1349 ArrayRef<InstrProfValueData> VDs,
1350 uint64_t Sum, InstrProfValueKind ValueKind,
1351 uint32_t MaxMDCount) {
1352 if (VDs.empty())
1353 return;
1354 LLVMContext &Ctx = M.getContext();
1355 MDBuilder MDHelper(Ctx);
1356 SmallVector<Metadata *, 3> Vals;
1357 // Tag
1358 Vals.push_back(Elt: MDHelper.createString(Str: MDProfLabels::ValueProfile));
1359 // Value Kind
1360 Vals.push_back(Elt: MDHelper.createConstant(
1361 C: ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: ValueKind)));
1362 // Total Count
1363 Vals.push_back(
1364 Elt: MDHelper.createConstant(C: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: Sum)));
1365
1366 // Value Profile Data
1367 uint32_t MDCount = MaxMDCount;
1368 for (const auto &VD : VDs) {
1369 Vals.push_back(Elt: MDHelper.createConstant(
1370 C: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: VD.Value)));
1371 Vals.push_back(Elt: MDHelper.createConstant(
1372 C: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: VD.Count)));
1373 if (--MDCount == 0)
1374 break;
1375 }
1376 Inst.setMetadata(KindID: LLVMContext::MD_prof, Node: MDNode::get(Context&: Ctx, MDs: Vals));
1377}
1378
1379MDNode *mayHaveValueProfileOfKind(const Instruction &Inst,
1380 InstrProfValueKind ValueKind) {
1381 MDNode *MD = Inst.getMetadata(KindID: LLVMContext::MD_prof);
1382 if (!MD)
1383 return nullptr;
1384
1385 if (MD->getNumOperands() < 5)
1386 return nullptr;
1387
1388 MDString *Tag = cast<MDString>(Val: MD->getOperand(I: 0));
1389 if (!Tag || Tag->getString() != MDProfLabels::ValueProfile)
1390 return nullptr;
1391
1392 // Now check kind:
1393 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: 1));
1394 if (!KindInt)
1395 return nullptr;
1396 if (KindInt->getZExtValue() != ValueKind)
1397 return nullptr;
1398
1399 return MD;
1400}
1401
1402SmallVector<InstrProfValueData, 4>
1403getValueProfDataFromInst(const Instruction &Inst, InstrProfValueKind ValueKind,
1404 uint32_t MaxNumValueData, uint64_t &TotalC,
1405 bool GetNoICPValue) {
1406 // Four inline elements seem to work well in practice. With MaxNumValueData,
1407 // this array won't grow very big anyway.
1408 SmallVector<InstrProfValueData, 4> ValueData;
1409 MDNode *MD = mayHaveValueProfileOfKind(Inst, ValueKind);
1410 if (!MD)
1411 return ValueData;
1412 const unsigned NOps = MD->getNumOperands();
1413 // Get total count
1414 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: 2));
1415 if (!TotalCInt)
1416 return ValueData;
1417 TotalC = TotalCInt->getZExtValue();
1418
1419 ValueData.reserve(N: (NOps - 3) / 2);
1420 for (unsigned I = 3; I < NOps; I += 2) {
1421 if (ValueData.size() >= MaxNumValueData)
1422 break;
1423 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I));
1424 ConstantInt *Count =
1425 mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: I + 1));
1426 if (!Value || !Count) {
1427 ValueData.clear();
1428 return ValueData;
1429 }
1430 uint64_t CntValue = Count->getZExtValue();
1431 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM))
1432 continue;
1433 InstrProfValueData V;
1434 V.Value = Value->getZExtValue();
1435 V.Count = CntValue;
1436 ValueData.push_back(Elt: V);
1437 }
1438 return ValueData;
1439}
1440
1441MDNode *getPGOFuncNameMetadata(const Function &F) {
1442 return F.getMetadata(Kind: getPGOFuncNameMetadataName());
1443}
1444
1445static void createPGONameMetadata(GlobalObject &GO, StringRef MetadataName,
1446 StringRef PGOName) {
1447 // Only for internal linkage functions or global variables. The name is not
1448 // the same as PGO name for these global objects.
1449 if (GO.getName() == PGOName)
1450 return;
1451
1452 // Don't create duplicated metadata.
1453 if (GO.getMetadata(Kind: MetadataName))
1454 return;
1455
1456 LLVMContext &C = GO.getContext();
1457 MDNode *N = MDNode::get(Context&: C, MDs: MDString::get(Context&: C, Str: PGOName));
1458 GO.setMetadata(Kind: MetadataName, Node: N);
1459}
1460
1461void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1462 return createPGONameMetadata(GO&: F, MetadataName: getPGOFuncNameMetadataName(), PGOName: PGOFuncName);
1463}
1464
1465void createPGONameMetadata(GlobalObject &GO, StringRef PGOName) {
1466 return createPGONameMetadata(GO, MetadataName: getPGONameMetadataName(), PGOName);
1467}
1468
1469bool needsComdatForCounter(const GlobalObject &GO, const Module &M) {
1470 if (GO.hasComdat())
1471 return true;
1472
1473 if (!M.getTargetTriple().supportsCOMDAT())
1474 return false;
1475
1476 // See createPGOFuncNameVar for more details. To avoid link errors, profile
1477 // counters for function with available_externally linkage needs to be changed
1478 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1479 // created. Without using comdat, duplicate entries won't be removed by the
1480 // linker leading to increased data segement size and raw profile size. Even
1481 // worse, since the referenced counter from profile per-function data object
1482 // will be resolved to the common strong definition, the profile counts for
1483 // available_externally functions will end up being duplicated in raw profile
1484 // data. This can result in distorted profile as the counts of those dups
1485 // will be accumulated by the profile merger.
1486 GlobalValue::LinkageTypes Linkage = GO.getLinkage();
1487 if (Linkage != GlobalValue::ExternalWeakLinkage &&
1488 Linkage != GlobalValue::AvailableExternallyLinkage)
1489 return false;
1490
1491 return true;
1492}
1493
1494// Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1495bool isIRPGOFlagSet(const Module *M) {
1496 const GlobalVariable *IRInstrVar =
1497 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1498 if (!IRInstrVar || IRInstrVar->hasLocalLinkage())
1499 return false;
1500
1501 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only
1502 // have the decl.
1503 if (IRInstrVar->isDeclaration())
1504 return true;
1505
1506 // Check if the flag is set.
1507 if (!IRInstrVar->hasInitializer())
1508 return false;
1509
1510 auto *InitVal = dyn_cast_or_null<ConstantInt>(Val: IRInstrVar->getInitializer());
1511 if (!InitVal)
1512 return false;
1513 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
1514}
1515
1516// Check if we can safely rename this Comdat function.
1517bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1518 if (F.getName().empty())
1519 return false;
1520 if (!needsComdatForCounter(GO: F, M: *(F.getParent())))
1521 return false;
1522 // Unsafe to rename the address-taken function (which can be used in
1523 // function comparison).
1524 if (CheckAddressTaken && F.hasAddressTaken())
1525 return false;
1526 // Only safe to do if this function may be discarded if it is not used
1527 // in the compilation unit.
1528 if (!GlobalValue::isDiscardableIfUnused(Linkage: F.getLinkage()))
1529 return false;
1530
1531 // For AvailableExternallyLinkage functions.
1532 if (!F.hasComdat()) {
1533 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1534 return true;
1535 }
1536 return true;
1537}
1538
1539// Create the variable for the profile file name.
1540void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1541 if (InstrProfileOutput.empty())
1542 return;
1543 Constant *ProfileNameConst =
1544 ConstantDataArray::getString(Context&: M.getContext(), Initializer: InstrProfileOutput, AddNull: true);
1545 GlobalVariable *ProfileNameVar = new GlobalVariable(
1546 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1547 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1548 ProfileNameVar->setVisibility(GlobalValue::HiddenVisibility);
1549 Triple TT(M.getTargetTriple());
1550 if (TT.supportsCOMDAT()) {
1551 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1552 ProfileNameVar->setComdat(M.getOrInsertComdat(
1553 Name: StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1554 }
1555}
1556
1557Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
1558 const std::string &TestFilename,
1559 bool IsCS) {
1560 auto GetProfileSum = [IsCS](const std::string &Filename,
1561 CountSumOrPercent &Sum) -> Error {
1562 // This function is only used from llvm-profdata that doesn't use any kind
1563 // of VFS. Just create a default RealFileSystem to read profiles.
1564 auto FS = vfs::getRealFileSystem();
1565 auto ReaderOrErr = InstrProfReader::create(Path: Filename, FS&: *FS);
1566 if (Error E = ReaderOrErr.takeError()) {
1567 return E;
1568 }
1569 auto Reader = std::move(ReaderOrErr.get());
1570 Reader->accumulateCounts(Sum, IsCS);
1571 return Error::success();
1572 };
1573 auto Ret = GetProfileSum(BaseFilename, Base);
1574 if (Ret)
1575 return Ret;
1576 Ret = GetProfileSum(TestFilename, Test);
1577 if (Ret)
1578 return Ret;
1579 this->BaseFilename = &BaseFilename;
1580 this->TestFilename = &TestFilename;
1581 Valid = true;
1582 return Error::success();
1583}
1584
1585void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1586 Mismatch.NumEntries += 1;
1587 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1588 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1589 if (Test.ValueCounts[I] >= 1.0f)
1590 Mismatch.ValueCounts[I] +=
1591 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1592 }
1593}
1594
1595void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1596 Unique.NumEntries += 1;
1597 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1598 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1599 if (Test.ValueCounts[I] >= 1.0f)
1600 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1601 }
1602}
1603
1604void OverlapStats::dump(raw_fd_ostream &OS) const {
1605 if (!Valid)
1606 return;
1607
1608 const char *EntryName =
1609 (Level == ProgramLevel ? "functions" : "edge counters");
1610 if (Level == ProgramLevel) {
1611 OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1612 << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1613 } else {
1614 OS << "Function level:\n"
1615 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1616 }
1617
1618 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1619 if (Mismatch.NumEntries)
1620 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1621 << "\n";
1622 if (Unique.NumEntries)
1623 OS << " # of " << EntryName
1624 << " only in test_profile: " << Unique.NumEntries << "\n";
1625
1626 OS << " Edge profile overlap: " << format(Fmt: "%.3f%%", Vals: Overlap.CountSum * 100)
1627 << "\n";
1628 if (Mismatch.NumEntries)
1629 OS << " Mismatched count percentage (Edge): "
1630 << format(Fmt: "%.3f%%", Vals: Mismatch.CountSum * 100) << "\n";
1631 if (Unique.NumEntries)
1632 OS << " Percentage of Edge profile only in test_profile: "
1633 << format(Fmt: "%.3f%%", Vals: Unique.CountSum * 100) << "\n";
1634 OS << " Edge profile base count sum: " << format(Fmt: "%.0f", Vals: Base.CountSum)
1635 << "\n"
1636 << " Edge profile test count sum: " << format(Fmt: "%.0f", Vals: Test.CountSum)
1637 << "\n";
1638
1639 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1640 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1641 continue;
1642 char ProfileKindName[20] = {0};
1643 switch (I) {
1644 case IPVK_IndirectCallTarget:
1645 strncpy(dest: ProfileKindName, src: "IndirectCall", n: 19);
1646 break;
1647 case IPVK_MemOPSize:
1648 strncpy(dest: ProfileKindName, src: "MemOP", n: 19);
1649 break;
1650 case IPVK_VTableTarget:
1651 strncpy(dest: ProfileKindName, src: "VTable", n: 19);
1652 break;
1653 default:
1654 snprintf(s: ProfileKindName, maxlen: 19, format: "VP[%d]", I);
1655 break;
1656 }
1657 OS << " " << ProfileKindName
1658 << " profile overlap: " << format(Fmt: "%.3f%%", Vals: Overlap.ValueCounts[I] * 100)
1659 << "\n";
1660 if (Mismatch.NumEntries)
1661 OS << " Mismatched count percentage (" << ProfileKindName
1662 << "): " << format(Fmt: "%.3f%%", Vals: Mismatch.ValueCounts[I] * 100) << "\n";
1663 if (Unique.NumEntries)
1664 OS << " Percentage of " << ProfileKindName
1665 << " profile only in test_profile: "
1666 << format(Fmt: "%.3f%%", Vals: Unique.ValueCounts[I] * 100) << "\n";
1667 OS << " " << ProfileKindName
1668 << " profile base count sum: " << format(Fmt: "%.0f", Vals: Base.ValueCounts[I])
1669 << "\n"
1670 << " " << ProfileKindName
1671 << " profile test count sum: " << format(Fmt: "%.0f", Vals: Test.ValueCounts[I])
1672 << "\n";
1673 }
1674}
1675
1676namespace IndexedInstrProf {
1677Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) {
1678 using namespace support;
1679 static_assert(std::is_standard_layout_v<Header>,
1680 "Use standard layout for Header for simplicity");
1681 Header H;
1682
1683 H.Magic = endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1684 // Check the magic number.
1685 if (H.Magic != IndexedInstrProf::Magic)
1686 return make_error<InstrProfError>(Args: instrprof_error::bad_magic);
1687
1688 // Read the version.
1689 H.Version = endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1690 if (H.getIndexedProfileVersion() >
1691 IndexedInstrProf::ProfVersion::CurrentVersion)
1692 return make_error<InstrProfError>(Args: instrprof_error::unsupported_version);
1693
1694 static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
1695 "Please update the reader as needed when a new field is added "
1696 "or when indexed profile version gets bumped.");
1697
1698 Buffer += sizeof(uint64_t); // Skip Header.Unused field.
1699 H.HashType = endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1700 H.HashOffset = endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1701 if (H.getIndexedProfileVersion() >= 8)
1702 H.MemProfOffset =
1703 endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1704 if (H.getIndexedProfileVersion() >= 9)
1705 H.BinaryIdOffset =
1706 endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1707 // Version 11 is handled by this condition.
1708 if (H.getIndexedProfileVersion() >= 10)
1709 H.TemporalProfTracesOffset =
1710 endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1711 if (H.getIndexedProfileVersion() >= 12)
1712 H.VTableNamesOffset =
1713 endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1714 return H;
1715}
1716
1717uint64_t Header::getIndexedProfileVersion() const {
1718 return GET_VERSION(Version);
1719}
1720
1721size_t Header::size() const {
1722 switch (getIndexedProfileVersion()) {
1723 // To retain backward compatibility, new fields must be appended to the end
1724 // of the header, and byte offset of existing fields shouldn't change when
1725 // indexed profile version gets incremented.
1726 static_assert(
1727 IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
1728 "Please update the size computation below if a new field has "
1729 "been added to the header; for a version bump without new "
1730 "fields, add a case statement to fall through to the latest version.");
1731 case 12ull:
1732 return 72;
1733 case 11ull:
1734 [[fallthrough]];
1735 case 10ull:
1736 return 64;
1737 case 9ull:
1738 return 56;
1739 case 8ull:
1740 return 48;
1741 default: // Version7 (when the backwards compatible header was introduced).
1742 return 40;
1743 }
1744}
1745
1746} // namespace IndexedInstrProf
1747
1748} // end namespace llvm
1749