1 | //===- InstrProfReader.cpp - Instrumented profiling reader ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains support for reading profiling data for clang's |
10 | // instrumentation based PGO and coverage. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/ProfileData/InstrProfReader.h" |
15 | #include "llvm/ADT/ArrayRef.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/StringExtras.h" |
18 | #include "llvm/ADT/StringRef.h" |
19 | #include "llvm/IR/ProfileSummary.h" |
20 | #include "llvm/ProfileData/InstrProf.h" |
21 | // #include "llvm/ProfileData/MemProf.h" |
22 | #include "llvm/ProfileData/MemProfRadixTree.h" |
23 | #include "llvm/ProfileData/ProfileCommon.h" |
24 | #include "llvm/ProfileData/SymbolRemappingReader.h" |
25 | #include "llvm/Support/Endian.h" |
26 | #include "llvm/Support/Error.h" |
27 | #include "llvm/Support/ErrorOr.h" |
28 | #include "llvm/Support/FormatVariadic.h" |
29 | #include "llvm/Support/MemoryBuffer.h" |
30 | #include "llvm/Support/VirtualFileSystem.h" |
31 | #include <algorithm> |
32 | #include <cstddef> |
33 | #include <cstdint> |
34 | #include <limits> |
35 | #include <memory> |
36 | #include <optional> |
37 | #include <system_error> |
38 | #include <utility> |
39 | #include <vector> |
40 | |
41 | using namespace llvm; |
42 | |
43 | // Extracts the variant information from the top 32 bits in the version and |
44 | // returns an enum specifying the variants present. |
45 | static InstrProfKind getProfileKindFromVersion(uint64_t Version) { |
46 | InstrProfKind ProfileKind = InstrProfKind::Unknown; |
47 | if (Version & VARIANT_MASK_IR_PROF) { |
48 | ProfileKind |= InstrProfKind::IRInstrumentation; |
49 | } |
50 | if (Version & VARIANT_MASK_CSIR_PROF) { |
51 | ProfileKind |= InstrProfKind::ContextSensitive; |
52 | } |
53 | if (Version & VARIANT_MASK_INSTR_ENTRY) { |
54 | ProfileKind |= InstrProfKind::FunctionEntryInstrumentation; |
55 | } |
56 | if (Version & VARIANT_MASK_INSTR_LOOP_ENTRIES) { |
57 | ProfileKind |= InstrProfKind::LoopEntriesInstrumentation; |
58 | } |
59 | if (Version & VARIANT_MASK_BYTE_COVERAGE) { |
60 | ProfileKind |= InstrProfKind::SingleByteCoverage; |
61 | } |
62 | if (Version & VARIANT_MASK_FUNCTION_ENTRY_ONLY) { |
63 | ProfileKind |= InstrProfKind::FunctionEntryOnly; |
64 | } |
65 | if (Version & VARIANT_MASK_MEMPROF) { |
66 | ProfileKind |= InstrProfKind::MemProf; |
67 | } |
68 | if (Version & VARIANT_MASK_TEMPORAL_PROF) { |
69 | ProfileKind |= InstrProfKind::TemporalProfile; |
70 | } |
71 | return ProfileKind; |
72 | } |
73 | |
74 | static Expected<std::unique_ptr<MemoryBuffer>> |
75 | setupMemoryBuffer(const Twine &Filename, vfs::FileSystem &FS) { |
76 | auto BufferOrErr = Filename.str() == "-" ? MemoryBuffer::getSTDIN() |
77 | : FS.getBufferForFile(Name: Filename); |
78 | if (std::error_code EC = BufferOrErr.getError()) |
79 | return errorCodeToError(EC); |
80 | return std::move(BufferOrErr.get()); |
81 | } |
82 | |
83 | static Error initializeReader(InstrProfReader &Reader) { |
84 | return Reader.readHeader(); |
85 | } |
86 | |
87 | /// Read a list of binary ids from a profile that consist of |
88 | /// a. uint64_t binary id length |
89 | /// b. uint8_t binary id data |
90 | /// c. uint8_t padding (if necessary) |
91 | /// This function is shared between raw and indexed profiles. |
92 | /// Raw profiles are in host-endian format, and indexed profiles are in |
93 | /// little-endian format. So, this function takes an argument indicating the |
94 | /// associated endian format to read the binary ids correctly. |
95 | static Error |
96 | readBinaryIdsInternal(const MemoryBuffer &DataBuffer, |
97 | ArrayRef<uint8_t> BinaryIdsBuffer, |
98 | std::vector<llvm::object::BuildID> &BinaryIds, |
99 | const llvm::endianness Endian) { |
100 | using namespace support; |
101 | |
102 | const uint64_t BinaryIdsSize = BinaryIdsBuffer.size(); |
103 | const uint8_t *BinaryIdsStart = BinaryIdsBuffer.data(); |
104 | |
105 | if (BinaryIdsSize == 0) |
106 | return Error::success(); |
107 | |
108 | const uint8_t *BI = BinaryIdsStart; |
109 | const uint8_t *BIEnd = BinaryIdsStart + BinaryIdsSize; |
110 | const uint8_t *End = |
111 | reinterpret_cast<const uint8_t *>(DataBuffer.getBufferEnd()); |
112 | |
113 | while (BI < BIEnd) { |
114 | size_t Remaining = BIEnd - BI; |
115 | // There should be enough left to read the binary id length. |
116 | if (Remaining < sizeof(uint64_t)) |
117 | return make_error<InstrProfError>( |
118 | Args: instrprof_error::malformed, |
119 | Args: "not enough data to read binary id length" ); |
120 | |
121 | uint64_t BILen = endian::readNext<uint64_t>(memory&: BI, endian: Endian); |
122 | if (BILen == 0) |
123 | return make_error<InstrProfError>(Args: instrprof_error::malformed, |
124 | Args: "binary id length is 0" ); |
125 | |
126 | Remaining = BIEnd - BI; |
127 | // There should be enough left to read the binary id data. |
128 | if (Remaining < alignToPowerOf2(Value: BILen, Align: sizeof(uint64_t))) |
129 | return make_error<InstrProfError>( |
130 | Args: instrprof_error::malformed, Args: "not enough data to read binary id data" ); |
131 | |
132 | // Add binary id to the binary ids list. |
133 | BinaryIds.push_back(x: object::BuildID(BI, BI + BILen)); |
134 | |
135 | // Increment by binary id data length, which aligned to the size of uint64. |
136 | BI += alignToPowerOf2(Value: BILen, Align: sizeof(uint64_t)); |
137 | if (BI > End) |
138 | return make_error<InstrProfError>( |
139 | Args: instrprof_error::malformed, |
140 | Args: "binary id section is greater than buffer size" ); |
141 | } |
142 | |
143 | return Error::success(); |
144 | } |
145 | |
146 | static void printBinaryIdsInternal(raw_ostream &OS, |
147 | ArrayRef<llvm::object::BuildID> BinaryIds) { |
148 | OS << "Binary IDs: \n" ; |
149 | for (const auto &BI : BinaryIds) { |
150 | for (auto I : BI) |
151 | OS << format(Fmt: "%02x" , Vals: I); |
152 | OS << "\n" ; |
153 | } |
154 | } |
155 | |
156 | Expected<std::unique_ptr<InstrProfReader>> InstrProfReader::create( |
157 | const Twine &Path, vfs::FileSystem &FS, |
158 | const InstrProfCorrelator *Correlator, |
159 | const object::BuildIDFetcher *BIDFetcher, |
160 | const InstrProfCorrelator::ProfCorrelatorKind BIDFetcherCorrelatorKind, |
161 | std::function<void(Error)> Warn) { |
162 | // Set up the buffer to read. |
163 | auto BufferOrError = setupMemoryBuffer(Filename: Path, FS); |
164 | if (Error E = BufferOrError.takeError()) |
165 | return std::move(E); |
166 | return InstrProfReader::create(Buffer: std::move(BufferOrError.get()), Correlator, |
167 | BIDFetcher, BIDFetcherCorrelatorKind, Warn); |
168 | } |
169 | |
170 | Expected<std::unique_ptr<InstrProfReader>> InstrProfReader::create( |
171 | std::unique_ptr<MemoryBuffer> Buffer, const InstrProfCorrelator *Correlator, |
172 | const object::BuildIDFetcher *BIDFetcher, |
173 | const InstrProfCorrelator::ProfCorrelatorKind BIDFetcherCorrelatorKind, |
174 | std::function<void(Error)> Warn) { |
175 | if (Buffer->getBufferSize() == 0) |
176 | return make_error<InstrProfError>(Args: instrprof_error::empty_raw_profile); |
177 | |
178 | std::unique_ptr<InstrProfReader> Result; |
179 | // Create the reader. |
180 | if (IndexedInstrProfReader::hasFormat(DataBuffer: *Buffer)) |
181 | Result.reset(p: new IndexedInstrProfReader(std::move(Buffer))); |
182 | else if (RawInstrProfReader64::hasFormat(DataBuffer: *Buffer)) |
183 | Result.reset(p: new RawInstrProfReader64(std::move(Buffer), Correlator, |
184 | BIDFetcher, BIDFetcherCorrelatorKind, |
185 | Warn)); |
186 | else if (RawInstrProfReader32::hasFormat(DataBuffer: *Buffer)) |
187 | Result.reset(p: new RawInstrProfReader32(std::move(Buffer), Correlator, |
188 | BIDFetcher, BIDFetcherCorrelatorKind, |
189 | Warn)); |
190 | else if (TextInstrProfReader::hasFormat(Buffer: *Buffer)) |
191 | Result.reset(p: new TextInstrProfReader(std::move(Buffer))); |
192 | else |
193 | return make_error<InstrProfError>(Args: instrprof_error::unrecognized_format); |
194 | |
195 | // Initialize the reader and return the result. |
196 | if (Error E = initializeReader(Reader&: *Result)) |
197 | return std::move(E); |
198 | |
199 | return std::move(Result); |
200 | } |
201 | |
202 | Expected<std::unique_ptr<IndexedInstrProfReader>> |
203 | IndexedInstrProfReader::create(const Twine &Path, vfs::FileSystem &FS, |
204 | const Twine &RemappingPath) { |
205 | // Set up the buffer to read. |
206 | auto BufferOrError = setupMemoryBuffer(Filename: Path, FS); |
207 | if (Error E = BufferOrError.takeError()) |
208 | return std::move(E); |
209 | |
210 | // Set up the remapping buffer if requested. |
211 | std::unique_ptr<MemoryBuffer> RemappingBuffer; |
212 | std::string RemappingPathStr = RemappingPath.str(); |
213 | if (!RemappingPathStr.empty()) { |
214 | auto RemappingBufferOrError = setupMemoryBuffer(Filename: RemappingPathStr, FS); |
215 | if (Error E = RemappingBufferOrError.takeError()) |
216 | return std::move(E); |
217 | RemappingBuffer = std::move(RemappingBufferOrError.get()); |
218 | } |
219 | |
220 | return IndexedInstrProfReader::create(Buffer: std::move(BufferOrError.get()), |
221 | RemappingBuffer: std::move(RemappingBuffer)); |
222 | } |
223 | |
224 | Expected<std::unique_ptr<IndexedInstrProfReader>> |
225 | IndexedInstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer, |
226 | std::unique_ptr<MemoryBuffer> RemappingBuffer) { |
227 | // Create the reader. |
228 | if (!IndexedInstrProfReader::hasFormat(DataBuffer: *Buffer)) |
229 | return make_error<InstrProfError>(Args: instrprof_error::bad_magic); |
230 | auto Result = std::make_unique<IndexedInstrProfReader>( |
231 | args: std::move(Buffer), args: std::move(RemappingBuffer)); |
232 | |
233 | // Initialize the reader and return the result. |
234 | if (Error E = initializeReader(Reader&: *Result)) |
235 | return std::move(E); |
236 | |
237 | return std::move(Result); |
238 | } |
239 | |
240 | bool TextInstrProfReader::hasFormat(const MemoryBuffer &Buffer) { |
241 | // Verify that this really looks like plain ASCII text by checking a |
242 | // 'reasonable' number of characters (up to profile magic size). |
243 | size_t count = std::min(a: Buffer.getBufferSize(), b: sizeof(uint64_t)); |
244 | StringRef buffer = Buffer.getBufferStart(); |
245 | return count == 0 || |
246 | std::all_of(first: buffer.begin(), last: buffer.begin() + count, |
247 | pred: [](char c) { return isPrint(C: c) || isSpace(C: c); }); |
248 | } |
249 | |
250 | // Read the profile variant flag from the header: ":FE" means this is a FE |
251 | // generated profile. ":IR" means this is an IR level profile. Other strings |
252 | // with a leading ':' will be reported an error format. |
253 | Error TextInstrProfReader::() { |
254 | Symtab.reset(p: new InstrProfSymtab()); |
255 | |
256 | while (Line->starts_with(Prefix: ":" )) { |
257 | StringRef Str = Line->substr(Start: 1); |
258 | if (Str.equals_insensitive(RHS: "ir" )) |
259 | ProfileKind |= InstrProfKind::IRInstrumentation; |
260 | else if (Str.equals_insensitive(RHS: "fe" )) |
261 | ProfileKind |= InstrProfKind::FrontendInstrumentation; |
262 | else if (Str.equals_insensitive(RHS: "csir" )) { |
263 | ProfileKind |= InstrProfKind::IRInstrumentation; |
264 | ProfileKind |= InstrProfKind::ContextSensitive; |
265 | } else if (Str.equals_insensitive(RHS: "entry_first" )) |
266 | ProfileKind |= InstrProfKind::FunctionEntryInstrumentation; |
267 | else if (Str.equals_insensitive(RHS: "not_entry_first" )) |
268 | ProfileKind &= ~InstrProfKind::FunctionEntryInstrumentation; |
269 | else if (Str.equals_insensitive(RHS: "instrument_loop_entries" )) |
270 | ProfileKind |= InstrProfKind::LoopEntriesInstrumentation; |
271 | else if (Str.equals_insensitive(RHS: "single_byte_coverage" )) |
272 | ProfileKind |= InstrProfKind::SingleByteCoverage; |
273 | else if (Str.equals_insensitive(RHS: "temporal_prof_traces" )) { |
274 | ProfileKind |= InstrProfKind::TemporalProfile; |
275 | if (auto Err = readTemporalProfTraceData()) |
276 | return error(E: std::move(Err)); |
277 | } else |
278 | return error(Err: instrprof_error::bad_header); |
279 | ++Line; |
280 | } |
281 | return success(); |
282 | } |
283 | |
284 | /// Temporal profile trace data is stored in the header immediately after |
285 | /// ":temporal_prof_traces". The first integer is the number of traces, the |
286 | /// second integer is the stream size, then the following lines are the actual |
287 | /// traces which consist of a weight and a comma separated list of function |
288 | /// names. |
289 | Error TextInstrProfReader::readTemporalProfTraceData() { |
290 | if ((++Line).is_at_end()) |
291 | return error(Err: instrprof_error::eof); |
292 | |
293 | uint32_t NumTraces; |
294 | if (Line->getAsInteger(Radix: 0, Result&: NumTraces)) |
295 | return error(Err: instrprof_error::malformed); |
296 | |
297 | if ((++Line).is_at_end()) |
298 | return error(Err: instrprof_error::eof); |
299 | |
300 | if (Line->getAsInteger(Radix: 0, Result&: TemporalProfTraceStreamSize)) |
301 | return error(Err: instrprof_error::malformed); |
302 | |
303 | for (uint32_t i = 0; i < NumTraces; i++) { |
304 | if ((++Line).is_at_end()) |
305 | return error(Err: instrprof_error::eof); |
306 | |
307 | TemporalProfTraceTy Trace; |
308 | if (Line->getAsInteger(Radix: 0, Result&: Trace.Weight)) |
309 | return error(Err: instrprof_error::malformed); |
310 | |
311 | if ((++Line).is_at_end()) |
312 | return error(Err: instrprof_error::eof); |
313 | |
314 | SmallVector<StringRef> FuncNames; |
315 | Line->split(A&: FuncNames, Separator: "," , /*MaxSplit=*/-1, /*KeepEmpty=*/false); |
316 | for (auto &FuncName : FuncNames) |
317 | Trace.FunctionNameRefs.push_back( |
318 | x: IndexedInstrProf::ComputeHash(K: FuncName.trim())); |
319 | TemporalProfTraces.push_back(Elt: std::move(Trace)); |
320 | } |
321 | return success(); |
322 | } |
323 | |
324 | Error |
325 | TextInstrProfReader::readValueProfileData(InstrProfRecord &Record) { |
326 | |
327 | #define CHECK_LINE_END(Line) \ |
328 | if (Line.is_at_end()) \ |
329 | return error(instrprof_error::truncated); |
330 | #define READ_NUM(Str, Dst) \ |
331 | if ((Str).getAsInteger(10, (Dst))) \ |
332 | return error(instrprof_error::malformed); |
333 | #define VP_READ_ADVANCE(Val) \ |
334 | CHECK_LINE_END(Line); \ |
335 | uint32_t Val; \ |
336 | READ_NUM((*Line), (Val)); \ |
337 | Line++; |
338 | |
339 | if (Line.is_at_end()) |
340 | return success(); |
341 | |
342 | uint32_t NumValueKinds; |
343 | if (Line->getAsInteger(Radix: 10, Result&: NumValueKinds)) { |
344 | // No value profile data |
345 | return success(); |
346 | } |
347 | if (NumValueKinds == 0 || NumValueKinds > IPVK_Last + 1) |
348 | return error(Err: instrprof_error::malformed, |
349 | ErrMsg: "number of value kinds is invalid" ); |
350 | Line++; |
351 | |
352 | for (uint32_t VK = 0; VK < NumValueKinds; VK++) { |
353 | VP_READ_ADVANCE(ValueKind); |
354 | if (ValueKind > IPVK_Last) |
355 | return error(Err: instrprof_error::malformed, ErrMsg: "value kind is invalid" ); |
356 | ; |
357 | VP_READ_ADVANCE(NumValueSites); |
358 | if (!NumValueSites) |
359 | continue; |
360 | |
361 | Record.reserveSites(ValueKind: VK, NumValueSites); |
362 | for (uint32_t S = 0; S < NumValueSites; S++) { |
363 | VP_READ_ADVANCE(NumValueData); |
364 | |
365 | std::vector<InstrProfValueData> CurrentValues; |
366 | for (uint32_t V = 0; V < NumValueData; V++) { |
367 | CHECK_LINE_END(Line); |
368 | std::pair<StringRef, StringRef> VD = Line->rsplit(Separator: ':'); |
369 | uint64_t TakenCount, Value; |
370 | if (ValueKind == IPVK_IndirectCallTarget) { |
371 | if (InstrProfSymtab::isExternalSymbol(Symbol: VD.first)) { |
372 | Value = 0; |
373 | } else { |
374 | if (Error E = Symtab->addFuncName(FuncName: VD.first)) |
375 | return E; |
376 | Value = IndexedInstrProf::ComputeHash(K: VD.first); |
377 | } |
378 | } else if (ValueKind == IPVK_VTableTarget) { |
379 | if (InstrProfSymtab::isExternalSymbol(Symbol: VD.first)) |
380 | Value = 0; |
381 | else { |
382 | if (Error E = Symtab->addVTableName(VTableName: VD.first)) |
383 | return E; |
384 | Value = IndexedInstrProf::ComputeHash(K: VD.first); |
385 | } |
386 | } else { |
387 | READ_NUM(VD.first, Value); |
388 | } |
389 | READ_NUM(VD.second, TakenCount); |
390 | CurrentValues.push_back(x: {.Value: Value, .Count: TakenCount}); |
391 | Line++; |
392 | } |
393 | assert(CurrentValues.size() == NumValueData); |
394 | Record.addValueData(ValueKind, Site: S, VData: CurrentValues, SymTab: nullptr); |
395 | } |
396 | } |
397 | return success(); |
398 | |
399 | #undef CHECK_LINE_END |
400 | #undef READ_NUM |
401 | #undef VP_READ_ADVANCE |
402 | } |
403 | |
404 | Error TextInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) { |
405 | // Skip empty lines and comments. |
406 | while (!Line.is_at_end() && (Line->empty() || Line->starts_with(Prefix: "#" ))) |
407 | ++Line; |
408 | // If we hit EOF while looking for a name, we're done. |
409 | if (Line.is_at_end()) { |
410 | return error(Err: instrprof_error::eof); |
411 | } |
412 | |
413 | // Read the function name. |
414 | Record.Name = *Line++; |
415 | if (Error E = Symtab->addFuncName(FuncName: Record.Name)) |
416 | return error(E: std::move(E)); |
417 | |
418 | // Read the function hash. |
419 | if (Line.is_at_end()) |
420 | return error(Err: instrprof_error::truncated); |
421 | if ((Line++)->getAsInteger(Radix: 0, Result&: Record.Hash)) |
422 | return error(Err: instrprof_error::malformed, |
423 | ErrMsg: "function hash is not a valid integer" ); |
424 | |
425 | // Read the number of counters. |
426 | uint64_t NumCounters; |
427 | if (Line.is_at_end()) |
428 | return error(Err: instrprof_error::truncated); |
429 | if ((Line++)->getAsInteger(Radix: 10, Result&: NumCounters)) |
430 | return error(Err: instrprof_error::malformed, |
431 | ErrMsg: "number of counters is not a valid integer" ); |
432 | if (NumCounters == 0) |
433 | return error(Err: instrprof_error::malformed, ErrMsg: "number of counters is zero" ); |
434 | |
435 | // Read each counter and fill our internal storage with the values. |
436 | Record.Clear(); |
437 | Record.Counts.reserve(n: NumCounters); |
438 | for (uint64_t I = 0; I < NumCounters; ++I) { |
439 | if (Line.is_at_end()) |
440 | return error(Err: instrprof_error::truncated); |
441 | uint64_t Count; |
442 | if ((Line++)->getAsInteger(Radix: 10, Result&: Count)) |
443 | return error(Err: instrprof_error::malformed, ErrMsg: "count is invalid" ); |
444 | Record.Counts.push_back(x: Count); |
445 | } |
446 | |
447 | // Bitmap byte information is indicated with special character. |
448 | if (Line->starts_with(Prefix: "$" )) { |
449 | Record.BitmapBytes.clear(); |
450 | // Read the number of bitmap bytes. |
451 | uint64_t NumBitmapBytes; |
452 | if ((Line++)->drop_front(N: 1).trim().getAsInteger(Radix: 0, Result&: NumBitmapBytes)) |
453 | return error(Err: instrprof_error::malformed, |
454 | ErrMsg: "number of bitmap bytes is not a valid integer" ); |
455 | if (NumBitmapBytes != 0) { |
456 | // Read each bitmap and fill our internal storage with the values. |
457 | Record.BitmapBytes.reserve(n: NumBitmapBytes); |
458 | for (uint8_t I = 0; I < NumBitmapBytes; ++I) { |
459 | if (Line.is_at_end()) |
460 | return error(Err: instrprof_error::truncated); |
461 | uint8_t BitmapByte; |
462 | if ((Line++)->getAsInteger(Radix: 0, Result&: BitmapByte)) |
463 | return error(Err: instrprof_error::malformed, |
464 | ErrMsg: "bitmap byte is not a valid integer" ); |
465 | Record.BitmapBytes.push_back(x: BitmapByte); |
466 | } |
467 | } |
468 | } |
469 | |
470 | // Check if value profile data exists and read it if so. |
471 | if (Error E = readValueProfileData(Record)) |
472 | return error(E: std::move(E)); |
473 | |
474 | return success(); |
475 | } |
476 | |
477 | template <class IntPtrT> |
478 | InstrProfKind RawInstrProfReader<IntPtrT>::getProfileKind() const { |
479 | return getProfileKindFromVersion(Version); |
480 | } |
481 | |
482 | template <class IntPtrT> |
483 | SmallVector<TemporalProfTraceTy> & |
484 | RawInstrProfReader<IntPtrT>::getTemporalProfTraces( |
485 | std::optional<uint64_t> Weight) { |
486 | if (TemporalProfTimestamps.empty()) { |
487 | assert(TemporalProfTraces.empty()); |
488 | return TemporalProfTraces; |
489 | } |
490 | // Sort functions by their timestamps to build the trace. |
491 | std::sort(first: TemporalProfTimestamps.begin(), last: TemporalProfTimestamps.end()); |
492 | TemporalProfTraceTy Trace; |
493 | if (Weight) |
494 | Trace.Weight = *Weight; |
495 | for (auto &[TimestampValue, NameRef] : TemporalProfTimestamps) |
496 | Trace.FunctionNameRefs.push_back(x: NameRef); |
497 | TemporalProfTraces = {std::move(Trace)}; |
498 | return TemporalProfTraces; |
499 | } |
500 | |
501 | template <class IntPtrT> |
502 | bool RawInstrProfReader<IntPtrT>::hasFormat(const MemoryBuffer &DataBuffer) { |
503 | if (DataBuffer.getBufferSize() < sizeof(uint64_t)) |
504 | return false; |
505 | uint64_t Magic = |
506 | *reinterpret_cast<const uint64_t *>(DataBuffer.getBufferStart()); |
507 | return RawInstrProf::getMagic<IntPtrT>() == Magic || |
508 | llvm::byteswap(RawInstrProf::getMagic<IntPtrT>()) == Magic; |
509 | } |
510 | |
511 | template <class IntPtrT> |
512 | Error RawInstrProfReader<IntPtrT>::() { |
513 | if (!hasFormat(DataBuffer: *DataBuffer)) |
514 | return error(instrprof_error::bad_magic); |
515 | if (DataBuffer->getBufferSize() < sizeof(RawInstrProf::Header)) |
516 | return error(instrprof_error::bad_header); |
517 | auto * = reinterpret_cast<const RawInstrProf::Header *>( |
518 | DataBuffer->getBufferStart()); |
519 | ShouldSwapBytes = Header->Magic != RawInstrProf::getMagic<IntPtrT>(); |
520 | return readHeader(*Header); |
521 | } |
522 | |
523 | template <class IntPtrT> |
524 | Error RawInstrProfReader<IntPtrT>::(const char *CurrentPos) { |
525 | const char *End = DataBuffer->getBufferEnd(); |
526 | // Skip zero padding between profiles. |
527 | while (CurrentPos != End && *CurrentPos == 0) |
528 | ++CurrentPos; |
529 | // If there's nothing left, we're done. |
530 | if (CurrentPos == End) |
531 | return make_error<InstrProfError>(Args: instrprof_error::eof); |
532 | // If there isn't enough space for another header, this is probably just |
533 | // garbage at the end of the file. |
534 | if (CurrentPos + sizeof(RawInstrProf::Header) > End) |
535 | return make_error<InstrProfError>(Args: instrprof_error::malformed, |
536 | Args: "not enough space for another header" ); |
537 | // The writer ensures each profile is padded to start at an aligned address. |
538 | if (reinterpret_cast<size_t>(CurrentPos) % alignof(uint64_t)) |
539 | return make_error<InstrProfError>(Args: instrprof_error::malformed, |
540 | Args: "insufficient padding" ); |
541 | // The magic should have the same byte order as in the previous header. |
542 | uint64_t Magic = *reinterpret_cast<const uint64_t *>(CurrentPos); |
543 | if (Magic != swap(RawInstrProf::getMagic<IntPtrT>())) |
544 | return make_error<InstrProfError>(Args: instrprof_error::bad_magic); |
545 | |
546 | // There's another profile to read, so we need to process the header. |
547 | auto * = reinterpret_cast<const RawInstrProf::Header *>(CurrentPos); |
548 | return readHeader(*Header); |
549 | } |
550 | |
551 | template <class IntPtrT> |
552 | Error RawInstrProfReader<IntPtrT>::createSymtab(InstrProfSymtab &Symtab) { |
553 | if (Error E = Symtab.create(FuncNameStrings: StringRef(NamesStart, NamesEnd - NamesStart), |
554 | VTableNameStrings: StringRef(VNamesStart, VNamesEnd - VNamesStart))) |
555 | return error(std::move(E)); |
556 | for (const RawInstrProf::ProfileData<IntPtrT> *I = Data; I != DataEnd; ++I) { |
557 | const IntPtrT FPtr = swap(I->FunctionPointer); |
558 | if (!FPtr) |
559 | continue; |
560 | Symtab.mapAddress(Addr: FPtr, MD5Val: swap(I->NameRef)); |
561 | } |
562 | |
563 | if (VTableBegin != nullptr && VTableEnd != nullptr) { |
564 | for (const RawInstrProf::VTableProfileData<IntPtrT> *I = VTableBegin; |
565 | I != VTableEnd; ++I) { |
566 | const IntPtrT VPtr = swap(I->VTablePointer); |
567 | if (!VPtr) |
568 | continue; |
569 | // Map both begin and end address to the name hash, since the instrumented |
570 | // address could be somewhere in the middle. |
571 | // VPtr is of type uint32_t or uint64_t so 'VPtr + I->VTableSize' marks |
572 | // the end of vtable address. |
573 | Symtab.mapVTableAddress(StartAddr: VPtr, EndAddr: VPtr + swap(I->VTableSize), |
574 | MD5Val: swap(I->VTableNameHash)); |
575 | } |
576 | } |
577 | return success(); |
578 | } |
579 | |
580 | template <class IntPtrT> |
581 | Error RawInstrProfReader<IntPtrT>::( |
582 | const RawInstrProf::Header &) { |
583 | Version = swap(Header.Version); |
584 | if (GET_VERSION(Version) != RawInstrProf::Version) |
585 | return error(instrprof_error::raw_profile_version_mismatch, |
586 | ("Profile uses raw profile format version = " + |
587 | Twine(GET_VERSION(Version)) + |
588 | "; expected version = " + Twine(RawInstrProf::Version) + |
589 | "\nPLEASE update this tool to version in the raw profile, or " |
590 | "regenerate raw profile with expected version." ) |
591 | .str()); |
592 | |
593 | uint64_t BinaryIdSize = swap(Header.BinaryIdsSize); |
594 | // Binary id start just after the header if exists. |
595 | const uint8_t *BinaryIdStart = |
596 | reinterpret_cast<const uint8_t *>(&Header) + sizeof(RawInstrProf::Header); |
597 | const uint8_t *BinaryIdEnd = BinaryIdStart + BinaryIdSize; |
598 | const uint8_t *BufferEnd = (const uint8_t *)DataBuffer->getBufferEnd(); |
599 | if (BinaryIdSize % sizeof(uint64_t) || BinaryIdEnd > BufferEnd) |
600 | return error(instrprof_error::bad_header); |
601 | ArrayRef<uint8_t> BinaryIdsBuffer(BinaryIdStart, BinaryIdSize); |
602 | if (!BinaryIdsBuffer.empty()) { |
603 | if (Error Err = readBinaryIdsInternal(*DataBuffer, BinaryIdsBuffer, |
604 | BinaryIds, getDataEndianness())) |
605 | return Err; |
606 | } |
607 | |
608 | CountersDelta = swap(Header.CountersDelta); |
609 | BitmapDelta = swap(Header.BitmapDelta); |
610 | NamesDelta = swap(Header.NamesDelta); |
611 | auto NumData = swap(Header.NumData); |
612 | auto PaddingBytesBeforeCounters = swap(Header.PaddingBytesBeforeCounters); |
613 | auto = swap(Header.NumCounters) * getCounterTypeSize(); |
614 | auto PaddingBytesAfterCounters = swap(Header.PaddingBytesAfterCounters); |
615 | auto NumBitmapBytes = swap(Header.NumBitmapBytes); |
616 | auto PaddingBytesAfterBitmapBytes = swap(Header.PaddingBytesAfterBitmapBytes); |
617 | auto NamesSize = swap(Header.NamesSize); |
618 | auto VTableNameSize = swap(Header.VNamesSize); |
619 | auto NumVTables = swap(Header.NumVTables); |
620 | ValueKindLast = swap(Header.ValueKindLast); |
621 | |
622 | auto DataSize = NumData * sizeof(RawInstrProf::ProfileData<IntPtrT>); |
623 | auto PaddingBytesAfterNames = getNumPaddingBytes(SizeInBytes: NamesSize); |
624 | auto PaddingBytesAfterVTableNames = getNumPaddingBytes(SizeInBytes: VTableNameSize); |
625 | |
626 | auto VTableSectionSize = |
627 | NumVTables * sizeof(RawInstrProf::VTableProfileData<IntPtrT>); |
628 | auto PaddingBytesAfterVTableProfData = getNumPaddingBytes(SizeInBytes: VTableSectionSize); |
629 | |
630 | // Profile data starts after profile header and binary ids if exist. |
631 | ptrdiff_t DataOffset = sizeof(RawInstrProf::Header) + BinaryIdSize; |
632 | ptrdiff_t CountersOffset = DataOffset + DataSize + PaddingBytesBeforeCounters; |
633 | ptrdiff_t BitmapOffset = |
634 | CountersOffset + CountersSize + PaddingBytesAfterCounters; |
635 | ptrdiff_t NamesOffset = |
636 | BitmapOffset + NumBitmapBytes + PaddingBytesAfterBitmapBytes; |
637 | ptrdiff_t VTableProfDataOffset = |
638 | NamesOffset + NamesSize + PaddingBytesAfterNames; |
639 | ptrdiff_t VTableNameOffset = VTableProfDataOffset + VTableSectionSize + |
640 | PaddingBytesAfterVTableProfData; |
641 | ptrdiff_t ValueDataOffset = |
642 | VTableNameOffset + VTableNameSize + PaddingBytesAfterVTableNames; |
643 | |
644 | auto *Start = reinterpret_cast<const char *>(&Header); |
645 | if (Start + ValueDataOffset > DataBuffer->getBufferEnd()) |
646 | return error(instrprof_error::bad_header); |
647 | |
648 | if (BIDFetcher) { |
649 | std::vector<object::BuildID> BinaryIDs; |
650 | if (Error E = readBinaryIds(BinaryIds&: BinaryIDs)) |
651 | return E; |
652 | if (auto E = InstrProfCorrelator::get(Filename: "" , FileKind: BIDFetcherCorrelatorKind, |
653 | BIDFetcher, BIs: BinaryIDs) |
654 | .moveInto(Value&: BIDFetcherCorrelator)) { |
655 | return E; |
656 | } |
657 | if (auto Err = BIDFetcherCorrelator->correlateProfileData(MaxWarnings: 0)) |
658 | return Err; |
659 | } |
660 | |
661 | if (Correlator) { |
662 | // These sizes in the raw file are zero because we constructed them in the |
663 | // Correlator. |
664 | if (!(DataSize == 0 && NamesSize == 0 && CountersDelta == 0 && |
665 | NamesDelta == 0)) |
666 | return error(instrprof_error::unexpected_correlation_info); |
667 | Data = Correlator->getDataPointer(); |
668 | DataEnd = Data + Correlator->getDataSize(); |
669 | NamesStart = Correlator->getNamesPointer(); |
670 | NamesEnd = NamesStart + Correlator->getNamesSize(); |
671 | } else if (BIDFetcherCorrelator) { |
672 | InstrProfCorrelatorImpl<IntPtrT> *BIDFetcherCorrelatorImpl = |
673 | dyn_cast_or_null<InstrProfCorrelatorImpl<IntPtrT>>( |
674 | BIDFetcherCorrelator.get()); |
675 | Data = BIDFetcherCorrelatorImpl->getDataPointer(); |
676 | DataEnd = Data + BIDFetcherCorrelatorImpl->getDataSize(); |
677 | NamesStart = BIDFetcherCorrelatorImpl->getNamesPointer(); |
678 | NamesEnd = NamesStart + BIDFetcherCorrelatorImpl->getNamesSize(); |
679 | } else { |
680 | Data = reinterpret_cast<const RawInstrProf::ProfileData<IntPtrT> *>( |
681 | Start + DataOffset); |
682 | DataEnd = Data + NumData; |
683 | VTableBegin = |
684 | reinterpret_cast<const RawInstrProf::VTableProfileData<IntPtrT> *>( |
685 | Start + VTableProfDataOffset); |
686 | VTableEnd = VTableBegin + NumVTables; |
687 | NamesStart = Start + NamesOffset; |
688 | NamesEnd = NamesStart + NamesSize; |
689 | VNamesStart = Start + VTableNameOffset; |
690 | VNamesEnd = VNamesStart + VTableNameSize; |
691 | } |
692 | |
693 | CountersStart = Start + CountersOffset; |
694 | CountersEnd = CountersStart + CountersSize; |
695 | BitmapStart = Start + BitmapOffset; |
696 | BitmapEnd = BitmapStart + NumBitmapBytes; |
697 | ValueDataStart = reinterpret_cast<const uint8_t *>(Start + ValueDataOffset); |
698 | |
699 | std::unique_ptr<InstrProfSymtab> NewSymtab = std::make_unique<InstrProfSymtab>(); |
700 | if (Error E = createSymtab(Symtab&: *NewSymtab)) |
701 | return E; |
702 | |
703 | Symtab = std::move(NewSymtab); |
704 | return success(); |
705 | } |
706 | |
707 | template <class IntPtrT> |
708 | Error RawInstrProfReader<IntPtrT>::readName(NamedInstrProfRecord &Record) { |
709 | Record.Name = getName(NameRef: Data->NameRef); |
710 | return success(); |
711 | } |
712 | |
713 | template <class IntPtrT> |
714 | Error RawInstrProfReader<IntPtrT>::readFuncHash(NamedInstrProfRecord &Record) { |
715 | Record.Hash = swap(Data->FuncHash); |
716 | return success(); |
717 | } |
718 | |
719 | template <class IntPtrT> |
720 | Error RawInstrProfReader<IntPtrT>::readRawCounts( |
721 | InstrProfRecord &Record) { |
722 | uint32_t NumCounters = swap(Data->NumCounters); |
723 | if (NumCounters == 0) |
724 | return error(instrprof_error::malformed, "number of counters is zero" ); |
725 | |
726 | ptrdiff_t CounterBaseOffset = swap(Data->CounterPtr) - CountersDelta; |
727 | if (CounterBaseOffset < 0) |
728 | return error( |
729 | instrprof_error::malformed, |
730 | ("counter offset " + Twine(CounterBaseOffset) + " is negative" ).str()); |
731 | |
732 | if (CounterBaseOffset >= CountersEnd - CountersStart) |
733 | return error(instrprof_error::malformed, |
734 | ("counter offset " + Twine(CounterBaseOffset) + |
735 | " is greater than the maximum counter offset " + |
736 | Twine(CountersEnd - CountersStart - 1)) |
737 | .str()); |
738 | |
739 | uint64_t MaxNumCounters = |
740 | (CountersEnd - (CountersStart + CounterBaseOffset)) / |
741 | getCounterTypeSize(); |
742 | if (NumCounters > MaxNumCounters) |
743 | return error(instrprof_error::malformed, |
744 | ("number of counters " + Twine(NumCounters) + |
745 | " is greater than the maximum number of counters " + |
746 | Twine(MaxNumCounters)) |
747 | .str()); |
748 | |
749 | Record.Counts.clear(); |
750 | Record.Counts.reserve(n: NumCounters); |
751 | for (uint32_t I = 0; I < NumCounters; I++) { |
752 | const char *Ptr = |
753 | CountersStart + CounterBaseOffset + I * getCounterTypeSize(); |
754 | if (I == 0 && hasTemporalProfile()) { |
755 | uint64_t TimestampValue = swap(*reinterpret_cast<const uint64_t *>(Ptr)); |
756 | if (TimestampValue != 0 && |
757 | TimestampValue != std::numeric_limits<uint64_t>::max()) { |
758 | TemporalProfTimestamps.emplace_back(TimestampValue, |
759 | swap(Data->NameRef)); |
760 | TemporalProfTraceStreamSize = 1; |
761 | } |
762 | if (hasSingleByteCoverage()) { |
763 | // In coverage mode, getCounterTypeSize() returns 1 byte but our |
764 | // timestamp field has size uint64_t. Increment I so that the next |
765 | // iteration of this for loop points to the byte after the timestamp |
766 | // field, i.e., I += 8. |
767 | I += 7; |
768 | } |
769 | continue; |
770 | } |
771 | if (hasSingleByteCoverage()) { |
772 | // A value of zero signifies the block is covered. |
773 | Record.Counts.push_back(x: *Ptr == 0 ? 1 : 0); |
774 | } else { |
775 | uint64_t CounterValue = swap(*reinterpret_cast<const uint64_t *>(Ptr)); |
776 | if (CounterValue > MaxCounterValue && Warn) |
777 | Warn(make_error<InstrProfError>( |
778 | Args: instrprof_error::counter_value_too_large, Args: Twine(CounterValue))); |
779 | |
780 | Record.Counts.push_back(x: CounterValue); |
781 | } |
782 | } |
783 | |
784 | return success(); |
785 | } |
786 | |
787 | template <class IntPtrT> |
788 | Error RawInstrProfReader<IntPtrT>::readRawBitmapBytes(InstrProfRecord &Record) { |
789 | uint32_t NumBitmapBytes = swap(Data->NumBitmapBytes); |
790 | |
791 | Record.BitmapBytes.clear(); |
792 | Record.BitmapBytes.reserve(n: NumBitmapBytes); |
793 | |
794 | // It's possible MCDC is either not enabled or only used for some functions |
795 | // and not others. So if we record 0 bytes, just move on. |
796 | if (NumBitmapBytes == 0) |
797 | return success(); |
798 | |
799 | // BitmapDelta decreases as we advance to the next data record. |
800 | ptrdiff_t BitmapOffset = swap(Data->BitmapPtr) - BitmapDelta; |
801 | if (BitmapOffset < 0) |
802 | return error( |
803 | instrprof_error::malformed, |
804 | ("bitmap offset " + Twine(BitmapOffset) + " is negative" ).str()); |
805 | |
806 | if (BitmapOffset >= BitmapEnd - BitmapStart) |
807 | return error(instrprof_error::malformed, |
808 | ("bitmap offset " + Twine(BitmapOffset) + |
809 | " is greater than the maximum bitmap offset " + |
810 | Twine(BitmapEnd - BitmapStart - 1)) |
811 | .str()); |
812 | |
813 | uint64_t MaxNumBitmapBytes = |
814 | (BitmapEnd - (BitmapStart + BitmapOffset)) / sizeof(uint8_t); |
815 | if (NumBitmapBytes > MaxNumBitmapBytes) |
816 | return error(instrprof_error::malformed, |
817 | ("number of bitmap bytes " + Twine(NumBitmapBytes) + |
818 | " is greater than the maximum number of bitmap bytes " + |
819 | Twine(MaxNumBitmapBytes)) |
820 | .str()); |
821 | |
822 | for (uint32_t I = 0; I < NumBitmapBytes; I++) { |
823 | const char *Ptr = BitmapStart + BitmapOffset + I; |
824 | Record.BitmapBytes.push_back(swap(*Ptr)); |
825 | } |
826 | |
827 | return success(); |
828 | } |
829 | |
830 | template <class IntPtrT> |
831 | Error RawInstrProfReader<IntPtrT>::readValueProfilingData( |
832 | InstrProfRecord &Record) { |
833 | Record.clearValueData(); |
834 | CurValueDataSize = 0; |
835 | // Need to match the logic in value profile dumper code in compiler-rt: |
836 | uint32_t NumValueKinds = 0; |
837 | for (uint32_t I = 0; I < IPVK_Last + 1; I++) |
838 | NumValueKinds += (Data->NumValueSites[I] != 0); |
839 | |
840 | if (!NumValueKinds) |
841 | return success(); |
842 | |
843 | Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr = |
844 | ValueProfData::getValueProfData( |
845 | SrcBuffer: ValueDataStart, SrcBufferEnd: (const unsigned char *)DataBuffer->getBufferEnd(), |
846 | SrcDataEndianness: getDataEndianness()); |
847 | |
848 | if (Error E = VDataPtrOrErr.takeError()) |
849 | return E; |
850 | |
851 | // Note that besides deserialization, this also performs the conversion for |
852 | // indirect call targets. The function pointers from the raw profile are |
853 | // remapped into function name hashes. |
854 | VDataPtrOrErr.get()->deserializeTo(Record, SymTab: Symtab.get()); |
855 | CurValueDataSize = VDataPtrOrErr.get()->getSize(); |
856 | return success(); |
857 | } |
858 | |
859 | template <class IntPtrT> |
860 | Error RawInstrProfReader<IntPtrT>::readNextRecord(NamedInstrProfRecord &Record) { |
861 | // Keep reading profiles that consist of only headers and no profile data and |
862 | // counters. |
863 | while (atEnd()) |
864 | // At this point, ValueDataStart field points to the next header. |
865 | if (Error E = readNextHeader(CurrentPos: getNextHeaderPos())) |
866 | return error(std::move(E)); |
867 | |
868 | // Read name and set it in Record. |
869 | if (Error E = readName(Record)) |
870 | return error(std::move(E)); |
871 | |
872 | // Read FuncHash and set it in Record. |
873 | if (Error E = readFuncHash(Record)) |
874 | return error(std::move(E)); |
875 | |
876 | // Read raw counts and set Record. |
877 | if (Error E = readRawCounts(Record)) |
878 | return error(std::move(E)); |
879 | |
880 | // Read raw bitmap bytes and set Record. |
881 | if (Error E = readRawBitmapBytes(Record)) |
882 | return error(std::move(E)); |
883 | |
884 | // Read value data and set Record. |
885 | if (Error E = readValueProfilingData(Record)) |
886 | return error(std::move(E)); |
887 | |
888 | // Iterate. |
889 | advanceData(); |
890 | return success(); |
891 | } |
892 | |
893 | template <class IntPtrT> |
894 | Error RawInstrProfReader<IntPtrT>::readBinaryIds( |
895 | std::vector<llvm::object::BuildID> &BinaryIds) { |
896 | BinaryIds.insert(BinaryIds.begin(), this->BinaryIds.begin(), |
897 | this->BinaryIds.end()); |
898 | return Error::success(); |
899 | } |
900 | |
901 | template <class IntPtrT> |
902 | Error RawInstrProfReader<IntPtrT>::printBinaryIds(raw_ostream &OS) { |
903 | if (!BinaryIds.empty()) |
904 | printBinaryIdsInternal(OS, BinaryIds); |
905 | return Error::success(); |
906 | } |
907 | |
908 | namespace llvm { |
909 | |
910 | template class RawInstrProfReader<uint32_t>; |
911 | template class RawInstrProfReader<uint64_t>; |
912 | |
913 | } // end namespace llvm |
914 | |
915 | InstrProfLookupTrait::hash_value_type |
916 | InstrProfLookupTrait::ComputeHash(StringRef K) { |
917 | return IndexedInstrProf::ComputeHash(Type: HashType, K); |
918 | } |
919 | |
920 | using data_type = InstrProfLookupTrait::data_type; |
921 | using offset_type = InstrProfLookupTrait::offset_type; |
922 | |
923 | bool InstrProfLookupTrait::readValueProfilingData( |
924 | const unsigned char *&D, const unsigned char *const End) { |
925 | Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr = |
926 | ValueProfData::getValueProfData(SrcBuffer: D, SrcBufferEnd: End, SrcDataEndianness: ValueProfDataEndianness); |
927 | |
928 | if (VDataPtrOrErr.takeError()) |
929 | return false; |
930 | |
931 | VDataPtrOrErr.get()->deserializeTo(Record&: DataBuffer.back(), SymTab: nullptr); |
932 | D += VDataPtrOrErr.get()->TotalSize; |
933 | |
934 | return true; |
935 | } |
936 | |
937 | data_type InstrProfLookupTrait::ReadData(StringRef K, const unsigned char *D, |
938 | offset_type N) { |
939 | using namespace support; |
940 | |
941 | // Check if the data is corrupt. If so, don't try to read it. |
942 | if (N % sizeof(uint64_t)) |
943 | return data_type(); |
944 | |
945 | DataBuffer.clear(); |
946 | std::vector<uint64_t> CounterBuffer; |
947 | std::vector<uint8_t> BitmapByteBuffer; |
948 | |
949 | const unsigned char *End = D + N; |
950 | while (D < End) { |
951 | // Read hash. |
952 | if (D + sizeof(uint64_t) >= End) |
953 | return data_type(); |
954 | uint64_t Hash = endian::readNext<uint64_t, llvm::endianness::little>(memory&: D); |
955 | |
956 | // Initialize number of counters for GET_VERSION(FormatVersion) == 1. |
957 | uint64_t CountsSize = N / sizeof(uint64_t) - 1; |
958 | // If format version is different then read the number of counters. |
959 | if (GET_VERSION(FormatVersion) != IndexedInstrProf::ProfVersion::Version1) { |
960 | if (D + sizeof(uint64_t) > End) |
961 | return data_type(); |
962 | CountsSize = endian::readNext<uint64_t, llvm::endianness::little>(memory&: D); |
963 | } |
964 | // Read counter values. |
965 | if (D + CountsSize * sizeof(uint64_t) > End) |
966 | return data_type(); |
967 | |
968 | CounterBuffer.clear(); |
969 | CounterBuffer.reserve(n: CountsSize); |
970 | for (uint64_t J = 0; J < CountsSize; ++J) |
971 | CounterBuffer.push_back( |
972 | x: endian::readNext<uint64_t, llvm::endianness::little>(memory&: D)); |
973 | |
974 | // Read bitmap bytes for GET_VERSION(FormatVersion) > 10. |
975 | if (GET_VERSION(FormatVersion) > IndexedInstrProf::ProfVersion::Version10) { |
976 | uint64_t BitmapBytes = 0; |
977 | if (D + sizeof(uint64_t) > End) |
978 | return data_type(); |
979 | BitmapBytes = endian::readNext<uint64_t, llvm::endianness::little>(memory&: D); |
980 | // Read bitmap byte values. |
981 | if (D + BitmapBytes * sizeof(uint8_t) > End) |
982 | return data_type(); |
983 | BitmapByteBuffer.clear(); |
984 | BitmapByteBuffer.reserve(n: BitmapBytes); |
985 | for (uint64_t J = 0; J < BitmapBytes; ++J) |
986 | BitmapByteBuffer.push_back(x: static_cast<uint8_t>( |
987 | endian::readNext<uint64_t, llvm::endianness::little>(memory&: D))); |
988 | } |
989 | |
990 | DataBuffer.emplace_back(args&: K, args&: Hash, args: std::move(CounterBuffer), |
991 | args: std::move(BitmapByteBuffer)); |
992 | |
993 | // Read value profiling data. |
994 | if (GET_VERSION(FormatVersion) > IndexedInstrProf::ProfVersion::Version2 && |
995 | !readValueProfilingData(D, End)) { |
996 | DataBuffer.clear(); |
997 | return data_type(); |
998 | } |
999 | } |
1000 | return DataBuffer; |
1001 | } |
1002 | |
1003 | template <typename HashTableImpl> |
1004 | Error InstrProfReaderIndex<HashTableImpl>::getRecords( |
1005 | StringRef FuncName, ArrayRef<NamedInstrProfRecord> &Data) { |
1006 | auto Iter = HashTable->find(FuncName); |
1007 | if (Iter == HashTable->end()) |
1008 | return make_error<InstrProfError>(Args: instrprof_error::unknown_function); |
1009 | |
1010 | Data = (*Iter); |
1011 | if (Data.empty()) |
1012 | return make_error<InstrProfError>(Args: instrprof_error::malformed, |
1013 | Args: "profile data is empty" ); |
1014 | |
1015 | return Error::success(); |
1016 | } |
1017 | |
1018 | template <typename HashTableImpl> |
1019 | Error InstrProfReaderIndex<HashTableImpl>::getRecords( |
1020 | ArrayRef<NamedInstrProfRecord> &Data) { |
1021 | if (atEnd()) |
1022 | return make_error<InstrProfError>(Args: instrprof_error::eof); |
1023 | |
1024 | Data = *RecordIterator; |
1025 | |
1026 | if (Data.empty()) |
1027 | return make_error<InstrProfError>(Args: instrprof_error::malformed, |
1028 | Args: "profile data is empty" ); |
1029 | |
1030 | return Error::success(); |
1031 | } |
1032 | |
1033 | template <typename HashTableImpl> |
1034 | InstrProfReaderIndex<HashTableImpl>::InstrProfReaderIndex( |
1035 | const unsigned char *Buckets, const unsigned char *const Payload, |
1036 | const unsigned char *const Base, IndexedInstrProf::HashT HashType, |
1037 | uint64_t Version) { |
1038 | FormatVersion = Version; |
1039 | HashTable.reset(HashTableImpl::Create( |
1040 | Buckets, Payload, Base, |
1041 | typename HashTableImpl::InfoType(HashType, Version))); |
1042 | RecordIterator = HashTable->data_begin(); |
1043 | } |
1044 | |
1045 | template <typename HashTableImpl> |
1046 | InstrProfKind InstrProfReaderIndex<HashTableImpl>::getProfileKind() const { |
1047 | return getProfileKindFromVersion(Version: FormatVersion); |
1048 | } |
1049 | |
1050 | namespace { |
1051 | /// A remapper that does not apply any remappings. |
1052 | class InstrProfReaderNullRemapper : public InstrProfReaderRemapper { |
1053 | InstrProfReaderIndexBase &Underlying; |
1054 | |
1055 | public: |
1056 | InstrProfReaderNullRemapper(InstrProfReaderIndexBase &Underlying) |
1057 | : Underlying(Underlying) {} |
1058 | |
1059 | Error getRecords(StringRef FuncName, |
1060 | ArrayRef<NamedInstrProfRecord> &Data) override { |
1061 | return Underlying.getRecords(FuncName, Data); |
1062 | } |
1063 | }; |
1064 | } // namespace |
1065 | |
1066 | /// A remapper that applies remappings based on a symbol remapping file. |
1067 | template <typename HashTableImpl> |
1068 | class llvm::InstrProfReaderItaniumRemapper |
1069 | : public InstrProfReaderRemapper { |
1070 | public: |
1071 | InstrProfReaderItaniumRemapper( |
1072 | std::unique_ptr<MemoryBuffer> RemapBuffer, |
1073 | InstrProfReaderIndex<HashTableImpl> &Underlying) |
1074 | : RemapBuffer(std::move(RemapBuffer)), Underlying(Underlying) { |
1075 | } |
1076 | |
1077 | /// Extract the original function name from a PGO function name. |
1078 | static StringRef (StringRef Name) { |
1079 | // We can have multiple pieces separated by kGlobalIdentifierDelimiter ( |
1080 | // semicolon now and colon in older profiles); there can be pieces both |
1081 | // before and after the mangled name. Find the first part that starts with |
1082 | // '_Z'; we'll assume that's the mangled name we want. |
1083 | std::pair<StringRef, StringRef> Parts = {StringRef(), Name}; |
1084 | while (true) { |
1085 | Parts = Parts.second.split(Separator: GlobalIdentifierDelimiter); |
1086 | if (Parts.first.starts_with(Prefix: "_Z" )) |
1087 | return Parts.first; |
1088 | if (Parts.second.empty()) |
1089 | return Name; |
1090 | } |
1091 | } |
1092 | |
1093 | /// Given a mangled name extracted from a PGO function name, and a new |
1094 | /// form for that mangled name, reconstitute the name. |
1095 | static void reconstituteName(StringRef OrigName, StringRef , |
1096 | StringRef Replacement, |
1097 | SmallVectorImpl<char> &Out) { |
1098 | Out.reserve(N: OrigName.size() + Replacement.size() - ExtractedName.size()); |
1099 | Out.insert(I: Out.end(), From: OrigName.begin(), To: ExtractedName.begin()); |
1100 | llvm::append_range(C&: Out, R&: Replacement); |
1101 | Out.insert(I: Out.end(), From: ExtractedName.end(), To: OrigName.end()); |
1102 | } |
1103 | |
1104 | Error populateRemappings() override { |
1105 | if (Error E = Remappings.read(B&: *RemapBuffer)) |
1106 | return E; |
1107 | for (StringRef Name : Underlying.HashTable->keys()) { |
1108 | StringRef RealName = extractName(Name); |
1109 | if (auto Key = Remappings.insert(FunctionName: RealName)) { |
1110 | // FIXME: We could theoretically map the same equivalence class to |
1111 | // multiple names in the profile data. If that happens, we should |
1112 | // return NamedInstrProfRecords from all of them. |
1113 | MappedNames.insert(KV: {Key, RealName}); |
1114 | } |
1115 | } |
1116 | return Error::success(); |
1117 | } |
1118 | |
1119 | Error getRecords(StringRef FuncName, |
1120 | ArrayRef<NamedInstrProfRecord> &Data) override { |
1121 | StringRef RealName = extractName(Name: FuncName); |
1122 | if (auto Key = Remappings.lookup(FunctionName: RealName)) { |
1123 | StringRef Remapped = MappedNames.lookup(Val: Key); |
1124 | if (!Remapped.empty()) { |
1125 | if (RealName.begin() == FuncName.begin() && |
1126 | RealName.end() == FuncName.end()) |
1127 | FuncName = Remapped; |
1128 | else { |
1129 | // Try rebuilding the name from the given remapping. |
1130 | SmallString<256> Reconstituted; |
1131 | reconstituteName(OrigName: FuncName, ExtractedName: RealName, Replacement: Remapped, Out&: Reconstituted); |
1132 | Error E = Underlying.getRecords(Reconstituted, Data); |
1133 | if (!E) |
1134 | return E; |
1135 | |
1136 | // If we failed because the name doesn't exist, fall back to asking |
1137 | // about the original name. |
1138 | if (Error Unhandled = handleErrors( |
1139 | std::move(E), [](std::unique_ptr<InstrProfError> Err) { |
1140 | return Err->get() == instrprof_error::unknown_function |
1141 | ? Error::success() |
1142 | : Error(std::move(Err)); |
1143 | })) |
1144 | return Unhandled; |
1145 | } |
1146 | } |
1147 | } |
1148 | return Underlying.getRecords(FuncName, Data); |
1149 | } |
1150 | |
1151 | private: |
1152 | /// The memory buffer containing the remapping configuration. Remappings |
1153 | /// holds pointers into this buffer. |
1154 | std::unique_ptr<MemoryBuffer> RemapBuffer; |
1155 | |
1156 | /// The mangling remapper. |
1157 | SymbolRemappingReader Remappings; |
1158 | |
1159 | /// Mapping from mangled name keys to the name used for the key in the |
1160 | /// profile data. |
1161 | /// FIXME: Can we store a location within the on-disk hash table instead of |
1162 | /// redoing lookup? |
1163 | DenseMap<SymbolRemappingReader::Key, StringRef> MappedNames; |
1164 | |
1165 | /// The real profile data reader. |
1166 | InstrProfReaderIndex<HashTableImpl> &Underlying; |
1167 | }; |
1168 | |
1169 | bool IndexedInstrProfReader::hasFormat(const MemoryBuffer &DataBuffer) { |
1170 | using namespace support; |
1171 | |
1172 | if (DataBuffer.getBufferSize() < 8) |
1173 | return false; |
1174 | uint64_t Magic = endian::read<uint64_t, llvm::endianness::little, aligned>( |
1175 | memory: DataBuffer.getBufferStart()); |
1176 | // Verify that it's magical. |
1177 | return Magic == IndexedInstrProf::Magic; |
1178 | } |
1179 | |
1180 | const unsigned char * |
1181 | IndexedInstrProfReader::readSummary(IndexedInstrProf::ProfVersion Version, |
1182 | const unsigned char *Cur, bool UseCS) { |
1183 | using namespace IndexedInstrProf; |
1184 | using namespace support; |
1185 | |
1186 | if (Version >= IndexedInstrProf::Version4) { |
1187 | const IndexedInstrProf::Summary *SummaryInLE = |
1188 | reinterpret_cast<const IndexedInstrProf::Summary *>(Cur); |
1189 | uint64_t NFields = endian::byte_swap<uint64_t, llvm::endianness::little>( |
1190 | value: SummaryInLE->NumSummaryFields); |
1191 | uint64_t NEntries = endian::byte_swap<uint64_t, llvm::endianness::little>( |
1192 | value: SummaryInLE->NumCutoffEntries); |
1193 | uint32_t SummarySize = |
1194 | IndexedInstrProf::Summary::getSize(NumSumFields: NFields, NumCutoffEntries: NEntries); |
1195 | std::unique_ptr<IndexedInstrProf::Summary> SummaryData = |
1196 | IndexedInstrProf::allocSummary(TotalSize: SummarySize); |
1197 | |
1198 | const uint64_t *Src = reinterpret_cast<const uint64_t *>(SummaryInLE); |
1199 | uint64_t *Dst = reinterpret_cast<uint64_t *>(SummaryData.get()); |
1200 | for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++) |
1201 | Dst[I] = endian::byte_swap<uint64_t, llvm::endianness::little>(value: Src[I]); |
1202 | |
1203 | SummaryEntryVector DetailedSummary; |
1204 | for (unsigned I = 0; I < SummaryData->NumCutoffEntries; I++) { |
1205 | const IndexedInstrProf::Summary::Entry &Ent = SummaryData->getEntry(I); |
1206 | DetailedSummary.emplace_back(args: (uint32_t)Ent.Cutoff, args: Ent.MinBlockCount, |
1207 | args: Ent.NumBlocks); |
1208 | } |
1209 | std::unique_ptr<llvm::ProfileSummary> &Summary = |
1210 | UseCS ? this->CS_Summary : this->Summary; |
1211 | |
1212 | // initialize InstrProfSummary using the SummaryData from disk. |
1213 | Summary = std::make_unique<ProfileSummary>( |
1214 | args: UseCS ? ProfileSummary::PSK_CSInstr : ProfileSummary::PSK_Instr, |
1215 | args&: DetailedSummary, args: SummaryData->get(K: Summary::TotalBlockCount), |
1216 | args: SummaryData->get(K: Summary::MaxBlockCount), |
1217 | args: SummaryData->get(K: Summary::MaxInternalBlockCount), |
1218 | args: SummaryData->get(K: Summary::MaxFunctionCount), |
1219 | args: SummaryData->get(K: Summary::TotalNumBlocks), |
1220 | args: SummaryData->get(K: Summary::TotalNumFunctions)); |
1221 | return Cur + SummarySize; |
1222 | } else { |
1223 | // The older versions do not support a profile summary. This just computes |
1224 | // an empty summary, which will not result in accurate hot/cold detection. |
1225 | // We would need to call addRecord for all NamedInstrProfRecords to get the |
1226 | // correct summary. However, this version is old (prior to early 2016) and |
1227 | // has not been supporting an accurate summary for several years. |
1228 | InstrProfSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); |
1229 | Summary = Builder.getSummary(); |
1230 | return Cur; |
1231 | } |
1232 | } |
1233 | |
1234 | Error IndexedInstrProfReader::() { |
1235 | using namespace support; |
1236 | |
1237 | const unsigned char *Start = |
1238 | (const unsigned char *)DataBuffer->getBufferStart(); |
1239 | const unsigned char *Cur = Start; |
1240 | if ((const unsigned char *)DataBuffer->getBufferEnd() - Cur < 24) |
1241 | return error(Err: instrprof_error::truncated); |
1242 | |
1243 | auto = IndexedInstrProf::Header::readFromBuffer(Buffer: Start); |
1244 | if (!HeaderOr) |
1245 | return HeaderOr.takeError(); |
1246 | |
1247 | const IndexedInstrProf::Header * = &HeaderOr.get(); |
1248 | Cur += Header->size(); |
1249 | |
1250 | Cur = readSummary(Version: (IndexedInstrProf::ProfVersion)Header->Version, Cur, |
1251 | /* UseCS */ false); |
1252 | if (Header->Version & VARIANT_MASK_CSIR_PROF) |
1253 | Cur = readSummary(Version: (IndexedInstrProf::ProfVersion)Header->Version, Cur, |
1254 | /* UseCS */ true); |
1255 | // Read the hash type and start offset. |
1256 | IndexedInstrProf::HashT HashType = |
1257 | static_cast<IndexedInstrProf::HashT>(Header->HashType); |
1258 | if (HashType > IndexedInstrProf::HashT::Last) |
1259 | return error(Err: instrprof_error::unsupported_hash_type); |
1260 | |
1261 | // The hash table with profile counts comes next. |
1262 | auto IndexPtr = std::make_unique<InstrProfReaderIndex<OnDiskHashTableImplV3>>( |
1263 | args: Start + Header->HashOffset, args&: Cur, args&: Start, args&: HashType, args: Header->Version); |
1264 | |
1265 | // The MemProfOffset field in the header is only valid when the format |
1266 | // version is higher than 8 (when it was introduced). |
1267 | if (Header->getIndexedProfileVersion() >= 8 && |
1268 | Header->Version & VARIANT_MASK_MEMPROF) { |
1269 | if (Error E = MemProfReader.deserialize(Start, MemProfOffset: Header->MemProfOffset)) |
1270 | return E; |
1271 | } |
1272 | |
1273 | // BinaryIdOffset field in the header is only valid when the format version |
1274 | // is higher than 9 (when it was introduced). |
1275 | if (Header->getIndexedProfileVersion() >= 9) { |
1276 | const unsigned char *Ptr = Start + Header->BinaryIdOffset; |
1277 | // Read binary ids size. |
1278 | uint64_t BinaryIdsSize = |
1279 | support::endian::readNext<uint64_t, llvm::endianness::little>(memory&: Ptr); |
1280 | if (BinaryIdsSize % sizeof(uint64_t)) |
1281 | return error(Err: instrprof_error::bad_header); |
1282 | // Set the binary ids start. |
1283 | BinaryIdsBuffer = ArrayRef<uint8_t>(Ptr, BinaryIdsSize); |
1284 | if (Ptr > (const unsigned char *)DataBuffer->getBufferEnd()) |
1285 | return make_error<InstrProfError>(Args: instrprof_error::malformed, |
1286 | Args: "corrupted binary ids" ); |
1287 | } |
1288 | |
1289 | if (Header->getIndexedProfileVersion() >= 12) { |
1290 | const unsigned char *Ptr = Start + Header->VTableNamesOffset; |
1291 | |
1292 | uint64_t CompressedVTableNamesLen = |
1293 | support::endian::readNext<uint64_t, llvm::endianness::little>(memory&: Ptr); |
1294 | |
1295 | // Writer first writes the length of compressed string, and then the actual |
1296 | // content. |
1297 | const char *VTableNamePtr = (const char *)Ptr; |
1298 | if (VTableNamePtr > (const char *)DataBuffer->getBufferEnd()) |
1299 | return make_error<InstrProfError>(Args: instrprof_error::truncated); |
1300 | |
1301 | VTableName = StringRef(VTableNamePtr, CompressedVTableNamesLen); |
1302 | } |
1303 | |
1304 | if (Header->getIndexedProfileVersion() >= 10 && |
1305 | Header->Version & VARIANT_MASK_TEMPORAL_PROF) { |
1306 | const unsigned char *Ptr = Start + Header->TemporalProfTracesOffset; |
1307 | const auto *PtrEnd = (const unsigned char *)DataBuffer->getBufferEnd(); |
1308 | // Expect at least two 64 bit fields: NumTraces, and TraceStreamSize |
1309 | if (Ptr + 2 * sizeof(uint64_t) > PtrEnd) |
1310 | return error(Err: instrprof_error::truncated); |
1311 | const uint64_t NumTraces = |
1312 | support::endian::readNext<uint64_t, llvm::endianness::little>(memory&: Ptr); |
1313 | TemporalProfTraceStreamSize = |
1314 | support::endian::readNext<uint64_t, llvm::endianness::little>(memory&: Ptr); |
1315 | for (unsigned i = 0; i < NumTraces; i++) { |
1316 | // Expect at least two 64 bit fields: Weight and NumFunctions |
1317 | if (Ptr + 2 * sizeof(uint64_t) > PtrEnd) |
1318 | return error(Err: instrprof_error::truncated); |
1319 | TemporalProfTraceTy Trace; |
1320 | Trace.Weight = |
1321 | support::endian::readNext<uint64_t, llvm::endianness::little>(memory&: Ptr); |
1322 | const uint64_t NumFunctions = |
1323 | support::endian::readNext<uint64_t, llvm::endianness::little>(memory&: Ptr); |
1324 | // Expect at least NumFunctions 64 bit fields |
1325 | if (Ptr + NumFunctions * sizeof(uint64_t) > PtrEnd) |
1326 | return error(Err: instrprof_error::truncated); |
1327 | for (unsigned j = 0; j < NumFunctions; j++) { |
1328 | const uint64_t NameRef = |
1329 | support::endian::readNext<uint64_t, llvm::endianness::little>(memory&: Ptr); |
1330 | Trace.FunctionNameRefs.push_back(x: NameRef); |
1331 | } |
1332 | TemporalProfTraces.push_back(Elt: std::move(Trace)); |
1333 | } |
1334 | } |
1335 | |
1336 | // Load the remapping table now if requested. |
1337 | if (RemappingBuffer) { |
1338 | Remapper = |
1339 | std::make_unique<InstrProfReaderItaniumRemapper<OnDiskHashTableImplV3>>( |
1340 | args: std::move(RemappingBuffer), args&: *IndexPtr); |
1341 | if (Error E = Remapper->populateRemappings()) |
1342 | return E; |
1343 | } else { |
1344 | Remapper = std::make_unique<InstrProfReaderNullRemapper>(args&: *IndexPtr); |
1345 | } |
1346 | Index = std::move(IndexPtr); |
1347 | |
1348 | return success(); |
1349 | } |
1350 | |
1351 | InstrProfSymtab &IndexedInstrProfReader::getSymtab() { |
1352 | if (Symtab) |
1353 | return *Symtab; |
1354 | |
1355 | auto NewSymtab = std::make_unique<InstrProfSymtab>(); |
1356 | |
1357 | if (Error E = NewSymtab->initVTableNamesFromCompressedStrings(CompressedVTableNames: VTableName)) { |
1358 | auto [ErrCode, Msg] = InstrProfError::take(E: std::move(E)); |
1359 | consumeError(Err: error(Err: ErrCode, ErrMsg: Msg)); |
1360 | } |
1361 | |
1362 | // finalizeSymtab is called inside populateSymtab. |
1363 | if (Error E = Index->populateSymtab(*NewSymtab)) { |
1364 | auto [ErrCode, Msg] = InstrProfError::take(E: std::move(E)); |
1365 | consumeError(Err: error(Err: ErrCode, ErrMsg: Msg)); |
1366 | } |
1367 | |
1368 | Symtab = std::move(NewSymtab); |
1369 | return *Symtab; |
1370 | } |
1371 | |
1372 | Expected<NamedInstrProfRecord> IndexedInstrProfReader::getInstrProfRecord( |
1373 | StringRef FuncName, uint64_t FuncHash, StringRef DeprecatedFuncName, |
1374 | uint64_t *MismatchedFuncSum) { |
1375 | ArrayRef<NamedInstrProfRecord> Data; |
1376 | uint64_t FuncSum = 0; |
1377 | auto Err = Remapper->getRecords(FuncName, Data); |
1378 | if (Err) { |
1379 | // If we don't find FuncName, try DeprecatedFuncName to handle profiles |
1380 | // built by older compilers. |
1381 | auto Err2 = |
1382 | handleErrors(E: std::move(Err), Hs: [&](const InstrProfError &IE) -> Error { |
1383 | if (IE.get() != instrprof_error::unknown_function) |
1384 | return make_error<InstrProfError>(Args: IE); |
1385 | if (auto Err = Remapper->getRecords(FuncName: DeprecatedFuncName, Data)) |
1386 | return Err; |
1387 | return Error::success(); |
1388 | }); |
1389 | if (Err2) |
1390 | return std::move(Err2); |
1391 | } |
1392 | // Found it. Look for counters with the right hash. |
1393 | |
1394 | // A flag to indicate if the records are from the same type |
1395 | // of profile (i.e cs vs nocs). |
1396 | bool CSBitMatch = false; |
1397 | auto getFuncSum = [](ArrayRef<uint64_t> Counts) { |
1398 | uint64_t ValueSum = 0; |
1399 | for (uint64_t CountValue : Counts) { |
1400 | if (CountValue == (uint64_t)-1) |
1401 | continue; |
1402 | // Handle overflow -- if that happens, return max. |
1403 | if (std::numeric_limits<uint64_t>::max() - CountValue <= ValueSum) |
1404 | return std::numeric_limits<uint64_t>::max(); |
1405 | ValueSum += CountValue; |
1406 | } |
1407 | return ValueSum; |
1408 | }; |
1409 | |
1410 | for (const NamedInstrProfRecord &I : Data) { |
1411 | // Check for a match and fill the vector if there is one. |
1412 | if (I.Hash == FuncHash) |
1413 | return std::move(I); |
1414 | if (NamedInstrProfRecord::hasCSFlagInHash(FuncHash: I.Hash) == |
1415 | NamedInstrProfRecord::hasCSFlagInHash(FuncHash)) { |
1416 | CSBitMatch = true; |
1417 | if (MismatchedFuncSum == nullptr) |
1418 | continue; |
1419 | FuncSum = std::max(a: FuncSum, b: getFuncSum(I.Counts)); |
1420 | } |
1421 | } |
1422 | if (CSBitMatch) { |
1423 | if (MismatchedFuncSum != nullptr) |
1424 | *MismatchedFuncSum = FuncSum; |
1425 | return error(Err: instrprof_error::hash_mismatch); |
1426 | } |
1427 | return error(Err: instrprof_error::unknown_function); |
1428 | } |
1429 | |
1430 | static Expected<memprof::MemProfRecord> |
1431 | getMemProfRecordV2(const memprof::IndexedMemProfRecord &IndexedRecord, |
1432 | MemProfFrameHashTable &MemProfFrameTable, |
1433 | MemProfCallStackHashTable &MemProfCallStackTable) { |
1434 | memprof::FrameIdConverter<MemProfFrameHashTable> FrameIdConv( |
1435 | MemProfFrameTable); |
1436 | |
1437 | memprof::CallStackIdConverter<MemProfCallStackHashTable> CSIdConv( |
1438 | MemProfCallStackTable, FrameIdConv); |
1439 | |
1440 | memprof::MemProfRecord Record = IndexedRecord.toMemProfRecord(Callback: CSIdConv); |
1441 | |
1442 | // Check that all call stack ids were successfully converted to call stacks. |
1443 | if (CSIdConv.LastUnmappedId) { |
1444 | return make_error<InstrProfError>( |
1445 | Args: instrprof_error::hash_mismatch, |
1446 | Args: "memprof call stack not found for call stack id " + |
1447 | Twine(*CSIdConv.LastUnmappedId)); |
1448 | } |
1449 | |
1450 | // Check that all frame ids were successfully converted to frames. |
1451 | if (FrameIdConv.LastUnmappedId) { |
1452 | return make_error<InstrProfError>(Args: instrprof_error::hash_mismatch, |
1453 | Args: "memprof frame not found for frame id " + |
1454 | Twine(*FrameIdConv.LastUnmappedId)); |
1455 | } |
1456 | |
1457 | return Record; |
1458 | } |
1459 | |
1460 | Expected<memprof::MemProfRecord> |
1461 | IndexedMemProfReader::getMemProfRecord(const uint64_t FuncNameHash) const { |
1462 | // TODO: Add memprof specific errors. |
1463 | if (MemProfRecordTable == nullptr) |
1464 | return make_error<InstrProfError>(Args: instrprof_error::invalid_prof, |
1465 | Args: "no memprof data available in profile" ); |
1466 | auto Iter = MemProfRecordTable->find(EKey: FuncNameHash); |
1467 | if (Iter == MemProfRecordTable->end()) |
1468 | return make_error<InstrProfError>( |
1469 | Args: instrprof_error::unknown_function, |
1470 | Args: "memprof record not found for function hash " + Twine(FuncNameHash)); |
1471 | |
1472 | const memprof::IndexedMemProfRecord &IndexedRecord = *Iter; |
1473 | switch (Version) { |
1474 | case memprof::Version2: |
1475 | assert(MemProfFrameTable && "MemProfFrameTable must be available" ); |
1476 | assert(MemProfCallStackTable && "MemProfCallStackTable must be available" ); |
1477 | return getMemProfRecordV2(IndexedRecord, MemProfFrameTable&: *MemProfFrameTable, |
1478 | MemProfCallStackTable&: *MemProfCallStackTable); |
1479 | // Combine V3 and V4 cases as the record conversion logic is the same. |
1480 | case memprof::Version3: |
1481 | case memprof::Version4: |
1482 | assert(!MemProfFrameTable && "MemProfFrameTable must not be available" ); |
1483 | assert(!MemProfCallStackTable && |
1484 | "MemProfCallStackTable must not be available" ); |
1485 | assert(FrameBase && "FrameBase must be available" ); |
1486 | assert(CallStackBase && "CallStackBase must be available" ); |
1487 | { |
1488 | memprof::LinearFrameIdConverter FrameIdConv(FrameBase); |
1489 | memprof::LinearCallStackIdConverter CSIdConv(CallStackBase, FrameIdConv); |
1490 | memprof::MemProfRecord Record = IndexedRecord.toMemProfRecord(Callback: CSIdConv); |
1491 | return Record; |
1492 | } |
1493 | } |
1494 | |
1495 | return make_error<InstrProfError>( |
1496 | Args: instrprof_error::unsupported_version, |
1497 | Args: formatv(Fmt: "MemProf version {} not supported; " |
1498 | "requires version between {} and {}, inclusive" , |
1499 | Vals: Version, Vals: memprof::MinimumSupportedVersion, |
1500 | Vals: memprof::MaximumSupportedVersion)); |
1501 | } |
1502 | |
1503 | DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> |
1504 | IndexedMemProfReader::getMemProfCallerCalleePairs() const { |
1505 | assert(MemProfRecordTable); |
1506 | assert(Version == memprof::Version3 || Version == memprof::Version4); |
1507 | |
1508 | memprof::LinearFrameIdConverter FrameIdConv(FrameBase); |
1509 | memprof::CallerCalleePairExtractor (CallStackBase, FrameIdConv, |
1510 | RadixTreeSize); |
1511 | |
1512 | // The set of linear call stack IDs that we need to traverse from. We expect |
1513 | // the set to be dense, so we use a BitVector. |
1514 | BitVector Worklist(RadixTreeSize); |
1515 | |
1516 | // Collect the set of linear call stack IDs. Since we expect a lot of |
1517 | // duplicates, we first collect them in the form of a bit vector before |
1518 | // processing them. |
1519 | for (const memprof::IndexedMemProfRecord &IndexedRecord : |
1520 | MemProfRecordTable->data()) { |
1521 | for (const memprof::IndexedAllocationInfo &IndexedAI : |
1522 | IndexedRecord.AllocSites) |
1523 | Worklist.set(IndexedAI.CSId); |
1524 | } |
1525 | |
1526 | // Collect caller-callee pairs for each linear call stack ID in Worklist. |
1527 | for (unsigned CS : Worklist.set_bits()) |
1528 | Extractor(CS); |
1529 | |
1530 | DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> Pairs = |
1531 | std::move(Extractor.CallerCalleePairs); |
1532 | |
1533 | // Sort each call list by the source location. |
1534 | for (auto &[CallerGUID, CallList] : Pairs) { |
1535 | llvm::sort(C&: CallList); |
1536 | CallList.erase(CS: llvm::unique(R&: CallList), CE: CallList.end()); |
1537 | } |
1538 | |
1539 | return Pairs; |
1540 | } |
1541 | |
1542 | memprof::AllMemProfData IndexedMemProfReader::getAllMemProfData() const { |
1543 | memprof::AllMemProfData AllMemProfData; |
1544 | AllMemProfData.HeapProfileRecords.reserve( |
1545 | n: MemProfRecordTable->getNumEntries()); |
1546 | for (uint64_t Key : MemProfRecordTable->keys()) { |
1547 | auto Record = getMemProfRecord(FuncNameHash: Key); |
1548 | if (Record.takeError()) |
1549 | continue; |
1550 | memprof::GUIDMemProfRecordPair Pair; |
1551 | Pair.GUID = Key; |
1552 | Pair.Record = std::move(*Record); |
1553 | AllMemProfData.HeapProfileRecords.push_back(x: std::move(Pair)); |
1554 | } |
1555 | // Populate the data access profiles for yaml output. |
1556 | if (DataAccessProfileData != nullptr) { |
1557 | for (const auto &[SymHandleRef, RecordRef] : |
1558 | DataAccessProfileData->getRecords()) |
1559 | AllMemProfData.YamlifiedDataAccessProfiles.Records.push_back( |
1560 | x: memprof::DataAccessProfRecord(SymHandleRef, RecordRef.AccessCount, |
1561 | RecordRef.Locations)); |
1562 | for (StringRef ColdSymbol : DataAccessProfileData->getKnownColdSymbols()) |
1563 | AllMemProfData.YamlifiedDataAccessProfiles.KnownColdSymbols.push_back( |
1564 | x: ColdSymbol.str()); |
1565 | for (uint64_t Hash : DataAccessProfileData->getKnownColdHashes()) |
1566 | AllMemProfData.YamlifiedDataAccessProfiles.KnownColdStrHashes.push_back( |
1567 | x: Hash); |
1568 | } |
1569 | return AllMemProfData; |
1570 | } |
1571 | |
1572 | Error IndexedInstrProfReader::getFunctionCounts(StringRef FuncName, |
1573 | uint64_t FuncHash, |
1574 | std::vector<uint64_t> &Counts) { |
1575 | auto Record = getInstrProfRecord(FuncName, FuncHash); |
1576 | if (Error E = Record.takeError()) |
1577 | return error(E: std::move(E)); |
1578 | |
1579 | Counts = Record.get().Counts; |
1580 | return success(); |
1581 | } |
1582 | |
1583 | Error IndexedInstrProfReader::getFunctionBitmap(StringRef FuncName, |
1584 | uint64_t FuncHash, |
1585 | BitVector &Bitmap) { |
1586 | auto Record = getInstrProfRecord(FuncName, FuncHash); |
1587 | if (Error E = Record.takeError()) |
1588 | return error(E: std::move(E)); |
1589 | |
1590 | const auto &BitmapBytes = Record.get().BitmapBytes; |
1591 | size_t I = 0, E = BitmapBytes.size(); |
1592 | Bitmap.resize(N: E * CHAR_BIT); |
1593 | BitVector::apply( |
1594 | f: [&](auto X) { |
1595 | using XTy = decltype(X); |
1596 | alignas(XTy) uint8_t W[sizeof(X)]; |
1597 | size_t N = std::min(a: E - I, b: sizeof(W)); |
1598 | std::memset(s: W, c: 0, n: sizeof(W)); |
1599 | std::memcpy(dest: W, src: &BitmapBytes[I], n: N); |
1600 | I += N; |
1601 | return support::endian::read<XTy, llvm::endianness::little, |
1602 | support::aligned>(W); |
1603 | }, |
1604 | Out&: Bitmap, Arg: Bitmap); |
1605 | assert(I == E); |
1606 | |
1607 | return success(); |
1608 | } |
1609 | |
1610 | Error IndexedInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) { |
1611 | ArrayRef<NamedInstrProfRecord> Data; |
1612 | |
1613 | Error E = Index->getRecords(Data); |
1614 | if (E) |
1615 | return error(E: std::move(E)); |
1616 | |
1617 | Record = Data[RecordIndex++]; |
1618 | if (RecordIndex >= Data.size()) { |
1619 | Index->advanceToNextKey(); |
1620 | RecordIndex = 0; |
1621 | } |
1622 | return success(); |
1623 | } |
1624 | |
1625 | Error IndexedInstrProfReader::readBinaryIds( |
1626 | std::vector<llvm::object::BuildID> &BinaryIds) { |
1627 | return readBinaryIdsInternal(DataBuffer: *DataBuffer, BinaryIdsBuffer, BinaryIds, |
1628 | Endian: llvm::endianness::little); |
1629 | } |
1630 | |
1631 | Error IndexedInstrProfReader::printBinaryIds(raw_ostream &OS) { |
1632 | std::vector<llvm::object::BuildID> BinaryIds; |
1633 | if (Error E = readBinaryIds(BinaryIds)) |
1634 | return E; |
1635 | printBinaryIdsInternal(OS, BinaryIds); |
1636 | return Error::success(); |
1637 | } |
1638 | |
1639 | void InstrProfReader::accumulateCounts(CountSumOrPercent &Sum, bool IsCS) { |
1640 | uint64_t NumFuncs = 0; |
1641 | for (const auto &Func : *this) { |
1642 | if (isIRLevelProfile()) { |
1643 | bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(FuncHash: Func.Hash); |
1644 | if (FuncIsCS != IsCS) |
1645 | continue; |
1646 | } |
1647 | Func.accumulateCounts(Sum); |
1648 | ++NumFuncs; |
1649 | } |
1650 | Sum.NumEntries = NumFuncs; |
1651 | } |
1652 | |