1 | //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the class that reads LLVM sample profiles. It |
10 | // supports three file formats: text, binary and gcov. |
11 | // |
12 | // The textual representation is useful for debugging and testing purposes. The |
13 | // binary representation is more compact, resulting in smaller file sizes. |
14 | // |
15 | // The gcov encoding is the one generated by GCC's AutoFDO profile creation |
16 | // tool (https://github.com/google/autofdo) |
17 | // |
18 | // All three encodings can be used interchangeably as an input sample profile. |
19 | // |
20 | //===----------------------------------------------------------------------===// |
21 | |
22 | #include "llvm/ProfileData/SampleProfReader.h" |
23 | #include "llvm/ADT/DenseMap.h" |
24 | #include "llvm/ADT/STLExtras.h" |
25 | #include "llvm/ADT/StringRef.h" |
26 | #include "llvm/IR/Module.h" |
27 | #include "llvm/IR/ProfileSummary.h" |
28 | #include "llvm/ProfileData/ProfileCommon.h" |
29 | #include "llvm/ProfileData/SampleProf.h" |
30 | #include "llvm/Support/CommandLine.h" |
31 | #include "llvm/Support/Compression.h" |
32 | #include "llvm/Support/ErrorOr.h" |
33 | #include "llvm/Support/JSON.h" |
34 | #include "llvm/Support/LEB128.h" |
35 | #include "llvm/Support/LineIterator.h" |
36 | #include "llvm/Support/MD5.h" |
37 | #include "llvm/Support/MemoryBuffer.h" |
38 | #include "llvm/Support/VirtualFileSystem.h" |
39 | #include "llvm/Support/raw_ostream.h" |
40 | #include <algorithm> |
41 | #include <cstddef> |
42 | #include <cstdint> |
43 | #include <limits> |
44 | #include <memory> |
45 | #include <system_error> |
46 | #include <vector> |
47 | |
48 | using namespace llvm; |
49 | using namespace sampleprof; |
50 | |
51 | #define DEBUG_TYPE "samplepgo-reader" |
52 | |
53 | // This internal option specifies if the profile uses FS discriminators. |
54 | // It only applies to text, and binary format profiles. |
55 | // For ext-binary format profiles, the flag is set in the summary. |
56 | static cl::opt<bool> ProfileIsFSDisciminator( |
57 | "profile-isfs" , cl::Hidden, cl::init(Val: false), |
58 | cl::desc("Profile uses flow sensitive discriminators" )); |
59 | |
60 | /// Dump the function profile for \p FName. |
61 | /// |
62 | /// \param FContext Name + context of the function to print. |
63 | /// \param OS Stream to emit the output to. |
64 | void SampleProfileReader::dumpFunctionProfile(const FunctionSamples &FS, |
65 | raw_ostream &OS) { |
66 | OS << "Function: " << FS.getContext().toString() << ": " << FS; |
67 | } |
68 | |
69 | /// Dump all the function profiles found on stream \p OS. |
70 | void SampleProfileReader::dump(raw_ostream &OS) { |
71 | std::vector<NameFunctionSamples> V; |
72 | sortFuncProfiles(ProfileMap: Profiles, SortedProfiles&: V); |
73 | for (const auto &I : V) |
74 | dumpFunctionProfile(FS: *I.second, OS); |
75 | } |
76 | |
77 | static void dumpFunctionProfileJson(const FunctionSamples &S, |
78 | json::OStream &JOS, bool TopLevel = false) { |
79 | auto DumpBody = [&](const BodySampleMap &BodySamples) { |
80 | for (const auto &I : BodySamples) { |
81 | const LineLocation &Loc = I.first; |
82 | const SampleRecord &Sample = I.second; |
83 | JOS.object(Contents: [&] { |
84 | JOS.attribute(Key: "line" , Contents: Loc.LineOffset); |
85 | if (Loc.Discriminator) |
86 | JOS.attribute(Key: "discriminator" , Contents: Loc.Discriminator); |
87 | JOS.attribute(Key: "samples" , Contents: Sample.getSamples()); |
88 | |
89 | auto CallTargets = Sample.getSortedCallTargets(); |
90 | if (!CallTargets.empty()) { |
91 | JOS.attributeArray(Key: "calls" , Contents: [&] { |
92 | for (const auto &J : CallTargets) { |
93 | JOS.object(Contents: [&] { |
94 | JOS.attribute(Key: "function" , Contents: J.first.str()); |
95 | JOS.attribute(Key: "samples" , Contents: J.second); |
96 | }); |
97 | } |
98 | }); |
99 | } |
100 | }); |
101 | } |
102 | }; |
103 | |
104 | auto DumpCallsiteSamples = [&](const CallsiteSampleMap &CallsiteSamples) { |
105 | for (const auto &I : CallsiteSamples) |
106 | for (const auto &FS : I.second) { |
107 | const LineLocation &Loc = I.first; |
108 | const FunctionSamples &CalleeSamples = FS.second; |
109 | JOS.object(Contents: [&] { |
110 | JOS.attribute(Key: "line" , Contents: Loc.LineOffset); |
111 | if (Loc.Discriminator) |
112 | JOS.attribute(Key: "discriminator" , Contents: Loc.Discriminator); |
113 | JOS.attributeArray( |
114 | Key: "samples" , Contents: [&] { dumpFunctionProfileJson(S: CalleeSamples, JOS); }); |
115 | }); |
116 | } |
117 | }; |
118 | |
119 | JOS.object(Contents: [&] { |
120 | JOS.attribute(Key: "name" , Contents: S.getFunction().str()); |
121 | JOS.attribute(Key: "total" , Contents: S.getTotalSamples()); |
122 | if (TopLevel) |
123 | JOS.attribute(Key: "head" , Contents: S.getHeadSamples()); |
124 | |
125 | const auto &BodySamples = S.getBodySamples(); |
126 | if (!BodySamples.empty()) |
127 | JOS.attributeArray(Key: "body" , Contents: [&] { DumpBody(BodySamples); }); |
128 | |
129 | const auto &CallsiteSamples = S.getCallsiteSamples(); |
130 | if (!CallsiteSamples.empty()) |
131 | JOS.attributeArray(Key: "callsites" , |
132 | Contents: [&] { DumpCallsiteSamples(CallsiteSamples); }); |
133 | }); |
134 | } |
135 | |
136 | /// Dump all the function profiles found on stream \p OS in the JSON format. |
137 | void SampleProfileReader::dumpJson(raw_ostream &OS) { |
138 | std::vector<NameFunctionSamples> V; |
139 | sortFuncProfiles(ProfileMap: Profiles, SortedProfiles&: V); |
140 | json::OStream JOS(OS, 2); |
141 | JOS.arrayBegin(); |
142 | for (const auto &F : V) |
143 | dumpFunctionProfileJson(S: *F.second, JOS, TopLevel: true); |
144 | JOS.arrayEnd(); |
145 | |
146 | // Emit a newline character at the end as json::OStream doesn't emit one. |
147 | OS << "\n" ; |
148 | } |
149 | |
150 | /// Parse \p Input as function head. |
151 | /// |
152 | /// Parse one line of \p Input, and update function name in \p FName, |
153 | /// function's total sample count in \p NumSamples, function's entry |
154 | /// count in \p NumHeadSamples. |
155 | /// |
156 | /// \returns true if parsing is successful. |
157 | static bool ParseHead(const StringRef &Input, StringRef &FName, |
158 | uint64_t &NumSamples, uint64_t &NumHeadSamples) { |
159 | if (Input[0] == ' ') |
160 | return false; |
161 | size_t n2 = Input.rfind(C: ':'); |
162 | size_t n1 = Input.rfind(C: ':', From: n2 - 1); |
163 | FName = Input.substr(Start: 0, N: n1); |
164 | if (Input.substr(Start: n1 + 1, N: n2 - n1 - 1).getAsInteger(Radix: 10, Result&: NumSamples)) |
165 | return false; |
166 | if (Input.substr(Start: n2 + 1).getAsInteger(Radix: 10, Result&: NumHeadSamples)) |
167 | return false; |
168 | return true; |
169 | } |
170 | |
171 | /// Returns true if line offset \p L is legal (only has 16 bits). |
172 | static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; } |
173 | |
174 | /// Parse \p Input that contains metadata. |
175 | /// Possible metadata: |
176 | /// - CFG Checksum information: |
177 | /// !CFGChecksum: 12345 |
178 | /// - CFG Checksum information: |
179 | /// !Attributes: 1 |
180 | /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash. |
181 | static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, |
182 | uint32_t &Attributes) { |
183 | if (Input.starts_with(Prefix: "!CFGChecksum:" )) { |
184 | StringRef CFGInfo = Input.substr(Start: strlen(s: "!CFGChecksum:" )).trim(); |
185 | return !CFGInfo.getAsInteger(Radix: 10, Result&: FunctionHash); |
186 | } |
187 | |
188 | if (Input.starts_with(Prefix: "!Attributes:" )) { |
189 | StringRef Attrib = Input.substr(Start: strlen(s: "!Attributes:" )).trim(); |
190 | return !Attrib.getAsInteger(Radix: 10, Result&: Attributes); |
191 | } |
192 | |
193 | return false; |
194 | } |
195 | |
196 | enum class LineType { |
197 | CallSiteProfile, |
198 | BodyProfile, |
199 | Metadata, |
200 | }; |
201 | |
202 | /// Parse \p Input as line sample. |
203 | /// |
204 | /// \param Input input line. |
205 | /// \param LineTy Type of this line. |
206 | /// \param Depth the depth of the inline stack. |
207 | /// \param NumSamples total samples of the line/inlined callsite. |
208 | /// \param LineOffset line offset to the start of the function. |
209 | /// \param Discriminator discriminator of the line. |
210 | /// \param TargetCountMap map from indirect call target to count. |
211 | /// \param FunctionHash the function's CFG hash, used by pseudo probe. |
212 | /// |
213 | /// returns true if parsing is successful. |
214 | static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth, |
215 | uint64_t &NumSamples, uint32_t &LineOffset, |
216 | uint32_t &Discriminator, StringRef &CalleeName, |
217 | DenseMap<StringRef, uint64_t> &TargetCountMap, |
218 | uint64_t &FunctionHash, uint32_t &Attributes, |
219 | bool &IsFlat) { |
220 | for (Depth = 0; Input[Depth] == ' '; Depth++) |
221 | ; |
222 | if (Depth == 0) |
223 | return false; |
224 | |
225 | if (Input[Depth] == '!') { |
226 | LineTy = LineType::Metadata; |
227 | // This metadata is only for manual inspection only. We already created a |
228 | // FunctionSamples and put it in the profile map, so there is no point |
229 | // to skip profiles even they have no use for ThinLTO. |
230 | if (Input == StringRef(" !Flat" )) { |
231 | IsFlat = true; |
232 | return true; |
233 | } |
234 | return parseMetadata(Input: Input.substr(Start: Depth), FunctionHash, Attributes); |
235 | } |
236 | |
237 | size_t n1 = Input.find(C: ':'); |
238 | StringRef Loc = Input.substr(Start: Depth, N: n1 - Depth); |
239 | size_t n2 = Loc.find(C: '.'); |
240 | if (n2 == StringRef::npos) { |
241 | if (Loc.getAsInteger(Radix: 10, Result&: LineOffset) || !isOffsetLegal(L: LineOffset)) |
242 | return false; |
243 | Discriminator = 0; |
244 | } else { |
245 | if (Loc.substr(Start: 0, N: n2).getAsInteger(Radix: 10, Result&: LineOffset)) |
246 | return false; |
247 | if (Loc.substr(Start: n2 + 1).getAsInteger(Radix: 10, Result&: Discriminator)) |
248 | return false; |
249 | } |
250 | |
251 | StringRef Rest = Input.substr(Start: n1 + 2); |
252 | if (isDigit(C: Rest[0])) { |
253 | LineTy = LineType::BodyProfile; |
254 | size_t n3 = Rest.find(C: ' '); |
255 | if (n3 == StringRef::npos) { |
256 | if (Rest.getAsInteger(Radix: 10, Result&: NumSamples)) |
257 | return false; |
258 | } else { |
259 | if (Rest.substr(Start: 0, N: n3).getAsInteger(Radix: 10, Result&: NumSamples)) |
260 | return false; |
261 | } |
262 | // Find call targets and their sample counts. |
263 | // Note: In some cases, there are symbols in the profile which are not |
264 | // mangled. To accommodate such cases, use colon + integer pairs as the |
265 | // anchor points. |
266 | // An example: |
267 | // _M_construct<char *>:1000 string_view<std::allocator<char> >:437 |
268 | // ":1000" and ":437" are used as anchor points so the string above will |
269 | // be interpreted as |
270 | // target: _M_construct<char *> |
271 | // count: 1000 |
272 | // target: string_view<std::allocator<char> > |
273 | // count: 437 |
274 | while (n3 != StringRef::npos) { |
275 | n3 += Rest.substr(Start: n3).find_first_not_of(C: ' '); |
276 | Rest = Rest.substr(Start: n3); |
277 | n3 = Rest.find_first_of(C: ':'); |
278 | if (n3 == StringRef::npos || n3 == 0) |
279 | return false; |
280 | |
281 | StringRef Target; |
282 | uint64_t count, n4; |
283 | while (true) { |
284 | // Get the segment after the current colon. |
285 | StringRef AfterColon = Rest.substr(Start: n3 + 1); |
286 | // Get the target symbol before the current colon. |
287 | Target = Rest.substr(Start: 0, N: n3); |
288 | // Check if the word after the current colon is an integer. |
289 | n4 = AfterColon.find_first_of(C: ' '); |
290 | n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size(); |
291 | StringRef WordAfterColon = Rest.substr(Start: n3 + 1, N: n4 - n3 - 1); |
292 | if (!WordAfterColon.getAsInteger(Radix: 10, Result&: count)) |
293 | break; |
294 | |
295 | // Try to find the next colon. |
296 | uint64_t n5 = AfterColon.find_first_of(C: ':'); |
297 | if (n5 == StringRef::npos) |
298 | return false; |
299 | n3 += n5 + 1; |
300 | } |
301 | |
302 | // An anchor point is found. Save the {target, count} pair |
303 | TargetCountMap[Target] = count; |
304 | if (n4 == Rest.size()) |
305 | break; |
306 | // Change n3 to the next blank space after colon + integer pair. |
307 | n3 = n4; |
308 | } |
309 | } else { |
310 | LineTy = LineType::CallSiteProfile; |
311 | size_t n3 = Rest.find_last_of(C: ':'); |
312 | CalleeName = Rest.substr(Start: 0, N: n3); |
313 | if (Rest.substr(Start: n3 + 1).getAsInteger(Radix: 10, Result&: NumSamples)) |
314 | return false; |
315 | } |
316 | return true; |
317 | } |
318 | |
319 | /// Load samples from a text file. |
320 | /// |
321 | /// See the documentation at the top of the file for an explanation of |
322 | /// the expected format. |
323 | /// |
324 | /// \returns true if the file was loaded successfully, false otherwise. |
325 | std::error_code SampleProfileReaderText::readImpl() { |
326 | line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); |
327 | sampleprof_error Result = sampleprof_error::success; |
328 | |
329 | InlineCallStack InlineStack; |
330 | uint32_t TopLevelProbeProfileCount = 0; |
331 | |
332 | // DepthMetadata tracks whether we have processed metadata for the current |
333 | // top-level or nested function profile. |
334 | uint32_t DepthMetadata = 0; |
335 | |
336 | std::vector<SampleContext *> FlatSamples; |
337 | |
338 | ProfileIsFS = ProfileIsFSDisciminator; |
339 | FunctionSamples::ProfileIsFS = ProfileIsFS; |
340 | for (; !LineIt.is_at_eof(); ++LineIt) { |
341 | size_t pos = LineIt->find_first_not_of(C: ' '); |
342 | if (pos == LineIt->npos || (*LineIt)[pos] == '#') |
343 | continue; |
344 | // Read the header of each function. |
345 | // |
346 | // Note that for function identifiers we are actually expecting |
347 | // mangled names, but we may not always get them. This happens when |
348 | // the compiler decides not to emit the function (e.g., it was inlined |
349 | // and removed). In this case, the binary will not have the linkage |
350 | // name for the function, so the profiler will emit the function's |
351 | // unmangled name, which may contain characters like ':' and '>' in its |
352 | // name (member functions, templates, etc). |
353 | // |
354 | // The only requirement we place on the identifier, then, is that it |
355 | // should not begin with a number. |
356 | if ((*LineIt)[0] != ' ') { |
357 | uint64_t NumSamples, NumHeadSamples; |
358 | StringRef FName; |
359 | if (!ParseHead(Input: *LineIt, FName, NumSamples, NumHeadSamples)) { |
360 | reportError(LineNumber: LineIt.line_number(), |
361 | Msg: "Expected 'mangled_name:NUM:NUM', found " + *LineIt); |
362 | return sampleprof_error::malformed; |
363 | } |
364 | DepthMetadata = 0; |
365 | SampleContext FContext(FName, CSNameTable); |
366 | if (FContext.hasContext()) |
367 | ++CSProfileCount; |
368 | FunctionSamples &FProfile = Profiles.create(Ctx: FContext); |
369 | mergeSampleProfErrors(Accumulator&: Result, Result: FProfile.addTotalSamples(Num: NumSamples)); |
370 | mergeSampleProfErrors(Accumulator&: Result, Result: FProfile.addHeadSamples(Num: NumHeadSamples)); |
371 | InlineStack.clear(); |
372 | InlineStack.push_back(Elt: &FProfile); |
373 | } else { |
374 | uint64_t NumSamples; |
375 | StringRef FName; |
376 | DenseMap<StringRef, uint64_t> TargetCountMap; |
377 | uint32_t Depth, LineOffset, Discriminator; |
378 | LineType LineTy; |
379 | uint64_t FunctionHash = 0; |
380 | uint32_t Attributes = 0; |
381 | bool IsFlat = false; |
382 | if (!ParseLine(Input: *LineIt, LineTy, Depth, NumSamples, LineOffset, |
383 | Discriminator, CalleeName&: FName, TargetCountMap, FunctionHash, |
384 | Attributes, IsFlat)) { |
385 | reportError(LineNumber: LineIt.line_number(), |
386 | Msg: "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + |
387 | *LineIt); |
388 | return sampleprof_error::malformed; |
389 | } |
390 | if (LineTy != LineType::Metadata && Depth == DepthMetadata) { |
391 | // Metadata must be put at the end of a function profile. |
392 | reportError(LineNumber: LineIt.line_number(), |
393 | Msg: "Found non-metadata after metadata: " + *LineIt); |
394 | return sampleprof_error::malformed; |
395 | } |
396 | |
397 | // Here we handle FS discriminators. |
398 | Discriminator &= getDiscriminatorMask(); |
399 | |
400 | while (InlineStack.size() > Depth) { |
401 | InlineStack.pop_back(); |
402 | } |
403 | switch (LineTy) { |
404 | case LineType::CallSiteProfile: { |
405 | FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( |
406 | Loc: LineLocation(LineOffset, Discriminator))[FunctionId(FName)]; |
407 | FSamples.setFunction(FunctionId(FName)); |
408 | mergeSampleProfErrors(Accumulator&: Result, Result: FSamples.addTotalSamples(Num: NumSamples)); |
409 | InlineStack.push_back(Elt: &FSamples); |
410 | DepthMetadata = 0; |
411 | break; |
412 | } |
413 | case LineType::BodyProfile: { |
414 | FunctionSamples &FProfile = *InlineStack.back(); |
415 | for (const auto &name_count : TargetCountMap) { |
416 | mergeSampleProfErrors(Accumulator&: Result, Result: FProfile.addCalledTargetSamples( |
417 | LineOffset, Discriminator, |
418 | Func: FunctionId(name_count.first), |
419 | Num: name_count.second)); |
420 | } |
421 | mergeSampleProfErrors( |
422 | Accumulator&: Result, |
423 | Result: FProfile.addBodySamples(LineOffset, Discriminator, Num: NumSamples)); |
424 | break; |
425 | } |
426 | case LineType::Metadata: { |
427 | FunctionSamples &FProfile = *InlineStack.back(); |
428 | if (FunctionHash) { |
429 | FProfile.setFunctionHash(FunctionHash); |
430 | if (Depth == 1) |
431 | ++TopLevelProbeProfileCount; |
432 | } |
433 | FProfile.getContext().setAllAttributes(Attributes); |
434 | if (Attributes & (uint32_t)ContextShouldBeInlined) |
435 | ProfileIsPreInlined = true; |
436 | DepthMetadata = Depth; |
437 | if (IsFlat) { |
438 | if (Depth == 1) |
439 | FlatSamples.push_back(x: &FProfile.getContext()); |
440 | else |
441 | Ctx.diagnose(DI: DiagnosticInfoSampleProfile( |
442 | Buffer->getBufferIdentifier(), LineIt.line_number(), |
443 | "!Flat may only be used at top level function." , DS_Warning)); |
444 | } |
445 | break; |
446 | } |
447 | } |
448 | } |
449 | } |
450 | |
451 | // Honor the option to skip flat functions. Since they are already added to |
452 | // the profile map, remove them all here. |
453 | if (SkipFlatProf) |
454 | for (SampleContext *FlatSample : FlatSamples) |
455 | Profiles.erase(Ctx: *FlatSample); |
456 | |
457 | assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && |
458 | "Cannot have both context-sensitive and regular profile" ); |
459 | ProfileIsCS = (CSProfileCount > 0); |
460 | assert((TopLevelProbeProfileCount == 0 || |
461 | TopLevelProbeProfileCount == Profiles.size()) && |
462 | "Cannot have both probe-based profiles and regular profiles" ); |
463 | ProfileIsProbeBased = (TopLevelProbeProfileCount > 0); |
464 | FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; |
465 | FunctionSamples::ProfileIsCS = ProfileIsCS; |
466 | FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined; |
467 | |
468 | if (Result == sampleprof_error::success) |
469 | computeSummary(); |
470 | |
471 | return Result; |
472 | } |
473 | |
474 | bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) { |
475 | bool result = false; |
476 | |
477 | // Check that the first non-comment line is a valid function header. |
478 | line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#'); |
479 | if (!LineIt.is_at_eof()) { |
480 | if ((*LineIt)[0] != ' ') { |
481 | uint64_t NumSamples, NumHeadSamples; |
482 | StringRef FName; |
483 | result = ParseHead(Input: *LineIt, FName, NumSamples, NumHeadSamples); |
484 | } |
485 | } |
486 | |
487 | return result; |
488 | } |
489 | |
490 | template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() { |
491 | unsigned NumBytesRead = 0; |
492 | uint64_t Val = decodeULEB128(p: Data, n: &NumBytesRead); |
493 | |
494 | if (Val > std::numeric_limits<T>::max()) { |
495 | std::error_code EC = sampleprof_error::malformed; |
496 | reportError(LineNumber: 0, Msg: EC.message()); |
497 | return EC; |
498 | } else if (Data + NumBytesRead > End) { |
499 | std::error_code EC = sampleprof_error::truncated; |
500 | reportError(LineNumber: 0, Msg: EC.message()); |
501 | return EC; |
502 | } |
503 | |
504 | Data += NumBytesRead; |
505 | return static_cast<T>(Val); |
506 | } |
507 | |
508 | ErrorOr<StringRef> SampleProfileReaderBinary::readString() { |
509 | StringRef Str(reinterpret_cast<const char *>(Data)); |
510 | if (Data + Str.size() + 1 > End) { |
511 | std::error_code EC = sampleprof_error::truncated; |
512 | reportError(LineNumber: 0, Msg: EC.message()); |
513 | return EC; |
514 | } |
515 | |
516 | Data += Str.size() + 1; |
517 | return Str; |
518 | } |
519 | |
520 | template <typename T> |
521 | ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() { |
522 | if (Data + sizeof(T) > End) { |
523 | std::error_code EC = sampleprof_error::truncated; |
524 | reportError(LineNumber: 0, Msg: EC.message()); |
525 | return EC; |
526 | } |
527 | |
528 | using namespace support; |
529 | T Val = endian::readNext<T, llvm::endianness::little>(Data); |
530 | return Val; |
531 | } |
532 | |
533 | template <typename T> |
534 | inline ErrorOr<size_t> SampleProfileReaderBinary::readStringIndex(T &Table) { |
535 | auto Idx = readNumber<size_t>(); |
536 | if (std::error_code EC = Idx.getError()) |
537 | return EC; |
538 | if (*Idx >= Table.size()) |
539 | return sampleprof_error::truncated_name_table; |
540 | return *Idx; |
541 | } |
542 | |
543 | ErrorOr<FunctionId> |
544 | SampleProfileReaderBinary::readStringFromTable(size_t *RetIdx) { |
545 | auto Idx = readStringIndex(Table&: NameTable); |
546 | if (std::error_code EC = Idx.getError()) |
547 | return EC; |
548 | if (RetIdx) |
549 | *RetIdx = *Idx; |
550 | return NameTable[*Idx]; |
551 | } |
552 | |
553 | ErrorOr<SampleContextFrames> |
554 | SampleProfileReaderBinary::readContextFromTable(size_t *RetIdx) { |
555 | auto ContextIdx = readNumber<size_t>(); |
556 | if (std::error_code EC = ContextIdx.getError()) |
557 | return EC; |
558 | if (*ContextIdx >= CSNameTable.size()) |
559 | return sampleprof_error::truncated_name_table; |
560 | if (RetIdx) |
561 | *RetIdx = *ContextIdx; |
562 | return CSNameTable[*ContextIdx]; |
563 | } |
564 | |
565 | ErrorOr<std::pair<SampleContext, uint64_t>> |
566 | SampleProfileReaderBinary::readSampleContextFromTable() { |
567 | SampleContext Context; |
568 | size_t Idx; |
569 | if (ProfileIsCS) { |
570 | auto FContext(readContextFromTable(RetIdx: &Idx)); |
571 | if (std::error_code EC = FContext.getError()) |
572 | return EC; |
573 | Context = SampleContext(*FContext); |
574 | } else { |
575 | auto FName(readStringFromTable(RetIdx: &Idx)); |
576 | if (std::error_code EC = FName.getError()) |
577 | return EC; |
578 | Context = SampleContext(*FName); |
579 | } |
580 | // Since MD5SampleContextStart may point to the profile's file data, need to |
581 | // make sure it is reading the same value on big endian CPU. |
582 | uint64_t Hash = support::endian::read64le(P: MD5SampleContextStart + Idx); |
583 | // Lazy computing of hash value, write back to the table to cache it. Only |
584 | // compute the context's hash value if it is being referenced for the first |
585 | // time. |
586 | if (Hash == 0) { |
587 | assert(MD5SampleContextStart == MD5SampleContextTable.data()); |
588 | Hash = Context.getHashCode(); |
589 | support::endian::write64le(P: &MD5SampleContextTable[Idx], V: Hash); |
590 | } |
591 | return std::make_pair(x&: Context, y&: Hash); |
592 | } |
593 | |
594 | std::error_code |
595 | SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) { |
596 | auto NumSamples = readNumber<uint64_t>(); |
597 | if (std::error_code EC = NumSamples.getError()) |
598 | return EC; |
599 | FProfile.addTotalSamples(Num: *NumSamples); |
600 | |
601 | // Read the samples in the body. |
602 | auto NumRecords = readNumber<uint32_t>(); |
603 | if (std::error_code EC = NumRecords.getError()) |
604 | return EC; |
605 | |
606 | for (uint32_t I = 0; I < *NumRecords; ++I) { |
607 | auto LineOffset = readNumber<uint64_t>(); |
608 | if (std::error_code EC = LineOffset.getError()) |
609 | return EC; |
610 | |
611 | if (!isOffsetLegal(L: *LineOffset)) { |
612 | return std::error_code(); |
613 | } |
614 | |
615 | auto Discriminator = readNumber<uint64_t>(); |
616 | if (std::error_code EC = Discriminator.getError()) |
617 | return EC; |
618 | |
619 | auto NumSamples = readNumber<uint64_t>(); |
620 | if (std::error_code EC = NumSamples.getError()) |
621 | return EC; |
622 | |
623 | auto NumCalls = readNumber<uint32_t>(); |
624 | if (std::error_code EC = NumCalls.getError()) |
625 | return EC; |
626 | |
627 | // Here we handle FS discriminators: |
628 | uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); |
629 | |
630 | for (uint32_t J = 0; J < *NumCalls; ++J) { |
631 | auto CalledFunction(readStringFromTable()); |
632 | if (std::error_code EC = CalledFunction.getError()) |
633 | return EC; |
634 | |
635 | auto CalledFunctionSamples = readNumber<uint64_t>(); |
636 | if (std::error_code EC = CalledFunctionSamples.getError()) |
637 | return EC; |
638 | |
639 | FProfile.addCalledTargetSamples(LineOffset: *LineOffset, Discriminator: DiscriminatorVal, |
640 | Func: *CalledFunction, Num: *CalledFunctionSamples); |
641 | } |
642 | |
643 | FProfile.addBodySamples(LineOffset: *LineOffset, Discriminator: DiscriminatorVal, Num: *NumSamples); |
644 | } |
645 | |
646 | // Read all the samples for inlined function calls. |
647 | auto NumCallsites = readNumber<uint32_t>(); |
648 | if (std::error_code EC = NumCallsites.getError()) |
649 | return EC; |
650 | |
651 | for (uint32_t J = 0; J < *NumCallsites; ++J) { |
652 | auto LineOffset = readNumber<uint64_t>(); |
653 | if (std::error_code EC = LineOffset.getError()) |
654 | return EC; |
655 | |
656 | auto Discriminator = readNumber<uint64_t>(); |
657 | if (std::error_code EC = Discriminator.getError()) |
658 | return EC; |
659 | |
660 | auto FName(readStringFromTable()); |
661 | if (std::error_code EC = FName.getError()) |
662 | return EC; |
663 | |
664 | // Here we handle FS discriminators: |
665 | uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); |
666 | |
667 | FunctionSamples &CalleeProfile = FProfile.functionSamplesAt( |
668 | Loc: LineLocation(*LineOffset, DiscriminatorVal))[*FName]; |
669 | CalleeProfile.setFunction(*FName); |
670 | if (std::error_code EC = readProfile(FProfile&: CalleeProfile)) |
671 | return EC; |
672 | } |
673 | |
674 | return sampleprof_error::success; |
675 | } |
676 | |
677 | std::error_code |
678 | SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start, |
679 | SampleProfileMap &Profiles) { |
680 | Data = Start; |
681 | auto NumHeadSamples = readNumber<uint64_t>(); |
682 | if (std::error_code EC = NumHeadSamples.getError()) |
683 | return EC; |
684 | |
685 | auto FContextHash(readSampleContextFromTable()); |
686 | if (std::error_code EC = FContextHash.getError()) |
687 | return EC; |
688 | |
689 | auto &[FContext, Hash] = *FContextHash; |
690 | // Use the cached hash value for insertion instead of recalculating it. |
691 | auto Res = Profiles.try_emplace(Hash, Key: FContext, Args: FunctionSamples()); |
692 | FunctionSamples &FProfile = Res.first->second; |
693 | FProfile.setContext(FContext); |
694 | FProfile.addHeadSamples(Num: *NumHeadSamples); |
695 | |
696 | if (FContext.hasContext()) |
697 | CSProfileCount++; |
698 | |
699 | if (std::error_code EC = readProfile(FProfile)) |
700 | return EC; |
701 | return sampleprof_error::success; |
702 | } |
703 | |
704 | std::error_code |
705 | SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) { |
706 | return readFuncProfile(Start, Profiles); |
707 | } |
708 | |
709 | std::error_code SampleProfileReaderBinary::readImpl() { |
710 | ProfileIsFS = ProfileIsFSDisciminator; |
711 | FunctionSamples::ProfileIsFS = ProfileIsFS; |
712 | while (Data < End) { |
713 | if (std::error_code EC = readFuncProfile(Start: Data)) |
714 | return EC; |
715 | } |
716 | |
717 | return sampleprof_error::success; |
718 | } |
719 | |
720 | std::error_code SampleProfileReaderExtBinaryBase::readOneSection( |
721 | const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) { |
722 | Data = Start; |
723 | End = Start + Size; |
724 | switch (Entry.Type) { |
725 | case SecProfSummary: |
726 | if (std::error_code EC = readSummary()) |
727 | return EC; |
728 | if (hasSecFlag(Entry, Flag: SecProfSummaryFlags::SecFlagPartial)) |
729 | Summary->setPartialProfile(true); |
730 | if (hasSecFlag(Entry, Flag: SecProfSummaryFlags::SecFlagFullContext)) |
731 | FunctionSamples::ProfileIsCS = ProfileIsCS = true; |
732 | if (hasSecFlag(Entry, Flag: SecProfSummaryFlags::SecFlagIsPreInlined)) |
733 | FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined = true; |
734 | if (hasSecFlag(Entry, Flag: SecProfSummaryFlags::SecFlagFSDiscriminator)) |
735 | FunctionSamples::ProfileIsFS = ProfileIsFS = true; |
736 | break; |
737 | case SecNameTable: { |
738 | bool FixedLengthMD5 = |
739 | hasSecFlag(Entry, Flag: SecNameTableFlags::SecFlagFixedLengthMD5); |
740 | bool UseMD5 = hasSecFlag(Entry, Flag: SecNameTableFlags::SecFlagMD5Name); |
741 | // UseMD5 means if THIS section uses MD5, ProfileIsMD5 means if the entire |
742 | // profile uses MD5 for function name matching in IPO passes. |
743 | ProfileIsMD5 = ProfileIsMD5 || UseMD5; |
744 | FunctionSamples::HasUniqSuffix = |
745 | hasSecFlag(Entry, Flag: SecNameTableFlags::SecFlagUniqSuffix); |
746 | if (std::error_code EC = readNameTableSec(IsMD5: UseMD5, FixedLengthMD5)) |
747 | return EC; |
748 | break; |
749 | } |
750 | case SecCSNameTable: { |
751 | if (std::error_code EC = readCSNameTableSec()) |
752 | return EC; |
753 | break; |
754 | } |
755 | case SecLBRProfile: |
756 | ProfileSecRange = std::make_pair(x&: Data, y&: End); |
757 | if (std::error_code EC = readFuncProfiles()) |
758 | return EC; |
759 | break; |
760 | case SecFuncOffsetTable: |
761 | // If module is absent, we are using LLVM tools, and need to read all |
762 | // profiles, so skip reading the function offset table. |
763 | if (!M) { |
764 | Data = End; |
765 | } else { |
766 | assert((!ProfileIsCS || |
767 | hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered)) && |
768 | "func offset table should always be sorted in CS profile" ); |
769 | if (std::error_code EC = readFuncOffsetTable()) |
770 | return EC; |
771 | } |
772 | break; |
773 | case SecFuncMetadata: { |
774 | ProfileIsProbeBased = |
775 | hasSecFlag(Entry, Flag: SecFuncMetadataFlags::SecFlagIsProbeBased); |
776 | FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; |
777 | ProfileHasAttribute = |
778 | hasSecFlag(Entry, Flag: SecFuncMetadataFlags::SecFlagHasAttribute); |
779 | if (std::error_code EC = readFuncMetadata(ProfileHasAttribute)) |
780 | return EC; |
781 | break; |
782 | } |
783 | case SecProfileSymbolList: |
784 | if (std::error_code EC = readProfileSymbolList()) |
785 | return EC; |
786 | break; |
787 | default: |
788 | if (std::error_code EC = readCustomSection(Entry)) |
789 | return EC; |
790 | break; |
791 | } |
792 | return sampleprof_error::success; |
793 | } |
794 | |
795 | bool SampleProfileReaderExtBinaryBase::useFuncOffsetList() const { |
796 | // If profile is CS, the function offset section is expected to consist of |
797 | // sequences of contexts in pre-order layout |
798 | // (e.g. [A, A:1 @ B, A:1 @ B:2.3 @ C] [D, D:1 @ E]), so that when a matched |
799 | // context in the module is found, the profiles of all its callees are |
800 | // recursively loaded. A list is needed since the order of profiles matters. |
801 | if (ProfileIsCS) |
802 | return true; |
803 | |
804 | // If the profile is MD5, use the map container to lookup functions in |
805 | // the module. A remapper has no use on MD5 names. |
806 | if (useMD5()) |
807 | return false; |
808 | |
809 | // Profile is not MD5 and if a remapper is present, the remapped name of |
810 | // every function needed to be matched against the module, so use the list |
811 | // container since each entry is accessed. |
812 | if (Remapper) |
813 | return true; |
814 | |
815 | // Otherwise use the map container for faster lookup. |
816 | // TODO: If the cardinality of the function offset section is much smaller |
817 | // than the number of functions in the module, using the list container can |
818 | // be always faster, but we need to figure out the constant factor to |
819 | // determine the cutoff. |
820 | return false; |
821 | } |
822 | |
823 | std::error_code |
824 | SampleProfileReaderExtBinaryBase::read(const DenseSet<StringRef> &FuncsToUse, |
825 | SampleProfileMap &Profiles) { |
826 | if (FuncsToUse.empty()) |
827 | return sampleprof_error::success; |
828 | |
829 | Data = ProfileSecRange.first; |
830 | End = ProfileSecRange.second; |
831 | if (std::error_code EC = readFuncProfiles(FuncsToUse, Profiles)) |
832 | return EC; |
833 | End = Data; |
834 | DenseSet<FunctionSamples *> ProfilesToReadMetadata; |
835 | for (auto FName : FuncsToUse) { |
836 | auto I = Profiles.find(Ctx: FName); |
837 | if (I != Profiles.end()) |
838 | ProfilesToReadMetadata.insert(V: &I->second); |
839 | } |
840 | |
841 | if (std::error_code EC = |
842 | readFuncMetadata(ProfileHasAttribute, Profiles&: ProfilesToReadMetadata)) |
843 | return EC; |
844 | return sampleprof_error::success; |
845 | } |
846 | |
847 | bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() { |
848 | if (!M) |
849 | return false; |
850 | FuncsToUse.clear(); |
851 | for (auto &F : *M) |
852 | FuncsToUse.insert(V: FunctionSamples::getCanonicalFnName(F)); |
853 | return true; |
854 | } |
855 | |
856 | std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() { |
857 | // If there are more than one function offset section, the profile associated |
858 | // with the previous section has to be done reading before next one is read. |
859 | FuncOffsetTable.clear(); |
860 | FuncOffsetList.clear(); |
861 | |
862 | auto Size = readNumber<uint64_t>(); |
863 | if (std::error_code EC = Size.getError()) |
864 | return EC; |
865 | |
866 | bool UseFuncOffsetList = useFuncOffsetList(); |
867 | if (UseFuncOffsetList) |
868 | FuncOffsetList.reserve(n: *Size); |
869 | else |
870 | FuncOffsetTable.reserve(NumEntries: *Size); |
871 | |
872 | for (uint64_t I = 0; I < *Size; ++I) { |
873 | auto FContextHash(readSampleContextFromTable()); |
874 | if (std::error_code EC = FContextHash.getError()) |
875 | return EC; |
876 | |
877 | auto &[FContext, Hash] = *FContextHash; |
878 | auto Offset = readNumber<uint64_t>(); |
879 | if (std::error_code EC = Offset.getError()) |
880 | return EC; |
881 | |
882 | if (UseFuncOffsetList) |
883 | FuncOffsetList.emplace_back(args&: FContext, args&: *Offset); |
884 | else |
885 | // Because Porfiles replace existing value with new value if collision |
886 | // happens, we also use the latest offset so that they are consistent. |
887 | FuncOffsetTable[Hash] = *Offset; |
888 | } |
889 | |
890 | return sampleprof_error::success; |
891 | } |
892 | |
893 | std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles( |
894 | const DenseSet<StringRef> &FuncsToUse, SampleProfileMap &Profiles) { |
895 | const uint8_t *Start = Data; |
896 | |
897 | if (Remapper) { |
898 | for (auto Name : FuncsToUse) { |
899 | Remapper->insert(FunctionName: Name); |
900 | } |
901 | } |
902 | |
903 | if (ProfileIsCS) { |
904 | assert(useFuncOffsetList()); |
905 | DenseSet<uint64_t> FuncGuidsToUse; |
906 | if (useMD5()) { |
907 | for (auto Name : FuncsToUse) |
908 | FuncGuidsToUse.insert(V: Function::getGUIDAssumingExternalLinkage(GlobalName: Name)); |
909 | } |
910 | |
911 | // For each function in current module, load all context profiles for |
912 | // the function as well as their callee contexts which can help profile |
913 | // guided importing for ThinLTO. This can be achieved by walking |
914 | // through an ordered context container, where contexts are laid out |
915 | // as if they were walked in preorder of a context trie. While |
916 | // traversing the trie, a link to the highest common ancestor node is |
917 | // kept so that all of its decendants will be loaded. |
918 | const SampleContext *CommonContext = nullptr; |
919 | for (const auto &NameOffset : FuncOffsetList) { |
920 | const auto &FContext = NameOffset.first; |
921 | FunctionId FName = FContext.getFunction(); |
922 | StringRef FNameString; |
923 | if (!useMD5()) |
924 | FNameString = FName.stringRef(); |
925 | |
926 | // For function in the current module, keep its farthest ancestor |
927 | // context. This can be used to load itself and its child and |
928 | // sibling contexts. |
929 | if ((useMD5() && FuncGuidsToUse.count(V: FName.getHashCode())) || |
930 | (!useMD5() && (FuncsToUse.count(V: FNameString) || |
931 | (Remapper && Remapper->exist(FunctionName: FNameString))))) { |
932 | if (!CommonContext || !CommonContext->isPrefixOf(That: FContext)) |
933 | CommonContext = &FContext; |
934 | } |
935 | |
936 | if (CommonContext == &FContext || |
937 | (CommonContext && CommonContext->isPrefixOf(That: FContext))) { |
938 | // Load profile for the current context which originated from |
939 | // the common ancestor. |
940 | const uint8_t *FuncProfileAddr = Start + NameOffset.second; |
941 | if (std::error_code EC = readFuncProfile(Start: FuncProfileAddr)) |
942 | return EC; |
943 | } |
944 | } |
945 | } else if (useMD5()) { |
946 | assert(!useFuncOffsetList()); |
947 | for (auto Name : FuncsToUse) { |
948 | auto GUID = MD5Hash(Str: Name); |
949 | auto iter = FuncOffsetTable.find(Val: GUID); |
950 | if (iter == FuncOffsetTable.end()) |
951 | continue; |
952 | const uint8_t *FuncProfileAddr = Start + iter->second; |
953 | if (std::error_code EC = readFuncProfile(Start: FuncProfileAddr, Profiles)) |
954 | return EC; |
955 | } |
956 | } else if (Remapper) { |
957 | assert(useFuncOffsetList()); |
958 | for (auto NameOffset : FuncOffsetList) { |
959 | SampleContext FContext(NameOffset.first); |
960 | auto FuncName = FContext.getFunction(); |
961 | StringRef FuncNameStr = FuncName.stringRef(); |
962 | if (!FuncsToUse.count(V: FuncNameStr) && !Remapper->exist(FunctionName: FuncNameStr)) |
963 | continue; |
964 | const uint8_t *FuncProfileAddr = Start + NameOffset.second; |
965 | if (std::error_code EC = readFuncProfile(Start: FuncProfileAddr, Profiles)) |
966 | return EC; |
967 | } |
968 | } else { |
969 | assert(!useFuncOffsetList()); |
970 | for (auto Name : FuncsToUse) { |
971 | |
972 | auto iter = FuncOffsetTable.find(Val: MD5Hash(Str: Name)); |
973 | if (iter == FuncOffsetTable.end()) |
974 | continue; |
975 | const uint8_t *FuncProfileAddr = Start + iter->second; |
976 | if (std::error_code EC = readFuncProfile(Start: FuncProfileAddr, Profiles)) |
977 | return EC; |
978 | } |
979 | } |
980 | |
981 | return sampleprof_error::success; |
982 | } |
983 | |
984 | std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() { |
985 | // Collect functions used by current module if the Reader has been |
986 | // given a module. |
987 | // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName |
988 | // which will query FunctionSamples::HasUniqSuffix, so it has to be |
989 | // called after FunctionSamples::HasUniqSuffix is set, i.e. after |
990 | // NameTable section is read. |
991 | bool LoadFuncsToBeUsed = collectFuncsFromModule(); |
992 | |
993 | // When LoadFuncsToBeUsed is false, we are using LLVM tool, need to read all |
994 | // profiles. |
995 | if (!LoadFuncsToBeUsed) { |
996 | while (Data < End) { |
997 | if (std::error_code EC = readFuncProfile(Start: Data)) |
998 | return EC; |
999 | } |
1000 | assert(Data == End && "More data is read than expected" ); |
1001 | } else { |
1002 | // Load function profiles on demand. |
1003 | if (std::error_code EC = readFuncProfiles(FuncsToUse, Profiles)) |
1004 | return EC; |
1005 | Data = End; |
1006 | } |
1007 | assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && |
1008 | "Cannot have both context-sensitive and regular profile" ); |
1009 | assert((!CSProfileCount || ProfileIsCS) && |
1010 | "Section flag should be consistent with actual profile" ); |
1011 | return sampleprof_error::success; |
1012 | } |
1013 | |
1014 | std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() { |
1015 | if (!ProfSymList) |
1016 | ProfSymList = std::make_unique<ProfileSymbolList>(); |
1017 | |
1018 | if (std::error_code EC = ProfSymList->read(Data, ListSize: End - Data)) |
1019 | return EC; |
1020 | |
1021 | Data = End; |
1022 | return sampleprof_error::success; |
1023 | } |
1024 | |
1025 | std::error_code SampleProfileReaderExtBinaryBase::decompressSection( |
1026 | const uint8_t *SecStart, const uint64_t SecSize, |
1027 | const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) { |
1028 | Data = SecStart; |
1029 | End = SecStart + SecSize; |
1030 | auto DecompressSize = readNumber<uint64_t>(); |
1031 | if (std::error_code EC = DecompressSize.getError()) |
1032 | return EC; |
1033 | DecompressBufSize = *DecompressSize; |
1034 | |
1035 | auto CompressSize = readNumber<uint64_t>(); |
1036 | if (std::error_code EC = CompressSize.getError()) |
1037 | return EC; |
1038 | |
1039 | if (!llvm::compression::zlib::isAvailable()) |
1040 | return sampleprof_error::zlib_unavailable; |
1041 | |
1042 | uint8_t *Buffer = Allocator.Allocate<uint8_t>(Num: DecompressBufSize); |
1043 | size_t UCSize = DecompressBufSize; |
1044 | llvm::Error E = compression::zlib::decompress(Input: ArrayRef(Data, *CompressSize), |
1045 | Output: Buffer, UncompressedSize&: UCSize); |
1046 | if (E) |
1047 | return sampleprof_error::uncompress_failed; |
1048 | DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer); |
1049 | return sampleprof_error::success; |
1050 | } |
1051 | |
1052 | std::error_code SampleProfileReaderExtBinaryBase::readImpl() { |
1053 | const uint8_t *BufStart = |
1054 | reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); |
1055 | |
1056 | for (auto &Entry : SecHdrTable) { |
1057 | // Skip empty section. |
1058 | if (!Entry.Size) |
1059 | continue; |
1060 | |
1061 | // Skip sections without inlined functions when SkipFlatProf is true. |
1062 | if (SkipFlatProf && hasSecFlag(Entry, Flag: SecCommonFlags::SecFlagFlat)) |
1063 | continue; |
1064 | |
1065 | const uint8_t *SecStart = BufStart + Entry.Offset; |
1066 | uint64_t SecSize = Entry.Size; |
1067 | |
1068 | // If the section is compressed, decompress it into a buffer |
1069 | // DecompressBuf before reading the actual data. The pointee of |
1070 | // 'Data' will be changed to buffer hold by DecompressBuf |
1071 | // temporarily when reading the actual data. |
1072 | bool isCompressed = hasSecFlag(Entry, Flag: SecCommonFlags::SecFlagCompress); |
1073 | if (isCompressed) { |
1074 | const uint8_t *DecompressBuf; |
1075 | uint64_t DecompressBufSize; |
1076 | if (std::error_code EC = decompressSection( |
1077 | SecStart, SecSize, DecompressBuf, DecompressBufSize)) |
1078 | return EC; |
1079 | SecStart = DecompressBuf; |
1080 | SecSize = DecompressBufSize; |
1081 | } |
1082 | |
1083 | if (std::error_code EC = readOneSection(Start: SecStart, Size: SecSize, Entry)) |
1084 | return EC; |
1085 | if (Data != SecStart + SecSize) |
1086 | return sampleprof_error::malformed; |
1087 | |
1088 | // Change the pointee of 'Data' from DecompressBuf to original Buffer. |
1089 | if (isCompressed) { |
1090 | Data = BufStart + Entry.Offset; |
1091 | End = BufStart + Buffer->getBufferSize(); |
1092 | } |
1093 | } |
1094 | |
1095 | return sampleprof_error::success; |
1096 | } |
1097 | |
1098 | std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) { |
1099 | if (Magic == SPMagic()) |
1100 | return sampleprof_error::success; |
1101 | return sampleprof_error::bad_magic; |
1102 | } |
1103 | |
1104 | std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) { |
1105 | if (Magic == SPMagic(Format: SPF_Ext_Binary)) |
1106 | return sampleprof_error::success; |
1107 | return sampleprof_error::bad_magic; |
1108 | } |
1109 | |
1110 | std::error_code SampleProfileReaderBinary::readNameTable() { |
1111 | auto Size = readNumber<size_t>(); |
1112 | if (std::error_code EC = Size.getError()) |
1113 | return EC; |
1114 | |
1115 | // Normally if useMD5 is true, the name table should have MD5 values, not |
1116 | // strings, however in the case that ExtBinary profile has multiple name |
1117 | // tables mixing string and MD5, all of them have to be normalized to use MD5, |
1118 | // because optimization passes can only handle either type. |
1119 | bool UseMD5 = useMD5(); |
1120 | |
1121 | NameTable.clear(); |
1122 | NameTable.reserve(n: *Size); |
1123 | if (!ProfileIsCS) { |
1124 | MD5SampleContextTable.clear(); |
1125 | if (UseMD5) |
1126 | MD5SampleContextTable.reserve(n: *Size); |
1127 | else |
1128 | // If we are using strings, delay MD5 computation since only a portion of |
1129 | // names are used by top level functions. Use 0 to indicate MD5 value is |
1130 | // to be calculated as no known string has a MD5 value of 0. |
1131 | MD5SampleContextTable.resize(new_size: *Size); |
1132 | } |
1133 | for (size_t I = 0; I < *Size; ++I) { |
1134 | auto Name(readString()); |
1135 | if (std::error_code EC = Name.getError()) |
1136 | return EC; |
1137 | if (UseMD5) { |
1138 | FunctionId FID(*Name); |
1139 | if (!ProfileIsCS) |
1140 | MD5SampleContextTable.emplace_back(args: FID.getHashCode()); |
1141 | NameTable.emplace_back(args&: FID); |
1142 | } else |
1143 | NameTable.push_back(x: FunctionId(*Name)); |
1144 | } |
1145 | if (!ProfileIsCS) |
1146 | MD5SampleContextStart = MD5SampleContextTable.data(); |
1147 | return sampleprof_error::success; |
1148 | } |
1149 | |
1150 | std::error_code |
1151 | SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5, |
1152 | bool FixedLengthMD5) { |
1153 | if (FixedLengthMD5) { |
1154 | if (!IsMD5) |
1155 | errs() << "If FixedLengthMD5 is true, UseMD5 has to be true" ; |
1156 | auto Size = readNumber<size_t>(); |
1157 | if (std::error_code EC = Size.getError()) |
1158 | return EC; |
1159 | |
1160 | assert(Data + (*Size) * sizeof(uint64_t) == End && |
1161 | "Fixed length MD5 name table does not contain specified number of " |
1162 | "entries" ); |
1163 | if (Data + (*Size) * sizeof(uint64_t) > End) |
1164 | return sampleprof_error::truncated; |
1165 | |
1166 | NameTable.clear(); |
1167 | NameTable.reserve(n: *Size); |
1168 | for (size_t I = 0; I < *Size; ++I) { |
1169 | using namespace support; |
1170 | uint64_t FID = endian::read<uint64_t, endianness::little, unaligned>( |
1171 | memory: Data + I * sizeof(uint64_t)); |
1172 | NameTable.emplace_back(args: FunctionId(FID)); |
1173 | } |
1174 | if (!ProfileIsCS) |
1175 | MD5SampleContextStart = reinterpret_cast<const uint64_t *>(Data); |
1176 | Data = Data + (*Size) * sizeof(uint64_t); |
1177 | return sampleprof_error::success; |
1178 | } |
1179 | |
1180 | if (IsMD5) { |
1181 | assert(!FixedLengthMD5 && "FixedLengthMD5 should be unreachable here" ); |
1182 | auto Size = readNumber<size_t>(); |
1183 | if (std::error_code EC = Size.getError()) |
1184 | return EC; |
1185 | |
1186 | NameTable.clear(); |
1187 | NameTable.reserve(n: *Size); |
1188 | if (!ProfileIsCS) |
1189 | MD5SampleContextTable.resize(new_size: *Size); |
1190 | for (size_t I = 0; I < *Size; ++I) { |
1191 | auto FID = readNumber<uint64_t>(); |
1192 | if (std::error_code EC = FID.getError()) |
1193 | return EC; |
1194 | if (!ProfileIsCS) |
1195 | support::endian::write64le(P: &MD5SampleContextTable[I], V: *FID); |
1196 | NameTable.emplace_back(args: FunctionId(*FID)); |
1197 | } |
1198 | if (!ProfileIsCS) |
1199 | MD5SampleContextStart = MD5SampleContextTable.data(); |
1200 | return sampleprof_error::success; |
1201 | } |
1202 | |
1203 | return SampleProfileReaderBinary::readNameTable(); |
1204 | } |
1205 | |
1206 | // Read in the CS name table section, which basically contains a list of context |
1207 | // vectors. Each element of a context vector, aka a frame, refers to the |
1208 | // underlying raw function names that are stored in the name table, as well as |
1209 | // a callsite identifier that only makes sense for non-leaf frames. |
1210 | std::error_code SampleProfileReaderExtBinaryBase::readCSNameTableSec() { |
1211 | auto Size = readNumber<size_t>(); |
1212 | if (std::error_code EC = Size.getError()) |
1213 | return EC; |
1214 | |
1215 | CSNameTable.clear(); |
1216 | CSNameTable.reserve(n: *Size); |
1217 | if (ProfileIsCS) { |
1218 | // Delay MD5 computation of CS context until they are needed. Use 0 to |
1219 | // indicate MD5 value is to be calculated as no known string has a MD5 |
1220 | // value of 0. |
1221 | MD5SampleContextTable.clear(); |
1222 | MD5SampleContextTable.resize(new_size: *Size); |
1223 | MD5SampleContextStart = MD5SampleContextTable.data(); |
1224 | } |
1225 | for (size_t I = 0; I < *Size; ++I) { |
1226 | CSNameTable.emplace_back(args: SampleContextFrameVector()); |
1227 | auto ContextSize = readNumber<uint32_t>(); |
1228 | if (std::error_code EC = ContextSize.getError()) |
1229 | return EC; |
1230 | for (uint32_t J = 0; J < *ContextSize; ++J) { |
1231 | auto FName(readStringFromTable()); |
1232 | if (std::error_code EC = FName.getError()) |
1233 | return EC; |
1234 | auto LineOffset = readNumber<uint64_t>(); |
1235 | if (std::error_code EC = LineOffset.getError()) |
1236 | return EC; |
1237 | |
1238 | if (!isOffsetLegal(L: *LineOffset)) |
1239 | return std::error_code(); |
1240 | |
1241 | auto Discriminator = readNumber<uint64_t>(); |
1242 | if (std::error_code EC = Discriminator.getError()) |
1243 | return EC; |
1244 | |
1245 | CSNameTable.back().emplace_back( |
1246 | Args&: FName.get(), Args: LineLocation(LineOffset.get(), Discriminator.get())); |
1247 | } |
1248 | } |
1249 | |
1250 | return sampleprof_error::success; |
1251 | } |
1252 | |
1253 | std::error_code |
1254 | SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute, |
1255 | FunctionSamples *FProfile) { |
1256 | if (Data < End) { |
1257 | if (ProfileIsProbeBased) { |
1258 | auto Checksum = readNumber<uint64_t>(); |
1259 | if (std::error_code EC = Checksum.getError()) |
1260 | return EC; |
1261 | if (FProfile) |
1262 | FProfile->setFunctionHash(*Checksum); |
1263 | } |
1264 | |
1265 | if (ProfileHasAttribute) { |
1266 | auto Attributes = readNumber<uint32_t>(); |
1267 | if (std::error_code EC = Attributes.getError()) |
1268 | return EC; |
1269 | if (FProfile) |
1270 | FProfile->getContext().setAllAttributes(*Attributes); |
1271 | } |
1272 | |
1273 | if (!ProfileIsCS) { |
1274 | // Read all the attributes for inlined function calls. |
1275 | auto NumCallsites = readNumber<uint32_t>(); |
1276 | if (std::error_code EC = NumCallsites.getError()) |
1277 | return EC; |
1278 | |
1279 | for (uint32_t J = 0; J < *NumCallsites; ++J) { |
1280 | auto LineOffset = readNumber<uint64_t>(); |
1281 | if (std::error_code EC = LineOffset.getError()) |
1282 | return EC; |
1283 | |
1284 | auto Discriminator = readNumber<uint64_t>(); |
1285 | if (std::error_code EC = Discriminator.getError()) |
1286 | return EC; |
1287 | |
1288 | auto FContextHash(readSampleContextFromTable()); |
1289 | if (std::error_code EC = FContextHash.getError()) |
1290 | return EC; |
1291 | |
1292 | auto &[FContext, Hash] = *FContextHash; |
1293 | FunctionSamples *CalleeProfile = nullptr; |
1294 | if (FProfile) { |
1295 | CalleeProfile = const_cast<FunctionSamples *>( |
1296 | &FProfile->functionSamplesAt(Loc: LineLocation( |
1297 | *LineOffset, |
1298 | *Discriminator))[FContext.getFunction()]); |
1299 | } |
1300 | if (std::error_code EC = |
1301 | readFuncMetadata(ProfileHasAttribute, FProfile: CalleeProfile)) |
1302 | return EC; |
1303 | } |
1304 | } |
1305 | } |
1306 | |
1307 | return sampleprof_error::success; |
1308 | } |
1309 | |
1310 | std::error_code SampleProfileReaderExtBinaryBase::readFuncMetadata( |
1311 | bool ProfileHasAttribute, DenseSet<FunctionSamples *> &Profiles) { |
1312 | if (FuncMetadataIndex.empty()) |
1313 | return sampleprof_error::success; |
1314 | |
1315 | for (auto *FProfile : Profiles) { |
1316 | auto R = FuncMetadataIndex.find(x: FProfile->getContext().getHashCode()); |
1317 | if (R == FuncMetadataIndex.end()) |
1318 | continue; |
1319 | |
1320 | Data = R->second.first; |
1321 | End = R->second.second; |
1322 | if (std::error_code EC = readFuncMetadata(ProfileHasAttribute, FProfile)) |
1323 | return EC; |
1324 | assert(Data == End && "More data is read than expected" ); |
1325 | } |
1326 | return sampleprof_error::success; |
1327 | } |
1328 | |
1329 | std::error_code |
1330 | SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) { |
1331 | while (Data < End) { |
1332 | auto FContextHash(readSampleContextFromTable()); |
1333 | if (std::error_code EC = FContextHash.getError()) |
1334 | return EC; |
1335 | auto &[FContext, Hash] = *FContextHash; |
1336 | FunctionSamples *FProfile = nullptr; |
1337 | auto It = Profiles.find(Ctx: FContext); |
1338 | if (It != Profiles.end()) |
1339 | FProfile = &It->second; |
1340 | |
1341 | const uint8_t *Start = Data; |
1342 | if (std::error_code EC = readFuncMetadata(ProfileHasAttribute, FProfile)) |
1343 | return EC; |
1344 | |
1345 | FuncMetadataIndex[FContext.getHashCode()] = {Start, Data}; |
1346 | } |
1347 | |
1348 | assert(Data == End && "More data is read than expected" ); |
1349 | return sampleprof_error::success; |
1350 | } |
1351 | |
1352 | std::error_code |
1353 | SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint64_t Idx) { |
1354 | SecHdrTableEntry Entry; |
1355 | auto Type = readUnencodedNumber<uint64_t>(); |
1356 | if (std::error_code EC = Type.getError()) |
1357 | return EC; |
1358 | Entry.Type = static_cast<SecType>(*Type); |
1359 | |
1360 | auto Flags = readUnencodedNumber<uint64_t>(); |
1361 | if (std::error_code EC = Flags.getError()) |
1362 | return EC; |
1363 | Entry.Flags = *Flags; |
1364 | |
1365 | auto Offset = readUnencodedNumber<uint64_t>(); |
1366 | if (std::error_code EC = Offset.getError()) |
1367 | return EC; |
1368 | Entry.Offset = *Offset; |
1369 | |
1370 | auto Size = readUnencodedNumber<uint64_t>(); |
1371 | if (std::error_code EC = Size.getError()) |
1372 | return EC; |
1373 | Entry.Size = *Size; |
1374 | |
1375 | Entry.LayoutIndex = Idx; |
1376 | SecHdrTable.push_back(x: std::move(Entry)); |
1377 | return sampleprof_error::success; |
1378 | } |
1379 | |
1380 | std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() { |
1381 | auto EntryNum = readUnencodedNumber<uint64_t>(); |
1382 | if (std::error_code EC = EntryNum.getError()) |
1383 | return EC; |
1384 | |
1385 | for (uint64_t i = 0; i < (*EntryNum); i++) |
1386 | if (std::error_code EC = readSecHdrTableEntry(Idx: i)) |
1387 | return EC; |
1388 | |
1389 | return sampleprof_error::success; |
1390 | } |
1391 | |
1392 | std::error_code SampleProfileReaderExtBinaryBase::() { |
1393 | const uint8_t *BufStart = |
1394 | reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); |
1395 | Data = BufStart; |
1396 | End = BufStart + Buffer->getBufferSize(); |
1397 | |
1398 | if (std::error_code EC = readMagicIdent()) |
1399 | return EC; |
1400 | |
1401 | if (std::error_code EC = readSecHdrTable()) |
1402 | return EC; |
1403 | |
1404 | return sampleprof_error::success; |
1405 | } |
1406 | |
1407 | uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) { |
1408 | uint64_t Size = 0; |
1409 | for (auto &Entry : SecHdrTable) { |
1410 | if (Entry.Type == Type) |
1411 | Size += Entry.Size; |
1412 | } |
1413 | return Size; |
1414 | } |
1415 | |
1416 | uint64_t SampleProfileReaderExtBinaryBase::getFileSize() { |
1417 | // Sections in SecHdrTable is not necessarily in the same order as |
1418 | // sections in the profile because section like FuncOffsetTable needs |
1419 | // to be written after section LBRProfile but needs to be read before |
1420 | // section LBRProfile, so we cannot simply use the last entry in |
1421 | // SecHdrTable to calculate the file size. |
1422 | uint64_t FileSize = 0; |
1423 | for (auto &Entry : SecHdrTable) { |
1424 | FileSize = std::max(a: Entry.Offset + Entry.Size, b: FileSize); |
1425 | } |
1426 | return FileSize; |
1427 | } |
1428 | |
1429 | static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) { |
1430 | std::string Flags; |
1431 | if (hasSecFlag(Entry, Flag: SecCommonFlags::SecFlagCompress)) |
1432 | Flags.append(s: "{compressed," ); |
1433 | else |
1434 | Flags.append(s: "{" ); |
1435 | |
1436 | if (hasSecFlag(Entry, Flag: SecCommonFlags::SecFlagFlat)) |
1437 | Flags.append(s: "flat," ); |
1438 | |
1439 | switch (Entry.Type) { |
1440 | case SecNameTable: |
1441 | if (hasSecFlag(Entry, Flag: SecNameTableFlags::SecFlagFixedLengthMD5)) |
1442 | Flags.append(s: "fixlenmd5," ); |
1443 | else if (hasSecFlag(Entry, Flag: SecNameTableFlags::SecFlagMD5Name)) |
1444 | Flags.append(s: "md5," ); |
1445 | if (hasSecFlag(Entry, Flag: SecNameTableFlags::SecFlagUniqSuffix)) |
1446 | Flags.append(s: "uniq," ); |
1447 | break; |
1448 | case SecProfSummary: |
1449 | if (hasSecFlag(Entry, Flag: SecProfSummaryFlags::SecFlagPartial)) |
1450 | Flags.append(s: "partial," ); |
1451 | if (hasSecFlag(Entry, Flag: SecProfSummaryFlags::SecFlagFullContext)) |
1452 | Flags.append(s: "context," ); |
1453 | if (hasSecFlag(Entry, Flag: SecProfSummaryFlags::SecFlagIsPreInlined)) |
1454 | Flags.append(s: "preInlined," ); |
1455 | if (hasSecFlag(Entry, Flag: SecProfSummaryFlags::SecFlagFSDiscriminator)) |
1456 | Flags.append(s: "fs-discriminator," ); |
1457 | break; |
1458 | case SecFuncOffsetTable: |
1459 | if (hasSecFlag(Entry, Flag: SecFuncOffsetFlags::SecFlagOrdered)) |
1460 | Flags.append(s: "ordered," ); |
1461 | break; |
1462 | case SecFuncMetadata: |
1463 | if (hasSecFlag(Entry, Flag: SecFuncMetadataFlags::SecFlagIsProbeBased)) |
1464 | Flags.append(s: "probe," ); |
1465 | if (hasSecFlag(Entry, Flag: SecFuncMetadataFlags::SecFlagHasAttribute)) |
1466 | Flags.append(s: "attr," ); |
1467 | break; |
1468 | default: |
1469 | break; |
1470 | } |
1471 | char &last = Flags.back(); |
1472 | if (last == ',') |
1473 | last = '}'; |
1474 | else |
1475 | Flags.append(s: "}" ); |
1476 | return Flags; |
1477 | } |
1478 | |
1479 | bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) { |
1480 | uint64_t TotalSecsSize = 0; |
1481 | for (auto &Entry : SecHdrTable) { |
1482 | OS << getSecName(Type: Entry.Type) << " - Offset: " << Entry.Offset |
1483 | << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry) |
1484 | << "\n" ; |
1485 | ; |
1486 | TotalSecsSize += Entry.Size; |
1487 | } |
1488 | uint64_t = SecHdrTable.front().Offset; |
1489 | assert(HeaderSize + TotalSecsSize == getFileSize() && |
1490 | "Size of 'header + sections' doesn't match the total size of profile" ); |
1491 | |
1492 | OS << "Header Size: " << HeaderSize << "\n" ; |
1493 | OS << "Total Sections Size: " << TotalSecsSize << "\n" ; |
1494 | OS << "File Size: " << getFileSize() << "\n" ; |
1495 | return true; |
1496 | } |
1497 | |
1498 | std::error_code SampleProfileReaderBinary::readMagicIdent() { |
1499 | // Read and check the magic identifier. |
1500 | auto Magic = readNumber<uint64_t>(); |
1501 | if (std::error_code EC = Magic.getError()) |
1502 | return EC; |
1503 | else if (std::error_code EC = verifySPMagic(Magic: *Magic)) |
1504 | return EC; |
1505 | |
1506 | // Read the version number. |
1507 | auto Version = readNumber<uint64_t>(); |
1508 | if (std::error_code EC = Version.getError()) |
1509 | return EC; |
1510 | else if (*Version != SPVersion()) |
1511 | return sampleprof_error::unsupported_version; |
1512 | |
1513 | return sampleprof_error::success; |
1514 | } |
1515 | |
1516 | std::error_code SampleProfileReaderBinary::() { |
1517 | Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); |
1518 | End = Data + Buffer->getBufferSize(); |
1519 | |
1520 | if (std::error_code EC = readMagicIdent()) |
1521 | return EC; |
1522 | |
1523 | if (std::error_code EC = readSummary()) |
1524 | return EC; |
1525 | |
1526 | if (std::error_code EC = readNameTable()) |
1527 | return EC; |
1528 | return sampleprof_error::success; |
1529 | } |
1530 | |
1531 | std::error_code SampleProfileReaderBinary::readSummaryEntry( |
1532 | std::vector<ProfileSummaryEntry> &Entries) { |
1533 | auto Cutoff = readNumber<uint64_t>(); |
1534 | if (std::error_code EC = Cutoff.getError()) |
1535 | return EC; |
1536 | |
1537 | auto MinBlockCount = readNumber<uint64_t>(); |
1538 | if (std::error_code EC = MinBlockCount.getError()) |
1539 | return EC; |
1540 | |
1541 | auto NumBlocks = readNumber<uint64_t>(); |
1542 | if (std::error_code EC = NumBlocks.getError()) |
1543 | return EC; |
1544 | |
1545 | Entries.emplace_back(args&: *Cutoff, args&: *MinBlockCount, args&: *NumBlocks); |
1546 | return sampleprof_error::success; |
1547 | } |
1548 | |
1549 | std::error_code SampleProfileReaderBinary::readSummary() { |
1550 | auto TotalCount = readNumber<uint64_t>(); |
1551 | if (std::error_code EC = TotalCount.getError()) |
1552 | return EC; |
1553 | |
1554 | auto MaxBlockCount = readNumber<uint64_t>(); |
1555 | if (std::error_code EC = MaxBlockCount.getError()) |
1556 | return EC; |
1557 | |
1558 | auto MaxFunctionCount = readNumber<uint64_t>(); |
1559 | if (std::error_code EC = MaxFunctionCount.getError()) |
1560 | return EC; |
1561 | |
1562 | auto NumBlocks = readNumber<uint64_t>(); |
1563 | if (std::error_code EC = NumBlocks.getError()) |
1564 | return EC; |
1565 | |
1566 | auto NumFunctions = readNumber<uint64_t>(); |
1567 | if (std::error_code EC = NumFunctions.getError()) |
1568 | return EC; |
1569 | |
1570 | auto NumSummaryEntries = readNumber<uint64_t>(); |
1571 | if (std::error_code EC = NumSummaryEntries.getError()) |
1572 | return EC; |
1573 | |
1574 | std::vector<ProfileSummaryEntry> Entries; |
1575 | for (unsigned i = 0; i < *NumSummaryEntries; i++) { |
1576 | std::error_code EC = readSummaryEntry(Entries); |
1577 | if (EC != sampleprof_error::success) |
1578 | return EC; |
1579 | } |
1580 | Summary = std::make_unique<ProfileSummary>( |
1581 | args: ProfileSummary::PSK_Sample, args&: Entries, args&: *TotalCount, args&: *MaxBlockCount, args: 0, |
1582 | args&: *MaxFunctionCount, args&: *NumBlocks, args&: *NumFunctions); |
1583 | |
1584 | return sampleprof_error::success; |
1585 | } |
1586 | |
1587 | bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) { |
1588 | const uint8_t *Data = |
1589 | reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); |
1590 | uint64_t Magic = decodeULEB128(p: Data); |
1591 | return Magic == SPMagic(); |
1592 | } |
1593 | |
1594 | bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) { |
1595 | const uint8_t *Data = |
1596 | reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); |
1597 | uint64_t Magic = decodeULEB128(p: Data); |
1598 | return Magic == SPMagic(Format: SPF_Ext_Binary); |
1599 | } |
1600 | |
1601 | std::error_code SampleProfileReaderGCC::skipNextWord() { |
1602 | uint32_t dummy; |
1603 | if (!GcovBuffer.readInt(Val&: dummy)) |
1604 | return sampleprof_error::truncated; |
1605 | return sampleprof_error::success; |
1606 | } |
1607 | |
1608 | template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() { |
1609 | if (sizeof(T) <= sizeof(uint32_t)) { |
1610 | uint32_t Val; |
1611 | if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max()) |
1612 | return static_cast<T>(Val); |
1613 | } else if (sizeof(T) <= sizeof(uint64_t)) { |
1614 | uint64_t Val; |
1615 | if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max()) |
1616 | return static_cast<T>(Val); |
1617 | } |
1618 | |
1619 | std::error_code EC = sampleprof_error::malformed; |
1620 | reportError(LineNumber: 0, Msg: EC.message()); |
1621 | return EC; |
1622 | } |
1623 | |
1624 | ErrorOr<StringRef> SampleProfileReaderGCC::readString() { |
1625 | StringRef Str; |
1626 | if (!GcovBuffer.readString(str&: Str)) |
1627 | return sampleprof_error::truncated; |
1628 | return Str; |
1629 | } |
1630 | |
1631 | std::error_code SampleProfileReaderGCC::() { |
1632 | // Read the magic identifier. |
1633 | if (!GcovBuffer.readGCDAFormat()) |
1634 | return sampleprof_error::unrecognized_format; |
1635 | |
1636 | // Read the version number. Note - the GCC reader does not validate this |
1637 | // version, but the profile creator generates v704. |
1638 | GCOV::GCOVVersion version; |
1639 | if (!GcovBuffer.readGCOVVersion(version)) |
1640 | return sampleprof_error::unrecognized_format; |
1641 | |
1642 | if (version != GCOV::V407) |
1643 | return sampleprof_error::unsupported_version; |
1644 | |
1645 | // Skip the empty integer. |
1646 | if (std::error_code EC = skipNextWord()) |
1647 | return EC; |
1648 | |
1649 | return sampleprof_error::success; |
1650 | } |
1651 | |
1652 | std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { |
1653 | uint32_t Tag; |
1654 | if (!GcovBuffer.readInt(Val&: Tag)) |
1655 | return sampleprof_error::truncated; |
1656 | |
1657 | if (Tag != Expected) |
1658 | return sampleprof_error::malformed; |
1659 | |
1660 | if (std::error_code EC = skipNextWord()) |
1661 | return EC; |
1662 | |
1663 | return sampleprof_error::success; |
1664 | } |
1665 | |
1666 | std::error_code SampleProfileReaderGCC::readNameTable() { |
1667 | if (std::error_code EC = readSectionTag(Expected: GCOVTagAFDOFileNames)) |
1668 | return EC; |
1669 | |
1670 | uint32_t Size; |
1671 | if (!GcovBuffer.readInt(Val&: Size)) |
1672 | return sampleprof_error::truncated; |
1673 | |
1674 | for (uint32_t I = 0; I < Size; ++I) { |
1675 | StringRef Str; |
1676 | if (!GcovBuffer.readString(str&: Str)) |
1677 | return sampleprof_error::truncated; |
1678 | Names.push_back(x: std::string(Str)); |
1679 | } |
1680 | |
1681 | return sampleprof_error::success; |
1682 | } |
1683 | |
1684 | std::error_code SampleProfileReaderGCC::readFunctionProfiles() { |
1685 | if (std::error_code EC = readSectionTag(Expected: GCOVTagAFDOFunction)) |
1686 | return EC; |
1687 | |
1688 | uint32_t NumFunctions; |
1689 | if (!GcovBuffer.readInt(Val&: NumFunctions)) |
1690 | return sampleprof_error::truncated; |
1691 | |
1692 | InlineCallStack Stack; |
1693 | for (uint32_t I = 0; I < NumFunctions; ++I) |
1694 | if (std::error_code EC = readOneFunctionProfile(InlineStack: Stack, Update: true, Offset: 0)) |
1695 | return EC; |
1696 | |
1697 | computeSummary(); |
1698 | return sampleprof_error::success; |
1699 | } |
1700 | |
1701 | std::error_code SampleProfileReaderGCC::readOneFunctionProfile( |
1702 | const InlineCallStack &InlineStack, bool Update, uint32_t Offset) { |
1703 | uint64_t HeadCount = 0; |
1704 | if (InlineStack.size() == 0) |
1705 | if (!GcovBuffer.readInt64(Val&: HeadCount)) |
1706 | return sampleprof_error::truncated; |
1707 | |
1708 | uint32_t NameIdx; |
1709 | if (!GcovBuffer.readInt(Val&: NameIdx)) |
1710 | return sampleprof_error::truncated; |
1711 | |
1712 | StringRef Name(Names[NameIdx]); |
1713 | |
1714 | uint32_t NumPosCounts; |
1715 | if (!GcovBuffer.readInt(Val&: NumPosCounts)) |
1716 | return sampleprof_error::truncated; |
1717 | |
1718 | uint32_t NumCallsites; |
1719 | if (!GcovBuffer.readInt(Val&: NumCallsites)) |
1720 | return sampleprof_error::truncated; |
1721 | |
1722 | FunctionSamples *FProfile = nullptr; |
1723 | if (InlineStack.size() == 0) { |
1724 | // If this is a top function that we have already processed, do not |
1725 | // update its profile again. This happens in the presence of |
1726 | // function aliases. Since these aliases share the same function |
1727 | // body, there will be identical replicated profiles for the |
1728 | // original function. In this case, we simply not bother updating |
1729 | // the profile of the original function. |
1730 | FProfile = &Profiles[FunctionId(Name)]; |
1731 | FProfile->addHeadSamples(Num: HeadCount); |
1732 | if (FProfile->getTotalSamples() > 0) |
1733 | Update = false; |
1734 | } else { |
1735 | // Otherwise, we are reading an inlined instance. The top of the |
1736 | // inline stack contains the profile of the caller. Insert this |
1737 | // callee in the caller's CallsiteMap. |
1738 | FunctionSamples *CallerProfile = InlineStack.front(); |
1739 | uint32_t LineOffset = Offset >> 16; |
1740 | uint32_t Discriminator = Offset & 0xffff; |
1741 | FProfile = &CallerProfile->functionSamplesAt( |
1742 | Loc: LineLocation(LineOffset, Discriminator))[FunctionId(Name)]; |
1743 | } |
1744 | FProfile->setFunction(FunctionId(Name)); |
1745 | |
1746 | for (uint32_t I = 0; I < NumPosCounts; ++I) { |
1747 | uint32_t Offset; |
1748 | if (!GcovBuffer.readInt(Val&: Offset)) |
1749 | return sampleprof_error::truncated; |
1750 | |
1751 | uint32_t NumTargets; |
1752 | if (!GcovBuffer.readInt(Val&: NumTargets)) |
1753 | return sampleprof_error::truncated; |
1754 | |
1755 | uint64_t Count; |
1756 | if (!GcovBuffer.readInt64(Val&: Count)) |
1757 | return sampleprof_error::truncated; |
1758 | |
1759 | // The line location is encoded in the offset as: |
1760 | // high 16 bits: line offset to the start of the function. |
1761 | // low 16 bits: discriminator. |
1762 | uint32_t LineOffset = Offset >> 16; |
1763 | uint32_t Discriminator = Offset & 0xffff; |
1764 | |
1765 | InlineCallStack NewStack; |
1766 | NewStack.push_back(Elt: FProfile); |
1767 | llvm::append_range(C&: NewStack, R: InlineStack); |
1768 | if (Update) { |
1769 | // Walk up the inline stack, adding the samples on this line to |
1770 | // the total sample count of the callers in the chain. |
1771 | for (auto *CallerProfile : NewStack) |
1772 | CallerProfile->addTotalSamples(Num: Count); |
1773 | |
1774 | // Update the body samples for the current profile. |
1775 | FProfile->addBodySamples(LineOffset, Discriminator, Num: Count); |
1776 | } |
1777 | |
1778 | // Process the list of functions called at an indirect call site. |
1779 | // These are all the targets that a function pointer (or virtual |
1780 | // function) resolved at runtime. |
1781 | for (uint32_t J = 0; J < NumTargets; J++) { |
1782 | uint32_t HistVal; |
1783 | if (!GcovBuffer.readInt(Val&: HistVal)) |
1784 | return sampleprof_error::truncated; |
1785 | |
1786 | if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) |
1787 | return sampleprof_error::malformed; |
1788 | |
1789 | uint64_t TargetIdx; |
1790 | if (!GcovBuffer.readInt64(Val&: TargetIdx)) |
1791 | return sampleprof_error::truncated; |
1792 | StringRef TargetName(Names[TargetIdx]); |
1793 | |
1794 | uint64_t TargetCount; |
1795 | if (!GcovBuffer.readInt64(Val&: TargetCount)) |
1796 | return sampleprof_error::truncated; |
1797 | |
1798 | if (Update) |
1799 | FProfile->addCalledTargetSamples(LineOffset, Discriminator, |
1800 | Func: FunctionId(TargetName), |
1801 | Num: TargetCount); |
1802 | } |
1803 | } |
1804 | |
1805 | // Process all the inlined callers into the current function. These |
1806 | // are all the callsites that were inlined into this function. |
1807 | for (uint32_t I = 0; I < NumCallsites; I++) { |
1808 | // The offset is encoded as: |
1809 | // high 16 bits: line offset to the start of the function. |
1810 | // low 16 bits: discriminator. |
1811 | uint32_t Offset; |
1812 | if (!GcovBuffer.readInt(Val&: Offset)) |
1813 | return sampleprof_error::truncated; |
1814 | InlineCallStack NewStack; |
1815 | NewStack.push_back(Elt: FProfile); |
1816 | llvm::append_range(C&: NewStack, R: InlineStack); |
1817 | if (std::error_code EC = readOneFunctionProfile(InlineStack: NewStack, Update, Offset)) |
1818 | return EC; |
1819 | } |
1820 | |
1821 | return sampleprof_error::success; |
1822 | } |
1823 | |
1824 | /// Read a GCC AutoFDO profile. |
1825 | /// |
1826 | /// This format is generated by the Linux Perf conversion tool at |
1827 | /// https://github.com/google/autofdo. |
1828 | std::error_code SampleProfileReaderGCC::readImpl() { |
1829 | assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator" ); |
1830 | // Read the string table. |
1831 | if (std::error_code EC = readNameTable()) |
1832 | return EC; |
1833 | |
1834 | // Read the source profile. |
1835 | if (std::error_code EC = readFunctionProfiles()) |
1836 | return EC; |
1837 | |
1838 | return sampleprof_error::success; |
1839 | } |
1840 | |
1841 | bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { |
1842 | StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart())); |
1843 | return Magic == "adcg*704" ; |
1844 | } |
1845 | |
1846 | void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) { |
1847 | // If the reader uses MD5 to represent string, we can't remap it because |
1848 | // we don't know what the original function names were. |
1849 | if (Reader.useMD5()) { |
1850 | Ctx.diagnose(DI: DiagnosticInfoSampleProfile( |
1851 | Reader.getBuffer()->getBufferIdentifier(), |
1852 | "Profile data remapping cannot be applied to profile data " |
1853 | "using MD5 names (original mangled names are not available)." , |
1854 | DS_Warning)); |
1855 | return; |
1856 | } |
1857 | |
1858 | // CSSPGO-TODO: Remapper is not yet supported. |
1859 | // We will need to remap the entire context string. |
1860 | assert(Remappings && "should be initialized while creating remapper" ); |
1861 | for (auto &Sample : Reader.getProfiles()) { |
1862 | DenseSet<FunctionId> NamesInSample; |
1863 | Sample.second.findAllNames(NameSet&: NamesInSample); |
1864 | for (auto &Name : NamesInSample) { |
1865 | StringRef NameStr = Name.stringRef(); |
1866 | if (auto Key = Remappings->insert(FunctionName: NameStr)) |
1867 | NameMap.insert(KV: {Key, NameStr}); |
1868 | } |
1869 | } |
1870 | |
1871 | RemappingApplied = true; |
1872 | } |
1873 | |
1874 | std::optional<StringRef> |
1875 | SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) { |
1876 | if (auto Key = Remappings->lookup(FunctionName: Fname)) { |
1877 | StringRef Result = NameMap.lookup(Val: Key); |
1878 | if (!Result.empty()) |
1879 | return Result; |
1880 | } |
1881 | return std::nullopt; |
1882 | } |
1883 | |
1884 | /// Prepare a memory buffer for the contents of \p Filename. |
1885 | /// |
1886 | /// \returns an error code indicating the status of the buffer. |
1887 | static ErrorOr<std::unique_ptr<MemoryBuffer>> |
1888 | setupMemoryBuffer(const Twine &Filename, vfs::FileSystem &FS) { |
1889 | auto BufferOrErr = Filename.str() == "-" ? MemoryBuffer::getSTDIN() |
1890 | : FS.getBufferForFile(Name: Filename); |
1891 | if (std::error_code EC = BufferOrErr.getError()) |
1892 | return EC; |
1893 | auto Buffer = std::move(BufferOrErr.get()); |
1894 | |
1895 | return std::move(Buffer); |
1896 | } |
1897 | |
1898 | /// Create a sample profile reader based on the format of the input file. |
1899 | /// |
1900 | /// \param Filename The file to open. |
1901 | /// |
1902 | /// \param C The LLVM context to use to emit diagnostics. |
1903 | /// |
1904 | /// \param P The FSDiscriminatorPass. |
1905 | /// |
1906 | /// \param RemapFilename The file used for profile remapping. |
1907 | /// |
1908 | /// \returns an error code indicating the status of the created reader. |
1909 | ErrorOr<std::unique_ptr<SampleProfileReader>> |
1910 | SampleProfileReader::create(StringRef Filename, LLVMContext &C, |
1911 | vfs::FileSystem &FS, FSDiscriminatorPass P, |
1912 | StringRef RemapFilename) { |
1913 | auto BufferOrError = setupMemoryBuffer(Filename, FS); |
1914 | if (std::error_code EC = BufferOrError.getError()) |
1915 | return EC; |
1916 | return create(B&: BufferOrError.get(), C, FS, P, RemapFilename); |
1917 | } |
1918 | |
1919 | /// Create a sample profile remapper from the given input, to remap the |
1920 | /// function names in the given profile data. |
1921 | /// |
1922 | /// \param Filename The file to open. |
1923 | /// |
1924 | /// \param Reader The profile reader the remapper is going to be applied to. |
1925 | /// |
1926 | /// \param C The LLVM context to use to emit diagnostics. |
1927 | /// |
1928 | /// \returns an error code indicating the status of the created reader. |
1929 | ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> |
1930 | SampleProfileReaderItaniumRemapper::create(StringRef Filename, |
1931 | vfs::FileSystem &FS, |
1932 | SampleProfileReader &Reader, |
1933 | LLVMContext &C) { |
1934 | auto BufferOrError = setupMemoryBuffer(Filename, FS); |
1935 | if (std::error_code EC = BufferOrError.getError()) |
1936 | return EC; |
1937 | return create(B&: BufferOrError.get(), Reader, C); |
1938 | } |
1939 | |
1940 | /// Create a sample profile remapper from the given input, to remap the |
1941 | /// function names in the given profile data. |
1942 | /// |
1943 | /// \param B The memory buffer to create the reader from (assumes ownership). |
1944 | /// |
1945 | /// \param C The LLVM context to use to emit diagnostics. |
1946 | /// |
1947 | /// \param Reader The profile reader the remapper is going to be applied to. |
1948 | /// |
1949 | /// \returns an error code indicating the status of the created reader. |
1950 | ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> |
1951 | SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B, |
1952 | SampleProfileReader &Reader, |
1953 | LLVMContext &C) { |
1954 | auto Remappings = std::make_unique<SymbolRemappingReader>(); |
1955 | if (Error E = Remappings->read(B&: *B)) { |
1956 | handleAllErrors( |
1957 | E: std::move(E), Handlers: [&](const SymbolRemappingParseError &ParseError) { |
1958 | C.diagnose(DI: DiagnosticInfoSampleProfile(B->getBufferIdentifier(), |
1959 | ParseError.getLineNum(), |
1960 | ParseError.getMessage())); |
1961 | }); |
1962 | return sampleprof_error::malformed; |
1963 | } |
1964 | |
1965 | return std::make_unique<SampleProfileReaderItaniumRemapper>( |
1966 | args: std::move(B), args: std::move(Remappings), args&: Reader); |
1967 | } |
1968 | |
1969 | /// Create a sample profile reader based on the format of the input data. |
1970 | /// |
1971 | /// \param B The memory buffer to create the reader from (assumes ownership). |
1972 | /// |
1973 | /// \param C The LLVM context to use to emit diagnostics. |
1974 | /// |
1975 | /// \param P The FSDiscriminatorPass. |
1976 | /// |
1977 | /// \param RemapFilename The file used for profile remapping. |
1978 | /// |
1979 | /// \returns an error code indicating the status of the created reader. |
1980 | ErrorOr<std::unique_ptr<SampleProfileReader>> |
1981 | SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C, |
1982 | vfs::FileSystem &FS, FSDiscriminatorPass P, |
1983 | StringRef RemapFilename) { |
1984 | std::unique_ptr<SampleProfileReader> Reader; |
1985 | if (SampleProfileReaderRawBinary::hasFormat(Buffer: *B)) |
1986 | Reader.reset(p: new SampleProfileReaderRawBinary(std::move(B), C)); |
1987 | else if (SampleProfileReaderExtBinary::hasFormat(Buffer: *B)) |
1988 | Reader.reset(p: new SampleProfileReaderExtBinary(std::move(B), C)); |
1989 | else if (SampleProfileReaderGCC::hasFormat(Buffer: *B)) |
1990 | Reader.reset(p: new SampleProfileReaderGCC(std::move(B), C)); |
1991 | else if (SampleProfileReaderText::hasFormat(Buffer: *B)) |
1992 | Reader.reset(p: new SampleProfileReaderText(std::move(B), C)); |
1993 | else |
1994 | return sampleprof_error::unrecognized_format; |
1995 | |
1996 | if (!RemapFilename.empty()) { |
1997 | auto ReaderOrErr = SampleProfileReaderItaniumRemapper::create( |
1998 | Filename: RemapFilename, FS, Reader&: *Reader, C); |
1999 | if (std::error_code EC = ReaderOrErr.getError()) { |
2000 | std::string Msg = "Could not create remapper: " + EC.message(); |
2001 | C.diagnose(DI: DiagnosticInfoSampleProfile(RemapFilename, Msg)); |
2002 | return EC; |
2003 | } |
2004 | Reader->Remapper = std::move(ReaderOrErr.get()); |
2005 | } |
2006 | |
2007 | if (std::error_code EC = Reader->readHeader()) { |
2008 | return EC; |
2009 | } |
2010 | |
2011 | Reader->setDiscriminatorMaskedBitFrom(P); |
2012 | |
2013 | return std::move(Reader); |
2014 | } |
2015 | |
2016 | // For text and GCC file formats, we compute the summary after reading the |
2017 | // profile. Binary format has the profile summary in its header. |
2018 | void SampleProfileReader::computeSummary() { |
2019 | SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); |
2020 | Summary = Builder.computeSummaryForProfiles(Profiles); |
2021 | } |
2022 | |