1 | //===-- StringRef.cpp - Lightweight String References ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/ADT/StringRef.h" |
10 | #include "llvm/ADT/APFloat.h" |
11 | #include "llvm/ADT/APInt.h" |
12 | #include "llvm/ADT/Hashing.h" |
13 | #include "llvm/ADT/StringExtras.h" |
14 | #include "llvm/ADT/edit_distance.h" |
15 | #include "llvm/Support/Error.h" |
16 | #include <bitset> |
17 | |
18 | using namespace llvm; |
19 | |
20 | // MSVC emits references to this into the translation units which reference it. |
21 | #ifndef _MSC_VER |
22 | constexpr size_t StringRef::npos; |
23 | #endif |
24 | |
25 | // strncasecmp() is not available on non-POSIX systems, so define an |
26 | // alternative function here. |
27 | static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) { |
28 | for (size_t I = 0; I < Length; ++I) { |
29 | unsigned char LHC = toLower(x: LHS[I]); |
30 | unsigned char RHC = toLower(x: RHS[I]); |
31 | if (LHC != RHC) |
32 | return LHC < RHC ? -1 : 1; |
33 | } |
34 | return 0; |
35 | } |
36 | |
37 | int StringRef::compare_insensitive(StringRef RHS) const { |
38 | if (int Res = |
39 | ascii_strncasecmp(LHS: data(), RHS: RHS.data(), Length: std::min(a: size(), b: RHS.size()))) |
40 | return Res; |
41 | if (size() == RHS.size()) |
42 | return 0; |
43 | return size() < RHS.size() ? -1 : 1; |
44 | } |
45 | |
46 | bool StringRef::starts_with_insensitive(StringRef Prefix) const { |
47 | return size() >= Prefix.size() && |
48 | ascii_strncasecmp(LHS: data(), RHS: Prefix.data(), Length: Prefix.size()) == 0; |
49 | } |
50 | |
51 | bool StringRef::ends_with_insensitive(StringRef Suffix) const { |
52 | return size() >= Suffix.size() && |
53 | ascii_strncasecmp(LHS: end() - Suffix.size(), RHS: Suffix.data(), |
54 | Length: Suffix.size()) == 0; |
55 | } |
56 | |
57 | size_t StringRef::find_insensitive(char C, size_t From) const { |
58 | char L = toLower(x: C); |
59 | return find_if(F: [L](char D) { return toLower(x: D) == L; }, From); |
60 | } |
61 | |
62 | /// compare_numeric - Compare strings, handle embedded numbers. |
63 | int StringRef::compare_numeric(StringRef RHS) const { |
64 | for (size_t I = 0, E = std::min(a: size(), b: RHS.size()); I != E; ++I) { |
65 | // Check for sequences of digits. |
66 | if (isDigit(C: data()[I]) && isDigit(C: RHS.data()[I])) { |
67 | // The longer sequence of numbers is considered larger. |
68 | // This doesn't really handle prefixed zeros well. |
69 | size_t J; |
70 | for (J = I + 1; J != E + 1; ++J) { |
71 | bool ld = J < size() && isDigit(C: data()[J]); |
72 | bool rd = J < RHS.size() && isDigit(C: RHS.data()[J]); |
73 | if (ld != rd) |
74 | return rd ? -1 : 1; |
75 | if (!rd) |
76 | break; |
77 | } |
78 | // The two number sequences have the same length (J-I), just memcmp them. |
79 | if (int Res = compareMemory(Lhs: data() + I, Rhs: RHS.data() + I, Length: J - I)) |
80 | return Res < 0 ? -1 : 1; |
81 | // Identical number sequences, continue search after the numbers. |
82 | I = J - 1; |
83 | continue; |
84 | } |
85 | if (data()[I] != RHS.data()[I]) |
86 | return (unsigned char)data()[I] < (unsigned char)RHS.data()[I] ? -1 : 1; |
87 | } |
88 | if (size() == RHS.size()) |
89 | return 0; |
90 | return size() < RHS.size() ? -1 : 1; |
91 | } |
92 | |
93 | // Compute the edit distance between the two given strings. |
94 | unsigned StringRef::edit_distance(llvm::StringRef Other, |
95 | bool AllowReplacements, |
96 | unsigned MaxEditDistance) const { |
97 | return llvm::ComputeEditDistance(FromArray: ArrayRef(data(), size()), |
98 | ToArray: ArrayRef(Other.data(), Other.size()), |
99 | AllowReplacements, MaxEditDistance); |
100 | } |
101 | |
102 | unsigned llvm::StringRef::edit_distance_insensitive( |
103 | StringRef Other, bool AllowReplacements, unsigned MaxEditDistance) const { |
104 | return llvm::ComputeMappedEditDistance( |
105 | FromArray: ArrayRef(data(), size()), ToArray: ArrayRef(Other.data(), Other.size()), |
106 | Map: llvm::toLower, AllowReplacements, MaxEditDistance); |
107 | } |
108 | |
109 | //===----------------------------------------------------------------------===// |
110 | // String Operations |
111 | //===----------------------------------------------------------------------===// |
112 | |
113 | std::string StringRef::lower() const { |
114 | return std::string(map_iterator(I: begin(), F: toLower), |
115 | map_iterator(I: end(), F: toLower)); |
116 | } |
117 | |
118 | std::string StringRef::upper() const { |
119 | return std::string(map_iterator(I: begin(), F: toUpper), |
120 | map_iterator(I: end(), F: toUpper)); |
121 | } |
122 | |
123 | //===----------------------------------------------------------------------===// |
124 | // String Searching |
125 | //===----------------------------------------------------------------------===// |
126 | |
127 | |
128 | /// find - Search for the first string \arg Str in the string. |
129 | /// |
130 | /// \return - The index of the first occurrence of \arg Str, or npos if not |
131 | /// found. |
132 | size_t StringRef::find(StringRef Str, size_t From) const { |
133 | if (From > size()) |
134 | return npos; |
135 | |
136 | const char *Start = data() + From; |
137 | size_t Size = size() - From; |
138 | |
139 | const char *Needle = Str.data(); |
140 | size_t N = Str.size(); |
141 | if (N == 0) |
142 | return From; |
143 | if (Size < N) |
144 | return npos; |
145 | if (N == 1) { |
146 | const char *Ptr = (const char *)::memchr(s: Start, c: Needle[0], n: Size); |
147 | return Ptr == nullptr ? npos : Ptr - data(); |
148 | } |
149 | |
150 | const char *Stop = Start + (Size - N + 1); |
151 | |
152 | if (N == 2) { |
153 | // Provide a fast path for newline finding (CRLF case) in InclusionRewriter. |
154 | // Not the most optimized strategy, but getting memcmp inlined should be |
155 | // good enough. |
156 | do { |
157 | if (std::memcmp(s1: Start, s2: Needle, n: 2) == 0) |
158 | return Start - data(); |
159 | ++Start; |
160 | } while (Start < Stop); |
161 | return npos; |
162 | } |
163 | |
164 | // For short haystacks or unsupported needles fall back to the naive algorithm |
165 | if (Size < 16 || N > 255) { |
166 | do { |
167 | if (std::memcmp(s1: Start, s2: Needle, n: N) == 0) |
168 | return Start - data(); |
169 | ++Start; |
170 | } while (Start < Stop); |
171 | return npos; |
172 | } |
173 | |
174 | // Build the bad char heuristic table, with uint8_t to reduce cache thrashing. |
175 | uint8_t BadCharSkip[256]; |
176 | std::memset(s: BadCharSkip, c: N, n: 256); |
177 | for (unsigned i = 0; i != N-1; ++i) |
178 | BadCharSkip[(uint8_t)Str[i]] = N-1-i; |
179 | |
180 | do { |
181 | uint8_t Last = Start[N - 1]; |
182 | if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1])) |
183 | if (std::memcmp(s1: Start, s2: Needle, n: N - 1) == 0) |
184 | return Start - data(); |
185 | |
186 | // Otherwise skip the appropriate number of bytes. |
187 | Start += BadCharSkip[Last]; |
188 | } while (Start < Stop); |
189 | |
190 | return npos; |
191 | } |
192 | |
193 | size_t StringRef::find_insensitive(StringRef Str, size_t From) const { |
194 | StringRef This = substr(Start: From); |
195 | while (This.size() >= Str.size()) { |
196 | if (This.starts_with_insensitive(Prefix: Str)) |
197 | return From; |
198 | This = This.drop_front(); |
199 | ++From; |
200 | } |
201 | return npos; |
202 | } |
203 | |
204 | size_t StringRef::rfind_insensitive(char C, size_t From) const { |
205 | From = std::min(a: From, b: size()); |
206 | size_t i = From; |
207 | while (i != 0) { |
208 | --i; |
209 | if (toLower(x: data()[i]) == toLower(x: C)) |
210 | return i; |
211 | } |
212 | return npos; |
213 | } |
214 | |
215 | /// rfind - Search for the last string \arg Str in the string. |
216 | /// |
217 | /// \return - The index of the last occurrence of \arg Str, or npos if not |
218 | /// found. |
219 | size_t StringRef::rfind(StringRef Str) const { |
220 | return std::string_view(*this).rfind(str: Str); |
221 | } |
222 | |
223 | size_t StringRef::rfind_insensitive(StringRef Str) const { |
224 | size_t N = Str.size(); |
225 | if (N > size()) |
226 | return npos; |
227 | for (size_t i = size() - N + 1, e = 0; i != e;) { |
228 | --i; |
229 | if (substr(Start: i, N).equals_insensitive(RHS: Str)) |
230 | return i; |
231 | } |
232 | return npos; |
233 | } |
234 | |
235 | /// find_first_of - Find the first character in the string that is in \arg |
236 | /// Chars, or npos if not found. |
237 | /// |
238 | /// Note: O(size() + Chars.size()) |
239 | StringRef::size_type StringRef::find_first_of(StringRef Chars, |
240 | size_t From) const { |
241 | std::bitset<1 << CHAR_BIT> CharBits; |
242 | for (char C : Chars) |
243 | CharBits.set(position: (unsigned char)C); |
244 | |
245 | for (size_type i = std::min(a: From, b: size()), e = size(); i != e; ++i) |
246 | if (CharBits.test(position: (unsigned char)data()[i])) |
247 | return i; |
248 | return npos; |
249 | } |
250 | |
251 | /// find_first_not_of - Find the first character in the string that is not |
252 | /// \arg C or npos if not found. |
253 | StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const { |
254 | return std::string_view(*this).find_first_not_of(c: C, pos: From); |
255 | } |
256 | |
257 | /// find_first_not_of - Find the first character in the string that is not |
258 | /// in the string \arg Chars, or npos if not found. |
259 | /// |
260 | /// Note: O(size() + Chars.size()) |
261 | StringRef::size_type StringRef::find_first_not_of(StringRef Chars, |
262 | size_t From) const { |
263 | std::bitset<1 << CHAR_BIT> CharBits; |
264 | for (char C : Chars) |
265 | CharBits.set(position: (unsigned char)C); |
266 | |
267 | for (size_type i = std::min(a: From, b: size()), e = size(); i != e; ++i) |
268 | if (!CharBits.test(position: (unsigned char)data()[i])) |
269 | return i; |
270 | return npos; |
271 | } |
272 | |
273 | /// find_last_of - Find the last character in the string that is in \arg C, |
274 | /// or npos if not found. |
275 | /// |
276 | /// Note: O(size() + Chars.size()) |
277 | StringRef::size_type StringRef::find_last_of(StringRef Chars, |
278 | size_t From) const { |
279 | std::bitset<1 << CHAR_BIT> CharBits; |
280 | for (char C : Chars) |
281 | CharBits.set(position: (unsigned char)C); |
282 | |
283 | for (size_type i = std::min(a: From, b: size()) - 1, e = -1; i != e; --i) |
284 | if (CharBits.test(position: (unsigned char)data()[i])) |
285 | return i; |
286 | return npos; |
287 | } |
288 | |
289 | /// find_last_not_of - Find the last character in the string that is not |
290 | /// \arg C, or npos if not found. |
291 | StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const { |
292 | for (size_type i = std::min(a: From, b: size()) - 1, e = -1; i != e; --i) |
293 | if (data()[i] != C) |
294 | return i; |
295 | return npos; |
296 | } |
297 | |
298 | /// find_last_not_of - Find the last character in the string that is not in |
299 | /// \arg Chars, or npos if not found. |
300 | /// |
301 | /// Note: O(size() + Chars.size()) |
302 | StringRef::size_type StringRef::find_last_not_of(StringRef Chars, |
303 | size_t From) const { |
304 | std::bitset<1 << CHAR_BIT> CharBits; |
305 | for (char C : Chars) |
306 | CharBits.set(position: (unsigned char)C); |
307 | |
308 | for (size_type i = std::min(a: From, b: size()) - 1, e = -1; i != e; --i) |
309 | if (!CharBits.test(position: (unsigned char)data()[i])) |
310 | return i; |
311 | return npos; |
312 | } |
313 | |
314 | void StringRef::split(SmallVectorImpl<StringRef> &A, |
315 | StringRef Separator, int MaxSplit, |
316 | bool KeepEmpty) const { |
317 | StringRef S = *this; |
318 | |
319 | // Count down from MaxSplit. When MaxSplit is -1, this will just split |
320 | // "forever". This doesn't support splitting more than 2^31 times |
321 | // intentionally; if we ever want that we can make MaxSplit a 64-bit integer |
322 | // but that seems unlikely to be useful. |
323 | while (MaxSplit-- != 0) { |
324 | size_t Idx = S.find(Str: Separator); |
325 | if (Idx == npos) |
326 | break; |
327 | |
328 | // Push this split. |
329 | if (KeepEmpty || Idx > 0) |
330 | A.push_back(Elt: S.slice(Start: 0, End: Idx)); |
331 | |
332 | // Jump forward. |
333 | S = S.substr(Start: Idx + Separator.size()); |
334 | } |
335 | |
336 | // Push the tail. |
337 | if (KeepEmpty || !S.empty()) |
338 | A.push_back(Elt: S); |
339 | } |
340 | |
341 | void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator, |
342 | int MaxSplit, bool KeepEmpty) const { |
343 | StringRef S = *this; |
344 | |
345 | // Count down from MaxSplit. When MaxSplit is -1, this will just split |
346 | // "forever". This doesn't support splitting more than 2^31 times |
347 | // intentionally; if we ever want that we can make MaxSplit a 64-bit integer |
348 | // but that seems unlikely to be useful. |
349 | while (MaxSplit-- != 0) { |
350 | size_t Idx = S.find(C: Separator); |
351 | if (Idx == npos) |
352 | break; |
353 | |
354 | // Push this split. |
355 | if (KeepEmpty || Idx > 0) |
356 | A.push_back(Elt: S.slice(Start: 0, End: Idx)); |
357 | |
358 | // Jump forward. |
359 | S = S.substr(Start: Idx + 1); |
360 | } |
361 | |
362 | // Push the tail. |
363 | if (KeepEmpty || !S.empty()) |
364 | A.push_back(Elt: S); |
365 | } |
366 | |
367 | //===----------------------------------------------------------------------===// |
368 | // Helpful Algorithms |
369 | //===----------------------------------------------------------------------===// |
370 | |
371 | /// count - Return the number of non-overlapped occurrences of \arg Str in |
372 | /// the string. |
373 | size_t StringRef::count(StringRef Str) const { |
374 | size_t Count = 0; |
375 | size_t Pos = 0; |
376 | size_t N = Str.size(); |
377 | // TODO: For an empty `Str` we return 0 for legacy reasons. Consider changing |
378 | // this to `Length + 1` which is more in-line with the function |
379 | // description. |
380 | if (!N) |
381 | return 0; |
382 | while ((Pos = find(Str, From: Pos)) != npos) { |
383 | ++Count; |
384 | Pos += N; |
385 | } |
386 | return Count; |
387 | } |
388 | |
389 | static unsigned GetAutoSenseRadix(StringRef &Str) { |
390 | if (Str.empty()) |
391 | return 10; |
392 | |
393 | if (Str.consume_front_insensitive(Prefix: "0x" )) |
394 | return 16; |
395 | |
396 | if (Str.consume_front_insensitive(Prefix: "0b" )) |
397 | return 2; |
398 | |
399 | if (Str.consume_front(Prefix: "0o" )) |
400 | return 8; |
401 | |
402 | if (Str[0] == '0' && Str.size() > 1 && isDigit(C: Str[1])) { |
403 | Str = Str.substr(Start: 1); |
404 | return 8; |
405 | } |
406 | |
407 | return 10; |
408 | } |
409 | |
410 | bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix, |
411 | unsigned long long &Result) { |
412 | // Autosense radix if not specified. |
413 | if (Radix == 0) |
414 | Radix = GetAutoSenseRadix(Str); |
415 | |
416 | // Empty strings (after the radix autosense) are invalid. |
417 | if (Str.empty()) return true; |
418 | |
419 | // Parse all the bytes of the string given this radix. Watch for overflow. |
420 | StringRef Str2 = Str; |
421 | Result = 0; |
422 | while (!Str2.empty()) { |
423 | unsigned CharVal; |
424 | if (Str2[0] >= '0' && Str2[0] <= '9') |
425 | CharVal = Str2[0] - '0'; |
426 | else if (Str2[0] >= 'a' && Str2[0] <= 'z') |
427 | CharVal = Str2[0] - 'a' + 10; |
428 | else if (Str2[0] >= 'A' && Str2[0] <= 'Z') |
429 | CharVal = Str2[0] - 'A' + 10; |
430 | else |
431 | break; |
432 | |
433 | // If the parsed value is larger than the integer radix, we cannot |
434 | // consume any more characters. |
435 | if (CharVal >= Radix) |
436 | break; |
437 | |
438 | // Add in this character. |
439 | unsigned long long PrevResult = Result; |
440 | Result = Result * Radix + CharVal; |
441 | |
442 | // Check for overflow by shifting back and seeing if bits were lost. |
443 | if (Result / Radix < PrevResult) |
444 | return true; |
445 | |
446 | Str2 = Str2.substr(Start: 1); |
447 | } |
448 | |
449 | // We consider the operation a failure if no characters were consumed |
450 | // successfully. |
451 | if (Str.size() == Str2.size()) |
452 | return true; |
453 | |
454 | Str = Str2; |
455 | return false; |
456 | } |
457 | |
458 | bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix, |
459 | long long &Result) { |
460 | unsigned long long ULLVal; |
461 | |
462 | // Handle positive strings first. |
463 | if (!Str.starts_with(Prefix: "-" )) { |
464 | if (consumeUnsignedInteger(Str, Radix, Result&: ULLVal) || |
465 | // Check for value so large it overflows a signed value. |
466 | (long long)ULLVal < 0) |
467 | return true; |
468 | Result = ULLVal; |
469 | return false; |
470 | } |
471 | |
472 | // Get the positive part of the value. |
473 | StringRef Str2 = Str.drop_front(N: 1); |
474 | if (consumeUnsignedInteger(Str&: Str2, Radix, Result&: ULLVal) || |
475 | // Reject values so large they'd overflow as negative signed, but allow |
476 | // "-0". This negates the unsigned so that the negative isn't undefined |
477 | // on signed overflow. |
478 | (long long)-ULLVal > 0) |
479 | return true; |
480 | |
481 | Str = Str2; |
482 | Result = -ULLVal; |
483 | return false; |
484 | } |
485 | |
486 | /// GetAsUnsignedInteger - Workhorse method that converts a integer character |
487 | /// sequence of radix up to 36 to an unsigned long long value. |
488 | bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix, |
489 | unsigned long long &Result) { |
490 | if (consumeUnsignedInteger(Str, Radix, Result)) |
491 | return true; |
492 | |
493 | // For getAsUnsignedInteger, we require the whole string to be consumed or |
494 | // else we consider it a failure. |
495 | return !Str.empty(); |
496 | } |
497 | |
498 | bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix, |
499 | long long &Result) { |
500 | if (consumeSignedInteger(Str, Radix, Result)) |
501 | return true; |
502 | |
503 | // For getAsSignedInteger, we require the whole string to be consumed or else |
504 | // we consider it a failure. |
505 | return !Str.empty(); |
506 | } |
507 | |
508 | bool StringRef::consumeInteger(unsigned Radix, APInt &Result) { |
509 | StringRef Str = *this; |
510 | |
511 | // Autosense radix if not specified. |
512 | if (Radix == 0) |
513 | Radix = GetAutoSenseRadix(Str); |
514 | |
515 | assert(Radix > 1 && Radix <= 36); |
516 | |
517 | // Empty strings (after the radix autosense) are invalid. |
518 | if (Str.empty()) return true; |
519 | |
520 | // Skip leading zeroes. This can be a significant improvement if |
521 | // it means we don't need > 64 bits. |
522 | Str = Str.ltrim(Char: '0'); |
523 | |
524 | // If it was nothing but zeroes.... |
525 | if (Str.empty()) { |
526 | Result = APInt(64, 0); |
527 | *this = Str; |
528 | return false; |
529 | } |
530 | |
531 | // (Over-)estimate the required number of bits. |
532 | unsigned Log2Radix = 0; |
533 | while ((1U << Log2Radix) < Radix) Log2Radix++; |
534 | bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix); |
535 | |
536 | unsigned BitWidth = Log2Radix * Str.size(); |
537 | if (BitWidth < Result.getBitWidth()) |
538 | BitWidth = Result.getBitWidth(); // don't shrink the result |
539 | else if (BitWidth > Result.getBitWidth()) |
540 | Result = Result.zext(width: BitWidth); |
541 | |
542 | APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix |
543 | if (!IsPowerOf2Radix) { |
544 | // These must have the same bit-width as Result. |
545 | RadixAP = APInt(BitWidth, Radix); |
546 | CharAP = APInt(BitWidth, 0); |
547 | } |
548 | |
549 | // Parse all the bytes of the string given this radix. |
550 | Result = 0; |
551 | while (!Str.empty()) { |
552 | unsigned CharVal; |
553 | if (Str[0] >= '0' && Str[0] <= '9') |
554 | CharVal = Str[0]-'0'; |
555 | else if (Str[0] >= 'a' && Str[0] <= 'z') |
556 | CharVal = Str[0]-'a'+10; |
557 | else if (Str[0] >= 'A' && Str[0] <= 'Z') |
558 | CharVal = Str[0]-'A'+10; |
559 | else |
560 | break; |
561 | |
562 | // If the parsed value is larger than the integer radix, the string is |
563 | // invalid. |
564 | if (CharVal >= Radix) |
565 | break; |
566 | |
567 | // Add in this character. |
568 | if (IsPowerOf2Radix) { |
569 | Result <<= Log2Radix; |
570 | Result |= CharVal; |
571 | } else { |
572 | Result *= RadixAP; |
573 | CharAP = CharVal; |
574 | Result += CharAP; |
575 | } |
576 | |
577 | Str = Str.substr(Start: 1); |
578 | } |
579 | |
580 | // We consider the operation a failure if no characters were consumed |
581 | // successfully. |
582 | if (size() == Str.size()) |
583 | return true; |
584 | |
585 | *this = Str; |
586 | return false; |
587 | } |
588 | |
589 | bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const { |
590 | StringRef Str = *this; |
591 | if (Str.consumeInteger(Radix, Result)) |
592 | return true; |
593 | |
594 | // For getAsInteger, we require the whole string to be consumed or else we |
595 | // consider it a failure. |
596 | return !Str.empty(); |
597 | } |
598 | |
599 | bool StringRef::getAsDouble(double &Result, bool AllowInexact) const { |
600 | APFloat F(0.0); |
601 | auto StatusOrErr = F.convertFromString(*this, APFloat::rmNearestTiesToEven); |
602 | if (errorToBool(Err: StatusOrErr.takeError())) |
603 | return true; |
604 | |
605 | APFloat::opStatus Status = *StatusOrErr; |
606 | if (Status != APFloat::opOK) { |
607 | if (!AllowInexact || !(Status & APFloat::opInexact)) |
608 | return true; |
609 | } |
610 | |
611 | Result = F.convertToDouble(); |
612 | return false; |
613 | } |
614 | |
615 | // Implementation of StringRef hashing. |
616 | hash_code llvm::hash_value(StringRef S) { return hash_combine_range(R&: S); } |
617 | |
618 | unsigned DenseMapInfo<StringRef, void>::getHashValue(StringRef Val) { |
619 | assert(Val.data() != getEmptyKey().data() && |
620 | "Cannot hash the empty key!" ); |
621 | assert(Val.data() != getTombstoneKey().data() && |
622 | "Cannot hash the tombstone key!" ); |
623 | return (unsigned)(hash_value(S: Val)); |
624 | } |
625 | |