| 1 | //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// \brief Analyzes if a function potentially memory bound and if a kernel |
| 11 | /// kernel may benefit from limiting number of waves to reduce cache thrashing. |
| 12 | /// |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "AMDGPUPerfHintAnalysis.h" |
| 16 | #include "AMDGPU.h" |
| 17 | #include "AMDGPUTargetMachine.h" |
| 18 | #include "Utils/AMDGPUBaseInfo.h" |
| 19 | #include "llvm/ADT/SmallSet.h" |
| 20 | #include "llvm/ADT/Statistic.h" |
| 21 | #include "llvm/Analysis/CallGraph.h" |
| 22 | #include "llvm/Analysis/CallGraphSCCPass.h" |
| 23 | #include "llvm/Analysis/LazyCallGraph.h" |
| 24 | #include "llvm/Analysis/ValueTracking.h" |
| 25 | #include "llvm/CodeGen/TargetLowering.h" |
| 26 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 27 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 28 | #include "llvm/IR/Instructions.h" |
| 29 | #include "llvm/IR/IntrinsicInst.h" |
| 30 | #include "llvm/Support/CommandLine.h" |
| 31 | #include "llvm/Target/TargetMachine.h" |
| 32 | |
| 33 | using namespace llvm; |
| 34 | |
| 35 | #define DEBUG_TYPE "amdgpu-perf-hint" |
| 36 | |
| 37 | static cl::opt<unsigned> |
| 38 | MemBoundThresh("amdgpu-membound-threshold" , cl::init(Val: 50), cl::Hidden, |
| 39 | cl::desc("Function mem bound threshold in %" )); |
| 40 | |
| 41 | static cl::opt<unsigned> |
| 42 | LimitWaveThresh("amdgpu-limit-wave-threshold" , cl::init(Val: 50), cl::Hidden, |
| 43 | cl::desc("Kernel limit wave threshold in %" )); |
| 44 | |
| 45 | static cl::opt<unsigned> |
| 46 | IAWeight("amdgpu-indirect-access-weight" , cl::init(Val: 1000), cl::Hidden, |
| 47 | cl::desc("Indirect access memory instruction weight" )); |
| 48 | |
| 49 | static cl::opt<unsigned> |
| 50 | LSWeight("amdgpu-large-stride-weight" , cl::init(Val: 1000), cl::Hidden, |
| 51 | cl::desc("Large stride memory access weight" )); |
| 52 | |
| 53 | static cl::opt<unsigned> |
| 54 | LargeStrideThresh("amdgpu-large-stride-threshold" , cl::init(Val: 64), cl::Hidden, |
| 55 | cl::desc("Large stride memory access threshold" )); |
| 56 | |
| 57 | STATISTIC(NumMemBound, "Number of functions marked as memory bound" ); |
| 58 | STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave" ); |
| 59 | |
| 60 | namespace { |
| 61 | |
| 62 | struct AMDGPUPerfHint { |
| 63 | friend AMDGPUPerfHintAnalysis; |
| 64 | |
| 65 | public: |
| 66 | AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_, |
| 67 | const SITargetLowering *TLI_) |
| 68 | : FIM(FIM_), TLI(TLI_) {} |
| 69 | |
| 70 | bool runOnFunction(Function &F); |
| 71 | |
| 72 | private: |
| 73 | struct MemAccessInfo { |
| 74 | const Value *V = nullptr; |
| 75 | const Value *Base = nullptr; |
| 76 | int64_t Offset = 0; |
| 77 | MemAccessInfo() = default; |
| 78 | bool isLargeStride(MemAccessInfo &Reference) const; |
| 79 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 80 | Printable print() const { |
| 81 | return Printable([this](raw_ostream &OS) { |
| 82 | OS << "Value: " << *V << '\n' |
| 83 | << "Base: " << *Base << " Offset: " << Offset << '\n'; |
| 84 | }); |
| 85 | } |
| 86 | #endif |
| 87 | }; |
| 88 | |
| 89 | MemAccessInfo makeMemAccessInfo(Instruction *) const; |
| 90 | |
| 91 | MemAccessInfo LastAccess; // Last memory access info |
| 92 | |
| 93 | AMDGPUPerfHintAnalysis::FuncInfoMap &FIM; |
| 94 | |
| 95 | const DataLayout *DL = nullptr; |
| 96 | |
| 97 | const SITargetLowering *TLI; |
| 98 | |
| 99 | AMDGPUPerfHintAnalysis::FuncInfo *visit(const Function &F); |
| 100 | static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F); |
| 101 | static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F); |
| 102 | |
| 103 | bool isIndirectAccess(const Instruction *Inst) const; |
| 104 | |
| 105 | /// Check if the instruction is large stride. |
| 106 | /// The purpose is to identify memory access pattern like: |
| 107 | /// x = a[i]; |
| 108 | /// y = a[i+1000]; |
| 109 | /// z = a[i+2000]; |
| 110 | /// In the above example, the second and third memory access will be marked |
| 111 | /// large stride memory access. |
| 112 | bool isLargeStride(const Instruction *Inst); |
| 113 | |
| 114 | bool isGlobalAddr(const Value *V) const; |
| 115 | bool isLocalAddr(const Value *V) const; |
| 116 | bool isGlobalLoadUsedInBB(const Instruction &) const; |
| 117 | }; |
| 118 | |
| 119 | static std::pair<const Value *, const Type *> getMemoryInstrPtrAndType( |
| 120 | const Instruction *Inst) { |
| 121 | if (const auto *LI = dyn_cast<LoadInst>(Val: Inst)) |
| 122 | return {LI->getPointerOperand(), LI->getType()}; |
| 123 | if (const auto *SI = dyn_cast<StoreInst>(Val: Inst)) |
| 124 | return {SI->getPointerOperand(), SI->getValueOperand()->getType()}; |
| 125 | if (const auto *AI = dyn_cast<AtomicCmpXchgInst>(Val: Inst)) |
| 126 | return {AI->getPointerOperand(), AI->getCompareOperand()->getType()}; |
| 127 | if (const auto *AI = dyn_cast<AtomicRMWInst>(Val: Inst)) |
| 128 | return {AI->getPointerOperand(), AI->getValOperand()->getType()}; |
| 129 | if (const auto *MI = dyn_cast<AnyMemIntrinsic>(Val: Inst)) |
| 130 | return {MI->getRawDest(), Type::getInt8Ty(C&: MI->getContext())}; |
| 131 | |
| 132 | return {nullptr, nullptr}; |
| 133 | } |
| 134 | |
| 135 | bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const { |
| 136 | LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n'); |
| 137 | SmallSet<const Value *, 32> WorkSet; |
| 138 | SmallSet<const Value *, 32> Visited; |
| 139 | if (const Value *MO = getMemoryInstrPtrAndType(Inst).first) { |
| 140 | if (isGlobalAddr(V: MO)) |
| 141 | WorkSet.insert(Ptr: MO); |
| 142 | } |
| 143 | |
| 144 | while (!WorkSet.empty()) { |
| 145 | const Value *V = *WorkSet.begin(); |
| 146 | WorkSet.erase(Ptr: *WorkSet.begin()); |
| 147 | if (!Visited.insert(Ptr: V).second) |
| 148 | continue; |
| 149 | LLVM_DEBUG(dbgs() << " check: " << *V << '\n'); |
| 150 | |
| 151 | if (const auto *LD = dyn_cast<LoadInst>(Val: V)) { |
| 152 | const auto *M = LD->getPointerOperand(); |
| 153 | if (isGlobalAddr(V: M)) { |
| 154 | LLVM_DEBUG(dbgs() << " is IA\n" ); |
| 155 | return true; |
| 156 | } |
| 157 | continue; |
| 158 | } |
| 159 | |
| 160 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(Val: V)) { |
| 161 | const auto *P = GEP->getPointerOperand(); |
| 162 | WorkSet.insert(Ptr: P); |
| 163 | for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I) |
| 164 | WorkSet.insert(Ptr: GEP->getOperand(i_nocapture: I)); |
| 165 | continue; |
| 166 | } |
| 167 | |
| 168 | if (const auto *U = dyn_cast<UnaryInstruction>(Val: V)) { |
| 169 | WorkSet.insert(Ptr: U->getOperand(i_nocapture: 0)); |
| 170 | continue; |
| 171 | } |
| 172 | |
| 173 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: V)) { |
| 174 | WorkSet.insert(Ptr: BO->getOperand(i_nocapture: 0)); |
| 175 | WorkSet.insert(Ptr: BO->getOperand(i_nocapture: 1)); |
| 176 | continue; |
| 177 | } |
| 178 | |
| 179 | if (const auto *S = dyn_cast<SelectInst>(Val: V)) { |
| 180 | WorkSet.insert(Ptr: S->getFalseValue()); |
| 181 | WorkSet.insert(Ptr: S->getTrueValue()); |
| 182 | continue; |
| 183 | } |
| 184 | |
| 185 | if (const auto *E = dyn_cast<ExtractElementInst>(Val: V)) { |
| 186 | WorkSet.insert(Ptr: E->getVectorOperand()); |
| 187 | continue; |
| 188 | } |
| 189 | |
| 190 | LLVM_DEBUG(dbgs() << " dropped\n" ); |
| 191 | } |
| 192 | |
| 193 | LLVM_DEBUG(dbgs() << " is not IA\n" ); |
| 194 | return false; |
| 195 | } |
| 196 | |
| 197 | // Returns true if the global load `I` is used in its own basic block. |
| 198 | bool AMDGPUPerfHint::isGlobalLoadUsedInBB(const Instruction &I) const { |
| 199 | const auto *Ld = dyn_cast<LoadInst>(Val: &I); |
| 200 | if (!Ld) |
| 201 | return false; |
| 202 | if (!isGlobalAddr(V: Ld->getPointerOperand())) |
| 203 | return false; |
| 204 | |
| 205 | for (const User *Usr : Ld->users()) { |
| 206 | if (const Instruction *UsrInst = dyn_cast<Instruction>(Val: Usr)) { |
| 207 | if (UsrInst->getParent() == I.getParent()) |
| 208 | return true; |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | return false; |
| 213 | } |
| 214 | |
| 215 | AMDGPUPerfHintAnalysis::FuncInfo *AMDGPUPerfHint::visit(const Function &F) { |
| 216 | AMDGPUPerfHintAnalysis::FuncInfo &FI = FIM[&F]; |
| 217 | |
| 218 | LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n'); |
| 219 | |
| 220 | for (auto &B : F) { |
| 221 | LastAccess = MemAccessInfo(); |
| 222 | unsigned UsedGlobalLoadsInBB = 0; |
| 223 | for (auto &I : B) { |
| 224 | if (const Type *Ty = getMemoryInstrPtrAndType(Inst: &I).second) { |
| 225 | unsigned Size = divideCeil(Numerator: Ty->getPrimitiveSizeInBits(), Denominator: 32); |
| 226 | // TODO: Check if the global load and its user are close to each other |
| 227 | // instead (Or do this analysis in GCNSchedStrategy?). |
| 228 | if (isGlobalLoadUsedInBB(I)) |
| 229 | UsedGlobalLoadsInBB += Size; |
| 230 | if (isIndirectAccess(Inst: &I)) |
| 231 | FI.IAMInstCost += Size; |
| 232 | if (isLargeStride(Inst: &I)) |
| 233 | FI.LSMInstCost += Size; |
| 234 | FI.MemInstCost += Size; |
| 235 | FI.InstCost += Size; |
| 236 | continue; |
| 237 | } |
| 238 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) { |
| 239 | Function *Callee = CB->getCalledFunction(); |
| 240 | if (!Callee || Callee->isDeclaration()) { |
| 241 | ++FI.InstCost; |
| 242 | continue; |
| 243 | } |
| 244 | if (&F == Callee) // Handle immediate recursion |
| 245 | continue; |
| 246 | |
| 247 | auto Loc = FIM.find(Val: Callee); |
| 248 | if (Loc == FIM.end()) |
| 249 | continue; |
| 250 | |
| 251 | FI.MemInstCost += Loc->second.MemInstCost; |
| 252 | FI.InstCost += Loc->second.InstCost; |
| 253 | FI.IAMInstCost += Loc->second.IAMInstCost; |
| 254 | FI.LSMInstCost += Loc->second.LSMInstCost; |
| 255 | } else if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) { |
| 256 | TargetLoweringBase::AddrMode AM; |
| 257 | auto *Ptr = GetPointerBaseWithConstantOffset(Ptr: GEP, Offset&: AM.BaseOffs, DL: *DL); |
| 258 | AM.BaseGV = dyn_cast_or_null<GlobalValue>(Val: const_cast<Value *>(Ptr)); |
| 259 | AM.HasBaseReg = !AM.BaseGV; |
| 260 | if (TLI->isLegalAddressingMode(DL: *DL, AM, Ty: GEP->getResultElementType(), |
| 261 | AS: GEP->getPointerAddressSpace())) |
| 262 | // Offset will likely be folded into load or store |
| 263 | continue; |
| 264 | ++FI.InstCost; |
| 265 | } else { |
| 266 | ++FI.InstCost; |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | if (!FI.HasDenseGlobalMemAcc) { |
| 271 | unsigned GlobalMemAccPercentage = UsedGlobalLoadsInBB * 100 / B.size(); |
| 272 | if (GlobalMemAccPercentage > 50) { |
| 273 | LLVM_DEBUG(dbgs() << "[HasDenseGlobalMemAcc] Set to true since " |
| 274 | << B.getName() << " has " << GlobalMemAccPercentage |
| 275 | << "% global memory access\n" ); |
| 276 | FI.HasDenseGlobalMemAcc = true; |
| 277 | } |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | return &FI; |
| 282 | } |
| 283 | |
| 284 | bool AMDGPUPerfHint::runOnFunction(Function &F) { |
| 285 | const Module &M = *F.getParent(); |
| 286 | DL = &M.getDataLayout(); |
| 287 | |
| 288 | if (F.hasFnAttribute(Kind: "amdgpu-wave-limiter" ) && |
| 289 | F.hasFnAttribute(Kind: "amdgpu-memory-bound" )) |
| 290 | return false; |
| 291 | |
| 292 | const AMDGPUPerfHintAnalysis::FuncInfo *Info = visit(F); |
| 293 | |
| 294 | LLVM_DEBUG(dbgs() << F.getName() << " MemInst cost: " << Info->MemInstCost |
| 295 | << '\n' |
| 296 | << " IAMInst cost: " << Info->IAMInstCost << '\n' |
| 297 | << " LSMInst cost: " << Info->LSMInstCost << '\n' |
| 298 | << " TotalInst cost: " << Info->InstCost << '\n'); |
| 299 | |
| 300 | bool Changed = false; |
| 301 | |
| 302 | if (isMemBound(F: *Info)) { |
| 303 | LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n" ); |
| 304 | NumMemBound++; |
| 305 | F.addFnAttr(Kind: "amdgpu-memory-bound" , Val: "true" ); |
| 306 | Changed = true; |
| 307 | } |
| 308 | |
| 309 | if (AMDGPU::isEntryFunctionCC(CC: F.getCallingConv()) && needLimitWave(F: *Info)) { |
| 310 | LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n" ); |
| 311 | NumLimitWave++; |
| 312 | F.addFnAttr(Kind: "amdgpu-wave-limiter" , Val: "true" ); |
| 313 | Changed = true; |
| 314 | } |
| 315 | |
| 316 | return Changed; |
| 317 | } |
| 318 | |
| 319 | bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) { |
| 320 | // Reverting optimal scheduling in favour of occupancy with basic block(s) |
| 321 | // having dense global memory access can potentially hurt performance. |
| 322 | if (FI.HasDenseGlobalMemAcc) |
| 323 | return true; |
| 324 | |
| 325 | return FI.MemInstCost * 100 / FI.InstCost > MemBoundThresh; |
| 326 | } |
| 327 | |
| 328 | bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) { |
| 329 | return ((FI.MemInstCost + FI.IAMInstCost * IAWeight + |
| 330 | FI.LSMInstCost * LSWeight) * 100 / FI.InstCost) > LimitWaveThresh; |
| 331 | } |
| 332 | |
| 333 | bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const { |
| 334 | if (auto *PT = dyn_cast<PointerType>(Val: V->getType())) { |
| 335 | unsigned As = PT->getAddressSpace(); |
| 336 | // Flat likely points to global too. |
| 337 | return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS; |
| 338 | } |
| 339 | return false; |
| 340 | } |
| 341 | |
| 342 | bool AMDGPUPerfHint::isLocalAddr(const Value *V) const { |
| 343 | if (auto *PT = dyn_cast<PointerType>(Val: V->getType())) |
| 344 | return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; |
| 345 | return false; |
| 346 | } |
| 347 | |
| 348 | bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) { |
| 349 | LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n'); |
| 350 | |
| 351 | MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst)); |
| 352 | bool IsLargeStride = MAI.isLargeStride(Reference&: LastAccess); |
| 353 | if (MAI.Base) |
| 354 | LastAccess = std::move(MAI); |
| 355 | |
| 356 | return IsLargeStride; |
| 357 | } |
| 358 | |
| 359 | AMDGPUPerfHint::MemAccessInfo |
| 360 | AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const { |
| 361 | MemAccessInfo MAI; |
| 362 | const Value *MO = getMemoryInstrPtrAndType(Inst).first; |
| 363 | |
| 364 | LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n'); |
| 365 | // Do not treat local-addr memory access as large stride. |
| 366 | if (isLocalAddr(V: MO)) |
| 367 | return MAI; |
| 368 | |
| 369 | MAI.V = MO; |
| 370 | MAI.Base = GetPointerBaseWithConstantOffset(Ptr: MO, Offset&: MAI.Offset, DL: *DL); |
| 371 | return MAI; |
| 372 | } |
| 373 | |
| 374 | bool AMDGPUPerfHint::MemAccessInfo::isLargeStride( |
| 375 | MemAccessInfo &Reference) const { |
| 376 | |
| 377 | if (!Base || !Reference.Base || Base != Reference.Base) |
| 378 | return false; |
| 379 | |
| 380 | uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset |
| 381 | : Reference.Offset - Offset; |
| 382 | bool Result = Diff > LargeStrideThresh; |
| 383 | LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n" |
| 384 | << print() << "<=>\n" |
| 385 | << Reference.print() << "Result:" << Result << '\n'); |
| 386 | return Result; |
| 387 | } |
| 388 | |
| 389 | class AMDGPUPerfHintAnalysisLegacy : public CallGraphSCCPass { |
| 390 | private: |
| 391 | // FIXME: This is relying on maintaining state between different SCCs. |
| 392 | AMDGPUPerfHintAnalysis Impl; |
| 393 | |
| 394 | public: |
| 395 | static char ID; |
| 396 | |
| 397 | AMDGPUPerfHintAnalysisLegacy() : CallGraphSCCPass(ID) {} |
| 398 | |
| 399 | bool runOnSCC(CallGraphSCC &SCC) override; |
| 400 | |
| 401 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 402 | AU.setPreservesAll(); |
| 403 | } |
| 404 | }; |
| 405 | |
| 406 | } // namespace |
| 407 | |
| 408 | bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const { |
| 409 | auto FI = FIM.find(Val: F); |
| 410 | if (FI == FIM.end()) |
| 411 | return false; |
| 412 | |
| 413 | return AMDGPUPerfHint::isMemBound(FI: FI->second); |
| 414 | } |
| 415 | |
| 416 | bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const { |
| 417 | auto FI = FIM.find(Val: F); |
| 418 | if (FI == FIM.end()) |
| 419 | return false; |
| 420 | |
| 421 | return AMDGPUPerfHint::needLimitWave(FI: FI->second); |
| 422 | } |
| 423 | |
| 424 | bool AMDGPUPerfHintAnalysis::runOnSCC(const GCNTargetMachine &TM, |
| 425 | CallGraphSCC &SCC) { |
| 426 | bool Changed = false; |
| 427 | for (CallGraphNode *I : SCC) { |
| 428 | Function *F = I->getFunction(); |
| 429 | if (!F || F->isDeclaration()) |
| 430 | continue; |
| 431 | |
| 432 | const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F: *F); |
| 433 | AMDGPUPerfHint Analyzer(FIM, ST.getTargetLowering()); |
| 434 | |
| 435 | if (Analyzer.runOnFunction(F&: *F)) |
| 436 | Changed = true; |
| 437 | } |
| 438 | |
| 439 | return Changed; |
| 440 | } |
| 441 | |
| 442 | bool AMDGPUPerfHintAnalysis::run(const GCNTargetMachine &TM, |
| 443 | LazyCallGraph &CG) { |
| 444 | bool Changed = false; |
| 445 | |
| 446 | CG.buildRefSCCs(); |
| 447 | |
| 448 | for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) { |
| 449 | for (LazyCallGraph::SCC &SCC : RC) { |
| 450 | if (SCC.size() != 1) |
| 451 | continue; |
| 452 | Function &F = SCC.begin()->getFunction(); |
| 453 | // TODO: Skip without norecurse, or interposable? |
| 454 | if (F.isDeclaration()) |
| 455 | continue; |
| 456 | |
| 457 | const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); |
| 458 | AMDGPUPerfHint Analyzer(FIM, ST.getTargetLowering()); |
| 459 | if (Analyzer.runOnFunction(F)) |
| 460 | Changed = true; |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | return Changed; |
| 465 | } |
| 466 | |
| 467 | char AMDGPUPerfHintAnalysisLegacy::ID = 0; |
| 468 | char &llvm::AMDGPUPerfHintAnalysisLegacyID = AMDGPUPerfHintAnalysisLegacy::ID; |
| 469 | |
| 470 | INITIALIZE_PASS(AMDGPUPerfHintAnalysisLegacy, DEBUG_TYPE, |
| 471 | "Analysis if a function is memory bound" , true, true) |
| 472 | |
| 473 | bool AMDGPUPerfHintAnalysisLegacy::runOnSCC(CallGraphSCC &SCC) { |
| 474 | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| 475 | if (!TPC) |
| 476 | return false; |
| 477 | |
| 478 | const GCNTargetMachine &TM = TPC->getTM<GCNTargetMachine>(); |
| 479 | return Impl.runOnSCC(TM, SCC); |
| 480 | } |
| 481 | |
| 482 | PreservedAnalyses AMDGPUPerfHintAnalysisPass::run(Module &M, |
| 483 | ModuleAnalysisManager &AM) { |
| 484 | auto &CG = AM.getResult<LazyCallGraphAnalysis>(IR&: M); |
| 485 | |
| 486 | bool Changed = Impl->run(TM, CG); |
| 487 | if (!Changed) |
| 488 | return PreservedAnalyses::all(); |
| 489 | |
| 490 | PreservedAnalyses PA; |
| 491 | PA.preserve<LazyCallGraphAnalysis>(); |
| 492 | return PA; |
| 493 | } |
| 494 | |