1 | //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead |
11 | /// branches to help accelerate DSP applications. These two extensions, |
12 | /// combined with a new form of predication called tail-predication, can be used |
13 | /// to provide implicit vector predication within a low-overhead loop. |
14 | /// This is implicit because the predicate of active/inactive lanes is |
15 | /// calculated by hardware, and thus does not need to be explicitly passed |
16 | /// to vector instructions. The instructions responsible for this are the |
17 | /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the |
18 | /// the total number of data elements processed by the loop. The loop-end |
19 | /// LETP instruction is responsible for decrementing and setting the remaining |
20 | /// elements to be processed and generating the mask of active lanes. |
21 | /// |
22 | /// The HardwareLoops pass inserts intrinsics identifying loops that the |
23 | /// backend will attempt to convert into a low-overhead loop. The vectorizer is |
24 | /// responsible for generating a vectorized loop in which the lanes are |
25 | /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these |
26 | /// get.active.lane.mask intrinsic and attempts to convert them to VCTP |
27 | /// instructions. This will be picked up by the ARM Low-overhead loop pass later |
28 | /// in the backend, which performs the final transformation to a DLSTP or WLSTP |
29 | /// tail-predicated loop. |
30 | // |
31 | //===----------------------------------------------------------------------===// |
32 | |
33 | #include "ARM.h" |
34 | #include "ARMSubtarget.h" |
35 | #include "ARMTargetTransformInfo.h" |
36 | #include "llvm/Analysis/LoopInfo.h" |
37 | #include "llvm/Analysis/LoopPass.h" |
38 | #include "llvm/Analysis/ScalarEvolution.h" |
39 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
40 | #include "llvm/Analysis/TargetLibraryInfo.h" |
41 | #include "llvm/Analysis/TargetTransformInfo.h" |
42 | #include "llvm/Analysis/ValueTracking.h" |
43 | #include "llvm/CodeGen/TargetPassConfig.h" |
44 | #include "llvm/IR/IRBuilder.h" |
45 | #include "llvm/IR/Instructions.h" |
46 | #include "llvm/IR/IntrinsicsARM.h" |
47 | #include "llvm/Support/Debug.h" |
48 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
49 | #include "llvm/Transforms/Utils/Local.h" |
50 | #include "llvm/Transforms/Utils/LoopUtils.h" |
51 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
52 | |
53 | using namespace llvm; |
54 | |
55 | #define DEBUG_TYPE "mve-tail-predication" |
56 | #define DESC "Transform predicated vector loops to use MVE tail predication" |
57 | |
58 | cl::opt<TailPredication::Mode> EnableTailPredication( |
59 | "tail-predication" , cl::desc("MVE tail-predication pass options" ), |
60 | cl::init(Val: TailPredication::Enabled), |
61 | cl::values(clEnumValN(TailPredication::Disabled, "disabled" , |
62 | "Don't tail-predicate loops" ), |
63 | clEnumValN(TailPredication::EnabledNoReductions, |
64 | "enabled-no-reductions" , |
65 | "Enable tail-predication, but not for reduction loops" ), |
66 | clEnumValN(TailPredication::Enabled, |
67 | "enabled" , |
68 | "Enable tail-predication, including reduction loops" ), |
69 | clEnumValN(TailPredication::ForceEnabledNoReductions, |
70 | "force-enabled-no-reductions" , |
71 | "Enable tail-predication, but not for reduction loops, " |
72 | "and force this which might be unsafe" ), |
73 | clEnumValN(TailPredication::ForceEnabled, |
74 | "force-enabled" , |
75 | "Enable tail-predication, including reduction loops, " |
76 | "and force this which might be unsafe" ))); |
77 | |
78 | |
79 | namespace { |
80 | |
81 | class MVETailPredication : public LoopPass { |
82 | SmallVector<IntrinsicInst*, 4> MaskedInsts; |
83 | Loop *L = nullptr; |
84 | ScalarEvolution *SE = nullptr; |
85 | TargetTransformInfo *TTI = nullptr; |
86 | const ARMSubtarget *ST = nullptr; |
87 | |
88 | public: |
89 | static char ID; |
90 | |
91 | MVETailPredication() : LoopPass(ID) { } |
92 | |
93 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
94 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
95 | AU.addRequired<LoopInfoWrapperPass>(); |
96 | AU.addRequired<TargetPassConfig>(); |
97 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
98 | AU.addPreserved<LoopInfoWrapperPass>(); |
99 | AU.setPreservesCFG(); |
100 | } |
101 | |
102 | bool runOnLoop(Loop *L, LPPassManager&) override; |
103 | |
104 | private: |
105 | /// Perform the relevant checks on the loop and convert active lane masks if |
106 | /// possible. |
107 | bool TryConvertActiveLaneMask(Value *TripCount); |
108 | |
109 | /// Perform several checks on the arguments of @llvm.get.active.lane.mask |
110 | /// intrinsic. E.g., check that the loop induction variable and the element |
111 | /// count are of the form we expect, and also perform overflow checks for |
112 | /// the new expressions that are created. |
113 | const SCEV *IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount); |
114 | |
115 | /// Insert the intrinsic to represent the effect of tail predication. |
116 | void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *Start); |
117 | }; |
118 | |
119 | } // end namespace |
120 | |
121 | bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { |
122 | if (skipLoop(L) || !EnableTailPredication) |
123 | return false; |
124 | |
125 | MaskedInsts.clear(); |
126 | Function &F = *L->getHeader()->getParent(); |
127 | auto &TPC = getAnalysis<TargetPassConfig>(); |
128 | auto &TM = TPC.getTM<TargetMachine>(); |
129 | ST = &TM.getSubtarget<ARMSubtarget>(F); |
130 | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
131 | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
132 | this->L = L; |
133 | |
134 | // The MVE and LOB extensions are combined to enable tail-predication, but |
135 | // there's nothing preventing us from generating VCTP instructions for v8.1m. |
136 | if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { |
137 | LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n" ); |
138 | return false; |
139 | } |
140 | |
141 | BasicBlock * = L->getLoopPreheader(); |
142 | if (!Preheader) |
143 | return false; |
144 | |
145 | auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { |
146 | for (auto &I : *BB) { |
147 | auto *Call = dyn_cast<IntrinsicInst>(Val: &I); |
148 | if (!Call) |
149 | continue; |
150 | |
151 | Intrinsic::ID ID = Call->getIntrinsicID(); |
152 | if (ID == Intrinsic::start_loop_iterations || |
153 | ID == Intrinsic::test_start_loop_iterations) |
154 | return cast<IntrinsicInst>(Val: &I); |
155 | } |
156 | return nullptr; |
157 | }; |
158 | |
159 | // Look for the hardware loop intrinsic that sets the iteration count. |
160 | IntrinsicInst *Setup = FindLoopIterations(Preheader); |
161 | |
162 | // The test.set iteration could live in the pre-preheader. |
163 | if (!Setup) { |
164 | if (!Preheader->getSinglePredecessor()) |
165 | return false; |
166 | Setup = FindLoopIterations(Preheader->getSinglePredecessor()); |
167 | if (!Setup) |
168 | return false; |
169 | } |
170 | |
171 | LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n" ); |
172 | |
173 | bool Changed = TryConvertActiveLaneMask(TripCount: Setup->getArgOperand(i: 0)); |
174 | |
175 | return Changed; |
176 | } |
177 | |
178 | // The active lane intrinsic has this form: |
179 | // |
180 | // @llvm.get.active.lane.mask(IV, TC) |
181 | // |
182 | // Here we perform checks that this intrinsic behaves as expected, |
183 | // which means: |
184 | // |
185 | // 1) Check that the TripCount (TC) belongs to this loop (originally). |
186 | // 2) The element count (TC) needs to be sufficiently large that the decrement |
187 | // of element counter doesn't overflow, which means that we need to prove: |
188 | // ceil(ElementCount / VectorWidth) >= TripCount |
189 | // by rounding up ElementCount up: |
190 | // ((ElementCount + (VectorWidth - 1)) / VectorWidth |
191 | // and evaluate if expression isKnownNonNegative: |
192 | // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount |
193 | // 3) The IV must be an induction phi with an increment equal to the |
194 | // vector width. |
195 | const SCEV *MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, |
196 | Value *TripCount) { |
197 | bool ForceTailPredication = |
198 | EnableTailPredication == TailPredication::ForceEnabledNoReductions || |
199 | EnableTailPredication == TailPredication::ForceEnabled; |
200 | |
201 | Value *ElemCount = ActiveLaneMask->getOperand(i_nocapture: 1); |
202 | bool Changed = false; |
203 | if (!L->makeLoopInvariant(V: ElemCount, Changed)) |
204 | return nullptr; |
205 | |
206 | const SCEV *EC = SE->getSCEV(V: ElemCount); |
207 | const SCEV *TC = SE->getSCEV(V: TripCount); |
208 | int VectorWidth = |
209 | cast<FixedVectorType>(Val: ActiveLaneMask->getType())->getNumElements(); |
210 | if (VectorWidth != 2 && VectorWidth != 4 && VectorWidth != 8 && |
211 | VectorWidth != 16) |
212 | return nullptr; |
213 | ConstantInt *ConstElemCount = nullptr; |
214 | |
215 | // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to |
216 | // this loop. The scalar tripcount corresponds the number of elements |
217 | // processed by the loop, so we will refer to that from this point on. |
218 | if (!SE->isLoopInvariant(S: EC, L)) { |
219 | LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n" ); |
220 | return nullptr; |
221 | } |
222 | |
223 | // 2) Find out if IV is an induction phi. Note that we can't use Loop |
224 | // helpers here to get the induction variable, because the hardware loop is |
225 | // no longer in loopsimplify form, and also the hwloop intrinsic uses a |
226 | // different counter. Using SCEV, we check that the induction is of the |
227 | // form i = i + 4, where the increment must be equal to the VectorWidth. |
228 | auto *IV = ActiveLaneMask->getOperand(i_nocapture: 0); |
229 | const SCEV *IVExpr = SE->getSCEV(V: IV); |
230 | auto *AddExpr = dyn_cast<SCEVAddRecExpr>(Val: IVExpr); |
231 | |
232 | if (!AddExpr) { |
233 | LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: " ; IVExpr->dump()); |
234 | return nullptr; |
235 | } |
236 | // Check that this AddRec is associated with this loop. |
237 | if (AddExpr->getLoop() != L) { |
238 | LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n" ); |
239 | return nullptr; |
240 | } |
241 | auto *Step = dyn_cast<SCEVConstant>(Val: AddExpr->getOperand(i: 1)); |
242 | if (!Step) { |
243 | LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: " ; |
244 | AddExpr->getOperand(1)->dump()); |
245 | return nullptr; |
246 | } |
247 | auto StepValue = Step->getValue()->getSExtValue(); |
248 | if (VectorWidth != StepValue) { |
249 | LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue |
250 | << " doesn't match vector width " << VectorWidth << "\n" ); |
251 | return nullptr; |
252 | } |
253 | |
254 | if ((ConstElemCount = dyn_cast<ConstantInt>(Val: ElemCount))) { |
255 | ConstantInt *TC = dyn_cast<ConstantInt>(Val: TripCount); |
256 | if (!TC) { |
257 | LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in " |
258 | "set.loop.iterations\n" ); |
259 | return nullptr; |
260 | } |
261 | |
262 | // Calculate 2 tripcount values and check that they are consistent with |
263 | // each other. The TripCount for a predicated vector loop body is |
264 | // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we |
265 | // work it out here. |
266 | uint64_t TC1 = TC->getZExtValue(); |
267 | uint64_t TC2 = |
268 | (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth; |
269 | |
270 | // If the tripcount values are inconsistent, we can't insert the VCTP and |
271 | // trigger tail-predication; keep the intrinsic as a get.active.lane.mask |
272 | // and legalize this. |
273 | if (TC1 != TC2) { |
274 | LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: " |
275 | << TC1 << " from set.loop.iterations, and " |
276 | << TC2 << " from get.active.lane.mask\n" ); |
277 | return nullptr; |
278 | } |
279 | } else if (!ForceTailPredication) { |
280 | // 3) We need to prove that the sub expression that we create in the |
281 | // tail-predicated loop body, which calculates the remaining elements to be |
282 | // processed, is non-negative, i.e. it doesn't overflow: |
283 | // |
284 | // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0 |
285 | // |
286 | // This is true if: |
287 | // |
288 | // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth |
289 | // |
290 | // which what we will be using here. |
291 | // |
292 | const SCEV *VW = |
293 | SE->getSCEV(V: ConstantInt::get(Ty: TripCount->getType(), V: VectorWidth)); |
294 | // ElementCount + (VW-1): |
295 | const SCEV *Start = AddExpr->getStart(); |
296 | const SCEV *ECPlusVWMinus1 = SE->getAddExpr( |
297 | LHS: EC, |
298 | RHS: SE->getSCEV(V: ConstantInt::get(Ty: TripCount->getType(), V: VectorWidth - 1))); |
299 | |
300 | // Ceil = ElementCount + (VW-1) / VW |
301 | const SCEV *Ceil = SE->getUDivExpr(LHS: ECPlusVWMinus1, RHS: VW); |
302 | |
303 | // Prevent unused variable warnings with TC |
304 | (void)TC; |
305 | LLVM_DEBUG({ |
306 | dbgs() << "ARM TP: Analysing overflow behaviour for:\n" ; |
307 | dbgs() << "ARM TP: - TripCount = " << *TC << "\n" ; |
308 | dbgs() << "ARM TP: - ElemCount = " << *EC << "\n" ; |
309 | dbgs() << "ARM TP: - Start = " << *Start << "\n" ; |
310 | dbgs() << "ARM TP: - BETC = " << *SE->getBackedgeTakenCount(L) << "\n" ; |
311 | dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n" ; |
312 | dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = " << *Ceil << "\n" ; |
313 | }); |
314 | |
315 | // As an example, almost all the tripcount expressions (produced by the |
316 | // vectoriser) look like this: |
317 | // |
318 | // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw> - start) /u 4) |
319 | // |
320 | // and "ElementCount + (VW-1) / VW": |
321 | // |
322 | // Ceil = ((3 + %N) /u 4) |
323 | // |
324 | // Check for equality of TC and Ceil by calculating SCEV expression |
325 | // TC - Ceil and test it for zero. |
326 | // |
327 | const SCEV *Div = SE->getUDivExpr( |
328 | LHS: SE->getAddExpr(Op0: SE->getMulExpr(LHS: Ceil, RHS: VW), Op1: SE->getNegativeSCEV(V: VW), |
329 | Op2: SE->getNegativeSCEV(V: Start)), |
330 | RHS: VW); |
331 | const SCEV *Sub = SE->getMinusSCEV(LHS: SE->getBackedgeTakenCount(L), RHS: Div); |
332 | LLVM_DEBUG(dbgs() << "ARM TP: - Sub = " ; Sub->dump()); |
333 | |
334 | // Use context sensitive facts about the path to the loop to refine. This |
335 | // comes up as the backedge taken count can incorporate context sensitive |
336 | // reasoning, and our RHS just above doesn't. |
337 | Sub = SE->applyLoopGuards(Expr: Sub, L); |
338 | LLVM_DEBUG(dbgs() << "ARM TP: - (Guarded) = " ; Sub->dump()); |
339 | |
340 | if (!Sub->isZero()) { |
341 | LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n" ); |
342 | return nullptr; |
343 | } |
344 | } |
345 | |
346 | // Check that the start value is a multiple of the VectorWidth. |
347 | // TODO: This could do with a method to check if the scev is a multiple of |
348 | // VectorWidth. For the moment we just check for constants, muls and unknowns |
349 | // (which use MaskedValueIsZero and seems to be the most common). |
350 | if (auto *BaseC = dyn_cast<SCEVConstant>(Val: AddExpr->getStart())) { |
351 | if (BaseC->getAPInt().urem(RHS: VectorWidth) == 0) |
352 | return SE->getMinusSCEV(LHS: EC, RHS: BaseC); |
353 | } else if (auto *BaseV = dyn_cast<SCEVUnknown>(Val: AddExpr->getStart())) { |
354 | Type *Ty = BaseV->getType(); |
355 | APInt Mask = APInt::getLowBitsSet(numBits: Ty->getPrimitiveSizeInBits(), |
356 | loBitsSet: Log2_64(Value: VectorWidth)); |
357 | if (MaskedValueIsZero(V: BaseV->getValue(), Mask, |
358 | SQ: L->getHeader()->getDataLayout())) |
359 | return SE->getMinusSCEV(LHS: EC, RHS: BaseV); |
360 | } else if (auto *BaseMul = dyn_cast<SCEVMulExpr>(Val: AddExpr->getStart())) { |
361 | if (auto *BaseC = dyn_cast<SCEVConstant>(Val: BaseMul->getOperand(i: 0))) |
362 | if (BaseC->getAPInt().urem(RHS: VectorWidth) == 0) |
363 | return SE->getMinusSCEV(LHS: EC, RHS: BaseC); |
364 | if (auto *BaseC = dyn_cast<SCEVConstant>(Val: BaseMul->getOperand(i: 1))) |
365 | if (BaseC->getAPInt().urem(RHS: VectorWidth) == 0) |
366 | return SE->getMinusSCEV(LHS: EC, RHS: BaseC); |
367 | } |
368 | |
369 | LLVM_DEBUG( |
370 | dbgs() << "ARM TP: induction base is not know to be a multiple of VF: " |
371 | << *AddExpr->getOperand(0) << "\n" ); |
372 | return nullptr; |
373 | } |
374 | |
375 | void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, |
376 | Value *Start) { |
377 | IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); |
378 | Module *M = L->getHeader()->getModule(); |
379 | Type *Ty = IntegerType::get(C&: M->getContext(), NumBits: 32); |
380 | unsigned VectorWidth = |
381 | cast<FixedVectorType>(Val: ActiveLaneMask->getType())->getNumElements(); |
382 | |
383 | // Insert a phi to count the number of elements processed by the loop. |
384 | Builder.SetInsertPoint(TheBB: L->getHeader(), IP: L->getHeader()->getFirstNonPHIIt()); |
385 | PHINode *Processed = Builder.CreatePHI(Ty, NumReservedValues: 2); |
386 | Processed->addIncoming(V: Start, BB: L->getLoopPreheader()); |
387 | |
388 | // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and |
389 | // thus represent the effect of tail predication. |
390 | Builder.SetInsertPoint(ActiveLaneMask); |
391 | ConstantInt *Factor = ConstantInt::get(Ty: cast<IntegerType>(Val: Ty), V: VectorWidth); |
392 | |
393 | Intrinsic::ID VCTPID; |
394 | switch (VectorWidth) { |
395 | default: |
396 | llvm_unreachable("unexpected number of lanes" ); |
397 | case 2: VCTPID = Intrinsic::arm_mve_vctp64; break; |
398 | case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; |
399 | case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; |
400 | case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; |
401 | } |
402 | Value *VCTPCall = Builder.CreateIntrinsic(ID: VCTPID, Args: Processed); |
403 | ActiveLaneMask->replaceAllUsesWith(V: VCTPCall); |
404 | |
405 | // Add the incoming value to the new phi. |
406 | // TODO: This add likely already exists in the loop. |
407 | Value *Remaining = Builder.CreateSub(LHS: Processed, RHS: Factor); |
408 | Processed->addIncoming(V: Remaining, BB: L->getLoopLatch()); |
409 | LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " |
410 | << *Processed << "\n" |
411 | << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n" ); |
412 | } |
413 | |
414 | bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) { |
415 | SmallVector<IntrinsicInst *, 4> ActiveLaneMasks; |
416 | for (auto *BB : L->getBlocks()) |
417 | for (auto &I : *BB) |
418 | if (auto *Int = dyn_cast<IntrinsicInst>(Val: &I)) |
419 | if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask) |
420 | ActiveLaneMasks.push_back(Elt: Int); |
421 | |
422 | if (ActiveLaneMasks.empty()) |
423 | return false; |
424 | |
425 | LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n" ); |
426 | |
427 | for (auto *ActiveLaneMask : ActiveLaneMasks) { |
428 | LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " |
429 | << *ActiveLaneMask << "\n" ); |
430 | |
431 | const SCEV *StartSCEV = IsSafeActiveMask(ActiveLaneMask, TripCount); |
432 | if (!StartSCEV) { |
433 | LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n" ); |
434 | return false; |
435 | } |
436 | LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP. Start is " << *StartSCEV |
437 | << "\n" ); |
438 | SCEVExpander Expander(*SE, L->getHeader()->getDataLayout(), |
439 | "start" ); |
440 | Instruction *Ins = L->getLoopPreheader()->getTerminator(); |
441 | Value *Start = Expander.expandCodeFor(SH: StartSCEV, Ty: StartSCEV->getType(), I: Ins); |
442 | LLVM_DEBUG(dbgs() << "ARM TP: Created start value " << *Start << "\n" ); |
443 | InsertVCTPIntrinsic(ActiveLaneMask, Start); |
444 | } |
445 | |
446 | // Remove dead instructions and now dead phis. |
447 | for (auto *II : ActiveLaneMasks) |
448 | RecursivelyDeleteTriviallyDeadInstructions(V: II); |
449 | for (auto *I : L->blocks()) |
450 | DeleteDeadPHIs(BB: I); |
451 | return true; |
452 | } |
453 | |
454 | Pass *llvm::createMVETailPredicationPass() { |
455 | return new MVETailPredication(); |
456 | } |
457 | |
458 | char MVETailPredication::ID = 0; |
459 | |
460 | INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) |
461 | INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) |
462 | |