| 1 | //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead |
| 11 | /// branches to help accelerate DSP applications. These two extensions, |
| 12 | /// combined with a new form of predication called tail-predication, can be used |
| 13 | /// to provide implicit vector predication within a low-overhead loop. |
| 14 | /// This is implicit because the predicate of active/inactive lanes is |
| 15 | /// calculated by hardware, and thus does not need to be explicitly passed |
| 16 | /// to vector instructions. The instructions responsible for this are the |
| 17 | /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the |
| 18 | /// the total number of data elements processed by the loop. The loop-end |
| 19 | /// LETP instruction is responsible for decrementing and setting the remaining |
| 20 | /// elements to be processed and generating the mask of active lanes. |
| 21 | /// |
| 22 | /// The HardwareLoops pass inserts intrinsics identifying loops that the |
| 23 | /// backend will attempt to convert into a low-overhead loop. The vectorizer is |
| 24 | /// responsible for generating a vectorized loop in which the lanes are |
| 25 | /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these |
| 26 | /// get.active.lane.mask intrinsic and attempts to convert them to VCTP |
| 27 | /// instructions. This will be picked up by the ARM Low-overhead loop pass later |
| 28 | /// in the backend, which performs the final transformation to a DLSTP or WLSTP |
| 29 | /// tail-predicated loop. |
| 30 | // |
| 31 | //===----------------------------------------------------------------------===// |
| 32 | |
| 33 | #include "ARM.h" |
| 34 | #include "ARMSubtarget.h" |
| 35 | #include "ARMTargetTransformInfo.h" |
| 36 | #include "llvm/Analysis/LoopInfo.h" |
| 37 | #include "llvm/Analysis/LoopPass.h" |
| 38 | #include "llvm/Analysis/ScalarEvolution.h" |
| 39 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 40 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 41 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 42 | #include "llvm/Analysis/ValueTracking.h" |
| 43 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 44 | #include "llvm/IR/IRBuilder.h" |
| 45 | #include "llvm/IR/Instructions.h" |
| 46 | #include "llvm/IR/IntrinsicsARM.h" |
| 47 | #include "llvm/Support/Debug.h" |
| 48 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 49 | #include "llvm/Transforms/Utils/Local.h" |
| 50 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 51 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 52 | |
| 53 | using namespace llvm; |
| 54 | |
| 55 | #define DEBUG_TYPE "mve-tail-predication" |
| 56 | #define DESC "Transform predicated vector loops to use MVE tail predication" |
| 57 | |
| 58 | cl::opt<TailPredication::Mode> EnableTailPredication( |
| 59 | "tail-predication" , cl::desc("MVE tail-predication pass options" ), |
| 60 | cl::init(Val: TailPredication::Enabled), |
| 61 | cl::values(clEnumValN(TailPredication::Disabled, "disabled" , |
| 62 | "Don't tail-predicate loops" ), |
| 63 | clEnumValN(TailPredication::EnabledNoReductions, |
| 64 | "enabled-no-reductions" , |
| 65 | "Enable tail-predication, but not for reduction loops" ), |
| 66 | clEnumValN(TailPredication::Enabled, |
| 67 | "enabled" , |
| 68 | "Enable tail-predication, including reduction loops" ), |
| 69 | clEnumValN(TailPredication::ForceEnabledNoReductions, |
| 70 | "force-enabled-no-reductions" , |
| 71 | "Enable tail-predication, but not for reduction loops, " |
| 72 | "and force this which might be unsafe" ), |
| 73 | clEnumValN(TailPredication::ForceEnabled, |
| 74 | "force-enabled" , |
| 75 | "Enable tail-predication, including reduction loops, " |
| 76 | "and force this which might be unsafe" ))); |
| 77 | |
| 78 | |
| 79 | namespace { |
| 80 | |
| 81 | class MVETailPredication : public LoopPass { |
| 82 | SmallVector<IntrinsicInst*, 4> MaskedInsts; |
| 83 | Loop *L = nullptr; |
| 84 | ScalarEvolution *SE = nullptr; |
| 85 | TargetTransformInfo *TTI = nullptr; |
| 86 | const ARMSubtarget *ST = nullptr; |
| 87 | |
| 88 | public: |
| 89 | static char ID; |
| 90 | |
| 91 | MVETailPredication() : LoopPass(ID) { } |
| 92 | |
| 93 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 94 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
| 95 | AU.addRequired<LoopInfoWrapperPass>(); |
| 96 | AU.addRequired<TargetPassConfig>(); |
| 97 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 98 | AU.addPreserved<LoopInfoWrapperPass>(); |
| 99 | AU.setPreservesCFG(); |
| 100 | } |
| 101 | |
| 102 | bool runOnLoop(Loop *L, LPPassManager&) override; |
| 103 | |
| 104 | private: |
| 105 | /// Perform the relevant checks on the loop and convert active lane masks if |
| 106 | /// possible. |
| 107 | bool TryConvertActiveLaneMask(Value *TripCount); |
| 108 | |
| 109 | /// Perform several checks on the arguments of @llvm.get.active.lane.mask |
| 110 | /// intrinsic. E.g., check that the loop induction variable and the element |
| 111 | /// count are of the form we expect, and also perform overflow checks for |
| 112 | /// the new expressions that are created. |
| 113 | const SCEV *IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount); |
| 114 | |
| 115 | /// Insert the intrinsic to represent the effect of tail predication. |
| 116 | void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *Start); |
| 117 | }; |
| 118 | |
| 119 | } // end namespace |
| 120 | |
| 121 | bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { |
| 122 | if (skipLoop(L) || !EnableTailPredication) |
| 123 | return false; |
| 124 | |
| 125 | MaskedInsts.clear(); |
| 126 | Function &F = *L->getHeader()->getParent(); |
| 127 | auto &TPC = getAnalysis<TargetPassConfig>(); |
| 128 | auto &TM = TPC.getTM<TargetMachine>(); |
| 129 | ST = &TM.getSubtarget<ARMSubtarget>(F); |
| 130 | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 131 | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 132 | this->L = L; |
| 133 | |
| 134 | // The MVE and LOB extensions are combined to enable tail-predication, but |
| 135 | // there's nothing preventing us from generating VCTP instructions for v8.1m. |
| 136 | if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { |
| 137 | LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n" ); |
| 138 | return false; |
| 139 | } |
| 140 | |
| 141 | BasicBlock * = L->getLoopPreheader(); |
| 142 | if (!Preheader) |
| 143 | return false; |
| 144 | |
| 145 | auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { |
| 146 | for (auto &I : *BB) { |
| 147 | auto *Call = dyn_cast<IntrinsicInst>(Val: &I); |
| 148 | if (!Call) |
| 149 | continue; |
| 150 | |
| 151 | Intrinsic::ID ID = Call->getIntrinsicID(); |
| 152 | if (ID == Intrinsic::start_loop_iterations || |
| 153 | ID == Intrinsic::test_start_loop_iterations) |
| 154 | return cast<IntrinsicInst>(Val: &I); |
| 155 | } |
| 156 | return nullptr; |
| 157 | }; |
| 158 | |
| 159 | // Look for the hardware loop intrinsic that sets the iteration count. |
| 160 | IntrinsicInst *Setup = FindLoopIterations(Preheader); |
| 161 | |
| 162 | // The test.set iteration could live in the pre-preheader. |
| 163 | if (!Setup) { |
| 164 | if (!Preheader->getSinglePredecessor()) |
| 165 | return false; |
| 166 | Setup = FindLoopIterations(Preheader->getSinglePredecessor()); |
| 167 | if (!Setup) |
| 168 | return false; |
| 169 | } |
| 170 | |
| 171 | LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n" ); |
| 172 | |
| 173 | bool Changed = TryConvertActiveLaneMask(TripCount: Setup->getArgOperand(i: 0)); |
| 174 | |
| 175 | return Changed; |
| 176 | } |
| 177 | |
| 178 | // The active lane intrinsic has this form: |
| 179 | // |
| 180 | // @llvm.get.active.lane.mask(IV, TC) |
| 181 | // |
| 182 | // Here we perform checks that this intrinsic behaves as expected, |
| 183 | // which means: |
| 184 | // |
| 185 | // 1) Check that the TripCount (TC) belongs to this loop (originally). |
| 186 | // 2) The element count (TC) needs to be sufficiently large that the decrement |
| 187 | // of element counter doesn't overflow, which means that we need to prove: |
| 188 | // ceil(ElementCount / VectorWidth) >= TripCount |
| 189 | // by rounding up ElementCount up: |
| 190 | // ((ElementCount + (VectorWidth - 1)) / VectorWidth |
| 191 | // and evaluate if expression isKnownNonNegative: |
| 192 | // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount |
| 193 | // 3) The IV must be an induction phi with an increment equal to the |
| 194 | // vector width. |
| 195 | const SCEV *MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, |
| 196 | Value *TripCount) { |
| 197 | bool ForceTailPredication = |
| 198 | EnableTailPredication == TailPredication::ForceEnabledNoReductions || |
| 199 | EnableTailPredication == TailPredication::ForceEnabled; |
| 200 | |
| 201 | Value *ElemCount = ActiveLaneMask->getOperand(i_nocapture: 1); |
| 202 | bool Changed = false; |
| 203 | if (!L->makeLoopInvariant(V: ElemCount, Changed)) |
| 204 | return nullptr; |
| 205 | |
| 206 | const SCEV *EC = SE->getSCEV(V: ElemCount); |
| 207 | const SCEV *TC = SE->getSCEV(V: TripCount); |
| 208 | int VectorWidth = |
| 209 | cast<FixedVectorType>(Val: ActiveLaneMask->getType())->getNumElements(); |
| 210 | if (VectorWidth != 2 && VectorWidth != 4 && VectorWidth != 8 && |
| 211 | VectorWidth != 16) |
| 212 | return nullptr; |
| 213 | ConstantInt *ConstElemCount = nullptr; |
| 214 | |
| 215 | // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to |
| 216 | // this loop. The scalar tripcount corresponds the number of elements |
| 217 | // processed by the loop, so we will refer to that from this point on. |
| 218 | if (!SE->isLoopInvariant(S: EC, L)) { |
| 219 | LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n" ); |
| 220 | return nullptr; |
| 221 | } |
| 222 | |
| 223 | // 2) Find out if IV is an induction phi. Note that we can't use Loop |
| 224 | // helpers here to get the induction variable, because the hardware loop is |
| 225 | // no longer in loopsimplify form, and also the hwloop intrinsic uses a |
| 226 | // different counter. Using SCEV, we check that the induction is of the |
| 227 | // form i = i + 4, where the increment must be equal to the VectorWidth. |
| 228 | auto *IV = ActiveLaneMask->getOperand(i_nocapture: 0); |
| 229 | const SCEV *IVExpr = SE->getSCEV(V: IV); |
| 230 | auto *AddExpr = dyn_cast<SCEVAddRecExpr>(Val: IVExpr); |
| 231 | |
| 232 | if (!AddExpr) { |
| 233 | LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: " ; IVExpr->dump()); |
| 234 | return nullptr; |
| 235 | } |
| 236 | // Check that this AddRec is associated with this loop. |
| 237 | if (AddExpr->getLoop() != L) { |
| 238 | LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n" ); |
| 239 | return nullptr; |
| 240 | } |
| 241 | auto *Step = dyn_cast<SCEVConstant>(Val: AddExpr->getOperand(i: 1)); |
| 242 | if (!Step) { |
| 243 | LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: " ; |
| 244 | AddExpr->getOperand(1)->dump()); |
| 245 | return nullptr; |
| 246 | } |
| 247 | auto StepValue = Step->getValue()->getSExtValue(); |
| 248 | if (VectorWidth != StepValue) { |
| 249 | LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue |
| 250 | << " doesn't match vector width " << VectorWidth << "\n" ); |
| 251 | return nullptr; |
| 252 | } |
| 253 | |
| 254 | if ((ConstElemCount = dyn_cast<ConstantInt>(Val: ElemCount))) { |
| 255 | ConstantInt *TC = dyn_cast<ConstantInt>(Val: TripCount); |
| 256 | if (!TC) { |
| 257 | LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in " |
| 258 | "set.loop.iterations\n" ); |
| 259 | return nullptr; |
| 260 | } |
| 261 | |
| 262 | // Calculate 2 tripcount values and check that they are consistent with |
| 263 | // each other. The TripCount for a predicated vector loop body is |
| 264 | // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we |
| 265 | // work it out here. |
| 266 | uint64_t TC1 = TC->getZExtValue(); |
| 267 | uint64_t TC2 = |
| 268 | (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth; |
| 269 | |
| 270 | // If the tripcount values are inconsistent, we can't insert the VCTP and |
| 271 | // trigger tail-predication; keep the intrinsic as a get.active.lane.mask |
| 272 | // and legalize this. |
| 273 | if (TC1 != TC2) { |
| 274 | LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: " |
| 275 | << TC1 << " from set.loop.iterations, and " |
| 276 | << TC2 << " from get.active.lane.mask\n" ); |
| 277 | return nullptr; |
| 278 | } |
| 279 | } else if (!ForceTailPredication) { |
| 280 | // 3) We need to prove that the sub expression that we create in the |
| 281 | // tail-predicated loop body, which calculates the remaining elements to be |
| 282 | // processed, is non-negative, i.e. it doesn't overflow: |
| 283 | // |
| 284 | // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0 |
| 285 | // |
| 286 | // This is true if: |
| 287 | // |
| 288 | // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth |
| 289 | // |
| 290 | // which what we will be using here. |
| 291 | // |
| 292 | const SCEV *VW = |
| 293 | SE->getSCEV(V: ConstantInt::get(Ty: TripCount->getType(), V: VectorWidth)); |
| 294 | // ElementCount + (VW-1): |
| 295 | const SCEV *Start = AddExpr->getStart(); |
| 296 | const SCEV *ECPlusVWMinus1 = SE->getAddExpr( |
| 297 | LHS: EC, |
| 298 | RHS: SE->getSCEV(V: ConstantInt::get(Ty: TripCount->getType(), V: VectorWidth - 1))); |
| 299 | |
| 300 | // Ceil = ElementCount + (VW-1) / VW |
| 301 | const SCEV *Ceil = SE->getUDivExpr(LHS: ECPlusVWMinus1, RHS: VW); |
| 302 | |
| 303 | // Prevent unused variable warnings with TC |
| 304 | (void)TC; |
| 305 | LLVM_DEBUG({ |
| 306 | dbgs() << "ARM TP: Analysing overflow behaviour for:\n" ; |
| 307 | dbgs() << "ARM TP: - TripCount = " << *TC << "\n" ; |
| 308 | dbgs() << "ARM TP: - ElemCount = " << *EC << "\n" ; |
| 309 | dbgs() << "ARM TP: - Start = " << *Start << "\n" ; |
| 310 | dbgs() << "ARM TP: - BETC = " << *SE->getBackedgeTakenCount(L) << "\n" ; |
| 311 | dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n" ; |
| 312 | dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = " << *Ceil << "\n" ; |
| 313 | }); |
| 314 | |
| 315 | // As an example, almost all the tripcount expressions (produced by the |
| 316 | // vectoriser) look like this: |
| 317 | // |
| 318 | // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw> - start) /u 4) |
| 319 | // |
| 320 | // and "ElementCount + (VW-1) / VW": |
| 321 | // |
| 322 | // Ceil = ((3 + %N) /u 4) |
| 323 | // |
| 324 | // Check for equality of TC and Ceil by calculating SCEV expression |
| 325 | // TC - Ceil and test it for zero. |
| 326 | // |
| 327 | const SCEV *Div = SE->getUDivExpr( |
| 328 | LHS: SE->getAddExpr(Op0: SE->getMulExpr(LHS: Ceil, RHS: VW), Op1: SE->getNegativeSCEV(V: VW), |
| 329 | Op2: SE->getNegativeSCEV(V: Start)), |
| 330 | RHS: VW); |
| 331 | const SCEV *Sub = SE->getMinusSCEV(LHS: SE->getBackedgeTakenCount(L), RHS: Div); |
| 332 | LLVM_DEBUG(dbgs() << "ARM TP: - Sub = " ; Sub->dump()); |
| 333 | |
| 334 | // Use context sensitive facts about the path to the loop to refine. This |
| 335 | // comes up as the backedge taken count can incorporate context sensitive |
| 336 | // reasoning, and our RHS just above doesn't. |
| 337 | Sub = SE->applyLoopGuards(Expr: Sub, L); |
| 338 | LLVM_DEBUG(dbgs() << "ARM TP: - (Guarded) = " ; Sub->dump()); |
| 339 | |
| 340 | if (!Sub->isZero()) { |
| 341 | LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n" ); |
| 342 | return nullptr; |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | // Check that the start value is a multiple of the VectorWidth. |
| 347 | // TODO: This could do with a method to check if the scev is a multiple of |
| 348 | // VectorWidth. For the moment we just check for constants, muls and unknowns |
| 349 | // (which use MaskedValueIsZero and seems to be the most common). |
| 350 | if (auto *BaseC = dyn_cast<SCEVConstant>(Val: AddExpr->getStart())) { |
| 351 | if (BaseC->getAPInt().urem(RHS: VectorWidth) == 0) |
| 352 | return SE->getMinusSCEV(LHS: EC, RHS: BaseC); |
| 353 | } else if (auto *BaseV = dyn_cast<SCEVUnknown>(Val: AddExpr->getStart())) { |
| 354 | Type *Ty = BaseV->getType(); |
| 355 | APInt Mask = APInt::getLowBitsSet(numBits: Ty->getPrimitiveSizeInBits(), |
| 356 | loBitsSet: Log2_64(Value: VectorWidth)); |
| 357 | if (MaskedValueIsZero(V: BaseV->getValue(), Mask, |
| 358 | SQ: L->getHeader()->getDataLayout())) |
| 359 | return SE->getMinusSCEV(LHS: EC, RHS: BaseV); |
| 360 | } else if (auto *BaseMul = dyn_cast<SCEVMulExpr>(Val: AddExpr->getStart())) { |
| 361 | if (auto *BaseC = dyn_cast<SCEVConstant>(Val: BaseMul->getOperand(i: 0))) |
| 362 | if (BaseC->getAPInt().urem(RHS: VectorWidth) == 0) |
| 363 | return SE->getMinusSCEV(LHS: EC, RHS: BaseC); |
| 364 | if (auto *BaseC = dyn_cast<SCEVConstant>(Val: BaseMul->getOperand(i: 1))) |
| 365 | if (BaseC->getAPInt().urem(RHS: VectorWidth) == 0) |
| 366 | return SE->getMinusSCEV(LHS: EC, RHS: BaseC); |
| 367 | } |
| 368 | |
| 369 | LLVM_DEBUG( |
| 370 | dbgs() << "ARM TP: induction base is not know to be a multiple of VF: " |
| 371 | << *AddExpr->getOperand(0) << "\n" ); |
| 372 | return nullptr; |
| 373 | } |
| 374 | |
| 375 | void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, |
| 376 | Value *Start) { |
| 377 | IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); |
| 378 | Module *M = L->getHeader()->getModule(); |
| 379 | Type *Ty = IntegerType::get(C&: M->getContext(), NumBits: 32); |
| 380 | unsigned VectorWidth = |
| 381 | cast<FixedVectorType>(Val: ActiveLaneMask->getType())->getNumElements(); |
| 382 | |
| 383 | // Insert a phi to count the number of elements processed by the loop. |
| 384 | Builder.SetInsertPoint(TheBB: L->getHeader(), IP: L->getHeader()->getFirstNonPHIIt()); |
| 385 | PHINode *Processed = Builder.CreatePHI(Ty, NumReservedValues: 2); |
| 386 | Processed->addIncoming(V: Start, BB: L->getLoopPreheader()); |
| 387 | |
| 388 | // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and |
| 389 | // thus represent the effect of tail predication. |
| 390 | Builder.SetInsertPoint(ActiveLaneMask); |
| 391 | ConstantInt *Factor = ConstantInt::get(Ty: cast<IntegerType>(Val: Ty), V: VectorWidth); |
| 392 | |
| 393 | Intrinsic::ID VCTPID; |
| 394 | switch (VectorWidth) { |
| 395 | default: |
| 396 | llvm_unreachable("unexpected number of lanes" ); |
| 397 | case 2: VCTPID = Intrinsic::arm_mve_vctp64; break; |
| 398 | case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; |
| 399 | case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; |
| 400 | case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; |
| 401 | } |
| 402 | Value *VCTPCall = Builder.CreateIntrinsic(ID: VCTPID, Args: Processed); |
| 403 | ActiveLaneMask->replaceAllUsesWith(V: VCTPCall); |
| 404 | |
| 405 | // Add the incoming value to the new phi. |
| 406 | // TODO: This add likely already exists in the loop. |
| 407 | Value *Remaining = Builder.CreateSub(LHS: Processed, RHS: Factor); |
| 408 | Processed->addIncoming(V: Remaining, BB: L->getLoopLatch()); |
| 409 | LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " |
| 410 | << *Processed << "\n" |
| 411 | << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n" ); |
| 412 | } |
| 413 | |
| 414 | bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) { |
| 415 | SmallVector<IntrinsicInst *, 4> ActiveLaneMasks; |
| 416 | for (auto *BB : L->getBlocks()) |
| 417 | for (auto &I : *BB) |
| 418 | if (auto *Int = dyn_cast<IntrinsicInst>(Val: &I)) |
| 419 | if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask) |
| 420 | ActiveLaneMasks.push_back(Elt: Int); |
| 421 | |
| 422 | if (ActiveLaneMasks.empty()) |
| 423 | return false; |
| 424 | |
| 425 | LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n" ); |
| 426 | |
| 427 | for (auto *ActiveLaneMask : ActiveLaneMasks) { |
| 428 | LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " |
| 429 | << *ActiveLaneMask << "\n" ); |
| 430 | |
| 431 | const SCEV *StartSCEV = IsSafeActiveMask(ActiveLaneMask, TripCount); |
| 432 | if (!StartSCEV) { |
| 433 | LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n" ); |
| 434 | return false; |
| 435 | } |
| 436 | LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP. Start is " << *StartSCEV |
| 437 | << "\n" ); |
| 438 | SCEVExpander Expander(*SE, L->getHeader()->getDataLayout(), |
| 439 | "start" ); |
| 440 | Instruction *Ins = L->getLoopPreheader()->getTerminator(); |
| 441 | Value *Start = Expander.expandCodeFor(SH: StartSCEV, Ty: StartSCEV->getType(), I: Ins); |
| 442 | LLVM_DEBUG(dbgs() << "ARM TP: Created start value " << *Start << "\n" ); |
| 443 | InsertVCTPIntrinsic(ActiveLaneMask, Start); |
| 444 | } |
| 445 | |
| 446 | // Remove dead instructions and now dead phis. |
| 447 | for (auto *II : ActiveLaneMasks) |
| 448 | RecursivelyDeleteTriviallyDeadInstructions(V: II); |
| 449 | for (auto *I : L->blocks()) |
| 450 | DeleteDeadPHIs(BB: I); |
| 451 | return true; |
| 452 | } |
| 453 | |
| 454 | Pass *llvm::createMVETailPredicationPass() { |
| 455 | return new MVETailPredication(); |
| 456 | } |
| 457 | |
| 458 | char MVETailPredication::ID = 0; |
| 459 | |
| 460 | INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) |
| 461 | INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) |
| 462 | |