| 1 | //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass abstracted struct/union member accesses in order to support |
| 10 | // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program |
| 11 | // which can run on different kernels. In particular, if bpf program tries to |
| 12 | // access a particular kernel data structure member, the details of the |
| 13 | // intermediate member access will be remembered so bpf loader can do |
| 14 | // necessary adjustment right before program loading. |
| 15 | // |
| 16 | // For example, |
| 17 | // |
| 18 | // struct s { |
| 19 | // int a; |
| 20 | // int b; |
| 21 | // }; |
| 22 | // struct t { |
| 23 | // struct s c; |
| 24 | // int d; |
| 25 | // }; |
| 26 | // struct t e; |
| 27 | // |
| 28 | // For the member access e.c.b, the compiler will generate code |
| 29 | // &e + 4 |
| 30 | // |
| 31 | // The compile-once run-everywhere instead generates the following code |
| 32 | // r = 4 |
| 33 | // &e + r |
| 34 | // The "4" in "r = 4" can be changed based on a particular kernel version. |
| 35 | // For example, on a particular kernel version, if struct s is changed to |
| 36 | // |
| 37 | // struct s { |
| 38 | // int new_field; |
| 39 | // int a; |
| 40 | // int b; |
| 41 | // } |
| 42 | // |
| 43 | // By repeating the member access on the host, the bpf loader can |
| 44 | // adjust "r = 4" as "r = 8". |
| 45 | // |
| 46 | // This feature relies on the following three intrinsic calls: |
| 47 | // addr = preserve_array_access_index(base, dimension, index) |
| 48 | // addr = preserve_union_access_index(base, di_index) |
| 49 | // !llvm.preserve.access.index <union_ditype> |
| 50 | // addr = preserve_struct_access_index(base, gep_index, di_index) |
| 51 | // !llvm.preserve.access.index <struct_ditype> |
| 52 | // |
| 53 | // Bitfield member access needs special attention. User cannot take the |
| 54 | // address of a bitfield acceess. To facilitate kernel verifier |
| 55 | // for easy bitfield code optimization, a new clang intrinsic is introduced: |
| 56 | // uint32_t __builtin_preserve_field_info(member_access, info_kind) |
| 57 | // In IR, a chain with two (or more) intrinsic calls will be generated: |
| 58 | // ... |
| 59 | // addr = preserve_struct_access_index(base, 1, 1) !struct s |
| 60 | // uint32_t result = bpf_preserve_field_info(addr, info_kind) |
| 61 | // |
| 62 | // Suppose the info_kind is FIELD_SIGNEDNESS, |
| 63 | // The above two IR intrinsics will be replaced with |
| 64 | // a relocatable insn: |
| 65 | // signness = /* signness of member_access */ |
| 66 | // and signness can be changed by bpf loader based on the |
| 67 | // types on the host. |
| 68 | // |
| 69 | // User can also test whether a field exists or not with |
| 70 | // uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE) |
| 71 | // The field will be always available (result = 1) during initial |
| 72 | // compilation, but bpf loader can patch with the correct value |
| 73 | // on the target host where the member_access may or may not be available |
| 74 | // |
| 75 | //===----------------------------------------------------------------------===// |
| 76 | |
| 77 | #include "BPF.h" |
| 78 | #include "BPFCORE.h" |
| 79 | #include "BPFTargetMachine.h" |
| 80 | #include "llvm/BinaryFormat/Dwarf.h" |
| 81 | #include "llvm/DebugInfo/BTF/BTF.h" |
| 82 | #include "llvm/IR/DebugInfoMetadata.h" |
| 83 | #include "llvm/IR/GlobalVariable.h" |
| 84 | #include "llvm/IR/Instruction.h" |
| 85 | #include "llvm/IR/Instructions.h" |
| 86 | #include "llvm/IR/IntrinsicsBPF.h" |
| 87 | #include "llvm/IR/Module.h" |
| 88 | #include "llvm/IR/PassManager.h" |
| 89 | #include "llvm/IR/Type.h" |
| 90 | #include "llvm/IR/User.h" |
| 91 | #include "llvm/IR/Value.h" |
| 92 | #include "llvm/IR/ValueHandle.h" |
| 93 | #include "llvm/Pass.h" |
| 94 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 95 | #include <stack> |
| 96 | |
| 97 | #define DEBUG_TYPE "bpf-abstract-member-access" |
| 98 | |
| 99 | namespace llvm { |
| 100 | constexpr StringRef BPFCoreSharedInfo::AmaAttr; |
| 101 | uint32_t BPFCoreSharedInfo::SeqNum; |
| 102 | |
| 103 | Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB, |
| 104 | Instruction *Input, |
| 105 | Instruction *Before) { |
| 106 | Function *Fn = Intrinsic::getOrInsertDeclaration( |
| 107 | M, id: Intrinsic::bpf_passthrough, Tys: {Input->getType(), Input->getType()}); |
| 108 | Constant *SeqNumVal = ConstantInt::get(Ty: Type::getInt32Ty(C&: BB->getContext()), |
| 109 | V: BPFCoreSharedInfo::SeqNum++); |
| 110 | |
| 111 | auto *NewInst = CallInst::Create(Func: Fn, Args: {SeqNumVal, Input}); |
| 112 | NewInst->insertBefore(InsertPos: Before->getIterator()); |
| 113 | return NewInst; |
| 114 | } |
| 115 | } // namespace llvm |
| 116 | |
| 117 | using namespace llvm; |
| 118 | |
| 119 | namespace { |
| 120 | class BPFAbstractMemberAccess final { |
| 121 | public: |
| 122 | BPFAbstractMemberAccess(BPFTargetMachine *TM) : TM(TM) {} |
| 123 | |
| 124 | bool run(Function &F); |
| 125 | |
| 126 | struct CallInfo { |
| 127 | uint32_t Kind; |
| 128 | uint32_t AccessIndex; |
| 129 | MaybeAlign RecordAlignment; |
| 130 | MDNode *Metadata; |
| 131 | WeakTrackingVH Base; |
| 132 | }; |
| 133 | typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack; |
| 134 | |
| 135 | private: |
| 136 | enum : uint32_t { |
| 137 | BPFPreserveArrayAI = 1, |
| 138 | BPFPreserveUnionAI = 2, |
| 139 | BPFPreserveStructAI = 3, |
| 140 | BPFPreserveFieldInfoAI = 4, |
| 141 | }; |
| 142 | |
| 143 | TargetMachine *TM; |
| 144 | const DataLayout *DL = nullptr; |
| 145 | Module *M = nullptr; |
| 146 | |
| 147 | static std::map<std::string, GlobalVariable *> GEPGlobals; |
| 148 | // A map to link preserve_*_access_index intrinsic calls. |
| 149 | std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain; |
| 150 | // A map to hold all the base preserve_*_access_index intrinsic calls. |
| 151 | // The base call is not an input of any other preserve_* |
| 152 | // intrinsics. |
| 153 | std::map<CallInst *, CallInfo> BaseAICalls; |
| 154 | // A map to hold <AnonRecord, TypeDef> relationships |
| 155 | std::map<DICompositeType *, DIDerivedType *> AnonRecords; |
| 156 | |
| 157 | void CheckAnonRecordType(DIDerivedType *ParentTy, DIType *Ty); |
| 158 | void CheckCompositeType(DIDerivedType *ParentTy, DICompositeType *CTy); |
| 159 | void CheckDerivedType(DIDerivedType *ParentTy, DIDerivedType *DTy); |
| 160 | void ResetMetadata(struct CallInfo &CInfo); |
| 161 | |
| 162 | bool doTransformation(Function &F); |
| 163 | |
| 164 | void traceAICall(CallInst *Call, CallInfo &ParentInfo); |
| 165 | void traceBitCast(BitCastInst *BitCast, CallInst *Parent, |
| 166 | CallInfo &ParentInfo); |
| 167 | void traceGEP(GetElementPtrInst *GEP, CallInst *Parent, |
| 168 | CallInfo &ParentInfo); |
| 169 | void collectAICallChains(Function &F); |
| 170 | |
| 171 | bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo); |
| 172 | bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI, |
| 173 | const MDNode *ChildMeta); |
| 174 | bool removePreserveAccessIndexIntrinsic(Function &F); |
| 175 | bool HasPreserveFieldInfoCall(CallInfoStack &CallStack); |
| 176 | void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment, |
| 177 | uint32_t &StartBitOffset, uint32_t &EndBitOffset); |
| 178 | uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy, |
| 179 | uint32_t AccessIndex, uint32_t PatchImm, |
| 180 | MaybeAlign RecordAlignment); |
| 181 | |
| 182 | Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo, |
| 183 | std::string &AccessKey, MDNode *&BaseMeta); |
| 184 | MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo, |
| 185 | std::string &AccessKey, bool &IsInt32Ret); |
| 186 | bool transformGEPChain(CallInst *Call, CallInfo &CInfo); |
| 187 | }; |
| 188 | |
| 189 | std::map<std::string, GlobalVariable *> BPFAbstractMemberAccess::GEPGlobals; |
| 190 | } // End anonymous namespace |
| 191 | |
| 192 | bool BPFAbstractMemberAccess::run(Function &F) { |
| 193 | LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n" ); |
| 194 | |
| 195 | M = F.getParent(); |
| 196 | if (!M) |
| 197 | return false; |
| 198 | |
| 199 | // Bail out if no debug info. |
| 200 | if (M->debug_compile_units().empty()) |
| 201 | return false; |
| 202 | |
| 203 | // For each argument/return/local_variable type, trace the type |
| 204 | // pattern like '[derived_type]* [composite_type]' to check |
| 205 | // and remember (anon record -> typedef) relations where the |
| 206 | // anon record is defined as |
| 207 | // typedef [const/volatile/restrict]* [anon record] |
| 208 | DISubprogram *SP = F.getSubprogram(); |
| 209 | if (SP && SP->isDefinition()) { |
| 210 | for (DIType *Ty: SP->getType()->getTypeArray()) |
| 211 | CheckAnonRecordType(ParentTy: nullptr, Ty); |
| 212 | for (const DINode *DN : SP->getRetainedNodes()) { |
| 213 | if (const auto *DV = dyn_cast<DILocalVariable>(Val: DN)) |
| 214 | CheckAnonRecordType(ParentTy: nullptr, Ty: DV->getType()); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | DL = &M->getDataLayout(); |
| 219 | return doTransformation(F); |
| 220 | } |
| 221 | |
| 222 | void BPFAbstractMemberAccess::ResetMetadata(struct CallInfo &CInfo) { |
| 223 | if (auto Ty = dyn_cast<DICompositeType>(Val: CInfo.Metadata)) { |
| 224 | auto It = AnonRecords.find(x: Ty); |
| 225 | if (It != AnonRecords.end() && It->second != nullptr) |
| 226 | CInfo.Metadata = It->second; |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | void BPFAbstractMemberAccess::CheckCompositeType(DIDerivedType *ParentTy, |
| 231 | DICompositeType *CTy) { |
| 232 | if (!CTy->getName().empty() || !ParentTy || |
| 233 | ParentTy->getTag() != dwarf::DW_TAG_typedef) |
| 234 | return; |
| 235 | |
| 236 | auto [It, Inserted] = AnonRecords.try_emplace(k: CTy, args&: ParentTy); |
| 237 | // Two or more typedef's may point to the same anon record. |
| 238 | // If this is the case, set the typedef DIType to be nullptr |
| 239 | // to indicate the duplication case. |
| 240 | if (!Inserted && It->second != ParentTy) |
| 241 | It->second = nullptr; |
| 242 | } |
| 243 | |
| 244 | void BPFAbstractMemberAccess::CheckDerivedType(DIDerivedType *ParentTy, |
| 245 | DIDerivedType *DTy) { |
| 246 | DIType *BaseType = DTy->getBaseType(); |
| 247 | if (!BaseType) |
| 248 | return; |
| 249 | |
| 250 | unsigned Tag = DTy->getTag(); |
| 251 | if (Tag == dwarf::DW_TAG_pointer_type) |
| 252 | CheckAnonRecordType(ParentTy: nullptr, Ty: BaseType); |
| 253 | else if (Tag == dwarf::DW_TAG_typedef) |
| 254 | CheckAnonRecordType(ParentTy: DTy, Ty: BaseType); |
| 255 | else |
| 256 | CheckAnonRecordType(ParentTy, Ty: BaseType); |
| 257 | } |
| 258 | |
| 259 | void BPFAbstractMemberAccess::CheckAnonRecordType(DIDerivedType *ParentTy, |
| 260 | DIType *Ty) { |
| 261 | if (!Ty) |
| 262 | return; |
| 263 | |
| 264 | if (auto *CTy = dyn_cast<DICompositeType>(Val: Ty)) |
| 265 | return CheckCompositeType(ParentTy, CTy); |
| 266 | else if (auto *DTy = dyn_cast<DIDerivedType>(Val: Ty)) |
| 267 | return CheckDerivedType(ParentTy, DTy); |
| 268 | } |
| 269 | |
| 270 | static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) { |
| 271 | if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && |
| 272 | Tag != dwarf::DW_TAG_volatile_type && |
| 273 | Tag != dwarf::DW_TAG_restrict_type && |
| 274 | Tag != dwarf::DW_TAG_member) |
| 275 | return false; |
| 276 | if (Tag == dwarf::DW_TAG_typedef && !skipTypedef) |
| 277 | return false; |
| 278 | return true; |
| 279 | } |
| 280 | |
| 281 | static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) { |
| 282 | while (auto *DTy = dyn_cast<DIDerivedType>(Val: Ty)) { |
| 283 | if (!SkipDIDerivedTag(Tag: DTy->getTag(), skipTypedef)) |
| 284 | break; |
| 285 | Ty = DTy->getBaseType(); |
| 286 | } |
| 287 | return Ty; |
| 288 | } |
| 289 | |
| 290 | static const DIType * stripQualifiers(const DIType *Ty) { |
| 291 | while (auto *DTy = dyn_cast<DIDerivedType>(Val: Ty)) { |
| 292 | if (!SkipDIDerivedTag(Tag: DTy->getTag(), skipTypedef: true)) |
| 293 | break; |
| 294 | Ty = DTy->getBaseType(); |
| 295 | } |
| 296 | return Ty; |
| 297 | } |
| 298 | |
| 299 | static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) { |
| 300 | DINodeArray Elements = CTy->getElements(); |
| 301 | uint32_t DimSize = 1; |
| 302 | for (uint32_t I = StartDim; I < Elements.size(); ++I) { |
| 303 | if (auto *Element = dyn_cast_or_null<DINode>(Val: Elements[I])) |
| 304 | if (Element->getTag() == dwarf::DW_TAG_subrange_type) { |
| 305 | const DISubrange *SR = cast<DISubrange>(Val: Element); |
| 306 | auto *CI = dyn_cast<ConstantInt *>(Val: SR->getCount()); |
| 307 | DimSize *= CI->getSExtValue(); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | return DimSize; |
| 312 | } |
| 313 | |
| 314 | static Type *getBaseElementType(const CallInst *Call) { |
| 315 | // Element type is stored in an elementtype() attribute on the first param. |
| 316 | return Call->getParamElementType(ArgNo: 0); |
| 317 | } |
| 318 | |
| 319 | static uint64_t getConstant(const Value *IndexValue) { |
| 320 | const ConstantInt *CV = dyn_cast<ConstantInt>(Val: IndexValue); |
| 321 | assert(CV); |
| 322 | return CV->getValue().getZExtValue(); |
| 323 | } |
| 324 | |
| 325 | /// Check whether a call is a preserve_*_access_index intrinsic call or not. |
| 326 | bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call, |
| 327 | CallInfo &CInfo) { |
| 328 | if (!Call) |
| 329 | return false; |
| 330 | |
| 331 | const auto *GV = dyn_cast<GlobalValue>(Val: Call->getCalledOperand()); |
| 332 | if (!GV) |
| 333 | return false; |
| 334 | if (GV->getName().starts_with(Prefix: "llvm.preserve.array.access.index" )) { |
| 335 | CInfo.Kind = BPFPreserveArrayAI; |
| 336 | CInfo.Metadata = Call->getMetadata(KindID: LLVMContext::MD_preserve_access_index); |
| 337 | if (!CInfo.Metadata) |
| 338 | report_fatal_error(reason: "Missing metadata for llvm.preserve.array.access.index intrinsic" ); |
| 339 | CInfo.AccessIndex = getConstant(IndexValue: Call->getArgOperand(i: 2)); |
| 340 | CInfo.Base = Call->getArgOperand(i: 0); |
| 341 | CInfo.RecordAlignment = DL->getABITypeAlign(Ty: getBaseElementType(Call)); |
| 342 | return true; |
| 343 | } |
| 344 | if (GV->getName().starts_with(Prefix: "llvm.preserve.union.access.index" )) { |
| 345 | CInfo.Kind = BPFPreserveUnionAI; |
| 346 | CInfo.Metadata = Call->getMetadata(KindID: LLVMContext::MD_preserve_access_index); |
| 347 | if (!CInfo.Metadata) |
| 348 | report_fatal_error(reason: "Missing metadata for llvm.preserve.union.access.index intrinsic" ); |
| 349 | ResetMetadata(CInfo); |
| 350 | CInfo.AccessIndex = getConstant(IndexValue: Call->getArgOperand(i: 1)); |
| 351 | CInfo.Base = Call->getArgOperand(i: 0); |
| 352 | return true; |
| 353 | } |
| 354 | if (GV->getName().starts_with(Prefix: "llvm.preserve.struct.access.index" )) { |
| 355 | CInfo.Kind = BPFPreserveStructAI; |
| 356 | CInfo.Metadata = Call->getMetadata(KindID: LLVMContext::MD_preserve_access_index); |
| 357 | if (!CInfo.Metadata) |
| 358 | report_fatal_error(reason: "Missing metadata for llvm.preserve.struct.access.index intrinsic" ); |
| 359 | ResetMetadata(CInfo); |
| 360 | CInfo.AccessIndex = getConstant(IndexValue: Call->getArgOperand(i: 2)); |
| 361 | CInfo.Base = Call->getArgOperand(i: 0); |
| 362 | CInfo.RecordAlignment = DL->getABITypeAlign(Ty: getBaseElementType(Call)); |
| 363 | return true; |
| 364 | } |
| 365 | if (GV->getName().starts_with(Prefix: "llvm.bpf.preserve.field.info" )) { |
| 366 | CInfo.Kind = BPFPreserveFieldInfoAI; |
| 367 | CInfo.Metadata = nullptr; |
| 368 | // Check validity of info_kind as clang did not check this. |
| 369 | uint64_t InfoKind = getConstant(IndexValue: Call->getArgOperand(i: 1)); |
| 370 | if (InfoKind >= BTF::MAX_FIELD_RELOC_KIND) |
| 371 | report_fatal_error(reason: "Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic" ); |
| 372 | CInfo.AccessIndex = InfoKind; |
| 373 | return true; |
| 374 | } |
| 375 | if (GV->getName().starts_with(Prefix: "llvm.bpf.preserve.type.info" )) { |
| 376 | CInfo.Kind = BPFPreserveFieldInfoAI; |
| 377 | CInfo.Metadata = Call->getMetadata(KindID: LLVMContext::MD_preserve_access_index); |
| 378 | if (!CInfo.Metadata) |
| 379 | report_fatal_error(reason: "Missing metadata for llvm.preserve.type.info intrinsic" ); |
| 380 | uint64_t Flag = getConstant(IndexValue: Call->getArgOperand(i: 1)); |
| 381 | if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG) |
| 382 | report_fatal_error(reason: "Incorrect flag for llvm.bpf.preserve.type.info intrinsic" ); |
| 383 | if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE) |
| 384 | CInfo.AccessIndex = BTF::TYPE_EXISTENCE; |
| 385 | else if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_MATCH) |
| 386 | CInfo.AccessIndex = BTF::TYPE_MATCH; |
| 387 | else |
| 388 | CInfo.AccessIndex = BTF::TYPE_SIZE; |
| 389 | return true; |
| 390 | } |
| 391 | if (GV->getName().starts_with(Prefix: "llvm.bpf.preserve.enum.value" )) { |
| 392 | CInfo.Kind = BPFPreserveFieldInfoAI; |
| 393 | CInfo.Metadata = Call->getMetadata(KindID: LLVMContext::MD_preserve_access_index); |
| 394 | if (!CInfo.Metadata) |
| 395 | report_fatal_error(reason: "Missing metadata for llvm.preserve.enum.value intrinsic" ); |
| 396 | uint64_t Flag = getConstant(IndexValue: Call->getArgOperand(i: 2)); |
| 397 | if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG) |
| 398 | report_fatal_error(reason: "Incorrect flag for llvm.bpf.preserve.enum.value intrinsic" ); |
| 399 | if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE) |
| 400 | CInfo.AccessIndex = BTF::ENUM_VALUE_EXISTENCE; |
| 401 | else |
| 402 | CInfo.AccessIndex = BTF::ENUM_VALUE; |
| 403 | return true; |
| 404 | } |
| 405 | |
| 406 | return false; |
| 407 | } |
| 408 | |
| 409 | static void replaceWithGEP(CallInst *Call, uint32_t DimensionIndex, |
| 410 | uint32_t GEPIndex) { |
| 411 | uint32_t Dimension = 1; |
| 412 | if (DimensionIndex > 0) |
| 413 | Dimension = getConstant(IndexValue: Call->getArgOperand(i: DimensionIndex)); |
| 414 | |
| 415 | Constant *Zero = |
| 416 | ConstantInt::get(Ty: Type::getInt32Ty(C&: Call->getParent()->getContext()), V: 0); |
| 417 | SmallVector<Value *, 4> IdxList(Dimension, Zero); |
| 418 | IdxList.push_back(Elt: Call->getArgOperand(i: GEPIndex)); |
| 419 | |
| 420 | auto *GEP = GetElementPtrInst::CreateInBounds(PointeeType: getBaseElementType(Call), |
| 421 | Ptr: Call->getArgOperand(i: 0), IdxList, |
| 422 | NameStr: "" , InsertBefore: Call->getIterator()); |
| 423 | Call->replaceAllUsesWith(V: GEP); |
| 424 | Call->eraseFromParent(); |
| 425 | } |
| 426 | |
| 427 | void BPFCoreSharedInfo::removeArrayAccessCall(CallInst *Call) { |
| 428 | replaceWithGEP(Call, DimensionIndex: 1, GEPIndex: 2); |
| 429 | } |
| 430 | |
| 431 | void BPFCoreSharedInfo::removeStructAccessCall(CallInst *Call) { |
| 432 | replaceWithGEP(Call, DimensionIndex: 0, GEPIndex: 1); |
| 433 | } |
| 434 | |
| 435 | void BPFCoreSharedInfo::removeUnionAccessCall(CallInst *Call) { |
| 436 | Call->replaceAllUsesWith(V: Call->getArgOperand(i: 0)); |
| 437 | Call->eraseFromParent(); |
| 438 | } |
| 439 | |
| 440 | bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) { |
| 441 | std::vector<CallInst *> PreserveArrayIndexCalls; |
| 442 | std::vector<CallInst *> PreserveUnionIndexCalls; |
| 443 | std::vector<CallInst *> PreserveStructIndexCalls; |
| 444 | bool Found = false; |
| 445 | |
| 446 | for (auto &BB : F) |
| 447 | for (auto &I : BB) { |
| 448 | auto *Call = dyn_cast<CallInst>(Val: &I); |
| 449 | CallInfo CInfo; |
| 450 | if (!IsPreserveDIAccessIndexCall(Call, CInfo)) |
| 451 | continue; |
| 452 | |
| 453 | Found = true; |
| 454 | if (CInfo.Kind == BPFPreserveArrayAI) |
| 455 | PreserveArrayIndexCalls.push_back(x: Call); |
| 456 | else if (CInfo.Kind == BPFPreserveUnionAI) |
| 457 | PreserveUnionIndexCalls.push_back(x: Call); |
| 458 | else |
| 459 | PreserveStructIndexCalls.push_back(x: Call); |
| 460 | } |
| 461 | |
| 462 | // do the following transformation: |
| 463 | // . addr = preserve_array_access_index(base, dimension, index) |
| 464 | // is transformed to |
| 465 | // addr = GEP(base, dimenion's zero's, index) |
| 466 | // . addr = preserve_union_access_index(base, di_index) |
| 467 | // is transformed to |
| 468 | // addr = base, i.e., all usages of "addr" are replaced by "base". |
| 469 | // . addr = preserve_struct_access_index(base, gep_index, di_index) |
| 470 | // is transformed to |
| 471 | // addr = GEP(base, 0, gep_index) |
| 472 | for (CallInst *Call : PreserveArrayIndexCalls) |
| 473 | BPFCoreSharedInfo::removeArrayAccessCall(Call); |
| 474 | for (CallInst *Call : PreserveStructIndexCalls) |
| 475 | BPFCoreSharedInfo::removeStructAccessCall(Call); |
| 476 | for (CallInst *Call : PreserveUnionIndexCalls) |
| 477 | BPFCoreSharedInfo::removeUnionAccessCall(Call); |
| 478 | |
| 479 | return Found; |
| 480 | } |
| 481 | |
| 482 | /// Check whether the access index chain is valid. We check |
| 483 | /// here because there may be type casts between two |
| 484 | /// access indexes. We want to ensure memory access still valid. |
| 485 | bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType, |
| 486 | uint32_t ParentAI, |
| 487 | const MDNode *ChildType) { |
| 488 | if (!ChildType) |
| 489 | return true; // preserve_field_info, no type comparison needed. |
| 490 | |
| 491 | const DIType *PType = stripQualifiers(Ty: cast<DIType>(Val: ParentType)); |
| 492 | const DIType *CType = stripQualifiers(Ty: cast<DIType>(Val: ChildType)); |
| 493 | |
| 494 | // Child is a derived/pointer type, which is due to type casting. |
| 495 | // Pointer type cannot be in the middle of chain. |
| 496 | if (isa<DIDerivedType>(Val: CType)) |
| 497 | return false; |
| 498 | |
| 499 | // Parent is a pointer type. |
| 500 | if (const auto *PtrTy = dyn_cast<DIDerivedType>(Val: PType)) { |
| 501 | if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type) |
| 502 | return false; |
| 503 | return stripQualifiers(Ty: PtrTy->getBaseType()) == CType; |
| 504 | } |
| 505 | |
| 506 | // Otherwise, struct/union/array types |
| 507 | const auto *PTy = dyn_cast<DICompositeType>(Val: PType); |
| 508 | const auto *CTy = dyn_cast<DICompositeType>(Val: CType); |
| 509 | assert(PTy && CTy && "ParentType or ChildType is null or not composite" ); |
| 510 | |
| 511 | uint32_t PTyTag = PTy->getTag(); |
| 512 | assert(PTyTag == dwarf::DW_TAG_array_type || |
| 513 | PTyTag == dwarf::DW_TAG_structure_type || |
| 514 | PTyTag == dwarf::DW_TAG_union_type); |
| 515 | |
| 516 | uint32_t CTyTag = CTy->getTag(); |
| 517 | assert(CTyTag == dwarf::DW_TAG_array_type || |
| 518 | CTyTag == dwarf::DW_TAG_structure_type || |
| 519 | CTyTag == dwarf::DW_TAG_union_type); |
| 520 | |
| 521 | // Multi dimensional arrays, base element should be the same |
| 522 | if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag) |
| 523 | return PTy->getBaseType() == CTy->getBaseType(); |
| 524 | |
| 525 | DIType *Ty; |
| 526 | if (PTyTag == dwarf::DW_TAG_array_type) |
| 527 | Ty = PTy->getBaseType(); |
| 528 | else |
| 529 | Ty = dyn_cast<DIType>(Val: PTy->getElements()[ParentAI]); |
| 530 | |
| 531 | return dyn_cast<DICompositeType>(Val: stripQualifiers(Ty)) == CTy; |
| 532 | } |
| 533 | |
| 534 | void BPFAbstractMemberAccess::traceAICall(CallInst *Call, |
| 535 | CallInfo &ParentInfo) { |
| 536 | for (User *U : Call->users()) { |
| 537 | Instruction *Inst = dyn_cast<Instruction>(Val: U); |
| 538 | if (!Inst) |
| 539 | continue; |
| 540 | |
| 541 | if (auto *BI = dyn_cast<BitCastInst>(Val: Inst)) { |
| 542 | traceBitCast(BitCast: BI, Parent: Call, ParentInfo); |
| 543 | } else if (auto *CI = dyn_cast<CallInst>(Val: Inst)) { |
| 544 | CallInfo ChildInfo; |
| 545 | |
| 546 | if (IsPreserveDIAccessIndexCall(Call: CI, CInfo&: ChildInfo) && |
| 547 | IsValidAIChain(ParentType: ParentInfo.Metadata, ParentAI: ParentInfo.AccessIndex, |
| 548 | ChildType: ChildInfo.Metadata)) { |
| 549 | AIChain[CI] = std::make_pair(x&: Call, y&: ParentInfo); |
| 550 | traceAICall(Call: CI, ParentInfo&: ChildInfo); |
| 551 | } else { |
| 552 | BaseAICalls[Call] = ParentInfo; |
| 553 | } |
| 554 | } else if (auto *GI = dyn_cast<GetElementPtrInst>(Val: Inst)) { |
| 555 | if (GI->hasAllZeroIndices()) |
| 556 | traceGEP(GEP: GI, Parent: Call, ParentInfo); |
| 557 | else |
| 558 | BaseAICalls[Call] = ParentInfo; |
| 559 | } else { |
| 560 | BaseAICalls[Call] = ParentInfo; |
| 561 | } |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast, |
| 566 | CallInst *Parent, |
| 567 | CallInfo &ParentInfo) { |
| 568 | for (User *U : BitCast->users()) { |
| 569 | Instruction *Inst = dyn_cast<Instruction>(Val: U); |
| 570 | if (!Inst) |
| 571 | continue; |
| 572 | |
| 573 | if (auto *BI = dyn_cast<BitCastInst>(Val: Inst)) { |
| 574 | traceBitCast(BitCast: BI, Parent, ParentInfo); |
| 575 | } else if (auto *CI = dyn_cast<CallInst>(Val: Inst)) { |
| 576 | CallInfo ChildInfo; |
| 577 | if (IsPreserveDIAccessIndexCall(Call: CI, CInfo&: ChildInfo) && |
| 578 | IsValidAIChain(ParentType: ParentInfo.Metadata, ParentAI: ParentInfo.AccessIndex, |
| 579 | ChildType: ChildInfo.Metadata)) { |
| 580 | AIChain[CI] = std::make_pair(x&: Parent, y&: ParentInfo); |
| 581 | traceAICall(Call: CI, ParentInfo&: ChildInfo); |
| 582 | } else { |
| 583 | BaseAICalls[Parent] = ParentInfo; |
| 584 | } |
| 585 | } else if (auto *GI = dyn_cast<GetElementPtrInst>(Val: Inst)) { |
| 586 | if (GI->hasAllZeroIndices()) |
| 587 | traceGEP(GEP: GI, Parent, ParentInfo); |
| 588 | else |
| 589 | BaseAICalls[Parent] = ParentInfo; |
| 590 | } else { |
| 591 | BaseAICalls[Parent] = ParentInfo; |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent, |
| 597 | CallInfo &ParentInfo) { |
| 598 | for (User *U : GEP->users()) { |
| 599 | Instruction *Inst = dyn_cast<Instruction>(Val: U); |
| 600 | if (!Inst) |
| 601 | continue; |
| 602 | |
| 603 | if (auto *BI = dyn_cast<BitCastInst>(Val: Inst)) { |
| 604 | traceBitCast(BitCast: BI, Parent, ParentInfo); |
| 605 | } else if (auto *CI = dyn_cast<CallInst>(Val: Inst)) { |
| 606 | CallInfo ChildInfo; |
| 607 | if (IsPreserveDIAccessIndexCall(Call: CI, CInfo&: ChildInfo) && |
| 608 | IsValidAIChain(ParentType: ParentInfo.Metadata, ParentAI: ParentInfo.AccessIndex, |
| 609 | ChildType: ChildInfo.Metadata)) { |
| 610 | AIChain[CI] = std::make_pair(x&: Parent, y&: ParentInfo); |
| 611 | traceAICall(Call: CI, ParentInfo&: ChildInfo); |
| 612 | } else { |
| 613 | BaseAICalls[Parent] = ParentInfo; |
| 614 | } |
| 615 | } else if (auto *GI = dyn_cast<GetElementPtrInst>(Val: Inst)) { |
| 616 | if (GI->hasAllZeroIndices()) |
| 617 | traceGEP(GEP: GI, Parent, ParentInfo); |
| 618 | else |
| 619 | BaseAICalls[Parent] = ParentInfo; |
| 620 | } else { |
| 621 | BaseAICalls[Parent] = ParentInfo; |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | void BPFAbstractMemberAccess::collectAICallChains(Function &F) { |
| 627 | AIChain.clear(); |
| 628 | BaseAICalls.clear(); |
| 629 | |
| 630 | for (auto &BB : F) |
| 631 | for (auto &I : BB) { |
| 632 | CallInfo CInfo; |
| 633 | auto *Call = dyn_cast<CallInst>(Val: &I); |
| 634 | if (!IsPreserveDIAccessIndexCall(Call, CInfo) || |
| 635 | AIChain.find(x: Call) != AIChain.end()) |
| 636 | continue; |
| 637 | |
| 638 | traceAICall(Call, ParentInfo&: CInfo); |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | /// Get the start and the end of storage offset for \p MemberTy. |
| 643 | void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy, |
| 644 | Align RecordAlignment, |
| 645 | uint32_t &StartBitOffset, |
| 646 | uint32_t &EndBitOffset) { |
| 647 | uint32_t MemberBitSize = MemberTy->getSizeInBits(); |
| 648 | uint32_t MemberBitOffset = MemberTy->getOffsetInBits(); |
| 649 | |
| 650 | if (RecordAlignment > 8) { |
| 651 | // If the Bits are within an aligned 8-byte, set the RecordAlignment |
| 652 | // to 8, other report the fatal error. |
| 653 | if (MemberBitOffset / 64 != (MemberBitOffset + MemberBitSize) / 64) |
| 654 | report_fatal_error(reason: "Unsupported field expression for llvm.bpf.preserve.field.info, " |
| 655 | "requiring too big alignment" ); |
| 656 | RecordAlignment = Align(8); |
| 657 | } |
| 658 | |
| 659 | uint32_t AlignBits = RecordAlignment.value() * 8; |
| 660 | if (MemberBitSize > AlignBits) |
| 661 | report_fatal_error(reason: "Unsupported field expression for llvm.bpf.preserve.field.info, " |
| 662 | "bitfield size greater than record alignment" ); |
| 663 | |
| 664 | StartBitOffset = MemberBitOffset & ~(AlignBits - 1); |
| 665 | if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize)) |
| 666 | report_fatal_error(reason: "Unsupported field expression for llvm.bpf.preserve.field.info, " |
| 667 | "cross alignment boundary" ); |
| 668 | EndBitOffset = StartBitOffset + AlignBits; |
| 669 | } |
| 670 | |
| 671 | uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind, |
| 672 | DICompositeType *CTy, |
| 673 | uint32_t AccessIndex, |
| 674 | uint32_t PatchImm, |
| 675 | MaybeAlign RecordAlignment) { |
| 676 | if (InfoKind == BTF::FIELD_EXISTENCE) |
| 677 | return 1; |
| 678 | |
| 679 | uint32_t Tag = CTy->getTag(); |
| 680 | if (InfoKind == BTF::FIELD_BYTE_OFFSET) { |
| 681 | if (Tag == dwarf::DW_TAG_array_type) { |
| 682 | auto *EltTy = stripQualifiers(Ty: CTy->getBaseType()); |
| 683 | PatchImm += AccessIndex * calcArraySize(CTy, StartDim: 1) * |
| 684 | (EltTy->getSizeInBits() >> 3); |
| 685 | } else if (Tag == dwarf::DW_TAG_structure_type) { |
| 686 | auto *MemberTy = cast<DIDerivedType>(Val: CTy->getElements()[AccessIndex]); |
| 687 | if (!MemberTy->isBitField()) { |
| 688 | PatchImm += MemberTy->getOffsetInBits() >> 3; |
| 689 | } else { |
| 690 | unsigned SBitOffset, NextSBitOffset; |
| 691 | GetStorageBitRange(MemberTy, RecordAlignment: *RecordAlignment, StartBitOffset&: SBitOffset, |
| 692 | EndBitOffset&: NextSBitOffset); |
| 693 | PatchImm += SBitOffset >> 3; |
| 694 | } |
| 695 | } |
| 696 | return PatchImm; |
| 697 | } |
| 698 | |
| 699 | if (InfoKind == BTF::FIELD_BYTE_SIZE) { |
| 700 | if (Tag == dwarf::DW_TAG_array_type) { |
| 701 | auto *EltTy = stripQualifiers(Ty: CTy->getBaseType()); |
| 702 | return calcArraySize(CTy, StartDim: 1) * (EltTy->getSizeInBits() >> 3); |
| 703 | } else { |
| 704 | auto *MemberTy = cast<DIDerivedType>(Val: CTy->getElements()[AccessIndex]); |
| 705 | uint32_t SizeInBits = MemberTy->getSizeInBits(); |
| 706 | if (!MemberTy->isBitField()) |
| 707 | return SizeInBits >> 3; |
| 708 | |
| 709 | unsigned SBitOffset, NextSBitOffset; |
| 710 | GetStorageBitRange(MemberTy, RecordAlignment: *RecordAlignment, StartBitOffset&: SBitOffset, |
| 711 | EndBitOffset&: NextSBitOffset); |
| 712 | SizeInBits = NextSBitOffset - SBitOffset; |
| 713 | if (SizeInBits & (SizeInBits - 1)) |
| 714 | report_fatal_error(reason: "Unsupported field expression for llvm.bpf.preserve.field.info" ); |
| 715 | return SizeInBits >> 3; |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | if (InfoKind == BTF::FIELD_SIGNEDNESS) { |
| 720 | const DIType *BaseTy; |
| 721 | if (Tag == dwarf::DW_TAG_array_type) { |
| 722 | // Signedness only checked when final array elements are accessed. |
| 723 | if (CTy->getElements().size() != 1) |
| 724 | report_fatal_error(reason: "Invalid array expression for llvm.bpf.preserve.field.info" ); |
| 725 | BaseTy = stripQualifiers(Ty: CTy->getBaseType()); |
| 726 | } else { |
| 727 | auto *MemberTy = cast<DIDerivedType>(Val: CTy->getElements()[AccessIndex]); |
| 728 | BaseTy = stripQualifiers(Ty: MemberTy->getBaseType()); |
| 729 | } |
| 730 | |
| 731 | // Only basic types and enum types have signedness. |
| 732 | const auto *BTy = dyn_cast<DIBasicType>(Val: BaseTy); |
| 733 | while (!BTy) { |
| 734 | const auto *CompTy = dyn_cast<DICompositeType>(Val: BaseTy); |
| 735 | // Report an error if the field expression does not have signedness. |
| 736 | if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type) |
| 737 | report_fatal_error(reason: "Invalid field expression for llvm.bpf.preserve.field.info" ); |
| 738 | BaseTy = stripQualifiers(Ty: CompTy->getBaseType()); |
| 739 | BTy = dyn_cast<DIBasicType>(Val: BaseTy); |
| 740 | } |
| 741 | uint32_t Encoding = BTy->getEncoding(); |
| 742 | return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char); |
| 743 | } |
| 744 | |
| 745 | if (InfoKind == BTF::FIELD_LSHIFT_U64) { |
| 746 | // The value is loaded into a value with FIELD_BYTE_SIZE size, |
| 747 | // and then zero or sign extended to U64. |
| 748 | // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations |
| 749 | // to extract the original value. |
| 750 | const Triple &Triple = TM->getTargetTriple(); |
| 751 | DIDerivedType *MemberTy = nullptr; |
| 752 | bool IsBitField = false; |
| 753 | uint32_t SizeInBits; |
| 754 | |
| 755 | if (Tag == dwarf::DW_TAG_array_type) { |
| 756 | auto *EltTy = stripQualifiers(Ty: CTy->getBaseType()); |
| 757 | SizeInBits = calcArraySize(CTy, StartDim: 1) * EltTy->getSizeInBits(); |
| 758 | } else { |
| 759 | MemberTy = cast<DIDerivedType>(Val: CTy->getElements()[AccessIndex]); |
| 760 | SizeInBits = MemberTy->getSizeInBits(); |
| 761 | IsBitField = MemberTy->isBitField(); |
| 762 | } |
| 763 | |
| 764 | if (!IsBitField) { |
| 765 | if (SizeInBits > 64) |
| 766 | report_fatal_error(reason: "too big field size for llvm.bpf.preserve.field.info" ); |
| 767 | return 64 - SizeInBits; |
| 768 | } |
| 769 | |
| 770 | unsigned SBitOffset, NextSBitOffset; |
| 771 | GetStorageBitRange(MemberTy, RecordAlignment: *RecordAlignment, StartBitOffset&: SBitOffset, EndBitOffset&: NextSBitOffset); |
| 772 | if (NextSBitOffset - SBitOffset > 64) |
| 773 | report_fatal_error(reason: "too big field size for llvm.bpf.preserve.field.info" ); |
| 774 | |
| 775 | unsigned OffsetInBits = MemberTy->getOffsetInBits(); |
| 776 | if (Triple.getArch() == Triple::bpfel) |
| 777 | return SBitOffset + 64 - OffsetInBits - SizeInBits; |
| 778 | else |
| 779 | return OffsetInBits + 64 - NextSBitOffset; |
| 780 | } |
| 781 | |
| 782 | if (InfoKind == BTF::FIELD_RSHIFT_U64) { |
| 783 | DIDerivedType *MemberTy = nullptr; |
| 784 | bool IsBitField = false; |
| 785 | uint32_t SizeInBits; |
| 786 | if (Tag == dwarf::DW_TAG_array_type) { |
| 787 | auto *EltTy = stripQualifiers(Ty: CTy->getBaseType()); |
| 788 | SizeInBits = calcArraySize(CTy, StartDim: 1) * EltTy->getSizeInBits(); |
| 789 | } else { |
| 790 | MemberTy = cast<DIDerivedType>(Val: CTy->getElements()[AccessIndex]); |
| 791 | SizeInBits = MemberTy->getSizeInBits(); |
| 792 | IsBitField = MemberTy->isBitField(); |
| 793 | } |
| 794 | |
| 795 | if (!IsBitField) { |
| 796 | if (SizeInBits > 64) |
| 797 | report_fatal_error(reason: "too big field size for llvm.bpf.preserve.field.info" ); |
| 798 | return 64 - SizeInBits; |
| 799 | } |
| 800 | |
| 801 | unsigned SBitOffset, NextSBitOffset; |
| 802 | GetStorageBitRange(MemberTy, RecordAlignment: *RecordAlignment, StartBitOffset&: SBitOffset, EndBitOffset&: NextSBitOffset); |
| 803 | if (NextSBitOffset - SBitOffset > 64) |
| 804 | report_fatal_error(reason: "too big field size for llvm.bpf.preserve.field.info" ); |
| 805 | |
| 806 | return 64 - SizeInBits; |
| 807 | } |
| 808 | |
| 809 | llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind" ); |
| 810 | } |
| 811 | |
| 812 | bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) { |
| 813 | // This is called in error return path, no need to maintain CallStack. |
| 814 | while (CallStack.size()) { |
| 815 | auto StackElem = CallStack.top(); |
| 816 | if (StackElem.second.Kind == BPFPreserveFieldInfoAI) |
| 817 | return true; |
| 818 | CallStack.pop(); |
| 819 | } |
| 820 | return false; |
| 821 | } |
| 822 | |
| 823 | /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base |
| 824 | /// pointer of the first preserve_*_access_index call, and construct the access |
| 825 | /// string, which will be the name of a global variable. |
| 826 | Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call, |
| 827 | CallInfo &CInfo, |
| 828 | std::string &AccessKey, |
| 829 | MDNode *&TypeMeta) { |
| 830 | Value *Base = nullptr; |
| 831 | std::string TypeName; |
| 832 | CallInfoStack CallStack; |
| 833 | |
| 834 | // Put the access chain into a stack with the top as the head of the chain. |
| 835 | while (Call) { |
| 836 | CallStack.push(x: std::make_pair(x&: Call, y&: CInfo)); |
| 837 | auto &Chain = AIChain[Call]; |
| 838 | CInfo = Chain.second; |
| 839 | Call = Chain.first; |
| 840 | } |
| 841 | |
| 842 | // The access offset from the base of the head of chain is also |
| 843 | // calculated here as all debuginfo types are available. |
| 844 | |
| 845 | // Get type name and calculate the first index. |
| 846 | // We only want to get type name from typedef, structure or union. |
| 847 | // If user wants a relocation like |
| 848 | // int *p; ... __builtin_preserve_access_index(&p[4]) ... |
| 849 | // or |
| 850 | // int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ... |
| 851 | // we will skip them. |
| 852 | uint32_t FirstIndex = 0; |
| 853 | uint32_t PatchImm = 0; // AccessOffset or the requested field info |
| 854 | uint32_t InfoKind = BTF::FIELD_BYTE_OFFSET; |
| 855 | while (CallStack.size()) { |
| 856 | auto StackElem = CallStack.top(); |
| 857 | Call = StackElem.first; |
| 858 | CInfo = StackElem.second; |
| 859 | |
| 860 | if (!Base) |
| 861 | Base = CInfo.Base; |
| 862 | |
| 863 | DIType *PossibleTypeDef = stripQualifiers(Ty: cast<DIType>(Val: CInfo.Metadata), |
| 864 | skipTypedef: false); |
| 865 | DIType *Ty = stripQualifiers(Ty: PossibleTypeDef); |
| 866 | if (CInfo.Kind == BPFPreserveUnionAI || |
| 867 | CInfo.Kind == BPFPreserveStructAI) { |
| 868 | // struct or union type. If the typedef is in the metadata, always |
| 869 | // use the typedef. |
| 870 | TypeName = std::string(PossibleTypeDef->getName()); |
| 871 | TypeMeta = PossibleTypeDef; |
| 872 | PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3); |
| 873 | break; |
| 874 | } |
| 875 | |
| 876 | assert(CInfo.Kind == BPFPreserveArrayAI); |
| 877 | |
| 878 | // Array entries will always be consumed for accumulative initial index. |
| 879 | CallStack.pop(); |
| 880 | |
| 881 | // BPFPreserveArrayAI |
| 882 | uint64_t AccessIndex = CInfo.AccessIndex; |
| 883 | |
| 884 | DIType *BaseTy = nullptr; |
| 885 | bool CheckElemType = false; |
| 886 | if (const auto *CTy = dyn_cast<DICompositeType>(Val: Ty)) { |
| 887 | // array type |
| 888 | assert(CTy->getTag() == dwarf::DW_TAG_array_type); |
| 889 | |
| 890 | |
| 891 | FirstIndex += AccessIndex * calcArraySize(CTy, StartDim: 1); |
| 892 | BaseTy = stripQualifiers(Ty: CTy->getBaseType()); |
| 893 | CheckElemType = CTy->getElements().size() == 1; |
| 894 | } else { |
| 895 | // pointer type |
| 896 | auto *DTy = cast<DIDerivedType>(Val: Ty); |
| 897 | assert(DTy->getTag() == dwarf::DW_TAG_pointer_type); |
| 898 | |
| 899 | BaseTy = stripQualifiers(Ty: DTy->getBaseType()); |
| 900 | CTy = dyn_cast<DICompositeType>(Val: BaseTy); |
| 901 | if (!CTy) { |
| 902 | CheckElemType = true; |
| 903 | } else if (CTy->getTag() != dwarf::DW_TAG_array_type) { |
| 904 | FirstIndex += AccessIndex; |
| 905 | CheckElemType = true; |
| 906 | } else { |
| 907 | FirstIndex += AccessIndex * calcArraySize(CTy, StartDim: 0); |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | if (CheckElemType) { |
| 912 | auto *CTy = dyn_cast<DICompositeType>(Val: BaseTy); |
| 913 | if (!CTy) { |
| 914 | if (HasPreserveFieldInfoCall(CallStack)) |
| 915 | report_fatal_error(reason: "Invalid field access for llvm.preserve.field.info intrinsic" ); |
| 916 | return nullptr; |
| 917 | } |
| 918 | |
| 919 | unsigned CTag = CTy->getTag(); |
| 920 | if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) { |
| 921 | TypeName = std::string(CTy->getName()); |
| 922 | } else { |
| 923 | if (HasPreserveFieldInfoCall(CallStack)) |
| 924 | report_fatal_error(reason: "Invalid field access for llvm.preserve.field.info intrinsic" ); |
| 925 | return nullptr; |
| 926 | } |
| 927 | TypeMeta = CTy; |
| 928 | PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3); |
| 929 | break; |
| 930 | } |
| 931 | } |
| 932 | assert(TypeName.size()); |
| 933 | AccessKey += std::to_string(val: FirstIndex); |
| 934 | |
| 935 | // Traverse the rest of access chain to complete offset calculation |
| 936 | // and access key construction. |
| 937 | while (CallStack.size()) { |
| 938 | auto StackElem = CallStack.top(); |
| 939 | CInfo = StackElem.second; |
| 940 | CallStack.pop(); |
| 941 | |
| 942 | if (CInfo.Kind == BPFPreserveFieldInfoAI) { |
| 943 | InfoKind = CInfo.AccessIndex; |
| 944 | if (InfoKind == BTF::FIELD_EXISTENCE) |
| 945 | PatchImm = 1; |
| 946 | break; |
| 947 | } |
| 948 | |
| 949 | // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI, |
| 950 | // the action will be extracting field info. |
| 951 | if (CallStack.size()) { |
| 952 | auto StackElem2 = CallStack.top(); |
| 953 | CallInfo CInfo2 = StackElem2.second; |
| 954 | if (CInfo2.Kind == BPFPreserveFieldInfoAI) { |
| 955 | InfoKind = CInfo2.AccessIndex; |
| 956 | assert(CallStack.size() == 1); |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | // Access Index |
| 961 | uint64_t AccessIndex = CInfo.AccessIndex; |
| 962 | AccessKey += ":" + std::to_string(val: AccessIndex); |
| 963 | |
| 964 | MDNode *MDN = CInfo.Metadata; |
| 965 | // At this stage, it cannot be pointer type. |
| 966 | auto *CTy = cast<DICompositeType>(Val: stripQualifiers(Ty: cast<DIType>(Val: MDN))); |
| 967 | PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm, |
| 968 | RecordAlignment: CInfo.RecordAlignment); |
| 969 | } |
| 970 | |
| 971 | // Access key is the |
| 972 | // "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" + |
| 973 | // access string, |
| 974 | // uniquely identifying one relocation. |
| 975 | // The prefix "llvm." indicates this is a temporary global, which should |
| 976 | // not be emitted to ELF file. |
| 977 | AccessKey = "llvm." + TypeName + ":" + std::to_string(val: InfoKind) + ":" + |
| 978 | std::to_string(val: PatchImm) + "$" + AccessKey; |
| 979 | |
| 980 | return Base; |
| 981 | } |
| 982 | |
| 983 | MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call, |
| 984 | CallInfo &CInfo, |
| 985 | std::string &AccessKey, |
| 986 | bool &IsInt32Ret) { |
| 987 | DIType *Ty = stripQualifiers(Ty: cast<DIType>(Val: CInfo.Metadata), skipTypedef: false); |
| 988 | assert(!Ty->getName().empty()); |
| 989 | |
| 990 | int64_t PatchImm; |
| 991 | std::string AccessStr("0" ); |
| 992 | if (CInfo.AccessIndex == BTF::TYPE_EXISTENCE || |
| 993 | CInfo.AccessIndex == BTF::TYPE_MATCH) { |
| 994 | PatchImm = 1; |
| 995 | } else if (CInfo.AccessIndex == BTF::TYPE_SIZE) { |
| 996 | // typedef debuginfo type has size 0, get the eventual base type. |
| 997 | DIType *BaseTy = stripQualifiers(Ty, skipTypedef: true); |
| 998 | PatchImm = BaseTy->getSizeInBits() / 8; |
| 999 | } else { |
| 1000 | // ENUM_VALUE_EXISTENCE and ENUM_VALUE |
| 1001 | IsInt32Ret = false; |
| 1002 | |
| 1003 | // The argument could be a global variable or a getelementptr with base to |
| 1004 | // a global variable depending on whether the clang option `opaque-options` |
| 1005 | // is set or not. |
| 1006 | const GlobalVariable *GV = |
| 1007 | cast<GlobalVariable>(Val: Call->getArgOperand(i: 1)->stripPointerCasts()); |
| 1008 | assert(GV->hasInitializer()); |
| 1009 | const ConstantDataArray *DA = cast<ConstantDataArray>(Val: GV->getInitializer()); |
| 1010 | assert(DA->isString()); |
| 1011 | StringRef ValueStr = DA->getAsString(); |
| 1012 | |
| 1013 | // ValueStr format: <EnumeratorStr>:<Value> |
| 1014 | size_t Separator = ValueStr.find_first_of(C: ':'); |
| 1015 | StringRef EnumeratorStr = ValueStr.substr(Start: 0, N: Separator); |
| 1016 | |
| 1017 | // Find enumerator index in the debuginfo |
| 1018 | DIType *BaseTy = stripQualifiers(Ty, skipTypedef: true); |
| 1019 | const auto *CTy = cast<DICompositeType>(Val: BaseTy); |
| 1020 | assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type); |
| 1021 | int EnumIndex = 0; |
| 1022 | for (const auto Element : CTy->getElements()) { |
| 1023 | const auto *Enum = cast<DIEnumerator>(Val: Element); |
| 1024 | if (Enum->getName() == EnumeratorStr) { |
| 1025 | AccessStr = std::to_string(val: EnumIndex); |
| 1026 | break; |
| 1027 | } |
| 1028 | EnumIndex++; |
| 1029 | } |
| 1030 | |
| 1031 | if (CInfo.AccessIndex == BTF::ENUM_VALUE) { |
| 1032 | StringRef EValueStr = ValueStr.substr(Start: Separator + 1); |
| 1033 | PatchImm = std::stoll(str: std::string(EValueStr)); |
| 1034 | } else { |
| 1035 | PatchImm = 1; |
| 1036 | } |
| 1037 | } |
| 1038 | |
| 1039 | AccessKey = "llvm." + Ty->getName().str() + ":" + |
| 1040 | std::to_string(val: CInfo.AccessIndex) + std::string(":" ) + |
| 1041 | std::to_string(val: PatchImm) + std::string("$" ) + AccessStr; |
| 1042 | |
| 1043 | return Ty; |
| 1044 | } |
| 1045 | |
| 1046 | /// Call/Kind is the base preserve_*_access_index() call. Attempts to do |
| 1047 | /// transformation to a chain of relocable GEPs. |
| 1048 | bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call, |
| 1049 | CallInfo &CInfo) { |
| 1050 | std::string AccessKey; |
| 1051 | MDNode *TypeMeta; |
| 1052 | Value *Base = nullptr; |
| 1053 | bool IsInt32Ret; |
| 1054 | |
| 1055 | IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI; |
| 1056 | if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) { |
| 1057 | TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret); |
| 1058 | } else { |
| 1059 | Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta); |
| 1060 | if (!Base) |
| 1061 | return false; |
| 1062 | } |
| 1063 | |
| 1064 | BasicBlock *BB = Call->getParent(); |
| 1065 | GlobalVariable *GV; |
| 1066 | |
| 1067 | if (GEPGlobals.find(x: AccessKey) == GEPGlobals.end()) { |
| 1068 | IntegerType *VarType; |
| 1069 | if (IsInt32Ret) |
| 1070 | VarType = Type::getInt32Ty(C&: BB->getContext()); // 32bit return value |
| 1071 | else |
| 1072 | VarType = Type::getInt64Ty(C&: BB->getContext()); // 64bit ptr or enum value |
| 1073 | |
| 1074 | GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage, |
| 1075 | nullptr, AccessKey); |
| 1076 | GV->addAttribute(Kind: BPFCoreSharedInfo::AmaAttr); |
| 1077 | GV->setMetadata(KindID: LLVMContext::MD_preserve_access_index, Node: TypeMeta); |
| 1078 | GEPGlobals[AccessKey] = GV; |
| 1079 | } else { |
| 1080 | GV = GEPGlobals[AccessKey]; |
| 1081 | } |
| 1082 | |
| 1083 | if (CInfo.Kind == BPFPreserveFieldInfoAI) { |
| 1084 | // Load the global variable which represents the returned field info. |
| 1085 | LoadInst *LDInst; |
| 1086 | if (IsInt32Ret) |
| 1087 | LDInst = new LoadInst(Type::getInt32Ty(C&: BB->getContext()), GV, "" , |
| 1088 | Call->getIterator()); |
| 1089 | else |
| 1090 | LDInst = new LoadInst(Type::getInt64Ty(C&: BB->getContext()), GV, "" , |
| 1091 | Call->getIterator()); |
| 1092 | |
| 1093 | Instruction *PassThroughInst = |
| 1094 | BPFCoreSharedInfo::insertPassThrough(M, BB, Input: LDInst, Before: Call); |
| 1095 | Call->replaceAllUsesWith(V: PassThroughInst); |
| 1096 | Call->eraseFromParent(); |
| 1097 | return true; |
| 1098 | } |
| 1099 | |
| 1100 | // For any original GEP Call and Base %2 like |
| 1101 | // %4 = bitcast %struct.net_device** %dev1 to i64* |
| 1102 | // it is transformed to: |
| 1103 | // %6 = load llvm.sk_buff:0:50$0:0:0:2:0 |
| 1104 | // %8 = getelementptr i8, i8* %2, %6 |
| 1105 | // using %8 instead of %4 |
| 1106 | // The original Call inst is removed. |
| 1107 | |
| 1108 | // Load the global variable. |
| 1109 | auto *LDInst = new LoadInst(Type::getInt64Ty(C&: BB->getContext()), GV, "" , |
| 1110 | Call->getIterator()); |
| 1111 | |
| 1112 | // Generate a GetElementPtr |
| 1113 | auto *GEP = GetElementPtrInst::Create(PointeeType: Type::getInt8Ty(C&: BB->getContext()), Ptr: Base, |
| 1114 | IdxList: LDInst); |
| 1115 | GEP->insertBefore(InsertPos: Call->getIterator()); |
| 1116 | |
| 1117 | // For the following code, |
| 1118 | // Block0: |
| 1119 | // ... |
| 1120 | // if (...) goto Block1 else ... |
| 1121 | // Block1: |
| 1122 | // %6 = load llvm.sk_buff:0:50$0:0:0:2:0 |
| 1123 | // %8 = getelementptr i8, i8* %2, %6 |
| 1124 | // ... |
| 1125 | // goto CommonExit |
| 1126 | // Block2: |
| 1127 | // ... |
| 1128 | // if (...) goto Block3 else ... |
| 1129 | // Block3: |
| 1130 | // %6 = load llvm.bpf_map:0:40$0:0:0:2:0 |
| 1131 | // %8 = getelementptr i8, i8* %2, %6 |
| 1132 | // ... |
| 1133 | // goto CommonExit |
| 1134 | // CommonExit |
| 1135 | // SimplifyCFG may generate: |
| 1136 | // Block0: |
| 1137 | // ... |
| 1138 | // if (...) goto Block_Common else ... |
| 1139 | // Block2: |
| 1140 | // ... |
| 1141 | // if (...) goto Block_Common else ... |
| 1142 | // Block_Common: |
| 1143 | // PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0] |
| 1144 | // %6 = load PHI |
| 1145 | // %8 = getelementptr i8, i8* %2, %6 |
| 1146 | // ... |
| 1147 | // goto CommonExit |
| 1148 | // For the above code, we cannot perform proper relocation since |
| 1149 | // "load PHI" has two possible relocations. |
| 1150 | // |
| 1151 | // To prevent above tail merging, we use __builtin_bpf_passthrough() |
| 1152 | // where one of its parameters is a seq_num. Since two |
| 1153 | // __builtin_bpf_passthrough() funcs will always have different seq_num, |
| 1154 | // tail merging cannot happen. The __builtin_bpf_passthrough() will be |
| 1155 | // removed in the beginning of Target IR passes. |
| 1156 | // |
| 1157 | // This approach is also used in other places when global var |
| 1158 | // representing a relocation is used. |
| 1159 | Instruction *PassThroughInst = |
| 1160 | BPFCoreSharedInfo::insertPassThrough(M, BB, Input: GEP, Before: Call); |
| 1161 | Call->replaceAllUsesWith(V: PassThroughInst); |
| 1162 | Call->eraseFromParent(); |
| 1163 | |
| 1164 | return true; |
| 1165 | } |
| 1166 | |
| 1167 | bool BPFAbstractMemberAccess::doTransformation(Function &F) { |
| 1168 | bool Transformed = false; |
| 1169 | |
| 1170 | // Collect PreserveDIAccessIndex Intrinsic call chains. |
| 1171 | // The call chains will be used to generate the access |
| 1172 | // patterns similar to GEP. |
| 1173 | collectAICallChains(F); |
| 1174 | |
| 1175 | for (auto &C : BaseAICalls) |
| 1176 | Transformed = transformGEPChain(Call: C.first, CInfo&: C.second) || Transformed; |
| 1177 | |
| 1178 | return removePreserveAccessIndexIntrinsic(F) || Transformed; |
| 1179 | } |
| 1180 | |
| 1181 | PreservedAnalyses |
| 1182 | BPFAbstractMemberAccessPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 1183 | return BPFAbstractMemberAccess(TM).run(F) ? PreservedAnalyses::none() |
| 1184 | : PreservedAnalyses::all(); |
| 1185 | } |
| 1186 | |