1 | //===- HexagonCommonGEP.cpp -----------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "Hexagon.h" |
10 | |
11 | #include "llvm/ADT/ArrayRef.h" |
12 | #include "llvm/ADT/FoldingSet.h" |
13 | #include "llvm/ADT/GraphTraits.h" |
14 | #include "llvm/ADT/STLExtras.h" |
15 | #include "llvm/ADT/SetVector.h" |
16 | #include "llvm/ADT/SmallVector.h" |
17 | #include "llvm/ADT/StringRef.h" |
18 | #include "llvm/Analysis/LoopInfo.h" |
19 | #include "llvm/Analysis/PostDominators.h" |
20 | #include "llvm/IR/BasicBlock.h" |
21 | #include "llvm/IR/Constant.h" |
22 | #include "llvm/IR/Constants.h" |
23 | #include "llvm/IR/DerivedTypes.h" |
24 | #include "llvm/IR/Dominators.h" |
25 | #include "llvm/IR/Function.h" |
26 | #include "llvm/IR/Instruction.h" |
27 | #include "llvm/IR/Instructions.h" |
28 | #include "llvm/IR/Type.h" |
29 | #include "llvm/IR/Use.h" |
30 | #include "llvm/IR/User.h" |
31 | #include "llvm/IR/Value.h" |
32 | #include "llvm/IR/Verifier.h" |
33 | #include "llvm/InitializePasses.h" |
34 | #include "llvm/Pass.h" |
35 | #include "llvm/Support/Allocator.h" |
36 | #include "llvm/Support/Casting.h" |
37 | #include "llvm/Support/CommandLine.h" |
38 | #include "llvm/Support/Compiler.h" |
39 | #include "llvm/Support/Debug.h" |
40 | #include "llvm/Support/raw_ostream.h" |
41 | #include "llvm/Transforms/Utils/Local.h" |
42 | #include <cassert> |
43 | #include <cstddef> |
44 | #include <cstdint> |
45 | #include <iterator> |
46 | #include <map> |
47 | #include <set> |
48 | #include <utility> |
49 | #include <vector> |
50 | |
51 | #define DEBUG_TYPE "commgep" |
52 | |
53 | using namespace llvm; |
54 | |
55 | static cl::opt<bool> OptSpeculate("commgep-speculate" , cl::init(Val: true), |
56 | cl::Hidden); |
57 | |
58 | static cl::opt<bool> OptEnableInv("commgep-inv" , cl::init(Val: true), cl::Hidden); |
59 | |
60 | static cl::opt<bool> OptEnableConst("commgep-const" , cl::init(Val: true), |
61 | cl::Hidden); |
62 | |
63 | namespace { |
64 | |
65 | struct GepNode; |
66 | using NodeSet = std::set<GepNode *>; |
67 | using NodeToValueMap = std::map<GepNode *, Value *>; |
68 | using NodeVect = std::vector<GepNode *>; |
69 | using NodeChildrenMap = std::map<GepNode *, NodeVect>; |
70 | using UseSet = SetVector<Use *>; |
71 | using NodeToUsesMap = std::map<GepNode *, UseSet>; |
72 | |
73 | // Numbering map for gep nodes. Used to keep track of ordering for |
74 | // gep nodes. |
75 | struct NodeOrdering { |
76 | NodeOrdering() = default; |
77 | |
78 | void insert(const GepNode *N) { Map.insert(x: std::make_pair(x&: N, y&: ++LastNum)); } |
79 | void clear() { Map.clear(); } |
80 | |
81 | bool operator()(const GepNode *N1, const GepNode *N2) const { |
82 | auto F1 = Map.find(x: N1), F2 = Map.find(x: N2); |
83 | assert(F1 != Map.end() && F2 != Map.end()); |
84 | return F1->second < F2->second; |
85 | } |
86 | |
87 | private: |
88 | std::map<const GepNode *, unsigned> Map; |
89 | unsigned LastNum = 0; |
90 | }; |
91 | |
92 | class HexagonCommonGEP : public FunctionPass { |
93 | public: |
94 | static char ID; |
95 | |
96 | HexagonCommonGEP() : FunctionPass(ID) {} |
97 | |
98 | bool runOnFunction(Function &F) override; |
99 | StringRef getPassName() const override { return "Hexagon Common GEP" ; } |
100 | |
101 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
102 | AU.addRequired<DominatorTreeWrapperPass>(); |
103 | AU.addPreserved<DominatorTreeWrapperPass>(); |
104 | AU.addRequired<PostDominatorTreeWrapperPass>(); |
105 | AU.addPreserved<PostDominatorTreeWrapperPass>(); |
106 | AU.addRequired<LoopInfoWrapperPass>(); |
107 | AU.addPreserved<LoopInfoWrapperPass>(); |
108 | FunctionPass::getAnalysisUsage(AU); |
109 | } |
110 | |
111 | private: |
112 | using ValueToNodeMap = std::map<Value *, GepNode *>; |
113 | using ValueVect = std::vector<Value *>; |
114 | using NodeToValuesMap = std::map<GepNode *, ValueVect>; |
115 | |
116 | void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); |
117 | bool isHandledGepForm(GetElementPtrInst *GepI); |
118 | void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); |
119 | void collect(); |
120 | void common(); |
121 | |
122 | BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, |
123 | NodeToValueMap &Loc); |
124 | BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, |
125 | NodeToValueMap &Loc); |
126 | bool isInvariantIn(Value *Val, Loop *L); |
127 | bool isInvariantIn(GepNode *Node, Loop *L); |
128 | bool isInMainPath(BasicBlock *B, Loop *L); |
129 | BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, |
130 | NodeToValueMap &Loc); |
131 | void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); |
132 | void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, |
133 | NodeToValueMap &Loc); |
134 | void computeNodePlacement(NodeToValueMap &Loc); |
135 | |
136 | Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, |
137 | BasicBlock *LocB); |
138 | void getAllUsersForNode(GepNode *Node, ValueVect &Values, |
139 | NodeChildrenMap &NCM); |
140 | void materialize(NodeToValueMap &Loc); |
141 | |
142 | void removeDeadCode(); |
143 | |
144 | NodeVect Nodes; |
145 | NodeToUsesMap Uses; |
146 | NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. |
147 | SpecificBumpPtrAllocator<GepNode> *Mem; |
148 | LLVMContext *Ctx; |
149 | LoopInfo *LI; |
150 | DominatorTree *DT; |
151 | PostDominatorTree *PDT; |
152 | Function *Fn; |
153 | }; |
154 | |
155 | } // end anonymous namespace |
156 | |
157 | char HexagonCommonGEP::ID = 0; |
158 | |
159 | INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep" , "Hexagon Common GEP" , |
160 | false, false) |
161 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
162 | INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) |
163 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
164 | INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep" , "Hexagon Common GEP" , |
165 | false, false) |
166 | |
167 | namespace { |
168 | |
169 | struct GepNode { |
170 | enum { |
171 | None = 0, |
172 | Root = 0x01, |
173 | Internal = 0x02, |
174 | Used = 0x04, |
175 | InBounds = 0x08, |
176 | Pointer = 0x10, // See note below. |
177 | }; |
178 | // Note: GEP indices generally traverse nested types, and so a GepNode |
179 | // (representing a single index) can be associated with some composite |
180 | // type. The exception is the GEP input, which is a pointer, and not |
181 | // a composite type (at least not in the sense of having sub-types). |
182 | // Also, the corresponding index plays a different role as well: it is |
183 | // simply added to the input pointer. Since pointer types are becoming |
184 | // opaque (i.e. are no longer going to include the pointee type), the |
185 | // two pieces of information (1) the fact that it's a pointer, and |
186 | // (2) the pointee type, need to be stored separately. The pointee type |
187 | // will be stored in the PTy member, while the fact that the node |
188 | // operates on a pointer will be reflected by the flag "Pointer". |
189 | |
190 | uint32_t Flags = 0; |
191 | union { |
192 | GepNode *Parent; |
193 | Value *BaseVal; |
194 | }; |
195 | Value *Idx = nullptr; |
196 | Type *PTy = nullptr; // Type indexed by this node. For pointer nodes |
197 | // this is the "pointee" type, and indexing a |
198 | // pointer does not change the type. |
199 | |
200 | GepNode() : Parent(nullptr) {} |
201 | GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { |
202 | if (Flags & Root) |
203 | BaseVal = N->BaseVal; |
204 | else |
205 | Parent = N->Parent; |
206 | } |
207 | |
208 | friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); |
209 | }; |
210 | |
211 | raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { |
212 | OS << "{ {" ; |
213 | bool Comma = false; |
214 | if (GN.Flags & GepNode::Root) { |
215 | OS << "root" ; |
216 | Comma = true; |
217 | } |
218 | if (GN.Flags & GepNode::Internal) { |
219 | if (Comma) |
220 | OS << ','; |
221 | OS << "internal" ; |
222 | Comma = true; |
223 | } |
224 | if (GN.Flags & GepNode::Used) { |
225 | if (Comma) |
226 | OS << ','; |
227 | OS << "used" ; |
228 | } |
229 | if (GN.Flags & GepNode::InBounds) { |
230 | if (Comma) |
231 | OS << ','; |
232 | OS << "inbounds" ; |
233 | } |
234 | if (GN.Flags & GepNode::Pointer) { |
235 | if (Comma) |
236 | OS << ','; |
237 | OS << "pointer" ; |
238 | } |
239 | OS << "} " ; |
240 | if (GN.Flags & GepNode::Root) |
241 | OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; |
242 | else |
243 | OS << "Parent:" << GN.Parent; |
244 | |
245 | OS << " Idx:" ; |
246 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: GN.Idx)) |
247 | OS << CI->getValue().getSExtValue(); |
248 | else if (GN.Idx->hasName()) |
249 | OS << GN.Idx->getName(); |
250 | else |
251 | OS << "<anon> =" << *GN.Idx; |
252 | |
253 | OS << " PTy:" ; |
254 | if (GN.PTy->isStructTy()) { |
255 | StructType *STy = cast<StructType>(Val: GN.PTy); |
256 | if (!STy->isLiteral()) |
257 | OS << GN.PTy->getStructName(); |
258 | else |
259 | OS << "<anon-struct>:" << *STy; |
260 | } |
261 | else |
262 | OS << *GN.PTy; |
263 | OS << " }" ; |
264 | return OS; |
265 | } |
266 | |
267 | template <typename NodeContainer> |
268 | void dump_node_container(raw_ostream &OS, const NodeContainer &S) { |
269 | using const_iterator = typename NodeContainer::const_iterator; |
270 | |
271 | for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) |
272 | OS << *I << ' ' << **I << '\n'; |
273 | } |
274 | |
275 | raw_ostream &operator<< (raw_ostream &OS, |
276 | const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; |
277 | raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { |
278 | dump_node_container(OS, S); |
279 | return OS; |
280 | } |
281 | |
282 | raw_ostream &operator<< (raw_ostream &OS, |
283 | const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; |
284 | raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ |
285 | for (const auto &I : M) { |
286 | const UseSet &Us = I.second; |
287 | OS << I.first << " -> #" << Us.size() << '{'; |
288 | for (const Use *U : Us) { |
289 | User *R = U->getUser(); |
290 | if (R->hasName()) |
291 | OS << ' ' << R->getName(); |
292 | else |
293 | OS << " <?>(" << *R << ')'; |
294 | } |
295 | OS << " }\n" ; |
296 | } |
297 | return OS; |
298 | } |
299 | |
300 | struct in_set { |
301 | in_set(const NodeSet &S) : NS(S) {} |
302 | |
303 | bool operator() (GepNode *N) const { |
304 | return NS.find(x: N) != NS.end(); |
305 | } |
306 | |
307 | private: |
308 | const NodeSet &NS; |
309 | }; |
310 | |
311 | } // end anonymous namespace |
312 | |
313 | inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { |
314 | return A.Allocate(); |
315 | } |
316 | |
317 | void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, |
318 | ValueVect &Order) { |
319 | // Compute block ordering for a typical DT-based traversal of the flow |
320 | // graph: "before visiting a block, all of its dominators must have been |
321 | // visited". |
322 | |
323 | Order.push_back(x: Root); |
324 | for (auto *DTN : children<DomTreeNode*>(G: DT->getNode(BB: Root))) |
325 | getBlockTraversalOrder(Root: DTN->getBlock(), Order); |
326 | } |
327 | |
328 | bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { |
329 | // No vector GEPs. |
330 | if (!GepI->getType()->isPointerTy()) |
331 | return false; |
332 | // No GEPs without any indices. (Is this possible?) |
333 | if (GepI->idx_begin() == GepI->idx_end()) |
334 | return false; |
335 | return true; |
336 | } |
337 | |
338 | void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, |
339 | ValueToNodeMap &NM) { |
340 | LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); |
341 | GepNode *N = new (*Mem) GepNode; |
342 | Value *PtrOp = GepI->getPointerOperand(); |
343 | uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; |
344 | ValueToNodeMap::iterator F = NM.find(x: PtrOp); |
345 | if (F == NM.end()) { |
346 | N->BaseVal = PtrOp; |
347 | N->Flags |= GepNode::Root | InBounds; |
348 | } else { |
349 | // If PtrOp was a GEP instruction, it must have already been processed. |
350 | // The ValueToNodeMap entry for it is the last gep node in the generated |
351 | // chain. Link to it here. |
352 | N->Parent = F->second; |
353 | } |
354 | N->PTy = GepI->getSourceElementType(); |
355 | N->Flags |= GepNode::Pointer; |
356 | N->Idx = *GepI->idx_begin(); |
357 | |
358 | // Collect the list of users of this GEP instruction. Will add it to the |
359 | // last node created for it. |
360 | UseSet Us; |
361 | for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); |
362 | UI != UE; ++UI) { |
363 | // Check if this gep is used by anything other than other geps that |
364 | // we will process. |
365 | if (isa<GetElementPtrInst>(Val: *UI)) { |
366 | GetElementPtrInst *UserG = cast<GetElementPtrInst>(Val: *UI); |
367 | if (isHandledGepForm(GepI: UserG)) |
368 | continue; |
369 | } |
370 | Us.insert(X: &UI.getUse()); |
371 | } |
372 | Nodes.push_back(x: N); |
373 | NodeOrder.insert(N); |
374 | |
375 | // Skip the first index operand, since it was already handled above. This |
376 | // dereferences the pointer operand. |
377 | GepNode *PN = N; |
378 | Type *PtrTy = GepI->getSourceElementType(); |
379 | for (Use &U : llvm::drop_begin(RangeOrContainer: GepI->indices())) { |
380 | Value *Op = U; |
381 | GepNode *Nx = new (*Mem) GepNode; |
382 | Nx->Parent = PN; // Link Nx to the previous node. |
383 | Nx->Flags |= GepNode::Internal | InBounds; |
384 | Nx->PTy = PtrTy; |
385 | Nx->Idx = Op; |
386 | Nodes.push_back(x: Nx); |
387 | NodeOrder.insert(N: Nx); |
388 | PN = Nx; |
389 | |
390 | PtrTy = GetElementPtrInst::getTypeAtIndex(Ty: PtrTy, Idx: Op); |
391 | } |
392 | |
393 | // After last node has been created, update the use information. |
394 | if (!Us.empty()) { |
395 | PN->Flags |= GepNode::Used; |
396 | Uses[PN].insert_range(R&: Us); |
397 | } |
398 | |
399 | // Link the last node with the originating GEP instruction. This is to |
400 | // help with linking chained GEP instructions. |
401 | NM.insert(x: std::make_pair(x&: GepI, y&: PN)); |
402 | } |
403 | |
404 | void HexagonCommonGEP::collect() { |
405 | // Establish depth-first traversal order of the dominator tree. |
406 | ValueVect BO; |
407 | getBlockTraversalOrder(Root: &Fn->front(), Order&: BO); |
408 | |
409 | // The creation of gep nodes requires DT-traversal. When processing a GEP |
410 | // instruction that uses another GEP instruction as the base pointer, the |
411 | // gep node for the base pointer should already exist. |
412 | ValueToNodeMap NM; |
413 | for (Value *I : BO) { |
414 | BasicBlock *B = cast<BasicBlock>(Val: I); |
415 | for (Instruction &J : *B) |
416 | if (auto *GepI = dyn_cast<GetElementPtrInst>(Val: &J)) |
417 | if (isHandledGepForm(GepI)) |
418 | processGepInst(GepI, NM); |
419 | } |
420 | |
421 | LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); |
422 | } |
423 | |
424 | static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, |
425 | NodeVect &Roots) { |
426 | for (GepNode *N : Nodes) { |
427 | if (N->Flags & GepNode::Root) { |
428 | Roots.push_back(x: N); |
429 | continue; |
430 | } |
431 | GepNode *PN = N->Parent; |
432 | NCM[PN].push_back(x: N); |
433 | } |
434 | } |
435 | |
436 | static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, |
437 | NodeSet &Nodes) { |
438 | NodeVect Work; |
439 | Work.push_back(x: Root); |
440 | Nodes.insert(x: Root); |
441 | |
442 | while (!Work.empty()) { |
443 | NodeVect::iterator First = Work.begin(); |
444 | GepNode *N = *First; |
445 | Work.erase(position: First); |
446 | NodeChildrenMap::iterator CF = NCM.find(x: N); |
447 | if (CF != NCM.end()) { |
448 | llvm::append_range(C&: Work, R&: CF->second); |
449 | Nodes.insert(first: CF->second.begin(), last: CF->second.end()); |
450 | } |
451 | } |
452 | } |
453 | |
454 | namespace { |
455 | |
456 | using NodeSymRel = std::set<NodeSet>; |
457 | using NodePair = std::pair<GepNode *, GepNode *>; |
458 | using NodePairSet = std::set<NodePair>; |
459 | |
460 | } // end anonymous namespace |
461 | |
462 | static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { |
463 | for (const NodeSet &S : Rel) |
464 | if (S.count(x: N)) |
465 | return &S; |
466 | return nullptr; |
467 | } |
468 | |
469 | // Create an ordered pair of GepNode pointers. The pair will be used in |
470 | // determining equality. The only purpose of the ordering is to eliminate |
471 | // duplication due to the commutativity of equality/non-equality. |
472 | static NodePair node_pair(GepNode *N1, GepNode *N2) { |
473 | uintptr_t P1 = reinterpret_cast<uintptr_t>(N1); |
474 | uintptr_t P2 = reinterpret_cast<uintptr_t>(N2); |
475 | if (P1 <= P2) |
476 | return std::make_pair(x&: N1, y&: N2); |
477 | return std::make_pair(x&: N2, y&: N1); |
478 | } |
479 | |
480 | static unsigned node_hash(GepNode *N) { |
481 | // Include everything except flags and parent. |
482 | FoldingSetNodeID ID; |
483 | ID.AddPointer(Ptr: N->Idx); |
484 | ID.AddPointer(Ptr: N->PTy); |
485 | return ID.ComputeHash(); |
486 | } |
487 | |
488 | static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, |
489 | NodePairSet &Ne) { |
490 | // Don't cache the result for nodes with different hashes. The hash |
491 | // comparison is fast enough. |
492 | if (node_hash(N: N1) != node_hash(N: N2)) |
493 | return false; |
494 | |
495 | NodePair NP = node_pair(N1, N2); |
496 | NodePairSet::iterator FEq = Eq.find(x: NP); |
497 | if (FEq != Eq.end()) |
498 | return true; |
499 | NodePairSet::iterator FNe = Ne.find(x: NP); |
500 | if (FNe != Ne.end()) |
501 | return false; |
502 | // Not previously compared. |
503 | bool Root1 = N1->Flags & GepNode::Root; |
504 | uint32_t CmpFlags = GepNode::Root | GepNode::Pointer; |
505 | bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags); |
506 | NodePair P = node_pair(N1, N2); |
507 | // If the root/pointer flags have different values, the nodes are |
508 | // different. |
509 | // If both nodes are root nodes, but their base pointers differ, |
510 | // they are different. |
511 | if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) { |
512 | Ne.insert(x: P); |
513 | return false; |
514 | } |
515 | // Here the root/pointer flags are identical, and for root nodes the |
516 | // base pointers are equal, so the root nodes are equal. |
517 | // For non-root nodes, compare their parent nodes. |
518 | if (Root1 || node_eq(N1: N1->Parent, N2: N2->Parent, Eq, Ne)) { |
519 | Eq.insert(x: P); |
520 | return true; |
521 | } |
522 | return false; |
523 | } |
524 | |
525 | void HexagonCommonGEP::common() { |
526 | // The essence of this commoning is finding gep nodes that are equal. |
527 | // To do this we need to compare all pairs of nodes. To save time, |
528 | // first, partition the set of all nodes into sets of potentially equal |
529 | // nodes, and then compare pairs from within each partition. |
530 | using NodeSetMap = std::map<unsigned, NodeSet>; |
531 | NodeSetMap MaybeEq; |
532 | |
533 | for (GepNode *N : Nodes) { |
534 | unsigned H = node_hash(N); |
535 | MaybeEq[H].insert(x: N); |
536 | } |
537 | |
538 | // Compute the equivalence relation for the gep nodes. Use two caches, |
539 | // one for equality and the other for non-equality. |
540 | NodeSymRel EqRel; // Equality relation (as set of equivalence classes). |
541 | NodePairSet Eq, Ne; // Caches. |
542 | for (auto &I : MaybeEq) { |
543 | NodeSet &S = I.second; |
544 | for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { |
545 | GepNode *N = *NI; |
546 | // If node already has a class, then the class must have been created |
547 | // in a prior iteration of this loop. Since equality is transitive, |
548 | // nothing more will be added to that class, so skip it. |
549 | if (node_class(N, Rel&: EqRel)) |
550 | continue; |
551 | |
552 | // Create a new class candidate now. |
553 | NodeSet C; |
554 | for (NodeSet::iterator NJ = std::next(x: NI); NJ != NE; ++NJ) |
555 | if (node_eq(N1: N, N2: *NJ, Eq, Ne)) |
556 | C.insert(x: *NJ); |
557 | // If Tmp is empty, N would be the only element in it. Don't bother |
558 | // creating a class for it then. |
559 | if (!C.empty()) { |
560 | C.insert(x: N); // Finalize the set before adding it to the relation. |
561 | std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(x: C); |
562 | (void)Ins; |
563 | assert(Ins.second && "Cannot add a class" ); |
564 | } |
565 | } |
566 | } |
567 | |
568 | LLVM_DEBUG({ |
569 | dbgs() << "Gep node equality:\n" ; |
570 | for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) |
571 | dbgs() << "{ " << I->first << ", " << I->second << " }\n" ; |
572 | |
573 | dbgs() << "Gep equivalence classes:\n" ; |
574 | for (const NodeSet &S : EqRel) { |
575 | dbgs() << '{'; |
576 | for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { |
577 | if (J != S.begin()) |
578 | dbgs() << ','; |
579 | dbgs() << ' ' << *J; |
580 | } |
581 | dbgs() << " }\n" ; |
582 | } |
583 | }); |
584 | |
585 | // Create a projection from a NodeSet to the minimal element in it. |
586 | using ProjMap = std::map<const NodeSet *, GepNode *>; |
587 | ProjMap PM; |
588 | for (const NodeSet &S : EqRel) { |
589 | GepNode *Min = *llvm::min_element(Range: S, C: NodeOrder); |
590 | std::pair<ProjMap::iterator,bool> Ins = PM.insert(x: std::make_pair(x: &S, y&: Min)); |
591 | (void)Ins; |
592 | assert(Ins.second && "Cannot add minimal element" ); |
593 | |
594 | // Update the min element's flags, and user list. |
595 | uint32_t Flags = 0; |
596 | UseSet &MinUs = Uses[Min]; |
597 | for (GepNode *N : S) { |
598 | uint32_t NF = N->Flags; |
599 | // If N is used, append all original values of N to the list of |
600 | // original values of Min. |
601 | if (NF & GepNode::Used) { |
602 | auto &U = Uses[N]; |
603 | MinUs.insert_range(R&: U); |
604 | } |
605 | Flags |= NF; |
606 | } |
607 | if (MinUs.empty()) |
608 | Uses.erase(x: Min); |
609 | |
610 | // The collected flags should include all the flags from the min element. |
611 | assert((Min->Flags & Flags) == Min->Flags); |
612 | Min->Flags = Flags; |
613 | } |
614 | |
615 | // Commoning: for each non-root gep node, replace "Parent" with the |
616 | // selected (minimum) node from the corresponding equivalence class. |
617 | // If a given parent does not have an equivalence class, leave it |
618 | // unchanged (it means that it's the only element in its class). |
619 | for (GepNode *N : Nodes) { |
620 | if (N->Flags & GepNode::Root) |
621 | continue; |
622 | const NodeSet *PC = node_class(N: N->Parent, Rel&: EqRel); |
623 | if (!PC) |
624 | continue; |
625 | ProjMap::iterator F = PM.find(x: PC); |
626 | if (F == PM.end()) |
627 | continue; |
628 | // Found a replacement, use it. |
629 | GepNode *Rep = F->second; |
630 | N->Parent = Rep; |
631 | } |
632 | |
633 | LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); |
634 | |
635 | // Finally, erase the nodes that are no longer used. |
636 | NodeSet Erase; |
637 | for (GepNode *N : Nodes) { |
638 | const NodeSet *PC = node_class(N, Rel&: EqRel); |
639 | if (!PC) |
640 | continue; |
641 | ProjMap::iterator F = PM.find(x: PC); |
642 | if (F == PM.end()) |
643 | continue; |
644 | if (N == F->second) |
645 | continue; |
646 | // Node for removal. |
647 | Erase.insert(x: N); |
648 | } |
649 | erase_if(C&: Nodes, P: in_set(Erase)); |
650 | |
651 | LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); |
652 | } |
653 | |
654 | template <typename T> |
655 | static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { |
656 | LLVM_DEBUG({ |
657 | dbgs() << "NCD of {" ; |
658 | for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; |
659 | ++I) { |
660 | if (!*I) |
661 | continue; |
662 | BasicBlock *B = cast<BasicBlock>(*I); |
663 | dbgs() << ' ' << B->getName(); |
664 | } |
665 | dbgs() << " }\n" ; |
666 | }); |
667 | |
668 | // Allow null basic blocks in Blocks. In such cases, return nullptr. |
669 | typename T::iterator I = Blocks.begin(), E = Blocks.end(); |
670 | if (I == E || !*I) |
671 | return nullptr; |
672 | BasicBlock *Dom = cast<BasicBlock>(*I); |
673 | while (++I != E) { |
674 | BasicBlock *B = cast_or_null<BasicBlock>(*I); |
675 | Dom = B ? DT->findNearestCommonDominator(A: Dom, B) : nullptr; |
676 | if (!Dom) |
677 | return nullptr; |
678 | } |
679 | LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); |
680 | return Dom; |
681 | } |
682 | |
683 | template <typename T> |
684 | static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { |
685 | // If two blocks, A and B, dominate a block C, then A dominates B, |
686 | // or B dominates A. |
687 | typename T::iterator I = Blocks.begin(), E = Blocks.end(); |
688 | // Find the first non-null block. |
689 | while (I != E && !*I) |
690 | ++I; |
691 | if (I == E) |
692 | return DT->getRoot(); |
693 | BasicBlock *DomB = cast<BasicBlock>(*I); |
694 | while (++I != E) { |
695 | if (!*I) |
696 | continue; |
697 | BasicBlock *B = cast<BasicBlock>(*I); |
698 | if (DT->dominates(A: B, B: DomB)) |
699 | continue; |
700 | if (!DT->dominates(A: DomB, B)) |
701 | return nullptr; |
702 | DomB = B; |
703 | } |
704 | return DomB; |
705 | } |
706 | |
707 | // Find the first use in B of any value from Values. If no such use, |
708 | // return B->end(). |
709 | template <typename T> |
710 | static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { |
711 | BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); |
712 | |
713 | using iterator = typename T::iterator; |
714 | |
715 | for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { |
716 | Value *V = *I; |
717 | // If V is used in a PHI node, the use belongs to the incoming block, |
718 | // not the block with the PHI node. In the incoming block, the use |
719 | // would be considered as being at the end of it, so it cannot |
720 | // influence the position of the first use (which is assumed to be |
721 | // at the end to start with). |
722 | if (isa<PHINode>(Val: V)) |
723 | continue; |
724 | if (!isa<Instruction>(Val: V)) |
725 | continue; |
726 | Instruction *In = cast<Instruction>(Val: V); |
727 | if (In->getParent() != B) |
728 | continue; |
729 | BasicBlock::iterator It = In->getIterator(); |
730 | if (std::distance(first: FirstUse, last: BEnd) < std::distance(first: It, last: BEnd)) |
731 | FirstUse = It; |
732 | } |
733 | return FirstUse; |
734 | } |
735 | |
736 | static bool is_empty(const BasicBlock *B) { |
737 | return B->empty() || (&*B->begin() == B->getTerminator()); |
738 | } |
739 | |
740 | BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, |
741 | NodeChildrenMap &NCM, NodeToValueMap &Loc) { |
742 | LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); |
743 | // Recalculate the placement for Node, assuming that the locations of |
744 | // its children in Loc are valid. |
745 | // Return nullptr if there is no valid placement for Node (for example, it |
746 | // uses an index value that is not available at the location required |
747 | // to dominate all children, etc.). |
748 | |
749 | // Find the nearest common dominator for: |
750 | // - all users, if the node is used, and |
751 | // - all children. |
752 | ValueVect Bs; |
753 | if (Node->Flags & GepNode::Used) { |
754 | // Append all blocks with uses of the original values to the |
755 | // block vector Bs. |
756 | NodeToUsesMap::iterator UF = Uses.find(x: Node); |
757 | assert(UF != Uses.end() && "Used node with no use information" ); |
758 | UseSet &Us = UF->second; |
759 | for (Use *U : Us) { |
760 | User *R = U->getUser(); |
761 | if (!isa<Instruction>(Val: R)) |
762 | continue; |
763 | BasicBlock *PB = isa<PHINode>(Val: R) |
764 | ? cast<PHINode>(Val: R)->getIncomingBlock(U: *U) |
765 | : cast<Instruction>(Val: R)->getParent(); |
766 | Bs.push_back(x: PB); |
767 | } |
768 | } |
769 | // Append the location of each child. |
770 | NodeChildrenMap::iterator CF = NCM.find(x: Node); |
771 | if (CF != NCM.end()) { |
772 | NodeVect &Cs = CF->second; |
773 | for (GepNode *CN : Cs) { |
774 | NodeToValueMap::iterator LF = Loc.find(x: CN); |
775 | // If the child is only used in GEP instructions (i.e. is not used in |
776 | // non-GEP instructions), the nearest dominator computed for it may |
777 | // have been null. In such case it won't have a location available. |
778 | if (LF == Loc.end()) |
779 | continue; |
780 | Bs.push_back(x: LF->second); |
781 | } |
782 | } |
783 | |
784 | BasicBlock *DomB = nearest_common_dominator(DT, Blocks&: Bs); |
785 | if (!DomB) |
786 | return nullptr; |
787 | // Check if the index used by Node dominates the computed dominator. |
788 | Instruction *IdxI = dyn_cast<Instruction>(Val: Node->Idx); |
789 | if (IdxI && !DT->dominates(A: IdxI->getParent(), B: DomB)) |
790 | return nullptr; |
791 | |
792 | // Avoid putting nodes into empty blocks. |
793 | while (is_empty(B: DomB)) { |
794 | DomTreeNode *N = (*DT)[DomB]->getIDom(); |
795 | if (!N) |
796 | break; |
797 | DomB = N->getBlock(); |
798 | } |
799 | |
800 | // Otherwise, DomB is fine. Update the location map. |
801 | Loc[Node] = DomB; |
802 | return DomB; |
803 | } |
804 | |
805 | BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, |
806 | NodeChildrenMap &NCM, NodeToValueMap &Loc) { |
807 | LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); |
808 | // Recalculate the placement of Node, after recursively recalculating the |
809 | // placements of all its children. |
810 | NodeChildrenMap::iterator CF = NCM.find(x: Node); |
811 | if (CF != NCM.end()) { |
812 | NodeVect &Cs = CF->second; |
813 | for (GepNode *C : Cs) |
814 | recalculatePlacementRec(Node: C, NCM, Loc); |
815 | } |
816 | BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); |
817 | LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); |
818 | return LB; |
819 | } |
820 | |
821 | bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { |
822 | if (isa<Constant>(Val) || isa<Argument>(Val)) |
823 | return true; |
824 | Instruction *In = dyn_cast<Instruction>(Val); |
825 | if (!In) |
826 | return false; |
827 | BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); |
828 | return DT->properlyDominates(A: DefB, B: HdrB); |
829 | } |
830 | |
831 | bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { |
832 | if (Node->Flags & GepNode::Root) |
833 | if (!isInvariantIn(Val: Node->BaseVal, L)) |
834 | return false; |
835 | return isInvariantIn(Val: Node->Idx, L); |
836 | } |
837 | |
838 | bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { |
839 | BasicBlock *HB = L->getHeader(); |
840 | BasicBlock *LB = L->getLoopLatch(); |
841 | // B must post-dominate the loop header or dominate the loop latch. |
842 | if (PDT->dominates(A: B, B: HB)) |
843 | return true; |
844 | if (LB && DT->dominates(A: B, B: LB)) |
845 | return true; |
846 | return false; |
847 | } |
848 | |
849 | static BasicBlock *(DominatorTree *DT, Loop *L) { |
850 | if (BasicBlock *PH = L->getLoopPreheader()) |
851 | return PH; |
852 | if (!OptSpeculate) |
853 | return nullptr; |
854 | DomTreeNode *DN = DT->getNode(BB: L->getHeader()); |
855 | if (!DN) |
856 | return nullptr; |
857 | return DN->getIDom()->getBlock(); |
858 | } |
859 | |
860 | BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, |
861 | NodeChildrenMap &NCM, NodeToValueMap &Loc) { |
862 | // Find the "topmost" location for Node: it must be dominated by both, |
863 | // its parent (or the BaseVal, if it's a root node), and by the index |
864 | // value. |
865 | ValueVect Bs; |
866 | if (Node->Flags & GepNode::Root) { |
867 | if (Instruction *PIn = dyn_cast<Instruction>(Val: Node->BaseVal)) |
868 | Bs.push_back(x: PIn->getParent()); |
869 | } else { |
870 | Bs.push_back(x: Loc[Node->Parent]); |
871 | } |
872 | if (Instruction *IIn = dyn_cast<Instruction>(Val: Node->Idx)) |
873 | Bs.push_back(x: IIn->getParent()); |
874 | BasicBlock *TopB = nearest_common_dominatee(DT, Blocks&: Bs); |
875 | |
876 | // Traverse the loop nest upwards until we find a loop in which Node |
877 | // is no longer invariant, or until we get to the upper limit of Node's |
878 | // placement. The traversal will also stop when a suitable "preheader" |
879 | // cannot be found for a given loop. The "preheader" may actually be |
880 | // a regular block outside of the loop (i.e. not guarded), in which case |
881 | // the Node will be speculated. |
882 | // For nodes that are not in the main path of the containing loop (i.e. |
883 | // are not executed in each iteration), do not move them out of the loop. |
884 | BasicBlock *LocB = cast_or_null<BasicBlock>(Val: Loc[Node]); |
885 | if (LocB) { |
886 | Loop *Lp = LI->getLoopFor(BB: LocB); |
887 | while (Lp) { |
888 | if (!isInvariantIn(Node, L: Lp) || !isInMainPath(B: LocB, L: Lp)) |
889 | break; |
890 | BasicBlock *NewLoc = preheader(DT, L: Lp); |
891 | if (!NewLoc || !DT->dominates(A: TopB, B: NewLoc)) |
892 | break; |
893 | Lp = Lp->getParentLoop(); |
894 | LocB = NewLoc; |
895 | } |
896 | } |
897 | Loc[Node] = LocB; |
898 | |
899 | // Recursively compute the locations of all children nodes. |
900 | NodeChildrenMap::iterator CF = NCM.find(x: Node); |
901 | if (CF != NCM.end()) { |
902 | NodeVect &Cs = CF->second; |
903 | for (GepNode *C : Cs) |
904 | adjustForInvariance(Node: C, NCM, Loc); |
905 | } |
906 | return LocB; |
907 | } |
908 | |
909 | namespace { |
910 | |
911 | struct LocationAsBlock { |
912 | LocationAsBlock(const NodeToValueMap &L) : Map(L) {} |
913 | |
914 | const NodeToValueMap ⤅ |
915 | }; |
916 | |
917 | raw_ostream &operator<< (raw_ostream &OS, |
918 | const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; |
919 | raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { |
920 | for (const auto &I : Loc.Map) { |
921 | OS << I.first << " -> " ; |
922 | if (BasicBlock *B = cast_or_null<BasicBlock>(Val: I.second)) |
923 | OS << B->getName() << '(' << B << ')'; |
924 | else |
925 | OS << "<null-block>" ; |
926 | OS << '\n'; |
927 | } |
928 | return OS; |
929 | } |
930 | |
931 | inline bool is_constant(GepNode *N) { |
932 | return isa<ConstantInt>(Val: N->Idx); |
933 | } |
934 | |
935 | } // end anonymous namespace |
936 | |
937 | void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, |
938 | NodeToValueMap &Loc) { |
939 | User *R = U->getUser(); |
940 | LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R |
941 | << '\n'); |
942 | BasicBlock *PB = cast<Instruction>(Val: R)->getParent(); |
943 | |
944 | GepNode *N = Node; |
945 | GepNode *C = nullptr, *NewNode = nullptr; |
946 | while (is_constant(N) && !(N->Flags & GepNode::Root)) { |
947 | // XXX if (single-use) dont-replicate; |
948 | GepNode *NewN = new (*Mem) GepNode(N); |
949 | Nodes.push_back(x: NewN); |
950 | Loc[NewN] = PB; |
951 | |
952 | if (N == Node) |
953 | NewNode = NewN; |
954 | NewN->Flags &= ~GepNode::Used; |
955 | if (C) |
956 | C->Parent = NewN; |
957 | C = NewN; |
958 | N = N->Parent; |
959 | } |
960 | if (!NewNode) |
961 | return; |
962 | |
963 | // Move over all uses that share the same user as U from Node to NewNode. |
964 | NodeToUsesMap::iterator UF = Uses.find(x: Node); |
965 | assert(UF != Uses.end()); |
966 | UseSet &Us = UF->second; |
967 | UseSet NewUs; |
968 | for (Use *U : Us) { |
969 | if (U->getUser() == R) |
970 | NewUs.insert(X: U); |
971 | } |
972 | for (Use *U : NewUs) |
973 | Us.remove(X: U); // erase takes an iterator. |
974 | |
975 | if (Us.empty()) { |
976 | Node->Flags &= ~GepNode::Used; |
977 | Uses.erase(position: UF); |
978 | } |
979 | |
980 | // Should at least have U in NewUs. |
981 | NewNode->Flags |= GepNode::Used; |
982 | LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); |
983 | assert(!NewUs.empty()); |
984 | Uses[NewNode] = NewUs; |
985 | } |
986 | |
987 | void HexagonCommonGEP::separateConstantChains(GepNode *Node, |
988 | NodeChildrenMap &NCM, NodeToValueMap &Loc) { |
989 | // First approximation: extract all chains. |
990 | NodeSet Ns; |
991 | nodes_for_root(Root: Node, NCM, Nodes&: Ns); |
992 | |
993 | LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); |
994 | // Collect all used nodes together with the uses from loads and stores, |
995 | // where the GEP node could be folded into the load/store instruction. |
996 | NodeToUsesMap FNs; // Foldable nodes. |
997 | for (GepNode *N : Ns) { |
998 | if (!(N->Flags & GepNode::Used)) |
999 | continue; |
1000 | NodeToUsesMap::iterator UF = Uses.find(x: N); |
1001 | assert(UF != Uses.end()); |
1002 | UseSet &Us = UF->second; |
1003 | // Loads/stores that use the node N. |
1004 | UseSet LSs; |
1005 | for (Use *U : Us) { |
1006 | User *R = U->getUser(); |
1007 | // We're interested in uses that provide the address. It can happen |
1008 | // that the value may also be provided via GEP, but we won't handle |
1009 | // those cases here for now. |
1010 | if (LoadInst *Ld = dyn_cast<LoadInst>(Val: R)) { |
1011 | unsigned PtrX = LoadInst::getPointerOperandIndex(); |
1012 | if (&Ld->getOperandUse(i: PtrX) == U) |
1013 | LSs.insert(X: U); |
1014 | } else if (StoreInst *St = dyn_cast<StoreInst>(Val: R)) { |
1015 | unsigned PtrX = StoreInst::getPointerOperandIndex(); |
1016 | if (&St->getOperandUse(i: PtrX) == U) |
1017 | LSs.insert(X: U); |
1018 | } |
1019 | } |
1020 | // Even if the total use count is 1, separating the chain may still be |
1021 | // beneficial, since the constant chain may be longer than the GEP alone |
1022 | // would be (e.g. if the parent node has a constant index and also has |
1023 | // other children). |
1024 | if (!LSs.empty()) |
1025 | FNs.insert(x: std::make_pair(x&: N, y&: LSs)); |
1026 | } |
1027 | |
1028 | LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); |
1029 | |
1030 | for (auto &FN : FNs) { |
1031 | GepNode *N = FN.first; |
1032 | UseSet &Us = FN.second; |
1033 | for (Use *U : Us) |
1034 | separateChainForNode(Node: N, U, Loc); |
1035 | } |
1036 | } |
1037 | |
1038 | void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { |
1039 | // Compute the inverse of the Node.Parent links. Also, collect the set |
1040 | // of root nodes. |
1041 | NodeChildrenMap NCM; |
1042 | NodeVect Roots; |
1043 | invert_find_roots(Nodes, NCM, Roots); |
1044 | |
1045 | // Compute the initial placement determined by the users' locations, and |
1046 | // the locations of the child nodes. |
1047 | for (GepNode *Root : Roots) |
1048 | recalculatePlacementRec(Node: Root, NCM, Loc); |
1049 | |
1050 | LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); |
1051 | |
1052 | if (OptEnableInv) { |
1053 | for (GepNode *Root : Roots) |
1054 | adjustForInvariance(Node: Root, NCM, Loc); |
1055 | |
1056 | LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" |
1057 | << LocationAsBlock(Loc)); |
1058 | } |
1059 | if (OptEnableConst) { |
1060 | for (GepNode *Root : Roots) |
1061 | separateConstantChains(Node: Root, NCM, Loc); |
1062 | } |
1063 | LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); |
1064 | |
1065 | // At the moment, there is no further refinement of the initial placement. |
1066 | // Such a refinement could include splitting the nodes if they are placed |
1067 | // too far from some of its users. |
1068 | |
1069 | LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); |
1070 | } |
1071 | |
1072 | Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, |
1073 | BasicBlock *LocB) { |
1074 | LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() |
1075 | << " for nodes:\n" |
1076 | << NA); |
1077 | unsigned Num = NA.size(); |
1078 | GepNode *RN = NA[0]; |
1079 | assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root" ); |
1080 | |
1081 | GetElementPtrInst *NewInst = nullptr; |
1082 | Value *Input = RN->BaseVal; |
1083 | Type *InpTy = RN->PTy; |
1084 | |
1085 | unsigned Idx = 0; |
1086 | do { |
1087 | SmallVector<Value*, 4> IdxList; |
1088 | // If the type of the input of the first node is not a pointer, |
1089 | // we need to add an artificial i32 0 to the indices (because the |
1090 | // actual input in the IR will be a pointer). |
1091 | if (!(NA[Idx]->Flags & GepNode::Pointer)) { |
1092 | Type *Int32Ty = Type::getInt32Ty(C&: *Ctx); |
1093 | IdxList.push_back(Elt: ConstantInt::get(Ty: Int32Ty, V: 0)); |
1094 | } |
1095 | |
1096 | // Keep adding indices from NA until we have to stop and generate |
1097 | // an "intermediate" GEP. |
1098 | while (++Idx <= Num) { |
1099 | GepNode *N = NA[Idx-1]; |
1100 | IdxList.push_back(Elt: N->Idx); |
1101 | if (Idx < Num) { |
1102 | // We have to stop if we reach a pointer. |
1103 | if (NA[Idx]->Flags & GepNode::Pointer) |
1104 | break; |
1105 | } |
1106 | } |
1107 | NewInst = GetElementPtrInst::Create(PointeeType: InpTy, Ptr: Input, IdxList, NameStr: "cgep" , InsertBefore: At); |
1108 | NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); |
1109 | LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); |
1110 | if (Idx < Num) { |
1111 | Input = NewInst; |
1112 | InpTy = NA[Idx]->PTy; |
1113 | } |
1114 | } while (Idx <= Num); |
1115 | |
1116 | return NewInst; |
1117 | } |
1118 | |
1119 | void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, |
1120 | NodeChildrenMap &NCM) { |
1121 | NodeVect Work; |
1122 | Work.push_back(x: Node); |
1123 | |
1124 | while (!Work.empty()) { |
1125 | NodeVect::iterator First = Work.begin(); |
1126 | GepNode *N = *First; |
1127 | Work.erase(position: First); |
1128 | if (N->Flags & GepNode::Used) { |
1129 | NodeToUsesMap::iterator UF = Uses.find(x: N); |
1130 | assert(UF != Uses.end() && "No use information for used node" ); |
1131 | UseSet &Us = UF->second; |
1132 | for (const auto &U : Us) |
1133 | Values.push_back(x: U->getUser()); |
1134 | } |
1135 | NodeChildrenMap::iterator CF = NCM.find(x: N); |
1136 | if (CF != NCM.end()) { |
1137 | NodeVect &Cs = CF->second; |
1138 | llvm::append_range(C&: Work, R&: Cs); |
1139 | } |
1140 | } |
1141 | } |
1142 | |
1143 | void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { |
1144 | LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); |
1145 | NodeChildrenMap NCM; |
1146 | NodeVect Roots; |
1147 | // Compute the inversion again, since computing placement could alter |
1148 | // "parent" relation between nodes. |
1149 | invert_find_roots(Nodes, NCM, Roots); |
1150 | |
1151 | while (!Roots.empty()) { |
1152 | NodeVect::iterator First = Roots.begin(); |
1153 | GepNode *Root = *First, *Last = *First; |
1154 | Roots.erase(position: First); |
1155 | |
1156 | NodeVect NA; // Nodes to assemble. |
1157 | // Append to NA all child nodes up to (and including) the first child |
1158 | // that: |
1159 | // (1) has more than 1 child, or |
1160 | // (2) is used, or |
1161 | // (3) has a child located in a different block. |
1162 | bool LastUsed = false; |
1163 | unsigned LastCN = 0; |
1164 | // The location may be null if the computation failed (it can legitimately |
1165 | // happen for nodes created from dead GEPs). |
1166 | Value *LocV = Loc[Last]; |
1167 | if (!LocV) |
1168 | continue; |
1169 | BasicBlock *LastB = cast<BasicBlock>(Val: LocV); |
1170 | do { |
1171 | NA.push_back(x: Last); |
1172 | LastUsed = (Last->Flags & GepNode::Used); |
1173 | if (LastUsed) |
1174 | break; |
1175 | NodeChildrenMap::iterator CF = NCM.find(x: Last); |
1176 | LastCN = (CF != NCM.end()) ? CF->second.size() : 0; |
1177 | if (LastCN != 1) |
1178 | break; |
1179 | GepNode *Child = CF->second.front(); |
1180 | BasicBlock *ChildB = cast_or_null<BasicBlock>(Val: Loc[Child]); |
1181 | if (ChildB != nullptr && LastB != ChildB) |
1182 | break; |
1183 | Last = Child; |
1184 | } while (true); |
1185 | |
1186 | BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); |
1187 | if (LastUsed || LastCN > 0) { |
1188 | ValueVect Urs; |
1189 | getAllUsersForNode(Node: Root, Values&: Urs, NCM); |
1190 | BasicBlock::iterator FirstUse = first_use_of_in_block(Values&: Urs, B: LastB); |
1191 | if (FirstUse != LastB->end()) |
1192 | InsertAt = FirstUse; |
1193 | } |
1194 | |
1195 | // Generate a new instruction for NA. |
1196 | Value *NewInst = fabricateGEP(NA, At: InsertAt, LocB: LastB); |
1197 | |
1198 | // Convert all the children of Last node into roots, and append them |
1199 | // to the Roots list. |
1200 | if (LastCN > 0) { |
1201 | NodeVect &Cs = NCM[Last]; |
1202 | for (GepNode *CN : Cs) { |
1203 | CN->Flags &= ~GepNode::Internal; |
1204 | CN->Flags |= GepNode::Root; |
1205 | CN->BaseVal = NewInst; |
1206 | Roots.push_back(x: CN); |
1207 | } |
1208 | } |
1209 | |
1210 | // Lastly, if the Last node was used, replace all uses with the new GEP. |
1211 | // The uses reference the original GEP values. |
1212 | if (LastUsed) { |
1213 | NodeToUsesMap::iterator UF = Uses.find(x: Last); |
1214 | assert(UF != Uses.end() && "No use information found" ); |
1215 | UseSet &Us = UF->second; |
1216 | for (Use *U : Us) |
1217 | U->set(NewInst); |
1218 | } |
1219 | } |
1220 | } |
1221 | |
1222 | void HexagonCommonGEP::removeDeadCode() { |
1223 | ValueVect BO; |
1224 | BO.push_back(x: &Fn->front()); |
1225 | |
1226 | for (unsigned i = 0; i < BO.size(); ++i) { |
1227 | BasicBlock *B = cast<BasicBlock>(Val: BO[i]); |
1228 | for (auto *DTN : children<DomTreeNode *>(G: DT->getNode(BB: B))) |
1229 | BO.push_back(x: DTN->getBlock()); |
1230 | } |
1231 | |
1232 | for (Value *V : llvm::reverse(C&: BO)) { |
1233 | BasicBlock *B = cast<BasicBlock>(Val: V); |
1234 | ValueVect Ins; |
1235 | for (Instruction &I : llvm::reverse(C&: *B)) |
1236 | Ins.push_back(x: &I); |
1237 | for (Value *I : Ins) { |
1238 | Instruction *In = cast<Instruction>(Val: I); |
1239 | if (isInstructionTriviallyDead(I: In)) |
1240 | In->eraseFromParent(); |
1241 | } |
1242 | } |
1243 | } |
1244 | |
1245 | bool HexagonCommonGEP::runOnFunction(Function &F) { |
1246 | if (skipFunction(F)) |
1247 | return false; |
1248 | |
1249 | // For now bail out on C++ exception handling. |
1250 | for (const BasicBlock &BB : F) |
1251 | for (const Instruction &I : BB) |
1252 | if (isa<InvokeInst>(Val: I) || isa<LandingPadInst>(Val: I)) |
1253 | return false; |
1254 | |
1255 | Fn = &F; |
1256 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
1257 | PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); |
1258 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
1259 | Ctx = &F.getContext(); |
1260 | |
1261 | Nodes.clear(); |
1262 | Uses.clear(); |
1263 | NodeOrder.clear(); |
1264 | |
1265 | SpecificBumpPtrAllocator<GepNode> Allocator; |
1266 | Mem = &Allocator; |
1267 | |
1268 | collect(); |
1269 | common(); |
1270 | |
1271 | NodeToValueMap Loc; |
1272 | computeNodePlacement(Loc); |
1273 | materialize(Loc); |
1274 | removeDeadCode(); |
1275 | |
1276 | #ifdef EXPENSIVE_CHECKS |
1277 | // Run this only when expensive checks are enabled. |
1278 | if (verifyFunction(F, &dbgs())) |
1279 | report_fatal_error("Broken function" ); |
1280 | #endif |
1281 | return true; |
1282 | } |
1283 | |
1284 | namespace llvm { |
1285 | |
1286 | FunctionPass *createHexagonCommonGEP() { |
1287 | return new HexagonCommonGEP(); |
1288 | } |
1289 | |
1290 | } // end namespace llvm |
1291 | |