1 | //===- HexagonGenExtract.cpp ----------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "Hexagon.h" |
10 | #include "llvm/ADT/APInt.h" |
11 | #include "llvm/ADT/GraphTraits.h" |
12 | #include "llvm/IR/BasicBlock.h" |
13 | #include "llvm/IR/CFG.h" |
14 | #include "llvm/IR/Constants.h" |
15 | #include "llvm/IR/Dominators.h" |
16 | #include "llvm/IR/Function.h" |
17 | #include "llvm/IR/IRBuilder.h" |
18 | #include "llvm/IR/Instruction.h" |
19 | #include "llvm/IR/Instructions.h" |
20 | #include "llvm/IR/Intrinsics.h" |
21 | #include "llvm/IR/IntrinsicsHexagon.h" |
22 | #include "llvm/IR/PatternMatch.h" |
23 | #include "llvm/IR/Type.h" |
24 | #include "llvm/IR/Value.h" |
25 | #include "llvm/InitializePasses.h" |
26 | #include "llvm/Pass.h" |
27 | #include "llvm/Support/CommandLine.h" |
28 | #include <algorithm> |
29 | #include <cstdint> |
30 | #include <iterator> |
31 | |
32 | using namespace llvm; |
33 | |
34 | static cl::opt<unsigned> ("extract-cutoff" , cl::init(Val: ~0U), |
35 | cl::Hidden, cl::desc("Cutoff for generating \"extract\"" |
36 | " instructions" )); |
37 | |
38 | // This prevents generating extract instructions that have the offset of 0. |
39 | // One of the reasons for "extract" is to put a sequence of bits in a regis- |
40 | // ter, starting at offset 0 (so that these bits can then be used by an |
41 | // "insert"). If the bits are already at offset 0, it is better not to gene- |
42 | // rate "extract", since logical bit operations can be merged into compound |
43 | // instructions (as opposed to "extract"). |
44 | static cl::opt<bool> NoSR0("extract-nosr0" , cl::init(Val: true), cl::Hidden, |
45 | cl::desc("No extract instruction with offset 0" )); |
46 | |
47 | namespace { |
48 | |
49 | class : public FunctionPass { |
50 | public: |
51 | static char ; |
52 | |
53 | () : FunctionPass(ID) {} |
54 | |
55 | StringRef () const override { |
56 | return "Hexagon generate \"extract\" instructions" ; |
57 | } |
58 | |
59 | bool runOnFunction(Function &F) override; |
60 | |
61 | void (AnalysisUsage &AU) const override { |
62 | AU.addRequired<DominatorTreeWrapperPass>(); |
63 | AU.addPreserved<DominatorTreeWrapperPass>(); |
64 | FunctionPass::getAnalysisUsage(AU); |
65 | } |
66 | |
67 | private: |
68 | bool visitBlock(BasicBlock *B); |
69 | bool convert(Instruction *In); |
70 | |
71 | unsigned = 0; |
72 | DominatorTree *; |
73 | }; |
74 | |
75 | } // end anonymous namespace |
76 | |
77 | char HexagonGenExtract:: = 0; |
78 | |
79 | INITIALIZE_PASS_BEGIN(HexagonGenExtract, "hextract" , "Hexagon generate " |
80 | "\"extract\" instructions" , false, false) |
81 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
82 | INITIALIZE_PASS_END(HexagonGenExtract, "hextract" , "Hexagon generate " |
83 | "\"extract\" instructions" , false, false) |
84 | |
85 | bool HexagonGenExtract::(Instruction *In) { |
86 | using namespace PatternMatch; |
87 | |
88 | Value *BF = nullptr; |
89 | ConstantInt *CSL = nullptr, *CSR = nullptr, *CM = nullptr; |
90 | BasicBlock *BB = In->getParent(); |
91 | LLVMContext &Ctx = BB->getContext(); |
92 | bool LogicalSR; |
93 | |
94 | // (and (shl (lshr x, #sr), #sl), #m) |
95 | LogicalSR = true; |
96 | bool Match = match(V: In, P: m_And(L: m_Shl(L: m_LShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)), |
97 | R: m_ConstantInt(CI&: CSL)), |
98 | R: m_ConstantInt(CI&: CM))); |
99 | |
100 | if (!Match) { |
101 | // (and (shl (ashr x, #sr), #sl), #m) |
102 | LogicalSR = false; |
103 | Match = match(V: In, P: m_And(L: m_Shl(L: m_AShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)), |
104 | R: m_ConstantInt(CI&: CSL)), |
105 | R: m_ConstantInt(CI&: CM))); |
106 | } |
107 | if (!Match) { |
108 | // (and (shl x, #sl), #m) |
109 | LogicalSR = true; |
110 | CSR = ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: 0); |
111 | Match = match(V: In, P: m_And(L: m_Shl(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSL)), |
112 | R: m_ConstantInt(CI&: CM))); |
113 | if (Match && NoSR0) |
114 | return false; |
115 | } |
116 | if (!Match) { |
117 | // (and (lshr x, #sr), #m) |
118 | LogicalSR = true; |
119 | CSL = ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: 0); |
120 | Match = match(V: In, P: m_And(L: m_LShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)), |
121 | R: m_ConstantInt(CI&: CM))); |
122 | } |
123 | if (!Match) { |
124 | // (and (ashr x, #sr), #m) |
125 | LogicalSR = false; |
126 | CSL = ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: 0); |
127 | Match = match(V: In, P: m_And(L: m_AShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)), |
128 | R: m_ConstantInt(CI&: CM))); |
129 | } |
130 | if (!Match) { |
131 | CM = nullptr; |
132 | // (shl (lshr x, #sr), #sl) |
133 | LogicalSR = true; |
134 | Match = match(V: In, P: m_Shl(L: m_LShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)), |
135 | R: m_ConstantInt(CI&: CSL))); |
136 | } |
137 | if (!Match) { |
138 | CM = nullptr; |
139 | // (shl (ashr x, #sr), #sl) |
140 | LogicalSR = false; |
141 | Match = match(V: In, P: m_Shl(L: m_AShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)), |
142 | R: m_ConstantInt(CI&: CSL))); |
143 | } |
144 | if (!Match) |
145 | return false; |
146 | |
147 | Type *Ty = BF->getType(); |
148 | if (!Ty->isIntegerTy()) |
149 | return false; |
150 | unsigned BW = Ty->getPrimitiveSizeInBits(); |
151 | if (BW != 32 && BW != 64) |
152 | return false; |
153 | |
154 | uint32_t SR = CSR->getZExtValue(); |
155 | uint32_t SL = CSL->getZExtValue(); |
156 | |
157 | if (!CM) { |
158 | // If there was no and, and the shift left did not remove all potential |
159 | // sign bits created by the shift right, then extractu cannot reproduce |
160 | // this value. |
161 | if (!LogicalSR && (SR > SL)) |
162 | return false; |
163 | APInt A = APInt(BW, ~0ULL, true).lshr(shiftAmt: SR).shl(shiftAmt: SL); |
164 | CM = ConstantInt::get(Context&: Ctx, V: A); |
165 | } |
166 | |
167 | // CM is the shifted-left mask. Shift it back right to remove the zero |
168 | // bits on least-significant positions. |
169 | APInt M = CM->getValue().lshr(shiftAmt: SL); |
170 | uint32_t T = M.countr_one(); |
171 | |
172 | // During the shifts some of the bits will be lost. Calculate how many |
173 | // of the original value will remain after shift right and then left. |
174 | uint32_t U = BW - std::max(a: SL, b: SR); |
175 | // The width of the extracted field is the minimum of the original bits |
176 | // that remain after the shifts and the number of contiguous 1s in the mask. |
177 | uint32_t W = std::min(a: U, b: T); |
178 | if (W == 0 || W == 1) |
179 | return false; |
180 | |
181 | // Check if the extracted bits are contained within the mask that it is |
182 | // and-ed with. The extract operation will copy these bits, and so the |
183 | // mask cannot any holes in it that would clear any of the bits of the |
184 | // extracted field. |
185 | if (!LogicalSR) { |
186 | // If the shift right was arithmetic, it could have included some 1 bits. |
187 | // It is still ok to generate extract, but only if the mask eliminates |
188 | // those bits (i.e. M does not have any bits set beyond U). |
189 | APInt C = APInt::getHighBitsSet(numBits: BW, hiBitsSet: BW-U); |
190 | if (M.intersects(RHS: C) || !M.isMask(numBits: W)) |
191 | return false; |
192 | } else { |
193 | // Check if M starts with a contiguous sequence of W times 1 bits. Get |
194 | // the low U bits of M (which eliminates the 0 bits shifted in on the |
195 | // left), and check if the result is APInt's "mask": |
196 | if (!M.getLoBits(numBits: U).isMask(numBits: W)) |
197 | return false; |
198 | } |
199 | |
200 | IRBuilder<> IRB(In); |
201 | Intrinsic::ID IntId = (BW == 32) ? Intrinsic::hexagon_S2_extractu |
202 | : Intrinsic::hexagon_S2_extractup; |
203 | Value *NewIn = |
204 | IRB.CreateIntrinsic(ID: IntId, Args: {BF, IRB.getInt32(C: W), IRB.getInt32(C: SR)}); |
205 | if (SL != 0) |
206 | NewIn = IRB.CreateShl(LHS: NewIn, RHS: SL, Name: CSL->getName()); |
207 | In->replaceAllUsesWith(V: NewIn); |
208 | return true; |
209 | } |
210 | |
211 | bool HexagonGenExtract::(BasicBlock *B) { |
212 | bool Changed = false; |
213 | |
214 | // Depth-first, bottom-up traversal. |
215 | for (auto *DTN : children<DomTreeNode*>(G: DT->getNode(BB: B))) |
216 | Changed |= visitBlock(B: DTN->getBlock()); |
217 | |
218 | // Allow limiting the number of generated extracts for debugging purposes. |
219 | bool HasCutoff = ExtractCutoff.getPosition(); |
220 | unsigned Cutoff = ExtractCutoff; |
221 | |
222 | BasicBlock::iterator I = std::prev(x: B->end()), NextI, Begin = B->begin(); |
223 | while (true) { |
224 | if (HasCutoff && (ExtractCount >= Cutoff)) |
225 | return Changed; |
226 | bool Last = (I == Begin); |
227 | if (!Last) |
228 | NextI = std::prev(x: I); |
229 | Instruction *In = &*I; |
230 | bool Done = convert(In); |
231 | if (HasCutoff && Done) |
232 | ExtractCount++; |
233 | Changed |= Done; |
234 | if (Last) |
235 | break; |
236 | I = NextI; |
237 | } |
238 | return Changed; |
239 | } |
240 | |
241 | bool HexagonGenExtract::(Function &F) { |
242 | if (skipFunction(F)) |
243 | return false; |
244 | |
245 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
246 | bool Changed; |
247 | |
248 | // Traverse the function bottom-up, to see super-expressions before their |
249 | // sub-expressions. |
250 | BasicBlock *Entry = GraphTraits<Function*>::getEntryNode(F: &F); |
251 | Changed = visitBlock(B: Entry); |
252 | |
253 | return Changed; |
254 | } |
255 | |
256 | FunctionPass *llvm::() { |
257 | return new HexagonGenExtract(); |
258 | } |
259 | |