| 1 | //===--- RDFDeadCode.cpp --------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // RDF-based generic dead code elimination. |
| 10 | |
| 11 | #include "RDFDeadCode.h" |
| 12 | |
| 13 | #include "llvm/ADT/SetVector.h" |
| 14 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 15 | #include "llvm/CodeGen/MachineFunction.h" |
| 16 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 17 | #include "llvm/CodeGen/RDFGraph.h" |
| 18 | #include "llvm/CodeGen/RDFLiveness.h" |
| 19 | #include "llvm/Support/Debug.h" |
| 20 | |
| 21 | #include <queue> |
| 22 | |
| 23 | using namespace llvm; |
| 24 | using namespace rdf; |
| 25 | |
| 26 | // This drastically improves execution time in "collect" over using |
| 27 | // SetVector as a work queue, and popping the first element from it. |
| 28 | template<typename T> struct DeadCodeElimination::SetQueue { |
| 29 | SetQueue() : Set(), Queue() {} |
| 30 | |
| 31 | bool empty() const { |
| 32 | return Queue.empty(); |
| 33 | } |
| 34 | T pop_front() { |
| 35 | T V = Queue.front(); |
| 36 | Queue.pop(); |
| 37 | Set.erase(V); |
| 38 | return V; |
| 39 | } |
| 40 | void push_back(T V) { |
| 41 | if (Set.count(V)) |
| 42 | return; |
| 43 | Queue.push(V); |
| 44 | Set.insert(V); |
| 45 | } |
| 46 | |
| 47 | private: |
| 48 | DenseSet<T> Set; |
| 49 | std::queue<T> Queue; |
| 50 | }; |
| 51 | |
| 52 | |
| 53 | // Check if the given instruction has observable side-effects, i.e. if |
| 54 | // it should be considered "live". It is safe for this function to be |
| 55 | // overly conservative (i.e. return "true" for all instructions), but it |
| 56 | // is not safe to return "false" for an instruction that should not be |
| 57 | // considered removable. |
| 58 | bool DeadCodeElimination::isLiveInstr(NodeAddr<StmtNode *> S) const { |
| 59 | const MachineInstr *MI = S.Addr->getCode(); |
| 60 | if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn()) |
| 61 | return true; |
| 62 | if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects() || |
| 63 | MI->isPosition()) |
| 64 | return true; |
| 65 | if (MI->isPHI()) |
| 66 | return false; |
| 67 | for (auto &Op : MI->operands()) { |
| 68 | if (Op.isReg() && MRI.isReserved(PhysReg: Op.getReg())) |
| 69 | return true; |
| 70 | if (Op.isRegMask()) { |
| 71 | const uint32_t *BM = Op.getRegMask(); |
| 72 | for (unsigned R = 0, RN = DFG.getTRI().getNumRegs(); R != RN; ++R) { |
| 73 | if (BM[R/32] & (1u << (R%32))) |
| 74 | continue; |
| 75 | if (MRI.isReserved(PhysReg: R)) |
| 76 | return true; |
| 77 | } |
| 78 | } |
| 79 | } |
| 80 | return false; |
| 81 | } |
| 82 | |
| 83 | void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA, |
| 84 | SetQueue<NodeId> &WorkQ) { |
| 85 | if (!DFG.IsCode<NodeAttrs::Stmt>(BA: IA)) |
| 86 | return; |
| 87 | if (!isLiveInstr(S: IA)) |
| 88 | return; |
| 89 | for (NodeAddr<RefNode*> RA : IA.Addr->members(G: DFG)) { |
| 90 | if (!LiveNodes.count(key: RA.Id)) |
| 91 | WorkQ.push_back(V: RA.Id); |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA, |
| 96 | SetQueue<NodeId> &WorkQ) { |
| 97 | NodeAddr<InstrNode*> IA = DA.Addr->getOwner(G: DFG); |
| 98 | for (NodeAddr<UseNode*> UA : IA.Addr->members_if(P: DFG.IsUse, G: DFG)) { |
| 99 | if (!LiveNodes.count(key: UA.Id)) |
| 100 | WorkQ.push_back(V: UA.Id); |
| 101 | } |
| 102 | for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, RA: DA)) |
| 103 | LiveNodes.insert(X: TA.Id); |
| 104 | } |
| 105 | |
| 106 | void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA, |
| 107 | SetQueue<NodeId> &WorkQ) { |
| 108 | for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(RefA: UA)) { |
| 109 | if (!LiveNodes.count(key: DA.Id)) |
| 110 | WorkQ.push_back(V: DA.Id); |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | // Traverse the DFG and collect the set dead RefNodes and the set of |
| 115 | // dead instructions. Return "true" if any of these sets is non-empty, |
| 116 | // "false" otherwise. |
| 117 | bool DeadCodeElimination::collect() { |
| 118 | // This function works by first finding all live nodes. The dead nodes |
| 119 | // are then the complement of the set of live nodes. |
| 120 | // |
| 121 | // Assume that all nodes are dead. Identify instructions which must be |
| 122 | // considered live, i.e. instructions with observable side-effects, such |
| 123 | // as calls and stores. All arguments of such instructions are considered |
| 124 | // live. For each live def, all operands used in the corresponding |
| 125 | // instruction are considered live. For each live use, all its reaching |
| 126 | // defs are considered live. |
| 127 | LiveNodes.clear(); |
| 128 | SetQueue<NodeId> WorkQ; |
| 129 | for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(G: DFG)) |
| 130 | for (NodeAddr<InstrNode*> IA : BA.Addr->members(G: DFG)) |
| 131 | scanInstr(IA, WorkQ); |
| 132 | |
| 133 | while (!WorkQ.empty()) { |
| 134 | NodeId N = WorkQ.pop_front(); |
| 135 | LiveNodes.insert(X: N); |
| 136 | auto RA = DFG.addr<RefNode*>(N); |
| 137 | if (DFG.IsDef(BA: RA)) |
| 138 | processDef(DA: RA, WorkQ); |
| 139 | else |
| 140 | processUse(UA: RA, WorkQ); |
| 141 | } |
| 142 | |
| 143 | if (trace()) { |
| 144 | dbgs() << "Live nodes:\n" ; |
| 145 | for (NodeId N : LiveNodes) { |
| 146 | auto RA = DFG.addr<RefNode*>(N); |
| 147 | dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n" ; |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool { |
| 152 | for (NodeAddr<DefNode*> DA : IA.Addr->members_if(P: DFG.IsDef, G: DFG)) |
| 153 | if (LiveNodes.count(key: DA.Id)) |
| 154 | return false; |
| 155 | return true; |
| 156 | }; |
| 157 | |
| 158 | for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(G: DFG)) { |
| 159 | for (NodeAddr<InstrNode*> IA : BA.Addr->members(G: DFG)) { |
| 160 | for (NodeAddr<RefNode*> RA : IA.Addr->members(G: DFG)) |
| 161 | if (!LiveNodes.count(key: RA.Id)) |
| 162 | DeadNodes.insert(X: RA.Id); |
| 163 | if (DFG.IsCode<NodeAttrs::Stmt>(BA: IA)) |
| 164 | if (isLiveInstr(S: IA) || DFG.hasUntrackedRef(S: IA)) |
| 165 | continue; |
| 166 | if (IsDead(IA)) { |
| 167 | DeadInstrs.insert(X: IA.Id); |
| 168 | if (trace()) |
| 169 | dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n" ; |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | return !DeadNodes.empty(); |
| 175 | } |
| 176 | |
| 177 | // Erase the nodes given in the Nodes set from DFG. In addition to removing |
| 178 | // them from the DFG, if a node corresponds to a statement, the corresponding |
| 179 | // machine instruction is erased from the function. |
| 180 | bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) { |
| 181 | if (Nodes.empty()) |
| 182 | return false; |
| 183 | |
| 184 | // Prepare the actual set of ref nodes to remove: ref nodes from Nodes |
| 185 | // are included directly, for each InstrNode in Nodes, include the set |
| 186 | // of all RefNodes from it. |
| 187 | NodeList DRNs, DINs; |
| 188 | for (auto I : Nodes) { |
| 189 | auto BA = DFG.addr<NodeBase*>(N: I); |
| 190 | uint16_t Type = BA.Addr->getType(); |
| 191 | if (Type == NodeAttrs::Ref) { |
| 192 | DRNs.push_back(Elt: DFG.addr<RefNode*>(N: I)); |
| 193 | continue; |
| 194 | } |
| 195 | |
| 196 | // If it's a code node, add all ref nodes from it. |
| 197 | uint16_t Kind = BA.Addr->getKind(); |
| 198 | if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) { |
| 199 | append_range(C&: DRNs, R: NodeAddr<CodeNode*>(BA).Addr->members(G: DFG)); |
| 200 | DINs.push_back(Elt: DFG.addr<InstrNode*>(N: I)); |
| 201 | } else { |
| 202 | llvm_unreachable("Unexpected code node" ); |
| 203 | return false; |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | // Sort the list so that use nodes are removed first. This makes the |
| 208 | // "unlink" functions a bit faster. |
| 209 | auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool { |
| 210 | uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind(); |
| 211 | if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def) |
| 212 | return true; |
| 213 | if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use) |
| 214 | return false; |
| 215 | return A.Id < B.Id; |
| 216 | }; |
| 217 | llvm::sort(C&: DRNs, Comp: UsesFirst); |
| 218 | |
| 219 | if (trace()) |
| 220 | dbgs() << "Removing dead ref nodes:\n" ; |
| 221 | for (NodeAddr<RefNode*> RA : DRNs) { |
| 222 | if (trace()) |
| 223 | dbgs() << " " << PrintNode<RefNode*>(RA, DFG) << '\n'; |
| 224 | if (DFG.IsUse(BA: RA)) |
| 225 | DFG.unlinkUse(UA: RA, RemoveFromOwner: true); |
| 226 | else if (DFG.IsDef(BA: RA)) |
| 227 | DFG.unlinkDef(DA: RA, RemoveFromOwner: true); |
| 228 | } |
| 229 | |
| 230 | // Now, remove all dead instruction nodes. |
| 231 | for (NodeAddr<InstrNode*> IA : DINs) { |
| 232 | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(G: DFG); |
| 233 | BA.Addr->removeMember(NA: IA, G: DFG); |
| 234 | if (!DFG.IsCode<NodeAttrs::Stmt>(BA: IA)) |
| 235 | continue; |
| 236 | |
| 237 | MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); |
| 238 | if (trace()) |
| 239 | dbgs() << "erasing: " << *MI; |
| 240 | MI->eraseFromParent(); |
| 241 | } |
| 242 | return true; |
| 243 | } |
| 244 | |