| 1 | //===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "NVPTXTargetTransformInfo.h" |
| 10 | #include "NVPTXUtilities.h" |
| 11 | #include "llvm/ADT/STLExtras.h" |
| 12 | #include "llvm/Analysis/LoopInfo.h" |
| 13 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 14 | #include "llvm/Analysis/ValueTracking.h" |
| 15 | #include "llvm/CodeGen/BasicTTIImpl.h" |
| 16 | #include "llvm/CodeGen/TargetLowering.h" |
| 17 | #include "llvm/IR/Constants.h" |
| 18 | #include "llvm/IR/IntrinsicInst.h" |
| 19 | #include "llvm/IR/Intrinsics.h" |
| 20 | #include "llvm/IR/IntrinsicsNVPTX.h" |
| 21 | #include "llvm/IR/Value.h" |
| 22 | #include "llvm/Support/Casting.h" |
| 23 | #include "llvm/Support/ErrorHandling.h" |
| 24 | #include "llvm/Support/NVPTXAddrSpace.h" |
| 25 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 26 | #include <optional> |
| 27 | using namespace llvm; |
| 28 | |
| 29 | #define DEBUG_TYPE "NVPTXtti" |
| 30 | |
| 31 | // Whether the given intrinsic reads threadIdx.x/y/z. |
| 32 | static bool readsThreadIndex(const IntrinsicInst *II) { |
| 33 | switch (II->getIntrinsicID()) { |
| 34 | default: return false; |
| 35 | case Intrinsic::nvvm_read_ptx_sreg_tid_x: |
| 36 | case Intrinsic::nvvm_read_ptx_sreg_tid_y: |
| 37 | case Intrinsic::nvvm_read_ptx_sreg_tid_z: |
| 38 | return true; |
| 39 | } |
| 40 | } |
| 41 | |
| 42 | static bool readsLaneId(const IntrinsicInst *II) { |
| 43 | return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid; |
| 44 | } |
| 45 | |
| 46 | // Whether the given intrinsic is an atomic instruction in PTX. |
| 47 | static bool isNVVMAtomic(const IntrinsicInst *II) { |
| 48 | switch (II->getIntrinsicID()) { |
| 49 | default: |
| 50 | return false; |
| 51 | case Intrinsic::nvvm_atomic_add_gen_f_cta: |
| 52 | case Intrinsic::nvvm_atomic_add_gen_f_sys: |
| 53 | case Intrinsic::nvvm_atomic_add_gen_i_cta: |
| 54 | case Intrinsic::nvvm_atomic_add_gen_i_sys: |
| 55 | case Intrinsic::nvvm_atomic_and_gen_i_cta: |
| 56 | case Intrinsic::nvvm_atomic_and_gen_i_sys: |
| 57 | case Intrinsic::nvvm_atomic_cas_gen_i_cta: |
| 58 | case Intrinsic::nvvm_atomic_cas_gen_i_sys: |
| 59 | case Intrinsic::nvvm_atomic_dec_gen_i_cta: |
| 60 | case Intrinsic::nvvm_atomic_dec_gen_i_sys: |
| 61 | case Intrinsic::nvvm_atomic_inc_gen_i_cta: |
| 62 | case Intrinsic::nvvm_atomic_inc_gen_i_sys: |
| 63 | case Intrinsic::nvvm_atomic_max_gen_i_cta: |
| 64 | case Intrinsic::nvvm_atomic_max_gen_i_sys: |
| 65 | case Intrinsic::nvvm_atomic_min_gen_i_cta: |
| 66 | case Intrinsic::nvvm_atomic_min_gen_i_sys: |
| 67 | case Intrinsic::nvvm_atomic_or_gen_i_cta: |
| 68 | case Intrinsic::nvvm_atomic_or_gen_i_sys: |
| 69 | case Intrinsic::nvvm_atomic_exch_gen_i_cta: |
| 70 | case Intrinsic::nvvm_atomic_exch_gen_i_sys: |
| 71 | case Intrinsic::nvvm_atomic_xor_gen_i_cta: |
| 72 | case Intrinsic::nvvm_atomic_xor_gen_i_sys: |
| 73 | return true; |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) const { |
| 78 | // Without inter-procedural analysis, we conservatively assume that arguments |
| 79 | // to __device__ functions are divergent. |
| 80 | if (const Argument *Arg = dyn_cast<Argument>(Val: V)) |
| 81 | return !isKernelFunction(F: *Arg->getParent()); |
| 82 | |
| 83 | if (const Instruction *I = dyn_cast<Instruction>(Val: V)) { |
| 84 | // Without pointer analysis, we conservatively assume values loaded from |
| 85 | // generic or local address space are divergent. |
| 86 | if (const LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
| 87 | unsigned AS = LI->getPointerAddressSpace(); |
| 88 | return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL; |
| 89 | } |
| 90 | // Atomic instructions may cause divergence. Atomic instructions are |
| 91 | // executed sequentially across all threads in a warp. Therefore, an earlier |
| 92 | // executed thread may see different memory inputs than a later executed |
| 93 | // thread. For example, suppose *a = 0 initially. |
| 94 | // |
| 95 | // atom.global.add.s32 d, [a], 1 |
| 96 | // |
| 97 | // returns 0 for the first thread that enters the critical region, and 1 for |
| 98 | // the second thread. |
| 99 | if (I->isAtomic()) |
| 100 | return true; |
| 101 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 102 | // Instructions that read threadIdx are obviously divergent. |
| 103 | if (readsThreadIndex(II) || readsLaneId(II)) |
| 104 | return true; |
| 105 | // Handle the NVPTX atomic intrinsics that cannot be represented as an |
| 106 | // atomic IR instruction. |
| 107 | if (isNVVMAtomic(II)) |
| 108 | return true; |
| 109 | } |
| 110 | // Conservatively consider the return value of function calls as divergent. |
| 111 | // We could analyze callees with bodies more precisely using |
| 112 | // inter-procedural analysis. |
| 113 | if (isa<CallInst>(Val: I)) |
| 114 | return true; |
| 115 | } |
| 116 | |
| 117 | return false; |
| 118 | } |
| 119 | |
| 120 | // Convert NVVM intrinsics to target-generic LLVM code where possible. |
| 121 | static Instruction *convertNvvmIntrinsicToLlvm(InstCombiner &IC, |
| 122 | IntrinsicInst *II) { |
| 123 | // Each NVVM intrinsic we can simplify can be replaced with one of: |
| 124 | // |
| 125 | // * an LLVM intrinsic, |
| 126 | // * an LLVM cast operation, |
| 127 | // * an LLVM binary operation, or |
| 128 | // * ad-hoc LLVM IR for the particular operation. |
| 129 | |
| 130 | // Some transformations are only valid when the module's |
| 131 | // flush-denormals-to-zero (ftz) setting is true/false, whereas other |
| 132 | // transformations are valid regardless of the module's ftz setting. |
| 133 | enum FtzRequirementTy { |
| 134 | FTZ_Any, // Any ftz setting is ok. |
| 135 | FTZ_MustBeOn, // Transformation is valid only if ftz is on. |
| 136 | FTZ_MustBeOff, // Transformation is valid only if ftz is off. |
| 137 | }; |
| 138 | // Classes of NVVM intrinsics that can't be replaced one-to-one with a |
| 139 | // target-generic intrinsic, cast op, or binary op but that we can nonetheless |
| 140 | // simplify. |
| 141 | enum SpecialCase { |
| 142 | SPC_Reciprocal, |
| 143 | SCP_FunnelShiftClamp, |
| 144 | }; |
| 145 | |
| 146 | // SimplifyAction is a poor-man's variant (plus an additional flag) that |
| 147 | // represents how to replace an NVVM intrinsic with target-generic LLVM IR. |
| 148 | struct SimplifyAction { |
| 149 | // Invariant: At most one of these Optionals has a value. |
| 150 | std::optional<Intrinsic::ID> IID; |
| 151 | std::optional<Instruction::CastOps> CastOp; |
| 152 | std::optional<Instruction::BinaryOps> BinaryOp; |
| 153 | std::optional<SpecialCase> Special; |
| 154 | |
| 155 | FtzRequirementTy FtzRequirement = FTZ_Any; |
| 156 | // Denormal handling is guarded by different attributes depending on the |
| 157 | // type (denormal-fp-math vs denormal-fp-math-f32), take note of halfs. |
| 158 | bool IsHalfTy = false; |
| 159 | |
| 160 | SimplifyAction() = default; |
| 161 | |
| 162 | SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq, |
| 163 | bool IsHalfTy = false) |
| 164 | : IID(IID), FtzRequirement(FtzReq), IsHalfTy(IsHalfTy) {} |
| 165 | |
| 166 | // Cast operations don't have anything to do with FTZ, so we skip that |
| 167 | // argument. |
| 168 | SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {} |
| 169 | |
| 170 | SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq) |
| 171 | : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {} |
| 172 | |
| 173 | SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq) |
| 174 | : Special(Special), FtzRequirement(FtzReq) {} |
| 175 | }; |
| 176 | |
| 177 | // Try to generate a SimplifyAction describing how to replace our |
| 178 | // IntrinsicInstr with target-generic LLVM IR. |
| 179 | const SimplifyAction Action = [II]() -> SimplifyAction { |
| 180 | switch (II->getIntrinsicID()) { |
| 181 | // NVVM intrinsics that map directly to LLVM intrinsics. |
| 182 | case Intrinsic::nvvm_ceil_d: |
| 183 | return {Intrinsic::ceil, FTZ_Any}; |
| 184 | case Intrinsic::nvvm_ceil_f: |
| 185 | return {Intrinsic::ceil, FTZ_MustBeOff}; |
| 186 | case Intrinsic::nvvm_ceil_ftz_f: |
| 187 | return {Intrinsic::ceil, FTZ_MustBeOn}; |
| 188 | case Intrinsic::nvvm_floor_d: |
| 189 | return {Intrinsic::floor, FTZ_Any}; |
| 190 | case Intrinsic::nvvm_floor_f: |
| 191 | return {Intrinsic::floor, FTZ_MustBeOff}; |
| 192 | case Intrinsic::nvvm_floor_ftz_f: |
| 193 | return {Intrinsic::floor, FTZ_MustBeOn}; |
| 194 | case Intrinsic::nvvm_fma_rn_d: |
| 195 | return {Intrinsic::fma, FTZ_Any}; |
| 196 | case Intrinsic::nvvm_fma_rn_f: |
| 197 | return {Intrinsic::fma, FTZ_MustBeOff}; |
| 198 | case Intrinsic::nvvm_fma_rn_ftz_f: |
| 199 | return {Intrinsic::fma, FTZ_MustBeOn}; |
| 200 | case Intrinsic::nvvm_fma_rn_f16: |
| 201 | return {Intrinsic::fma, FTZ_MustBeOff, true}; |
| 202 | case Intrinsic::nvvm_fma_rn_ftz_f16: |
| 203 | return {Intrinsic::fma, FTZ_MustBeOn, true}; |
| 204 | case Intrinsic::nvvm_fma_rn_f16x2: |
| 205 | return {Intrinsic::fma, FTZ_MustBeOff, true}; |
| 206 | case Intrinsic::nvvm_fma_rn_ftz_f16x2: |
| 207 | return {Intrinsic::fma, FTZ_MustBeOn, true}; |
| 208 | case Intrinsic::nvvm_fma_rn_bf16: |
| 209 | return {Intrinsic::fma, FTZ_MustBeOff, true}; |
| 210 | case Intrinsic::nvvm_fma_rn_ftz_bf16: |
| 211 | return {Intrinsic::fma, FTZ_MustBeOn, true}; |
| 212 | case Intrinsic::nvvm_fma_rn_bf16x2: |
| 213 | return {Intrinsic::fma, FTZ_MustBeOff, true}; |
| 214 | case Intrinsic::nvvm_fma_rn_ftz_bf16x2: |
| 215 | return {Intrinsic::fma, FTZ_MustBeOn, true}; |
| 216 | case Intrinsic::nvvm_fmax_d: |
| 217 | return {Intrinsic::maxnum, FTZ_Any}; |
| 218 | case Intrinsic::nvvm_fmax_f: |
| 219 | return {Intrinsic::maxnum, FTZ_MustBeOff}; |
| 220 | case Intrinsic::nvvm_fmax_ftz_f: |
| 221 | return {Intrinsic::maxnum, FTZ_MustBeOn}; |
| 222 | case Intrinsic::nvvm_fmax_nan_f: |
| 223 | return {Intrinsic::maximum, FTZ_MustBeOff}; |
| 224 | case Intrinsic::nvvm_fmax_ftz_nan_f: |
| 225 | return {Intrinsic::maximum, FTZ_MustBeOn}; |
| 226 | case Intrinsic::nvvm_fmax_f16: |
| 227 | return {Intrinsic::maxnum, FTZ_MustBeOff, true}; |
| 228 | case Intrinsic::nvvm_fmax_ftz_f16: |
| 229 | return {Intrinsic::maxnum, FTZ_MustBeOn, true}; |
| 230 | case Intrinsic::nvvm_fmax_f16x2: |
| 231 | return {Intrinsic::maxnum, FTZ_MustBeOff, true}; |
| 232 | case Intrinsic::nvvm_fmax_ftz_f16x2: |
| 233 | return {Intrinsic::maxnum, FTZ_MustBeOn, true}; |
| 234 | case Intrinsic::nvvm_fmax_nan_f16: |
| 235 | return {Intrinsic::maximum, FTZ_MustBeOff, true}; |
| 236 | case Intrinsic::nvvm_fmax_ftz_nan_f16: |
| 237 | return {Intrinsic::maximum, FTZ_MustBeOn, true}; |
| 238 | case Intrinsic::nvvm_fmax_nan_f16x2: |
| 239 | return {Intrinsic::maximum, FTZ_MustBeOff, true}; |
| 240 | case Intrinsic::nvvm_fmax_ftz_nan_f16x2: |
| 241 | return {Intrinsic::maximum, FTZ_MustBeOn, true}; |
| 242 | case Intrinsic::nvvm_fmin_d: |
| 243 | return {Intrinsic::minnum, FTZ_Any}; |
| 244 | case Intrinsic::nvvm_fmin_f: |
| 245 | return {Intrinsic::minnum, FTZ_MustBeOff}; |
| 246 | case Intrinsic::nvvm_fmin_ftz_f: |
| 247 | return {Intrinsic::minnum, FTZ_MustBeOn}; |
| 248 | case Intrinsic::nvvm_fmin_nan_f: |
| 249 | return {Intrinsic::minimum, FTZ_MustBeOff}; |
| 250 | case Intrinsic::nvvm_fmin_ftz_nan_f: |
| 251 | return {Intrinsic::minimum, FTZ_MustBeOn}; |
| 252 | case Intrinsic::nvvm_fmin_f16: |
| 253 | return {Intrinsic::minnum, FTZ_MustBeOff, true}; |
| 254 | case Intrinsic::nvvm_fmin_ftz_f16: |
| 255 | return {Intrinsic::minnum, FTZ_MustBeOn, true}; |
| 256 | case Intrinsic::nvvm_fmin_f16x2: |
| 257 | return {Intrinsic::minnum, FTZ_MustBeOff, true}; |
| 258 | case Intrinsic::nvvm_fmin_ftz_f16x2: |
| 259 | return {Intrinsic::minnum, FTZ_MustBeOn, true}; |
| 260 | case Intrinsic::nvvm_fmin_nan_f16: |
| 261 | return {Intrinsic::minimum, FTZ_MustBeOff, true}; |
| 262 | case Intrinsic::nvvm_fmin_ftz_nan_f16: |
| 263 | return {Intrinsic::minimum, FTZ_MustBeOn, true}; |
| 264 | case Intrinsic::nvvm_fmin_nan_f16x2: |
| 265 | return {Intrinsic::minimum, FTZ_MustBeOff, true}; |
| 266 | case Intrinsic::nvvm_fmin_ftz_nan_f16x2: |
| 267 | return {Intrinsic::minimum, FTZ_MustBeOn, true}; |
| 268 | case Intrinsic::nvvm_sqrt_rn_d: |
| 269 | return {Intrinsic::sqrt, FTZ_Any}; |
| 270 | case Intrinsic::nvvm_sqrt_f: |
| 271 | // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the |
| 272 | // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts |
| 273 | // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are |
| 274 | // the versions with explicit ftz-ness. |
| 275 | return {Intrinsic::sqrt, FTZ_Any}; |
| 276 | case Intrinsic::nvvm_trunc_d: |
| 277 | return {Intrinsic::trunc, FTZ_Any}; |
| 278 | case Intrinsic::nvvm_trunc_f: |
| 279 | return {Intrinsic::trunc, FTZ_MustBeOff}; |
| 280 | case Intrinsic::nvvm_trunc_ftz_f: |
| 281 | return {Intrinsic::trunc, FTZ_MustBeOn}; |
| 282 | |
| 283 | // NVVM intrinsics that map to LLVM cast operations. |
| 284 | // |
| 285 | // Note that llvm's target-generic conversion operators correspond to the rz |
| 286 | // (round to zero) versions of the nvvm conversion intrinsics, even though |
| 287 | // most everything else here uses the rn (round to nearest even) nvvm ops. |
| 288 | case Intrinsic::nvvm_d2i_rz: |
| 289 | case Intrinsic::nvvm_f2i_rz: |
| 290 | case Intrinsic::nvvm_d2ll_rz: |
| 291 | case Intrinsic::nvvm_f2ll_rz: |
| 292 | return {Instruction::FPToSI}; |
| 293 | case Intrinsic::nvvm_d2ui_rz: |
| 294 | case Intrinsic::nvvm_f2ui_rz: |
| 295 | case Intrinsic::nvvm_d2ull_rz: |
| 296 | case Intrinsic::nvvm_f2ull_rz: |
| 297 | return {Instruction::FPToUI}; |
| 298 | // Integer to floating-point uses RN rounding, not RZ |
| 299 | case Intrinsic::nvvm_i2d_rn: |
| 300 | case Intrinsic::nvvm_i2f_rn: |
| 301 | case Intrinsic::nvvm_ll2d_rn: |
| 302 | case Intrinsic::nvvm_ll2f_rn: |
| 303 | return {Instruction::SIToFP}; |
| 304 | case Intrinsic::nvvm_ui2d_rn: |
| 305 | case Intrinsic::nvvm_ui2f_rn: |
| 306 | case Intrinsic::nvvm_ull2d_rn: |
| 307 | case Intrinsic::nvvm_ull2f_rn: |
| 308 | return {Instruction::UIToFP}; |
| 309 | |
| 310 | // NVVM intrinsics that map to LLVM binary ops. |
| 311 | case Intrinsic::nvvm_div_rn_d: |
| 312 | return {Instruction::FDiv, FTZ_Any}; |
| 313 | |
| 314 | // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but |
| 315 | // need special handling. |
| 316 | // |
| 317 | // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just |
| 318 | // as well. |
| 319 | case Intrinsic::nvvm_rcp_rn_d: |
| 320 | return {SPC_Reciprocal, FTZ_Any}; |
| 321 | |
| 322 | case Intrinsic::nvvm_fshl_clamp: |
| 323 | case Intrinsic::nvvm_fshr_clamp: |
| 324 | return {SCP_FunnelShiftClamp, FTZ_Any}; |
| 325 | |
| 326 | // We do not currently simplify intrinsics that give an approximate |
| 327 | // answer. These include: |
| 328 | // |
| 329 | // - nvvm_cos_approx_{f,ftz_f} |
| 330 | // - nvvm_ex2_approx_{d,f,ftz_f} |
| 331 | // - nvvm_lg2_approx_{d,f,ftz_f} |
| 332 | // - nvvm_sin_approx_{f,ftz_f} |
| 333 | // - nvvm_sqrt_approx_{f,ftz_f} |
| 334 | // - nvvm_rsqrt_approx_{d,f,ftz_f} |
| 335 | // - nvvm_div_approx_{ftz_d,ftz_f,f} |
| 336 | // - nvvm_rcp_approx_ftz_d |
| 337 | // |
| 338 | // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast" |
| 339 | // means that fastmath is enabled in the intrinsic. Unfortunately only |
| 340 | // binary operators (currently) have a fastmath bit in SelectionDAG, so |
| 341 | // this information gets lost and we can't select on it. |
| 342 | // |
| 343 | // TODO: div and rcp are lowered to a binary op, so these we could in |
| 344 | // theory lower them to "fast fdiv". |
| 345 | |
| 346 | default: |
| 347 | return {}; |
| 348 | } |
| 349 | }(); |
| 350 | |
| 351 | // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we |
| 352 | // can bail out now. (Notice that in the case that IID is not an NVVM |
| 353 | // intrinsic, we don't have to look up any module metadata, as |
| 354 | // FtzRequirementTy will be FTZ_Any.) |
| 355 | if (Action.FtzRequirement != FTZ_Any) { |
| 356 | // FIXME: Broken for f64 |
| 357 | DenormalMode Mode = II->getFunction()->getDenormalMode( |
| 358 | FPType: Action.IsHalfTy ? APFloat::IEEEhalf() : APFloat::IEEEsingle()); |
| 359 | bool FtzEnabled = Mode.Output == DenormalMode::PreserveSign; |
| 360 | |
| 361 | if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn)) |
| 362 | return nullptr; |
| 363 | } |
| 364 | |
| 365 | // Simplify to target-generic intrinsic. |
| 366 | if (Action.IID) { |
| 367 | SmallVector<Value *, 4> Args(II->args()); |
| 368 | // All the target-generic intrinsics currently of interest to us have one |
| 369 | // type argument, equal to that of the nvvm intrinsic's argument. |
| 370 | Type *Tys[] = {II->getArgOperand(i: 0)->getType()}; |
| 371 | return CallInst::Create( |
| 372 | Func: Intrinsic::getOrInsertDeclaration(M: II->getModule(), id: *Action.IID, Tys), |
| 373 | Args); |
| 374 | } |
| 375 | |
| 376 | // Simplify to target-generic binary op. |
| 377 | if (Action.BinaryOp) |
| 378 | return BinaryOperator::Create(Op: *Action.BinaryOp, S1: II->getArgOperand(i: 0), |
| 379 | S2: II->getArgOperand(i: 1), Name: II->getName()); |
| 380 | |
| 381 | // Simplify to target-generic cast op. |
| 382 | if (Action.CastOp) |
| 383 | return CastInst::Create(*Action.CastOp, S: II->getArgOperand(i: 0), Ty: II->getType(), |
| 384 | Name: II->getName()); |
| 385 | |
| 386 | // All that's left are the special cases. |
| 387 | if (!Action.Special) |
| 388 | return nullptr; |
| 389 | |
| 390 | switch (*Action.Special) { |
| 391 | case SPC_Reciprocal: |
| 392 | // Simplify reciprocal. |
| 393 | return BinaryOperator::Create( |
| 394 | Op: Instruction::FDiv, S1: ConstantFP::get(Ty: II->getArgOperand(i: 0)->getType(), V: 1), |
| 395 | S2: II->getArgOperand(i: 0), Name: II->getName()); |
| 396 | |
| 397 | case SCP_FunnelShiftClamp: { |
| 398 | // Canonicalize a clamping funnel shift to the generic llvm funnel shift |
| 399 | // when possible, as this is easier for llvm to optimize further. |
| 400 | if (const auto *ShiftConst = dyn_cast<ConstantInt>(Val: II->getArgOperand(i: 2))) { |
| 401 | const bool IsLeft = II->getIntrinsicID() == Intrinsic::nvvm_fshl_clamp; |
| 402 | if (ShiftConst->getZExtValue() >= II->getType()->getIntegerBitWidth()) |
| 403 | return IC.replaceInstUsesWith(I&: *II, V: II->getArgOperand(i: IsLeft ? 1 : 0)); |
| 404 | |
| 405 | const unsigned FshIID = IsLeft ? Intrinsic::fshl : Intrinsic::fshr; |
| 406 | return CallInst::Create(Func: Intrinsic::getOrInsertDeclaration( |
| 407 | M: II->getModule(), id: FshIID, Tys: II->getType()), |
| 408 | Args: SmallVector<Value *, 3>(II->args())); |
| 409 | } |
| 410 | return nullptr; |
| 411 | } |
| 412 | } |
| 413 | llvm_unreachable("All SpecialCase enumerators should be handled in switch." ); |
| 414 | } |
| 415 | |
| 416 | // Returns true/false when we know the answer, nullopt otherwise. |
| 417 | static std::optional<bool> evaluateIsSpace(Intrinsic::ID IID, unsigned AS) { |
| 418 | if (AS == NVPTXAS::ADDRESS_SPACE_GENERIC || |
| 419 | AS == NVPTXAS::ADDRESS_SPACE_PARAM) |
| 420 | return std::nullopt; // Got to check at run-time. |
| 421 | switch (IID) { |
| 422 | case Intrinsic::nvvm_isspacep_global: |
| 423 | return AS == NVPTXAS::ADDRESS_SPACE_GLOBAL; |
| 424 | case Intrinsic::nvvm_isspacep_local: |
| 425 | return AS == NVPTXAS::ADDRESS_SPACE_LOCAL; |
| 426 | case Intrinsic::nvvm_isspacep_shared: |
| 427 | // If shared cluster this can't be evaluated at compile time. |
| 428 | if (AS == NVPTXAS::ADDRESS_SPACE_SHARED_CLUSTER) |
| 429 | return std::nullopt; |
| 430 | return AS == NVPTXAS::ADDRESS_SPACE_SHARED; |
| 431 | case Intrinsic::nvvm_isspacep_shared_cluster: |
| 432 | return AS == NVPTXAS::ADDRESS_SPACE_SHARED_CLUSTER || |
| 433 | AS == NVPTXAS::ADDRESS_SPACE_SHARED; |
| 434 | case Intrinsic::nvvm_isspacep_const: |
| 435 | return AS == NVPTXAS::ADDRESS_SPACE_CONST; |
| 436 | default: |
| 437 | llvm_unreachable("Unexpected intrinsic" ); |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | // Returns an instruction pointer (may be nullptr if we do not know the answer). |
| 442 | // Returns nullopt if `II` is not one of the `isspacep` intrinsics. |
| 443 | // |
| 444 | // TODO: If InferAddressSpaces were run early enough in the pipeline this could |
| 445 | // be removed in favor of the constant folding that occurs there through |
| 446 | // rewriteIntrinsicWithAddressSpace |
| 447 | static std::optional<Instruction *> |
| 448 | handleSpaceCheckIntrinsics(InstCombiner &IC, IntrinsicInst &II) { |
| 449 | |
| 450 | switch (auto IID = II.getIntrinsicID()) { |
| 451 | case Intrinsic::nvvm_isspacep_global: |
| 452 | case Intrinsic::nvvm_isspacep_local: |
| 453 | case Intrinsic::nvvm_isspacep_shared: |
| 454 | case Intrinsic::nvvm_isspacep_shared_cluster: |
| 455 | case Intrinsic::nvvm_isspacep_const: { |
| 456 | Value *Op0 = II.getArgOperand(i: 0); |
| 457 | unsigned AS = Op0->getType()->getPointerAddressSpace(); |
| 458 | // Peek through ASC to generic AS. |
| 459 | // TODO: we could dig deeper through both ASCs and GEPs. |
| 460 | if (AS == NVPTXAS::ADDRESS_SPACE_GENERIC) |
| 461 | if (auto *ASCO = dyn_cast<AddrSpaceCastOperator>(Val: Op0)) |
| 462 | AS = ASCO->getOperand(i_nocapture: 0)->getType()->getPointerAddressSpace(); |
| 463 | |
| 464 | if (std::optional<bool> Answer = evaluateIsSpace(IID, AS)) |
| 465 | return IC.replaceInstUsesWith(I&: II, |
| 466 | V: ConstantInt::get(Ty: II.getType(), V: *Answer)); |
| 467 | return nullptr; // Don't know the answer, got to check at run time. |
| 468 | } |
| 469 | default: |
| 470 | return std::nullopt; |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | std::optional<Instruction *> |
| 475 | NVPTXTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { |
| 476 | if (std::optional<Instruction *> I = handleSpaceCheckIntrinsics(IC, II)) |
| 477 | return *I; |
| 478 | if (Instruction *I = convertNvvmIntrinsicToLlvm(IC, II: &II)) |
| 479 | return I; |
| 480 | |
| 481 | return std::nullopt; |
| 482 | } |
| 483 | |
| 484 | InstructionCost |
| 485 | NVPTXTTIImpl::getInstructionCost(const User *U, |
| 486 | ArrayRef<const Value *> Operands, |
| 487 | TTI::TargetCostKind CostKind) const { |
| 488 | if (const auto *CI = dyn_cast<CallInst>(Val: U)) |
| 489 | if (const auto *IA = dyn_cast<InlineAsm>(Val: CI->getCalledOperand())) { |
| 490 | // Without this implementation getCallCost() would return the number |
| 491 | // of arguments+1 as the cost. Because the cost-model assumes it is a call |
| 492 | // since it is classified as a call in the IR. A better cost model would |
| 493 | // be to return the number of asm instructions embedded in the asm |
| 494 | // string. |
| 495 | StringRef AsmStr = IA->getAsmString(); |
| 496 | const unsigned InstCount = |
| 497 | count_if(Range: split(Str: AsmStr, Separator: ';'), P: [](StringRef AsmInst) { |
| 498 | // Trim off scopes denoted by '{' and '}' as these can be ignored |
| 499 | AsmInst = AsmInst.trim().ltrim(Chars: "{} \t\n\v\f\r" ); |
| 500 | // This is pretty coarse but does a reasonably good job of |
| 501 | // identifying things that look like instructions, possibly with a |
| 502 | // predicate ("@"). |
| 503 | return !AsmInst.empty() && |
| 504 | (AsmInst[0] == '@' || isAlpha(C: AsmInst[0]) || |
| 505 | AsmInst.find(Str: ".pragma" ) != StringRef::npos); |
| 506 | }); |
| 507 | return InstCount * TargetTransformInfo::TCC_Basic; |
| 508 | } |
| 509 | |
| 510 | return BaseT::getInstructionCost(U, Operands, CostKind); |
| 511 | } |
| 512 | |
| 513 | InstructionCost NVPTXTTIImpl::getArithmeticInstrCost( |
| 514 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
| 515 | TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, |
| 516 | ArrayRef<const Value *> Args, const Instruction *CxtI) const { |
| 517 | // Legalize the type. |
| 518 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| 519 | |
| 520 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 521 | |
| 522 | switch (ISD) { |
| 523 | default: |
| 524 | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info, |
| 525 | Opd2Info: Op2Info); |
| 526 | case ISD::ADD: |
| 527 | case ISD::MUL: |
| 528 | case ISD::XOR: |
| 529 | case ISD::OR: |
| 530 | case ISD::AND: |
| 531 | // The machine code (SASS) simulates an i64 with two i32. Therefore, we |
| 532 | // estimate that arithmetic operations on i64 are twice as expensive as |
| 533 | // those on types that can fit into one machine register. |
| 534 | if (LT.second.SimpleTy == MVT::i64) |
| 535 | return 2 * LT.first; |
| 536 | // Delegate other cases to the basic TTI. |
| 537 | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info, |
| 538 | Opd2Info: Op2Info); |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | void NVPTXTTIImpl::( |
| 543 | Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, |
| 544 | OptimizationRemarkEmitter *ORE) const { |
| 545 | BaseT::getUnrollingPreferences(L, SE, UP, ORE); |
| 546 | |
| 547 | // Enable partial unrolling and runtime unrolling, but reduce the |
| 548 | // threshold. This partially unrolls small loops which are often |
| 549 | // unrolled by the PTX to SASS compiler and unrolling earlier can be |
| 550 | // beneficial. |
| 551 | UP.Partial = UP.Runtime = true; |
| 552 | UP.PartialThreshold = UP.Threshold / 4; |
| 553 | } |
| 554 | |
| 555 | void NVPTXTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
| 556 | TTI::PeelingPreferences &PP) const { |
| 557 | BaseT::getPeelingPreferences(L, SE, PP); |
| 558 | } |
| 559 | |
| 560 | bool NVPTXTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, |
| 561 | Intrinsic::ID IID) const { |
| 562 | switch (IID) { |
| 563 | case Intrinsic::nvvm_isspacep_const: |
| 564 | case Intrinsic::nvvm_isspacep_global: |
| 565 | case Intrinsic::nvvm_isspacep_local: |
| 566 | case Intrinsic::nvvm_isspacep_shared: |
| 567 | case Intrinsic::nvvm_isspacep_shared_cluster: { |
| 568 | OpIndexes.push_back(Elt: 0); |
| 569 | return true; |
| 570 | } |
| 571 | } |
| 572 | return false; |
| 573 | } |
| 574 | |
| 575 | Value *NVPTXTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, |
| 576 | Value *OldV, |
| 577 | Value *NewV) const { |
| 578 | const Intrinsic::ID IID = II->getIntrinsicID(); |
| 579 | switch (IID) { |
| 580 | case Intrinsic::nvvm_isspacep_const: |
| 581 | case Intrinsic::nvvm_isspacep_global: |
| 582 | case Intrinsic::nvvm_isspacep_local: |
| 583 | case Intrinsic::nvvm_isspacep_shared: |
| 584 | case Intrinsic::nvvm_isspacep_shared_cluster: { |
| 585 | const unsigned NewAS = NewV->getType()->getPointerAddressSpace(); |
| 586 | if (const auto R = evaluateIsSpace(IID, AS: NewAS)) |
| 587 | return ConstantInt::get(Ty: II->getType(), V: *R); |
| 588 | return nullptr; |
| 589 | } |
| 590 | } |
| 591 | return nullptr; |
| 592 | } |
| 593 | |
| 594 | unsigned NVPTXTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { |
| 595 | // 256 bit loads/stores are currently only supported for global address space |
| 596 | if (ST->has256BitVectorLoadStore(AS: AddrSpace)) |
| 597 | return 256; |
| 598 | return 128; |
| 599 | } |
| 600 | |
| 601 | unsigned NVPTXTTIImpl::getAssumedAddrSpace(const Value *V) const { |
| 602 | if (isa<AllocaInst>(Val: V)) |
| 603 | return ADDRESS_SPACE_LOCAL; |
| 604 | |
| 605 | if (const Argument *Arg = dyn_cast<Argument>(Val: V)) { |
| 606 | if (isKernelFunction(F: *Arg->getParent())) { |
| 607 | const NVPTXTargetMachine &TM = |
| 608 | static_cast<const NVPTXTargetMachine &>(getTLI()->getTargetMachine()); |
| 609 | if (TM.getDrvInterface() == NVPTX::CUDA && !Arg->hasByValAttr()) |
| 610 | return ADDRESS_SPACE_GLOBAL; |
| 611 | } else { |
| 612 | // We assume that all device parameters that are passed byval will be |
| 613 | // placed in the local AS. Very simple cases will be updated after ISel to |
| 614 | // use the device param space where possible. |
| 615 | if (Arg->hasByValAttr()) |
| 616 | return ADDRESS_SPACE_LOCAL; |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | return -1; |
| 621 | } |
| 622 | |
| 623 | void NVPTXTTIImpl::collectKernelLaunchBounds( |
| 624 | const Function &F, |
| 625 | SmallVectorImpl<std::pair<StringRef, int64_t>> &LB) const { |
| 626 | if (const auto Val = getMaxClusterRank(F)) |
| 627 | LB.push_back(Elt: {"maxclusterrank" , *Val}); |
| 628 | |
| 629 | const auto MaxNTID = getMaxNTID(F); |
| 630 | if (MaxNTID.size() > 0) |
| 631 | LB.push_back(Elt: {"maxntidx" , MaxNTID[0]}); |
| 632 | if (MaxNTID.size() > 1) |
| 633 | LB.push_back(Elt: {"maxntidy" , MaxNTID[1]}); |
| 634 | if (MaxNTID.size() > 2) |
| 635 | LB.push_back(Elt: {"maxntidz" , MaxNTID[2]}); |
| 636 | } |
| 637 | |