1 | //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "RISCVMatInt.h" |
10 | #include "MCTargetDesc/RISCVMCTargetDesc.h" |
11 | #include "llvm/ADT/APInt.h" |
12 | #include "llvm/MC/MCInstBuilder.h" |
13 | #include "llvm/Support/MathExtras.h" |
14 | using namespace llvm; |
15 | |
16 | static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { |
17 | if (!HasRVC) |
18 | return Res.size(); |
19 | |
20 | int Cost = 0; |
21 | for (auto Instr : Res) { |
22 | // Assume instructions that aren't listed aren't compressible. |
23 | bool Compressed = false; |
24 | switch (Instr.getOpcode()) { |
25 | case RISCV::QC_E_LI: |
26 | // One 48-bit instruction takes the space of 1.5 regular instructions. |
27 | Cost += 150; |
28 | continue; |
29 | case RISCV::SLLI: |
30 | case RISCV::SRLI: |
31 | Compressed = true; |
32 | break; |
33 | case RISCV::ADDI: |
34 | case RISCV::ADDIW: |
35 | case RISCV::LUI: |
36 | Compressed = isInt<6>(x: Instr.getImm()); |
37 | break; |
38 | } |
39 | // Two RVC instructions take the same space as one RVI instruction, but |
40 | // can take longer to execute than the single RVI instruction. Thus, we |
41 | // consider that two RVC instruction are slightly more costly than one |
42 | // RVI instruction. For longer sequences of RVC instructions the space |
43 | // savings can be worth it, though. The costs below try to model that. |
44 | if (!Compressed) |
45 | Cost += 100; // Baseline cost of one RVI instruction: 100%. |
46 | else |
47 | Cost += 70; // 70% cost of baseline. |
48 | } |
49 | return Cost; |
50 | } |
51 | |
52 | // Recursively generate a sequence for materializing an integer. |
53 | static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI, |
54 | RISCVMatInt::InstSeq &Res) { |
55 | bool IsRV64 = STI.hasFeature(Feature: RISCV::Feature64Bit); |
56 | |
57 | // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI. |
58 | if (STI.hasFeature(Feature: RISCV::FeatureStdExtZbs) && isPowerOf2_64(Value: Val) && |
59 | (!isInt<32>(x: Val) || Val == 0x800)) { |
60 | Res.emplace_back(Args: RISCV::BSETI, Args: Log2_64(Value: Val)); |
61 | return; |
62 | } |
63 | |
64 | if (!IsRV64 && STI.hasFeature(Feature: RISCV::FeatureVendorXqcili)) { |
65 | bool FitsOneStandardInst = ((Val & 0xFFF) == 0) || isInt<12>(x: Val); |
66 | |
67 | // 20-bit signed immediates that don't fit into `ADDI` or `LUI` should use |
68 | // `QC.LI` (a single 32-bit instruction). |
69 | if (!FitsOneStandardInst && isInt<20>(x: Val)) { |
70 | Res.emplace_back(Args: RISCV::QC_LI, Args&: Val); |
71 | return; |
72 | } |
73 | |
74 | // 32-bit signed immediates that don't fit into `ADDI`, `LUI` or `QC.LI` |
75 | // should use `QC.E.LI` (a single 48-bit instruction). |
76 | if (!FitsOneStandardInst && isInt<32>(x: Val)) { |
77 | Res.emplace_back(Args: RISCV::QC_E_LI, Args&: Val); |
78 | return; |
79 | } |
80 | } |
81 | |
82 | if (isInt<32>(x: Val)) { |
83 | // Depending on the active bits in the immediate Value v, the following |
84 | // instruction sequences are emitted: |
85 | // |
86 | // v == 0 : ADDI |
87 | // v[0,12) != 0 && v[12,32) == 0 : ADDI |
88 | // v[0,12) == 0 && v[12,32) != 0 : LUI |
89 | // v[0,32) != 0 : LUI+ADDI(W) |
90 | int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; |
91 | int64_t Lo12 = SignExtend64<12>(x: Val); |
92 | |
93 | if (Hi20) |
94 | Res.emplace_back(Args: RISCV::LUI, Args&: Hi20); |
95 | |
96 | if (Lo12 || Hi20 == 0) { |
97 | unsigned AddiOpc = RISCV::ADDI; |
98 | if (IsRV64 && Hi20) { |
99 | // Use ADDIW rather than ADDI only when necessary for correctness. As |
100 | // noted in RISCVOptWInstrs, this helps reduce test differences vs |
101 | // RV32 without being a pessimization. |
102 | int64_t LuiRes = SignExtend64<32>(x: Hi20 << 12); |
103 | if (!isInt<32>(x: LuiRes + Lo12)) |
104 | AddiOpc = RISCV::ADDIW; |
105 | } |
106 | Res.emplace_back(Args&: AddiOpc, Args&: Lo12); |
107 | } |
108 | return; |
109 | } |
110 | |
111 | assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target" ); |
112 | |
113 | // In the worst case, for a full 64-bit constant, a sequence of 8 instructions |
114 | // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note |
115 | // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits |
116 | // while the following ADDI instructions contribute up to 12 bits each. |
117 | // |
118 | // On the first glance, implementing this seems to be possible by simply |
119 | // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left |
120 | // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the |
121 | // fact that ADDI performs a sign extended addition, doing it like that would |
122 | // only be possible when at most 11 bits of the ADDI instructions are used. |
123 | // Using all 12 bits of the ADDI instructions, like done by GAS, actually |
124 | // requires that the constant is processed starting with the least significant |
125 | // bit. |
126 | // |
127 | // In the following, constants are processed from LSB to MSB but instruction |
128 | // emission is performed from MSB to LSB by recursively calling |
129 | // generateInstSeq. In each recursion, first the lowest 12 bits are removed |
130 | // from the constant and the optimal shift amount, which can be greater than |
131 | // 12 bits if the constant is sparse, is determined. Then, the shifted |
132 | // remaining constant is processed recursively and gets emitted as soon as it |
133 | // fits into 32 bits. The emission of the shifts and additions is subsequently |
134 | // performed when the recursion returns. |
135 | |
136 | int64_t Lo12 = SignExtend64<12>(x: Val); |
137 | Val = (uint64_t)Val - (uint64_t)Lo12; |
138 | |
139 | int ShiftAmount = 0; |
140 | bool Unsigned = false; |
141 | |
142 | // Val might now be valid for LUI without needing a shift. |
143 | if (!isInt<32>(x: Val)) { |
144 | ShiftAmount = llvm::countr_zero(Val: (uint64_t)Val); |
145 | Val >>= ShiftAmount; |
146 | |
147 | // If the remaining bits don't fit in 12 bits, we might be able to reduce |
148 | // the // shift amount in order to use LUI which will zero the lower 12 |
149 | // bits. |
150 | if (ShiftAmount > 12 && !isInt<12>(x: Val)) { |
151 | if (isInt<32>(x: (uint64_t)Val << 12)) { |
152 | // Reduce the shift amount and add zeros to the LSBs so it will match |
153 | // LUI. |
154 | ShiftAmount -= 12; |
155 | Val = (uint64_t)Val << 12; |
156 | } else if (isUInt<32>(x: (uint64_t)Val << 12) && |
157 | STI.hasFeature(Feature: RISCV::FeatureStdExtZba)) { |
158 | // Reduce the shift amount and add zeros to the LSBs so it will match |
159 | // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. |
160 | ShiftAmount -= 12; |
161 | Val = ((uint64_t)Val << 12) | (0xffffffffull << 32); |
162 | Unsigned = true; |
163 | } |
164 | } |
165 | |
166 | // Try to use SLLI_UW for Val when it is uint32 but not int32. |
167 | if (isUInt<32>(x: Val) && !isInt<32>(x: Val) && |
168 | STI.hasFeature(Feature: RISCV::FeatureStdExtZba)) { |
169 | // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with |
170 | // SLLI_UW. |
171 | Val = ((uint64_t)Val) | (0xffffffffull << 32); |
172 | Unsigned = true; |
173 | } |
174 | } |
175 | |
176 | generateInstSeqImpl(Val, STI, Res); |
177 | |
178 | // Skip shift if we were able to use LUI directly. |
179 | if (ShiftAmount) { |
180 | unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI; |
181 | Res.emplace_back(Args&: Opc, Args&: ShiftAmount); |
182 | } |
183 | |
184 | if (Lo12) |
185 | Res.emplace_back(Args: RISCV::ADDI, Args&: Lo12); |
186 | } |
187 | |
188 | static unsigned (int64_t Val) { |
189 | // for case: 0b111..1..xxxxxx1..1.. |
190 | unsigned LeadingOnes = llvm::countl_one(Value: (uint64_t)Val); |
191 | unsigned TrailingOnes = llvm::countr_one(Value: (uint64_t)Val); |
192 | if (TrailingOnes > 0 && TrailingOnes < 64 && |
193 | (LeadingOnes + TrailingOnes) > (64 - 12)) |
194 | return 64 - TrailingOnes; |
195 | |
196 | // for case: 0bxxx1..1..1...xxx |
197 | unsigned UpperTrailingOnes = llvm::countr_one(Value: Hi_32(Value: Val)); |
198 | unsigned LowerLeadingOnes = llvm::countl_one(Value: Lo_32(Value: Val)); |
199 | if (UpperTrailingOnes < 32 && |
200 | (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12)) |
201 | return 32 - UpperTrailingOnes; |
202 | |
203 | return 0; |
204 | } |
205 | |
206 | static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI, |
207 | RISCVMatInt::InstSeq &Res) { |
208 | assert(Val > 0 && "Expected positive val" ); |
209 | |
210 | unsigned LeadingZeros = llvm::countl_zero(Val: (uint64_t)Val); |
211 | uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; |
212 | // Fill in the bits that will be shifted out with 1s. An example where this |
213 | // helps is trailing one masks with 32 or more ones. This will generate |
214 | // ADDI -1 and an SRLI. |
215 | ShiftedVal |= maskTrailingOnes<uint64_t>(N: LeadingZeros); |
216 | |
217 | RISCVMatInt::InstSeq TmpSeq; |
218 | generateInstSeqImpl(Val: ShiftedVal, STI, Res&: TmpSeq); |
219 | |
220 | // Keep the new sequence if it is an improvement or the original is empty. |
221 | if ((TmpSeq.size() + 1) < Res.size() || |
222 | (Res.empty() && TmpSeq.size() < 8)) { |
223 | TmpSeq.emplace_back(Args: RISCV::SRLI, Args&: LeadingZeros); |
224 | Res = TmpSeq; |
225 | } |
226 | |
227 | // Some cases can benefit from filling the lower bits with zeros instead. |
228 | ShiftedVal &= maskTrailingZeros<uint64_t>(N: LeadingZeros); |
229 | TmpSeq.clear(); |
230 | generateInstSeqImpl(Val: ShiftedVal, STI, Res&: TmpSeq); |
231 | |
232 | // Keep the new sequence if it is an improvement or the original is empty. |
233 | if ((TmpSeq.size() + 1) < Res.size() || |
234 | (Res.empty() && TmpSeq.size() < 8)) { |
235 | TmpSeq.emplace_back(Args: RISCV::SRLI, Args&: LeadingZeros); |
236 | Res = TmpSeq; |
237 | } |
238 | |
239 | // If we have exactly 32 leading zeros and Zba, we can try using zext.w at |
240 | // the end of the sequence. |
241 | if (LeadingZeros == 32 && STI.hasFeature(Feature: RISCV::FeatureStdExtZba)) { |
242 | // Try replacing upper bits with 1. |
243 | uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(N: LeadingZeros); |
244 | TmpSeq.clear(); |
245 | generateInstSeqImpl(Val: LeadingOnesVal, STI, Res&: TmpSeq); |
246 | |
247 | // Keep the new sequence if it is an improvement. |
248 | if ((TmpSeq.size() + 1) < Res.size() || |
249 | (Res.empty() && TmpSeq.size() < 8)) { |
250 | TmpSeq.emplace_back(Args: RISCV::ADD_UW, Args: 0); |
251 | Res = TmpSeq; |
252 | } |
253 | } |
254 | } |
255 | |
256 | namespace llvm::RISCVMatInt { |
257 | InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) { |
258 | RISCVMatInt::InstSeq Res; |
259 | generateInstSeqImpl(Val, STI, Res); |
260 | |
261 | // If the low 12 bits are non-zero, the first expansion may end with an ADDI |
262 | // or ADDIW. If there are trailing zeros, try generating a sign extended |
263 | // constant with no trailing zeros and use a final SLLI to restore them. |
264 | if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) { |
265 | unsigned TrailingZeros = llvm::countr_zero(Val: (uint64_t)Val); |
266 | int64_t ShiftedVal = Val >> TrailingZeros; |
267 | // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since |
268 | // its more compressible. But only if LUI+ADDI(W) isn't fusable. |
269 | // NOTE: We don't check for C extension to minimize differences in generated |
270 | // code. |
271 | bool IsShiftedCompressible = |
272 | isInt<6>(x: ShiftedVal) && !STI.hasFeature(Feature: RISCV::TuneLUIADDIFusion); |
273 | RISCVMatInt::InstSeq TmpSeq; |
274 | generateInstSeqImpl(Val: ShiftedVal, STI, Res&: TmpSeq); |
275 | |
276 | // Keep the new sequence if it is an improvement. |
277 | if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) { |
278 | TmpSeq.emplace_back(Args: RISCV::SLLI, Args&: TrailingZeros); |
279 | Res = TmpSeq; |
280 | } |
281 | } |
282 | |
283 | // If we have a 1 or 2 instruction sequence this is the best we can do. This |
284 | // will always be true for RV32 and will often be true for RV64. |
285 | if (Res.size() <= 2) |
286 | return Res; |
287 | |
288 | assert(STI.hasFeature(RISCV::Feature64Bit) && |
289 | "Expected RV32 to only need 2 instructions" ); |
290 | |
291 | // If the lower 13 bits are something like 0x17ff, try to add 1 to change the |
292 | // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end |
293 | // of the sequence. Call generateInstSeqImpl on the new constant which may |
294 | // subtract 0xfffffffffffff800 to create another ADDI. This will leave a |
295 | // constant with more than 12 trailing zeros for the next recursive step. |
296 | if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) { |
297 | int64_t Imm12 = -(0x800 - (Val & 0xfff)); |
298 | int64_t AdjustedVal = Val - Imm12; |
299 | RISCVMatInt::InstSeq TmpSeq; |
300 | generateInstSeqImpl(Val: AdjustedVal, STI, Res&: TmpSeq); |
301 | |
302 | // Keep the new sequence if it is an improvement. |
303 | if ((TmpSeq.size() + 1) < Res.size()) { |
304 | TmpSeq.emplace_back(Args: RISCV::ADDI, Args&: Imm12); |
305 | Res = TmpSeq; |
306 | } |
307 | } |
308 | |
309 | // If the constant is positive we might be able to generate a shifted constant |
310 | // with no leading zeros and use a final SRLI to restore them. |
311 | if (Val > 0 && Res.size() > 2) { |
312 | generateInstSeqLeadingZeros(Val, STI, Res); |
313 | } |
314 | |
315 | // If the constant is negative, trying inverting and using our trailing zero |
316 | // optimizations. Use an xori to invert the final value. |
317 | if (Val < 0 && Res.size() > 3) { |
318 | uint64_t InvertedVal = ~(uint64_t)Val; |
319 | RISCVMatInt::InstSeq TmpSeq; |
320 | generateInstSeqLeadingZeros(Val: InvertedVal, STI, Res&: TmpSeq); |
321 | |
322 | // Keep it if we found a sequence that is smaller after inverting. |
323 | if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) { |
324 | TmpSeq.emplace_back(Args: RISCV::XORI, Args: -1); |
325 | Res = TmpSeq; |
326 | } |
327 | } |
328 | |
329 | // If the Low and High halves are the same, use pack. The pack instruction |
330 | // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the |
331 | // lower half and rs2 in the upper half. |
332 | if (Res.size() > 2 && STI.hasFeature(Feature: RISCV::FeatureStdExtZbkb)) { |
333 | int64_t LoVal = SignExtend64<32>(x: Val); |
334 | int64_t HiVal = SignExtend64<32>(x: Val >> 32); |
335 | if (LoVal == HiVal) { |
336 | RISCVMatInt::InstSeq TmpSeq; |
337 | generateInstSeqImpl(Val: LoVal, STI, Res&: TmpSeq); |
338 | if ((TmpSeq.size() + 1) < Res.size()) { |
339 | TmpSeq.emplace_back(Args: RISCV::PACK, Args: 0); |
340 | Res = TmpSeq; |
341 | } |
342 | } |
343 | } |
344 | |
345 | // Perform optimization with BSETI in the Zbs extension. |
346 | if (Res.size() > 2 && STI.hasFeature(Feature: RISCV::FeatureStdExtZbs)) { |
347 | // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to zero. |
348 | // Xor that with original value to get which bits should be set by BSETI. |
349 | uint64_t Lo = Val & 0x7fffffff; |
350 | uint64_t Hi = Val ^ Lo; |
351 | assert(Hi != 0); |
352 | RISCVMatInt::InstSeq TmpSeq; |
353 | |
354 | if (Lo != 0) |
355 | generateInstSeqImpl(Val: Lo, STI, Res&: TmpSeq); |
356 | |
357 | if (TmpSeq.size() + llvm::popcount(Value: Hi) < Res.size()) { |
358 | do { |
359 | TmpSeq.emplace_back(Args: RISCV::BSETI, Args: llvm::countr_zero(Val: Hi)); |
360 | Hi &= (Hi - 1); // Clear lowest set bit. |
361 | } while (Hi != 0); |
362 | Res = TmpSeq; |
363 | } |
364 | |
365 | // Fold LI 1 + SLLI into BSETI. |
366 | if (Res[0].getOpcode() == RISCV::ADDI && Res[0].getImm() == 1 && |
367 | Res[1].getOpcode() == RISCV::SLLI) { |
368 | Res.erase(CI: Res.begin()); // Remove ADDI. |
369 | Res.front() = Inst(RISCV::BSETI, Res.front().getImm()); // Patch SLLI. |
370 | } |
371 | } |
372 | |
373 | // Perform optimization with BCLRI in the Zbs extension. |
374 | if (Res.size() > 2 && STI.hasFeature(Feature: RISCV::FeatureStdExtZbs)) { |
375 | // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to one. |
376 | // Xor that with original value to get which bits should be cleared by |
377 | // BCLRI. |
378 | uint64_t Lo = Val | 0xffffffff80000000; |
379 | uint64_t Hi = Val ^ Lo; |
380 | assert(Hi != 0); |
381 | |
382 | RISCVMatInt::InstSeq TmpSeq; |
383 | generateInstSeqImpl(Val: Lo, STI, Res&: TmpSeq); |
384 | |
385 | if (TmpSeq.size() + llvm::popcount(Value: Hi) < Res.size()) { |
386 | do { |
387 | TmpSeq.emplace_back(Args: RISCV::BCLRI, Args: llvm::countr_zero(Val: Hi)); |
388 | Hi &= (Hi - 1); // Clear lowest set bit. |
389 | } while (Hi != 0); |
390 | Res = TmpSeq; |
391 | } |
392 | } |
393 | |
394 | // Perform optimization with SH*ADD in the Zba extension. |
395 | if (Res.size() > 2 && STI.hasFeature(Feature: RISCV::FeatureStdExtZba)) { |
396 | int64_t Div = 0; |
397 | unsigned Opc = 0; |
398 | RISCVMatInt::InstSeq TmpSeq; |
399 | // Select the opcode and divisor. |
400 | if ((Val % 3) == 0 && isInt<32>(x: Val / 3)) { |
401 | Div = 3; |
402 | Opc = RISCV::SH1ADD; |
403 | } else if ((Val % 5) == 0 && isInt<32>(x: Val / 5)) { |
404 | Div = 5; |
405 | Opc = RISCV::SH2ADD; |
406 | } else if ((Val % 9) == 0 && isInt<32>(x: Val / 9)) { |
407 | Div = 9; |
408 | Opc = RISCV::SH3ADD; |
409 | } |
410 | // Build the new instruction sequence. |
411 | if (Div > 0) { |
412 | generateInstSeqImpl(Val: Val / Div, STI, Res&: TmpSeq); |
413 | if ((TmpSeq.size() + 1) < Res.size()) { |
414 | TmpSeq.emplace_back(Args&: Opc, Args: 0); |
415 | Res = TmpSeq; |
416 | } |
417 | } else { |
418 | // Try to use LUI+SH*ADD+ADDI. |
419 | int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; |
420 | int64_t Lo12 = SignExtend64<12>(x: Val); |
421 | Div = 0; |
422 | if (isInt<32>(x: Hi52 / 3) && (Hi52 % 3) == 0) { |
423 | Div = 3; |
424 | Opc = RISCV::SH1ADD; |
425 | } else if (isInt<32>(x: Hi52 / 5) && (Hi52 % 5) == 0) { |
426 | Div = 5; |
427 | Opc = RISCV::SH2ADD; |
428 | } else if (isInt<32>(x: Hi52 / 9) && (Hi52 % 9) == 0) { |
429 | Div = 9; |
430 | Opc = RISCV::SH3ADD; |
431 | } |
432 | // Build the new instruction sequence. |
433 | if (Div > 0) { |
434 | // For Val that has zero Lo12 (implies Val equals to Hi52) should has |
435 | // already been processed to LUI+SH*ADD by previous optimization. |
436 | assert(Lo12 != 0 && |
437 | "unexpected instruction sequence for immediate materialisation" ); |
438 | assert(TmpSeq.empty() && "Expected empty TmpSeq" ); |
439 | generateInstSeqImpl(Val: Hi52 / Div, STI, Res&: TmpSeq); |
440 | if ((TmpSeq.size() + 2) < Res.size()) { |
441 | TmpSeq.emplace_back(Args&: Opc, Args: 0); |
442 | TmpSeq.emplace_back(Args: RISCV::ADDI, Args&: Lo12); |
443 | Res = TmpSeq; |
444 | } |
445 | } |
446 | } |
447 | } |
448 | |
449 | // Perform optimization with rori in the Zbb and th.srri in the XTheadBb |
450 | // extension. |
451 | if (Res.size() > 2 && (STI.hasFeature(Feature: RISCV::FeatureStdExtZbb) || |
452 | STI.hasFeature(Feature: RISCV::FeatureVendorXTHeadBb))) { |
453 | if (unsigned Rotate = extractRotateInfo(Val)) { |
454 | RISCVMatInt::InstSeq TmpSeq; |
455 | uint64_t NegImm12 = llvm::rotl<uint64_t>(V: Val, R: Rotate); |
456 | assert(isInt<12>(NegImm12)); |
457 | TmpSeq.emplace_back(Args: RISCV::ADDI, Args&: NegImm12); |
458 | TmpSeq.emplace_back(Args: STI.hasFeature(Feature: RISCV::FeatureStdExtZbb) |
459 | ? RISCV::RORI |
460 | : RISCV::TH_SRRI, |
461 | Args&: Rotate); |
462 | Res = TmpSeq; |
463 | } |
464 | } |
465 | return Res; |
466 | } |
467 | |
468 | void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI, |
469 | MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) { |
470 | RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI); |
471 | |
472 | MCRegister SrcReg = RISCV::X0; |
473 | for (RISCVMatInt::Inst &Inst : Seq) { |
474 | switch (Inst.getOpndKind()) { |
475 | case RISCVMatInt::Imm: |
476 | Insts.push_back(Elt: MCInstBuilder(Inst.getOpcode()) |
477 | .addReg(Reg: DestReg) |
478 | .addImm(Val: Inst.getImm())); |
479 | break; |
480 | case RISCVMatInt::RegX0: |
481 | Insts.push_back(Elt: MCInstBuilder(Inst.getOpcode()) |
482 | .addReg(Reg: DestReg) |
483 | .addReg(Reg: SrcReg) |
484 | .addReg(Reg: RISCV::X0)); |
485 | break; |
486 | case RISCVMatInt::RegReg: |
487 | Insts.push_back(Elt: MCInstBuilder(Inst.getOpcode()) |
488 | .addReg(Reg: DestReg) |
489 | .addReg(Reg: SrcReg) |
490 | .addReg(Reg: SrcReg)); |
491 | break; |
492 | case RISCVMatInt::RegImm: |
493 | Insts.push_back(Elt: MCInstBuilder(Inst.getOpcode()) |
494 | .addReg(Reg: DestReg) |
495 | .addReg(Reg: SrcReg) |
496 | .addImm(Val: Inst.getImm())); |
497 | break; |
498 | } |
499 | |
500 | // Only the first instruction has X0 as its source. |
501 | SrcReg = DestReg; |
502 | } |
503 | } |
504 | |
505 | InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI, |
506 | unsigned &ShiftAmt, unsigned &AddOpc) { |
507 | int64_t LoVal = SignExtend64<32>(x: Val); |
508 | if (LoVal == 0) |
509 | return RISCVMatInt::InstSeq(); |
510 | |
511 | // Subtract the LoVal to emulate the effect of the final ADD. |
512 | uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal; |
513 | assert(Tmp != 0); |
514 | |
515 | // Use trailing zero counts to figure how far we need to shift LoVal to line |
516 | // up with the remaining constant. |
517 | // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the |
518 | // final constant come from LoVal. |
519 | unsigned TzLo = llvm::countr_zero(Val: (uint64_t)LoVal); |
520 | unsigned TzHi = llvm::countr_zero(Val: Tmp); |
521 | assert(TzLo < 32 && TzHi >= 32); |
522 | ShiftAmt = TzHi - TzLo; |
523 | AddOpc = RISCV::ADD; |
524 | |
525 | if (Tmp == ((uint64_t)LoVal << ShiftAmt)) |
526 | return RISCVMatInt::generateInstSeq(Val: LoVal, STI); |
527 | |
528 | // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)). |
529 | if (STI.hasFeature(Feature: RISCV::FeatureStdExtZba) && Lo_32(Value: Val) == Hi_32(Value: Val)) { |
530 | ShiftAmt = 32; |
531 | AddOpc = RISCV::ADD_UW; |
532 | return RISCVMatInt::generateInstSeq(Val: LoVal, STI); |
533 | } |
534 | |
535 | return RISCVMatInt::InstSeq(); |
536 | } |
537 | |
538 | int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI, |
539 | bool CompressionCost, bool FreeZeroes) { |
540 | bool IsRV64 = STI.hasFeature(Feature: RISCV::Feature64Bit); |
541 | bool HasRVC = CompressionCost && STI.hasFeature(Feature: RISCV::FeatureStdExtZca); |
542 | int PlatRegSize = IsRV64 ? 64 : 32; |
543 | |
544 | // Split the constant into platform register sized chunks, and calculate cost |
545 | // of each chunk. |
546 | int Cost = 0; |
547 | for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { |
548 | APInt Chunk = Val.ashr(ShiftAmt: ShiftVal).sextOrTrunc(width: PlatRegSize); |
549 | if (FreeZeroes && Chunk.getSExtValue() == 0) |
550 | continue; |
551 | InstSeq MatSeq = generateInstSeq(Val: Chunk.getSExtValue(), STI); |
552 | Cost += getInstSeqCost(Res&: MatSeq, HasRVC); |
553 | } |
554 | return std::max(a: FreeZeroes ? 0 : 1, b: Cost); |
555 | } |
556 | |
557 | OpndKind Inst::getOpndKind() const { |
558 | switch (Opc) { |
559 | default: |
560 | llvm_unreachable("Unexpected opcode!" ); |
561 | case RISCV::LUI: |
562 | case RISCV::QC_LI: |
563 | case RISCV::QC_E_LI: |
564 | return RISCVMatInt::Imm; |
565 | case RISCV::ADD_UW: |
566 | return RISCVMatInt::RegX0; |
567 | case RISCV::SH1ADD: |
568 | case RISCV::SH2ADD: |
569 | case RISCV::SH3ADD: |
570 | case RISCV::PACK: |
571 | return RISCVMatInt::RegReg; |
572 | case RISCV::ADDI: |
573 | case RISCV::ADDIW: |
574 | case RISCV::XORI: |
575 | case RISCV::SLLI: |
576 | case RISCV::SRLI: |
577 | case RISCV::SLLI_UW: |
578 | case RISCV::RORI: |
579 | case RISCV::BSETI: |
580 | case RISCV::BCLRI: |
581 | case RISCV::TH_SRRI: |
582 | return RISCVMatInt::RegImm; |
583 | } |
584 | } |
585 | |
586 | } // namespace llvm::RISCVMatInt |
587 | |