1 | //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "MCTargetDesc/SystemZGNUInstPrinter.h" |
10 | #include "MCTargetDesc/SystemZMCAsmInfo.h" |
11 | #include "MCTargetDesc/SystemZMCTargetDesc.h" |
12 | #include "MCTargetDesc/SystemZTargetStreamer.h" |
13 | #include "TargetInfo/SystemZTargetInfo.h" |
14 | #include "llvm/ADT/STLExtras.h" |
15 | #include "llvm/ADT/SmallVector.h" |
16 | #include "llvm/ADT/StringExtras.h" |
17 | #include "llvm/ADT/StringRef.h" |
18 | #include "llvm/MC/MCAsmInfo.h" |
19 | #include "llvm/MC/MCContext.h" |
20 | #include "llvm/MC/MCExpr.h" |
21 | #include "llvm/MC/MCInst.h" |
22 | #include "llvm/MC/MCInstBuilder.h" |
23 | #include "llvm/MC/MCInstrInfo.h" |
24 | #include "llvm/MC/MCParser/AsmLexer.h" |
25 | #include "llvm/MC/MCParser/MCAsmParser.h" |
26 | #include "llvm/MC/MCParser/MCAsmParserExtension.h" |
27 | #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
28 | #include "llvm/MC/MCParser/MCTargetAsmParser.h" |
29 | #include "llvm/MC/MCStreamer.h" |
30 | #include "llvm/MC/MCSubtargetInfo.h" |
31 | #include "llvm/MC/TargetRegistry.h" |
32 | #include "llvm/Support/Casting.h" |
33 | #include "llvm/Support/Compiler.h" |
34 | #include "llvm/Support/ErrorHandling.h" |
35 | #include "llvm/Support/SMLoc.h" |
36 | #include "llvm/TargetParser/SubtargetFeature.h" |
37 | #include <algorithm> |
38 | #include <cassert> |
39 | #include <cstddef> |
40 | #include <cstdint> |
41 | #include <iterator> |
42 | #include <memory> |
43 | #include <string> |
44 | |
45 | using namespace llvm; |
46 | |
47 | // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol |
48 | // is true any MCExpr is accepted (address displacement). |
49 | static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, |
50 | bool AllowSymbol = false) { |
51 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: Expr)) { |
52 | int64_t Value = CE->getValue(); |
53 | return Value >= MinValue && Value <= MaxValue; |
54 | } |
55 | return AllowSymbol; |
56 | } |
57 | |
58 | namespace { |
59 | |
60 | enum RegisterKind { |
61 | GR32Reg, |
62 | GRH32Reg, |
63 | GR64Reg, |
64 | GR128Reg, |
65 | FP16Reg, |
66 | FP32Reg, |
67 | FP64Reg, |
68 | FP128Reg, |
69 | VR16Reg, |
70 | VR32Reg, |
71 | VR64Reg, |
72 | VR128Reg, |
73 | AR32Reg, |
74 | CR64Reg, |
75 | }; |
76 | |
77 | enum MemoryKind { |
78 | BDMem, |
79 | BDXMem, |
80 | BDLMem, |
81 | BDRMem, |
82 | BDVMem, |
83 | LXAMem |
84 | }; |
85 | |
86 | class SystemZOperand : public MCParsedAsmOperand { |
87 | private: |
88 | enum OperandKind { |
89 | KindInvalid, |
90 | KindToken, |
91 | KindReg, |
92 | KindImm, |
93 | KindImmTLS, |
94 | KindMem |
95 | }; |
96 | |
97 | OperandKind Kind; |
98 | SMLoc StartLoc, EndLoc; |
99 | |
100 | // A string of length Length, starting at Data. |
101 | struct TokenOp { |
102 | const char *Data; |
103 | unsigned Length; |
104 | }; |
105 | |
106 | // LLVM register Num, which has kind Kind. In some ways it might be |
107 | // easier for this class to have a register bank (general, floating-point |
108 | // or access) and a raw register number (0-15). This would postpone the |
109 | // interpretation of the operand to the add*() methods and avoid the need |
110 | // for context-dependent parsing. However, we do things the current way |
111 | // because of the virtual getReg() method, which needs to distinguish |
112 | // between (say) %r0 used as a single register and %r0 used as a pair. |
113 | // Context-dependent parsing can also give us slightly better error |
114 | // messages when invalid pairs like %r1 are used. |
115 | struct RegOp { |
116 | RegisterKind Kind; |
117 | unsigned Num; |
118 | }; |
119 | |
120 | // Base + Disp + Index, where Base and Index are LLVM registers or 0. |
121 | // MemKind says what type of memory this is and RegKind says what type |
122 | // the base register has (GR32Reg or GR64Reg). Length is the operand |
123 | // length for D(L,B)-style operands, otherwise it is null. |
124 | struct MemOp { |
125 | unsigned Base : 12; |
126 | unsigned Index : 12; |
127 | unsigned MemKind : 4; |
128 | unsigned RegKind : 4; |
129 | const MCExpr *Disp; |
130 | union { |
131 | const MCExpr *Imm; |
132 | unsigned Reg; |
133 | } Length; |
134 | }; |
135 | |
136 | // Imm is an immediate operand, and Sym is an optional TLS symbol |
137 | // for use with a __tls_get_offset marker relocation. |
138 | struct ImmTLSOp { |
139 | const MCExpr *Imm; |
140 | const MCExpr *Sym; |
141 | }; |
142 | |
143 | union { |
144 | TokenOp Token; |
145 | RegOp Reg; |
146 | const MCExpr *Imm; |
147 | ImmTLSOp ImmTLS; |
148 | MemOp Mem; |
149 | }; |
150 | |
151 | void addExpr(MCInst &Inst, const MCExpr *Expr) const { |
152 | // Add as immediates when possible. Null MCExpr = 0. |
153 | if (!Expr) |
154 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
155 | else if (auto *CE = dyn_cast<MCConstantExpr>(Val: Expr)) |
156 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
157 | else |
158 | Inst.addOperand(Op: MCOperand::createExpr(Val: Expr)); |
159 | } |
160 | |
161 | public: |
162 | SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc) |
163 | : Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {} |
164 | |
165 | // Create particular kinds of operand. |
166 | static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, |
167 | SMLoc EndLoc) { |
168 | return std::make_unique<SystemZOperand>(args: KindInvalid, args&: StartLoc, args&: EndLoc); |
169 | } |
170 | |
171 | static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { |
172 | auto Op = std::make_unique<SystemZOperand>(args: KindToken, args&: Loc, args&: Loc); |
173 | Op->Token.Data = Str.data(); |
174 | Op->Token.Length = Str.size(); |
175 | return Op; |
176 | } |
177 | |
178 | static std::unique_ptr<SystemZOperand> |
179 | createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { |
180 | auto Op = std::make_unique<SystemZOperand>(args: KindReg, args&: StartLoc, args&: EndLoc); |
181 | Op->Reg.Kind = Kind; |
182 | Op->Reg.Num = Num; |
183 | return Op; |
184 | } |
185 | |
186 | static std::unique_ptr<SystemZOperand> |
187 | createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { |
188 | auto Op = std::make_unique<SystemZOperand>(args: KindImm, args&: StartLoc, args&: EndLoc); |
189 | Op->Imm = Expr; |
190 | return Op; |
191 | } |
192 | |
193 | static std::unique_ptr<SystemZOperand> |
194 | createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, |
195 | const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, |
196 | unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { |
197 | auto Op = std::make_unique<SystemZOperand>(args: KindMem, args&: StartLoc, args&: EndLoc); |
198 | Op->Mem.MemKind = MemKind; |
199 | Op->Mem.RegKind = RegKind; |
200 | Op->Mem.Base = Base; |
201 | Op->Mem.Index = Index; |
202 | Op->Mem.Disp = Disp; |
203 | if (MemKind == BDLMem) |
204 | Op->Mem.Length.Imm = LengthImm; |
205 | if (MemKind == BDRMem) |
206 | Op->Mem.Length.Reg = LengthReg; |
207 | return Op; |
208 | } |
209 | |
210 | static std::unique_ptr<SystemZOperand> |
211 | createImmTLS(const MCExpr *Imm, const MCExpr *Sym, |
212 | SMLoc StartLoc, SMLoc EndLoc) { |
213 | auto Op = std::make_unique<SystemZOperand>(args: KindImmTLS, args&: StartLoc, args&: EndLoc); |
214 | Op->ImmTLS.Imm = Imm; |
215 | Op->ImmTLS.Sym = Sym; |
216 | return Op; |
217 | } |
218 | |
219 | // Token operands |
220 | bool isToken() const override { |
221 | return Kind == KindToken; |
222 | } |
223 | StringRef getToken() const { |
224 | assert(Kind == KindToken && "Not a token" ); |
225 | return StringRef(Token.Data, Token.Length); |
226 | } |
227 | |
228 | // Register operands. |
229 | bool isReg() const override { |
230 | return Kind == KindReg; |
231 | } |
232 | bool isReg(RegisterKind RegKind) const { |
233 | return Kind == KindReg && Reg.Kind == RegKind; |
234 | } |
235 | MCRegister getReg() const override { |
236 | assert(Kind == KindReg && "Not a register" ); |
237 | return Reg.Num; |
238 | } |
239 | |
240 | // Immediate operands. |
241 | bool isImm() const override { |
242 | return Kind == KindImm; |
243 | } |
244 | bool isImm(int64_t MinValue, int64_t MaxValue) const { |
245 | return Kind == KindImm && inRange(Expr: Imm, MinValue, MaxValue, AllowSymbol: true); |
246 | } |
247 | const MCExpr *getImm() const { |
248 | assert(Kind == KindImm && "Not an immediate" ); |
249 | return Imm; |
250 | } |
251 | |
252 | // Immediate operands with optional TLS symbol. |
253 | bool isImmTLS() const { |
254 | return Kind == KindImmTLS; |
255 | } |
256 | |
257 | const ImmTLSOp getImmTLS() const { |
258 | assert(Kind == KindImmTLS && "Not a TLS immediate" ); |
259 | return ImmTLS; |
260 | } |
261 | |
262 | // Memory operands. |
263 | bool isMem() const override { |
264 | return Kind == KindMem; |
265 | } |
266 | bool isMem(MemoryKind MemKind) const { |
267 | return (Kind == KindMem && |
268 | (Mem.MemKind == MemKind || |
269 | // A BDMem can be treated as a BDXMem in which the index |
270 | // register field is 0. |
271 | (Mem.MemKind == BDMem && MemKind == BDXMem))); |
272 | } |
273 | bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { |
274 | return isMem(MemKind) && Mem.RegKind == RegKind; |
275 | } |
276 | bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { |
277 | return isMem(MemKind, RegKind) && inRange(Expr: Mem.Disp, MinValue: 0, MaxValue: 0xfff, AllowSymbol: true); |
278 | } |
279 | bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { |
280 | return isMem(MemKind, RegKind) && inRange(Expr: Mem.Disp, MinValue: -524288, MaxValue: 524287, AllowSymbol: true); |
281 | } |
282 | bool isMemDisp12Len4(RegisterKind RegKind) const { |
283 | return isMemDisp12(MemKind: BDLMem, RegKind) && inRange(Expr: Mem.Length.Imm, MinValue: 1, MaxValue: 0x10); |
284 | } |
285 | bool isMemDisp12Len8(RegisterKind RegKind) const { |
286 | return isMemDisp12(MemKind: BDLMem, RegKind) && inRange(Expr: Mem.Length.Imm, MinValue: 1, MaxValue: 0x100); |
287 | } |
288 | |
289 | const MemOp& getMem() const { |
290 | assert(Kind == KindMem && "Not a Mem operand" ); |
291 | return Mem; |
292 | } |
293 | |
294 | // Override MCParsedAsmOperand. |
295 | SMLoc getStartLoc() const override { return StartLoc; } |
296 | SMLoc getEndLoc() const override { return EndLoc; } |
297 | void print(raw_ostream &OS, const MCAsmInfo &MAI) const override; |
298 | |
299 | /// getLocRange - Get the range between the first and last token of this |
300 | /// operand. |
301 | SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } |
302 | |
303 | // Used by the TableGen code to add particular types of operand |
304 | // to an instruction. |
305 | void addRegOperands(MCInst &Inst, unsigned N) const { |
306 | assert(N == 1 && "Invalid number of operands" ); |
307 | Inst.addOperand(Op: MCOperand::createReg(Reg: getReg())); |
308 | } |
309 | void addImmOperands(MCInst &Inst, unsigned N) const { |
310 | assert(N == 1 && "Invalid number of operands" ); |
311 | addExpr(Inst, Expr: getImm()); |
312 | } |
313 | void addBDAddrOperands(MCInst &Inst, unsigned N) const { |
314 | assert(N == 2 && "Invalid number of operands" ); |
315 | assert(isMem(BDMem) && "Invalid operand type" ); |
316 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
317 | addExpr(Inst, Expr: Mem.Disp); |
318 | } |
319 | void addBDXAddrOperands(MCInst &Inst, unsigned N) const { |
320 | assert(N == 3 && "Invalid number of operands" ); |
321 | assert(isMem(BDXMem) && "Invalid operand type" ); |
322 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
323 | addExpr(Inst, Expr: Mem.Disp); |
324 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Index)); |
325 | } |
326 | void addBDLAddrOperands(MCInst &Inst, unsigned N) const { |
327 | assert(N == 3 && "Invalid number of operands" ); |
328 | assert(isMem(BDLMem) && "Invalid operand type" ); |
329 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
330 | addExpr(Inst, Expr: Mem.Disp); |
331 | addExpr(Inst, Expr: Mem.Length.Imm); |
332 | } |
333 | void addBDRAddrOperands(MCInst &Inst, unsigned N) const { |
334 | assert(N == 3 && "Invalid number of operands" ); |
335 | assert(isMem(BDRMem) && "Invalid operand type" ); |
336 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
337 | addExpr(Inst, Expr: Mem.Disp); |
338 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Length.Reg)); |
339 | } |
340 | void addBDVAddrOperands(MCInst &Inst, unsigned N) const { |
341 | assert(N == 3 && "Invalid number of operands" ); |
342 | assert(isMem(BDVMem) && "Invalid operand type" ); |
343 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
344 | addExpr(Inst, Expr: Mem.Disp); |
345 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Index)); |
346 | } |
347 | void addLXAAddrOperands(MCInst &Inst, unsigned N) const { |
348 | assert(N == 3 && "Invalid number of operands" ); |
349 | assert(isMem(LXAMem) && "Invalid operand type" ); |
350 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
351 | addExpr(Inst, Expr: Mem.Disp); |
352 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Index)); |
353 | } |
354 | void addImmTLSOperands(MCInst &Inst, unsigned N) const { |
355 | assert(N == 2 && "Invalid number of operands" ); |
356 | assert(Kind == KindImmTLS && "Invalid operand type" ); |
357 | addExpr(Inst, Expr: ImmTLS.Imm); |
358 | if (ImmTLS.Sym) |
359 | addExpr(Inst, Expr: ImmTLS.Sym); |
360 | } |
361 | |
362 | // Used by the TableGen code to check for particular operand types. |
363 | bool isGR32() const { return isReg(RegKind: GR32Reg); } |
364 | bool isGRH32() const { return isReg(RegKind: GRH32Reg); } |
365 | bool isGRX32() const { return false; } |
366 | bool isGR64() const { return isReg(RegKind: GR64Reg); } |
367 | bool isGR128() const { return isReg(RegKind: GR128Reg); } |
368 | bool isADDR32() const { return isReg(RegKind: GR32Reg); } |
369 | bool isADDR64() const { return isReg(RegKind: GR64Reg); } |
370 | bool isADDR128() const { return false; } |
371 | bool isFP16() const { return isReg(RegKind: FP16Reg); } |
372 | bool isFP32() const { return isReg(RegKind: FP32Reg); } |
373 | bool isFP64() const { return isReg(RegKind: FP64Reg); } |
374 | bool isFP128() const { return isReg(RegKind: FP128Reg); } |
375 | bool isVR16() const { return isReg(RegKind: VR16Reg); } |
376 | bool isVR32() const { return isReg(RegKind: VR32Reg); } |
377 | bool isVR64() const { return isReg(RegKind: VR64Reg); } |
378 | bool isVF128() const { return false; } |
379 | bool isVR128() const { return isReg(RegKind: VR128Reg); } |
380 | bool isAR32() const { return isReg(RegKind: AR32Reg); } |
381 | bool isCR64() const { return isReg(RegKind: CR64Reg); } |
382 | bool isAnyReg() const { return (isReg() || isImm(MinValue: 0, MaxValue: 15)); } |
383 | bool isBDAddr32Disp12() const { return isMemDisp12(MemKind: BDMem, RegKind: GR32Reg); } |
384 | bool isBDAddr32Disp20() const { return isMemDisp20(MemKind: BDMem, RegKind: GR32Reg); } |
385 | bool isBDAddr64Disp12() const { return isMemDisp12(MemKind: BDMem, RegKind: GR64Reg); } |
386 | bool isBDAddr64Disp20() const { return isMemDisp20(MemKind: BDMem, RegKind: GR64Reg); } |
387 | bool isBDXAddr64Disp12() const { return isMemDisp12(MemKind: BDXMem, RegKind: GR64Reg); } |
388 | bool isBDXAddr64Disp20() const { return isMemDisp20(MemKind: BDXMem, RegKind: GR64Reg); } |
389 | bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(RegKind: GR64Reg); } |
390 | bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(RegKind: GR64Reg); } |
391 | bool isBDRAddr64Disp12() const { return isMemDisp12(MemKind: BDRMem, RegKind: GR64Reg); } |
392 | bool isBDVAddr64Disp12() const { return isMemDisp12(MemKind: BDVMem, RegKind: GR64Reg); } |
393 | bool isLXAAddr64Disp20() const { return isMemDisp20(MemKind: LXAMem, RegKind: GR64Reg); } |
394 | bool isU1Imm() const { return isImm(MinValue: 0, MaxValue: 1); } |
395 | bool isU2Imm() const { return isImm(MinValue: 0, MaxValue: 3); } |
396 | bool isU3Imm() const { return isImm(MinValue: 0, MaxValue: 7); } |
397 | bool isU4Imm() const { return isImm(MinValue: 0, MaxValue: 15); } |
398 | bool isU8Imm() const { return isImm(MinValue: 0, MaxValue: 255); } |
399 | bool isS8Imm() const { return isImm(MinValue: -128, MaxValue: 127); } |
400 | bool isU12Imm() const { return isImm(MinValue: 0, MaxValue: 4095); } |
401 | bool isU16Imm() const { return isImm(MinValue: 0, MaxValue: 65535); } |
402 | bool isS16Imm() const { return isImm(MinValue: -32768, MaxValue: 32767); } |
403 | bool isU32Imm() const { return isImm(MinValue: 0, MaxValue: (1LL << 32) - 1); } |
404 | bool isS32Imm() const { return isImm(MinValue: -(1LL << 31), MaxValue: (1LL << 31) - 1); } |
405 | bool isU48Imm() const { return isImm(MinValue: 0, MaxValue: (1LL << 48) - 1); } |
406 | }; |
407 | |
408 | class SystemZAsmParser : public MCTargetAsmParser { |
409 | #define |
410 | #include "SystemZGenAsmMatcher.inc" |
411 | |
412 | private: |
413 | MCAsmParser &Parser; |
414 | |
415 | // A vector to contain the stack of FeatureBitsets created by `.machine push`. |
416 | // `.machine pop` pops the top of the stack and uses `setAvailableFeatures` to |
417 | // apply the result. |
418 | SmallVector<FeatureBitset> MachineStack; |
419 | |
420 | enum RegisterGroup { |
421 | RegGR, |
422 | RegFP, |
423 | RegV, |
424 | RegAR, |
425 | RegCR |
426 | }; |
427 | struct Register { |
428 | RegisterGroup Group; |
429 | unsigned Num; |
430 | SMLoc StartLoc, EndLoc; |
431 | }; |
432 | |
433 | SystemZTargetStreamer &getTargetStreamer() { |
434 | assert(getParser().getStreamer().getTargetStreamer() && |
435 | "do not have a target streamer" ); |
436 | MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); |
437 | return static_cast<SystemZTargetStreamer &>(TS); |
438 | } |
439 | |
440 | bool parseRegister(Register &Reg, bool RequirePercent, |
441 | bool RestoreOnFailure = false); |
442 | |
443 | bool parseIntegerRegister(Register &Reg, RegisterGroup Group); |
444 | |
445 | ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind); |
446 | |
447 | ParseStatus parseAnyRegister(OperandVector &Operands); |
448 | |
449 | bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, |
450 | Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, |
451 | bool HasLength = false, bool HasVectorIndex = false); |
452 | bool parseAddressRegister(Register &Reg); |
453 | |
454 | bool parseDirectiveInsn(SMLoc L); |
455 | bool parseDirectiveMachine(SMLoc L); |
456 | bool parseGNUAttribute(SMLoc L); |
457 | |
458 | ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind, |
459 | RegisterKind RegKind); |
460 | |
461 | ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal, |
462 | int64_t MaxVal, bool AllowTLS); |
463 | |
464 | bool parseOperand(OperandVector &Operands, StringRef Mnemonic); |
465 | |
466 | // Both the hlasm and gnu variants still rely on the basic gnu asm |
467 | // format with respect to inputs, clobbers, outputs etc. |
468 | // |
469 | // However, calling the overriden getAssemblerDialect() method in |
470 | // AsmParser is problematic. It either returns the AssemblerDialect field |
471 | // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is |
472 | // unset, otherwise it returns the private AssemblerDialect field in |
473 | // AsmParser. |
474 | // |
475 | // The problematic part is because, we forcibly set the inline asm dialect |
476 | // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query |
477 | // to the overriden getAssemblerDialect function in AsmParser.cpp, will |
478 | // not return the assembler dialect set in the respective MCAsmInfo instance. |
479 | // |
480 | // For this purpose, we explicitly query the SystemZMCAsmInfo instance |
481 | // here, to get the "correct" assembler dialect, and use it in various |
482 | // functions. |
483 | unsigned getMAIAssemblerDialect() { |
484 | return Parser.getContext().getAsmInfo()->getAssemblerDialect(); |
485 | } |
486 | |
487 | // An alphabetic character in HLASM is a letter from 'A' through 'Z', |
488 | // or from 'a' through 'z', or '$', '_','#', or '@'. |
489 | inline bool isHLASMAlpha(char C) { |
490 | return isAlpha(C) || llvm::is_contained(Range: "_@#$" , Element: C); |
491 | } |
492 | |
493 | // A digit in HLASM is a number from 0 to 9. |
494 | inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } |
495 | |
496 | // Are we parsing using the AD_HLASM dialect? |
497 | inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } |
498 | |
499 | // Are we parsing using the AD_GNU dialect? |
500 | inline bool isParsingGNU() { return getMAIAssemblerDialect() == AD_GNU; } |
501 | |
502 | public: |
503 | SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, |
504 | const MCInstrInfo &MII, const MCTargetOptions &Options) |
505 | : MCTargetAsmParser(Options, sti, MII), Parser(parser) { |
506 | MCAsmParserExtension::Initialize(Parser); |
507 | |
508 | // Alias the .word directive to .short. |
509 | parser.addAliasForDirective(Directive: ".word" , Alias: ".short" ); |
510 | |
511 | // Initialize the set of available features. |
512 | setAvailableFeatures(ComputeAvailableFeatures(FB: getSTI().getFeatureBits())); |
513 | } |
514 | |
515 | // Override MCTargetAsmParser. |
516 | ParseStatus parseDirective(AsmToken DirectiveID) override; |
517 | bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; |
518 | bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, |
519 | bool RequirePercent, bool RestoreOnFailure); |
520 | ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
521 | SMLoc &EndLoc) override; |
522 | bool parseInstruction(ParseInstructionInfo &Info, StringRef Name, |
523 | SMLoc NameLoc, OperandVector &Operands) override; |
524 | bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
525 | OperandVector &Operands, MCStreamer &Out, |
526 | uint64_t &ErrorInfo, |
527 | bool MatchingInlineAsm) override; |
528 | bool isLabel(AsmToken &Token) override; |
529 | |
530 | // Used by the TableGen code to parse particular operand types. |
531 | ParseStatus parseGR32(OperandVector &Operands) { |
532 | return parseRegister(Operands, Kind: GR32Reg); |
533 | } |
534 | ParseStatus parseGRH32(OperandVector &Operands) { |
535 | return parseRegister(Operands, Kind: GRH32Reg); |
536 | } |
537 | ParseStatus parseGRX32(OperandVector &Operands) { |
538 | llvm_unreachable("GRX32 should only be used for pseudo instructions" ); |
539 | } |
540 | ParseStatus parseGR64(OperandVector &Operands) { |
541 | return parseRegister(Operands, Kind: GR64Reg); |
542 | } |
543 | ParseStatus parseGR128(OperandVector &Operands) { |
544 | return parseRegister(Operands, Kind: GR128Reg); |
545 | } |
546 | ParseStatus parseADDR32(OperandVector &Operands) { |
547 | // For the AsmParser, we will accept %r0 for ADDR32 as well. |
548 | return parseRegister(Operands, Kind: GR32Reg); |
549 | } |
550 | ParseStatus parseADDR64(OperandVector &Operands) { |
551 | // For the AsmParser, we will accept %r0 for ADDR64 as well. |
552 | return parseRegister(Operands, Kind: GR64Reg); |
553 | } |
554 | ParseStatus parseADDR128(OperandVector &Operands) { |
555 | llvm_unreachable("Shouldn't be used as an operand" ); |
556 | } |
557 | ParseStatus parseFP16(OperandVector &Operands) { |
558 | return parseRegister(Operands, Kind: FP16Reg); |
559 | } |
560 | ParseStatus parseFP32(OperandVector &Operands) { |
561 | return parseRegister(Operands, Kind: FP32Reg); |
562 | } |
563 | ParseStatus parseFP64(OperandVector &Operands) { |
564 | return parseRegister(Operands, Kind: FP64Reg); |
565 | } |
566 | ParseStatus parseFP128(OperandVector &Operands) { |
567 | return parseRegister(Operands, Kind: FP128Reg); |
568 | } |
569 | ParseStatus parseVR16(OperandVector &Operands) { |
570 | return parseRegister(Operands, Kind: VR16Reg); |
571 | } |
572 | ParseStatus parseVR32(OperandVector &Operands) { |
573 | return parseRegister(Operands, Kind: VR32Reg); |
574 | } |
575 | ParseStatus parseVR64(OperandVector &Operands) { |
576 | return parseRegister(Operands, Kind: VR64Reg); |
577 | } |
578 | ParseStatus parseVF128(OperandVector &Operands) { |
579 | llvm_unreachable("Shouldn't be used as an operand" ); |
580 | } |
581 | ParseStatus parseVR128(OperandVector &Operands) { |
582 | return parseRegister(Operands, Kind: VR128Reg); |
583 | } |
584 | ParseStatus parseAR32(OperandVector &Operands) { |
585 | return parseRegister(Operands, Kind: AR32Reg); |
586 | } |
587 | ParseStatus parseCR64(OperandVector &Operands) { |
588 | return parseRegister(Operands, Kind: CR64Reg); |
589 | } |
590 | ParseStatus parseAnyReg(OperandVector &Operands) { |
591 | return parseAnyRegister(Operands); |
592 | } |
593 | ParseStatus parseBDAddr32(OperandVector &Operands) { |
594 | return parseAddress(Operands, MemKind: BDMem, RegKind: GR32Reg); |
595 | } |
596 | ParseStatus parseBDAddr64(OperandVector &Operands) { |
597 | return parseAddress(Operands, MemKind: BDMem, RegKind: GR64Reg); |
598 | } |
599 | ParseStatus parseBDXAddr64(OperandVector &Operands) { |
600 | return parseAddress(Operands, MemKind: BDXMem, RegKind: GR64Reg); |
601 | } |
602 | ParseStatus parseBDLAddr64(OperandVector &Operands) { |
603 | return parseAddress(Operands, MemKind: BDLMem, RegKind: GR64Reg); |
604 | } |
605 | ParseStatus parseBDRAddr64(OperandVector &Operands) { |
606 | return parseAddress(Operands, MemKind: BDRMem, RegKind: GR64Reg); |
607 | } |
608 | ParseStatus parseBDVAddr64(OperandVector &Operands) { |
609 | return parseAddress(Operands, MemKind: BDVMem, RegKind: GR64Reg); |
610 | } |
611 | ParseStatus parseLXAAddr64(OperandVector &Operands) { |
612 | return parseAddress(Operands, MemKind: LXAMem, RegKind: GR64Reg); |
613 | } |
614 | ParseStatus parsePCRel12(OperandVector &Operands) { |
615 | return parsePCRel(Operands, MinVal: -(1LL << 12), MaxVal: (1LL << 12) - 1, AllowTLS: false); |
616 | } |
617 | ParseStatus parsePCRel16(OperandVector &Operands) { |
618 | return parsePCRel(Operands, MinVal: -(1LL << 16), MaxVal: (1LL << 16) - 1, AllowTLS: false); |
619 | } |
620 | ParseStatus parsePCRel24(OperandVector &Operands) { |
621 | return parsePCRel(Operands, MinVal: -(1LL << 24), MaxVal: (1LL << 24) - 1, AllowTLS: false); |
622 | } |
623 | ParseStatus parsePCRel32(OperandVector &Operands) { |
624 | return parsePCRel(Operands, MinVal: -(1LL << 32), MaxVal: (1LL << 32) - 1, AllowTLS: false); |
625 | } |
626 | ParseStatus parsePCRelTLS16(OperandVector &Operands) { |
627 | return parsePCRel(Operands, MinVal: -(1LL << 16), MaxVal: (1LL << 16) - 1, AllowTLS: true); |
628 | } |
629 | ParseStatus parsePCRelTLS32(OperandVector &Operands) { |
630 | return parsePCRel(Operands, MinVal: -(1LL << 32), MaxVal: (1LL << 32) - 1, AllowTLS: true); |
631 | } |
632 | }; |
633 | |
634 | } // end anonymous namespace |
635 | |
636 | #define GET_REGISTER_MATCHER |
637 | #define GET_SUBTARGET_FEATURE_NAME |
638 | #define GET_MATCHER_IMPLEMENTATION |
639 | #define GET_MNEMONIC_SPELL_CHECKER |
640 | #include "SystemZGenAsmMatcher.inc" |
641 | |
642 | // Used for the .insn directives; contains information needed to parse the |
643 | // operands in the directive. |
644 | struct InsnMatchEntry { |
645 | StringRef Format; |
646 | uint64_t Opcode; |
647 | int32_t NumOperands; |
648 | MatchClassKind OperandKinds[7]; |
649 | }; |
650 | |
651 | // For equal_range comparison. |
652 | struct CompareInsn { |
653 | bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { |
654 | return LHS.Format < RHS; |
655 | } |
656 | bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { |
657 | return LHS < RHS.Format; |
658 | } |
659 | bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { |
660 | return LHS.Format < RHS.Format; |
661 | } |
662 | }; |
663 | |
664 | // Table initializing information for parsing the .insn directive. |
665 | static struct InsnMatchEntry InsnMatchTable[] = { |
666 | /* Format, Opcode, NumOperands, OperandKinds */ |
667 | { .Format: "e" , .Opcode: SystemZ::InsnE, .NumOperands: 1, |
668 | .OperandKinds: { MCK_U16Imm } }, |
669 | { .Format: "ri" , .Opcode: SystemZ::InsnRI, .NumOperands: 3, |
670 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, |
671 | { .Format: "rie" , .Opcode: SystemZ::InsnRIE, .NumOperands: 4, |
672 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, |
673 | { .Format: "ril" , .Opcode: SystemZ::InsnRIL, .NumOperands: 3, |
674 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, |
675 | { .Format: "rilu" , .Opcode: SystemZ::InsnRILU, .NumOperands: 3, |
676 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, |
677 | { .Format: "ris" , .Opcode: SystemZ::InsnRIS, .NumOperands: 5, |
678 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, |
679 | { .Format: "rr" , .Opcode: SystemZ::InsnRR, .NumOperands: 3, |
680 | .OperandKinds: { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, |
681 | { .Format: "rre" , .Opcode: SystemZ::InsnRRE, .NumOperands: 3, |
682 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, |
683 | { .Format: "rrf" , .Opcode: SystemZ::InsnRRF, .NumOperands: 5, |
684 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, |
685 | { .Format: "rrs" , .Opcode: SystemZ::InsnRRS, .NumOperands: 5, |
686 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, |
687 | { .Format: "rs" , .Opcode: SystemZ::InsnRS, .NumOperands: 4, |
688 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, |
689 | { .Format: "rse" , .Opcode: SystemZ::InsnRSE, .NumOperands: 4, |
690 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, |
691 | { .Format: "rsi" , .Opcode: SystemZ::InsnRSI, .NumOperands: 4, |
692 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, |
693 | { .Format: "rsy" , .Opcode: SystemZ::InsnRSY, .NumOperands: 4, |
694 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, |
695 | { .Format: "rx" , .Opcode: SystemZ::InsnRX, .NumOperands: 3, |
696 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, |
697 | { .Format: "rxe" , .Opcode: SystemZ::InsnRXE, .NumOperands: 3, |
698 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, |
699 | { .Format: "rxf" , .Opcode: SystemZ::InsnRXF, .NumOperands: 4, |
700 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, |
701 | { .Format: "rxy" , .Opcode: SystemZ::InsnRXY, .NumOperands: 3, |
702 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, |
703 | { .Format: "s" , .Opcode: SystemZ::InsnS, .NumOperands: 2, |
704 | .OperandKinds: { MCK_U32Imm, MCK_BDAddr64Disp12 } }, |
705 | { .Format: "si" , .Opcode: SystemZ::InsnSI, .NumOperands: 3, |
706 | .OperandKinds: { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, |
707 | { .Format: "sil" , .Opcode: SystemZ::InsnSIL, .NumOperands: 3, |
708 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, |
709 | { .Format: "siy" , .Opcode: SystemZ::InsnSIY, .NumOperands: 3, |
710 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, |
711 | { .Format: "ss" , .Opcode: SystemZ::InsnSS, .NumOperands: 4, |
712 | .OperandKinds: { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, |
713 | { .Format: "sse" , .Opcode: SystemZ::InsnSSE, .NumOperands: 3, |
714 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, |
715 | { .Format: "ssf" , .Opcode: SystemZ::InsnSSF, .NumOperands: 4, |
716 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, |
717 | { .Format: "vri" , .Opcode: SystemZ::InsnVRI, .NumOperands: 6, |
718 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, |
719 | { .Format: "vrr" , .Opcode: SystemZ::InsnVRR, .NumOperands: 7, |
720 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, |
721 | MCK_U4Imm } }, |
722 | { .Format: "vrs" , .Opcode: SystemZ::InsnVRS, .NumOperands: 5, |
723 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, |
724 | { .Format: "vrv" , .Opcode: SystemZ::InsnVRV, .NumOperands: 4, |
725 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, |
726 | { .Format: "vrx" , .Opcode: SystemZ::InsnVRX, .NumOperands: 4, |
727 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, |
728 | { .Format: "vsi" , .Opcode: SystemZ::InsnVSI, .NumOperands: 4, |
729 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } |
730 | }; |
731 | |
732 | void SystemZOperand::print(raw_ostream &OS, const MCAsmInfo &MAI) const { |
733 | switch (Kind) { |
734 | case KindToken: |
735 | OS << "Token:" << getToken(); |
736 | break; |
737 | case KindReg: |
738 | OS << "Reg:" << SystemZGNUInstPrinter::getRegisterName(Reg: getReg()); |
739 | break; |
740 | case KindImm: |
741 | OS << "Imm:" ; |
742 | MAI.printExpr(OS, *getImm()); |
743 | break; |
744 | case KindImmTLS: |
745 | OS << "ImmTLS:" ; |
746 | MAI.printExpr(OS, *getImmTLS().Imm); |
747 | if (getImmTLS().Sym) { |
748 | OS << ", " ; |
749 | MAI.printExpr(OS, *getImmTLS().Sym); |
750 | } |
751 | break; |
752 | case KindMem: { |
753 | const MemOp &Op = getMem(); |
754 | OS << "Mem:" ; |
755 | MAI.printExpr(OS, *cast<MCConstantExpr>(Val: Op.Disp)); |
756 | if (Op.Base) { |
757 | OS << "(" ; |
758 | if (Op.MemKind == BDLMem) { |
759 | MAI.printExpr(OS, *cast<MCConstantExpr>(Val: Op.Length.Imm)); |
760 | OS << ','; |
761 | } else if (Op.MemKind == BDRMem) |
762 | OS << SystemZGNUInstPrinter::getRegisterName(Reg: Op.Length.Reg) << "," ; |
763 | if (Op.Index) |
764 | OS << SystemZGNUInstPrinter::getRegisterName(Reg: Op.Index) << "," ; |
765 | OS << SystemZGNUInstPrinter::getRegisterName(Reg: Op.Base); |
766 | OS << ")" ; |
767 | } |
768 | break; |
769 | } |
770 | case KindInvalid: |
771 | break; |
772 | } |
773 | } |
774 | |
775 | // Parse one register of the form %<prefix><number>. |
776 | bool SystemZAsmParser::parseRegister(Register &Reg, bool RequirePercent, |
777 | bool RestoreOnFailure) { |
778 | const AsmToken &PercentTok = Parser.getTok(); |
779 | bool HasPercent = PercentTok.is(K: AsmToken::Percent); |
780 | |
781 | Reg.StartLoc = PercentTok.getLoc(); |
782 | |
783 | if (RequirePercent && PercentTok.isNot(K: AsmToken::Percent)) |
784 | return Error(L: PercentTok.getLoc(), Msg: "register expected" ); |
785 | |
786 | if (HasPercent) { |
787 | Parser.Lex(); // Eat percent token. |
788 | } |
789 | |
790 | // Expect a register name. |
791 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) { |
792 | if (RestoreOnFailure && HasPercent) |
793 | getLexer().UnLex(Token: PercentTok); |
794 | return Error(L: Reg.StartLoc, |
795 | Msg: HasPercent ? "invalid register" : "register expected" ); |
796 | } |
797 | |
798 | // Check that there's a prefix. |
799 | StringRef Name = Parser.getTok().getString(); |
800 | if (Name.size() < 2) { |
801 | if (RestoreOnFailure && HasPercent) |
802 | getLexer().UnLex(Token: PercentTok); |
803 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
804 | } |
805 | char Prefix = Name[0]; |
806 | |
807 | // Treat the rest of the register name as a register number. |
808 | if (Name.substr(Start: 1).getAsInteger(Radix: 10, Result&: Reg.Num)) { |
809 | if (RestoreOnFailure && HasPercent) |
810 | getLexer().UnLex(Token: PercentTok); |
811 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
812 | } |
813 | |
814 | // Look for valid combinations of prefix and number. |
815 | if (Prefix == 'r' && Reg.Num < 16) |
816 | Reg.Group = RegGR; |
817 | else if (Prefix == 'f' && Reg.Num < 16) |
818 | Reg.Group = RegFP; |
819 | else if (Prefix == 'v' && Reg.Num < 32) |
820 | Reg.Group = RegV; |
821 | else if (Prefix == 'a' && Reg.Num < 16) |
822 | Reg.Group = RegAR; |
823 | else if (Prefix == 'c' && Reg.Num < 16) |
824 | Reg.Group = RegCR; |
825 | else { |
826 | if (RestoreOnFailure && HasPercent) |
827 | getLexer().UnLex(Token: PercentTok); |
828 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
829 | } |
830 | |
831 | Reg.EndLoc = Parser.getTok().getLoc(); |
832 | Parser.Lex(); |
833 | return false; |
834 | } |
835 | |
836 | // Parse a register of kind Kind and add it to Operands. |
837 | ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands, |
838 | RegisterKind Kind) { |
839 | Register Reg; |
840 | RegisterGroup Group; |
841 | switch (Kind) { |
842 | case GR32Reg: |
843 | case GRH32Reg: |
844 | case GR64Reg: |
845 | case GR128Reg: |
846 | Group = RegGR; |
847 | break; |
848 | case FP16Reg: |
849 | case FP32Reg: |
850 | case FP64Reg: |
851 | case FP128Reg: |
852 | Group = RegFP; |
853 | break; |
854 | case VR16Reg: |
855 | case VR32Reg: |
856 | case VR64Reg: |
857 | case VR128Reg: |
858 | Group = RegV; |
859 | break; |
860 | case AR32Reg: |
861 | Group = RegAR; |
862 | break; |
863 | case CR64Reg: |
864 | Group = RegCR; |
865 | break; |
866 | } |
867 | |
868 | // Handle register names of the form %<prefix><number> |
869 | if (isParsingGNU() && Parser.getTok().is(K: AsmToken::Percent)) { |
870 | if (parseRegister(Reg, /*RequirePercent=*/true)) |
871 | return ParseStatus::Failure; |
872 | |
873 | // Check the parsed register group "Reg.Group" with the expected "Group" |
874 | // Have to error out if user specified wrong prefix. |
875 | switch (Group) { |
876 | case RegGR: |
877 | case RegFP: |
878 | case RegAR: |
879 | case RegCR: |
880 | if (Group != Reg.Group) |
881 | return Error(L: Reg.StartLoc, Msg: "invalid operand for instruction" ); |
882 | break; |
883 | case RegV: |
884 | if (Reg.Group != RegV && Reg.Group != RegFP) |
885 | return Error(L: Reg.StartLoc, Msg: "invalid operand for instruction" ); |
886 | break; |
887 | } |
888 | } else if (Parser.getTok().is(K: AsmToken::Integer)) { |
889 | if (parseIntegerRegister(Reg, Group)) |
890 | return ParseStatus::Failure; |
891 | } |
892 | // Otherwise we didn't match a register operand. |
893 | else |
894 | return ParseStatus::NoMatch; |
895 | |
896 | // Determine the LLVM register number according to Kind. |
897 | // clang-format off |
898 | const unsigned *Regs; |
899 | switch (Kind) { |
900 | case GR32Reg: Regs = SystemZMC::GR32Regs; break; |
901 | case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; |
902 | case GR64Reg: Regs = SystemZMC::GR64Regs; break; |
903 | case GR128Reg: Regs = SystemZMC::GR128Regs; break; |
904 | case FP16Reg: Regs = SystemZMC::FP16Regs; break; |
905 | case FP32Reg: Regs = SystemZMC::FP32Regs; break; |
906 | case FP64Reg: Regs = SystemZMC::FP64Regs; break; |
907 | case FP128Reg: Regs = SystemZMC::FP128Regs; break; |
908 | case VR16Reg: Regs = SystemZMC::VR16Regs; break; |
909 | case VR32Reg: Regs = SystemZMC::VR32Regs; break; |
910 | case VR64Reg: Regs = SystemZMC::VR64Regs; break; |
911 | case VR128Reg: Regs = SystemZMC::VR128Regs; break; |
912 | case AR32Reg: Regs = SystemZMC::AR32Regs; break; |
913 | case CR64Reg: Regs = SystemZMC::CR64Regs; break; |
914 | } |
915 | // clang-format on |
916 | if (Regs[Reg.Num] == 0) |
917 | return Error(L: Reg.StartLoc, Msg: "invalid register pair" ); |
918 | |
919 | Operands.push_back( |
920 | Elt: SystemZOperand::createReg(Kind, Num: Regs[Reg.Num], StartLoc: Reg.StartLoc, EndLoc: Reg.EndLoc)); |
921 | return ParseStatus::Success; |
922 | } |
923 | |
924 | // Parse any type of register (including integers) and add it to Operands. |
925 | ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { |
926 | SMLoc StartLoc = Parser.getTok().getLoc(); |
927 | |
928 | // Handle integer values. |
929 | if (Parser.getTok().is(K: AsmToken::Integer)) { |
930 | const MCExpr *Register; |
931 | if (Parser.parseExpression(Res&: Register)) |
932 | return ParseStatus::Failure; |
933 | |
934 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: Register)) { |
935 | int64_t Value = CE->getValue(); |
936 | if (Value < 0 || Value > 15) |
937 | return Error(L: StartLoc, Msg: "invalid register" ); |
938 | } |
939 | |
940 | SMLoc EndLoc = |
941 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
942 | |
943 | Operands.push_back(Elt: SystemZOperand::createImm(Expr: Register, StartLoc, EndLoc)); |
944 | } |
945 | else { |
946 | if (isParsingHLASM()) |
947 | return ParseStatus::NoMatch; |
948 | |
949 | Register Reg; |
950 | if (parseRegister(Reg, /*RequirePercent=*/true)) |
951 | return ParseStatus::Failure; |
952 | |
953 | if (Reg.Num > 15) |
954 | return Error(L: StartLoc, Msg: "invalid register" ); |
955 | |
956 | // Map to the correct register kind. |
957 | RegisterKind Kind; |
958 | unsigned RegNo; |
959 | if (Reg.Group == RegGR) { |
960 | Kind = GR64Reg; |
961 | RegNo = SystemZMC::GR64Regs[Reg.Num]; |
962 | } |
963 | else if (Reg.Group == RegFP) { |
964 | Kind = FP64Reg; |
965 | RegNo = SystemZMC::FP64Regs[Reg.Num]; |
966 | } |
967 | else if (Reg.Group == RegV) { |
968 | Kind = VR128Reg; |
969 | RegNo = SystemZMC::VR128Regs[Reg.Num]; |
970 | } |
971 | else if (Reg.Group == RegAR) { |
972 | Kind = AR32Reg; |
973 | RegNo = SystemZMC::AR32Regs[Reg.Num]; |
974 | } |
975 | else if (Reg.Group == RegCR) { |
976 | Kind = CR64Reg; |
977 | RegNo = SystemZMC::CR64Regs[Reg.Num]; |
978 | } |
979 | else { |
980 | return ParseStatus::Failure; |
981 | } |
982 | |
983 | Operands.push_back(Elt: SystemZOperand::createReg(Kind, Num: RegNo, |
984 | StartLoc: Reg.StartLoc, EndLoc: Reg.EndLoc)); |
985 | } |
986 | return ParseStatus::Success; |
987 | } |
988 | |
989 | bool SystemZAsmParser::parseIntegerRegister(Register &Reg, |
990 | RegisterGroup Group) { |
991 | Reg.StartLoc = Parser.getTok().getLoc(); |
992 | // We have an integer token |
993 | const MCExpr *Register; |
994 | if (Parser.parseExpression(Res&: Register)) |
995 | return true; |
996 | |
997 | const auto *CE = dyn_cast<MCConstantExpr>(Val: Register); |
998 | if (!CE) |
999 | return true; |
1000 | |
1001 | int64_t MaxRegNum = (Group == RegV) ? 31 : 15; |
1002 | int64_t Value = CE->getValue(); |
1003 | if (Value < 0 || Value > MaxRegNum) { |
1004 | Error(L: Parser.getTok().getLoc(), Msg: "invalid register" ); |
1005 | return true; |
1006 | } |
1007 | |
1008 | // Assign the Register Number |
1009 | Reg.Num = (unsigned)Value; |
1010 | Reg.Group = Group; |
1011 | Reg.EndLoc = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
1012 | |
1013 | // At this point, successfully parsed an integer register. |
1014 | return false; |
1015 | } |
1016 | |
1017 | // Parse a memory operand into Reg1, Reg2, Disp, and Length. |
1018 | bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, |
1019 | bool &HaveReg2, Register &Reg2, |
1020 | const MCExpr *&Disp, const MCExpr *&Length, |
1021 | bool HasLength, bool HasVectorIndex) { |
1022 | // Parse the displacement, which must always be present. |
1023 | if (getParser().parseExpression(Res&: Disp)) |
1024 | return true; |
1025 | |
1026 | // Parse the optional base and index. |
1027 | HaveReg1 = false; |
1028 | HaveReg2 = false; |
1029 | Length = nullptr; |
1030 | |
1031 | // If we have a scenario as below: |
1032 | // vgef %v0, 0(0), 0 |
1033 | // This is an example of a "BDVMem" instruction type. |
1034 | // |
1035 | // So when we parse this as an integer register, the register group |
1036 | // needs to be tied to "RegV". Usually when the prefix is passed in |
1037 | // as %<prefix><reg-number> its easy to check which group it should belong to |
1038 | // However, if we're passing in just the integer there's no real way to |
1039 | // "check" what register group it should belong to. |
1040 | // |
1041 | // When the user passes in the register as an integer, the user assumes that |
1042 | // the compiler is responsible for substituting it as the right kind of |
1043 | // register. Whereas, when the user specifies a "prefix", the onus is on |
1044 | // the user to make sure they pass in the right kind of register. |
1045 | // |
1046 | // The restriction only applies to the first Register (i.e. Reg1). Reg2 is |
1047 | // always a general register. Reg1 should be of group RegV if "HasVectorIndex" |
1048 | // (i.e. insn is of type BDVMem) is true. |
1049 | RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; |
1050 | |
1051 | if (getLexer().is(K: AsmToken::LParen)) { |
1052 | Parser.Lex(); |
1053 | |
1054 | if (isParsingGNU() && getLexer().is(K: AsmToken::Percent)) { |
1055 | // Parse the first register. |
1056 | HaveReg1 = true; |
1057 | if (parseRegister(Reg&: Reg1, /*RequirePercent=*/true)) |
1058 | return true; |
1059 | } |
1060 | // So if we have an integer as the first token in ([tok1], ..), it could: |
1061 | // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of |
1062 | // instructions) |
1063 | // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) |
1064 | else if (getLexer().is(K: AsmToken::Integer)) { |
1065 | if (HasLength) { |
1066 | // Instruction has a "Length" field, safe to parse the first token as |
1067 | // the "Length" field |
1068 | if (getParser().parseExpression(Res&: Length)) |
1069 | return true; |
1070 | } else { |
1071 | // Otherwise, if the instruction has no "Length" field, parse the |
1072 | // token as a "Register". We don't have to worry about whether the |
1073 | // instruction is invalid here, because the caller will take care of |
1074 | // error reporting. |
1075 | HaveReg1 = true; |
1076 | if (parseIntegerRegister(Reg&: Reg1, Group: RegGroup)) |
1077 | return true; |
1078 | } |
1079 | } else { |
1080 | // If its not an integer or a percent token, then if the instruction |
1081 | // is reported to have a "Length" then, parse it as "Length". |
1082 | if (HasLength) { |
1083 | if (getParser().parseExpression(Res&: Length)) |
1084 | return true; |
1085 | } |
1086 | } |
1087 | |
1088 | // Check whether there's a second register. |
1089 | if (getLexer().is(K: AsmToken::Comma)) { |
1090 | Parser.Lex(); |
1091 | HaveReg2 = true; |
1092 | |
1093 | if (getLexer().is(K: AsmToken::Integer)) { |
1094 | if (parseIntegerRegister(Reg&: Reg2, Group: RegGR)) |
1095 | return true; |
1096 | } else if (isParsingGNU()) { |
1097 | if (Parser.getTok().is(K: AsmToken::Percent)) { |
1098 | if (parseRegister(Reg&: Reg2, /*RequirePercent=*/true)) |
1099 | return true; |
1100 | } else { |
1101 | // GAS allows ",)" to indicate a missing base register. |
1102 | Reg2.Num = 0; |
1103 | Reg2.Group = RegGR; |
1104 | Reg2.StartLoc = Reg2.EndLoc = Parser.getTok().getLoc(); |
1105 | } |
1106 | } |
1107 | } |
1108 | |
1109 | // Consume the closing bracket. |
1110 | if (getLexer().isNot(K: AsmToken::RParen)) |
1111 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token in address" ); |
1112 | Parser.Lex(); |
1113 | } |
1114 | return false; |
1115 | } |
1116 | |
1117 | // Verify that Reg is a valid address register (base or index). |
1118 | bool |
1119 | SystemZAsmParser::parseAddressRegister(Register &Reg) { |
1120 | if (Reg.Group == RegV) { |
1121 | Error(L: Reg.StartLoc, Msg: "invalid use of vector addressing" ); |
1122 | return true; |
1123 | } |
1124 | if (Reg.Group != RegGR) { |
1125 | Error(L: Reg.StartLoc, Msg: "invalid address register" ); |
1126 | return true; |
1127 | } |
1128 | return false; |
1129 | } |
1130 | |
1131 | // Parse a memory operand and add it to Operands. The other arguments |
1132 | // are as above. |
1133 | ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands, |
1134 | MemoryKind MemKind, |
1135 | RegisterKind RegKind) { |
1136 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1137 | unsigned Base = 0, Index = 0, LengthReg = 0; |
1138 | Register Reg1, Reg2; |
1139 | bool HaveReg1, HaveReg2; |
1140 | const MCExpr *Disp; |
1141 | const MCExpr *Length; |
1142 | |
1143 | bool HasLength = (MemKind == BDLMem) ? true : false; |
1144 | bool HasVectorIndex = (MemKind == BDVMem) ? true : false; |
1145 | if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, |
1146 | HasVectorIndex)) |
1147 | return ParseStatus::Failure; |
1148 | |
1149 | const unsigned *Regs; |
1150 | switch (RegKind) { |
1151 | case GR32Reg: Regs = SystemZMC::GR32Regs; break; |
1152 | case GR64Reg: Regs = SystemZMC::GR64Regs; break; |
1153 | default: llvm_unreachable("invalid RegKind" ); |
1154 | } |
1155 | |
1156 | switch (MemKind) { |
1157 | case BDMem: |
1158 | // If we have Reg1, it must be an address register. |
1159 | if (HaveReg1) { |
1160 | if (parseAddressRegister(Reg&: Reg1)) |
1161 | return ParseStatus::Failure; |
1162 | Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; |
1163 | } |
1164 | // There must be no Reg2. |
1165 | if (HaveReg2) |
1166 | return Error(L: StartLoc, Msg: "invalid use of indexed addressing" ); |
1167 | break; |
1168 | case BDXMem: |
1169 | case LXAMem: |
1170 | // If we have Reg1, it must be an address register. |
1171 | if (HaveReg1) { |
1172 | const unsigned *IndexRegs = Regs; |
1173 | if (MemKind == LXAMem) |
1174 | IndexRegs = SystemZMC::GR32Regs; |
1175 | |
1176 | if (parseAddressRegister(Reg&: Reg1)) |
1177 | return ParseStatus::Failure; |
1178 | // If there are two registers, the first one is the index and the |
1179 | // second is the base. If there is only a single register, it is |
1180 | // used as base with GAS and as index with HLASM. |
1181 | if (HaveReg2 || isParsingHLASM()) |
1182 | Index = Reg1.Num == 0 ? 0 : IndexRegs[Reg1.Num]; |
1183 | else |
1184 | Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; |
1185 | } |
1186 | // If we have Reg2, it must be an address register. |
1187 | if (HaveReg2) { |
1188 | if (parseAddressRegister(Reg&: Reg2)) |
1189 | return ParseStatus::Failure; |
1190 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
1191 | } |
1192 | break; |
1193 | case BDLMem: |
1194 | // If we have Reg2, it must be an address register. |
1195 | if (HaveReg2) { |
1196 | if (parseAddressRegister(Reg&: Reg2)) |
1197 | return ParseStatus::Failure; |
1198 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
1199 | } |
1200 | // We cannot support base+index addressing. |
1201 | if (HaveReg1 && HaveReg2) |
1202 | return Error(L: StartLoc, Msg: "invalid use of indexed addressing" ); |
1203 | // We must have a length. |
1204 | if (!Length) |
1205 | return Error(L: StartLoc, Msg: "missing length in address" ); |
1206 | break; |
1207 | case BDRMem: |
1208 | // We must have Reg1, and it must be a GPR. |
1209 | if (!HaveReg1 || Reg1.Group != RegGR) |
1210 | return Error(L: StartLoc, Msg: "invalid operand for instruction" ); |
1211 | LengthReg = SystemZMC::GR64Regs[Reg1.Num]; |
1212 | // If we have Reg2, it must be an address register. |
1213 | if (HaveReg2) { |
1214 | if (parseAddressRegister(Reg&: Reg2)) |
1215 | return ParseStatus::Failure; |
1216 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
1217 | } |
1218 | break; |
1219 | case BDVMem: |
1220 | // We must have Reg1, and it must be a vector register. |
1221 | if (!HaveReg1 || Reg1.Group != RegV) |
1222 | return Error(L: StartLoc, Msg: "vector index required in address" ); |
1223 | Index = SystemZMC::VR128Regs[Reg1.Num]; |
1224 | // In GAS mode, we must have Reg2, since a single register would be |
1225 | // interpreted as base register, which cannot be a vector register. |
1226 | if (isParsingGNU() && !HaveReg2) |
1227 | return Error(L: Reg1.StartLoc, Msg: "invalid use of vector addressing" ); |
1228 | // If we have Reg2, it must be an address register. |
1229 | if (HaveReg2) { |
1230 | if (parseAddressRegister(Reg&: Reg2)) |
1231 | return ParseStatus::Failure; |
1232 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
1233 | } |
1234 | break; |
1235 | } |
1236 | |
1237 | SMLoc EndLoc = |
1238 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
1239 | Operands.push_back(Elt: SystemZOperand::createMem(MemKind, RegKind, Base, Disp, |
1240 | Index, LengthImm: Length, LengthReg, |
1241 | StartLoc, EndLoc)); |
1242 | return ParseStatus::Success; |
1243 | } |
1244 | |
1245 | ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) { |
1246 | StringRef IDVal = DirectiveID.getIdentifier(); |
1247 | |
1248 | if (IDVal == ".insn" ) |
1249 | return parseDirectiveInsn(L: DirectiveID.getLoc()); |
1250 | if (IDVal == ".machine" ) |
1251 | return parseDirectiveMachine(L: DirectiveID.getLoc()); |
1252 | if (IDVal.starts_with(Prefix: ".gnu_attribute" )) |
1253 | return parseGNUAttribute(L: DirectiveID.getLoc()); |
1254 | |
1255 | return ParseStatus::NoMatch; |
1256 | } |
1257 | |
1258 | /// ParseDirectiveInsn |
1259 | /// ::= .insn [ format, encoding, (operands (, operands)*) ] |
1260 | bool SystemZAsmParser::parseDirectiveInsn(SMLoc L) { |
1261 | MCAsmParser &Parser = getParser(); |
1262 | |
1263 | // Expect instruction format as identifier. |
1264 | StringRef Format; |
1265 | SMLoc ErrorLoc = Parser.getTok().getLoc(); |
1266 | if (Parser.parseIdentifier(Res&: Format)) |
1267 | return Error(L: ErrorLoc, Msg: "expected instruction format" ); |
1268 | |
1269 | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; |
1270 | |
1271 | // Find entry for this format in InsnMatchTable. |
1272 | auto EntryRange = |
1273 | std::equal_range(first: std::begin(arr&: InsnMatchTable), last: std::end(arr&: InsnMatchTable), |
1274 | val: Format, comp: CompareInsn()); |
1275 | |
1276 | // If first == second, couldn't find a match in the table. |
1277 | if (EntryRange.first == EntryRange.second) |
1278 | return Error(L: ErrorLoc, Msg: "unrecognized format" ); |
1279 | |
1280 | struct InsnMatchEntry *Entry = EntryRange.first; |
1281 | |
1282 | // Format should match from equal_range. |
1283 | assert(Entry->Format == Format); |
1284 | |
1285 | // Parse the following operands using the table's information. |
1286 | for (int I = 0; I < Entry->NumOperands; I++) { |
1287 | MatchClassKind Kind = Entry->OperandKinds[I]; |
1288 | |
1289 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1290 | |
1291 | // Always expect commas as separators for operands. |
1292 | if (getLexer().isNot(K: AsmToken::Comma)) |
1293 | return Error(L: StartLoc, Msg: "unexpected token in directive" ); |
1294 | Lex(); |
1295 | |
1296 | // Parse operands. |
1297 | ParseStatus ResTy; |
1298 | if (Kind == MCK_AnyReg) |
1299 | ResTy = parseAnyReg(Operands); |
1300 | else if (Kind == MCK_VR128) |
1301 | ResTy = parseVR128(Operands); |
1302 | else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) |
1303 | ResTy = parseBDXAddr64(Operands); |
1304 | else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) |
1305 | ResTy = parseBDAddr64(Operands); |
1306 | else if (Kind == MCK_BDVAddr64Disp12) |
1307 | ResTy = parseBDVAddr64(Operands); |
1308 | else if (Kind == MCK_LXAAddr64Disp20) |
1309 | ResTy = parseLXAAddr64(Operands); |
1310 | else if (Kind == MCK_PCRel32) |
1311 | ResTy = parsePCRel32(Operands); |
1312 | else if (Kind == MCK_PCRel16) |
1313 | ResTy = parsePCRel16(Operands); |
1314 | else { |
1315 | // Only remaining operand kind is an immediate. |
1316 | const MCExpr *Expr; |
1317 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1318 | |
1319 | // Expect immediate expression. |
1320 | if (Parser.parseExpression(Res&: Expr)) |
1321 | return Error(L: StartLoc, Msg: "unexpected token in directive" ); |
1322 | |
1323 | SMLoc EndLoc = |
1324 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
1325 | |
1326 | Operands.push_back(Elt: SystemZOperand::createImm(Expr, StartLoc, EndLoc)); |
1327 | ResTy = ParseStatus::Success; |
1328 | } |
1329 | |
1330 | if (!ResTy.isSuccess()) |
1331 | return true; |
1332 | } |
1333 | |
1334 | // Build the instruction with the parsed operands. |
1335 | MCInst Inst = MCInstBuilder(Entry->Opcode); |
1336 | |
1337 | for (size_t I = 0; I < Operands.size(); I++) { |
1338 | MCParsedAsmOperand &Operand = *Operands[I]; |
1339 | MatchClassKind Kind = Entry->OperandKinds[I]; |
1340 | |
1341 | // Verify operand. |
1342 | unsigned Res = validateOperandClass(GOp&: Operand, Kind); |
1343 | if (Res != Match_Success) |
1344 | return Error(L: Operand.getStartLoc(), Msg: "unexpected operand type" ); |
1345 | |
1346 | // Add operands to instruction. |
1347 | SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); |
1348 | if (ZOperand.isReg()) |
1349 | ZOperand.addRegOperands(Inst, N: 1); |
1350 | else if (ZOperand.isMem(MemKind: BDMem)) |
1351 | ZOperand.addBDAddrOperands(Inst, N: 2); |
1352 | else if (ZOperand.isMem(MemKind: BDXMem)) |
1353 | ZOperand.addBDXAddrOperands(Inst, N: 3); |
1354 | else if (ZOperand.isMem(MemKind: BDVMem)) |
1355 | ZOperand.addBDVAddrOperands(Inst, N: 3); |
1356 | else if (ZOperand.isMem(MemKind: LXAMem)) |
1357 | ZOperand.addLXAAddrOperands(Inst, N: 3); |
1358 | else if (ZOperand.isImm()) |
1359 | ZOperand.addImmOperands(Inst, N: 1); |
1360 | else |
1361 | llvm_unreachable("unexpected operand type" ); |
1362 | } |
1363 | |
1364 | // Emit as a regular instruction. |
1365 | Parser.getStreamer().emitInstruction(Inst, STI: getSTI()); |
1366 | |
1367 | return false; |
1368 | } |
1369 | |
1370 | /// ParseDirectiveMachine |
1371 | /// ::= .machine [ mcpu ] |
1372 | bool SystemZAsmParser::parseDirectiveMachine(SMLoc L) { |
1373 | MCAsmParser &Parser = getParser(); |
1374 | if (Parser.getTok().isNot(K: AsmToken::Identifier) && |
1375 | Parser.getTok().isNot(K: AsmToken::String)) |
1376 | return TokError(Msg: "unexpected token in '.machine' directive" ); |
1377 | |
1378 | StringRef Id = Parser.getTok().getIdentifier(); |
1379 | SMLoc IdLoc = Parser.getTok().getLoc(); |
1380 | |
1381 | Parser.Lex(); |
1382 | if (parseEOL()) |
1383 | return true; |
1384 | |
1385 | // Parse push and pop directives first |
1386 | if (Id == "push" ) { |
1387 | // Push the Current FeatureBitSet onto the stack. |
1388 | MachineStack.push_back(Elt: getAvailableFeatures()); |
1389 | } else if (Id == "pop" ) { |
1390 | // If the stack is not empty pop the topmost FeatureBitset and use it. |
1391 | if (MachineStack.empty()) |
1392 | return Error(L: IdLoc, |
1393 | Msg: "pop without corresponding push in '.machine' directive" ); |
1394 | setAvailableFeatures(MachineStack.back()); |
1395 | MachineStack.pop_back(); |
1396 | } else { |
1397 | // Try to interpret the Identifier as a CPU spec and derive the |
1398 | // FeatureBitset from that. |
1399 | MCSubtargetInfo &STI = copySTI(); |
1400 | STI.setDefaultFeatures(CPU: Id, /*TuneCPU*/ Id, FS: "" ); |
1401 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
1402 | } |
1403 | getTargetStreamer().emitMachine(CPUOrCommand: Id); |
1404 | |
1405 | return false; |
1406 | } |
1407 | |
1408 | bool SystemZAsmParser::parseGNUAttribute(SMLoc L) { |
1409 | int64_t Tag; |
1410 | int64_t IntegerValue; |
1411 | if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) |
1412 | return Error(L, Msg: "malformed .gnu_attribute directive" ); |
1413 | |
1414 | // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. |
1415 | if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) |
1416 | return Error(L, Msg: "unrecognized .gnu_attribute tag/value pair." ); |
1417 | |
1418 | Parser.getStreamer().emitGNUAttribute(Tag, Value: IntegerValue); |
1419 | |
1420 | return parseEOL(); |
1421 | } |
1422 | |
1423 | bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, |
1424 | SMLoc &EndLoc, bool RequirePercent, |
1425 | bool RestoreOnFailure) { |
1426 | Register Reg; |
1427 | if (parseRegister(Reg, RequirePercent, RestoreOnFailure)) |
1428 | return true; |
1429 | if (Reg.Group == RegGR) |
1430 | RegNo = SystemZMC::GR64Regs[Reg.Num]; |
1431 | else if (Reg.Group == RegFP) |
1432 | RegNo = SystemZMC::FP64Regs[Reg.Num]; |
1433 | else if (Reg.Group == RegV) |
1434 | RegNo = SystemZMC::VR128Regs[Reg.Num]; |
1435 | else if (Reg.Group == RegAR) |
1436 | RegNo = SystemZMC::AR32Regs[Reg.Num]; |
1437 | else if (Reg.Group == RegCR) |
1438 | RegNo = SystemZMC::CR64Regs[Reg.Num]; |
1439 | StartLoc = Reg.StartLoc; |
1440 | EndLoc = Reg.EndLoc; |
1441 | return false; |
1442 | } |
1443 | |
1444 | bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, |
1445 | SMLoc &EndLoc) { |
1446 | return ParseRegister(RegNo&: Reg, StartLoc, EndLoc, /*RequirePercent=*/false, |
1447 | /*RestoreOnFailure=*/false); |
1448 | } |
1449 | |
1450 | ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
1451 | SMLoc &EndLoc) { |
1452 | bool Result = ParseRegister(RegNo&: Reg, StartLoc, EndLoc, /*RequirePercent=*/false, |
1453 | /*RestoreOnFailure=*/true); |
1454 | bool PendingErrors = getParser().hasPendingError(); |
1455 | getParser().clearPendingErrors(); |
1456 | if (PendingErrors) |
1457 | return ParseStatus::Failure; |
1458 | if (Result) |
1459 | return ParseStatus::NoMatch; |
1460 | return ParseStatus::Success; |
1461 | } |
1462 | |
1463 | bool SystemZAsmParser::parseInstruction(ParseInstructionInfo &Info, |
1464 | StringRef Name, SMLoc NameLoc, |
1465 | OperandVector &Operands) { |
1466 | |
1467 | // Apply mnemonic aliases first, before doing anything else, in |
1468 | // case the target uses it. |
1469 | applyMnemonicAliases(Mnemonic&: Name, Features: getAvailableFeatures(), VariantID: getMAIAssemblerDialect()); |
1470 | |
1471 | Operands.push_back(Elt: SystemZOperand::createToken(Str: Name, Loc: NameLoc)); |
1472 | |
1473 | // Read the remaining operands. |
1474 | if (getLexer().isNot(K: AsmToken::EndOfStatement)) { |
1475 | // Read the first operand. |
1476 | if (parseOperand(Operands, Mnemonic: Name)) { |
1477 | return true; |
1478 | } |
1479 | |
1480 | // Read any subsequent operands. |
1481 | while (getLexer().is(K: AsmToken::Comma)) { |
1482 | Parser.Lex(); |
1483 | |
1484 | if (isParsingHLASM() && getLexer().is(K: AsmToken::Space)) |
1485 | return Error( |
1486 | L: Parser.getTok().getLoc(), |
1487 | Msg: "No space allowed between comma that separates operand entries" ); |
1488 | |
1489 | if (parseOperand(Operands, Mnemonic: Name)) { |
1490 | return true; |
1491 | } |
1492 | } |
1493 | |
1494 | // Under the HLASM variant, we could have the remark field |
1495 | // The remark field occurs after the operation entries |
1496 | // There is a space that separates the operation entries and the |
1497 | // remark field. |
1498 | if (isParsingHLASM() && getTok().is(K: AsmToken::Space)) { |
1499 | // We've confirmed that there is a Remark field. |
1500 | StringRef (getLexer().LexUntilEndOfStatement()); |
1501 | Parser.Lex(); |
1502 | |
1503 | // If there is nothing after the space, then there is nothing to emit |
1504 | // We could have a situation as this: |
1505 | // " \n" |
1506 | // After lexing above, we will have |
1507 | // "\n" |
1508 | // This isn't an explicit remark field, so we don't have to output |
1509 | // this as a comment. |
1510 | if (Remark.size()) |
1511 | // Output the entire Remarks Field as a comment |
1512 | getStreamer().AddComment(T: Remark); |
1513 | } |
1514 | |
1515 | if (getLexer().isNot(K: AsmToken::EndOfStatement)) { |
1516 | SMLoc Loc = getLexer().getLoc(); |
1517 | return Error(L: Loc, Msg: "unexpected token in argument list" ); |
1518 | } |
1519 | } |
1520 | |
1521 | // Consume the EndOfStatement. |
1522 | Parser.Lex(); |
1523 | return false; |
1524 | } |
1525 | |
1526 | bool SystemZAsmParser::parseOperand(OperandVector &Operands, |
1527 | StringRef Mnemonic) { |
1528 | // Check if the current operand has a custom associated parser, if so, try to |
1529 | // custom parse the operand, or fallback to the general approach. Force all |
1530 | // features to be available during the operand check, or else we will fail to |
1531 | // find the custom parser, and then we will later get an InvalidOperand error |
1532 | // instead of a MissingFeature errror. |
1533 | FeatureBitset AvailableFeatures = getAvailableFeatures(); |
1534 | FeatureBitset All; |
1535 | All.set(); |
1536 | setAvailableFeatures(All); |
1537 | ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic); |
1538 | setAvailableFeatures(AvailableFeatures); |
1539 | if (Res.isSuccess()) |
1540 | return false; |
1541 | |
1542 | // If there wasn't a custom match, try the generic matcher below. Otherwise, |
1543 | // there was a match, but an error occurred, in which case, just return that |
1544 | // the operand parsing failed. |
1545 | if (Res.isFailure()) |
1546 | return true; |
1547 | |
1548 | // Check for a register. All real register operands should have used |
1549 | // a context-dependent parse routine, which gives the required register |
1550 | // class. The code is here to mop up other cases, like those where |
1551 | // the instruction isn't recognized. |
1552 | if (isParsingGNU() && Parser.getTok().is(K: AsmToken::Percent)) { |
1553 | Register Reg; |
1554 | if (parseRegister(Reg, /*RequirePercent=*/true)) |
1555 | return true; |
1556 | Operands.push_back(Elt: SystemZOperand::createInvalid(StartLoc: Reg.StartLoc, EndLoc: Reg.EndLoc)); |
1557 | return false; |
1558 | } |
1559 | |
1560 | // The only other type of operand is an immediate or address. As above, |
1561 | // real address operands should have used a context-dependent parse routine, |
1562 | // so we treat any plain expression as an immediate. |
1563 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1564 | Register Reg1, Reg2; |
1565 | bool HaveReg1, HaveReg2; |
1566 | const MCExpr *Expr; |
1567 | const MCExpr *Length; |
1568 | if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp&: Expr, Length, |
1569 | /*HasLength*/ true, /*HasVectorIndex*/ true)) |
1570 | return true; |
1571 | // If the register combination is not valid for any instruction, reject it. |
1572 | // Otherwise, fall back to reporting an unrecognized instruction. |
1573 | if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV |
1574 | && parseAddressRegister(Reg&: Reg1)) |
1575 | return true; |
1576 | if (HaveReg2 && parseAddressRegister(Reg&: Reg2)) |
1577 | return true; |
1578 | |
1579 | SMLoc EndLoc = |
1580 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
1581 | if (HaveReg1 || HaveReg2 || Length) |
1582 | Operands.push_back(Elt: SystemZOperand::createInvalid(StartLoc, EndLoc)); |
1583 | else |
1584 | Operands.push_back(Elt: SystemZOperand::createImm(Expr, StartLoc, EndLoc)); |
1585 | return false; |
1586 | } |
1587 | |
1588 | bool SystemZAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
1589 | OperandVector &Operands, |
1590 | MCStreamer &Out, |
1591 | uint64_t &ErrorInfo, |
1592 | bool MatchingInlineAsm) { |
1593 | MCInst Inst; |
1594 | unsigned MatchResult; |
1595 | |
1596 | unsigned Dialect = getMAIAssemblerDialect(); |
1597 | |
1598 | FeatureBitset MissingFeatures; |
1599 | MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, |
1600 | matchingInlineAsm: MatchingInlineAsm, VariantID: Dialect); |
1601 | switch (MatchResult) { |
1602 | case Match_Success: |
1603 | Inst.setLoc(IDLoc); |
1604 | Out.emitInstruction(Inst, STI: getSTI()); |
1605 | return false; |
1606 | |
1607 | case Match_MissingFeature: { |
1608 | assert(MissingFeatures.any() && "Unknown missing feature!" ); |
1609 | // Special case the error message for the very common case where only |
1610 | // a single subtarget feature is missing |
1611 | std::string Msg = "instruction requires:" ; |
1612 | for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { |
1613 | if (MissingFeatures[I]) { |
1614 | Msg += " " ; |
1615 | Msg += getSubtargetFeatureName(Val: I); |
1616 | } |
1617 | } |
1618 | return Error(L: IDLoc, Msg); |
1619 | } |
1620 | |
1621 | case Match_InvalidOperand: { |
1622 | SMLoc ErrorLoc = IDLoc; |
1623 | if (ErrorInfo != ~0ULL) { |
1624 | if (ErrorInfo >= Operands.size()) |
1625 | return Error(L: IDLoc, Msg: "too few operands for instruction" ); |
1626 | |
1627 | ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); |
1628 | if (ErrorLoc == SMLoc()) |
1629 | ErrorLoc = IDLoc; |
1630 | } |
1631 | return Error(L: ErrorLoc, Msg: "invalid operand for instruction" ); |
1632 | } |
1633 | |
1634 | case Match_MnemonicFail: { |
1635 | FeatureBitset FBS = ComputeAvailableFeatures(FB: getSTI().getFeatureBits()); |
1636 | std::string Suggestion = SystemZMnemonicSpellCheck( |
1637 | S: ((SystemZOperand &)*Operands[0]).getToken(), FBS, VariantID: Dialect); |
1638 | return Error(L: IDLoc, Msg: "invalid instruction" + Suggestion, |
1639 | Range: ((SystemZOperand &)*Operands[0]).getLocRange()); |
1640 | } |
1641 | } |
1642 | |
1643 | llvm_unreachable("Unexpected match type" ); |
1644 | } |
1645 | |
1646 | ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands, |
1647 | int64_t MinVal, int64_t MaxVal, |
1648 | bool AllowTLS) { |
1649 | MCContext &Ctx = getContext(); |
1650 | MCStreamer &Out = getStreamer(); |
1651 | const MCExpr *Expr; |
1652 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1653 | if (getParser().parseExpression(Res&: Expr)) |
1654 | return ParseStatus::NoMatch; |
1655 | |
1656 | auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { |
1657 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: E)) { |
1658 | int64_t Value = CE->getValue(); |
1659 | if (Negate) |
1660 | Value = -Value; |
1661 | if ((Value & 1) || Value < MinVal || Value > MaxVal) |
1662 | return true; |
1663 | } |
1664 | return false; |
1665 | }; |
1666 | |
1667 | // For consistency with the GNU assembler, treat immediates as offsets |
1668 | // from ".". |
1669 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: Expr)) { |
1670 | if (isParsingHLASM()) |
1671 | return Error(L: StartLoc, Msg: "Expected PC-relative expression" ); |
1672 | if (IsOutOfRangeConstant(CE, false)) |
1673 | return Error(L: StartLoc, Msg: "offset out of range" ); |
1674 | int64_t Value = CE->getValue(); |
1675 | MCSymbol *Sym = Ctx.createTempSymbol(); |
1676 | Out.emitLabel(Symbol: Sym); |
1677 | const MCExpr *Base = MCSymbolRefExpr::create(Symbol: Sym, Ctx); |
1678 | Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(LHS: Base, RHS: Expr, Ctx); |
1679 | } |
1680 | |
1681 | // For consistency with the GNU assembler, conservatively assume that a |
1682 | // constant offset must by itself be within the given size range. |
1683 | if (const auto *BE = dyn_cast<MCBinaryExpr>(Val: Expr)) |
1684 | if (IsOutOfRangeConstant(BE->getLHS(), false) || |
1685 | IsOutOfRangeConstant(BE->getRHS(), |
1686 | BE->getOpcode() == MCBinaryExpr::Sub)) |
1687 | return Error(L: StartLoc, Msg: "offset out of range" ); |
1688 | |
1689 | // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. |
1690 | const MCExpr *Sym = nullptr; |
1691 | if (AllowTLS && getLexer().is(K: AsmToken::Colon)) { |
1692 | Parser.Lex(); |
1693 | |
1694 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
1695 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token" ); |
1696 | |
1697 | auto Kind = SystemZ::S_None; |
1698 | StringRef Name = Parser.getTok().getString(); |
1699 | if (Name == "tls_gdcall" ) |
1700 | Kind = SystemZ::S_TLSGD; |
1701 | else if (Name == "tls_ldcall" ) |
1702 | Kind = SystemZ::S_TLSLDM; |
1703 | else |
1704 | return Error(L: Parser.getTok().getLoc(), Msg: "unknown TLS tag" ); |
1705 | Parser.Lex(); |
1706 | |
1707 | if (Parser.getTok().isNot(K: AsmToken::Colon)) |
1708 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token" ); |
1709 | Parser.Lex(); |
1710 | |
1711 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
1712 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token" ); |
1713 | |
1714 | StringRef Identifier = Parser.getTok().getString(); |
1715 | Sym = MCSymbolRefExpr::create(Symbol: Ctx.getOrCreateSymbol(Name: Identifier), |
1716 | specifier: Kind, Ctx); |
1717 | Parser.Lex(); |
1718 | } |
1719 | |
1720 | SMLoc EndLoc = |
1721 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
1722 | |
1723 | if (AllowTLS) |
1724 | Operands.push_back(Elt: SystemZOperand::createImmTLS(Imm: Expr, Sym, |
1725 | StartLoc, EndLoc)); |
1726 | else |
1727 | Operands.push_back(Elt: SystemZOperand::createImm(Expr, StartLoc, EndLoc)); |
1728 | |
1729 | return ParseStatus::Success; |
1730 | } |
1731 | |
1732 | bool SystemZAsmParser::isLabel(AsmToken &Token) { |
1733 | if (isParsingGNU()) |
1734 | return true; |
1735 | |
1736 | // HLASM labels are ordinary symbols. |
1737 | // An HLASM label always starts at column 1. |
1738 | // An ordinary symbol syntax is laid out as follows: |
1739 | // Rules: |
1740 | // 1. Has to start with an "alphabetic character". Can be followed by up to |
1741 | // 62 alphanumeric characters. An "alphabetic character", in this scenario, |
1742 | // is a letter from 'A' through 'Z', or from 'a' through 'z', |
1743 | // or '$', '_', '#', or '@' |
1744 | // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. |
1745 | // are all treated as the same symbol. However, the processing for the case |
1746 | // folding will not be done in this function. |
1747 | StringRef RawLabel = Token.getString(); |
1748 | SMLoc Loc = Token.getLoc(); |
1749 | |
1750 | // An HLASM label cannot be empty. |
1751 | if (!RawLabel.size()) |
1752 | return !Error(L: Loc, Msg: "HLASM Label cannot be empty" ); |
1753 | |
1754 | // An HLASM label cannot exceed greater than 63 characters. |
1755 | if (RawLabel.size() > 63) |
1756 | return !Error(L: Loc, Msg: "Maximum length for HLASM Label is 63 characters" ); |
1757 | |
1758 | // A label must start with an "alphabetic character". |
1759 | if (!isHLASMAlpha(C: RawLabel[0])) |
1760 | return !Error(L: Loc, Msg: "HLASM Label has to start with an alphabetic " |
1761 | "character or the underscore character" ); |
1762 | |
1763 | // Now, we've established that the length is valid |
1764 | // and the first character is alphabetic. |
1765 | // Check whether remaining string is alphanumeric. |
1766 | for (unsigned I = 1; I < RawLabel.size(); ++I) |
1767 | if (!isHLASMAlnum(C: RawLabel[I])) |
1768 | return !Error(L: Loc, Msg: "HLASM Label has to be alphanumeric" ); |
1769 | |
1770 | return true; |
1771 | } |
1772 | |
1773 | // Force static initialization. |
1774 | // NOLINTNEXTLINE(readability-identifier-naming) |
1775 | extern "C" LLVM_ABI LLVM_EXTERNAL_VISIBILITY void |
1776 | LLVMInitializeSystemZAsmParser() { |
1777 | RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); |
1778 | } |
1779 | |