| 1 | //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "MCTargetDesc/SystemZGNUInstPrinter.h" |
| 10 | #include "MCTargetDesc/SystemZMCAsmInfo.h" |
| 11 | #include "MCTargetDesc/SystemZMCTargetDesc.h" |
| 12 | #include "MCTargetDesc/SystemZTargetStreamer.h" |
| 13 | #include "TargetInfo/SystemZTargetInfo.h" |
| 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "llvm/ADT/StringExtras.h" |
| 17 | #include "llvm/ADT/StringRef.h" |
| 18 | #include "llvm/MC/MCAsmInfo.h" |
| 19 | #include "llvm/MC/MCContext.h" |
| 20 | #include "llvm/MC/MCExpr.h" |
| 21 | #include "llvm/MC/MCInst.h" |
| 22 | #include "llvm/MC/MCInstBuilder.h" |
| 23 | #include "llvm/MC/MCInstrInfo.h" |
| 24 | #include "llvm/MC/MCParser/AsmLexer.h" |
| 25 | #include "llvm/MC/MCParser/MCAsmParser.h" |
| 26 | #include "llvm/MC/MCParser/MCAsmParserExtension.h" |
| 27 | #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
| 28 | #include "llvm/MC/MCParser/MCTargetAsmParser.h" |
| 29 | #include "llvm/MC/MCStreamer.h" |
| 30 | #include "llvm/MC/MCSubtargetInfo.h" |
| 31 | #include "llvm/MC/TargetRegistry.h" |
| 32 | #include "llvm/Support/Casting.h" |
| 33 | #include "llvm/Support/Compiler.h" |
| 34 | #include "llvm/Support/ErrorHandling.h" |
| 35 | #include "llvm/Support/SMLoc.h" |
| 36 | #include "llvm/TargetParser/SubtargetFeature.h" |
| 37 | #include <algorithm> |
| 38 | #include <cassert> |
| 39 | #include <cstddef> |
| 40 | #include <cstdint> |
| 41 | #include <iterator> |
| 42 | #include <memory> |
| 43 | #include <string> |
| 44 | |
| 45 | using namespace llvm; |
| 46 | |
| 47 | // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol |
| 48 | // is true any MCExpr is accepted (address displacement). |
| 49 | static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, |
| 50 | bool AllowSymbol = false) { |
| 51 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: Expr)) { |
| 52 | int64_t Value = CE->getValue(); |
| 53 | return Value >= MinValue && Value <= MaxValue; |
| 54 | } |
| 55 | return AllowSymbol; |
| 56 | } |
| 57 | |
| 58 | namespace { |
| 59 | |
| 60 | enum RegisterKind { |
| 61 | GR32Reg, |
| 62 | GRH32Reg, |
| 63 | GR64Reg, |
| 64 | GR128Reg, |
| 65 | FP16Reg, |
| 66 | FP32Reg, |
| 67 | FP64Reg, |
| 68 | FP128Reg, |
| 69 | VR16Reg, |
| 70 | VR32Reg, |
| 71 | VR64Reg, |
| 72 | VR128Reg, |
| 73 | AR32Reg, |
| 74 | CR64Reg, |
| 75 | }; |
| 76 | |
| 77 | enum MemoryKind { |
| 78 | BDMem, |
| 79 | BDXMem, |
| 80 | BDLMem, |
| 81 | BDRMem, |
| 82 | BDVMem, |
| 83 | LXAMem |
| 84 | }; |
| 85 | |
| 86 | class SystemZOperand : public MCParsedAsmOperand { |
| 87 | private: |
| 88 | enum OperandKind { |
| 89 | KindInvalid, |
| 90 | KindToken, |
| 91 | KindReg, |
| 92 | KindImm, |
| 93 | KindImmTLS, |
| 94 | KindMem |
| 95 | }; |
| 96 | |
| 97 | OperandKind Kind; |
| 98 | SMLoc StartLoc, EndLoc; |
| 99 | |
| 100 | // A string of length Length, starting at Data. |
| 101 | struct TokenOp { |
| 102 | const char *Data; |
| 103 | unsigned Length; |
| 104 | }; |
| 105 | |
| 106 | // LLVM register Num, which has kind Kind. In some ways it might be |
| 107 | // easier for this class to have a register bank (general, floating-point |
| 108 | // or access) and a raw register number (0-15). This would postpone the |
| 109 | // interpretation of the operand to the add*() methods and avoid the need |
| 110 | // for context-dependent parsing. However, we do things the current way |
| 111 | // because of the virtual getReg() method, which needs to distinguish |
| 112 | // between (say) %r0 used as a single register and %r0 used as a pair. |
| 113 | // Context-dependent parsing can also give us slightly better error |
| 114 | // messages when invalid pairs like %r1 are used. |
| 115 | struct RegOp { |
| 116 | RegisterKind Kind; |
| 117 | unsigned Num; |
| 118 | }; |
| 119 | |
| 120 | // Base + Disp + Index, where Base and Index are LLVM registers or 0. |
| 121 | // MemKind says what type of memory this is and RegKind says what type |
| 122 | // the base register has (GR32Reg or GR64Reg). Length is the operand |
| 123 | // length for D(L,B)-style operands, otherwise it is null. |
| 124 | struct MemOp { |
| 125 | unsigned Base : 12; |
| 126 | unsigned Index : 12; |
| 127 | unsigned MemKind : 4; |
| 128 | unsigned RegKind : 4; |
| 129 | const MCExpr *Disp; |
| 130 | union { |
| 131 | const MCExpr *Imm; |
| 132 | unsigned Reg; |
| 133 | } Length; |
| 134 | }; |
| 135 | |
| 136 | // Imm is an immediate operand, and Sym is an optional TLS symbol |
| 137 | // for use with a __tls_get_offset marker relocation. |
| 138 | struct ImmTLSOp { |
| 139 | const MCExpr *Imm; |
| 140 | const MCExpr *Sym; |
| 141 | }; |
| 142 | |
| 143 | union { |
| 144 | TokenOp Token; |
| 145 | RegOp Reg; |
| 146 | const MCExpr *Imm; |
| 147 | ImmTLSOp ImmTLS; |
| 148 | MemOp Mem; |
| 149 | }; |
| 150 | |
| 151 | void addExpr(MCInst &Inst, const MCExpr *Expr) const { |
| 152 | // Add as immediates when possible. Null MCExpr = 0. |
| 153 | if (!Expr) |
| 154 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
| 155 | else if (auto *CE = dyn_cast<MCConstantExpr>(Val: Expr)) |
| 156 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
| 157 | else |
| 158 | Inst.addOperand(Op: MCOperand::createExpr(Val: Expr)); |
| 159 | } |
| 160 | |
| 161 | public: |
| 162 | SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc) |
| 163 | : Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {} |
| 164 | |
| 165 | // Create particular kinds of operand. |
| 166 | static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, |
| 167 | SMLoc EndLoc) { |
| 168 | return std::make_unique<SystemZOperand>(args: KindInvalid, args&: StartLoc, args&: EndLoc); |
| 169 | } |
| 170 | |
| 171 | static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { |
| 172 | auto Op = std::make_unique<SystemZOperand>(args: KindToken, args&: Loc, args&: Loc); |
| 173 | Op->Token.Data = Str.data(); |
| 174 | Op->Token.Length = Str.size(); |
| 175 | return Op; |
| 176 | } |
| 177 | |
| 178 | static std::unique_ptr<SystemZOperand> |
| 179 | createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { |
| 180 | auto Op = std::make_unique<SystemZOperand>(args: KindReg, args&: StartLoc, args&: EndLoc); |
| 181 | Op->Reg.Kind = Kind; |
| 182 | Op->Reg.Num = Num; |
| 183 | return Op; |
| 184 | } |
| 185 | |
| 186 | static std::unique_ptr<SystemZOperand> |
| 187 | createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { |
| 188 | auto Op = std::make_unique<SystemZOperand>(args: KindImm, args&: StartLoc, args&: EndLoc); |
| 189 | Op->Imm = Expr; |
| 190 | return Op; |
| 191 | } |
| 192 | |
| 193 | static std::unique_ptr<SystemZOperand> |
| 194 | createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, |
| 195 | const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, |
| 196 | unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { |
| 197 | auto Op = std::make_unique<SystemZOperand>(args: KindMem, args&: StartLoc, args&: EndLoc); |
| 198 | Op->Mem.MemKind = MemKind; |
| 199 | Op->Mem.RegKind = RegKind; |
| 200 | Op->Mem.Base = Base; |
| 201 | Op->Mem.Index = Index; |
| 202 | Op->Mem.Disp = Disp; |
| 203 | if (MemKind == BDLMem) |
| 204 | Op->Mem.Length.Imm = LengthImm; |
| 205 | if (MemKind == BDRMem) |
| 206 | Op->Mem.Length.Reg = LengthReg; |
| 207 | return Op; |
| 208 | } |
| 209 | |
| 210 | static std::unique_ptr<SystemZOperand> |
| 211 | createImmTLS(const MCExpr *Imm, const MCExpr *Sym, |
| 212 | SMLoc StartLoc, SMLoc EndLoc) { |
| 213 | auto Op = std::make_unique<SystemZOperand>(args: KindImmTLS, args&: StartLoc, args&: EndLoc); |
| 214 | Op->ImmTLS.Imm = Imm; |
| 215 | Op->ImmTLS.Sym = Sym; |
| 216 | return Op; |
| 217 | } |
| 218 | |
| 219 | // Token operands |
| 220 | bool isToken() const override { |
| 221 | return Kind == KindToken; |
| 222 | } |
| 223 | StringRef getToken() const { |
| 224 | assert(Kind == KindToken && "Not a token" ); |
| 225 | return StringRef(Token.Data, Token.Length); |
| 226 | } |
| 227 | |
| 228 | // Register operands. |
| 229 | bool isReg() const override { |
| 230 | return Kind == KindReg; |
| 231 | } |
| 232 | bool isReg(RegisterKind RegKind) const { |
| 233 | return Kind == KindReg && Reg.Kind == RegKind; |
| 234 | } |
| 235 | MCRegister getReg() const override { |
| 236 | assert(Kind == KindReg && "Not a register" ); |
| 237 | return Reg.Num; |
| 238 | } |
| 239 | |
| 240 | // Immediate operands. |
| 241 | bool isImm() const override { |
| 242 | return Kind == KindImm; |
| 243 | } |
| 244 | bool isImm(int64_t MinValue, int64_t MaxValue) const { |
| 245 | return Kind == KindImm && inRange(Expr: Imm, MinValue, MaxValue, AllowSymbol: true); |
| 246 | } |
| 247 | const MCExpr *getImm() const { |
| 248 | assert(Kind == KindImm && "Not an immediate" ); |
| 249 | return Imm; |
| 250 | } |
| 251 | |
| 252 | // Immediate operands with optional TLS symbol. |
| 253 | bool isImmTLS() const { |
| 254 | return Kind == KindImmTLS; |
| 255 | } |
| 256 | |
| 257 | const ImmTLSOp getImmTLS() const { |
| 258 | assert(Kind == KindImmTLS && "Not a TLS immediate" ); |
| 259 | return ImmTLS; |
| 260 | } |
| 261 | |
| 262 | // Memory operands. |
| 263 | bool isMem() const override { |
| 264 | return Kind == KindMem; |
| 265 | } |
| 266 | bool isMem(MemoryKind MemKind) const { |
| 267 | return (Kind == KindMem && |
| 268 | (Mem.MemKind == MemKind || |
| 269 | // A BDMem can be treated as a BDXMem in which the index |
| 270 | // register field is 0. |
| 271 | (Mem.MemKind == BDMem && MemKind == BDXMem))); |
| 272 | } |
| 273 | bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { |
| 274 | return isMem(MemKind) && Mem.RegKind == RegKind; |
| 275 | } |
| 276 | bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { |
| 277 | return isMem(MemKind, RegKind) && inRange(Expr: Mem.Disp, MinValue: 0, MaxValue: 0xfff, AllowSymbol: true); |
| 278 | } |
| 279 | bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { |
| 280 | return isMem(MemKind, RegKind) && inRange(Expr: Mem.Disp, MinValue: -524288, MaxValue: 524287, AllowSymbol: true); |
| 281 | } |
| 282 | bool isMemDisp12Len4(RegisterKind RegKind) const { |
| 283 | return isMemDisp12(MemKind: BDLMem, RegKind) && inRange(Expr: Mem.Length.Imm, MinValue: 1, MaxValue: 0x10); |
| 284 | } |
| 285 | bool isMemDisp12Len8(RegisterKind RegKind) const { |
| 286 | return isMemDisp12(MemKind: BDLMem, RegKind) && inRange(Expr: Mem.Length.Imm, MinValue: 1, MaxValue: 0x100); |
| 287 | } |
| 288 | |
| 289 | const MemOp& getMem() const { |
| 290 | assert(Kind == KindMem && "Not a Mem operand" ); |
| 291 | return Mem; |
| 292 | } |
| 293 | |
| 294 | // Override MCParsedAsmOperand. |
| 295 | SMLoc getStartLoc() const override { return StartLoc; } |
| 296 | SMLoc getEndLoc() const override { return EndLoc; } |
| 297 | void print(raw_ostream &OS, const MCAsmInfo &MAI) const override; |
| 298 | |
| 299 | /// getLocRange - Get the range between the first and last token of this |
| 300 | /// operand. |
| 301 | SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } |
| 302 | |
| 303 | // Used by the TableGen code to add particular types of operand |
| 304 | // to an instruction. |
| 305 | void addRegOperands(MCInst &Inst, unsigned N) const { |
| 306 | assert(N == 1 && "Invalid number of operands" ); |
| 307 | Inst.addOperand(Op: MCOperand::createReg(Reg: getReg())); |
| 308 | } |
| 309 | void addImmOperands(MCInst &Inst, unsigned N) const { |
| 310 | assert(N == 1 && "Invalid number of operands" ); |
| 311 | addExpr(Inst, Expr: getImm()); |
| 312 | } |
| 313 | void addBDAddrOperands(MCInst &Inst, unsigned N) const { |
| 314 | assert(N == 2 && "Invalid number of operands" ); |
| 315 | assert(isMem(BDMem) && "Invalid operand type" ); |
| 316 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
| 317 | addExpr(Inst, Expr: Mem.Disp); |
| 318 | } |
| 319 | void addBDXAddrOperands(MCInst &Inst, unsigned N) const { |
| 320 | assert(N == 3 && "Invalid number of operands" ); |
| 321 | assert(isMem(BDXMem) && "Invalid operand type" ); |
| 322 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
| 323 | addExpr(Inst, Expr: Mem.Disp); |
| 324 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Index)); |
| 325 | } |
| 326 | void addBDLAddrOperands(MCInst &Inst, unsigned N) const { |
| 327 | assert(N == 3 && "Invalid number of operands" ); |
| 328 | assert(isMem(BDLMem) && "Invalid operand type" ); |
| 329 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
| 330 | addExpr(Inst, Expr: Mem.Disp); |
| 331 | addExpr(Inst, Expr: Mem.Length.Imm); |
| 332 | } |
| 333 | void addBDRAddrOperands(MCInst &Inst, unsigned N) const { |
| 334 | assert(N == 3 && "Invalid number of operands" ); |
| 335 | assert(isMem(BDRMem) && "Invalid operand type" ); |
| 336 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
| 337 | addExpr(Inst, Expr: Mem.Disp); |
| 338 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Length.Reg)); |
| 339 | } |
| 340 | void addBDVAddrOperands(MCInst &Inst, unsigned N) const { |
| 341 | assert(N == 3 && "Invalid number of operands" ); |
| 342 | assert(isMem(BDVMem) && "Invalid operand type" ); |
| 343 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
| 344 | addExpr(Inst, Expr: Mem.Disp); |
| 345 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Index)); |
| 346 | } |
| 347 | void addLXAAddrOperands(MCInst &Inst, unsigned N) const { |
| 348 | assert(N == 3 && "Invalid number of operands" ); |
| 349 | assert(isMem(LXAMem) && "Invalid operand type" ); |
| 350 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
| 351 | addExpr(Inst, Expr: Mem.Disp); |
| 352 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Index)); |
| 353 | } |
| 354 | void addImmTLSOperands(MCInst &Inst, unsigned N) const { |
| 355 | assert(N == 2 && "Invalid number of operands" ); |
| 356 | assert(Kind == KindImmTLS && "Invalid operand type" ); |
| 357 | addExpr(Inst, Expr: ImmTLS.Imm); |
| 358 | if (ImmTLS.Sym) |
| 359 | addExpr(Inst, Expr: ImmTLS.Sym); |
| 360 | } |
| 361 | |
| 362 | // Used by the TableGen code to check for particular operand types. |
| 363 | bool isGR32() const { return isReg(RegKind: GR32Reg); } |
| 364 | bool isGRH32() const { return isReg(RegKind: GRH32Reg); } |
| 365 | bool isGRX32() const { return false; } |
| 366 | bool isGR64() const { return isReg(RegKind: GR64Reg); } |
| 367 | bool isGR128() const { return isReg(RegKind: GR128Reg); } |
| 368 | bool isADDR32() const { return isReg(RegKind: GR32Reg); } |
| 369 | bool isADDR64() const { return isReg(RegKind: GR64Reg); } |
| 370 | bool isADDR128() const { return false; } |
| 371 | bool isFP16() const { return isReg(RegKind: FP16Reg); } |
| 372 | bool isFP32() const { return isReg(RegKind: FP32Reg); } |
| 373 | bool isFP64() const { return isReg(RegKind: FP64Reg); } |
| 374 | bool isFP128() const { return isReg(RegKind: FP128Reg); } |
| 375 | bool isVR16() const { return isReg(RegKind: VR16Reg); } |
| 376 | bool isVR32() const { return isReg(RegKind: VR32Reg); } |
| 377 | bool isVR64() const { return isReg(RegKind: VR64Reg); } |
| 378 | bool isVF128() const { return false; } |
| 379 | bool isVR128() const { return isReg(RegKind: VR128Reg); } |
| 380 | bool isAR32() const { return isReg(RegKind: AR32Reg); } |
| 381 | bool isCR64() const { return isReg(RegKind: CR64Reg); } |
| 382 | bool isAnyReg() const { return (isReg() || isImm(MinValue: 0, MaxValue: 15)); } |
| 383 | bool isBDAddr32Disp12() const { return isMemDisp12(MemKind: BDMem, RegKind: GR32Reg); } |
| 384 | bool isBDAddr32Disp20() const { return isMemDisp20(MemKind: BDMem, RegKind: GR32Reg); } |
| 385 | bool isBDAddr64Disp12() const { return isMemDisp12(MemKind: BDMem, RegKind: GR64Reg); } |
| 386 | bool isBDAddr64Disp20() const { return isMemDisp20(MemKind: BDMem, RegKind: GR64Reg); } |
| 387 | bool isBDXAddr64Disp12() const { return isMemDisp12(MemKind: BDXMem, RegKind: GR64Reg); } |
| 388 | bool isBDXAddr64Disp20() const { return isMemDisp20(MemKind: BDXMem, RegKind: GR64Reg); } |
| 389 | bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(RegKind: GR64Reg); } |
| 390 | bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(RegKind: GR64Reg); } |
| 391 | bool isBDRAddr64Disp12() const { return isMemDisp12(MemKind: BDRMem, RegKind: GR64Reg); } |
| 392 | bool isBDVAddr64Disp12() const { return isMemDisp12(MemKind: BDVMem, RegKind: GR64Reg); } |
| 393 | bool isLXAAddr64Disp20() const { return isMemDisp20(MemKind: LXAMem, RegKind: GR64Reg); } |
| 394 | bool isU1Imm() const { return isImm(MinValue: 0, MaxValue: 1); } |
| 395 | bool isU2Imm() const { return isImm(MinValue: 0, MaxValue: 3); } |
| 396 | bool isU3Imm() const { return isImm(MinValue: 0, MaxValue: 7); } |
| 397 | bool isU4Imm() const { return isImm(MinValue: 0, MaxValue: 15); } |
| 398 | bool isU8Imm() const { return isImm(MinValue: 0, MaxValue: 255); } |
| 399 | bool isS8Imm() const { return isImm(MinValue: -128, MaxValue: 127); } |
| 400 | bool isU12Imm() const { return isImm(MinValue: 0, MaxValue: 4095); } |
| 401 | bool isU16Imm() const { return isImm(MinValue: 0, MaxValue: 65535); } |
| 402 | bool isS16Imm() const { return isImm(MinValue: -32768, MaxValue: 32767); } |
| 403 | bool isU32Imm() const { return isImm(MinValue: 0, MaxValue: (1LL << 32) - 1); } |
| 404 | bool isS32Imm() const { return isImm(MinValue: -(1LL << 31), MaxValue: (1LL << 31) - 1); } |
| 405 | bool isU48Imm() const { return isImm(MinValue: 0, MaxValue: (1LL << 48) - 1); } |
| 406 | }; |
| 407 | |
| 408 | class SystemZAsmParser : public MCTargetAsmParser { |
| 409 | #define |
| 410 | #include "SystemZGenAsmMatcher.inc" |
| 411 | |
| 412 | private: |
| 413 | MCAsmParser &Parser; |
| 414 | |
| 415 | // A vector to contain the stack of FeatureBitsets created by `.machine push`. |
| 416 | // `.machine pop` pops the top of the stack and uses `setAvailableFeatures` to |
| 417 | // apply the result. |
| 418 | SmallVector<FeatureBitset> MachineStack; |
| 419 | |
| 420 | enum RegisterGroup { |
| 421 | RegGR, |
| 422 | RegFP, |
| 423 | RegV, |
| 424 | RegAR, |
| 425 | RegCR |
| 426 | }; |
| 427 | struct Register { |
| 428 | RegisterGroup Group; |
| 429 | unsigned Num; |
| 430 | SMLoc StartLoc, EndLoc; |
| 431 | }; |
| 432 | |
| 433 | SystemZTargetStreamer &getTargetStreamer() { |
| 434 | assert(getParser().getStreamer().getTargetStreamer() && |
| 435 | "do not have a target streamer" ); |
| 436 | MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); |
| 437 | return static_cast<SystemZTargetStreamer &>(TS); |
| 438 | } |
| 439 | |
| 440 | bool parseRegister(Register &Reg, bool RequirePercent, |
| 441 | bool RestoreOnFailure = false); |
| 442 | |
| 443 | bool parseIntegerRegister(Register &Reg, RegisterGroup Group); |
| 444 | |
| 445 | ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind); |
| 446 | |
| 447 | ParseStatus parseAnyRegister(OperandVector &Operands); |
| 448 | |
| 449 | bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, |
| 450 | Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, |
| 451 | bool HasLength = false, bool HasVectorIndex = false); |
| 452 | bool parseAddressRegister(Register &Reg); |
| 453 | |
| 454 | bool parseDirectiveInsn(SMLoc L); |
| 455 | bool parseDirectiveMachine(SMLoc L); |
| 456 | bool parseGNUAttribute(SMLoc L); |
| 457 | |
| 458 | ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind, |
| 459 | RegisterKind RegKind); |
| 460 | |
| 461 | ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal, |
| 462 | int64_t MaxVal, bool AllowTLS); |
| 463 | |
| 464 | bool parseOperand(OperandVector &Operands, StringRef Mnemonic); |
| 465 | |
| 466 | // Both the hlasm and gnu variants still rely on the basic gnu asm |
| 467 | // format with respect to inputs, clobbers, outputs etc. |
| 468 | // |
| 469 | // However, calling the overriden getAssemblerDialect() method in |
| 470 | // AsmParser is problematic. It either returns the AssemblerDialect field |
| 471 | // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is |
| 472 | // unset, otherwise it returns the private AssemblerDialect field in |
| 473 | // AsmParser. |
| 474 | // |
| 475 | // The problematic part is because, we forcibly set the inline asm dialect |
| 476 | // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query |
| 477 | // to the overriden getAssemblerDialect function in AsmParser.cpp, will |
| 478 | // not return the assembler dialect set in the respective MCAsmInfo instance. |
| 479 | // |
| 480 | // For this purpose, we explicitly query the SystemZMCAsmInfo instance |
| 481 | // here, to get the "correct" assembler dialect, and use it in various |
| 482 | // functions. |
| 483 | unsigned getMAIAssemblerDialect() { |
| 484 | return Parser.getContext().getAsmInfo()->getAssemblerDialect(); |
| 485 | } |
| 486 | |
| 487 | // An alphabetic character in HLASM is a letter from 'A' through 'Z', |
| 488 | // or from 'a' through 'z', or '$', '_','#', or '@'. |
| 489 | inline bool isHLASMAlpha(char C) { |
| 490 | return isAlpha(C) || llvm::is_contained(Range: "_@#$" , Element: C); |
| 491 | } |
| 492 | |
| 493 | // A digit in HLASM is a number from 0 to 9. |
| 494 | inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } |
| 495 | |
| 496 | // Are we parsing using the AD_HLASM dialect? |
| 497 | inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } |
| 498 | |
| 499 | // Are we parsing using the AD_GNU dialect? |
| 500 | inline bool isParsingGNU() { return getMAIAssemblerDialect() == AD_GNU; } |
| 501 | |
| 502 | public: |
| 503 | SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, |
| 504 | const MCInstrInfo &MII, const MCTargetOptions &Options) |
| 505 | : MCTargetAsmParser(Options, sti, MII), Parser(parser) { |
| 506 | MCAsmParserExtension::Initialize(Parser); |
| 507 | |
| 508 | // Alias the .word directive to .short. |
| 509 | parser.addAliasForDirective(Directive: ".word" , Alias: ".short" ); |
| 510 | |
| 511 | // Initialize the set of available features. |
| 512 | setAvailableFeatures(ComputeAvailableFeatures(FB: getSTI().getFeatureBits())); |
| 513 | } |
| 514 | |
| 515 | // Override MCTargetAsmParser. |
| 516 | ParseStatus parseDirective(AsmToken DirectiveID) override; |
| 517 | bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; |
| 518 | bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, |
| 519 | bool RequirePercent, bool RestoreOnFailure); |
| 520 | ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
| 521 | SMLoc &EndLoc) override; |
| 522 | bool parseInstruction(ParseInstructionInfo &Info, StringRef Name, |
| 523 | SMLoc NameLoc, OperandVector &Operands) override; |
| 524 | bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
| 525 | OperandVector &Operands, MCStreamer &Out, |
| 526 | uint64_t &ErrorInfo, |
| 527 | bool MatchingInlineAsm) override; |
| 528 | bool isLabel(AsmToken &Token) override; |
| 529 | |
| 530 | // Used by the TableGen code to parse particular operand types. |
| 531 | ParseStatus parseGR32(OperandVector &Operands) { |
| 532 | return parseRegister(Operands, Kind: GR32Reg); |
| 533 | } |
| 534 | ParseStatus parseGRH32(OperandVector &Operands) { |
| 535 | return parseRegister(Operands, Kind: GRH32Reg); |
| 536 | } |
| 537 | ParseStatus parseGRX32(OperandVector &Operands) { |
| 538 | llvm_unreachable("GRX32 should only be used for pseudo instructions" ); |
| 539 | } |
| 540 | ParseStatus parseGR64(OperandVector &Operands) { |
| 541 | return parseRegister(Operands, Kind: GR64Reg); |
| 542 | } |
| 543 | ParseStatus parseGR128(OperandVector &Operands) { |
| 544 | return parseRegister(Operands, Kind: GR128Reg); |
| 545 | } |
| 546 | ParseStatus parseADDR32(OperandVector &Operands) { |
| 547 | // For the AsmParser, we will accept %r0 for ADDR32 as well. |
| 548 | return parseRegister(Operands, Kind: GR32Reg); |
| 549 | } |
| 550 | ParseStatus parseADDR64(OperandVector &Operands) { |
| 551 | // For the AsmParser, we will accept %r0 for ADDR64 as well. |
| 552 | return parseRegister(Operands, Kind: GR64Reg); |
| 553 | } |
| 554 | ParseStatus parseADDR128(OperandVector &Operands) { |
| 555 | llvm_unreachable("Shouldn't be used as an operand" ); |
| 556 | } |
| 557 | ParseStatus parseFP16(OperandVector &Operands) { |
| 558 | return parseRegister(Operands, Kind: FP16Reg); |
| 559 | } |
| 560 | ParseStatus parseFP32(OperandVector &Operands) { |
| 561 | return parseRegister(Operands, Kind: FP32Reg); |
| 562 | } |
| 563 | ParseStatus parseFP64(OperandVector &Operands) { |
| 564 | return parseRegister(Operands, Kind: FP64Reg); |
| 565 | } |
| 566 | ParseStatus parseFP128(OperandVector &Operands) { |
| 567 | return parseRegister(Operands, Kind: FP128Reg); |
| 568 | } |
| 569 | ParseStatus parseVR16(OperandVector &Operands) { |
| 570 | return parseRegister(Operands, Kind: VR16Reg); |
| 571 | } |
| 572 | ParseStatus parseVR32(OperandVector &Operands) { |
| 573 | return parseRegister(Operands, Kind: VR32Reg); |
| 574 | } |
| 575 | ParseStatus parseVR64(OperandVector &Operands) { |
| 576 | return parseRegister(Operands, Kind: VR64Reg); |
| 577 | } |
| 578 | ParseStatus parseVF128(OperandVector &Operands) { |
| 579 | llvm_unreachable("Shouldn't be used as an operand" ); |
| 580 | } |
| 581 | ParseStatus parseVR128(OperandVector &Operands) { |
| 582 | return parseRegister(Operands, Kind: VR128Reg); |
| 583 | } |
| 584 | ParseStatus parseAR32(OperandVector &Operands) { |
| 585 | return parseRegister(Operands, Kind: AR32Reg); |
| 586 | } |
| 587 | ParseStatus parseCR64(OperandVector &Operands) { |
| 588 | return parseRegister(Operands, Kind: CR64Reg); |
| 589 | } |
| 590 | ParseStatus parseAnyReg(OperandVector &Operands) { |
| 591 | return parseAnyRegister(Operands); |
| 592 | } |
| 593 | ParseStatus parseBDAddr32(OperandVector &Operands) { |
| 594 | return parseAddress(Operands, MemKind: BDMem, RegKind: GR32Reg); |
| 595 | } |
| 596 | ParseStatus parseBDAddr64(OperandVector &Operands) { |
| 597 | return parseAddress(Operands, MemKind: BDMem, RegKind: GR64Reg); |
| 598 | } |
| 599 | ParseStatus parseBDXAddr64(OperandVector &Operands) { |
| 600 | return parseAddress(Operands, MemKind: BDXMem, RegKind: GR64Reg); |
| 601 | } |
| 602 | ParseStatus parseBDLAddr64(OperandVector &Operands) { |
| 603 | return parseAddress(Operands, MemKind: BDLMem, RegKind: GR64Reg); |
| 604 | } |
| 605 | ParseStatus parseBDRAddr64(OperandVector &Operands) { |
| 606 | return parseAddress(Operands, MemKind: BDRMem, RegKind: GR64Reg); |
| 607 | } |
| 608 | ParseStatus parseBDVAddr64(OperandVector &Operands) { |
| 609 | return parseAddress(Operands, MemKind: BDVMem, RegKind: GR64Reg); |
| 610 | } |
| 611 | ParseStatus parseLXAAddr64(OperandVector &Operands) { |
| 612 | return parseAddress(Operands, MemKind: LXAMem, RegKind: GR64Reg); |
| 613 | } |
| 614 | ParseStatus parsePCRel12(OperandVector &Operands) { |
| 615 | return parsePCRel(Operands, MinVal: -(1LL << 12), MaxVal: (1LL << 12) - 1, AllowTLS: false); |
| 616 | } |
| 617 | ParseStatus parsePCRel16(OperandVector &Operands) { |
| 618 | return parsePCRel(Operands, MinVal: -(1LL << 16), MaxVal: (1LL << 16) - 1, AllowTLS: false); |
| 619 | } |
| 620 | ParseStatus parsePCRel24(OperandVector &Operands) { |
| 621 | return parsePCRel(Operands, MinVal: -(1LL << 24), MaxVal: (1LL << 24) - 1, AllowTLS: false); |
| 622 | } |
| 623 | ParseStatus parsePCRel32(OperandVector &Operands) { |
| 624 | return parsePCRel(Operands, MinVal: -(1LL << 32), MaxVal: (1LL << 32) - 1, AllowTLS: false); |
| 625 | } |
| 626 | ParseStatus parsePCRelTLS16(OperandVector &Operands) { |
| 627 | return parsePCRel(Operands, MinVal: -(1LL << 16), MaxVal: (1LL << 16) - 1, AllowTLS: true); |
| 628 | } |
| 629 | ParseStatus parsePCRelTLS32(OperandVector &Operands) { |
| 630 | return parsePCRel(Operands, MinVal: -(1LL << 32), MaxVal: (1LL << 32) - 1, AllowTLS: true); |
| 631 | } |
| 632 | }; |
| 633 | |
| 634 | } // end anonymous namespace |
| 635 | |
| 636 | #define GET_REGISTER_MATCHER |
| 637 | #define GET_SUBTARGET_FEATURE_NAME |
| 638 | #define GET_MATCHER_IMPLEMENTATION |
| 639 | #define GET_MNEMONIC_SPELL_CHECKER |
| 640 | #include "SystemZGenAsmMatcher.inc" |
| 641 | |
| 642 | // Used for the .insn directives; contains information needed to parse the |
| 643 | // operands in the directive. |
| 644 | struct InsnMatchEntry { |
| 645 | StringRef Format; |
| 646 | uint64_t Opcode; |
| 647 | int32_t NumOperands; |
| 648 | MatchClassKind OperandKinds[7]; |
| 649 | }; |
| 650 | |
| 651 | // For equal_range comparison. |
| 652 | struct CompareInsn { |
| 653 | bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { |
| 654 | return LHS.Format < RHS; |
| 655 | } |
| 656 | bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { |
| 657 | return LHS < RHS.Format; |
| 658 | } |
| 659 | bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { |
| 660 | return LHS.Format < RHS.Format; |
| 661 | } |
| 662 | }; |
| 663 | |
| 664 | // Table initializing information for parsing the .insn directive. |
| 665 | static struct InsnMatchEntry InsnMatchTable[] = { |
| 666 | /* Format, Opcode, NumOperands, OperandKinds */ |
| 667 | { .Format: "e" , .Opcode: SystemZ::InsnE, .NumOperands: 1, |
| 668 | .OperandKinds: { MCK_U16Imm } }, |
| 669 | { .Format: "ri" , .Opcode: SystemZ::InsnRI, .NumOperands: 3, |
| 670 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, |
| 671 | { .Format: "rie" , .Opcode: SystemZ::InsnRIE, .NumOperands: 4, |
| 672 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, |
| 673 | { .Format: "ril" , .Opcode: SystemZ::InsnRIL, .NumOperands: 3, |
| 674 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, |
| 675 | { .Format: "rilu" , .Opcode: SystemZ::InsnRILU, .NumOperands: 3, |
| 676 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, |
| 677 | { .Format: "ris" , .Opcode: SystemZ::InsnRIS, .NumOperands: 5, |
| 678 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, |
| 679 | { .Format: "rr" , .Opcode: SystemZ::InsnRR, .NumOperands: 3, |
| 680 | .OperandKinds: { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, |
| 681 | { .Format: "rre" , .Opcode: SystemZ::InsnRRE, .NumOperands: 3, |
| 682 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, |
| 683 | { .Format: "rrf" , .Opcode: SystemZ::InsnRRF, .NumOperands: 5, |
| 684 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, |
| 685 | { .Format: "rrs" , .Opcode: SystemZ::InsnRRS, .NumOperands: 5, |
| 686 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, |
| 687 | { .Format: "rs" , .Opcode: SystemZ::InsnRS, .NumOperands: 4, |
| 688 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, |
| 689 | { .Format: "rse" , .Opcode: SystemZ::InsnRSE, .NumOperands: 4, |
| 690 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, |
| 691 | { .Format: "rsi" , .Opcode: SystemZ::InsnRSI, .NumOperands: 4, |
| 692 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, |
| 693 | { .Format: "rsy" , .Opcode: SystemZ::InsnRSY, .NumOperands: 4, |
| 694 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, |
| 695 | { .Format: "rx" , .Opcode: SystemZ::InsnRX, .NumOperands: 3, |
| 696 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, |
| 697 | { .Format: "rxe" , .Opcode: SystemZ::InsnRXE, .NumOperands: 3, |
| 698 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, |
| 699 | { .Format: "rxf" , .Opcode: SystemZ::InsnRXF, .NumOperands: 4, |
| 700 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, |
| 701 | { .Format: "rxy" , .Opcode: SystemZ::InsnRXY, .NumOperands: 3, |
| 702 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, |
| 703 | { .Format: "s" , .Opcode: SystemZ::InsnS, .NumOperands: 2, |
| 704 | .OperandKinds: { MCK_U32Imm, MCK_BDAddr64Disp12 } }, |
| 705 | { .Format: "si" , .Opcode: SystemZ::InsnSI, .NumOperands: 3, |
| 706 | .OperandKinds: { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, |
| 707 | { .Format: "sil" , .Opcode: SystemZ::InsnSIL, .NumOperands: 3, |
| 708 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, |
| 709 | { .Format: "siy" , .Opcode: SystemZ::InsnSIY, .NumOperands: 3, |
| 710 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, |
| 711 | { .Format: "ss" , .Opcode: SystemZ::InsnSS, .NumOperands: 4, |
| 712 | .OperandKinds: { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, |
| 713 | { .Format: "sse" , .Opcode: SystemZ::InsnSSE, .NumOperands: 3, |
| 714 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, |
| 715 | { .Format: "ssf" , .Opcode: SystemZ::InsnSSF, .NumOperands: 4, |
| 716 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, |
| 717 | { .Format: "vri" , .Opcode: SystemZ::InsnVRI, .NumOperands: 6, |
| 718 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, |
| 719 | { .Format: "vrr" , .Opcode: SystemZ::InsnVRR, .NumOperands: 7, |
| 720 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, |
| 721 | MCK_U4Imm } }, |
| 722 | { .Format: "vrs" , .Opcode: SystemZ::InsnVRS, .NumOperands: 5, |
| 723 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, |
| 724 | { .Format: "vrv" , .Opcode: SystemZ::InsnVRV, .NumOperands: 4, |
| 725 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, |
| 726 | { .Format: "vrx" , .Opcode: SystemZ::InsnVRX, .NumOperands: 4, |
| 727 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, |
| 728 | { .Format: "vsi" , .Opcode: SystemZ::InsnVSI, .NumOperands: 4, |
| 729 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } |
| 730 | }; |
| 731 | |
| 732 | void SystemZOperand::print(raw_ostream &OS, const MCAsmInfo &MAI) const { |
| 733 | switch (Kind) { |
| 734 | case KindToken: |
| 735 | OS << "Token:" << getToken(); |
| 736 | break; |
| 737 | case KindReg: |
| 738 | OS << "Reg:" << SystemZGNUInstPrinter::getRegisterName(Reg: getReg()); |
| 739 | break; |
| 740 | case KindImm: |
| 741 | OS << "Imm:" ; |
| 742 | MAI.printExpr(OS, *getImm()); |
| 743 | break; |
| 744 | case KindImmTLS: |
| 745 | OS << "ImmTLS:" ; |
| 746 | MAI.printExpr(OS, *getImmTLS().Imm); |
| 747 | if (getImmTLS().Sym) { |
| 748 | OS << ", " ; |
| 749 | MAI.printExpr(OS, *getImmTLS().Sym); |
| 750 | } |
| 751 | break; |
| 752 | case KindMem: { |
| 753 | const MemOp &Op = getMem(); |
| 754 | OS << "Mem:" ; |
| 755 | MAI.printExpr(OS, *cast<MCConstantExpr>(Val: Op.Disp)); |
| 756 | if (Op.Base) { |
| 757 | OS << "(" ; |
| 758 | if (Op.MemKind == BDLMem) { |
| 759 | MAI.printExpr(OS, *cast<MCConstantExpr>(Val: Op.Length.Imm)); |
| 760 | OS << ','; |
| 761 | } else if (Op.MemKind == BDRMem) |
| 762 | OS << SystemZGNUInstPrinter::getRegisterName(Reg: Op.Length.Reg) << "," ; |
| 763 | if (Op.Index) |
| 764 | OS << SystemZGNUInstPrinter::getRegisterName(Reg: Op.Index) << "," ; |
| 765 | OS << SystemZGNUInstPrinter::getRegisterName(Reg: Op.Base); |
| 766 | OS << ")" ; |
| 767 | } |
| 768 | break; |
| 769 | } |
| 770 | case KindInvalid: |
| 771 | break; |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | // Parse one register of the form %<prefix><number>. |
| 776 | bool SystemZAsmParser::parseRegister(Register &Reg, bool RequirePercent, |
| 777 | bool RestoreOnFailure) { |
| 778 | const AsmToken &PercentTok = Parser.getTok(); |
| 779 | bool HasPercent = PercentTok.is(K: AsmToken::Percent); |
| 780 | |
| 781 | Reg.StartLoc = PercentTok.getLoc(); |
| 782 | |
| 783 | if (RequirePercent && PercentTok.isNot(K: AsmToken::Percent)) |
| 784 | return Error(L: PercentTok.getLoc(), Msg: "register expected" ); |
| 785 | |
| 786 | if (HasPercent) { |
| 787 | Parser.Lex(); // Eat percent token. |
| 788 | } |
| 789 | |
| 790 | // Expect a register name. |
| 791 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) { |
| 792 | if (RestoreOnFailure && HasPercent) |
| 793 | getLexer().UnLex(Token: PercentTok); |
| 794 | return Error(L: Reg.StartLoc, |
| 795 | Msg: HasPercent ? "invalid register" : "register expected" ); |
| 796 | } |
| 797 | |
| 798 | // Check that there's a prefix. |
| 799 | StringRef Name = Parser.getTok().getString(); |
| 800 | if (Name.size() < 2) { |
| 801 | if (RestoreOnFailure && HasPercent) |
| 802 | getLexer().UnLex(Token: PercentTok); |
| 803 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
| 804 | } |
| 805 | char Prefix = Name[0]; |
| 806 | |
| 807 | // Treat the rest of the register name as a register number. |
| 808 | if (Name.substr(Start: 1).getAsInteger(Radix: 10, Result&: Reg.Num)) { |
| 809 | if (RestoreOnFailure && HasPercent) |
| 810 | getLexer().UnLex(Token: PercentTok); |
| 811 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
| 812 | } |
| 813 | |
| 814 | // Look for valid combinations of prefix and number. |
| 815 | if (Prefix == 'r' && Reg.Num < 16) |
| 816 | Reg.Group = RegGR; |
| 817 | else if (Prefix == 'f' && Reg.Num < 16) |
| 818 | Reg.Group = RegFP; |
| 819 | else if (Prefix == 'v' && Reg.Num < 32) |
| 820 | Reg.Group = RegV; |
| 821 | else if (Prefix == 'a' && Reg.Num < 16) |
| 822 | Reg.Group = RegAR; |
| 823 | else if (Prefix == 'c' && Reg.Num < 16) |
| 824 | Reg.Group = RegCR; |
| 825 | else { |
| 826 | if (RestoreOnFailure && HasPercent) |
| 827 | getLexer().UnLex(Token: PercentTok); |
| 828 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
| 829 | } |
| 830 | |
| 831 | Reg.EndLoc = Parser.getTok().getLoc(); |
| 832 | Parser.Lex(); |
| 833 | return false; |
| 834 | } |
| 835 | |
| 836 | // Parse a register of kind Kind and add it to Operands. |
| 837 | ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands, |
| 838 | RegisterKind Kind) { |
| 839 | Register Reg; |
| 840 | RegisterGroup Group; |
| 841 | switch (Kind) { |
| 842 | case GR32Reg: |
| 843 | case GRH32Reg: |
| 844 | case GR64Reg: |
| 845 | case GR128Reg: |
| 846 | Group = RegGR; |
| 847 | break; |
| 848 | case FP16Reg: |
| 849 | case FP32Reg: |
| 850 | case FP64Reg: |
| 851 | case FP128Reg: |
| 852 | Group = RegFP; |
| 853 | break; |
| 854 | case VR16Reg: |
| 855 | case VR32Reg: |
| 856 | case VR64Reg: |
| 857 | case VR128Reg: |
| 858 | Group = RegV; |
| 859 | break; |
| 860 | case AR32Reg: |
| 861 | Group = RegAR; |
| 862 | break; |
| 863 | case CR64Reg: |
| 864 | Group = RegCR; |
| 865 | break; |
| 866 | } |
| 867 | |
| 868 | // Handle register names of the form %<prefix><number> |
| 869 | if (isParsingGNU() && Parser.getTok().is(K: AsmToken::Percent)) { |
| 870 | if (parseRegister(Reg, /*RequirePercent=*/true)) |
| 871 | return ParseStatus::Failure; |
| 872 | |
| 873 | // Check the parsed register group "Reg.Group" with the expected "Group" |
| 874 | // Have to error out if user specified wrong prefix. |
| 875 | switch (Group) { |
| 876 | case RegGR: |
| 877 | case RegFP: |
| 878 | case RegAR: |
| 879 | case RegCR: |
| 880 | if (Group != Reg.Group) |
| 881 | return Error(L: Reg.StartLoc, Msg: "invalid operand for instruction" ); |
| 882 | break; |
| 883 | case RegV: |
| 884 | if (Reg.Group != RegV && Reg.Group != RegFP) |
| 885 | return Error(L: Reg.StartLoc, Msg: "invalid operand for instruction" ); |
| 886 | break; |
| 887 | } |
| 888 | } else if (Parser.getTok().is(K: AsmToken::Integer)) { |
| 889 | if (parseIntegerRegister(Reg, Group)) |
| 890 | return ParseStatus::Failure; |
| 891 | } |
| 892 | // Otherwise we didn't match a register operand. |
| 893 | else |
| 894 | return ParseStatus::NoMatch; |
| 895 | |
| 896 | // Determine the LLVM register number according to Kind. |
| 897 | // clang-format off |
| 898 | const unsigned *Regs; |
| 899 | switch (Kind) { |
| 900 | case GR32Reg: Regs = SystemZMC::GR32Regs; break; |
| 901 | case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; |
| 902 | case GR64Reg: Regs = SystemZMC::GR64Regs; break; |
| 903 | case GR128Reg: Regs = SystemZMC::GR128Regs; break; |
| 904 | case FP16Reg: Regs = SystemZMC::FP16Regs; break; |
| 905 | case FP32Reg: Regs = SystemZMC::FP32Regs; break; |
| 906 | case FP64Reg: Regs = SystemZMC::FP64Regs; break; |
| 907 | case FP128Reg: Regs = SystemZMC::FP128Regs; break; |
| 908 | case VR16Reg: Regs = SystemZMC::VR16Regs; break; |
| 909 | case VR32Reg: Regs = SystemZMC::VR32Regs; break; |
| 910 | case VR64Reg: Regs = SystemZMC::VR64Regs; break; |
| 911 | case VR128Reg: Regs = SystemZMC::VR128Regs; break; |
| 912 | case AR32Reg: Regs = SystemZMC::AR32Regs; break; |
| 913 | case CR64Reg: Regs = SystemZMC::CR64Regs; break; |
| 914 | } |
| 915 | // clang-format on |
| 916 | if (Regs[Reg.Num] == 0) |
| 917 | return Error(L: Reg.StartLoc, Msg: "invalid register pair" ); |
| 918 | |
| 919 | Operands.push_back( |
| 920 | Elt: SystemZOperand::createReg(Kind, Num: Regs[Reg.Num], StartLoc: Reg.StartLoc, EndLoc: Reg.EndLoc)); |
| 921 | return ParseStatus::Success; |
| 922 | } |
| 923 | |
| 924 | // Parse any type of register (including integers) and add it to Operands. |
| 925 | ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { |
| 926 | SMLoc StartLoc = Parser.getTok().getLoc(); |
| 927 | |
| 928 | // Handle integer values. |
| 929 | if (Parser.getTok().is(K: AsmToken::Integer)) { |
| 930 | const MCExpr *Register; |
| 931 | if (Parser.parseExpression(Res&: Register)) |
| 932 | return ParseStatus::Failure; |
| 933 | |
| 934 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: Register)) { |
| 935 | int64_t Value = CE->getValue(); |
| 936 | if (Value < 0 || Value > 15) |
| 937 | return Error(L: StartLoc, Msg: "invalid register" ); |
| 938 | } |
| 939 | |
| 940 | SMLoc EndLoc = |
| 941 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
| 942 | |
| 943 | Operands.push_back(Elt: SystemZOperand::createImm(Expr: Register, StartLoc, EndLoc)); |
| 944 | } |
| 945 | else { |
| 946 | if (isParsingHLASM()) |
| 947 | return ParseStatus::NoMatch; |
| 948 | |
| 949 | Register Reg; |
| 950 | if (parseRegister(Reg, /*RequirePercent=*/true)) |
| 951 | return ParseStatus::Failure; |
| 952 | |
| 953 | if (Reg.Num > 15) |
| 954 | return Error(L: StartLoc, Msg: "invalid register" ); |
| 955 | |
| 956 | // Map to the correct register kind. |
| 957 | RegisterKind Kind; |
| 958 | unsigned RegNo; |
| 959 | if (Reg.Group == RegGR) { |
| 960 | Kind = GR64Reg; |
| 961 | RegNo = SystemZMC::GR64Regs[Reg.Num]; |
| 962 | } |
| 963 | else if (Reg.Group == RegFP) { |
| 964 | Kind = FP64Reg; |
| 965 | RegNo = SystemZMC::FP64Regs[Reg.Num]; |
| 966 | } |
| 967 | else if (Reg.Group == RegV) { |
| 968 | Kind = VR128Reg; |
| 969 | RegNo = SystemZMC::VR128Regs[Reg.Num]; |
| 970 | } |
| 971 | else if (Reg.Group == RegAR) { |
| 972 | Kind = AR32Reg; |
| 973 | RegNo = SystemZMC::AR32Regs[Reg.Num]; |
| 974 | } |
| 975 | else if (Reg.Group == RegCR) { |
| 976 | Kind = CR64Reg; |
| 977 | RegNo = SystemZMC::CR64Regs[Reg.Num]; |
| 978 | } |
| 979 | else { |
| 980 | return ParseStatus::Failure; |
| 981 | } |
| 982 | |
| 983 | Operands.push_back(Elt: SystemZOperand::createReg(Kind, Num: RegNo, |
| 984 | StartLoc: Reg.StartLoc, EndLoc: Reg.EndLoc)); |
| 985 | } |
| 986 | return ParseStatus::Success; |
| 987 | } |
| 988 | |
| 989 | bool SystemZAsmParser::parseIntegerRegister(Register &Reg, |
| 990 | RegisterGroup Group) { |
| 991 | Reg.StartLoc = Parser.getTok().getLoc(); |
| 992 | // We have an integer token |
| 993 | const MCExpr *Register; |
| 994 | if (Parser.parseExpression(Res&: Register)) |
| 995 | return true; |
| 996 | |
| 997 | const auto *CE = dyn_cast<MCConstantExpr>(Val: Register); |
| 998 | if (!CE) |
| 999 | return true; |
| 1000 | |
| 1001 | int64_t MaxRegNum = (Group == RegV) ? 31 : 15; |
| 1002 | int64_t Value = CE->getValue(); |
| 1003 | if (Value < 0 || Value > MaxRegNum) { |
| 1004 | Error(L: Parser.getTok().getLoc(), Msg: "invalid register" ); |
| 1005 | return true; |
| 1006 | } |
| 1007 | |
| 1008 | // Assign the Register Number |
| 1009 | Reg.Num = (unsigned)Value; |
| 1010 | Reg.Group = Group; |
| 1011 | Reg.EndLoc = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
| 1012 | |
| 1013 | // At this point, successfully parsed an integer register. |
| 1014 | return false; |
| 1015 | } |
| 1016 | |
| 1017 | // Parse a memory operand into Reg1, Reg2, Disp, and Length. |
| 1018 | bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, |
| 1019 | bool &HaveReg2, Register &Reg2, |
| 1020 | const MCExpr *&Disp, const MCExpr *&Length, |
| 1021 | bool HasLength, bool HasVectorIndex) { |
| 1022 | // Parse the displacement, which must always be present. |
| 1023 | if (getParser().parseExpression(Res&: Disp)) |
| 1024 | return true; |
| 1025 | |
| 1026 | // Parse the optional base and index. |
| 1027 | HaveReg1 = false; |
| 1028 | HaveReg2 = false; |
| 1029 | Length = nullptr; |
| 1030 | |
| 1031 | // If we have a scenario as below: |
| 1032 | // vgef %v0, 0(0), 0 |
| 1033 | // This is an example of a "BDVMem" instruction type. |
| 1034 | // |
| 1035 | // So when we parse this as an integer register, the register group |
| 1036 | // needs to be tied to "RegV". Usually when the prefix is passed in |
| 1037 | // as %<prefix><reg-number> its easy to check which group it should belong to |
| 1038 | // However, if we're passing in just the integer there's no real way to |
| 1039 | // "check" what register group it should belong to. |
| 1040 | // |
| 1041 | // When the user passes in the register as an integer, the user assumes that |
| 1042 | // the compiler is responsible for substituting it as the right kind of |
| 1043 | // register. Whereas, when the user specifies a "prefix", the onus is on |
| 1044 | // the user to make sure they pass in the right kind of register. |
| 1045 | // |
| 1046 | // The restriction only applies to the first Register (i.e. Reg1). Reg2 is |
| 1047 | // always a general register. Reg1 should be of group RegV if "HasVectorIndex" |
| 1048 | // (i.e. insn is of type BDVMem) is true. |
| 1049 | RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; |
| 1050 | |
| 1051 | if (getLexer().is(K: AsmToken::LParen)) { |
| 1052 | Parser.Lex(); |
| 1053 | |
| 1054 | if (isParsingGNU() && getLexer().is(K: AsmToken::Percent)) { |
| 1055 | // Parse the first register. |
| 1056 | HaveReg1 = true; |
| 1057 | if (parseRegister(Reg&: Reg1, /*RequirePercent=*/true)) |
| 1058 | return true; |
| 1059 | } |
| 1060 | // So if we have an integer as the first token in ([tok1], ..), it could: |
| 1061 | // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of |
| 1062 | // instructions) |
| 1063 | // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) |
| 1064 | else if (getLexer().is(K: AsmToken::Integer)) { |
| 1065 | if (HasLength) { |
| 1066 | // Instruction has a "Length" field, safe to parse the first token as |
| 1067 | // the "Length" field |
| 1068 | if (getParser().parseExpression(Res&: Length)) |
| 1069 | return true; |
| 1070 | } else { |
| 1071 | // Otherwise, if the instruction has no "Length" field, parse the |
| 1072 | // token as a "Register". We don't have to worry about whether the |
| 1073 | // instruction is invalid here, because the caller will take care of |
| 1074 | // error reporting. |
| 1075 | HaveReg1 = true; |
| 1076 | if (parseIntegerRegister(Reg&: Reg1, Group: RegGroup)) |
| 1077 | return true; |
| 1078 | } |
| 1079 | } else { |
| 1080 | // If its not an integer or a percent token, then if the instruction |
| 1081 | // is reported to have a "Length" then, parse it as "Length". |
| 1082 | if (HasLength) { |
| 1083 | if (getParser().parseExpression(Res&: Length)) |
| 1084 | return true; |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | // Check whether there's a second register. |
| 1089 | if (getLexer().is(K: AsmToken::Comma)) { |
| 1090 | Parser.Lex(); |
| 1091 | HaveReg2 = true; |
| 1092 | |
| 1093 | if (getLexer().is(K: AsmToken::Integer)) { |
| 1094 | if (parseIntegerRegister(Reg&: Reg2, Group: RegGR)) |
| 1095 | return true; |
| 1096 | } else if (isParsingGNU()) { |
| 1097 | if (Parser.getTok().is(K: AsmToken::Percent)) { |
| 1098 | if (parseRegister(Reg&: Reg2, /*RequirePercent=*/true)) |
| 1099 | return true; |
| 1100 | } else { |
| 1101 | // GAS allows ",)" to indicate a missing base register. |
| 1102 | Reg2.Num = 0; |
| 1103 | Reg2.Group = RegGR; |
| 1104 | Reg2.StartLoc = Reg2.EndLoc = Parser.getTok().getLoc(); |
| 1105 | } |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | // Consume the closing bracket. |
| 1110 | if (getLexer().isNot(K: AsmToken::RParen)) |
| 1111 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token in address" ); |
| 1112 | Parser.Lex(); |
| 1113 | } |
| 1114 | return false; |
| 1115 | } |
| 1116 | |
| 1117 | // Verify that Reg is a valid address register (base or index). |
| 1118 | bool |
| 1119 | SystemZAsmParser::parseAddressRegister(Register &Reg) { |
| 1120 | if (Reg.Group == RegV) { |
| 1121 | Error(L: Reg.StartLoc, Msg: "invalid use of vector addressing" ); |
| 1122 | return true; |
| 1123 | } |
| 1124 | if (Reg.Group != RegGR) { |
| 1125 | Error(L: Reg.StartLoc, Msg: "invalid address register" ); |
| 1126 | return true; |
| 1127 | } |
| 1128 | return false; |
| 1129 | } |
| 1130 | |
| 1131 | // Parse a memory operand and add it to Operands. The other arguments |
| 1132 | // are as above. |
| 1133 | ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands, |
| 1134 | MemoryKind MemKind, |
| 1135 | RegisterKind RegKind) { |
| 1136 | SMLoc StartLoc = Parser.getTok().getLoc(); |
| 1137 | unsigned Base = 0, Index = 0, LengthReg = 0; |
| 1138 | Register Reg1, Reg2; |
| 1139 | bool HaveReg1, HaveReg2; |
| 1140 | const MCExpr *Disp; |
| 1141 | const MCExpr *Length; |
| 1142 | |
| 1143 | bool HasLength = (MemKind == BDLMem) ? true : false; |
| 1144 | bool HasVectorIndex = (MemKind == BDVMem) ? true : false; |
| 1145 | if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, |
| 1146 | HasVectorIndex)) |
| 1147 | return ParseStatus::Failure; |
| 1148 | |
| 1149 | const unsigned *Regs; |
| 1150 | switch (RegKind) { |
| 1151 | case GR32Reg: Regs = SystemZMC::GR32Regs; break; |
| 1152 | case GR64Reg: Regs = SystemZMC::GR64Regs; break; |
| 1153 | default: llvm_unreachable("invalid RegKind" ); |
| 1154 | } |
| 1155 | |
| 1156 | switch (MemKind) { |
| 1157 | case BDMem: |
| 1158 | // If we have Reg1, it must be an address register. |
| 1159 | if (HaveReg1) { |
| 1160 | if (parseAddressRegister(Reg&: Reg1)) |
| 1161 | return ParseStatus::Failure; |
| 1162 | Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; |
| 1163 | } |
| 1164 | // There must be no Reg2. |
| 1165 | if (HaveReg2) |
| 1166 | return Error(L: StartLoc, Msg: "invalid use of indexed addressing" ); |
| 1167 | break; |
| 1168 | case BDXMem: |
| 1169 | case LXAMem: |
| 1170 | // If we have Reg1, it must be an address register. |
| 1171 | if (HaveReg1) { |
| 1172 | const unsigned *IndexRegs = Regs; |
| 1173 | if (MemKind == LXAMem) |
| 1174 | IndexRegs = SystemZMC::GR32Regs; |
| 1175 | |
| 1176 | if (parseAddressRegister(Reg&: Reg1)) |
| 1177 | return ParseStatus::Failure; |
| 1178 | // If there are two registers, the first one is the index and the |
| 1179 | // second is the base. If there is only a single register, it is |
| 1180 | // used as base with GAS and as index with HLASM. |
| 1181 | if (HaveReg2 || isParsingHLASM()) |
| 1182 | Index = Reg1.Num == 0 ? 0 : IndexRegs[Reg1.Num]; |
| 1183 | else |
| 1184 | Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; |
| 1185 | } |
| 1186 | // If we have Reg2, it must be an address register. |
| 1187 | if (HaveReg2) { |
| 1188 | if (parseAddressRegister(Reg&: Reg2)) |
| 1189 | return ParseStatus::Failure; |
| 1190 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
| 1191 | } |
| 1192 | break; |
| 1193 | case BDLMem: |
| 1194 | // If we have Reg2, it must be an address register. |
| 1195 | if (HaveReg2) { |
| 1196 | if (parseAddressRegister(Reg&: Reg2)) |
| 1197 | return ParseStatus::Failure; |
| 1198 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
| 1199 | } |
| 1200 | // We cannot support base+index addressing. |
| 1201 | if (HaveReg1 && HaveReg2) |
| 1202 | return Error(L: StartLoc, Msg: "invalid use of indexed addressing" ); |
| 1203 | // We must have a length. |
| 1204 | if (!Length) |
| 1205 | return Error(L: StartLoc, Msg: "missing length in address" ); |
| 1206 | break; |
| 1207 | case BDRMem: |
| 1208 | // We must have Reg1, and it must be a GPR. |
| 1209 | if (!HaveReg1 || Reg1.Group != RegGR) |
| 1210 | return Error(L: StartLoc, Msg: "invalid operand for instruction" ); |
| 1211 | LengthReg = SystemZMC::GR64Regs[Reg1.Num]; |
| 1212 | // If we have Reg2, it must be an address register. |
| 1213 | if (HaveReg2) { |
| 1214 | if (parseAddressRegister(Reg&: Reg2)) |
| 1215 | return ParseStatus::Failure; |
| 1216 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
| 1217 | } |
| 1218 | break; |
| 1219 | case BDVMem: |
| 1220 | // We must have Reg1, and it must be a vector register. |
| 1221 | if (!HaveReg1 || Reg1.Group != RegV) |
| 1222 | return Error(L: StartLoc, Msg: "vector index required in address" ); |
| 1223 | Index = SystemZMC::VR128Regs[Reg1.Num]; |
| 1224 | // In GAS mode, we must have Reg2, since a single register would be |
| 1225 | // interpreted as base register, which cannot be a vector register. |
| 1226 | if (isParsingGNU() && !HaveReg2) |
| 1227 | return Error(L: Reg1.StartLoc, Msg: "invalid use of vector addressing" ); |
| 1228 | // If we have Reg2, it must be an address register. |
| 1229 | if (HaveReg2) { |
| 1230 | if (parseAddressRegister(Reg&: Reg2)) |
| 1231 | return ParseStatus::Failure; |
| 1232 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
| 1233 | } |
| 1234 | break; |
| 1235 | } |
| 1236 | |
| 1237 | SMLoc EndLoc = |
| 1238 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
| 1239 | Operands.push_back(Elt: SystemZOperand::createMem(MemKind, RegKind, Base, Disp, |
| 1240 | Index, LengthImm: Length, LengthReg, |
| 1241 | StartLoc, EndLoc)); |
| 1242 | return ParseStatus::Success; |
| 1243 | } |
| 1244 | |
| 1245 | ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) { |
| 1246 | StringRef IDVal = DirectiveID.getIdentifier(); |
| 1247 | |
| 1248 | if (IDVal == ".insn" ) |
| 1249 | return parseDirectiveInsn(L: DirectiveID.getLoc()); |
| 1250 | if (IDVal == ".machine" ) |
| 1251 | return parseDirectiveMachine(L: DirectiveID.getLoc()); |
| 1252 | if (IDVal.starts_with(Prefix: ".gnu_attribute" )) |
| 1253 | return parseGNUAttribute(L: DirectiveID.getLoc()); |
| 1254 | |
| 1255 | return ParseStatus::NoMatch; |
| 1256 | } |
| 1257 | |
| 1258 | /// ParseDirectiveInsn |
| 1259 | /// ::= .insn [ format, encoding, (operands (, operands)*) ] |
| 1260 | bool SystemZAsmParser::parseDirectiveInsn(SMLoc L) { |
| 1261 | MCAsmParser &Parser = getParser(); |
| 1262 | |
| 1263 | // Expect instruction format as identifier. |
| 1264 | StringRef Format; |
| 1265 | SMLoc ErrorLoc = Parser.getTok().getLoc(); |
| 1266 | if (Parser.parseIdentifier(Res&: Format)) |
| 1267 | return Error(L: ErrorLoc, Msg: "expected instruction format" ); |
| 1268 | |
| 1269 | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; |
| 1270 | |
| 1271 | // Find entry for this format in InsnMatchTable. |
| 1272 | auto EntryRange = |
| 1273 | std::equal_range(first: std::begin(arr&: InsnMatchTable), last: std::end(arr&: InsnMatchTable), |
| 1274 | val: Format, comp: CompareInsn()); |
| 1275 | |
| 1276 | // If first == second, couldn't find a match in the table. |
| 1277 | if (EntryRange.first == EntryRange.second) |
| 1278 | return Error(L: ErrorLoc, Msg: "unrecognized format" ); |
| 1279 | |
| 1280 | struct InsnMatchEntry *Entry = EntryRange.first; |
| 1281 | |
| 1282 | // Format should match from equal_range. |
| 1283 | assert(Entry->Format == Format); |
| 1284 | |
| 1285 | // Parse the following operands using the table's information. |
| 1286 | for (int I = 0; I < Entry->NumOperands; I++) { |
| 1287 | MatchClassKind Kind = Entry->OperandKinds[I]; |
| 1288 | |
| 1289 | SMLoc StartLoc = Parser.getTok().getLoc(); |
| 1290 | |
| 1291 | // Always expect commas as separators for operands. |
| 1292 | if (getLexer().isNot(K: AsmToken::Comma)) |
| 1293 | return Error(L: StartLoc, Msg: "unexpected token in directive" ); |
| 1294 | Lex(); |
| 1295 | |
| 1296 | // Parse operands. |
| 1297 | ParseStatus ResTy; |
| 1298 | if (Kind == MCK_AnyReg) |
| 1299 | ResTy = parseAnyReg(Operands); |
| 1300 | else if (Kind == MCK_VR128) |
| 1301 | ResTy = parseVR128(Operands); |
| 1302 | else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) |
| 1303 | ResTy = parseBDXAddr64(Operands); |
| 1304 | else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) |
| 1305 | ResTy = parseBDAddr64(Operands); |
| 1306 | else if (Kind == MCK_BDVAddr64Disp12) |
| 1307 | ResTy = parseBDVAddr64(Operands); |
| 1308 | else if (Kind == MCK_LXAAddr64Disp20) |
| 1309 | ResTy = parseLXAAddr64(Operands); |
| 1310 | else if (Kind == MCK_PCRel32) |
| 1311 | ResTy = parsePCRel32(Operands); |
| 1312 | else if (Kind == MCK_PCRel16) |
| 1313 | ResTy = parsePCRel16(Operands); |
| 1314 | else { |
| 1315 | // Only remaining operand kind is an immediate. |
| 1316 | const MCExpr *Expr; |
| 1317 | SMLoc StartLoc = Parser.getTok().getLoc(); |
| 1318 | |
| 1319 | // Expect immediate expression. |
| 1320 | if (Parser.parseExpression(Res&: Expr)) |
| 1321 | return Error(L: StartLoc, Msg: "unexpected token in directive" ); |
| 1322 | |
| 1323 | SMLoc EndLoc = |
| 1324 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
| 1325 | |
| 1326 | Operands.push_back(Elt: SystemZOperand::createImm(Expr, StartLoc, EndLoc)); |
| 1327 | ResTy = ParseStatus::Success; |
| 1328 | } |
| 1329 | |
| 1330 | if (!ResTy.isSuccess()) |
| 1331 | return true; |
| 1332 | } |
| 1333 | |
| 1334 | // Build the instruction with the parsed operands. |
| 1335 | MCInst Inst = MCInstBuilder(Entry->Opcode); |
| 1336 | |
| 1337 | for (size_t I = 0; I < Operands.size(); I++) { |
| 1338 | MCParsedAsmOperand &Operand = *Operands[I]; |
| 1339 | MatchClassKind Kind = Entry->OperandKinds[I]; |
| 1340 | |
| 1341 | // Verify operand. |
| 1342 | unsigned Res = validateOperandClass(GOp&: Operand, Kind); |
| 1343 | if (Res != Match_Success) |
| 1344 | return Error(L: Operand.getStartLoc(), Msg: "unexpected operand type" ); |
| 1345 | |
| 1346 | // Add operands to instruction. |
| 1347 | SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); |
| 1348 | if (ZOperand.isReg()) |
| 1349 | ZOperand.addRegOperands(Inst, N: 1); |
| 1350 | else if (ZOperand.isMem(MemKind: BDMem)) |
| 1351 | ZOperand.addBDAddrOperands(Inst, N: 2); |
| 1352 | else if (ZOperand.isMem(MemKind: BDXMem)) |
| 1353 | ZOperand.addBDXAddrOperands(Inst, N: 3); |
| 1354 | else if (ZOperand.isMem(MemKind: BDVMem)) |
| 1355 | ZOperand.addBDVAddrOperands(Inst, N: 3); |
| 1356 | else if (ZOperand.isMem(MemKind: LXAMem)) |
| 1357 | ZOperand.addLXAAddrOperands(Inst, N: 3); |
| 1358 | else if (ZOperand.isImm()) |
| 1359 | ZOperand.addImmOperands(Inst, N: 1); |
| 1360 | else |
| 1361 | llvm_unreachable("unexpected operand type" ); |
| 1362 | } |
| 1363 | |
| 1364 | // Emit as a regular instruction. |
| 1365 | Parser.getStreamer().emitInstruction(Inst, STI: getSTI()); |
| 1366 | |
| 1367 | return false; |
| 1368 | } |
| 1369 | |
| 1370 | /// ParseDirectiveMachine |
| 1371 | /// ::= .machine [ mcpu ] |
| 1372 | bool SystemZAsmParser::parseDirectiveMachine(SMLoc L) { |
| 1373 | MCAsmParser &Parser = getParser(); |
| 1374 | if (Parser.getTok().isNot(K: AsmToken::Identifier) && |
| 1375 | Parser.getTok().isNot(K: AsmToken::String)) |
| 1376 | return TokError(Msg: "unexpected token in '.machine' directive" ); |
| 1377 | |
| 1378 | StringRef Id = Parser.getTok().getIdentifier(); |
| 1379 | SMLoc IdLoc = Parser.getTok().getLoc(); |
| 1380 | |
| 1381 | Parser.Lex(); |
| 1382 | if (parseEOL()) |
| 1383 | return true; |
| 1384 | |
| 1385 | // Parse push and pop directives first |
| 1386 | if (Id == "push" ) { |
| 1387 | // Push the Current FeatureBitSet onto the stack. |
| 1388 | MachineStack.push_back(Elt: getAvailableFeatures()); |
| 1389 | } else if (Id == "pop" ) { |
| 1390 | // If the stack is not empty pop the topmost FeatureBitset and use it. |
| 1391 | if (MachineStack.empty()) |
| 1392 | return Error(L: IdLoc, |
| 1393 | Msg: "pop without corresponding push in '.machine' directive" ); |
| 1394 | setAvailableFeatures(MachineStack.back()); |
| 1395 | MachineStack.pop_back(); |
| 1396 | } else { |
| 1397 | // Try to interpret the Identifier as a CPU spec and derive the |
| 1398 | // FeatureBitset from that. |
| 1399 | MCSubtargetInfo &STI = copySTI(); |
| 1400 | STI.setDefaultFeatures(CPU: Id, /*TuneCPU*/ Id, FS: "" ); |
| 1401 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
| 1402 | } |
| 1403 | getTargetStreamer().emitMachine(CPUOrCommand: Id); |
| 1404 | |
| 1405 | return false; |
| 1406 | } |
| 1407 | |
| 1408 | bool SystemZAsmParser::parseGNUAttribute(SMLoc L) { |
| 1409 | int64_t Tag; |
| 1410 | int64_t IntegerValue; |
| 1411 | if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) |
| 1412 | return Error(L, Msg: "malformed .gnu_attribute directive" ); |
| 1413 | |
| 1414 | // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. |
| 1415 | if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) |
| 1416 | return Error(L, Msg: "unrecognized .gnu_attribute tag/value pair." ); |
| 1417 | |
| 1418 | Parser.getStreamer().emitGNUAttribute(Tag, Value: IntegerValue); |
| 1419 | |
| 1420 | return parseEOL(); |
| 1421 | } |
| 1422 | |
| 1423 | bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, |
| 1424 | SMLoc &EndLoc, bool RequirePercent, |
| 1425 | bool RestoreOnFailure) { |
| 1426 | Register Reg; |
| 1427 | if (parseRegister(Reg, RequirePercent, RestoreOnFailure)) |
| 1428 | return true; |
| 1429 | if (Reg.Group == RegGR) |
| 1430 | RegNo = SystemZMC::GR64Regs[Reg.Num]; |
| 1431 | else if (Reg.Group == RegFP) |
| 1432 | RegNo = SystemZMC::FP64Regs[Reg.Num]; |
| 1433 | else if (Reg.Group == RegV) |
| 1434 | RegNo = SystemZMC::VR128Regs[Reg.Num]; |
| 1435 | else if (Reg.Group == RegAR) |
| 1436 | RegNo = SystemZMC::AR32Regs[Reg.Num]; |
| 1437 | else if (Reg.Group == RegCR) |
| 1438 | RegNo = SystemZMC::CR64Regs[Reg.Num]; |
| 1439 | StartLoc = Reg.StartLoc; |
| 1440 | EndLoc = Reg.EndLoc; |
| 1441 | return false; |
| 1442 | } |
| 1443 | |
| 1444 | bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, |
| 1445 | SMLoc &EndLoc) { |
| 1446 | return ParseRegister(RegNo&: Reg, StartLoc, EndLoc, /*RequirePercent=*/false, |
| 1447 | /*RestoreOnFailure=*/false); |
| 1448 | } |
| 1449 | |
| 1450 | ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
| 1451 | SMLoc &EndLoc) { |
| 1452 | bool Result = ParseRegister(RegNo&: Reg, StartLoc, EndLoc, /*RequirePercent=*/false, |
| 1453 | /*RestoreOnFailure=*/true); |
| 1454 | bool PendingErrors = getParser().hasPendingError(); |
| 1455 | getParser().clearPendingErrors(); |
| 1456 | if (PendingErrors) |
| 1457 | return ParseStatus::Failure; |
| 1458 | if (Result) |
| 1459 | return ParseStatus::NoMatch; |
| 1460 | return ParseStatus::Success; |
| 1461 | } |
| 1462 | |
| 1463 | bool SystemZAsmParser::parseInstruction(ParseInstructionInfo &Info, |
| 1464 | StringRef Name, SMLoc NameLoc, |
| 1465 | OperandVector &Operands) { |
| 1466 | |
| 1467 | // Apply mnemonic aliases first, before doing anything else, in |
| 1468 | // case the target uses it. |
| 1469 | applyMnemonicAliases(Mnemonic&: Name, Features: getAvailableFeatures(), VariantID: getMAIAssemblerDialect()); |
| 1470 | |
| 1471 | Operands.push_back(Elt: SystemZOperand::createToken(Str: Name, Loc: NameLoc)); |
| 1472 | |
| 1473 | // Read the remaining operands. |
| 1474 | if (getLexer().isNot(K: AsmToken::EndOfStatement)) { |
| 1475 | // Read the first operand. |
| 1476 | if (parseOperand(Operands, Mnemonic: Name)) { |
| 1477 | return true; |
| 1478 | } |
| 1479 | |
| 1480 | // Read any subsequent operands. |
| 1481 | while (getLexer().is(K: AsmToken::Comma)) { |
| 1482 | Parser.Lex(); |
| 1483 | |
| 1484 | if (isParsingHLASM() && getLexer().is(K: AsmToken::Space)) |
| 1485 | return Error( |
| 1486 | L: Parser.getTok().getLoc(), |
| 1487 | Msg: "No space allowed between comma that separates operand entries" ); |
| 1488 | |
| 1489 | if (parseOperand(Operands, Mnemonic: Name)) { |
| 1490 | return true; |
| 1491 | } |
| 1492 | } |
| 1493 | |
| 1494 | // Under the HLASM variant, we could have the remark field |
| 1495 | // The remark field occurs after the operation entries |
| 1496 | // There is a space that separates the operation entries and the |
| 1497 | // remark field. |
| 1498 | if (isParsingHLASM() && getTok().is(K: AsmToken::Space)) { |
| 1499 | // We've confirmed that there is a Remark field. |
| 1500 | StringRef (getLexer().LexUntilEndOfStatement()); |
| 1501 | Parser.Lex(); |
| 1502 | |
| 1503 | // If there is nothing after the space, then there is nothing to emit |
| 1504 | // We could have a situation as this: |
| 1505 | // " \n" |
| 1506 | // After lexing above, we will have |
| 1507 | // "\n" |
| 1508 | // This isn't an explicit remark field, so we don't have to output |
| 1509 | // this as a comment. |
| 1510 | if (Remark.size()) |
| 1511 | // Output the entire Remarks Field as a comment |
| 1512 | getStreamer().AddComment(T: Remark); |
| 1513 | } |
| 1514 | |
| 1515 | if (getLexer().isNot(K: AsmToken::EndOfStatement)) { |
| 1516 | SMLoc Loc = getLexer().getLoc(); |
| 1517 | return Error(L: Loc, Msg: "unexpected token in argument list" ); |
| 1518 | } |
| 1519 | } |
| 1520 | |
| 1521 | // Consume the EndOfStatement. |
| 1522 | Parser.Lex(); |
| 1523 | return false; |
| 1524 | } |
| 1525 | |
| 1526 | bool SystemZAsmParser::parseOperand(OperandVector &Operands, |
| 1527 | StringRef Mnemonic) { |
| 1528 | // Check if the current operand has a custom associated parser, if so, try to |
| 1529 | // custom parse the operand, or fallback to the general approach. Force all |
| 1530 | // features to be available during the operand check, or else we will fail to |
| 1531 | // find the custom parser, and then we will later get an InvalidOperand error |
| 1532 | // instead of a MissingFeature errror. |
| 1533 | FeatureBitset AvailableFeatures = getAvailableFeatures(); |
| 1534 | FeatureBitset All; |
| 1535 | All.set(); |
| 1536 | setAvailableFeatures(All); |
| 1537 | ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic); |
| 1538 | setAvailableFeatures(AvailableFeatures); |
| 1539 | if (Res.isSuccess()) |
| 1540 | return false; |
| 1541 | |
| 1542 | // If there wasn't a custom match, try the generic matcher below. Otherwise, |
| 1543 | // there was a match, but an error occurred, in which case, just return that |
| 1544 | // the operand parsing failed. |
| 1545 | if (Res.isFailure()) |
| 1546 | return true; |
| 1547 | |
| 1548 | // Check for a register. All real register operands should have used |
| 1549 | // a context-dependent parse routine, which gives the required register |
| 1550 | // class. The code is here to mop up other cases, like those where |
| 1551 | // the instruction isn't recognized. |
| 1552 | if (isParsingGNU() && Parser.getTok().is(K: AsmToken::Percent)) { |
| 1553 | Register Reg; |
| 1554 | if (parseRegister(Reg, /*RequirePercent=*/true)) |
| 1555 | return true; |
| 1556 | Operands.push_back(Elt: SystemZOperand::createInvalid(StartLoc: Reg.StartLoc, EndLoc: Reg.EndLoc)); |
| 1557 | return false; |
| 1558 | } |
| 1559 | |
| 1560 | // The only other type of operand is an immediate or address. As above, |
| 1561 | // real address operands should have used a context-dependent parse routine, |
| 1562 | // so we treat any plain expression as an immediate. |
| 1563 | SMLoc StartLoc = Parser.getTok().getLoc(); |
| 1564 | Register Reg1, Reg2; |
| 1565 | bool HaveReg1, HaveReg2; |
| 1566 | const MCExpr *Expr; |
| 1567 | const MCExpr *Length; |
| 1568 | if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp&: Expr, Length, |
| 1569 | /*HasLength*/ true, /*HasVectorIndex*/ true)) |
| 1570 | return true; |
| 1571 | // If the register combination is not valid for any instruction, reject it. |
| 1572 | // Otherwise, fall back to reporting an unrecognized instruction. |
| 1573 | if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV |
| 1574 | && parseAddressRegister(Reg&: Reg1)) |
| 1575 | return true; |
| 1576 | if (HaveReg2 && parseAddressRegister(Reg&: Reg2)) |
| 1577 | return true; |
| 1578 | |
| 1579 | SMLoc EndLoc = |
| 1580 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
| 1581 | if (HaveReg1 || HaveReg2 || Length) |
| 1582 | Operands.push_back(Elt: SystemZOperand::createInvalid(StartLoc, EndLoc)); |
| 1583 | else |
| 1584 | Operands.push_back(Elt: SystemZOperand::createImm(Expr, StartLoc, EndLoc)); |
| 1585 | return false; |
| 1586 | } |
| 1587 | |
| 1588 | bool SystemZAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
| 1589 | OperandVector &Operands, |
| 1590 | MCStreamer &Out, |
| 1591 | uint64_t &ErrorInfo, |
| 1592 | bool MatchingInlineAsm) { |
| 1593 | MCInst Inst; |
| 1594 | unsigned MatchResult; |
| 1595 | |
| 1596 | unsigned Dialect = getMAIAssemblerDialect(); |
| 1597 | |
| 1598 | FeatureBitset MissingFeatures; |
| 1599 | MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, |
| 1600 | matchingInlineAsm: MatchingInlineAsm, VariantID: Dialect); |
| 1601 | switch (MatchResult) { |
| 1602 | case Match_Success: |
| 1603 | Inst.setLoc(IDLoc); |
| 1604 | Out.emitInstruction(Inst, STI: getSTI()); |
| 1605 | return false; |
| 1606 | |
| 1607 | case Match_MissingFeature: { |
| 1608 | assert(MissingFeatures.any() && "Unknown missing feature!" ); |
| 1609 | // Special case the error message for the very common case where only |
| 1610 | // a single subtarget feature is missing |
| 1611 | std::string Msg = "instruction requires:" ; |
| 1612 | for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { |
| 1613 | if (MissingFeatures[I]) { |
| 1614 | Msg += " " ; |
| 1615 | Msg += getSubtargetFeatureName(Val: I); |
| 1616 | } |
| 1617 | } |
| 1618 | return Error(L: IDLoc, Msg); |
| 1619 | } |
| 1620 | |
| 1621 | case Match_InvalidOperand: { |
| 1622 | SMLoc ErrorLoc = IDLoc; |
| 1623 | if (ErrorInfo != ~0ULL) { |
| 1624 | if (ErrorInfo >= Operands.size()) |
| 1625 | return Error(L: IDLoc, Msg: "too few operands for instruction" ); |
| 1626 | |
| 1627 | ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); |
| 1628 | if (ErrorLoc == SMLoc()) |
| 1629 | ErrorLoc = IDLoc; |
| 1630 | } |
| 1631 | return Error(L: ErrorLoc, Msg: "invalid operand for instruction" ); |
| 1632 | } |
| 1633 | |
| 1634 | case Match_MnemonicFail: { |
| 1635 | FeatureBitset FBS = ComputeAvailableFeatures(FB: getSTI().getFeatureBits()); |
| 1636 | std::string Suggestion = SystemZMnemonicSpellCheck( |
| 1637 | S: ((SystemZOperand &)*Operands[0]).getToken(), FBS, VariantID: Dialect); |
| 1638 | return Error(L: IDLoc, Msg: "invalid instruction" + Suggestion, |
| 1639 | Range: ((SystemZOperand &)*Operands[0]).getLocRange()); |
| 1640 | } |
| 1641 | } |
| 1642 | |
| 1643 | llvm_unreachable("Unexpected match type" ); |
| 1644 | } |
| 1645 | |
| 1646 | ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands, |
| 1647 | int64_t MinVal, int64_t MaxVal, |
| 1648 | bool AllowTLS) { |
| 1649 | MCContext &Ctx = getContext(); |
| 1650 | MCStreamer &Out = getStreamer(); |
| 1651 | const MCExpr *Expr; |
| 1652 | SMLoc StartLoc = Parser.getTok().getLoc(); |
| 1653 | if (getParser().parseExpression(Res&: Expr)) |
| 1654 | return ParseStatus::NoMatch; |
| 1655 | |
| 1656 | auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { |
| 1657 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: E)) { |
| 1658 | int64_t Value = CE->getValue(); |
| 1659 | if (Negate) |
| 1660 | Value = -Value; |
| 1661 | if ((Value & 1) || Value < MinVal || Value > MaxVal) |
| 1662 | return true; |
| 1663 | } |
| 1664 | return false; |
| 1665 | }; |
| 1666 | |
| 1667 | // For consistency with the GNU assembler, treat immediates as offsets |
| 1668 | // from ".". |
| 1669 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: Expr)) { |
| 1670 | if (isParsingHLASM()) |
| 1671 | return Error(L: StartLoc, Msg: "Expected PC-relative expression" ); |
| 1672 | if (IsOutOfRangeConstant(CE, false)) |
| 1673 | return Error(L: StartLoc, Msg: "offset out of range" ); |
| 1674 | int64_t Value = CE->getValue(); |
| 1675 | MCSymbol *Sym = Ctx.createTempSymbol(); |
| 1676 | Out.emitLabel(Symbol: Sym); |
| 1677 | const MCExpr *Base = MCSymbolRefExpr::create(Symbol: Sym, Ctx); |
| 1678 | Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(LHS: Base, RHS: Expr, Ctx); |
| 1679 | } |
| 1680 | |
| 1681 | // For consistency with the GNU assembler, conservatively assume that a |
| 1682 | // constant offset must by itself be within the given size range. |
| 1683 | if (const auto *BE = dyn_cast<MCBinaryExpr>(Val: Expr)) |
| 1684 | if (IsOutOfRangeConstant(BE->getLHS(), false) || |
| 1685 | IsOutOfRangeConstant(BE->getRHS(), |
| 1686 | BE->getOpcode() == MCBinaryExpr::Sub)) |
| 1687 | return Error(L: StartLoc, Msg: "offset out of range" ); |
| 1688 | |
| 1689 | // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. |
| 1690 | const MCExpr *Sym = nullptr; |
| 1691 | if (AllowTLS && getLexer().is(K: AsmToken::Colon)) { |
| 1692 | Parser.Lex(); |
| 1693 | |
| 1694 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
| 1695 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token" ); |
| 1696 | |
| 1697 | auto Kind = SystemZ::S_None; |
| 1698 | StringRef Name = Parser.getTok().getString(); |
| 1699 | if (Name == "tls_gdcall" ) |
| 1700 | Kind = SystemZ::S_TLSGD; |
| 1701 | else if (Name == "tls_ldcall" ) |
| 1702 | Kind = SystemZ::S_TLSLDM; |
| 1703 | else |
| 1704 | return Error(L: Parser.getTok().getLoc(), Msg: "unknown TLS tag" ); |
| 1705 | Parser.Lex(); |
| 1706 | |
| 1707 | if (Parser.getTok().isNot(K: AsmToken::Colon)) |
| 1708 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token" ); |
| 1709 | Parser.Lex(); |
| 1710 | |
| 1711 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
| 1712 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token" ); |
| 1713 | |
| 1714 | StringRef Identifier = Parser.getTok().getString(); |
| 1715 | Sym = MCSymbolRefExpr::create(Symbol: Ctx.getOrCreateSymbol(Name: Identifier), |
| 1716 | specifier: Kind, Ctx); |
| 1717 | Parser.Lex(); |
| 1718 | } |
| 1719 | |
| 1720 | SMLoc EndLoc = |
| 1721 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
| 1722 | |
| 1723 | if (AllowTLS) |
| 1724 | Operands.push_back(Elt: SystemZOperand::createImmTLS(Imm: Expr, Sym, |
| 1725 | StartLoc, EndLoc)); |
| 1726 | else |
| 1727 | Operands.push_back(Elt: SystemZOperand::createImm(Expr, StartLoc, EndLoc)); |
| 1728 | |
| 1729 | return ParseStatus::Success; |
| 1730 | } |
| 1731 | |
| 1732 | bool SystemZAsmParser::isLabel(AsmToken &Token) { |
| 1733 | if (isParsingGNU()) |
| 1734 | return true; |
| 1735 | |
| 1736 | // HLASM labels are ordinary symbols. |
| 1737 | // An HLASM label always starts at column 1. |
| 1738 | // An ordinary symbol syntax is laid out as follows: |
| 1739 | // Rules: |
| 1740 | // 1. Has to start with an "alphabetic character". Can be followed by up to |
| 1741 | // 62 alphanumeric characters. An "alphabetic character", in this scenario, |
| 1742 | // is a letter from 'A' through 'Z', or from 'a' through 'z', |
| 1743 | // or '$', '_', '#', or '@' |
| 1744 | // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. |
| 1745 | // are all treated as the same symbol. However, the processing for the case |
| 1746 | // folding will not be done in this function. |
| 1747 | StringRef RawLabel = Token.getString(); |
| 1748 | SMLoc Loc = Token.getLoc(); |
| 1749 | |
| 1750 | // An HLASM label cannot be empty. |
| 1751 | if (!RawLabel.size()) |
| 1752 | return !Error(L: Loc, Msg: "HLASM Label cannot be empty" ); |
| 1753 | |
| 1754 | // An HLASM label cannot exceed greater than 63 characters. |
| 1755 | if (RawLabel.size() > 63) |
| 1756 | return !Error(L: Loc, Msg: "Maximum length for HLASM Label is 63 characters" ); |
| 1757 | |
| 1758 | // A label must start with an "alphabetic character". |
| 1759 | if (!isHLASMAlpha(C: RawLabel[0])) |
| 1760 | return !Error(L: Loc, Msg: "HLASM Label has to start with an alphabetic " |
| 1761 | "character or the underscore character" ); |
| 1762 | |
| 1763 | // Now, we've established that the length is valid |
| 1764 | // and the first character is alphabetic. |
| 1765 | // Check whether remaining string is alphanumeric. |
| 1766 | for (unsigned I = 1; I < RawLabel.size(); ++I) |
| 1767 | if (!isHLASMAlnum(C: RawLabel[I])) |
| 1768 | return !Error(L: Loc, Msg: "HLASM Label has to be alphanumeric" ); |
| 1769 | |
| 1770 | return true; |
| 1771 | } |
| 1772 | |
| 1773 | // Force static initialization. |
| 1774 | // NOLINTNEXTLINE(readability-identifier-naming) |
| 1775 | extern "C" LLVM_ABI LLVM_EXTERNAL_VISIBILITY void |
| 1776 | LLVMInitializeSystemZAsmParser() { |
| 1777 | RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); |
| 1778 | } |
| 1779 | |