| 1 | //===-- X86PartialReduction.cpp -------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass looks for add instructions used by a horizontal reduction to see |
| 10 | // if we might be able to use pmaddwd or psadbw. Some cases of this require |
| 11 | // cross basic block knowledge and can't be done in SelectionDAG. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "X86.h" |
| 16 | #include "X86TargetMachine.h" |
| 17 | #include "llvm/Analysis/ValueTracking.h" |
| 18 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 19 | #include "llvm/IR/Constants.h" |
| 20 | #include "llvm/IR/IRBuilder.h" |
| 21 | #include "llvm/IR/Instructions.h" |
| 22 | #include "llvm/IR/IntrinsicsX86.h" |
| 23 | #include "llvm/IR/PatternMatch.h" |
| 24 | #include "llvm/Pass.h" |
| 25 | #include "llvm/Support/KnownBits.h" |
| 26 | |
| 27 | using namespace llvm; |
| 28 | |
| 29 | #define DEBUG_TYPE "x86-partial-reduction" |
| 30 | |
| 31 | namespace { |
| 32 | |
| 33 | class X86PartialReduction : public FunctionPass { |
| 34 | const DataLayout *DL = nullptr; |
| 35 | const X86Subtarget *ST = nullptr; |
| 36 | |
| 37 | public: |
| 38 | static char ID; // Pass identification, replacement for typeid. |
| 39 | |
| 40 | X86PartialReduction() : FunctionPass(ID) { } |
| 41 | |
| 42 | bool runOnFunction(Function &Fn) override; |
| 43 | |
| 44 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 45 | AU.setPreservesCFG(); |
| 46 | } |
| 47 | |
| 48 | StringRef getPassName() const override { |
| 49 | return "X86 Partial Reduction" ; |
| 50 | } |
| 51 | |
| 52 | private: |
| 53 | bool tryMAddReplacement(Instruction *Op, bool ReduceInOneBB); |
| 54 | bool trySADReplacement(Instruction *Op); |
| 55 | }; |
| 56 | } |
| 57 | |
| 58 | FunctionPass *llvm::createX86PartialReductionPass() { |
| 59 | return new X86PartialReduction(); |
| 60 | } |
| 61 | |
| 62 | char X86PartialReduction::ID = 0; |
| 63 | |
| 64 | INITIALIZE_PASS(X86PartialReduction, DEBUG_TYPE, |
| 65 | "X86 Partial Reduction" , false, false) |
| 66 | |
| 67 | // This function should be aligned with detectExtMul() in X86ISelLowering.cpp. |
| 68 | static bool matchVPDPBUSDPattern(const X86Subtarget *ST, BinaryOperator *Mul, |
| 69 | const DataLayout *DL) { |
| 70 | if (!ST->hasVNNI() && !ST->hasAVXVNNI()) |
| 71 | return false; |
| 72 | |
| 73 | Value *LHS = Mul->getOperand(i_nocapture: 0); |
| 74 | Value *RHS = Mul->getOperand(i_nocapture: 1); |
| 75 | |
| 76 | if (isa<SExtInst>(Val: LHS)) |
| 77 | std::swap(a&: LHS, b&: RHS); |
| 78 | |
| 79 | auto IsFreeTruncation = [&](Value *Op) { |
| 80 | if (auto *Cast = dyn_cast<CastInst>(Val: Op)) { |
| 81 | if (Cast->getParent() == Mul->getParent() && |
| 82 | (Cast->getOpcode() == Instruction::SExt || |
| 83 | Cast->getOpcode() == Instruction::ZExt) && |
| 84 | Cast->getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits() <= 8) |
| 85 | return true; |
| 86 | } |
| 87 | |
| 88 | return isa<Constant>(Val: Op); |
| 89 | }; |
| 90 | |
| 91 | // (dpbusd (zext a), (sext, b)). Since the first operand should be unsigned |
| 92 | // value, we need to check LHS is zero extended value. RHS should be signed |
| 93 | // value, so we just check the signed bits. |
| 94 | if ((IsFreeTruncation(LHS) && |
| 95 | computeKnownBits(V: LHS, DL: *DL).countMaxActiveBits() <= 8) && |
| 96 | (IsFreeTruncation(RHS) && ComputeMaxSignificantBits(Op: RHS, DL: *DL) <= 8)) |
| 97 | return true; |
| 98 | |
| 99 | return false; |
| 100 | } |
| 101 | |
| 102 | bool X86PartialReduction::tryMAddReplacement(Instruction *Op, |
| 103 | bool ReduceInOneBB) { |
| 104 | if (!ST->hasSSE2()) |
| 105 | return false; |
| 106 | |
| 107 | // Need at least 8 elements. |
| 108 | if (cast<FixedVectorType>(Val: Op->getType())->getNumElements() < 8) |
| 109 | return false; |
| 110 | |
| 111 | // Element type should be i32. |
| 112 | if (!cast<VectorType>(Val: Op->getType())->getElementType()->isIntegerTy(Bitwidth: 32)) |
| 113 | return false; |
| 114 | |
| 115 | auto *Mul = dyn_cast<BinaryOperator>(Val: Op); |
| 116 | if (!Mul || Mul->getOpcode() != Instruction::Mul) |
| 117 | return false; |
| 118 | |
| 119 | Value *LHS = Mul->getOperand(i_nocapture: 0); |
| 120 | Value *RHS = Mul->getOperand(i_nocapture: 1); |
| 121 | |
| 122 | // If the target support VNNI, leave it to ISel to combine reduce operation |
| 123 | // to VNNI instruction. |
| 124 | // TODO: we can support transforming reduce to VNNI intrinsic for across block |
| 125 | // in this pass. |
| 126 | if (ReduceInOneBB && matchVPDPBUSDPattern(ST, Mul, DL)) |
| 127 | return false; |
| 128 | |
| 129 | // LHS and RHS should be only used once or if they are the same then only |
| 130 | // used twice. Only check this when SSE4.1 is enabled and we have zext/sext |
| 131 | // instructions, otherwise we use punpck to emulate zero extend in stages. The |
| 132 | // trunc/ we need to do likely won't introduce new instructions in that case. |
| 133 | if (ST->hasSSE41()) { |
| 134 | if (LHS == RHS) { |
| 135 | if (!isa<Constant>(Val: LHS) && !LHS->hasNUses(N: 2)) |
| 136 | return false; |
| 137 | } else { |
| 138 | if (!isa<Constant>(Val: LHS) && !LHS->hasOneUse()) |
| 139 | return false; |
| 140 | if (!isa<Constant>(Val: RHS) && !RHS->hasOneUse()) |
| 141 | return false; |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | auto CanShrinkOp = [&](Value *Op) { |
| 146 | auto IsFreeTruncation = [&](Value *Op) { |
| 147 | if (auto *Cast = dyn_cast<CastInst>(Val: Op)) { |
| 148 | if (Cast->getParent() == Mul->getParent() && |
| 149 | (Cast->getOpcode() == Instruction::SExt || |
| 150 | Cast->getOpcode() == Instruction::ZExt) && |
| 151 | Cast->getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits() <= 16) |
| 152 | return true; |
| 153 | } |
| 154 | |
| 155 | return isa<Constant>(Val: Op); |
| 156 | }; |
| 157 | |
| 158 | // If the operation can be freely truncated and has enough sign bits we |
| 159 | // can shrink. |
| 160 | if (IsFreeTruncation(Op) && ComputeNumSignBits(Op, DL: *DL, AC: nullptr, CxtI: Mul) > 16) |
| 161 | return true; |
| 162 | |
| 163 | // SelectionDAG has limited support for truncating through an add or sub if |
| 164 | // the inputs are freely truncatable. |
| 165 | if (auto *BO = dyn_cast<BinaryOperator>(Val: Op)) { |
| 166 | if (BO->getParent() == Mul->getParent() && |
| 167 | IsFreeTruncation(BO->getOperand(i_nocapture: 0)) && |
| 168 | IsFreeTruncation(BO->getOperand(i_nocapture: 1)) && |
| 169 | ComputeNumSignBits(Op, DL: *DL, AC: nullptr, CxtI: Mul) > 16) |
| 170 | return true; |
| 171 | } |
| 172 | |
| 173 | return false; |
| 174 | }; |
| 175 | |
| 176 | // Both Ops need to be shrinkable. |
| 177 | if (!CanShrinkOp(LHS) && !CanShrinkOp(RHS)) |
| 178 | return false; |
| 179 | |
| 180 | IRBuilder<> Builder(Mul); |
| 181 | |
| 182 | auto *MulTy = cast<FixedVectorType>(Val: Op->getType()); |
| 183 | unsigned NumElts = MulTy->getNumElements(); |
| 184 | |
| 185 | // Extract even elements and odd elements and add them together. This will |
| 186 | // be pattern matched by SelectionDAG to pmaddwd. This instruction will be |
| 187 | // half the original width. |
| 188 | SmallVector<int, 16> EvenMask(NumElts / 2); |
| 189 | SmallVector<int, 16> OddMask(NumElts / 2); |
| 190 | for (int i = 0, e = NumElts / 2; i != e; ++i) { |
| 191 | EvenMask[i] = i * 2; |
| 192 | OddMask[i] = i * 2 + 1; |
| 193 | } |
| 194 | // Creating a new mul so the replaceAllUsesWith below doesn't replace the |
| 195 | // uses in the shuffles we're creating. |
| 196 | Value *NewMul = Builder.CreateMul(LHS: Mul->getOperand(i_nocapture: 0), RHS: Mul->getOperand(i_nocapture: 1)); |
| 197 | Value *EvenElts = Builder.CreateShuffleVector(V1: NewMul, V2: NewMul, Mask: EvenMask); |
| 198 | Value *OddElts = Builder.CreateShuffleVector(V1: NewMul, V2: NewMul, Mask: OddMask); |
| 199 | Value *MAdd = Builder.CreateAdd(LHS: EvenElts, RHS: OddElts); |
| 200 | |
| 201 | // Concatenate zeroes to extend back to the original type. |
| 202 | SmallVector<int, 32> ConcatMask(NumElts); |
| 203 | std::iota(first: ConcatMask.begin(), last: ConcatMask.end(), value: 0); |
| 204 | Value *Zero = Constant::getNullValue(Ty: MAdd->getType()); |
| 205 | Value *Concat = Builder.CreateShuffleVector(V1: MAdd, V2: Zero, Mask: ConcatMask); |
| 206 | |
| 207 | Mul->replaceAllUsesWith(V: Concat); |
| 208 | Mul->eraseFromParent(); |
| 209 | |
| 210 | return true; |
| 211 | } |
| 212 | |
| 213 | bool X86PartialReduction::trySADReplacement(Instruction *Op) { |
| 214 | if (!ST->hasSSE2()) |
| 215 | return false; |
| 216 | |
| 217 | // TODO: There's nothing special about i32, any integer type above i16 should |
| 218 | // work just as well. |
| 219 | if (!cast<VectorType>(Val: Op->getType())->getElementType()->isIntegerTy(Bitwidth: 32)) |
| 220 | return false; |
| 221 | |
| 222 | Value *LHS; |
| 223 | if (match(V: Op, P: PatternMatch::m_Intrinsic<Intrinsic::abs>())) { |
| 224 | LHS = Op->getOperand(i: 0); |
| 225 | } else { |
| 226 | // Operand should be a select. |
| 227 | auto *SI = dyn_cast<SelectInst>(Val: Op); |
| 228 | if (!SI) |
| 229 | return false; |
| 230 | |
| 231 | Value *RHS; |
| 232 | // Select needs to implement absolute value. |
| 233 | auto SPR = matchSelectPattern(V: SI, LHS, RHS); |
| 234 | if (SPR.Flavor != SPF_ABS) |
| 235 | return false; |
| 236 | } |
| 237 | |
| 238 | // Need a subtract of two values. |
| 239 | auto *Sub = dyn_cast<BinaryOperator>(Val: LHS); |
| 240 | if (!Sub || Sub->getOpcode() != Instruction::Sub) |
| 241 | return false; |
| 242 | |
| 243 | // Look for zero extend from i8. |
| 244 | auto getZeroExtendedVal = [](Value *Op) -> Value * { |
| 245 | if (auto *ZExt = dyn_cast<ZExtInst>(Val: Op)) |
| 246 | if (cast<VectorType>(Val: ZExt->getOperand(i_nocapture: 0)->getType()) |
| 247 | ->getElementType() |
| 248 | ->isIntegerTy(Bitwidth: 8)) |
| 249 | return ZExt->getOperand(i_nocapture: 0); |
| 250 | |
| 251 | return nullptr; |
| 252 | }; |
| 253 | |
| 254 | // Both operands of the subtract should be extends from vXi8. |
| 255 | Value *Op0 = getZeroExtendedVal(Sub->getOperand(i_nocapture: 0)); |
| 256 | Value *Op1 = getZeroExtendedVal(Sub->getOperand(i_nocapture: 1)); |
| 257 | if (!Op0 || !Op1) |
| 258 | return false; |
| 259 | |
| 260 | IRBuilder<> Builder(Op); |
| 261 | |
| 262 | auto *OpTy = cast<FixedVectorType>(Val: Op->getType()); |
| 263 | unsigned NumElts = OpTy->getNumElements(); |
| 264 | |
| 265 | unsigned IntrinsicNumElts; |
| 266 | Intrinsic::ID IID; |
| 267 | if (ST->hasBWI() && NumElts >= 64) { |
| 268 | IID = Intrinsic::x86_avx512_psad_bw_512; |
| 269 | IntrinsicNumElts = 64; |
| 270 | } else if (ST->hasAVX2() && NumElts >= 32) { |
| 271 | IID = Intrinsic::x86_avx2_psad_bw; |
| 272 | IntrinsicNumElts = 32; |
| 273 | } else { |
| 274 | IID = Intrinsic::x86_sse2_psad_bw; |
| 275 | IntrinsicNumElts = 16; |
| 276 | } |
| 277 | |
| 278 | Function *PSADBWFn = Intrinsic::getOrInsertDeclaration(M: Op->getModule(), id: IID); |
| 279 | |
| 280 | if (NumElts < 16) { |
| 281 | // Pad input with zeroes. |
| 282 | SmallVector<int, 32> ConcatMask(16); |
| 283 | for (unsigned i = 0; i != NumElts; ++i) |
| 284 | ConcatMask[i] = i; |
| 285 | for (unsigned i = NumElts; i != 16; ++i) |
| 286 | ConcatMask[i] = (i % NumElts) + NumElts; |
| 287 | |
| 288 | Value *Zero = Constant::getNullValue(Ty: Op0->getType()); |
| 289 | Op0 = Builder.CreateShuffleVector(V1: Op0, V2: Zero, Mask: ConcatMask); |
| 290 | Op1 = Builder.CreateShuffleVector(V1: Op1, V2: Zero, Mask: ConcatMask); |
| 291 | NumElts = 16; |
| 292 | } |
| 293 | |
| 294 | // Intrinsics produce vXi64 and need to be casted to vXi32. |
| 295 | auto *I32Ty = |
| 296 | FixedVectorType::get(ElementType: Builder.getInt32Ty(), NumElts: IntrinsicNumElts / 4); |
| 297 | |
| 298 | assert(NumElts % IntrinsicNumElts == 0 && "Unexpected number of elements!" ); |
| 299 | unsigned NumSplits = NumElts / IntrinsicNumElts; |
| 300 | |
| 301 | // First collect the pieces we need. |
| 302 | SmallVector<Value *, 4> Ops(NumSplits); |
| 303 | for (unsigned i = 0; i != NumSplits; ++i) { |
| 304 | SmallVector<int, 64> (IntrinsicNumElts); |
| 305 | std::iota(first: ExtractMask.begin(), last: ExtractMask.end(), value: i * IntrinsicNumElts); |
| 306 | Value * = Builder.CreateShuffleVector(V1: Op0, V2: Op0, Mask: ExtractMask); |
| 307 | Value * = Builder.CreateShuffleVector(V1: Op1, V2: Op0, Mask: ExtractMask); |
| 308 | Ops[i] = Builder.CreateCall(Callee: PSADBWFn, Args: {ExtractOp0, ExtractOp1}); |
| 309 | Ops[i] = Builder.CreateBitCast(V: Ops[i], DestTy: I32Ty); |
| 310 | } |
| 311 | |
| 312 | assert(isPowerOf2_32(NumSplits) && "Expected power of 2 splits" ); |
| 313 | unsigned Stages = Log2_32(Value: NumSplits); |
| 314 | for (unsigned s = Stages; s > 0; --s) { |
| 315 | unsigned NumConcatElts = |
| 316 | cast<FixedVectorType>(Val: Ops[0]->getType())->getNumElements() * 2; |
| 317 | for (unsigned i = 0; i != 1U << (s - 1); ++i) { |
| 318 | SmallVector<int, 64> ConcatMask(NumConcatElts); |
| 319 | std::iota(first: ConcatMask.begin(), last: ConcatMask.end(), value: 0); |
| 320 | Ops[i] = Builder.CreateShuffleVector(V1: Ops[i*2], V2: Ops[i*2+1], Mask: ConcatMask); |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | // At this point the final value should be in Ops[0]. Now we need to adjust |
| 325 | // it to the final original type. |
| 326 | NumElts = cast<FixedVectorType>(Val: OpTy)->getNumElements(); |
| 327 | if (NumElts == 2) { |
| 328 | // Extract down to 2 elements. |
| 329 | Ops[0] = Builder.CreateShuffleVector(V1: Ops[0], V2: Ops[0], Mask: ArrayRef<int>{0, 1}); |
| 330 | } else if (NumElts >= 8) { |
| 331 | SmallVector<int, 32> ConcatMask(NumElts); |
| 332 | unsigned SubElts = |
| 333 | cast<FixedVectorType>(Val: Ops[0]->getType())->getNumElements(); |
| 334 | for (unsigned i = 0; i != SubElts; ++i) |
| 335 | ConcatMask[i] = i; |
| 336 | for (unsigned i = SubElts; i != NumElts; ++i) |
| 337 | ConcatMask[i] = (i % SubElts) + SubElts; |
| 338 | |
| 339 | Value *Zero = Constant::getNullValue(Ty: Ops[0]->getType()); |
| 340 | Ops[0] = Builder.CreateShuffleVector(V1: Ops[0], V2: Zero, Mask: ConcatMask); |
| 341 | } |
| 342 | |
| 343 | Op->replaceAllUsesWith(V: Ops[0]); |
| 344 | Op->eraseFromParent(); |
| 345 | |
| 346 | return true; |
| 347 | } |
| 348 | |
| 349 | // Walk backwards from the ExtractElementInst and determine if it is the end of |
| 350 | // a horizontal reduction. Return the input to the reduction if we find one. |
| 351 | static Value *(const ExtractElementInst &EE, |
| 352 | bool &ReduceInOneBB) { |
| 353 | ReduceInOneBB = true; |
| 354 | // Make sure we're extracting index 0. |
| 355 | auto *Index = dyn_cast<ConstantInt>(Val: EE.getIndexOperand()); |
| 356 | if (!Index || !Index->isNullValue()) |
| 357 | return nullptr; |
| 358 | |
| 359 | const auto *BO = dyn_cast<BinaryOperator>(Val: EE.getVectorOperand()); |
| 360 | if (!BO || BO->getOpcode() != Instruction::Add || !BO->hasOneUse()) |
| 361 | return nullptr; |
| 362 | if (EE.getParent() != BO->getParent()) |
| 363 | ReduceInOneBB = false; |
| 364 | |
| 365 | unsigned NumElems = cast<FixedVectorType>(Val: BO->getType())->getNumElements(); |
| 366 | // Ensure the reduction size is a power of 2. |
| 367 | if (!isPowerOf2_32(Value: NumElems)) |
| 368 | return nullptr; |
| 369 | |
| 370 | const Value *Op = BO; |
| 371 | unsigned Stages = Log2_32(Value: NumElems); |
| 372 | for (unsigned i = 0; i != Stages; ++i) { |
| 373 | const auto *BO = dyn_cast<BinaryOperator>(Val: Op); |
| 374 | if (!BO || BO->getOpcode() != Instruction::Add) |
| 375 | return nullptr; |
| 376 | if (EE.getParent() != BO->getParent()) |
| 377 | ReduceInOneBB = false; |
| 378 | |
| 379 | // If this isn't the first add, then it should only have 2 users, the |
| 380 | // shuffle and another add which we checked in the previous iteration. |
| 381 | if (i != 0 && !BO->hasNUses(N: 2)) |
| 382 | return nullptr; |
| 383 | |
| 384 | Value *LHS = BO->getOperand(i_nocapture: 0); |
| 385 | Value *RHS = BO->getOperand(i_nocapture: 1); |
| 386 | |
| 387 | auto *Shuffle = dyn_cast<ShuffleVectorInst>(Val: LHS); |
| 388 | if (Shuffle) { |
| 389 | Op = RHS; |
| 390 | } else { |
| 391 | Shuffle = dyn_cast<ShuffleVectorInst>(Val: RHS); |
| 392 | Op = LHS; |
| 393 | } |
| 394 | |
| 395 | // The first operand of the shuffle should be the same as the other operand |
| 396 | // of the bin op. |
| 397 | if (!Shuffle || Shuffle->getOperand(i_nocapture: 0) != Op) |
| 398 | return nullptr; |
| 399 | |
| 400 | // Verify the shuffle has the expected (at this stage of the pyramid) mask. |
| 401 | unsigned MaskEnd = 1 << i; |
| 402 | for (unsigned Index = 0; Index < MaskEnd; ++Index) |
| 403 | if (Shuffle->getMaskValue(Elt: Index) != (int)(MaskEnd + Index)) |
| 404 | return nullptr; |
| 405 | } |
| 406 | |
| 407 | return const_cast<Value *>(Op); |
| 408 | } |
| 409 | |
| 410 | // See if this BO is reachable from this Phi by walking forward through single |
| 411 | // use BinaryOperators with the same opcode. If we get back then we know we've |
| 412 | // found a loop and it is safe to step through this Add to find more leaves. |
| 413 | static bool isReachableFromPHI(PHINode *Phi, BinaryOperator *BO) { |
| 414 | // The PHI itself should only have one use. |
| 415 | if (!Phi->hasOneUse()) |
| 416 | return false; |
| 417 | |
| 418 | Instruction *U = cast<Instruction>(Val: *Phi->user_begin()); |
| 419 | if (U == BO) |
| 420 | return true; |
| 421 | |
| 422 | while (U->hasOneUse() && U->getOpcode() == BO->getOpcode()) |
| 423 | U = cast<Instruction>(Val: *U->user_begin()); |
| 424 | |
| 425 | return U == BO; |
| 426 | } |
| 427 | |
| 428 | // Collect all the leaves of the tree of adds that feeds into the horizontal |
| 429 | // reduction. Root is the Value that is used by the horizontal reduction. |
| 430 | // We look through single use phis, single use adds, or adds that are used by |
| 431 | // a phi that forms a loop with the add. |
| 432 | static void collectLeaves(Value *Root, SmallVectorImpl<Instruction *> &Leaves) { |
| 433 | SmallPtrSet<Value *, 8> Visited; |
| 434 | SmallVector<Value *, 8> Worklist; |
| 435 | Worklist.push_back(Elt: Root); |
| 436 | |
| 437 | while (!Worklist.empty()) { |
| 438 | Value *V = Worklist.pop_back_val(); |
| 439 | if (!Visited.insert(Ptr: V).second) |
| 440 | continue; |
| 441 | |
| 442 | if (auto *PN = dyn_cast<PHINode>(Val: V)) { |
| 443 | // PHI node should have single use unless it is the root node, then it |
| 444 | // has 2 uses. |
| 445 | if (!PN->hasNUses(N: PN == Root ? 2 : 1)) |
| 446 | break; |
| 447 | |
| 448 | // Push incoming values to the worklist. |
| 449 | append_range(C&: Worklist, R: PN->incoming_values()); |
| 450 | |
| 451 | continue; |
| 452 | } |
| 453 | |
| 454 | if (auto *BO = dyn_cast<BinaryOperator>(Val: V)) { |
| 455 | if (BO->getOpcode() == Instruction::Add) { |
| 456 | // Simple case. Single use, just push its operands to the worklist. |
| 457 | if (BO->hasNUses(N: BO == Root ? 2 : 1)) { |
| 458 | append_range(C&: Worklist, R: BO->operands()); |
| 459 | continue; |
| 460 | } |
| 461 | |
| 462 | // If there is additional use, make sure it is an unvisited phi that |
| 463 | // gets us back to this node. |
| 464 | if (BO->hasNUses(N: BO == Root ? 3 : 2)) { |
| 465 | PHINode *PN = nullptr; |
| 466 | for (auto *U : BO->users()) |
| 467 | if (auto *P = dyn_cast<PHINode>(Val: U)) |
| 468 | if (!Visited.count(Ptr: P)) |
| 469 | PN = P; |
| 470 | |
| 471 | // If we didn't find a 2-input PHI then this isn't a case we can |
| 472 | // handle. |
| 473 | if (!PN || PN->getNumIncomingValues() != 2) |
| 474 | continue; |
| 475 | |
| 476 | // Walk forward from this phi to see if it reaches back to this add. |
| 477 | if (!isReachableFromPHI(Phi: PN, BO)) |
| 478 | continue; |
| 479 | |
| 480 | // The phi forms a loop with this Add, push its operands. |
| 481 | append_range(C&: Worklist, R: BO->operands()); |
| 482 | } |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | // Not an add or phi, make it a leaf. |
| 487 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
| 488 | if (!V->hasNUses(N: I == Root ? 2 : 1)) |
| 489 | continue; |
| 490 | |
| 491 | // Add this as a leaf. |
| 492 | Leaves.push_back(Elt: I); |
| 493 | } |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | bool X86PartialReduction::runOnFunction(Function &F) { |
| 498 | if (skipFunction(F)) |
| 499 | return false; |
| 500 | |
| 501 | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| 502 | if (!TPC) |
| 503 | return false; |
| 504 | |
| 505 | auto &TM = TPC->getTM<X86TargetMachine>(); |
| 506 | ST = TM.getSubtargetImpl(F); |
| 507 | |
| 508 | DL = &F.getDataLayout(); |
| 509 | |
| 510 | bool MadeChange = false; |
| 511 | for (auto &BB : F) { |
| 512 | for (auto &I : BB) { |
| 513 | auto *EE = dyn_cast<ExtractElementInst>(Val: &I); |
| 514 | if (!EE) |
| 515 | continue; |
| 516 | |
| 517 | bool ReduceInOneBB; |
| 518 | // First find a reduction tree. |
| 519 | // FIXME: Do we need to handle other opcodes than Add? |
| 520 | Value *Root = matchAddReduction(EE: *EE, ReduceInOneBB); |
| 521 | if (!Root) |
| 522 | continue; |
| 523 | |
| 524 | SmallVector<Instruction *, 8> Leaves; |
| 525 | collectLeaves(Root, Leaves); |
| 526 | |
| 527 | for (Instruction *I : Leaves) { |
| 528 | if (tryMAddReplacement(Op: I, ReduceInOneBB)) { |
| 529 | MadeChange = true; |
| 530 | continue; |
| 531 | } |
| 532 | |
| 533 | // Don't do SAD matching on the root node. SelectionDAG already |
| 534 | // has support for that and currently generates better code. |
| 535 | if (I != Root && trySADReplacement(Op: I)) |
| 536 | MadeChange = true; |
| 537 | } |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | return MadeChange; |
| 542 | } |
| 543 | |