1 | //===- TruncInstCombine.cpp -----------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // TruncInstCombine - looks for expression graphs post-dominated by TruncInst |
10 | // and for each eligible graph, it will create a reduced bit-width expression, |
11 | // replace the old expression with this new one and remove the old expression. |
12 | // Eligible expression graph is such that: |
13 | // 1. Contains only supported instructions. |
14 | // 2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value. |
15 | // 3. Can be evaluated into type with reduced legal bit-width. |
16 | // 4. All instructions in the graph must not have users outside the graph. |
17 | // The only exception is for {ZExt, SExt}Inst with operand type equal to |
18 | // the new reduced type evaluated in (3). |
19 | // |
20 | // The motivation for this optimization is that evaluating and expression using |
21 | // smaller bit-width is preferable, especially for vectorization where we can |
22 | // fit more values in one vectorized instruction. In addition, this optimization |
23 | // may decrease the number of cast instructions, but will not increase it. |
24 | // |
25 | //===----------------------------------------------------------------------===// |
26 | |
27 | #include "AggressiveInstCombineInternal.h" |
28 | #include "llvm/ADT/STLExtras.h" |
29 | #include "llvm/ADT/Statistic.h" |
30 | #include "llvm/Analysis/ConstantFolding.h" |
31 | #include "llvm/IR/DataLayout.h" |
32 | #include "llvm/IR/Dominators.h" |
33 | #include "llvm/IR/IRBuilder.h" |
34 | #include "llvm/IR/Instruction.h" |
35 | #include "llvm/Support/KnownBits.h" |
36 | |
37 | using namespace llvm; |
38 | |
39 | #define DEBUG_TYPE "aggressive-instcombine" |
40 | |
41 | STATISTIC(NumExprsReduced, "Number of truncations eliminated by reducing bit " |
42 | "width of expression graph" ); |
43 | STATISTIC(NumInstrsReduced, |
44 | "Number of instructions whose bit width was reduced" ); |
45 | |
46 | /// Given an instruction and a container, it fills all the relevant operands of |
47 | /// that instruction, with respect to the Trunc expression graph optimizaton. |
48 | static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) { |
49 | unsigned Opc = I->getOpcode(); |
50 | switch (Opc) { |
51 | case Instruction::Trunc: |
52 | case Instruction::ZExt: |
53 | case Instruction::SExt: |
54 | // These CastInst are considered leaves of the evaluated expression, thus, |
55 | // their operands are not relevent. |
56 | break; |
57 | case Instruction::Add: |
58 | case Instruction::Sub: |
59 | case Instruction::Mul: |
60 | case Instruction::And: |
61 | case Instruction::Or: |
62 | case Instruction::Xor: |
63 | case Instruction::Shl: |
64 | case Instruction::LShr: |
65 | case Instruction::AShr: |
66 | case Instruction::UDiv: |
67 | case Instruction::URem: |
68 | case Instruction::InsertElement: |
69 | Ops.push_back(Elt: I->getOperand(i: 0)); |
70 | Ops.push_back(Elt: I->getOperand(i: 1)); |
71 | break; |
72 | case Instruction::ExtractElement: |
73 | Ops.push_back(Elt: I->getOperand(i: 0)); |
74 | break; |
75 | case Instruction::Select: |
76 | Ops.push_back(Elt: I->getOperand(i: 1)); |
77 | Ops.push_back(Elt: I->getOperand(i: 2)); |
78 | break; |
79 | case Instruction::PHI: |
80 | llvm::append_range(C&: Ops, R: cast<PHINode>(Val: I)->incoming_values()); |
81 | break; |
82 | default: |
83 | llvm_unreachable("Unreachable!" ); |
84 | } |
85 | } |
86 | |
87 | bool TruncInstCombine::buildTruncExpressionGraph() { |
88 | SmallVector<Value *, 8> Worklist; |
89 | SmallVector<Instruction *, 8> Stack; |
90 | // Clear old instructions info. |
91 | InstInfoMap.clear(); |
92 | |
93 | Worklist.push_back(Elt: CurrentTruncInst->getOperand(i_nocapture: 0)); |
94 | |
95 | while (!Worklist.empty()) { |
96 | Value *Curr = Worklist.back(); |
97 | |
98 | if (isa<Constant>(Val: Curr)) { |
99 | Worklist.pop_back(); |
100 | continue; |
101 | } |
102 | |
103 | auto *I = dyn_cast<Instruction>(Val: Curr); |
104 | if (!I) |
105 | return false; |
106 | |
107 | if (!Stack.empty() && Stack.back() == I) { |
108 | // Already handled all instruction operands, can remove it from both the |
109 | // Worklist and the Stack, and add it to the instruction info map. |
110 | Worklist.pop_back(); |
111 | Stack.pop_back(); |
112 | // Insert I to the Info map. |
113 | InstInfoMap.try_emplace(Key: I); |
114 | continue; |
115 | } |
116 | |
117 | if (InstInfoMap.count(Key: I)) { |
118 | Worklist.pop_back(); |
119 | continue; |
120 | } |
121 | |
122 | // Add the instruction to the stack before start handling its operands. |
123 | Stack.push_back(Elt: I); |
124 | |
125 | unsigned Opc = I->getOpcode(); |
126 | switch (Opc) { |
127 | case Instruction::Trunc: |
128 | case Instruction::ZExt: |
129 | case Instruction::SExt: |
130 | // trunc(trunc(x)) -> trunc(x) |
131 | // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest |
132 | // trunc(ext(x)) -> trunc(x) if the source type is larger than the new |
133 | // dest |
134 | break; |
135 | case Instruction::Add: |
136 | case Instruction::Sub: |
137 | case Instruction::Mul: |
138 | case Instruction::And: |
139 | case Instruction::Or: |
140 | case Instruction::Xor: |
141 | case Instruction::Shl: |
142 | case Instruction::LShr: |
143 | case Instruction::AShr: |
144 | case Instruction::UDiv: |
145 | case Instruction::URem: |
146 | case Instruction::InsertElement: |
147 | case Instruction::ExtractElement: |
148 | case Instruction::Select: { |
149 | SmallVector<Value *, 2> Operands; |
150 | getRelevantOperands(I, Ops&: Operands); |
151 | append_range(C&: Worklist, R&: Operands); |
152 | break; |
153 | } |
154 | case Instruction::PHI: { |
155 | SmallVector<Value *, 2> Operands; |
156 | getRelevantOperands(I, Ops&: Operands); |
157 | // Add only operands not in Stack to prevent cycle |
158 | for (auto *Op : Operands) |
159 | if (!llvm::is_contained(Range&: Stack, Element: Op)) |
160 | Worklist.push_back(Elt: Op); |
161 | break; |
162 | } |
163 | default: |
164 | // TODO: Can handle more cases here: |
165 | // 1. shufflevector |
166 | // 2. sdiv, srem |
167 | // ... |
168 | return false; |
169 | } |
170 | } |
171 | return true; |
172 | } |
173 | |
174 | unsigned TruncInstCombine::getMinBitWidth() { |
175 | SmallVector<Value *, 8> Worklist; |
176 | SmallVector<Instruction *, 8> Stack; |
177 | |
178 | Value *Src = CurrentTruncInst->getOperand(i_nocapture: 0); |
179 | Type *DstTy = CurrentTruncInst->getType(); |
180 | unsigned TruncBitWidth = DstTy->getScalarSizeInBits(); |
181 | unsigned OrigBitWidth = |
182 | CurrentTruncInst->getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits(); |
183 | |
184 | if (isa<Constant>(Val: Src)) |
185 | return TruncBitWidth; |
186 | |
187 | Worklist.push_back(Elt: Src); |
188 | InstInfoMap[cast<Instruction>(Val: Src)].ValidBitWidth = TruncBitWidth; |
189 | |
190 | while (!Worklist.empty()) { |
191 | Value *Curr = Worklist.back(); |
192 | |
193 | if (isa<Constant>(Val: Curr)) { |
194 | Worklist.pop_back(); |
195 | continue; |
196 | } |
197 | |
198 | // Otherwise, it must be an instruction. |
199 | auto *I = cast<Instruction>(Val: Curr); |
200 | |
201 | auto &Info = InstInfoMap[I]; |
202 | |
203 | SmallVector<Value *, 2> Operands; |
204 | getRelevantOperands(I, Ops&: Operands); |
205 | |
206 | if (!Stack.empty() && Stack.back() == I) { |
207 | // Already handled all instruction operands, can remove it from both, the |
208 | // Worklist and the Stack, and update MinBitWidth. |
209 | Worklist.pop_back(); |
210 | Stack.pop_back(); |
211 | for (auto *Operand : Operands) |
212 | if (auto *IOp = dyn_cast<Instruction>(Val: Operand)) |
213 | Info.MinBitWidth = |
214 | std::max(a: Info.MinBitWidth, b: InstInfoMap[IOp].MinBitWidth); |
215 | continue; |
216 | } |
217 | |
218 | // Add the instruction to the stack before start handling its operands. |
219 | Stack.push_back(Elt: I); |
220 | unsigned ValidBitWidth = Info.ValidBitWidth; |
221 | |
222 | // Update minimum bit-width before handling its operands. This is required |
223 | // when the instruction is part of a loop. |
224 | Info.MinBitWidth = std::max(a: Info.MinBitWidth, b: Info.ValidBitWidth); |
225 | |
226 | for (auto *Operand : Operands) |
227 | if (auto *IOp = dyn_cast<Instruction>(Val: Operand)) { |
228 | // If we already calculated the minimum bit-width for this valid |
229 | // bit-width, or for a smaller valid bit-width, then just keep the |
230 | // answer we already calculated. |
231 | unsigned IOpBitwidth = InstInfoMap.lookup(Key: IOp).ValidBitWidth; |
232 | if (IOpBitwidth >= ValidBitWidth) |
233 | continue; |
234 | InstInfoMap[IOp].ValidBitWidth = ValidBitWidth; |
235 | Worklist.push_back(Elt: IOp); |
236 | } |
237 | } |
238 | unsigned MinBitWidth = InstInfoMap.lookup(Key: cast<Instruction>(Val: Src)).MinBitWidth; |
239 | assert(MinBitWidth >= TruncBitWidth); |
240 | |
241 | if (MinBitWidth > TruncBitWidth) { |
242 | // In this case reducing expression with vector type might generate a new |
243 | // vector type, which is not preferable as it might result in generating |
244 | // sub-optimal code. |
245 | if (DstTy->isVectorTy()) |
246 | return OrigBitWidth; |
247 | // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth). |
248 | Type *Ty = DL.getSmallestLegalIntType(C&: DstTy->getContext(), Width: MinBitWidth); |
249 | // Update minimum bit-width with the new destination type bit-width if |
250 | // succeeded to find such, otherwise, with original bit-width. |
251 | MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth; |
252 | } else { // MinBitWidth == TruncBitWidth |
253 | // In this case the expression can be evaluated with the trunc instruction |
254 | // destination type, and trunc instruction can be omitted. However, we |
255 | // should not perform the evaluation if the original type is a legal scalar |
256 | // type and the target type is illegal. |
257 | bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(Width: OrigBitWidth); |
258 | bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(Width: MinBitWidth); |
259 | if (!DstTy->isVectorTy() && FromLegal && !ToLegal) |
260 | return OrigBitWidth; |
261 | } |
262 | return MinBitWidth; |
263 | } |
264 | |
265 | Type *TruncInstCombine::getBestTruncatedType() { |
266 | if (!buildTruncExpressionGraph()) |
267 | return nullptr; |
268 | |
269 | // We don't want to duplicate instructions, which isn't profitable. Thus, we |
270 | // can't shrink something that has multiple users, unless all users are |
271 | // post-dominated by the trunc instruction, i.e., were visited during the |
272 | // expression evaluation. |
273 | unsigned DesiredBitWidth = 0; |
274 | for (auto Itr : InstInfoMap) { |
275 | Instruction *I = Itr.first; |
276 | if (I->hasOneUse()) |
277 | continue; |
278 | bool IsExtInst = (isa<ZExtInst>(Val: I) || isa<SExtInst>(Val: I)); |
279 | for (auto *U : I->users()) |
280 | if (auto *UI = dyn_cast<Instruction>(Val: U)) |
281 | if (UI != CurrentTruncInst && !InstInfoMap.count(Key: UI)) { |
282 | if (!IsExtInst) |
283 | return nullptr; |
284 | // If this is an extension from the dest type, we can eliminate it, |
285 | // even if it has multiple users. Thus, update the DesiredBitWidth and |
286 | // validate all extension instructions agrees on same DesiredBitWidth. |
287 | unsigned ExtInstBitWidth = |
288 | I->getOperand(i: 0)->getType()->getScalarSizeInBits(); |
289 | if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth) |
290 | return nullptr; |
291 | DesiredBitWidth = ExtInstBitWidth; |
292 | } |
293 | } |
294 | |
295 | unsigned OrigBitWidth = |
296 | CurrentTruncInst->getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits(); |
297 | |
298 | // Initialize MinBitWidth for shift instructions with the minimum number |
299 | // that is greater than shift amount (i.e. shift amount + 1). |
300 | // For `lshr` adjust MinBitWidth so that all potentially truncated |
301 | // bits of the value-to-be-shifted are zeros. |
302 | // For `ashr` adjust MinBitWidth so that all potentially truncated |
303 | // bits of the value-to-be-shifted are sign bits (all zeros or ones) |
304 | // and even one (first) untruncated bit is sign bit. |
305 | // Exit early if MinBitWidth is not less than original bitwidth. |
306 | for (auto &Itr : InstInfoMap) { |
307 | Instruction *I = Itr.first; |
308 | if (I->isShift()) { |
309 | KnownBits KnownRHS = computeKnownBits(V: I->getOperand(i: 1)); |
310 | unsigned MinBitWidth = KnownRHS.getMaxValue() |
311 | .uadd_sat(RHS: APInt(OrigBitWidth, 1)) |
312 | .getLimitedValue(Limit: OrigBitWidth); |
313 | if (MinBitWidth == OrigBitWidth) |
314 | return nullptr; |
315 | if (I->getOpcode() == Instruction::LShr) { |
316 | KnownBits KnownLHS = computeKnownBits(V: I->getOperand(i: 0)); |
317 | MinBitWidth = |
318 | std::max(a: MinBitWidth, b: KnownLHS.getMaxValue().getActiveBits()); |
319 | } |
320 | if (I->getOpcode() == Instruction::AShr) { |
321 | unsigned NumSignBits = ComputeNumSignBits(V: I->getOperand(i: 0)); |
322 | MinBitWidth = std::max(a: MinBitWidth, b: OrigBitWidth - NumSignBits + 1); |
323 | } |
324 | if (MinBitWidth >= OrigBitWidth) |
325 | return nullptr; |
326 | Itr.second.MinBitWidth = MinBitWidth; |
327 | } |
328 | if (I->getOpcode() == Instruction::UDiv || |
329 | I->getOpcode() == Instruction::URem) { |
330 | unsigned MinBitWidth = 0; |
331 | for (const auto &Op : I->operands()) { |
332 | KnownBits Known = computeKnownBits(V: Op); |
333 | MinBitWidth = |
334 | std::max(a: Known.getMaxValue().getActiveBits(), b: MinBitWidth); |
335 | if (MinBitWidth >= OrigBitWidth) |
336 | return nullptr; |
337 | } |
338 | Itr.second.MinBitWidth = MinBitWidth; |
339 | } |
340 | } |
341 | |
342 | // Calculate minimum allowed bit-width allowed for shrinking the currently |
343 | // visited truncate's operand. |
344 | unsigned MinBitWidth = getMinBitWidth(); |
345 | |
346 | // Check that we can shrink to smaller bit-width than original one and that |
347 | // it is similar to the DesiredBitWidth is such exists. |
348 | if (MinBitWidth >= OrigBitWidth || |
349 | (DesiredBitWidth && DesiredBitWidth != MinBitWidth)) |
350 | return nullptr; |
351 | |
352 | return IntegerType::get(C&: CurrentTruncInst->getContext(), NumBits: MinBitWidth); |
353 | } |
354 | |
355 | /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type |
356 | /// for \p V, according to its type, if it vector type, return the vector |
357 | /// version of \p Ty, otherwise return \p Ty. |
358 | static Type *getReducedType(Value *V, Type *Ty) { |
359 | assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type" ); |
360 | if (auto *VTy = dyn_cast<VectorType>(Val: V->getType())) |
361 | return VectorType::get(ElementType: Ty, EC: VTy->getElementCount()); |
362 | return Ty; |
363 | } |
364 | |
365 | Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) { |
366 | Type *Ty = getReducedType(V, Ty: SclTy); |
367 | if (auto *C = dyn_cast<Constant>(Val: V)) { |
368 | C = ConstantExpr::getTrunc(C, Ty); |
369 | // If we got a constantexpr back, try to simplify it with DL info. |
370 | return ConstantFoldConstant(C, DL, TLI: &TLI); |
371 | } |
372 | |
373 | auto *I = cast<Instruction>(Val: V); |
374 | Info Entry = InstInfoMap.lookup(Key: I); |
375 | assert(Entry.NewValue); |
376 | return Entry.NewValue; |
377 | } |
378 | |
379 | void TruncInstCombine::ReduceExpressionGraph(Type *SclTy) { |
380 | NumInstrsReduced += InstInfoMap.size(); |
381 | // Pairs of old and new phi-nodes |
382 | SmallVector<std::pair<PHINode *, PHINode *>, 2> OldNewPHINodes; |
383 | for (auto &Itr : InstInfoMap) { // Forward |
384 | Instruction *I = Itr.first; |
385 | TruncInstCombine::Info &NodeInfo = Itr.second; |
386 | |
387 | assert(!NodeInfo.NewValue && "Instruction has been evaluated" ); |
388 | |
389 | IRBuilder<> Builder(I); |
390 | Value *Res = nullptr; |
391 | unsigned Opc = I->getOpcode(); |
392 | switch (Opc) { |
393 | case Instruction::Trunc: |
394 | case Instruction::ZExt: |
395 | case Instruction::SExt: { |
396 | Type *Ty = getReducedType(V: I, Ty: SclTy); |
397 | // If the source type of the cast is the type we're trying for then we can |
398 | // just return the source. There's no need to insert it because it is not |
399 | // new. |
400 | if (I->getOperand(i: 0)->getType() == Ty) { |
401 | assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst" ); |
402 | NodeInfo.NewValue = I->getOperand(i: 0); |
403 | continue; |
404 | } |
405 | // Otherwise, must be the same type of cast, so just reinsert a new one. |
406 | // This also handles the case of zext(trunc(x)) -> zext(x). |
407 | Res = Builder.CreateIntCast(V: I->getOperand(i: 0), DestTy: Ty, |
408 | isSigned: Opc == Instruction::SExt); |
409 | |
410 | // Update Worklist entries with new value if needed. |
411 | // There are three possible changes to the Worklist: |
412 | // 1. Update Old-TruncInst -> New-TruncInst. |
413 | // 2. Remove Old-TruncInst (if New node is not TruncInst). |
414 | // 3. Add New-TruncInst (if Old node was not TruncInst). |
415 | auto *Entry = find(Range&: Worklist, Val: I); |
416 | if (Entry != Worklist.end()) { |
417 | if (auto *NewCI = dyn_cast<TruncInst>(Val: Res)) |
418 | *Entry = NewCI; |
419 | else |
420 | Worklist.erase(CI: Entry); |
421 | } else if (auto *NewCI = dyn_cast<TruncInst>(Val: Res)) |
422 | Worklist.push_back(Elt: NewCI); |
423 | break; |
424 | } |
425 | case Instruction::Add: |
426 | case Instruction::Sub: |
427 | case Instruction::Mul: |
428 | case Instruction::And: |
429 | case Instruction::Or: |
430 | case Instruction::Xor: |
431 | case Instruction::Shl: |
432 | case Instruction::LShr: |
433 | case Instruction::AShr: |
434 | case Instruction::UDiv: |
435 | case Instruction::URem: { |
436 | Value *LHS = getReducedOperand(V: I->getOperand(i: 0), SclTy); |
437 | Value *RHS = getReducedOperand(V: I->getOperand(i: 1), SclTy); |
438 | Res = Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Opc, LHS, RHS); |
439 | // Preserve `exact` flag since truncation doesn't change exactness |
440 | if (auto *PEO = dyn_cast<PossiblyExactOperator>(Val: I)) |
441 | if (auto *ResI = dyn_cast<Instruction>(Val: Res)) |
442 | ResI->setIsExact(PEO->isExact()); |
443 | break; |
444 | } |
445 | case Instruction::ExtractElement: { |
446 | Value *Vec = getReducedOperand(V: I->getOperand(i: 0), SclTy); |
447 | Value *Idx = I->getOperand(i: 1); |
448 | Res = Builder.CreateExtractElement(Vec, Idx); |
449 | break; |
450 | } |
451 | case Instruction::InsertElement: { |
452 | Value *Vec = getReducedOperand(V: I->getOperand(i: 0), SclTy); |
453 | Value *NewElt = getReducedOperand(V: I->getOperand(i: 1), SclTy); |
454 | Value *Idx = I->getOperand(i: 2); |
455 | Res = Builder.CreateInsertElement(Vec, NewElt, Idx); |
456 | break; |
457 | } |
458 | case Instruction::Select: { |
459 | Value *Op0 = I->getOperand(i: 0); |
460 | Value *LHS = getReducedOperand(V: I->getOperand(i: 1), SclTy); |
461 | Value *RHS = getReducedOperand(V: I->getOperand(i: 2), SclTy); |
462 | Res = Builder.CreateSelect(C: Op0, True: LHS, False: RHS); |
463 | break; |
464 | } |
465 | case Instruction::PHI: { |
466 | Res = Builder.CreatePHI(Ty: getReducedType(V: I, Ty: SclTy), NumReservedValues: I->getNumOperands()); |
467 | OldNewPHINodes.push_back( |
468 | Elt: std::make_pair(x: cast<PHINode>(Val: I), y: cast<PHINode>(Val: Res))); |
469 | break; |
470 | } |
471 | default: |
472 | llvm_unreachable("Unhandled instruction" ); |
473 | } |
474 | |
475 | NodeInfo.NewValue = Res; |
476 | if (auto *ResI = dyn_cast<Instruction>(Val: Res)) |
477 | ResI->takeName(V: I); |
478 | } |
479 | |
480 | for (auto &Node : OldNewPHINodes) { |
481 | PHINode *OldPN = Node.first; |
482 | PHINode *NewPN = Node.second; |
483 | for (auto Incoming : zip(t: OldPN->incoming_values(), u: OldPN->blocks())) |
484 | NewPN->addIncoming(V: getReducedOperand(V: std::get<0>(t&: Incoming), SclTy), |
485 | BB: std::get<1>(t&: Incoming)); |
486 | } |
487 | |
488 | Value *Res = getReducedOperand(V: CurrentTruncInst->getOperand(i_nocapture: 0), SclTy); |
489 | Type *DstTy = CurrentTruncInst->getType(); |
490 | if (Res->getType() != DstTy) { |
491 | IRBuilder<> Builder(CurrentTruncInst); |
492 | Res = Builder.CreateIntCast(V: Res, DestTy: DstTy, isSigned: false); |
493 | if (auto *ResI = dyn_cast<Instruction>(Val: Res)) |
494 | ResI->takeName(V: CurrentTruncInst); |
495 | } |
496 | CurrentTruncInst->replaceAllUsesWith(V: Res); |
497 | |
498 | // Erase old expression graph, which was replaced by the reduced expression |
499 | // graph. |
500 | CurrentTruncInst->eraseFromParent(); |
501 | // First, erase old phi-nodes and its uses |
502 | for (auto &Node : OldNewPHINodes) { |
503 | PHINode *OldPN = Node.first; |
504 | OldPN->replaceAllUsesWith(V: PoisonValue::get(T: OldPN->getType())); |
505 | InstInfoMap.erase(Key: OldPN); |
506 | OldPN->eraseFromParent(); |
507 | } |
508 | // Now we have expression graph turned into dag. |
509 | // We iterate backward, which means we visit the instruction before we |
510 | // visit any of its operands, this way, when we get to the operand, we already |
511 | // removed the instructions (from the expression dag) that uses it. |
512 | for (auto &I : llvm::reverse(C&: InstInfoMap)) { |
513 | // We still need to check that the instruction has no users before we erase |
514 | // it, because {SExt, ZExt}Inst Instruction might have other users that was |
515 | // not reduced, in such case, we need to keep that instruction. |
516 | if (I.first->use_empty()) |
517 | I.first->eraseFromParent(); |
518 | else |
519 | assert((isa<SExtInst>(I.first) || isa<ZExtInst>(I.first)) && |
520 | "Only {SExt, ZExt}Inst might have unreduced users" ); |
521 | } |
522 | } |
523 | |
524 | bool TruncInstCombine::run(Function &F) { |
525 | bool MadeIRChange = false; |
526 | |
527 | // Collect all TruncInst in the function into the Worklist for evaluating. |
528 | for (auto &BB : F) { |
529 | // Ignore unreachable basic block. |
530 | if (!DT.isReachableFromEntry(A: &BB)) |
531 | continue; |
532 | for (auto &I : BB) |
533 | if (auto *CI = dyn_cast<TruncInst>(Val: &I)) |
534 | Worklist.push_back(Elt: CI); |
535 | } |
536 | |
537 | // Process all TruncInst in the Worklist, for each instruction: |
538 | // 1. Check if it dominates an eligible expression graph to be reduced. |
539 | // 2. Create a reduced expression graph and replace the old one with it. |
540 | while (!Worklist.empty()) { |
541 | CurrentTruncInst = Worklist.pop_back_val(); |
542 | |
543 | if (Type *NewDstSclTy = getBestTruncatedType()) { |
544 | LLVM_DEBUG( |
545 | dbgs() << "ICE: TruncInstCombine reducing type of expression graph " |
546 | "dominated by: " |
547 | << CurrentTruncInst << '\n'); |
548 | ReduceExpressionGraph(SclTy: NewDstSclTy); |
549 | ++NumExprsReduced; |
550 | MadeIRChange = true; |
551 | } |
552 | } |
553 | |
554 | return MadeIRChange; |
555 | } |
556 | |