| 1 | //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // OpenMP specific optimizations: |
| 10 | // |
| 11 | // - Deduplication of runtime calls, e.g., omp_get_thread_num. |
| 12 | // - Replacing globalized device memory with stack memory. |
| 13 | // - Replacing globalized device memory with shared memory. |
| 14 | // - Parallel region merging. |
| 15 | // - Transforming generic-mode device kernels to SPMD mode. |
| 16 | // - Specializing the state machine for generic-mode device kernels. |
| 17 | // |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | |
| 20 | #include "llvm/Transforms/IPO/OpenMPOpt.h" |
| 21 | |
| 22 | #include "llvm/ADT/DenseSet.h" |
| 23 | #include "llvm/ADT/EnumeratedArray.h" |
| 24 | #include "llvm/ADT/PostOrderIterator.h" |
| 25 | #include "llvm/ADT/SetVector.h" |
| 26 | #include "llvm/ADT/SmallPtrSet.h" |
| 27 | #include "llvm/ADT/SmallVector.h" |
| 28 | #include "llvm/ADT/Statistic.h" |
| 29 | #include "llvm/ADT/StringExtras.h" |
| 30 | #include "llvm/ADT/StringRef.h" |
| 31 | #include "llvm/Analysis/CallGraph.h" |
| 32 | #include "llvm/Analysis/MemoryLocation.h" |
| 33 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 34 | #include "llvm/Analysis/ValueTracking.h" |
| 35 | #include "llvm/Frontend/OpenMP/OMPConstants.h" |
| 36 | #include "llvm/Frontend/OpenMP/OMPDeviceConstants.h" |
| 37 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
| 38 | #include "llvm/IR/Assumptions.h" |
| 39 | #include "llvm/IR/BasicBlock.h" |
| 40 | #include "llvm/IR/Constants.h" |
| 41 | #include "llvm/IR/DiagnosticInfo.h" |
| 42 | #include "llvm/IR/Dominators.h" |
| 43 | #include "llvm/IR/Function.h" |
| 44 | #include "llvm/IR/GlobalValue.h" |
| 45 | #include "llvm/IR/GlobalVariable.h" |
| 46 | #include "llvm/IR/InstrTypes.h" |
| 47 | #include "llvm/IR/Instruction.h" |
| 48 | #include "llvm/IR/Instructions.h" |
| 49 | #include "llvm/IR/IntrinsicInst.h" |
| 50 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 51 | #include "llvm/IR/IntrinsicsNVPTX.h" |
| 52 | #include "llvm/IR/LLVMContext.h" |
| 53 | #include "llvm/Support/Casting.h" |
| 54 | #include "llvm/Support/CommandLine.h" |
| 55 | #include "llvm/Support/Debug.h" |
| 56 | #include "llvm/Transforms/IPO/Attributor.h" |
| 57 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 58 | #include "llvm/Transforms/Utils/CallGraphUpdater.h" |
| 59 | |
| 60 | #include <algorithm> |
| 61 | #include <optional> |
| 62 | #include <string> |
| 63 | |
| 64 | using namespace llvm; |
| 65 | using namespace omp; |
| 66 | |
| 67 | #define DEBUG_TYPE "openmp-opt" |
| 68 | |
| 69 | static cl::opt<bool> DisableOpenMPOptimizations( |
| 70 | "openmp-opt-disable" , cl::desc("Disable OpenMP specific optimizations." ), |
| 71 | cl::Hidden, cl::init(Val: false)); |
| 72 | |
| 73 | static cl::opt<bool> EnableParallelRegionMerging( |
| 74 | "openmp-opt-enable-merging" , |
| 75 | cl::desc("Enable the OpenMP region merging optimization." ), cl::Hidden, |
| 76 | cl::init(Val: false)); |
| 77 | |
| 78 | static cl::opt<bool> |
| 79 | DisableInternalization("openmp-opt-disable-internalization" , |
| 80 | cl::desc("Disable function internalization." ), |
| 81 | cl::Hidden, cl::init(Val: false)); |
| 82 | |
| 83 | static cl::opt<bool> DeduceICVValues("openmp-deduce-icv-values" , |
| 84 | cl::init(Val: false), cl::Hidden); |
| 85 | static cl::opt<bool> PrintICVValues("openmp-print-icv-values" , cl::init(Val: false), |
| 86 | cl::Hidden); |
| 87 | static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels" , |
| 88 | cl::init(Val: false), cl::Hidden); |
| 89 | |
| 90 | static cl::opt<bool> HideMemoryTransferLatency( |
| 91 | "openmp-hide-memory-transfer-latency" , |
| 92 | cl::desc("[WIP] Tries to hide the latency of host to device memory" |
| 93 | " transfers" ), |
| 94 | cl::Hidden, cl::init(Val: false)); |
| 95 | |
| 96 | static cl::opt<bool> DisableOpenMPOptDeglobalization( |
| 97 | "openmp-opt-disable-deglobalization" , |
| 98 | cl::desc("Disable OpenMP optimizations involving deglobalization." ), |
| 99 | cl::Hidden, cl::init(Val: false)); |
| 100 | |
| 101 | static cl::opt<bool> DisableOpenMPOptSPMDization( |
| 102 | "openmp-opt-disable-spmdization" , |
| 103 | cl::desc("Disable OpenMP optimizations involving SPMD-ization." ), |
| 104 | cl::Hidden, cl::init(Val: false)); |
| 105 | |
| 106 | static cl::opt<bool> DisableOpenMPOptFolding( |
| 107 | "openmp-opt-disable-folding" , |
| 108 | cl::desc("Disable OpenMP optimizations involving folding." ), cl::Hidden, |
| 109 | cl::init(Val: false)); |
| 110 | |
| 111 | static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( |
| 112 | "openmp-opt-disable-state-machine-rewrite" , |
| 113 | cl::desc("Disable OpenMP optimizations that replace the state machine." ), |
| 114 | cl::Hidden, cl::init(Val: false)); |
| 115 | |
| 116 | static cl::opt<bool> DisableOpenMPOptBarrierElimination( |
| 117 | "openmp-opt-disable-barrier-elimination" , |
| 118 | cl::desc("Disable OpenMP optimizations that eliminate barriers." ), |
| 119 | cl::Hidden, cl::init(Val: false)); |
| 120 | |
| 121 | static cl::opt<bool> PrintModuleAfterOptimizations( |
| 122 | "openmp-opt-print-module-after" , |
| 123 | cl::desc("Print the current module after OpenMP optimizations." ), |
| 124 | cl::Hidden, cl::init(Val: false)); |
| 125 | |
| 126 | static cl::opt<bool> PrintModuleBeforeOptimizations( |
| 127 | "openmp-opt-print-module-before" , |
| 128 | cl::desc("Print the current module before OpenMP optimizations." ), |
| 129 | cl::Hidden, cl::init(Val: false)); |
| 130 | |
| 131 | static cl::opt<bool> AlwaysInlineDeviceFunctions( |
| 132 | "openmp-opt-inline-device" , |
| 133 | cl::desc("Inline all applicable functions on the device." ), cl::Hidden, |
| 134 | cl::init(Val: false)); |
| 135 | |
| 136 | static cl::opt<bool> |
| 137 | ("openmp-opt-verbose-remarks" , |
| 138 | cl::desc("Enables more verbose remarks." ), cl::Hidden, |
| 139 | cl::init(Val: false)); |
| 140 | |
| 141 | static cl::opt<unsigned> |
| 142 | SetFixpointIterations("openmp-opt-max-iterations" , cl::Hidden, |
| 143 | cl::desc("Maximal number of attributor iterations." ), |
| 144 | cl::init(Val: 256)); |
| 145 | |
| 146 | static cl::opt<unsigned> |
| 147 | SharedMemoryLimit("openmp-opt-shared-limit" , cl::Hidden, |
| 148 | cl::desc("Maximum amount of shared memory to use." ), |
| 149 | cl::init(Val: std::numeric_limits<unsigned>::max())); |
| 150 | |
| 151 | STATISTIC(NumOpenMPRuntimeCallsDeduplicated, |
| 152 | "Number of OpenMP runtime calls deduplicated" ); |
| 153 | STATISTIC(NumOpenMPParallelRegionsDeleted, |
| 154 | "Number of OpenMP parallel regions deleted" ); |
| 155 | STATISTIC(NumOpenMPRuntimeFunctionsIdentified, |
| 156 | "Number of OpenMP runtime functions identified" ); |
| 157 | STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, |
| 158 | "Number of OpenMP runtime function uses identified" ); |
| 159 | STATISTIC(NumOpenMPTargetRegionKernels, |
| 160 | "Number of OpenMP target region entry points (=kernels) identified" ); |
| 161 | STATISTIC(NumNonOpenMPTargetRegionKernels, |
| 162 | "Number of non-OpenMP target region kernels identified" ); |
| 163 | STATISTIC(NumOpenMPTargetRegionKernelsSPMD, |
| 164 | "Number of OpenMP target region entry points (=kernels) executed in " |
| 165 | "SPMD-mode instead of generic-mode" ); |
| 166 | STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, |
| 167 | "Number of OpenMP target region entry points (=kernels) executed in " |
| 168 | "generic-mode without a state machines" ); |
| 169 | STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, |
| 170 | "Number of OpenMP target region entry points (=kernels) executed in " |
| 171 | "generic-mode with customized state machines with fallback" ); |
| 172 | STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, |
| 173 | "Number of OpenMP target region entry points (=kernels) executed in " |
| 174 | "generic-mode with customized state machines without fallback" ); |
| 175 | STATISTIC( |
| 176 | NumOpenMPParallelRegionsReplacedInGPUStateMachine, |
| 177 | "Number of OpenMP parallel regions replaced with ID in GPU state machines" ); |
| 178 | STATISTIC(NumOpenMPParallelRegionsMerged, |
| 179 | "Number of OpenMP parallel regions merged" ); |
| 180 | STATISTIC(NumBytesMovedToSharedMemory, |
| 181 | "Amount of memory pushed to shared memory" ); |
| 182 | STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated" ); |
| 183 | |
| 184 | #if !defined(NDEBUG) |
| 185 | static constexpr auto TAG = "[" DEBUG_TYPE "]" ; |
| 186 | #endif |
| 187 | |
| 188 | namespace KernelInfo { |
| 189 | |
| 190 | // struct ConfigurationEnvironmentTy { |
| 191 | // uint8_t UseGenericStateMachine; |
| 192 | // uint8_t MayUseNestedParallelism; |
| 193 | // llvm::omp::OMPTgtExecModeFlags ExecMode; |
| 194 | // int32_t MinThreads; |
| 195 | // int32_t MaxThreads; |
| 196 | // int32_t MinTeams; |
| 197 | // int32_t MaxTeams; |
| 198 | // }; |
| 199 | |
| 200 | // struct DynamicEnvironmentTy { |
| 201 | // uint16_t DebugIndentionLevel; |
| 202 | // }; |
| 203 | |
| 204 | // struct KernelEnvironmentTy { |
| 205 | // ConfigurationEnvironmentTy Configuration; |
| 206 | // IdentTy *Ident; |
| 207 | // DynamicEnvironmentTy *DynamicEnv; |
| 208 | // }; |
| 209 | |
| 210 | #define KERNEL_ENVIRONMENT_IDX(MEMBER, IDX) \ |
| 211 | constexpr const unsigned MEMBER##Idx = IDX; |
| 212 | |
| 213 | KERNEL_ENVIRONMENT_IDX(Configuration, 0) |
| 214 | KERNEL_ENVIRONMENT_IDX(Ident, 1) |
| 215 | |
| 216 | #undef KERNEL_ENVIRONMENT_IDX |
| 217 | |
| 218 | #define KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MEMBER, IDX) \ |
| 219 | constexpr const unsigned MEMBER##Idx = IDX; |
| 220 | |
| 221 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(UseGenericStateMachine, 0) |
| 222 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MayUseNestedParallelism, 1) |
| 223 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(ExecMode, 2) |
| 224 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinThreads, 3) |
| 225 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxThreads, 4) |
| 226 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinTeams, 5) |
| 227 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxTeams, 6) |
| 228 | |
| 229 | #undef KERNEL_ENVIRONMENT_CONFIGURATION_IDX |
| 230 | |
| 231 | #define KERNEL_ENVIRONMENT_GETTER(MEMBER, RETURNTYPE) \ |
| 232 | RETURNTYPE *get##MEMBER##FromKernelEnvironment(ConstantStruct *KernelEnvC) { \ |
| 233 | return cast<RETURNTYPE>(KernelEnvC->getAggregateElement(MEMBER##Idx)); \ |
| 234 | } |
| 235 | |
| 236 | KERNEL_ENVIRONMENT_GETTER(Ident, Constant) |
| 237 | KERNEL_ENVIRONMENT_GETTER(Configuration, ConstantStruct) |
| 238 | |
| 239 | #undef KERNEL_ENVIRONMENT_GETTER |
| 240 | |
| 241 | #define KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MEMBER) \ |
| 242 | ConstantInt *get##MEMBER##FromKernelEnvironment( \ |
| 243 | ConstantStruct *KernelEnvC) { \ |
| 244 | ConstantStruct *ConfigC = \ |
| 245 | getConfigurationFromKernelEnvironment(KernelEnvC); \ |
| 246 | return dyn_cast<ConstantInt>(ConfigC->getAggregateElement(MEMBER##Idx)); \ |
| 247 | } |
| 248 | |
| 249 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(UseGenericStateMachine) |
| 250 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MayUseNestedParallelism) |
| 251 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(ExecMode) |
| 252 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinThreads) |
| 253 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxThreads) |
| 254 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinTeams) |
| 255 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxTeams) |
| 256 | |
| 257 | #undef KERNEL_ENVIRONMENT_CONFIGURATION_GETTER |
| 258 | |
| 259 | GlobalVariable * |
| 260 | getKernelEnvironementGVFromKernelInitCB(CallBase *KernelInitCB) { |
| 261 | constexpr const int InitKernelEnvironmentArgNo = 0; |
| 262 | return cast<GlobalVariable>( |
| 263 | Val: KernelInitCB->getArgOperand(i: InitKernelEnvironmentArgNo) |
| 264 | ->stripPointerCasts()); |
| 265 | } |
| 266 | |
| 267 | ConstantStruct *getKernelEnvironementFromKernelInitCB(CallBase *KernelInitCB) { |
| 268 | GlobalVariable *KernelEnvGV = |
| 269 | getKernelEnvironementGVFromKernelInitCB(KernelInitCB); |
| 270 | return cast<ConstantStruct>(Val: KernelEnvGV->getInitializer()); |
| 271 | } |
| 272 | } // namespace KernelInfo |
| 273 | |
| 274 | namespace { |
| 275 | |
| 276 | struct AAHeapToShared; |
| 277 | |
| 278 | struct AAICVTracker; |
| 279 | |
| 280 | /// OpenMP specific information. For now, stores RFIs and ICVs also needed for |
| 281 | /// Attributor runs. |
| 282 | struct OMPInformationCache : public InformationCache { |
| 283 | OMPInformationCache(Module &M, AnalysisGetter &AG, |
| 284 | BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC, |
| 285 | bool OpenMPPostLink) |
| 286 | : InformationCache(M, AG, Allocator, CGSCC), OMPBuilder(M), |
| 287 | OpenMPPostLink(OpenMPPostLink) { |
| 288 | |
| 289 | OMPBuilder.Config.IsTargetDevice = isOpenMPDevice(M&: OMPBuilder.M); |
| 290 | const Triple T(OMPBuilder.M.getTargetTriple()); |
| 291 | switch (T.getArch()) { |
| 292 | case llvm::Triple::nvptx: |
| 293 | case llvm::Triple::nvptx64: |
| 294 | case llvm::Triple::amdgcn: |
| 295 | assert(OMPBuilder.Config.IsTargetDevice && |
| 296 | "OpenMP AMDGPU/NVPTX is only prepared to deal with device code." ); |
| 297 | OMPBuilder.Config.IsGPU = true; |
| 298 | break; |
| 299 | default: |
| 300 | OMPBuilder.Config.IsGPU = false; |
| 301 | break; |
| 302 | } |
| 303 | OMPBuilder.initialize(); |
| 304 | initializeRuntimeFunctions(M); |
| 305 | initializeInternalControlVars(); |
| 306 | } |
| 307 | |
| 308 | /// Generic information that describes an internal control variable. |
| 309 | struct InternalControlVarInfo { |
| 310 | /// The kind, as described by InternalControlVar enum. |
| 311 | InternalControlVar Kind; |
| 312 | |
| 313 | /// The name of the ICV. |
| 314 | StringRef Name; |
| 315 | |
| 316 | /// Environment variable associated with this ICV. |
| 317 | StringRef EnvVarName; |
| 318 | |
| 319 | /// Initial value kind. |
| 320 | ICVInitValue InitKind; |
| 321 | |
| 322 | /// Initial value. |
| 323 | ConstantInt *InitValue; |
| 324 | |
| 325 | /// Setter RTL function associated with this ICV. |
| 326 | RuntimeFunction Setter; |
| 327 | |
| 328 | /// Getter RTL function associated with this ICV. |
| 329 | RuntimeFunction Getter; |
| 330 | |
| 331 | /// RTL Function corresponding to the override clause of this ICV |
| 332 | RuntimeFunction Clause; |
| 333 | }; |
| 334 | |
| 335 | /// Generic information that describes a runtime function |
| 336 | struct RuntimeFunctionInfo { |
| 337 | |
| 338 | /// The kind, as described by the RuntimeFunction enum. |
| 339 | RuntimeFunction Kind; |
| 340 | |
| 341 | /// The name of the function. |
| 342 | StringRef Name; |
| 343 | |
| 344 | /// Flag to indicate a variadic function. |
| 345 | bool IsVarArg; |
| 346 | |
| 347 | /// The return type of the function. |
| 348 | Type *ReturnType; |
| 349 | |
| 350 | /// The argument types of the function. |
| 351 | SmallVector<Type *, 8> ArgumentTypes; |
| 352 | |
| 353 | /// The declaration if available. |
| 354 | Function *Declaration = nullptr; |
| 355 | |
| 356 | /// Uses of this runtime function per function containing the use. |
| 357 | using UseVector = SmallVector<Use *, 16>; |
| 358 | |
| 359 | /// Clear UsesMap for runtime function. |
| 360 | void clearUsesMap() { UsesMap.clear(); } |
| 361 | |
| 362 | /// Boolean conversion that is true if the runtime function was found. |
| 363 | operator bool() const { return Declaration; } |
| 364 | |
| 365 | /// Return the vector of uses in function \p F. |
| 366 | UseVector &getOrCreateUseVector(Function *F) { |
| 367 | std::shared_ptr<UseVector> &UV = UsesMap[F]; |
| 368 | if (!UV) |
| 369 | UV = std::make_shared<UseVector>(); |
| 370 | return *UV; |
| 371 | } |
| 372 | |
| 373 | /// Return the vector of uses in function \p F or `nullptr` if there are |
| 374 | /// none. |
| 375 | const UseVector *getUseVector(Function &F) const { |
| 376 | auto I = UsesMap.find(Val: &F); |
| 377 | if (I != UsesMap.end()) |
| 378 | return I->second.get(); |
| 379 | return nullptr; |
| 380 | } |
| 381 | |
| 382 | /// Return how many functions contain uses of this runtime function. |
| 383 | size_t getNumFunctionsWithUses() const { return UsesMap.size(); } |
| 384 | |
| 385 | /// Return the number of arguments (or the minimal number for variadic |
| 386 | /// functions). |
| 387 | size_t getNumArgs() const { return ArgumentTypes.size(); } |
| 388 | |
| 389 | /// Run the callback \p CB on each use and forget the use if the result is |
| 390 | /// true. The callback will be fed the function in which the use was |
| 391 | /// encountered as second argument. |
| 392 | void foreachUse(SmallVectorImpl<Function *> &SCC, |
| 393 | function_ref<bool(Use &, Function &)> CB) { |
| 394 | for (Function *F : SCC) |
| 395 | foreachUse(CB, F); |
| 396 | } |
| 397 | |
| 398 | /// Run the callback \p CB on each use within the function \p F and forget |
| 399 | /// the use if the result is true. |
| 400 | void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { |
| 401 | SmallVector<unsigned, 8> ToBeDeleted; |
| 402 | ToBeDeleted.clear(); |
| 403 | |
| 404 | unsigned Idx = 0; |
| 405 | UseVector &UV = getOrCreateUseVector(F); |
| 406 | |
| 407 | for (Use *U : UV) { |
| 408 | if (CB(*U, *F)) |
| 409 | ToBeDeleted.push_back(Elt: Idx); |
| 410 | ++Idx; |
| 411 | } |
| 412 | |
| 413 | // Remove the to-be-deleted indices in reverse order as prior |
| 414 | // modifications will not modify the smaller indices. |
| 415 | while (!ToBeDeleted.empty()) { |
| 416 | unsigned Idx = ToBeDeleted.pop_back_val(); |
| 417 | UV[Idx] = UV.back(); |
| 418 | UV.pop_back(); |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | private: |
| 423 | /// Map from functions to all uses of this runtime function contained in |
| 424 | /// them. |
| 425 | DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; |
| 426 | |
| 427 | public: |
| 428 | /// Iterators for the uses of this runtime function. |
| 429 | decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } |
| 430 | decltype(UsesMap)::iterator end() { return UsesMap.end(); } |
| 431 | }; |
| 432 | |
| 433 | /// An OpenMP-IR-Builder instance |
| 434 | OpenMPIRBuilder OMPBuilder; |
| 435 | |
| 436 | /// Map from runtime function kind to the runtime function description. |
| 437 | EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, |
| 438 | RuntimeFunction::OMPRTL___last> |
| 439 | RFIs; |
| 440 | |
| 441 | /// Map from function declarations/definitions to their runtime enum type. |
| 442 | DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; |
| 443 | |
| 444 | /// Map from ICV kind to the ICV description. |
| 445 | EnumeratedArray<InternalControlVarInfo, InternalControlVar, |
| 446 | InternalControlVar::ICV___last> |
| 447 | ICVs; |
| 448 | |
| 449 | /// Helper to initialize all internal control variable information for those |
| 450 | /// defined in OMPKinds.def. |
| 451 | void initializeInternalControlVars() { |
| 452 | #define ICV_RT_SET(_Name, RTL) \ |
| 453 | { \ |
| 454 | auto &ICV = ICVs[_Name]; \ |
| 455 | ICV.Setter = RTL; \ |
| 456 | } |
| 457 | #define ICV_RT_GET(Name, RTL) \ |
| 458 | { \ |
| 459 | auto &ICV = ICVs[Name]; \ |
| 460 | ICV.Getter = RTL; \ |
| 461 | } |
| 462 | #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ |
| 463 | { \ |
| 464 | auto &ICV = ICVs[Enum]; \ |
| 465 | ICV.Name = _Name; \ |
| 466 | ICV.Kind = Enum; \ |
| 467 | ICV.InitKind = Init; \ |
| 468 | ICV.EnvVarName = _EnvVarName; \ |
| 469 | switch (ICV.InitKind) { \ |
| 470 | case ICV_IMPLEMENTATION_DEFINED: \ |
| 471 | ICV.InitValue = nullptr; \ |
| 472 | break; \ |
| 473 | case ICV_ZERO: \ |
| 474 | ICV.InitValue = ConstantInt::get( \ |
| 475 | Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ |
| 476 | break; \ |
| 477 | case ICV_FALSE: \ |
| 478 | ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ |
| 479 | break; \ |
| 480 | case ICV_LAST: \ |
| 481 | break; \ |
| 482 | } \ |
| 483 | } |
| 484 | #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| 485 | } |
| 486 | |
| 487 | /// Returns true if the function declaration \p F matches the runtime |
| 488 | /// function types, that is, return type \p RTFRetType, and argument types |
| 489 | /// \p RTFArgTypes. |
| 490 | static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, |
| 491 | SmallVector<Type *, 8> &RTFArgTypes) { |
| 492 | // TODO: We should output information to the user (under debug output |
| 493 | // and via remarks). |
| 494 | |
| 495 | if (!F) |
| 496 | return false; |
| 497 | if (F->getReturnType() != RTFRetType) |
| 498 | return false; |
| 499 | if (F->arg_size() != RTFArgTypes.size()) |
| 500 | return false; |
| 501 | |
| 502 | auto *RTFTyIt = RTFArgTypes.begin(); |
| 503 | for (Argument &Arg : F->args()) { |
| 504 | if (Arg.getType() != *RTFTyIt) |
| 505 | return false; |
| 506 | |
| 507 | ++RTFTyIt; |
| 508 | } |
| 509 | |
| 510 | return true; |
| 511 | } |
| 512 | |
| 513 | // Helper to collect all uses of the declaration in the UsesMap. |
| 514 | unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { |
| 515 | unsigned NumUses = 0; |
| 516 | if (!RFI.Declaration) |
| 517 | return NumUses; |
| 518 | OMPBuilder.addAttributes(FnID: RFI.Kind, Fn&: *RFI.Declaration); |
| 519 | |
| 520 | if (CollectStats) { |
| 521 | NumOpenMPRuntimeFunctionsIdentified += 1; |
| 522 | NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); |
| 523 | } |
| 524 | |
| 525 | // TODO: We directly convert uses into proper calls and unknown uses. |
| 526 | for (Use &U : RFI.Declaration->uses()) { |
| 527 | if (Instruction *UserI = dyn_cast<Instruction>(Val: U.getUser())) { |
| 528 | if (!CGSCC || CGSCC->empty() || CGSCC->contains(key: UserI->getFunction())) { |
| 529 | RFI.getOrCreateUseVector(F: UserI->getFunction()).push_back(Elt: &U); |
| 530 | ++NumUses; |
| 531 | } |
| 532 | } else { |
| 533 | RFI.getOrCreateUseVector(F: nullptr).push_back(Elt: &U); |
| 534 | ++NumUses; |
| 535 | } |
| 536 | } |
| 537 | return NumUses; |
| 538 | } |
| 539 | |
| 540 | // Helper function to recollect uses of a runtime function. |
| 541 | void recollectUsesForFunction(RuntimeFunction RTF) { |
| 542 | auto &RFI = RFIs[RTF]; |
| 543 | RFI.clearUsesMap(); |
| 544 | collectUses(RFI, /*CollectStats*/ false); |
| 545 | } |
| 546 | |
| 547 | // Helper function to recollect uses of all runtime functions. |
| 548 | void recollectUses() { |
| 549 | for (int Idx = 0; Idx < RFIs.size(); ++Idx) |
| 550 | recollectUsesForFunction(RTF: static_cast<RuntimeFunction>(Idx)); |
| 551 | } |
| 552 | |
| 553 | // Helper function to inherit the calling convention of the function callee. |
| 554 | void setCallingConvention(FunctionCallee Callee, CallInst *CI) { |
| 555 | if (Function *Fn = dyn_cast<Function>(Val: Callee.getCallee())) |
| 556 | CI->setCallingConv(Fn->getCallingConv()); |
| 557 | } |
| 558 | |
| 559 | // Helper function to determine if it's legal to create a call to the runtime |
| 560 | // functions. |
| 561 | bool runtimeFnsAvailable(ArrayRef<RuntimeFunction> Fns) { |
| 562 | // We can always emit calls if we haven't yet linked in the runtime. |
| 563 | if (!OpenMPPostLink) |
| 564 | return true; |
| 565 | |
| 566 | // Once the runtime has been already been linked in we cannot emit calls to |
| 567 | // any undefined functions. |
| 568 | for (RuntimeFunction Fn : Fns) { |
| 569 | RuntimeFunctionInfo &RFI = RFIs[Fn]; |
| 570 | |
| 571 | if (!RFI.Declaration || RFI.Declaration->isDeclaration()) |
| 572 | return false; |
| 573 | } |
| 574 | return true; |
| 575 | } |
| 576 | |
| 577 | /// Helper to initialize all runtime function information for those defined |
| 578 | /// in OpenMPKinds.def. |
| 579 | void initializeRuntimeFunctions(Module &M) { |
| 580 | |
| 581 | // Helper macros for handling __VA_ARGS__ in OMP_RTL |
| 582 | #define OMP_TYPE(VarName, ...) \ |
| 583 | Type *VarName = OMPBuilder.VarName; \ |
| 584 | (void)VarName; |
| 585 | |
| 586 | #define OMP_ARRAY_TYPE(VarName, ...) \ |
| 587 | ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ |
| 588 | (void)VarName##Ty; \ |
| 589 | PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ |
| 590 | (void)VarName##PtrTy; |
| 591 | |
| 592 | #define OMP_FUNCTION_TYPE(VarName, ...) \ |
| 593 | FunctionType *VarName = OMPBuilder.VarName; \ |
| 594 | (void)VarName; \ |
| 595 | PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ |
| 596 | (void)VarName##Ptr; |
| 597 | |
| 598 | #define OMP_STRUCT_TYPE(VarName, ...) \ |
| 599 | StructType *VarName = OMPBuilder.VarName; \ |
| 600 | (void)VarName; \ |
| 601 | PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ |
| 602 | (void)VarName##Ptr; |
| 603 | |
| 604 | #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ |
| 605 | { \ |
| 606 | SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ |
| 607 | Function *F = M.getFunction(_Name); \ |
| 608 | RTLFunctions.insert(F); \ |
| 609 | if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ |
| 610 | RuntimeFunctionIDMap[F] = _Enum; \ |
| 611 | auto &RFI = RFIs[_Enum]; \ |
| 612 | RFI.Kind = _Enum; \ |
| 613 | RFI.Name = _Name; \ |
| 614 | RFI.IsVarArg = _IsVarArg; \ |
| 615 | RFI.ReturnType = OMPBuilder._ReturnType; \ |
| 616 | RFI.ArgumentTypes = std::move(ArgsTypes); \ |
| 617 | RFI.Declaration = F; \ |
| 618 | unsigned NumUses = collectUses(RFI); \ |
| 619 | (void)NumUses; \ |
| 620 | LLVM_DEBUG({ \ |
| 621 | dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ |
| 622 | << " found\n"; \ |
| 623 | if (RFI.Declaration) \ |
| 624 | dbgs() << TAG << "-> got " << NumUses << " uses in " \ |
| 625 | << RFI.getNumFunctionsWithUses() \ |
| 626 | << " different functions.\n"; \ |
| 627 | }); \ |
| 628 | } \ |
| 629 | } |
| 630 | #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| 631 | |
| 632 | // Remove the `noinline` attribute from `__kmpc`, `ompx::` and `omp_` |
| 633 | // functions, except if `optnone` is present. |
| 634 | if (isOpenMPDevice(M)) { |
| 635 | for (Function &F : M) { |
| 636 | for (StringRef Prefix : {"__kmpc" , "_ZN4ompx" , "omp_" }) |
| 637 | if (F.hasFnAttribute(Kind: Attribute::NoInline) && |
| 638 | F.getName().starts_with(Prefix) && |
| 639 | !F.hasFnAttribute(Kind: Attribute::OptimizeNone)) |
| 640 | F.removeFnAttr(Kind: Attribute::NoInline); |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | // TODO: We should attach the attributes defined in OMPKinds.def. |
| 645 | } |
| 646 | |
| 647 | /// Collection of known OpenMP runtime functions.. |
| 648 | DenseSet<const Function *> RTLFunctions; |
| 649 | |
| 650 | /// Indicates if we have already linked in the OpenMP device library. |
| 651 | bool OpenMPPostLink = false; |
| 652 | }; |
| 653 | |
| 654 | template <typename Ty, bool InsertInvalidates = true> |
| 655 | struct BooleanStateWithSetVector : public BooleanState { |
| 656 | bool contains(const Ty &Elem) const { return Set.contains(Elem); } |
| 657 | bool insert(const Ty &Elem) { |
| 658 | if (InsertInvalidates) |
| 659 | BooleanState::indicatePessimisticFixpoint(); |
| 660 | return Set.insert(Elem); |
| 661 | } |
| 662 | |
| 663 | const Ty &operator[](int Idx) const { return Set[Idx]; } |
| 664 | bool operator==(const BooleanStateWithSetVector &RHS) const { |
| 665 | return BooleanState::operator==(R: RHS) && Set == RHS.Set; |
| 666 | } |
| 667 | bool operator!=(const BooleanStateWithSetVector &RHS) const { |
| 668 | return !(*this == RHS); |
| 669 | } |
| 670 | |
| 671 | bool empty() const { return Set.empty(); } |
| 672 | size_t size() const { return Set.size(); } |
| 673 | |
| 674 | /// "Clamp" this state with \p RHS. |
| 675 | BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { |
| 676 | BooleanState::operator^=(R: RHS); |
| 677 | Set.insert_range(RHS.Set); |
| 678 | return *this; |
| 679 | } |
| 680 | |
| 681 | private: |
| 682 | /// A set to keep track of elements. |
| 683 | SetVector<Ty> Set; |
| 684 | |
| 685 | public: |
| 686 | typename decltype(Set)::iterator begin() { return Set.begin(); } |
| 687 | typename decltype(Set)::iterator end() { return Set.end(); } |
| 688 | typename decltype(Set)::const_iterator begin() const { return Set.begin(); } |
| 689 | typename decltype(Set)::const_iterator end() const { return Set.end(); } |
| 690 | }; |
| 691 | |
| 692 | template <typename Ty, bool InsertInvalidates = true> |
| 693 | using BooleanStateWithPtrSetVector = |
| 694 | BooleanStateWithSetVector<Ty *, InsertInvalidates>; |
| 695 | |
| 696 | struct KernelInfoState : AbstractState { |
| 697 | /// Flag to track if we reached a fixpoint. |
| 698 | bool IsAtFixpoint = false; |
| 699 | |
| 700 | /// The parallel regions (identified by the outlined parallel functions) that |
| 701 | /// can be reached from the associated function. |
| 702 | BooleanStateWithPtrSetVector<CallBase, /* InsertInvalidates */ false> |
| 703 | ReachedKnownParallelRegions; |
| 704 | |
| 705 | /// State to track what parallel region we might reach. |
| 706 | BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; |
| 707 | |
| 708 | /// State to track if we are in SPMD-mode, assumed or know, and why we decided |
| 709 | /// we cannot be. If it is assumed, then RequiresFullRuntime should also be |
| 710 | /// false. |
| 711 | BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; |
| 712 | |
| 713 | /// The __kmpc_target_init call in this kernel, if any. If we find more than |
| 714 | /// one we abort as the kernel is malformed. |
| 715 | CallBase *KernelInitCB = nullptr; |
| 716 | |
| 717 | /// The constant kernel environement as taken from and passed to |
| 718 | /// __kmpc_target_init. |
| 719 | ConstantStruct *KernelEnvC = nullptr; |
| 720 | |
| 721 | /// The __kmpc_target_deinit call in this kernel, if any. If we find more than |
| 722 | /// one we abort as the kernel is malformed. |
| 723 | CallBase *KernelDeinitCB = nullptr; |
| 724 | |
| 725 | /// Flag to indicate if the associated function is a kernel entry. |
| 726 | bool IsKernelEntry = false; |
| 727 | |
| 728 | /// State to track what kernel entries can reach the associated function. |
| 729 | BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; |
| 730 | |
| 731 | /// State to indicate if we can track parallel level of the associated |
| 732 | /// function. We will give up tracking if we encounter unknown caller or the |
| 733 | /// caller is __kmpc_parallel_51. |
| 734 | BooleanStateWithSetVector<uint8_t> ParallelLevels; |
| 735 | |
| 736 | /// Flag that indicates if the kernel has nested Parallelism |
| 737 | bool NestedParallelism = false; |
| 738 | |
| 739 | /// Abstract State interface |
| 740 | ///{ |
| 741 | |
| 742 | KernelInfoState() = default; |
| 743 | KernelInfoState(bool BestState) { |
| 744 | if (!BestState) |
| 745 | indicatePessimisticFixpoint(); |
| 746 | } |
| 747 | |
| 748 | /// See AbstractState::isValidState(...) |
| 749 | bool isValidState() const override { return true; } |
| 750 | |
| 751 | /// See AbstractState::isAtFixpoint(...) |
| 752 | bool isAtFixpoint() const override { return IsAtFixpoint; } |
| 753 | |
| 754 | /// See AbstractState::indicatePessimisticFixpoint(...) |
| 755 | ChangeStatus indicatePessimisticFixpoint() override { |
| 756 | IsAtFixpoint = true; |
| 757 | ParallelLevels.indicatePessimisticFixpoint(); |
| 758 | ReachingKernelEntries.indicatePessimisticFixpoint(); |
| 759 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 760 | ReachedKnownParallelRegions.indicatePessimisticFixpoint(); |
| 761 | ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); |
| 762 | NestedParallelism = true; |
| 763 | return ChangeStatus::CHANGED; |
| 764 | } |
| 765 | |
| 766 | /// See AbstractState::indicateOptimisticFixpoint(...) |
| 767 | ChangeStatus indicateOptimisticFixpoint() override { |
| 768 | IsAtFixpoint = true; |
| 769 | ParallelLevels.indicateOptimisticFixpoint(); |
| 770 | ReachingKernelEntries.indicateOptimisticFixpoint(); |
| 771 | SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
| 772 | ReachedKnownParallelRegions.indicateOptimisticFixpoint(); |
| 773 | ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); |
| 774 | return ChangeStatus::UNCHANGED; |
| 775 | } |
| 776 | |
| 777 | /// Return the assumed state |
| 778 | KernelInfoState &getAssumed() { return *this; } |
| 779 | const KernelInfoState &getAssumed() const { return *this; } |
| 780 | |
| 781 | bool operator==(const KernelInfoState &RHS) const { |
| 782 | if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) |
| 783 | return false; |
| 784 | if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) |
| 785 | return false; |
| 786 | if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) |
| 787 | return false; |
| 788 | if (ReachingKernelEntries != RHS.ReachingKernelEntries) |
| 789 | return false; |
| 790 | if (ParallelLevels != RHS.ParallelLevels) |
| 791 | return false; |
| 792 | if (NestedParallelism != RHS.NestedParallelism) |
| 793 | return false; |
| 794 | return true; |
| 795 | } |
| 796 | |
| 797 | /// Returns true if this kernel contains any OpenMP parallel regions. |
| 798 | bool mayContainParallelRegion() { |
| 799 | return !ReachedKnownParallelRegions.empty() || |
| 800 | !ReachedUnknownParallelRegions.empty(); |
| 801 | } |
| 802 | |
| 803 | /// Return empty set as the best state of potential values. |
| 804 | static KernelInfoState getBestState() { return KernelInfoState(true); } |
| 805 | |
| 806 | static KernelInfoState getBestState(KernelInfoState &KIS) { |
| 807 | return getBestState(); |
| 808 | } |
| 809 | |
| 810 | /// Return full set as the worst state of potential values. |
| 811 | static KernelInfoState getWorstState() { return KernelInfoState(false); } |
| 812 | |
| 813 | /// "Clamp" this state with \p KIS. |
| 814 | KernelInfoState operator^=(const KernelInfoState &KIS) { |
| 815 | // Do not merge two different _init and _deinit call sites. |
| 816 | if (KIS.KernelInitCB) { |
| 817 | if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) |
| 818 | llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
| 819 | "assumptions." ); |
| 820 | KernelInitCB = KIS.KernelInitCB; |
| 821 | } |
| 822 | if (KIS.KernelDeinitCB) { |
| 823 | if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) |
| 824 | llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
| 825 | "assumptions." ); |
| 826 | KernelDeinitCB = KIS.KernelDeinitCB; |
| 827 | } |
| 828 | if (KIS.KernelEnvC) { |
| 829 | if (KernelEnvC && KernelEnvC != KIS.KernelEnvC) |
| 830 | llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
| 831 | "assumptions." ); |
| 832 | KernelEnvC = KIS.KernelEnvC; |
| 833 | } |
| 834 | SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; |
| 835 | ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; |
| 836 | ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; |
| 837 | NestedParallelism |= KIS.NestedParallelism; |
| 838 | return *this; |
| 839 | } |
| 840 | |
| 841 | KernelInfoState operator&=(const KernelInfoState &KIS) { |
| 842 | return (*this ^= KIS); |
| 843 | } |
| 844 | |
| 845 | ///} |
| 846 | }; |
| 847 | |
| 848 | /// Used to map the values physically (in the IR) stored in an offload |
| 849 | /// array, to a vector in memory. |
| 850 | struct OffloadArray { |
| 851 | /// Physical array (in the IR). |
| 852 | AllocaInst *Array = nullptr; |
| 853 | /// Mapped values. |
| 854 | SmallVector<Value *, 8> StoredValues; |
| 855 | /// Last stores made in the offload array. |
| 856 | SmallVector<StoreInst *, 8> LastAccesses; |
| 857 | |
| 858 | OffloadArray() = default; |
| 859 | |
| 860 | /// Initializes the OffloadArray with the values stored in \p Array before |
| 861 | /// instruction \p Before is reached. Returns false if the initialization |
| 862 | /// fails. |
| 863 | /// This MUST be used immediately after the construction of the object. |
| 864 | bool initialize(AllocaInst &Array, Instruction &Before) { |
| 865 | if (!Array.getAllocatedType()->isArrayTy()) |
| 866 | return false; |
| 867 | |
| 868 | if (!getValues(Array, Before)) |
| 869 | return false; |
| 870 | |
| 871 | this->Array = &Array; |
| 872 | return true; |
| 873 | } |
| 874 | |
| 875 | static const unsigned DeviceIDArgNum = 1; |
| 876 | static const unsigned BasePtrsArgNum = 3; |
| 877 | static const unsigned PtrsArgNum = 4; |
| 878 | static const unsigned SizesArgNum = 5; |
| 879 | |
| 880 | private: |
| 881 | /// Traverses the BasicBlock where \p Array is, collecting the stores made to |
| 882 | /// \p Array, leaving StoredValues with the values stored before the |
| 883 | /// instruction \p Before is reached. |
| 884 | bool getValues(AllocaInst &Array, Instruction &Before) { |
| 885 | // Initialize container. |
| 886 | const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); |
| 887 | StoredValues.assign(NumElts: NumValues, Elt: nullptr); |
| 888 | LastAccesses.assign(NumElts: NumValues, Elt: nullptr); |
| 889 | |
| 890 | // TODO: This assumes the instruction \p Before is in the same |
| 891 | // BasicBlock as Array. Make it general, for any control flow graph. |
| 892 | BasicBlock *BB = Array.getParent(); |
| 893 | if (BB != Before.getParent()) |
| 894 | return false; |
| 895 | |
| 896 | const DataLayout &DL = Array.getDataLayout(); |
| 897 | const unsigned int PointerSize = DL.getPointerSize(); |
| 898 | |
| 899 | for (Instruction &I : *BB) { |
| 900 | if (&I == &Before) |
| 901 | break; |
| 902 | |
| 903 | if (!isa<StoreInst>(Val: &I)) |
| 904 | continue; |
| 905 | |
| 906 | auto *S = cast<StoreInst>(Val: &I); |
| 907 | int64_t Offset = -1; |
| 908 | auto *Dst = |
| 909 | GetPointerBaseWithConstantOffset(Ptr: S->getPointerOperand(), Offset, DL); |
| 910 | if (Dst == &Array) { |
| 911 | int64_t Idx = Offset / PointerSize; |
| 912 | StoredValues[Idx] = getUnderlyingObject(V: S->getValueOperand()); |
| 913 | LastAccesses[Idx] = S; |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | return isFilled(); |
| 918 | } |
| 919 | |
| 920 | /// Returns true if all values in StoredValues and |
| 921 | /// LastAccesses are not nullptrs. |
| 922 | bool isFilled() { |
| 923 | const unsigned NumValues = StoredValues.size(); |
| 924 | for (unsigned I = 0; I < NumValues; ++I) { |
| 925 | if (!StoredValues[I] || !LastAccesses[I]) |
| 926 | return false; |
| 927 | } |
| 928 | |
| 929 | return true; |
| 930 | } |
| 931 | }; |
| 932 | |
| 933 | struct OpenMPOpt { |
| 934 | |
| 935 | using = |
| 936 | function_ref<OptimizationRemarkEmitter &(Function *)>; |
| 937 | |
| 938 | (SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, |
| 939 | OptimizationRemarkGetter OREGetter, |
| 940 | OMPInformationCache &OMPInfoCache, Attributor &A) |
| 941 | : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), |
| 942 | OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} |
| 943 | |
| 944 | /// Check if any remarks are enabled for openmp-opt |
| 945 | bool () { |
| 946 | auto &Ctx = M.getContext(); |
| 947 | return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); |
| 948 | } |
| 949 | |
| 950 | /// Run all OpenMP optimizations on the underlying SCC. |
| 951 | bool run(bool IsModulePass) { |
| 952 | if (SCC.empty()) |
| 953 | return false; |
| 954 | |
| 955 | bool Changed = false; |
| 956 | |
| 957 | LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() |
| 958 | << " functions\n" ); |
| 959 | |
| 960 | if (IsModulePass) { |
| 961 | Changed |= runAttributor(IsModulePass); |
| 962 | |
| 963 | // Recollect uses, in case Attributor deleted any. |
| 964 | OMPInfoCache.recollectUses(); |
| 965 | |
| 966 | // TODO: This should be folded into buildCustomStateMachine. |
| 967 | Changed |= rewriteDeviceCodeStateMachine(); |
| 968 | |
| 969 | if (remarksEnabled()) |
| 970 | analysisGlobalization(); |
| 971 | } else { |
| 972 | if (PrintICVValues) |
| 973 | printICVs(); |
| 974 | if (PrintOpenMPKernels) |
| 975 | printKernels(); |
| 976 | |
| 977 | Changed |= runAttributor(IsModulePass); |
| 978 | |
| 979 | // Recollect uses, in case Attributor deleted any. |
| 980 | OMPInfoCache.recollectUses(); |
| 981 | |
| 982 | Changed |= deleteParallelRegions(); |
| 983 | |
| 984 | if (HideMemoryTransferLatency) |
| 985 | Changed |= hideMemTransfersLatency(); |
| 986 | Changed |= deduplicateRuntimeCalls(); |
| 987 | if (EnableParallelRegionMerging) { |
| 988 | if (mergeParallelRegions()) { |
| 989 | deduplicateRuntimeCalls(); |
| 990 | Changed = true; |
| 991 | } |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | if (OMPInfoCache.OpenMPPostLink) |
| 996 | Changed |= removeRuntimeSymbols(); |
| 997 | |
| 998 | return Changed; |
| 999 | } |
| 1000 | |
| 1001 | /// Print initial ICV values for testing. |
| 1002 | /// FIXME: This should be done from the Attributor once it is added. |
| 1003 | void printICVs() const { |
| 1004 | InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, |
| 1005 | ICV_proc_bind}; |
| 1006 | |
| 1007 | for (Function *F : SCC) { |
| 1008 | for (auto ICV : ICVs) { |
| 1009 | auto ICVInfo = OMPInfoCache.ICVs[ICV]; |
| 1010 | auto = [&](OptimizationRemarkAnalysis ORA) { |
| 1011 | return ORA << "OpenMP ICV " << ore::NV("OpenMPICV" , ICVInfo.Name) |
| 1012 | << " Value: " |
| 1013 | << (ICVInfo.InitValue |
| 1014 | ? toString(I: ICVInfo.InitValue->getValue(), Radix: 10, Signed: true) |
| 1015 | : "IMPLEMENTATION_DEFINED" ); |
| 1016 | }; |
| 1017 | |
| 1018 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OpenMPICVTracker" , RemarkCB&: Remark); |
| 1019 | } |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | /// Print OpenMP GPU kernels for testing. |
| 1024 | void printKernels() const { |
| 1025 | for (Function *F : SCC) { |
| 1026 | if (!omp::isOpenMPKernel(Fn&: *F)) |
| 1027 | continue; |
| 1028 | |
| 1029 | auto = [&](OptimizationRemarkAnalysis ORA) { |
| 1030 | return ORA << "OpenMP GPU kernel " |
| 1031 | << ore::NV("OpenMPGPUKernel" , F->getName()) << "\n" ; |
| 1032 | }; |
| 1033 | |
| 1034 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OpenMPGPU" , RemarkCB&: Remark); |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | /// Return the call if \p U is a callee use in a regular call. If \p RFI is |
| 1039 | /// given it has to be the callee or a nullptr is returned. |
| 1040 | static CallInst *getCallIfRegularCall( |
| 1041 | Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { |
| 1042 | CallInst *CI = dyn_cast<CallInst>(Val: U.getUser()); |
| 1043 | if (CI && CI->isCallee(U: &U) && !CI->hasOperandBundles() && |
| 1044 | (!RFI || |
| 1045 | (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) |
| 1046 | return CI; |
| 1047 | return nullptr; |
| 1048 | } |
| 1049 | |
| 1050 | /// Return the call if \p V is a regular call. If \p RFI is given it has to be |
| 1051 | /// the callee or a nullptr is returned. |
| 1052 | static CallInst *getCallIfRegularCall( |
| 1053 | Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { |
| 1054 | CallInst *CI = dyn_cast<CallInst>(Val: &V); |
| 1055 | if (CI && !CI->hasOperandBundles() && |
| 1056 | (!RFI || |
| 1057 | (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) |
| 1058 | return CI; |
| 1059 | return nullptr; |
| 1060 | } |
| 1061 | |
| 1062 | private: |
| 1063 | /// Merge parallel regions when it is safe. |
| 1064 | bool mergeParallelRegions() { |
| 1065 | const unsigned CallbackCalleeOperand = 2; |
| 1066 | const unsigned CallbackFirstArgOperand = 3; |
| 1067 | using InsertPointTy = OpenMPIRBuilder::InsertPointTy; |
| 1068 | |
| 1069 | // Check if there are any __kmpc_fork_call calls to merge. |
| 1070 | OMPInformationCache::RuntimeFunctionInfo &RFI = |
| 1071 | OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; |
| 1072 | |
| 1073 | if (!RFI.Declaration) |
| 1074 | return false; |
| 1075 | |
| 1076 | // Unmergable calls that prevent merging a parallel region. |
| 1077 | OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { |
| 1078 | OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], |
| 1079 | OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], |
| 1080 | }; |
| 1081 | |
| 1082 | bool Changed = false; |
| 1083 | LoopInfo *LI = nullptr; |
| 1084 | DominatorTree *DT = nullptr; |
| 1085 | |
| 1086 | SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; |
| 1087 | |
| 1088 | BasicBlock *StartBB = nullptr, *EndBB = nullptr; |
| 1089 | auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { |
| 1090 | BasicBlock *CGStartBB = CodeGenIP.getBlock(); |
| 1091 | BasicBlock *CGEndBB = |
| 1092 | SplitBlock(Old: CGStartBB, SplitPt: &*CodeGenIP.getPoint(), DT, LI); |
| 1093 | assert(StartBB != nullptr && "StartBB should not be null" ); |
| 1094 | CGStartBB->getTerminator()->setSuccessor(Idx: 0, BB: StartBB); |
| 1095 | assert(EndBB != nullptr && "EndBB should not be null" ); |
| 1096 | EndBB->getTerminator()->setSuccessor(Idx: 0, BB: CGEndBB); |
| 1097 | return Error::success(); |
| 1098 | }; |
| 1099 | |
| 1100 | auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, |
| 1101 | Value &Inner, Value *&ReplacementValue) -> InsertPointTy { |
| 1102 | ReplacementValue = &Inner; |
| 1103 | return CodeGenIP; |
| 1104 | }; |
| 1105 | |
| 1106 | auto FiniCB = [&](InsertPointTy CodeGenIP) { return Error::success(); }; |
| 1107 | |
| 1108 | /// Create a sequential execution region within a merged parallel region, |
| 1109 | /// encapsulated in a master construct with a barrier for synchronization. |
| 1110 | auto CreateSequentialRegion = [&](Function *OuterFn, |
| 1111 | BasicBlock *OuterPredBB, |
| 1112 | Instruction *SeqStartI, |
| 1113 | Instruction *SeqEndI) { |
| 1114 | // Isolate the instructions of the sequential region to a separate |
| 1115 | // block. |
| 1116 | BasicBlock *ParentBB = SeqStartI->getParent(); |
| 1117 | BasicBlock *SeqEndBB = |
| 1118 | SplitBlock(Old: ParentBB, SplitPt: SeqEndI->getNextNode(), DT, LI); |
| 1119 | BasicBlock *SeqAfterBB = |
| 1120 | SplitBlock(Old: SeqEndBB, SplitPt: &*SeqEndBB->getFirstInsertionPt(), DT, LI); |
| 1121 | BasicBlock *SeqStartBB = |
| 1122 | SplitBlock(Old: ParentBB, SplitPt: SeqStartI, DT, LI, MSSAU: nullptr, BBName: "seq.par.merged" ); |
| 1123 | |
| 1124 | assert(ParentBB->getUniqueSuccessor() == SeqStartBB && |
| 1125 | "Expected a different CFG" ); |
| 1126 | const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); |
| 1127 | ParentBB->getTerminator()->eraseFromParent(); |
| 1128 | |
| 1129 | auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { |
| 1130 | BasicBlock *CGStartBB = CodeGenIP.getBlock(); |
| 1131 | BasicBlock *CGEndBB = |
| 1132 | SplitBlock(Old: CGStartBB, SplitPt: &*CodeGenIP.getPoint(), DT, LI); |
| 1133 | assert(SeqStartBB != nullptr && "SeqStartBB should not be null" ); |
| 1134 | CGStartBB->getTerminator()->setSuccessor(Idx: 0, BB: SeqStartBB); |
| 1135 | assert(SeqEndBB != nullptr && "SeqEndBB should not be null" ); |
| 1136 | SeqEndBB->getTerminator()->setSuccessor(Idx: 0, BB: CGEndBB); |
| 1137 | return Error::success(); |
| 1138 | }; |
| 1139 | auto FiniCB = [&](InsertPointTy CodeGenIP) { return Error::success(); }; |
| 1140 | |
| 1141 | // Find outputs from the sequential region to outside users and |
| 1142 | // broadcast their values to them. |
| 1143 | for (Instruction &I : *SeqStartBB) { |
| 1144 | SmallPtrSet<Instruction *, 4> OutsideUsers; |
| 1145 | for (User *Usr : I.users()) { |
| 1146 | Instruction &UsrI = *cast<Instruction>(Val: Usr); |
| 1147 | // Ignore outputs to LT intrinsics, code extraction for the merged |
| 1148 | // parallel region will fix them. |
| 1149 | if (UsrI.isLifetimeStartOrEnd()) |
| 1150 | continue; |
| 1151 | |
| 1152 | if (UsrI.getParent() != SeqStartBB) |
| 1153 | OutsideUsers.insert(Ptr: &UsrI); |
| 1154 | } |
| 1155 | |
| 1156 | if (OutsideUsers.empty()) |
| 1157 | continue; |
| 1158 | |
| 1159 | // Emit an alloca in the outer region to store the broadcasted |
| 1160 | // value. |
| 1161 | const DataLayout &DL = M.getDataLayout(); |
| 1162 | AllocaInst *AllocaI = new AllocaInst( |
| 1163 | I.getType(), DL.getAllocaAddrSpace(), nullptr, |
| 1164 | I.getName() + ".seq.output.alloc" , OuterFn->front().begin()); |
| 1165 | |
| 1166 | // Emit a store instruction in the sequential BB to update the |
| 1167 | // value. |
| 1168 | new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()->getIterator()); |
| 1169 | |
| 1170 | // Emit a load instruction and replace the use of the output value |
| 1171 | // with it. |
| 1172 | for (Instruction *UsrI : OutsideUsers) { |
| 1173 | LoadInst *LoadI = new LoadInst(I.getType(), AllocaI, |
| 1174 | I.getName() + ".seq.output.load" , |
| 1175 | UsrI->getIterator()); |
| 1176 | UsrI->replaceUsesOfWith(From: &I, To: LoadI); |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | OpenMPIRBuilder::LocationDescription Loc( |
| 1181 | InsertPointTy(ParentBB, ParentBB->end()), DL); |
| 1182 | OpenMPIRBuilder::InsertPointTy SeqAfterIP = cantFail( |
| 1183 | ValOrErr: OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB)); |
| 1184 | cantFail( |
| 1185 | ValOrErr: OMPInfoCache.OMPBuilder.createBarrier(Loc: SeqAfterIP, Kind: OMPD_parallel)); |
| 1186 | |
| 1187 | BranchInst::Create(IfTrue: SeqAfterBB, InsertBefore: SeqAfterIP.getBlock()); |
| 1188 | |
| 1189 | LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn |
| 1190 | << "\n" ); |
| 1191 | }; |
| 1192 | |
| 1193 | // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all |
| 1194 | // contained in BB and only separated by instructions that can be |
| 1195 | // redundantly executed in parallel. The block BB is split before the first |
| 1196 | // call (in MergableCIs) and after the last so the entire region we merge |
| 1197 | // into a single parallel region is contained in a single basic block |
| 1198 | // without any other instructions. We use the OpenMPIRBuilder to outline |
| 1199 | // that block and call the resulting function via __kmpc_fork_call. |
| 1200 | auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, |
| 1201 | BasicBlock *BB) { |
| 1202 | // TODO: Change the interface to allow single CIs expanded, e.g, to |
| 1203 | // include an outer loop. |
| 1204 | assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs" ); |
| 1205 | |
| 1206 | auto = [&](OptimizationRemark OR) { |
| 1207 | OR << "Parallel region merged with parallel region" |
| 1208 | << (MergableCIs.size() > 2 ? "s" : "" ) << " at " ; |
| 1209 | for (auto *CI : llvm::drop_begin(RangeOrContainer: MergableCIs)) { |
| 1210 | OR << ore::NV("OpenMPParallelMerge" , CI->getDebugLoc()); |
| 1211 | if (CI != MergableCIs.back()) |
| 1212 | OR << ", " ; |
| 1213 | } |
| 1214 | return OR << "." ; |
| 1215 | }; |
| 1216 | |
| 1217 | emitRemark<OptimizationRemark>(I: MergableCIs.front(), RemarkName: "OMP150" , RemarkCB&: Remark); |
| 1218 | |
| 1219 | Function *OriginalFn = BB->getParent(); |
| 1220 | LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() |
| 1221 | << " parallel regions in " << OriginalFn->getName() |
| 1222 | << "\n" ); |
| 1223 | |
| 1224 | // Isolate the calls to merge in a separate block. |
| 1225 | EndBB = SplitBlock(Old: BB, SplitPt: MergableCIs.back()->getNextNode(), DT, LI); |
| 1226 | BasicBlock *AfterBB = |
| 1227 | SplitBlock(Old: EndBB, SplitPt: &*EndBB->getFirstInsertionPt(), DT, LI); |
| 1228 | StartBB = SplitBlock(Old: BB, SplitPt: MergableCIs.front(), DT, LI, MSSAU: nullptr, |
| 1229 | BBName: "omp.par.merged" ); |
| 1230 | |
| 1231 | assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG" ); |
| 1232 | const DebugLoc DL = BB->getTerminator()->getDebugLoc(); |
| 1233 | BB->getTerminator()->eraseFromParent(); |
| 1234 | |
| 1235 | // Create sequential regions for sequential instructions that are |
| 1236 | // in-between mergable parallel regions. |
| 1237 | for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; |
| 1238 | It != End; ++It) { |
| 1239 | Instruction *ForkCI = *It; |
| 1240 | Instruction *NextForkCI = *(It + 1); |
| 1241 | |
| 1242 | // Continue if there are not in-between instructions. |
| 1243 | if (ForkCI->getNextNode() == NextForkCI) |
| 1244 | continue; |
| 1245 | |
| 1246 | CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), |
| 1247 | NextForkCI->getPrevNode()); |
| 1248 | } |
| 1249 | |
| 1250 | OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), |
| 1251 | DL); |
| 1252 | IRBuilder<>::InsertPoint AllocaIP( |
| 1253 | &OriginalFn->getEntryBlock(), |
| 1254 | OriginalFn->getEntryBlock().getFirstInsertionPt()); |
| 1255 | // Create the merged parallel region with default proc binding, to |
| 1256 | // avoid overriding binding settings, and without explicit cancellation. |
| 1257 | OpenMPIRBuilder::InsertPointTy AfterIP = |
| 1258 | cantFail(ValOrErr: OMPInfoCache.OMPBuilder.createParallel( |
| 1259 | Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, IfCondition: nullptr, NumThreads: nullptr, |
| 1260 | ProcBind: OMP_PROC_BIND_default, /* IsCancellable */ false)); |
| 1261 | BranchInst::Create(IfTrue: AfterBB, InsertBefore: AfterIP.getBlock()); |
| 1262 | |
| 1263 | // Perform the actual outlining. |
| 1264 | OMPInfoCache.OMPBuilder.finalize(Fn: OriginalFn); |
| 1265 | |
| 1266 | Function *OutlinedFn = MergableCIs.front()->getCaller(); |
| 1267 | |
| 1268 | // Replace the __kmpc_fork_call calls with direct calls to the outlined |
| 1269 | // callbacks. |
| 1270 | SmallVector<Value *, 8> Args; |
| 1271 | for (auto *CI : MergableCIs) { |
| 1272 | Value *Callee = CI->getArgOperand(i: CallbackCalleeOperand); |
| 1273 | FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask; |
| 1274 | Args.clear(); |
| 1275 | Args.push_back(Elt: OutlinedFn->getArg(i: 0)); |
| 1276 | Args.push_back(Elt: OutlinedFn->getArg(i: 1)); |
| 1277 | for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; |
| 1278 | ++U) |
| 1279 | Args.push_back(Elt: CI->getArgOperand(i: U)); |
| 1280 | |
| 1281 | CallInst *NewCI = |
| 1282 | CallInst::Create(Ty: FT, Func: Callee, Args, NameStr: "" , InsertBefore: CI->getIterator()); |
| 1283 | if (CI->getDebugLoc()) |
| 1284 | NewCI->setDebugLoc(CI->getDebugLoc()); |
| 1285 | |
| 1286 | // Forward parameter attributes from the callback to the callee. |
| 1287 | for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; |
| 1288 | ++U) |
| 1289 | for (const Attribute &A : CI->getAttributes().getParamAttrs(ArgNo: U)) |
| 1290 | NewCI->addParamAttr( |
| 1291 | ArgNo: U - (CallbackFirstArgOperand - CallbackCalleeOperand), Attr: A); |
| 1292 | |
| 1293 | // Emit an explicit barrier to replace the implicit fork-join barrier. |
| 1294 | if (CI != MergableCIs.back()) { |
| 1295 | // TODO: Remove barrier if the merged parallel region includes the |
| 1296 | // 'nowait' clause. |
| 1297 | cantFail(ValOrErr: OMPInfoCache.OMPBuilder.createBarrier( |
| 1298 | Loc: InsertPointTy(NewCI->getParent(), |
| 1299 | NewCI->getNextNode()->getIterator()), |
| 1300 | Kind: OMPD_parallel)); |
| 1301 | } |
| 1302 | |
| 1303 | CI->eraseFromParent(); |
| 1304 | } |
| 1305 | |
| 1306 | assert(OutlinedFn != OriginalFn && "Outlining failed" ); |
| 1307 | CGUpdater.registerOutlinedFunction(OriginalFn&: *OriginalFn, NewFn&: *OutlinedFn); |
| 1308 | CGUpdater.reanalyzeFunction(Fn&: *OriginalFn); |
| 1309 | |
| 1310 | NumOpenMPParallelRegionsMerged += MergableCIs.size(); |
| 1311 | |
| 1312 | return true; |
| 1313 | }; |
| 1314 | |
| 1315 | // Helper function that identifes sequences of |
| 1316 | // __kmpc_fork_call uses in a basic block. |
| 1317 | auto DetectPRsCB = [&](Use &U, Function &F) { |
| 1318 | CallInst *CI = getCallIfRegularCall(U, RFI: &RFI); |
| 1319 | BB2PRMap[CI->getParent()].insert(Ptr: CI); |
| 1320 | |
| 1321 | return false; |
| 1322 | }; |
| 1323 | |
| 1324 | BB2PRMap.clear(); |
| 1325 | RFI.foreachUse(SCC, CB: DetectPRsCB); |
| 1326 | SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; |
| 1327 | // Find mergable parallel regions within a basic block that are |
| 1328 | // safe to merge, that is any in-between instructions can safely |
| 1329 | // execute in parallel after merging. |
| 1330 | // TODO: support merging across basic-blocks. |
| 1331 | for (auto &It : BB2PRMap) { |
| 1332 | auto &CIs = It.getSecond(); |
| 1333 | if (CIs.size() < 2) |
| 1334 | continue; |
| 1335 | |
| 1336 | BasicBlock *BB = It.getFirst(); |
| 1337 | SmallVector<CallInst *, 4> MergableCIs; |
| 1338 | |
| 1339 | /// Returns true if the instruction is mergable, false otherwise. |
| 1340 | /// A terminator instruction is unmergable by definition since merging |
| 1341 | /// works within a BB. Instructions before the mergable region are |
| 1342 | /// mergable if they are not calls to OpenMP runtime functions that may |
| 1343 | /// set different execution parameters for subsequent parallel regions. |
| 1344 | /// Instructions in-between parallel regions are mergable if they are not |
| 1345 | /// calls to any non-intrinsic function since that may call a non-mergable |
| 1346 | /// OpenMP runtime function. |
| 1347 | auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { |
| 1348 | // We do not merge across BBs, hence return false (unmergable) if the |
| 1349 | // instruction is a terminator. |
| 1350 | if (I.isTerminator()) |
| 1351 | return false; |
| 1352 | |
| 1353 | if (!isa<CallInst>(Val: &I)) |
| 1354 | return true; |
| 1355 | |
| 1356 | CallInst *CI = cast<CallInst>(Val: &I); |
| 1357 | if (IsBeforeMergableRegion) { |
| 1358 | Function *CalledFunction = CI->getCalledFunction(); |
| 1359 | if (!CalledFunction) |
| 1360 | return false; |
| 1361 | // Return false (unmergable) if the call before the parallel |
| 1362 | // region calls an explicit affinity (proc_bind) or number of |
| 1363 | // threads (num_threads) compiler-generated function. Those settings |
| 1364 | // may be incompatible with following parallel regions. |
| 1365 | // TODO: ICV tracking to detect compatibility. |
| 1366 | for (const auto &RFI : UnmergableCallsInfo) { |
| 1367 | if (CalledFunction == RFI.Declaration) |
| 1368 | return false; |
| 1369 | } |
| 1370 | } else { |
| 1371 | // Return false (unmergable) if there is a call instruction |
| 1372 | // in-between parallel regions when it is not an intrinsic. It |
| 1373 | // may call an unmergable OpenMP runtime function in its callpath. |
| 1374 | // TODO: Keep track of possible OpenMP calls in the callpath. |
| 1375 | if (!isa<IntrinsicInst>(Val: CI)) |
| 1376 | return false; |
| 1377 | } |
| 1378 | |
| 1379 | return true; |
| 1380 | }; |
| 1381 | // Find maximal number of parallel region CIs that are safe to merge. |
| 1382 | for (auto It = BB->begin(), End = BB->end(); It != End;) { |
| 1383 | Instruction &I = *It; |
| 1384 | ++It; |
| 1385 | |
| 1386 | if (CIs.count(Ptr: &I)) { |
| 1387 | MergableCIs.push_back(Elt: cast<CallInst>(Val: &I)); |
| 1388 | continue; |
| 1389 | } |
| 1390 | |
| 1391 | // Continue expanding if the instruction is mergable. |
| 1392 | if (IsMergable(I, MergableCIs.empty())) |
| 1393 | continue; |
| 1394 | |
| 1395 | // Forward the instruction iterator to skip the next parallel region |
| 1396 | // since there is an unmergable instruction which can affect it. |
| 1397 | for (; It != End; ++It) { |
| 1398 | Instruction &SkipI = *It; |
| 1399 | if (CIs.count(Ptr: &SkipI)) { |
| 1400 | LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI |
| 1401 | << " due to " << I << "\n" ); |
| 1402 | ++It; |
| 1403 | break; |
| 1404 | } |
| 1405 | } |
| 1406 | |
| 1407 | // Store mergable regions found. |
| 1408 | if (MergableCIs.size() > 1) { |
| 1409 | MergableCIsVector.push_back(Elt: MergableCIs); |
| 1410 | LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() |
| 1411 | << " parallel regions in block " << BB->getName() |
| 1412 | << " of function " << BB->getParent()->getName() |
| 1413 | << "\n" ;); |
| 1414 | } |
| 1415 | |
| 1416 | MergableCIs.clear(); |
| 1417 | } |
| 1418 | |
| 1419 | if (!MergableCIsVector.empty()) { |
| 1420 | Changed = true; |
| 1421 | |
| 1422 | for (auto &MergableCIs : MergableCIsVector) |
| 1423 | Merge(MergableCIs, BB); |
| 1424 | MergableCIsVector.clear(); |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | if (Changed) { |
| 1429 | /// Re-collect use for fork calls, emitted barrier calls, and |
| 1430 | /// any emitted master/end_master calls. |
| 1431 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_fork_call); |
| 1432 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_barrier); |
| 1433 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_master); |
| 1434 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_end_master); |
| 1435 | } |
| 1436 | |
| 1437 | return Changed; |
| 1438 | } |
| 1439 | |
| 1440 | /// Try to delete parallel regions if possible. |
| 1441 | bool deleteParallelRegions() { |
| 1442 | const unsigned CallbackCalleeOperand = 2; |
| 1443 | |
| 1444 | OMPInformationCache::RuntimeFunctionInfo &RFI = |
| 1445 | OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; |
| 1446 | |
| 1447 | if (!RFI.Declaration) |
| 1448 | return false; |
| 1449 | |
| 1450 | bool Changed = false; |
| 1451 | auto DeleteCallCB = [&](Use &U, Function &) { |
| 1452 | CallInst *CI = getCallIfRegularCall(U); |
| 1453 | if (!CI) |
| 1454 | return false; |
| 1455 | auto *Fn = dyn_cast<Function>( |
| 1456 | Val: CI->getArgOperand(i: CallbackCalleeOperand)->stripPointerCasts()); |
| 1457 | if (!Fn) |
| 1458 | return false; |
| 1459 | if (!Fn->onlyReadsMemory()) |
| 1460 | return false; |
| 1461 | if (!Fn->hasFnAttribute(Kind: Attribute::WillReturn)) |
| 1462 | return false; |
| 1463 | |
| 1464 | LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " |
| 1465 | << CI->getCaller()->getName() << "\n" ); |
| 1466 | |
| 1467 | auto = [&](OptimizationRemark OR) { |
| 1468 | return OR << "Removing parallel region with no side-effects." ; |
| 1469 | }; |
| 1470 | emitRemark<OptimizationRemark>(I: CI, RemarkName: "OMP160" , RemarkCB&: Remark); |
| 1471 | |
| 1472 | CI->eraseFromParent(); |
| 1473 | Changed = true; |
| 1474 | ++NumOpenMPParallelRegionsDeleted; |
| 1475 | return true; |
| 1476 | }; |
| 1477 | |
| 1478 | RFI.foreachUse(SCC, CB: DeleteCallCB); |
| 1479 | |
| 1480 | return Changed; |
| 1481 | } |
| 1482 | |
| 1483 | /// Try to eliminate runtime calls by reusing existing ones. |
| 1484 | bool deduplicateRuntimeCalls() { |
| 1485 | bool Changed = false; |
| 1486 | |
| 1487 | RuntimeFunction DeduplicableRuntimeCallIDs[] = { |
| 1488 | OMPRTL_omp_get_num_threads, |
| 1489 | OMPRTL_omp_in_parallel, |
| 1490 | OMPRTL_omp_get_cancellation, |
| 1491 | OMPRTL_omp_get_supported_active_levels, |
| 1492 | OMPRTL_omp_get_level, |
| 1493 | OMPRTL_omp_get_ancestor_thread_num, |
| 1494 | OMPRTL_omp_get_team_size, |
| 1495 | OMPRTL_omp_get_active_level, |
| 1496 | OMPRTL_omp_in_final, |
| 1497 | OMPRTL_omp_get_proc_bind, |
| 1498 | OMPRTL_omp_get_num_places, |
| 1499 | OMPRTL_omp_get_num_procs, |
| 1500 | OMPRTL_omp_get_place_num, |
| 1501 | OMPRTL_omp_get_partition_num_places, |
| 1502 | OMPRTL_omp_get_partition_place_nums}; |
| 1503 | |
| 1504 | // Global-tid is handled separately. |
| 1505 | SmallSetVector<Value *, 16> GTIdArgs; |
| 1506 | collectGlobalThreadIdArguments(GTIdArgs); |
| 1507 | LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() |
| 1508 | << " global thread ID arguments\n" ); |
| 1509 | |
| 1510 | for (Function *F : SCC) { |
| 1511 | for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) |
| 1512 | Changed |= deduplicateRuntimeCalls( |
| 1513 | F&: *F, RFI&: OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); |
| 1514 | |
| 1515 | // __kmpc_global_thread_num is special as we can replace it with an |
| 1516 | // argument in enough cases to make it worth trying. |
| 1517 | Value *GTIdArg = nullptr; |
| 1518 | for (Argument &Arg : F->args()) |
| 1519 | if (GTIdArgs.count(key: &Arg)) { |
| 1520 | GTIdArg = &Arg; |
| 1521 | break; |
| 1522 | } |
| 1523 | Changed |= deduplicateRuntimeCalls( |
| 1524 | F&: *F, RFI&: OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], ReplVal: GTIdArg); |
| 1525 | } |
| 1526 | |
| 1527 | return Changed; |
| 1528 | } |
| 1529 | |
| 1530 | /// Tries to remove known runtime symbols that are optional from the module. |
| 1531 | bool removeRuntimeSymbols() { |
| 1532 | // The RPC client symbol is defined in `libc` and indicates that something |
| 1533 | // required an RPC server. If its users were all optimized out then we can |
| 1534 | // safely remove it. |
| 1535 | // TODO: This should be somewhere more common in the future. |
| 1536 | if (GlobalVariable *GV = M.getNamedGlobal(Name: "__llvm_rpc_client" )) { |
| 1537 | if (GV->hasNUsesOrMore(N: 1)) |
| 1538 | return false; |
| 1539 | |
| 1540 | GV->replaceAllUsesWith(V: PoisonValue::get(T: GV->getType())); |
| 1541 | GV->eraseFromParent(); |
| 1542 | return true; |
| 1543 | } |
| 1544 | return false; |
| 1545 | } |
| 1546 | |
| 1547 | /// Tries to hide the latency of runtime calls that involve host to |
| 1548 | /// device memory transfers by splitting them into their "issue" and "wait" |
| 1549 | /// versions. The "issue" is moved upwards as much as possible. The "wait" is |
| 1550 | /// moved downards as much as possible. The "issue" issues the memory transfer |
| 1551 | /// asynchronously, returning a handle. The "wait" waits in the returned |
| 1552 | /// handle for the memory transfer to finish. |
| 1553 | bool hideMemTransfersLatency() { |
| 1554 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; |
| 1555 | bool Changed = false; |
| 1556 | auto SplitMemTransfers = [&](Use &U, Function &Decl) { |
| 1557 | auto *RTCall = getCallIfRegularCall(U, RFI: &RFI); |
| 1558 | if (!RTCall) |
| 1559 | return false; |
| 1560 | |
| 1561 | OffloadArray OffloadArrays[3]; |
| 1562 | if (!getValuesInOffloadArrays(RuntimeCall&: *RTCall, OAs: OffloadArrays)) |
| 1563 | return false; |
| 1564 | |
| 1565 | LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); |
| 1566 | |
| 1567 | // TODO: Check if can be moved upwards. |
| 1568 | bool WasSplit = false; |
| 1569 | Instruction *WaitMovementPoint = canBeMovedDownwards(RuntimeCall&: *RTCall); |
| 1570 | if (WaitMovementPoint) |
| 1571 | WasSplit = splitTargetDataBeginRTC(RuntimeCall&: *RTCall, WaitMovementPoint&: *WaitMovementPoint); |
| 1572 | |
| 1573 | Changed |= WasSplit; |
| 1574 | return WasSplit; |
| 1575 | }; |
| 1576 | if (OMPInfoCache.runtimeFnsAvailable( |
| 1577 | Fns: {OMPRTL___tgt_target_data_begin_mapper_issue, |
| 1578 | OMPRTL___tgt_target_data_begin_mapper_wait})) |
| 1579 | RFI.foreachUse(SCC, CB: SplitMemTransfers); |
| 1580 | |
| 1581 | return Changed; |
| 1582 | } |
| 1583 | |
| 1584 | void analysisGlobalization() { |
| 1585 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
| 1586 | |
| 1587 | auto CheckGlobalization = [&](Use &U, Function &Decl) { |
| 1588 | if (CallInst *CI = getCallIfRegularCall(U, RFI: &RFI)) { |
| 1589 | auto = [&](OptimizationRemarkMissed ORM) { |
| 1590 | return ORM |
| 1591 | << "Found thread data sharing on the GPU. " |
| 1592 | << "Expect degraded performance due to data globalization." ; |
| 1593 | }; |
| 1594 | emitRemark<OptimizationRemarkMissed>(I: CI, RemarkName: "OMP112" , RemarkCB&: Remark); |
| 1595 | } |
| 1596 | |
| 1597 | return false; |
| 1598 | }; |
| 1599 | |
| 1600 | RFI.foreachUse(SCC, CB: CheckGlobalization); |
| 1601 | } |
| 1602 | |
| 1603 | /// Maps the values stored in the offload arrays passed as arguments to |
| 1604 | /// \p RuntimeCall into the offload arrays in \p OAs. |
| 1605 | bool getValuesInOffloadArrays(CallInst &RuntimeCall, |
| 1606 | MutableArrayRef<OffloadArray> OAs) { |
| 1607 | assert(OAs.size() == 3 && "Need space for three offload arrays!" ); |
| 1608 | |
| 1609 | // A runtime call that involves memory offloading looks something like: |
| 1610 | // call void @__tgt_target_data_begin_mapper(arg0, arg1, |
| 1611 | // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, |
| 1612 | // ...) |
| 1613 | // So, the idea is to access the allocas that allocate space for these |
| 1614 | // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. |
| 1615 | // Therefore: |
| 1616 | // i8** %offload_baseptrs. |
| 1617 | Value *BasePtrsArg = |
| 1618 | RuntimeCall.getArgOperand(i: OffloadArray::BasePtrsArgNum); |
| 1619 | // i8** %offload_ptrs. |
| 1620 | Value *PtrsArg = RuntimeCall.getArgOperand(i: OffloadArray::PtrsArgNum); |
| 1621 | // i8** %offload_sizes. |
| 1622 | Value *SizesArg = RuntimeCall.getArgOperand(i: OffloadArray::SizesArgNum); |
| 1623 | |
| 1624 | // Get values stored in **offload_baseptrs. |
| 1625 | auto *V = getUnderlyingObject(V: BasePtrsArg); |
| 1626 | if (!isa<AllocaInst>(Val: V)) |
| 1627 | return false; |
| 1628 | auto *BasePtrsArray = cast<AllocaInst>(Val: V); |
| 1629 | if (!OAs[0].initialize(Array&: *BasePtrsArray, Before&: RuntimeCall)) |
| 1630 | return false; |
| 1631 | |
| 1632 | // Get values stored in **offload_baseptrs. |
| 1633 | V = getUnderlyingObject(V: PtrsArg); |
| 1634 | if (!isa<AllocaInst>(Val: V)) |
| 1635 | return false; |
| 1636 | auto *PtrsArray = cast<AllocaInst>(Val: V); |
| 1637 | if (!OAs[1].initialize(Array&: *PtrsArray, Before&: RuntimeCall)) |
| 1638 | return false; |
| 1639 | |
| 1640 | // Get values stored in **offload_sizes. |
| 1641 | V = getUnderlyingObject(V: SizesArg); |
| 1642 | // If it's a [constant] global array don't analyze it. |
| 1643 | if (isa<GlobalValue>(Val: V)) |
| 1644 | return isa<Constant>(Val: V); |
| 1645 | if (!isa<AllocaInst>(Val: V)) |
| 1646 | return false; |
| 1647 | |
| 1648 | auto *SizesArray = cast<AllocaInst>(Val: V); |
| 1649 | if (!OAs[2].initialize(Array&: *SizesArray, Before&: RuntimeCall)) |
| 1650 | return false; |
| 1651 | |
| 1652 | return true; |
| 1653 | } |
| 1654 | |
| 1655 | /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. |
| 1656 | /// For now this is a way to test that the function getValuesInOffloadArrays |
| 1657 | /// is working properly. |
| 1658 | /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. |
| 1659 | void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { |
| 1660 | assert(OAs.size() == 3 && "There are three offload arrays to debug!" ); |
| 1661 | |
| 1662 | LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n" ); |
| 1663 | std::string ValuesStr; |
| 1664 | raw_string_ostream Printer(ValuesStr); |
| 1665 | std::string Separator = " --- " ; |
| 1666 | |
| 1667 | for (auto *BP : OAs[0].StoredValues) { |
| 1668 | BP->print(O&: Printer); |
| 1669 | Printer << Separator; |
| 1670 | } |
| 1671 | LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << ValuesStr << "\n" ); |
| 1672 | ValuesStr.clear(); |
| 1673 | |
| 1674 | for (auto *P : OAs[1].StoredValues) { |
| 1675 | P->print(O&: Printer); |
| 1676 | Printer << Separator; |
| 1677 | } |
| 1678 | LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << ValuesStr << "\n" ); |
| 1679 | ValuesStr.clear(); |
| 1680 | |
| 1681 | for (auto *S : OAs[2].StoredValues) { |
| 1682 | S->print(O&: Printer); |
| 1683 | Printer << Separator; |
| 1684 | } |
| 1685 | LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << ValuesStr << "\n" ); |
| 1686 | } |
| 1687 | |
| 1688 | /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be |
| 1689 | /// moved. Returns nullptr if the movement is not possible, or not worth it. |
| 1690 | Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { |
| 1691 | // FIXME: This traverses only the BasicBlock where RuntimeCall is. |
| 1692 | // Make it traverse the CFG. |
| 1693 | |
| 1694 | Instruction *CurrentI = &RuntimeCall; |
| 1695 | bool IsWorthIt = false; |
| 1696 | while ((CurrentI = CurrentI->getNextNode())) { |
| 1697 | |
| 1698 | // TODO: Once we detect the regions to be offloaded we should use the |
| 1699 | // alias analysis manager to check if CurrentI may modify one of |
| 1700 | // the offloaded regions. |
| 1701 | if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { |
| 1702 | if (IsWorthIt) |
| 1703 | return CurrentI; |
| 1704 | |
| 1705 | return nullptr; |
| 1706 | } |
| 1707 | |
| 1708 | // FIXME: For now if we move it over anything without side effect |
| 1709 | // is worth it. |
| 1710 | IsWorthIt = true; |
| 1711 | } |
| 1712 | |
| 1713 | // Return end of BasicBlock. |
| 1714 | return RuntimeCall.getParent()->getTerminator(); |
| 1715 | } |
| 1716 | |
| 1717 | /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. |
| 1718 | bool splitTargetDataBeginRTC(CallInst &RuntimeCall, |
| 1719 | Instruction &WaitMovementPoint) { |
| 1720 | // Create stack allocated handle (__tgt_async_info) at the beginning of the |
| 1721 | // function. Used for storing information of the async transfer, allowing to |
| 1722 | // wait on it later. |
| 1723 | auto &IRBuilder = OMPInfoCache.OMPBuilder; |
| 1724 | Function *F = RuntimeCall.getCaller(); |
| 1725 | BasicBlock &Entry = F->getEntryBlock(); |
| 1726 | IRBuilder.Builder.SetInsertPoint(TheBB: &Entry, |
| 1727 | IP: Entry.getFirstNonPHIOrDbgOrAlloca()); |
| 1728 | Value *Handle = IRBuilder.Builder.CreateAlloca( |
| 1729 | Ty: IRBuilder.AsyncInfo, /*ArraySize=*/nullptr, Name: "handle" ); |
| 1730 | Handle = |
| 1731 | IRBuilder.Builder.CreateAddrSpaceCast(V: Handle, DestTy: IRBuilder.AsyncInfoPtr); |
| 1732 | |
| 1733 | // Add "issue" runtime call declaration: |
| 1734 | // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, |
| 1735 | // i8**, i8**, i64*, i64*) |
| 1736 | FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( |
| 1737 | M, FnID: OMPRTL___tgt_target_data_begin_mapper_issue); |
| 1738 | |
| 1739 | // Change RuntimeCall call site for its asynchronous version. |
| 1740 | SmallVector<Value *, 16> Args; |
| 1741 | for (auto &Arg : RuntimeCall.args()) |
| 1742 | Args.push_back(Elt: Arg.get()); |
| 1743 | Args.push_back(Elt: Handle); |
| 1744 | |
| 1745 | CallInst *IssueCallsite = CallInst::Create(Func: IssueDecl, Args, /*NameStr=*/"" , |
| 1746 | InsertBefore: RuntimeCall.getIterator()); |
| 1747 | OMPInfoCache.setCallingConvention(Callee: IssueDecl, CI: IssueCallsite); |
| 1748 | RuntimeCall.eraseFromParent(); |
| 1749 | |
| 1750 | // Add "wait" runtime call declaration: |
| 1751 | // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) |
| 1752 | FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( |
| 1753 | M, FnID: OMPRTL___tgt_target_data_begin_mapper_wait); |
| 1754 | |
| 1755 | Value *WaitParams[2] = { |
| 1756 | IssueCallsite->getArgOperand( |
| 1757 | i: OffloadArray::DeviceIDArgNum), // device_id. |
| 1758 | Handle // handle to wait on. |
| 1759 | }; |
| 1760 | CallInst *WaitCallsite = CallInst::Create( |
| 1761 | Func: WaitDecl, Args: WaitParams, /*NameStr=*/"" , InsertBefore: WaitMovementPoint.getIterator()); |
| 1762 | OMPInfoCache.setCallingConvention(Callee: WaitDecl, CI: WaitCallsite); |
| 1763 | |
| 1764 | return true; |
| 1765 | } |
| 1766 | |
| 1767 | static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, |
| 1768 | bool GlobalOnly, bool &SingleChoice) { |
| 1769 | if (CurrentIdent == NextIdent) |
| 1770 | return CurrentIdent; |
| 1771 | |
| 1772 | // TODO: Figure out how to actually combine multiple debug locations. For |
| 1773 | // now we just keep an existing one if there is a single choice. |
| 1774 | if (!GlobalOnly || isa<GlobalValue>(Val: NextIdent)) { |
| 1775 | SingleChoice = !CurrentIdent; |
| 1776 | return NextIdent; |
| 1777 | } |
| 1778 | return nullptr; |
| 1779 | } |
| 1780 | |
| 1781 | /// Return an `struct ident_t*` value that represents the ones used in the |
| 1782 | /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not |
| 1783 | /// return a local `struct ident_t*`. For now, if we cannot find a suitable |
| 1784 | /// return value we create one from scratch. We also do not yet combine |
| 1785 | /// information, e.g., the source locations, see combinedIdentStruct. |
| 1786 | Value * |
| 1787 | getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, |
| 1788 | Function &F, bool GlobalOnly) { |
| 1789 | bool SingleChoice = true; |
| 1790 | Value *Ident = nullptr; |
| 1791 | auto CombineIdentStruct = [&](Use &U, Function &Caller) { |
| 1792 | CallInst *CI = getCallIfRegularCall(U, RFI: &RFI); |
| 1793 | if (!CI || &F != &Caller) |
| 1794 | return false; |
| 1795 | Ident = combinedIdentStruct(CurrentIdent: Ident, NextIdent: CI->getArgOperand(i: 0), |
| 1796 | /* GlobalOnly */ true, SingleChoice); |
| 1797 | return false; |
| 1798 | }; |
| 1799 | RFI.foreachUse(SCC, CB: CombineIdentStruct); |
| 1800 | |
| 1801 | if (!Ident || !SingleChoice) { |
| 1802 | // The IRBuilder uses the insertion block to get to the module, this is |
| 1803 | // unfortunate but we work around it for now. |
| 1804 | if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) |
| 1805 | OMPInfoCache.OMPBuilder.updateToLocation(Loc: OpenMPIRBuilder::InsertPointTy( |
| 1806 | &F.getEntryBlock(), F.getEntryBlock().begin())); |
| 1807 | // Create a fallback location if non was found. |
| 1808 | // TODO: Use the debug locations of the calls instead. |
| 1809 | uint32_t SrcLocStrSize; |
| 1810 | Constant *Loc = |
| 1811 | OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); |
| 1812 | Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr: Loc, SrcLocStrSize); |
| 1813 | } |
| 1814 | return Ident; |
| 1815 | } |
| 1816 | |
| 1817 | /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or |
| 1818 | /// \p ReplVal if given. |
| 1819 | bool deduplicateRuntimeCalls(Function &F, |
| 1820 | OMPInformationCache::RuntimeFunctionInfo &RFI, |
| 1821 | Value *ReplVal = nullptr) { |
| 1822 | auto *UV = RFI.getUseVector(F); |
| 1823 | if (!UV || UV->size() + (ReplVal != nullptr) < 2) |
| 1824 | return false; |
| 1825 | |
| 1826 | LLVM_DEBUG( |
| 1827 | dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name |
| 1828 | << (ReplVal ? " with an existing value\n" : "\n" ) << "\n" ); |
| 1829 | |
| 1830 | assert((!ReplVal || (isa<Argument>(ReplVal) && |
| 1831 | cast<Argument>(ReplVal)->getParent() == &F)) && |
| 1832 | "Unexpected replacement value!" ); |
| 1833 | |
| 1834 | // TODO: Use dominance to find a good position instead. |
| 1835 | auto CanBeMoved = [this](CallBase &CB) { |
| 1836 | unsigned NumArgs = CB.arg_size(); |
| 1837 | if (NumArgs == 0) |
| 1838 | return true; |
| 1839 | if (CB.getArgOperand(i: 0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) |
| 1840 | return false; |
| 1841 | for (unsigned U = 1; U < NumArgs; ++U) |
| 1842 | if (isa<Instruction>(Val: CB.getArgOperand(i: U))) |
| 1843 | return false; |
| 1844 | return true; |
| 1845 | }; |
| 1846 | |
| 1847 | if (!ReplVal) { |
| 1848 | auto *DT = |
| 1849 | OMPInfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F); |
| 1850 | if (!DT) |
| 1851 | return false; |
| 1852 | Instruction *IP = nullptr; |
| 1853 | for (Use *U : *UV) { |
| 1854 | if (CallInst *CI = getCallIfRegularCall(U&: *U, RFI: &RFI)) { |
| 1855 | if (IP) |
| 1856 | IP = DT->findNearestCommonDominator(I1: IP, I2: CI); |
| 1857 | else |
| 1858 | IP = CI; |
| 1859 | if (!CanBeMoved(*CI)) |
| 1860 | continue; |
| 1861 | if (!ReplVal) |
| 1862 | ReplVal = CI; |
| 1863 | } |
| 1864 | } |
| 1865 | if (!ReplVal) |
| 1866 | return false; |
| 1867 | assert(IP && "Expected insertion point!" ); |
| 1868 | cast<Instruction>(Val: ReplVal)->moveBefore(InsertPos: IP->getIterator()); |
| 1869 | } |
| 1870 | |
| 1871 | // If we use a call as a replacement value we need to make sure the ident is |
| 1872 | // valid at the new location. For now we just pick a global one, either |
| 1873 | // existing and used by one of the calls, or created from scratch. |
| 1874 | if (CallBase *CI = dyn_cast<CallBase>(Val: ReplVal)) { |
| 1875 | if (!CI->arg_empty() && |
| 1876 | CI->getArgOperand(i: 0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { |
| 1877 | Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, |
| 1878 | /* GlobalOnly */ true); |
| 1879 | CI->setArgOperand(i: 0, v: Ident); |
| 1880 | } |
| 1881 | } |
| 1882 | |
| 1883 | bool Changed = false; |
| 1884 | auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { |
| 1885 | CallInst *CI = getCallIfRegularCall(U, RFI: &RFI); |
| 1886 | if (!CI || CI == ReplVal || &F != &Caller) |
| 1887 | return false; |
| 1888 | assert(CI->getCaller() == &F && "Unexpected call!" ); |
| 1889 | |
| 1890 | auto = [&](OptimizationRemark OR) { |
| 1891 | return OR << "OpenMP runtime call " |
| 1892 | << ore::NV("OpenMPOptRuntime" , RFI.Name) << " deduplicated." ; |
| 1893 | }; |
| 1894 | if (CI->getDebugLoc()) |
| 1895 | emitRemark<OptimizationRemark>(I: CI, RemarkName: "OMP170" , RemarkCB&: Remark); |
| 1896 | else |
| 1897 | emitRemark<OptimizationRemark>(F: &F, RemarkName: "OMP170" , RemarkCB&: Remark); |
| 1898 | |
| 1899 | CI->replaceAllUsesWith(V: ReplVal); |
| 1900 | CI->eraseFromParent(); |
| 1901 | ++NumOpenMPRuntimeCallsDeduplicated; |
| 1902 | Changed = true; |
| 1903 | return true; |
| 1904 | }; |
| 1905 | RFI.foreachUse(SCC, CB: ReplaceAndDeleteCB); |
| 1906 | |
| 1907 | return Changed; |
| 1908 | } |
| 1909 | |
| 1910 | /// Collect arguments that represent the global thread id in \p GTIdArgs. |
| 1911 | void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { |
| 1912 | // TODO: Below we basically perform a fixpoint iteration with a pessimistic |
| 1913 | // initialization. We could define an AbstractAttribute instead and |
| 1914 | // run the Attributor here once it can be run as an SCC pass. |
| 1915 | |
| 1916 | // Helper to check the argument \p ArgNo at all call sites of \p F for |
| 1917 | // a GTId. |
| 1918 | auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { |
| 1919 | if (!F.hasLocalLinkage()) |
| 1920 | return false; |
| 1921 | for (Use &U : F.uses()) { |
| 1922 | if (CallInst *CI = getCallIfRegularCall(U)) { |
| 1923 | Value *ArgOp = CI->getArgOperand(i: ArgNo); |
| 1924 | if (CI == &RefCI || GTIdArgs.count(key: ArgOp) || |
| 1925 | getCallIfRegularCall( |
| 1926 | V&: *ArgOp, RFI: &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) |
| 1927 | continue; |
| 1928 | } |
| 1929 | return false; |
| 1930 | } |
| 1931 | return true; |
| 1932 | }; |
| 1933 | |
| 1934 | // Helper to identify uses of a GTId as GTId arguments. |
| 1935 | auto AddUserArgs = [&](Value >Id) { |
| 1936 | for (Use &U : GTId.uses()) |
| 1937 | if (CallInst *CI = dyn_cast<CallInst>(Val: U.getUser())) |
| 1938 | if (CI->isArgOperand(U: &U)) |
| 1939 | if (Function *Callee = CI->getCalledFunction()) |
| 1940 | if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) |
| 1941 | GTIdArgs.insert(X: Callee->getArg(i: U.getOperandNo())); |
| 1942 | }; |
| 1943 | |
| 1944 | // The argument users of __kmpc_global_thread_num calls are GTIds. |
| 1945 | OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = |
| 1946 | OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; |
| 1947 | |
| 1948 | GlobThreadNumRFI.foreachUse(SCC, CB: [&](Use &U, Function &F) { |
| 1949 | if (CallInst *CI = getCallIfRegularCall(U, RFI: &GlobThreadNumRFI)) |
| 1950 | AddUserArgs(*CI); |
| 1951 | return false; |
| 1952 | }); |
| 1953 | |
| 1954 | // Transitively search for more arguments by looking at the users of the |
| 1955 | // ones we know already. During the search the GTIdArgs vector is extended |
| 1956 | // so we cannot cache the size nor can we use a range based for. |
| 1957 | for (unsigned U = 0; U < GTIdArgs.size(); ++U) |
| 1958 | AddUserArgs(*GTIdArgs[U]); |
| 1959 | } |
| 1960 | |
| 1961 | /// Kernel (=GPU) optimizations and utility functions |
| 1962 | /// |
| 1963 | ///{{ |
| 1964 | |
| 1965 | /// Cache to remember the unique kernel for a function. |
| 1966 | DenseMap<Function *, std::optional<Kernel>> UniqueKernelMap; |
| 1967 | |
| 1968 | /// Find the unique kernel that will execute \p F, if any. |
| 1969 | Kernel getUniqueKernelFor(Function &F); |
| 1970 | |
| 1971 | /// Find the unique kernel that will execute \p I, if any. |
| 1972 | Kernel getUniqueKernelFor(Instruction &I) { |
| 1973 | return getUniqueKernelFor(F&: *I.getFunction()); |
| 1974 | } |
| 1975 | |
| 1976 | /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in |
| 1977 | /// the cases we can avoid taking the address of a function. |
| 1978 | bool rewriteDeviceCodeStateMachine(); |
| 1979 | |
| 1980 | /// |
| 1981 | ///}} |
| 1982 | |
| 1983 | /// Emit a remark generically |
| 1984 | /// |
| 1985 | /// This template function can be used to generically emit a remark. The |
| 1986 | /// RemarkKind should be one of the following: |
| 1987 | /// - OptimizationRemark to indicate a successful optimization attempt |
| 1988 | /// - OptimizationRemarkMissed to report a failed optimization attempt |
| 1989 | /// - OptimizationRemarkAnalysis to provide additional information about an |
| 1990 | /// optimization attempt |
| 1991 | /// |
| 1992 | /// The remark is built using a callback function provided by the caller that |
| 1993 | /// takes a RemarkKind as input and returns a RemarkKind. |
| 1994 | template <typename RemarkKind, typename RemarkCallBack> |
| 1995 | void (Instruction *I, StringRef , |
| 1996 | RemarkCallBack &&) const { |
| 1997 | Function *F = I->getParent()->getParent(); |
| 1998 | auto &ORE = OREGetter(F); |
| 1999 | |
| 2000 | if (RemarkName.starts_with(Prefix: "OMP" )) |
| 2001 | ORE.emit([&]() { |
| 2002 | return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) |
| 2003 | << " [" << RemarkName << "]" ; |
| 2004 | }); |
| 2005 | else |
| 2006 | ORE.emit( |
| 2007 | [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); |
| 2008 | } |
| 2009 | |
| 2010 | /// Emit a remark on a function. |
| 2011 | template <typename RemarkKind, typename RemarkCallBack> |
| 2012 | void (Function *F, StringRef , |
| 2013 | RemarkCallBack &&) const { |
| 2014 | auto &ORE = OREGetter(F); |
| 2015 | |
| 2016 | if (RemarkName.starts_with(Prefix: "OMP" )) |
| 2017 | ORE.emit([&]() { |
| 2018 | return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) |
| 2019 | << " [" << RemarkName << "]" ; |
| 2020 | }); |
| 2021 | else |
| 2022 | ORE.emit( |
| 2023 | [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); |
| 2024 | } |
| 2025 | |
| 2026 | /// The underlying module. |
| 2027 | Module &M; |
| 2028 | |
| 2029 | /// The SCC we are operating on. |
| 2030 | SmallVectorImpl<Function *> &SCC; |
| 2031 | |
| 2032 | /// Callback to update the call graph, the first argument is a removed call, |
| 2033 | /// the second an optional replacement call. |
| 2034 | CallGraphUpdater &CGUpdater; |
| 2035 | |
| 2036 | /// Callback to get an OptimizationRemarkEmitter from a Function * |
| 2037 | OptimizationRemarkGetter OREGetter; |
| 2038 | |
| 2039 | /// OpenMP-specific information cache. Also Used for Attributor runs. |
| 2040 | OMPInformationCache &OMPInfoCache; |
| 2041 | |
| 2042 | /// Attributor instance. |
| 2043 | Attributor &A; |
| 2044 | |
| 2045 | /// Helper function to run Attributor on SCC. |
| 2046 | bool runAttributor(bool IsModulePass) { |
| 2047 | if (SCC.empty()) |
| 2048 | return false; |
| 2049 | |
| 2050 | registerAAs(IsModulePass); |
| 2051 | |
| 2052 | ChangeStatus Changed = A.run(); |
| 2053 | |
| 2054 | LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() |
| 2055 | << " functions, result: " << Changed << ".\n" ); |
| 2056 | |
| 2057 | if (Changed == ChangeStatus::CHANGED) |
| 2058 | OMPInfoCache.invalidateAnalyses(); |
| 2059 | |
| 2060 | return Changed == ChangeStatus::CHANGED; |
| 2061 | } |
| 2062 | |
| 2063 | void registerFoldRuntimeCall(RuntimeFunction RF); |
| 2064 | |
| 2065 | /// Populate the Attributor with abstract attribute opportunities in the |
| 2066 | /// functions. |
| 2067 | void registerAAs(bool IsModulePass); |
| 2068 | |
| 2069 | public: |
| 2070 | /// Callback to register AAs for live functions, including internal functions |
| 2071 | /// marked live during the traversal. |
| 2072 | static void registerAAsForFunction(Attributor &A, const Function &F); |
| 2073 | }; |
| 2074 | |
| 2075 | Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { |
| 2076 | if (OMPInfoCache.CGSCC && !OMPInfoCache.CGSCC->empty() && |
| 2077 | !OMPInfoCache.CGSCC->contains(key: &F)) |
| 2078 | return nullptr; |
| 2079 | |
| 2080 | // Use a scope to keep the lifetime of the CachedKernel short. |
| 2081 | { |
| 2082 | std::optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; |
| 2083 | if (CachedKernel) |
| 2084 | return *CachedKernel; |
| 2085 | |
| 2086 | // TODO: We should use an AA to create an (optimistic and callback |
| 2087 | // call-aware) call graph. For now we stick to simple patterns that |
| 2088 | // are less powerful, basically the worst fixpoint. |
| 2089 | if (isOpenMPKernel(Fn&: F)) { |
| 2090 | CachedKernel = Kernel(&F); |
| 2091 | return *CachedKernel; |
| 2092 | } |
| 2093 | |
| 2094 | CachedKernel = nullptr; |
| 2095 | if (!F.hasLocalLinkage()) { |
| 2096 | |
| 2097 | // See https://openmp.llvm.org/remarks/OptimizationRemarks.html |
| 2098 | auto = [&](OptimizationRemarkAnalysis ORA) { |
| 2099 | return ORA << "Potentially unknown OpenMP target region caller." ; |
| 2100 | }; |
| 2101 | emitRemark<OptimizationRemarkAnalysis>(F: &F, RemarkName: "OMP100" , RemarkCB&: Remark); |
| 2102 | |
| 2103 | return nullptr; |
| 2104 | } |
| 2105 | } |
| 2106 | |
| 2107 | auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { |
| 2108 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: U.getUser())) { |
| 2109 | // Allow use in equality comparisons. |
| 2110 | if (Cmp->isEquality()) |
| 2111 | return getUniqueKernelFor(I&: *Cmp); |
| 2112 | return nullptr; |
| 2113 | } |
| 2114 | if (auto *CB = dyn_cast<CallBase>(Val: U.getUser())) { |
| 2115 | // Allow direct calls. |
| 2116 | if (CB->isCallee(U: &U)) |
| 2117 | return getUniqueKernelFor(I&: *CB); |
| 2118 | |
| 2119 | OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = |
| 2120 | OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
| 2121 | // Allow the use in __kmpc_parallel_51 calls. |
| 2122 | if (OpenMPOpt::getCallIfRegularCall(V&: *U.getUser(), RFI: &KernelParallelRFI)) |
| 2123 | return getUniqueKernelFor(I&: *CB); |
| 2124 | return nullptr; |
| 2125 | } |
| 2126 | // Disallow every other use. |
| 2127 | return nullptr; |
| 2128 | }; |
| 2129 | |
| 2130 | // TODO: In the future we want to track more than just a unique kernel. |
| 2131 | SmallPtrSet<Kernel, 2> PotentialKernels; |
| 2132 | OMPInformationCache::foreachUse(F, CB: [&](const Use &U) { |
| 2133 | PotentialKernels.insert(Ptr: GetUniqueKernelForUse(U)); |
| 2134 | }); |
| 2135 | |
| 2136 | Kernel K = nullptr; |
| 2137 | if (PotentialKernels.size() == 1) |
| 2138 | K = *PotentialKernels.begin(); |
| 2139 | |
| 2140 | // Cache the result. |
| 2141 | UniqueKernelMap[&F] = K; |
| 2142 | |
| 2143 | return K; |
| 2144 | } |
| 2145 | |
| 2146 | bool OpenMPOpt::rewriteDeviceCodeStateMachine() { |
| 2147 | OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = |
| 2148 | OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
| 2149 | |
| 2150 | bool Changed = false; |
| 2151 | if (!KernelParallelRFI) |
| 2152 | return Changed; |
| 2153 | |
| 2154 | // If we have disabled state machine changes, exit |
| 2155 | if (DisableOpenMPOptStateMachineRewrite) |
| 2156 | return Changed; |
| 2157 | |
| 2158 | for (Function *F : SCC) { |
| 2159 | |
| 2160 | // Check if the function is a use in a __kmpc_parallel_51 call at |
| 2161 | // all. |
| 2162 | bool UnknownUse = false; |
| 2163 | bool KernelParallelUse = false; |
| 2164 | unsigned NumDirectCalls = 0; |
| 2165 | |
| 2166 | SmallVector<Use *, 2> ToBeReplacedStateMachineUses; |
| 2167 | OMPInformationCache::foreachUse(F&: *F, CB: [&](Use &U) { |
| 2168 | if (auto *CB = dyn_cast<CallBase>(Val: U.getUser())) |
| 2169 | if (CB->isCallee(U: &U)) { |
| 2170 | ++NumDirectCalls; |
| 2171 | return; |
| 2172 | } |
| 2173 | |
| 2174 | if (isa<ICmpInst>(Val: U.getUser())) { |
| 2175 | ToBeReplacedStateMachineUses.push_back(Elt: &U); |
| 2176 | return; |
| 2177 | } |
| 2178 | |
| 2179 | // Find wrapper functions that represent parallel kernels. |
| 2180 | CallInst *CI = |
| 2181 | OpenMPOpt::getCallIfRegularCall(V&: *U.getUser(), RFI: &KernelParallelRFI); |
| 2182 | const unsigned int WrapperFunctionArgNo = 6; |
| 2183 | if (!KernelParallelUse && CI && |
| 2184 | CI->getArgOperandNo(U: &U) == WrapperFunctionArgNo) { |
| 2185 | KernelParallelUse = true; |
| 2186 | ToBeReplacedStateMachineUses.push_back(Elt: &U); |
| 2187 | return; |
| 2188 | } |
| 2189 | UnknownUse = true; |
| 2190 | }); |
| 2191 | |
| 2192 | // Do not emit a remark if we haven't seen a __kmpc_parallel_51 |
| 2193 | // use. |
| 2194 | if (!KernelParallelUse) |
| 2195 | continue; |
| 2196 | |
| 2197 | // If this ever hits, we should investigate. |
| 2198 | // TODO: Checking the number of uses is not a necessary restriction and |
| 2199 | // should be lifted. |
| 2200 | if (UnknownUse || NumDirectCalls != 1 || |
| 2201 | ToBeReplacedStateMachineUses.size() > 2) { |
| 2202 | auto = [&](OptimizationRemarkAnalysis ORA) { |
| 2203 | return ORA << "Parallel region is used in " |
| 2204 | << (UnknownUse ? "unknown" : "unexpected" ) |
| 2205 | << " ways. Will not attempt to rewrite the state machine." ; |
| 2206 | }; |
| 2207 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OMP101" , RemarkCB&: Remark); |
| 2208 | continue; |
| 2209 | } |
| 2210 | |
| 2211 | // Even if we have __kmpc_parallel_51 calls, we (for now) give |
| 2212 | // up if the function is not called from a unique kernel. |
| 2213 | Kernel K = getUniqueKernelFor(F&: *F); |
| 2214 | if (!K) { |
| 2215 | auto = [&](OptimizationRemarkAnalysis ORA) { |
| 2216 | return ORA << "Parallel region is not called from a unique kernel. " |
| 2217 | "Will not attempt to rewrite the state machine." ; |
| 2218 | }; |
| 2219 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OMP102" , RemarkCB&: Remark); |
| 2220 | continue; |
| 2221 | } |
| 2222 | |
| 2223 | // We now know F is a parallel body function called only from the kernel K. |
| 2224 | // We also identified the state machine uses in which we replace the |
| 2225 | // function pointer by a new global symbol for identification purposes. This |
| 2226 | // ensures only direct calls to the function are left. |
| 2227 | |
| 2228 | Module &M = *F->getParent(); |
| 2229 | Type *Int8Ty = Type::getInt8Ty(C&: M.getContext()); |
| 2230 | |
| 2231 | auto *ID = new GlobalVariable( |
| 2232 | M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, |
| 2233 | UndefValue::get(T: Int8Ty), F->getName() + ".ID" ); |
| 2234 | |
| 2235 | for (Use *U : ToBeReplacedStateMachineUses) |
| 2236 | U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
| 2237 | C: ID, Ty: U->get()->getType())); |
| 2238 | |
| 2239 | ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; |
| 2240 | |
| 2241 | Changed = true; |
| 2242 | } |
| 2243 | |
| 2244 | return Changed; |
| 2245 | } |
| 2246 | |
| 2247 | /// Abstract Attribute for tracking ICV values. |
| 2248 | struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { |
| 2249 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
| 2250 | AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
| 2251 | |
| 2252 | /// Returns true if value is assumed to be tracked. |
| 2253 | bool isAssumedTracked() const { return getAssumed(); } |
| 2254 | |
| 2255 | /// Returns true if value is known to be tracked. |
| 2256 | bool isKnownTracked() const { return getAssumed(); } |
| 2257 | |
| 2258 | /// Create an abstract attribute biew for the position \p IRP. |
| 2259 | static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); |
| 2260 | |
| 2261 | /// Return the value with which \p I can be replaced for specific \p ICV. |
| 2262 | virtual std::optional<Value *> getReplacementValue(InternalControlVar ICV, |
| 2263 | const Instruction *I, |
| 2264 | Attributor &A) const { |
| 2265 | return std::nullopt; |
| 2266 | } |
| 2267 | |
| 2268 | /// Return an assumed unique ICV value if a single candidate is found. If |
| 2269 | /// there cannot be one, return a nullptr. If it is not clear yet, return |
| 2270 | /// std::nullopt. |
| 2271 | virtual std::optional<Value *> |
| 2272 | getUniqueReplacementValue(InternalControlVar ICV) const = 0; |
| 2273 | |
| 2274 | // Currently only nthreads is being tracked. |
| 2275 | // this array will only grow with time. |
| 2276 | InternalControlVar TrackableICVs[1] = {ICV_nthreads}; |
| 2277 | |
| 2278 | /// See AbstractAttribute::getName() |
| 2279 | StringRef getName() const override { return "AAICVTracker" ; } |
| 2280 | |
| 2281 | /// See AbstractAttribute::getIdAddr() |
| 2282 | const char *getIdAddr() const override { return &ID; } |
| 2283 | |
| 2284 | /// This function should return true if the type of the \p AA is AAICVTracker |
| 2285 | static bool classof(const AbstractAttribute *AA) { |
| 2286 | return (AA->getIdAddr() == &ID); |
| 2287 | } |
| 2288 | |
| 2289 | static const char ID; |
| 2290 | }; |
| 2291 | |
| 2292 | struct AAICVTrackerFunction : public AAICVTracker { |
| 2293 | AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) |
| 2294 | : AAICVTracker(IRP, A) {} |
| 2295 | |
| 2296 | // FIXME: come up with better string. |
| 2297 | const std::string getAsStr(Attributor *) const override { |
| 2298 | return "ICVTrackerFunction" ; |
| 2299 | } |
| 2300 | |
| 2301 | // FIXME: come up with some stats. |
| 2302 | void trackStatistics() const override {} |
| 2303 | |
| 2304 | /// We don't manifest anything for this AA. |
| 2305 | ChangeStatus manifest(Attributor &A) override { |
| 2306 | return ChangeStatus::UNCHANGED; |
| 2307 | } |
| 2308 | |
| 2309 | // Map of ICV to their values at specific program point. |
| 2310 | EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, |
| 2311 | InternalControlVar::ICV___last> |
| 2312 | ICVReplacementValuesMap; |
| 2313 | |
| 2314 | ChangeStatus updateImpl(Attributor &A) override { |
| 2315 | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
| 2316 | |
| 2317 | Function *F = getAnchorScope(); |
| 2318 | |
| 2319 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 2320 | |
| 2321 | for (InternalControlVar ICV : TrackableICVs) { |
| 2322 | auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; |
| 2323 | |
| 2324 | auto &ValuesMap = ICVReplacementValuesMap[ICV]; |
| 2325 | auto TrackValues = [&](Use &U, Function &) { |
| 2326 | CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); |
| 2327 | if (!CI) |
| 2328 | return false; |
| 2329 | |
| 2330 | // FIXME: handle setters with more that 1 arguments. |
| 2331 | /// Track new value. |
| 2332 | if (ValuesMap.insert(KV: std::make_pair(x&: CI, y: CI->getArgOperand(i: 0))).second) |
| 2333 | HasChanged = ChangeStatus::CHANGED; |
| 2334 | |
| 2335 | return false; |
| 2336 | }; |
| 2337 | |
| 2338 | auto CallCheck = [&](Instruction &I) { |
| 2339 | std::optional<Value *> ReplVal = getValueForCall(A, I, ICV); |
| 2340 | if (ReplVal && ValuesMap.insert(KV: std::make_pair(x: &I, y&: *ReplVal)).second) |
| 2341 | HasChanged = ChangeStatus::CHANGED; |
| 2342 | |
| 2343 | return true; |
| 2344 | }; |
| 2345 | |
| 2346 | // Track all changes of an ICV. |
| 2347 | SetterRFI.foreachUse(CB: TrackValues, F); |
| 2348 | |
| 2349 | bool UsedAssumedInformation = false; |
| 2350 | A.checkForAllInstructions(Pred: CallCheck, QueryingAA: *this, Opcodes: {Instruction::Call}, |
| 2351 | UsedAssumedInformation, |
| 2352 | /* CheckBBLivenessOnly */ true); |
| 2353 | |
| 2354 | /// TODO: Figure out a way to avoid adding entry in |
| 2355 | /// ICVReplacementValuesMap |
| 2356 | Instruction *Entry = &F->getEntryBlock().front(); |
| 2357 | if (HasChanged == ChangeStatus::CHANGED) |
| 2358 | ValuesMap.try_emplace(Key: Entry); |
| 2359 | } |
| 2360 | |
| 2361 | return HasChanged; |
| 2362 | } |
| 2363 | |
| 2364 | /// Helper to check if \p I is a call and get the value for it if it is |
| 2365 | /// unique. |
| 2366 | std::optional<Value *> getValueForCall(Attributor &A, const Instruction &I, |
| 2367 | InternalControlVar &ICV) const { |
| 2368 | |
| 2369 | const auto *CB = dyn_cast<CallBase>(Val: &I); |
| 2370 | if (!CB || CB->hasFnAttr(Kind: "no_openmp" ) || |
| 2371 | CB->hasFnAttr(Kind: "no_openmp_routines" ) || |
| 2372 | CB->hasFnAttr(Kind: "no_openmp_constructs" )) |
| 2373 | return std::nullopt; |
| 2374 | |
| 2375 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 2376 | auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; |
| 2377 | auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; |
| 2378 | Function *CalledFunction = CB->getCalledFunction(); |
| 2379 | |
| 2380 | // Indirect call, assume ICV changes. |
| 2381 | if (CalledFunction == nullptr) |
| 2382 | return nullptr; |
| 2383 | if (CalledFunction == GetterRFI.Declaration) |
| 2384 | return std::nullopt; |
| 2385 | if (CalledFunction == SetterRFI.Declaration) { |
| 2386 | if (ICVReplacementValuesMap[ICV].count(Val: &I)) |
| 2387 | return ICVReplacementValuesMap[ICV].lookup(Val: &I); |
| 2388 | |
| 2389 | return nullptr; |
| 2390 | } |
| 2391 | |
| 2392 | // Since we don't know, assume it changes the ICV. |
| 2393 | if (CalledFunction->isDeclaration()) |
| 2394 | return nullptr; |
| 2395 | |
| 2396 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
| 2397 | QueryingAA: *this, IRP: IRPosition::callsite_returned(CB: *CB), DepClass: DepClassTy::REQUIRED); |
| 2398 | |
| 2399 | if (ICVTrackingAA->isAssumedTracked()) { |
| 2400 | std::optional<Value *> URV = |
| 2401 | ICVTrackingAA->getUniqueReplacementValue(ICV); |
| 2402 | if (!URV || (*URV && AA::isValidAtPosition(VAC: AA::ValueAndContext(**URV, I), |
| 2403 | InfoCache&: OMPInfoCache))) |
| 2404 | return URV; |
| 2405 | } |
| 2406 | |
| 2407 | // If we don't know, assume it changes. |
| 2408 | return nullptr; |
| 2409 | } |
| 2410 | |
| 2411 | // We don't check unique value for a function, so return std::nullopt. |
| 2412 | std::optional<Value *> |
| 2413 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
| 2414 | return std::nullopt; |
| 2415 | } |
| 2416 | |
| 2417 | /// Return the value with which \p I can be replaced for specific \p ICV. |
| 2418 | std::optional<Value *> getReplacementValue(InternalControlVar ICV, |
| 2419 | const Instruction *I, |
| 2420 | Attributor &A) const override { |
| 2421 | const auto &ValuesMap = ICVReplacementValuesMap[ICV]; |
| 2422 | if (ValuesMap.count(Val: I)) |
| 2423 | return ValuesMap.lookup(Val: I); |
| 2424 | |
| 2425 | SmallVector<const Instruction *, 16> Worklist; |
| 2426 | SmallPtrSet<const Instruction *, 16> Visited; |
| 2427 | Worklist.push_back(Elt: I); |
| 2428 | |
| 2429 | std::optional<Value *> ReplVal; |
| 2430 | |
| 2431 | while (!Worklist.empty()) { |
| 2432 | const Instruction *CurrInst = Worklist.pop_back_val(); |
| 2433 | if (!Visited.insert(Ptr: CurrInst).second) |
| 2434 | continue; |
| 2435 | |
| 2436 | const BasicBlock *CurrBB = CurrInst->getParent(); |
| 2437 | |
| 2438 | // Go up and look for all potential setters/calls that might change the |
| 2439 | // ICV. |
| 2440 | while ((CurrInst = CurrInst->getPrevNode())) { |
| 2441 | if (ValuesMap.count(Val: CurrInst)) { |
| 2442 | std::optional<Value *> NewReplVal = ValuesMap.lookup(Val: CurrInst); |
| 2443 | // Unknown value, track new. |
| 2444 | if (!ReplVal) { |
| 2445 | ReplVal = NewReplVal; |
| 2446 | break; |
| 2447 | } |
| 2448 | |
| 2449 | // If we found a new value, we can't know the icv value anymore. |
| 2450 | if (NewReplVal) |
| 2451 | if (ReplVal != NewReplVal) |
| 2452 | return nullptr; |
| 2453 | |
| 2454 | break; |
| 2455 | } |
| 2456 | |
| 2457 | std::optional<Value *> NewReplVal = getValueForCall(A, I: *CurrInst, ICV); |
| 2458 | if (!NewReplVal) |
| 2459 | continue; |
| 2460 | |
| 2461 | // Unknown value, track new. |
| 2462 | if (!ReplVal) { |
| 2463 | ReplVal = NewReplVal; |
| 2464 | break; |
| 2465 | } |
| 2466 | |
| 2467 | // if (NewReplVal.hasValue()) |
| 2468 | // We found a new value, we can't know the icv value anymore. |
| 2469 | if (ReplVal != NewReplVal) |
| 2470 | return nullptr; |
| 2471 | } |
| 2472 | |
| 2473 | // If we are in the same BB and we have a value, we are done. |
| 2474 | if (CurrBB == I->getParent() && ReplVal) |
| 2475 | return ReplVal; |
| 2476 | |
| 2477 | // Go through all predecessors and add terminators for analysis. |
| 2478 | for (const BasicBlock *Pred : predecessors(BB: CurrBB)) |
| 2479 | if (const Instruction *Terminator = Pred->getTerminator()) |
| 2480 | Worklist.push_back(Elt: Terminator); |
| 2481 | } |
| 2482 | |
| 2483 | return ReplVal; |
| 2484 | } |
| 2485 | }; |
| 2486 | |
| 2487 | struct AAICVTrackerFunctionReturned : AAICVTracker { |
| 2488 | AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) |
| 2489 | : AAICVTracker(IRP, A) {} |
| 2490 | |
| 2491 | // FIXME: come up with better string. |
| 2492 | const std::string getAsStr(Attributor *) const override { |
| 2493 | return "ICVTrackerFunctionReturned" ; |
| 2494 | } |
| 2495 | |
| 2496 | // FIXME: come up with some stats. |
| 2497 | void trackStatistics() const override {} |
| 2498 | |
| 2499 | /// We don't manifest anything for this AA. |
| 2500 | ChangeStatus manifest(Attributor &A) override { |
| 2501 | return ChangeStatus::UNCHANGED; |
| 2502 | } |
| 2503 | |
| 2504 | // Map of ICV to their values at specific program point. |
| 2505 | EnumeratedArray<std::optional<Value *>, InternalControlVar, |
| 2506 | InternalControlVar::ICV___last> |
| 2507 | ICVReplacementValuesMap; |
| 2508 | |
| 2509 | /// Return the value with which \p I can be replaced for specific \p ICV. |
| 2510 | std::optional<Value *> |
| 2511 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
| 2512 | return ICVReplacementValuesMap[ICV]; |
| 2513 | } |
| 2514 | |
| 2515 | ChangeStatus updateImpl(Attributor &A) override { |
| 2516 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 2517 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
| 2518 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
| 2519 | |
| 2520 | if (!ICVTrackingAA->isAssumedTracked()) |
| 2521 | return indicatePessimisticFixpoint(); |
| 2522 | |
| 2523 | for (InternalControlVar ICV : TrackableICVs) { |
| 2524 | std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; |
| 2525 | std::optional<Value *> UniqueICVValue; |
| 2526 | |
| 2527 | auto CheckReturnInst = [&](Instruction &I) { |
| 2528 | std::optional<Value *> NewReplVal = |
| 2529 | ICVTrackingAA->getReplacementValue(ICV, I: &I, A); |
| 2530 | |
| 2531 | // If we found a second ICV value there is no unique returned value. |
| 2532 | if (UniqueICVValue && UniqueICVValue != NewReplVal) |
| 2533 | return false; |
| 2534 | |
| 2535 | UniqueICVValue = NewReplVal; |
| 2536 | |
| 2537 | return true; |
| 2538 | }; |
| 2539 | |
| 2540 | bool UsedAssumedInformation = false; |
| 2541 | if (!A.checkForAllInstructions(Pred: CheckReturnInst, QueryingAA: *this, Opcodes: {Instruction::Ret}, |
| 2542 | UsedAssumedInformation, |
| 2543 | /* CheckBBLivenessOnly */ true)) |
| 2544 | UniqueICVValue = nullptr; |
| 2545 | |
| 2546 | if (UniqueICVValue == ReplVal) |
| 2547 | continue; |
| 2548 | |
| 2549 | ReplVal = UniqueICVValue; |
| 2550 | Changed = ChangeStatus::CHANGED; |
| 2551 | } |
| 2552 | |
| 2553 | return Changed; |
| 2554 | } |
| 2555 | }; |
| 2556 | |
| 2557 | struct AAICVTrackerCallSite : AAICVTracker { |
| 2558 | AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) |
| 2559 | : AAICVTracker(IRP, A) {} |
| 2560 | |
| 2561 | void initialize(Attributor &A) override { |
| 2562 | assert(getAnchorScope() && "Expected anchor function" ); |
| 2563 | |
| 2564 | // We only initialize this AA for getters, so we need to know which ICV it |
| 2565 | // gets. |
| 2566 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 2567 | for (InternalControlVar ICV : TrackableICVs) { |
| 2568 | auto ICVInfo = OMPInfoCache.ICVs[ICV]; |
| 2569 | auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; |
| 2570 | if (Getter.Declaration == getAssociatedFunction()) { |
| 2571 | AssociatedICV = ICVInfo.Kind; |
| 2572 | return; |
| 2573 | } |
| 2574 | } |
| 2575 | |
| 2576 | /// Unknown ICV. |
| 2577 | indicatePessimisticFixpoint(); |
| 2578 | } |
| 2579 | |
| 2580 | ChangeStatus manifest(Attributor &A) override { |
| 2581 | if (!ReplVal || !*ReplVal) |
| 2582 | return ChangeStatus::UNCHANGED; |
| 2583 | |
| 2584 | A.changeAfterManifest(IRP: IRPosition::inst(I: *getCtxI()), NV&: **ReplVal); |
| 2585 | A.deleteAfterManifest(I&: *getCtxI()); |
| 2586 | |
| 2587 | return ChangeStatus::CHANGED; |
| 2588 | } |
| 2589 | |
| 2590 | // FIXME: come up with better string. |
| 2591 | const std::string getAsStr(Attributor *) const override { |
| 2592 | return "ICVTrackerCallSite" ; |
| 2593 | } |
| 2594 | |
| 2595 | // FIXME: come up with some stats. |
| 2596 | void trackStatistics() const override {} |
| 2597 | |
| 2598 | InternalControlVar AssociatedICV; |
| 2599 | std::optional<Value *> ReplVal; |
| 2600 | |
| 2601 | ChangeStatus updateImpl(Attributor &A) override { |
| 2602 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
| 2603 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
| 2604 | |
| 2605 | // We don't have any information, so we assume it changes the ICV. |
| 2606 | if (!ICVTrackingAA->isAssumedTracked()) |
| 2607 | return indicatePessimisticFixpoint(); |
| 2608 | |
| 2609 | std::optional<Value *> NewReplVal = |
| 2610 | ICVTrackingAA->getReplacementValue(ICV: AssociatedICV, I: getCtxI(), A); |
| 2611 | |
| 2612 | if (ReplVal == NewReplVal) |
| 2613 | return ChangeStatus::UNCHANGED; |
| 2614 | |
| 2615 | ReplVal = NewReplVal; |
| 2616 | return ChangeStatus::CHANGED; |
| 2617 | } |
| 2618 | |
| 2619 | // Return the value with which associated value can be replaced for specific |
| 2620 | // \p ICV. |
| 2621 | std::optional<Value *> |
| 2622 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
| 2623 | return ReplVal; |
| 2624 | } |
| 2625 | }; |
| 2626 | |
| 2627 | struct AAICVTrackerCallSiteReturned : AAICVTracker { |
| 2628 | AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 2629 | : AAICVTracker(IRP, A) {} |
| 2630 | |
| 2631 | // FIXME: come up with better string. |
| 2632 | const std::string getAsStr(Attributor *) const override { |
| 2633 | return "ICVTrackerCallSiteReturned" ; |
| 2634 | } |
| 2635 | |
| 2636 | // FIXME: come up with some stats. |
| 2637 | void trackStatistics() const override {} |
| 2638 | |
| 2639 | /// We don't manifest anything for this AA. |
| 2640 | ChangeStatus manifest(Attributor &A) override { |
| 2641 | return ChangeStatus::UNCHANGED; |
| 2642 | } |
| 2643 | |
| 2644 | // Map of ICV to their values at specific program point. |
| 2645 | EnumeratedArray<std::optional<Value *>, InternalControlVar, |
| 2646 | InternalControlVar::ICV___last> |
| 2647 | ICVReplacementValuesMap; |
| 2648 | |
| 2649 | /// Return the value with which associated value can be replaced for specific |
| 2650 | /// \p ICV. |
| 2651 | std::optional<Value *> |
| 2652 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
| 2653 | return ICVReplacementValuesMap[ICV]; |
| 2654 | } |
| 2655 | |
| 2656 | ChangeStatus updateImpl(Attributor &A) override { |
| 2657 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 2658 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
| 2659 | QueryingAA: *this, IRP: IRPosition::returned(F: *getAssociatedFunction()), |
| 2660 | DepClass: DepClassTy::REQUIRED); |
| 2661 | |
| 2662 | // We don't have any information, so we assume it changes the ICV. |
| 2663 | if (!ICVTrackingAA->isAssumedTracked()) |
| 2664 | return indicatePessimisticFixpoint(); |
| 2665 | |
| 2666 | for (InternalControlVar ICV : TrackableICVs) { |
| 2667 | std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; |
| 2668 | std::optional<Value *> NewReplVal = |
| 2669 | ICVTrackingAA->getUniqueReplacementValue(ICV); |
| 2670 | |
| 2671 | if (ReplVal == NewReplVal) |
| 2672 | continue; |
| 2673 | |
| 2674 | ReplVal = NewReplVal; |
| 2675 | Changed = ChangeStatus::CHANGED; |
| 2676 | } |
| 2677 | return Changed; |
| 2678 | } |
| 2679 | }; |
| 2680 | |
| 2681 | /// Determines if \p BB exits the function unconditionally itself or reaches a |
| 2682 | /// block that does through only unique successors. |
| 2683 | static bool hasFunctionEndAsUniqueSuccessor(const BasicBlock *BB) { |
| 2684 | if (succ_empty(BB)) |
| 2685 | return true; |
| 2686 | const BasicBlock *const Successor = BB->getUniqueSuccessor(); |
| 2687 | if (!Successor) |
| 2688 | return false; |
| 2689 | return hasFunctionEndAsUniqueSuccessor(BB: Successor); |
| 2690 | } |
| 2691 | |
| 2692 | struct AAExecutionDomainFunction : public AAExecutionDomain { |
| 2693 | AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) |
| 2694 | : AAExecutionDomain(IRP, A) {} |
| 2695 | |
| 2696 | ~AAExecutionDomainFunction() { delete RPOT; } |
| 2697 | |
| 2698 | void initialize(Attributor &A) override { |
| 2699 | Function *F = getAnchorScope(); |
| 2700 | assert(F && "Expected anchor function" ); |
| 2701 | RPOT = new ReversePostOrderTraversal<Function *>(F); |
| 2702 | } |
| 2703 | |
| 2704 | const std::string getAsStr(Attributor *) const override { |
| 2705 | unsigned TotalBlocks = 0, InitialThreadBlocks = 0, AlignedBlocks = 0; |
| 2706 | for (auto &It : BEDMap) { |
| 2707 | if (!It.getFirst()) |
| 2708 | continue; |
| 2709 | TotalBlocks++; |
| 2710 | InitialThreadBlocks += It.getSecond().IsExecutedByInitialThreadOnly; |
| 2711 | AlignedBlocks += It.getSecond().IsReachedFromAlignedBarrierOnly && |
| 2712 | It.getSecond().IsReachingAlignedBarrierOnly; |
| 2713 | } |
| 2714 | return "[AAExecutionDomain] " + std::to_string(val: InitialThreadBlocks) + "/" + |
| 2715 | std::to_string(val: AlignedBlocks) + " of " + |
| 2716 | std::to_string(val: TotalBlocks) + |
| 2717 | " executed by initial thread / aligned" ; |
| 2718 | } |
| 2719 | |
| 2720 | /// See AbstractAttribute::trackStatistics(). |
| 2721 | void trackStatistics() const override {} |
| 2722 | |
| 2723 | ChangeStatus manifest(Attributor &A) override { |
| 2724 | LLVM_DEBUG({ |
| 2725 | for (const BasicBlock &BB : *getAnchorScope()) { |
| 2726 | if (!isExecutedByInitialThreadOnly(BB)) |
| 2727 | continue; |
| 2728 | dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " |
| 2729 | << BB.getName() << " is executed by a single thread.\n" ; |
| 2730 | } |
| 2731 | }); |
| 2732 | |
| 2733 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 2734 | |
| 2735 | if (DisableOpenMPOptBarrierElimination) |
| 2736 | return Changed; |
| 2737 | |
| 2738 | SmallPtrSet<CallBase *, 16> DeletedBarriers; |
| 2739 | auto HandleAlignedBarrier = [&](CallBase *CB) { |
| 2740 | const ExecutionDomainTy &ED = CB ? CEDMap[{CB, PRE}] : BEDMap[nullptr]; |
| 2741 | if (!ED.IsReachedFromAlignedBarrierOnly || |
| 2742 | ED.EncounteredNonLocalSideEffect) |
| 2743 | return; |
| 2744 | if (!ED.EncounteredAssumes.empty() && !A.isModulePass()) |
| 2745 | return; |
| 2746 | |
| 2747 | // We can remove this barrier, if it is one, or aligned barriers reaching |
| 2748 | // the kernel end (if CB is nullptr). Aligned barriers reaching the kernel |
| 2749 | // end should only be removed if the kernel end is their unique successor; |
| 2750 | // otherwise, they may have side-effects that aren't accounted for in the |
| 2751 | // kernel end in their other successors. If those barriers have other |
| 2752 | // barriers reaching them, those can be transitively removed as well as |
| 2753 | // long as the kernel end is also their unique successor. |
| 2754 | if (CB) { |
| 2755 | DeletedBarriers.insert(Ptr: CB); |
| 2756 | A.deleteAfterManifest(I&: *CB); |
| 2757 | ++NumBarriersEliminated; |
| 2758 | Changed = ChangeStatus::CHANGED; |
| 2759 | } else if (!ED.AlignedBarriers.empty()) { |
| 2760 | Changed = ChangeStatus::CHANGED; |
| 2761 | SmallVector<CallBase *> Worklist(ED.AlignedBarriers.begin(), |
| 2762 | ED.AlignedBarriers.end()); |
| 2763 | SmallSetVector<CallBase *, 16> Visited; |
| 2764 | while (!Worklist.empty()) { |
| 2765 | CallBase *LastCB = Worklist.pop_back_val(); |
| 2766 | if (!Visited.insert(X: LastCB)) |
| 2767 | continue; |
| 2768 | if (LastCB->getFunction() != getAnchorScope()) |
| 2769 | continue; |
| 2770 | if (!hasFunctionEndAsUniqueSuccessor(BB: LastCB->getParent())) |
| 2771 | continue; |
| 2772 | if (!DeletedBarriers.count(Ptr: LastCB)) { |
| 2773 | ++NumBarriersEliminated; |
| 2774 | A.deleteAfterManifest(I&: *LastCB); |
| 2775 | continue; |
| 2776 | } |
| 2777 | // The final aligned barrier (LastCB) reaching the kernel end was |
| 2778 | // removed already. This means we can go one step further and remove |
| 2779 | // the barriers encoutered last before (LastCB). |
| 2780 | const ExecutionDomainTy &LastED = CEDMap[{LastCB, PRE}]; |
| 2781 | Worklist.append(in_start: LastED.AlignedBarriers.begin(), |
| 2782 | in_end: LastED.AlignedBarriers.end()); |
| 2783 | } |
| 2784 | } |
| 2785 | |
| 2786 | // If we actually eliminated a barrier we need to eliminate the associated |
| 2787 | // llvm.assumes as well to avoid creating UB. |
| 2788 | if (!ED.EncounteredAssumes.empty() && (CB || !ED.AlignedBarriers.empty())) |
| 2789 | for (auto *AssumeCB : ED.EncounteredAssumes) |
| 2790 | A.deleteAfterManifest(I&: *AssumeCB); |
| 2791 | }; |
| 2792 | |
| 2793 | for (auto *CB : AlignedBarriers) |
| 2794 | HandleAlignedBarrier(CB); |
| 2795 | |
| 2796 | // Handle the "kernel end barrier" for kernels too. |
| 2797 | if (omp::isOpenMPKernel(Fn&: *getAnchorScope())) |
| 2798 | HandleAlignedBarrier(nullptr); |
| 2799 | |
| 2800 | return Changed; |
| 2801 | } |
| 2802 | |
| 2803 | bool isNoOpFence(const FenceInst &FI) const override { |
| 2804 | return getState().isValidState() && !NonNoOpFences.count(Ptr: &FI); |
| 2805 | } |
| 2806 | |
| 2807 | /// Merge barrier and assumption information from \p PredED into the successor |
| 2808 | /// \p ED. |
| 2809 | void |
| 2810 | mergeInPredecessorBarriersAndAssumptions(Attributor &A, ExecutionDomainTy &ED, |
| 2811 | const ExecutionDomainTy &PredED); |
| 2812 | |
| 2813 | /// Merge all information from \p PredED into the successor \p ED. If |
| 2814 | /// \p InitialEdgeOnly is set, only the initial edge will enter the block |
| 2815 | /// represented by \p ED from this predecessor. |
| 2816 | bool mergeInPredecessor(Attributor &A, ExecutionDomainTy &ED, |
| 2817 | const ExecutionDomainTy &PredED, |
| 2818 | bool InitialEdgeOnly = false); |
| 2819 | |
| 2820 | /// Accumulate information for the entry block in \p EntryBBED. |
| 2821 | bool handleCallees(Attributor &A, ExecutionDomainTy &EntryBBED); |
| 2822 | |
| 2823 | /// See AbstractAttribute::updateImpl. |
| 2824 | ChangeStatus updateImpl(Attributor &A) override; |
| 2825 | |
| 2826 | /// Query interface, see AAExecutionDomain |
| 2827 | ///{ |
| 2828 | bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { |
| 2829 | if (!isValidState()) |
| 2830 | return false; |
| 2831 | assert(BB.getParent() == getAnchorScope() && "Block is out of scope!" ); |
| 2832 | return BEDMap.lookup(Val: &BB).IsExecutedByInitialThreadOnly; |
| 2833 | } |
| 2834 | |
| 2835 | bool isExecutedInAlignedRegion(Attributor &A, |
| 2836 | const Instruction &I) const override { |
| 2837 | assert(I.getFunction() == getAnchorScope() && |
| 2838 | "Instruction is out of scope!" ); |
| 2839 | if (!isValidState()) |
| 2840 | return false; |
| 2841 | |
| 2842 | bool ForwardIsOk = true; |
| 2843 | const Instruction *CurI; |
| 2844 | |
| 2845 | // Check forward until a call or the block end is reached. |
| 2846 | CurI = &I; |
| 2847 | do { |
| 2848 | auto *CB = dyn_cast<CallBase>(Val: CurI); |
| 2849 | if (!CB) |
| 2850 | continue; |
| 2851 | if (CB != &I && AlignedBarriers.contains(key: const_cast<CallBase *>(CB))) |
| 2852 | return true; |
| 2853 | const auto &It = CEDMap.find(Val: {CB, PRE}); |
| 2854 | if (It == CEDMap.end()) |
| 2855 | continue; |
| 2856 | if (!It->getSecond().IsReachingAlignedBarrierOnly) |
| 2857 | ForwardIsOk = false; |
| 2858 | break; |
| 2859 | } while ((CurI = CurI->getNextNonDebugInstruction())); |
| 2860 | |
| 2861 | if (!CurI && !BEDMap.lookup(Val: I.getParent()).IsReachingAlignedBarrierOnly) |
| 2862 | ForwardIsOk = false; |
| 2863 | |
| 2864 | // Check backward until a call or the block beginning is reached. |
| 2865 | CurI = &I; |
| 2866 | do { |
| 2867 | auto *CB = dyn_cast<CallBase>(Val: CurI); |
| 2868 | if (!CB) |
| 2869 | continue; |
| 2870 | if (CB != &I && AlignedBarriers.contains(key: const_cast<CallBase *>(CB))) |
| 2871 | return true; |
| 2872 | const auto &It = CEDMap.find(Val: {CB, POST}); |
| 2873 | if (It == CEDMap.end()) |
| 2874 | continue; |
| 2875 | if (It->getSecond().IsReachedFromAlignedBarrierOnly) |
| 2876 | break; |
| 2877 | return false; |
| 2878 | } while ((CurI = CurI->getPrevNonDebugInstruction())); |
| 2879 | |
| 2880 | // Delayed decision on the forward pass to allow aligned barrier detection |
| 2881 | // in the backwards traversal. |
| 2882 | if (!ForwardIsOk) |
| 2883 | return false; |
| 2884 | |
| 2885 | if (!CurI) { |
| 2886 | const BasicBlock *BB = I.getParent(); |
| 2887 | if (BB == &BB->getParent()->getEntryBlock()) |
| 2888 | return BEDMap.lookup(Val: nullptr).IsReachedFromAlignedBarrierOnly; |
| 2889 | if (!llvm::all_of(Range: predecessors(BB), P: [&](const BasicBlock *PredBB) { |
| 2890 | return BEDMap.lookup(Val: PredBB).IsReachedFromAlignedBarrierOnly; |
| 2891 | })) { |
| 2892 | return false; |
| 2893 | } |
| 2894 | } |
| 2895 | |
| 2896 | // On neither traversal we found a anything but aligned barriers. |
| 2897 | return true; |
| 2898 | } |
| 2899 | |
| 2900 | ExecutionDomainTy getExecutionDomain(const BasicBlock &BB) const override { |
| 2901 | assert(isValidState() && |
| 2902 | "No request should be made against an invalid state!" ); |
| 2903 | return BEDMap.lookup(Val: &BB); |
| 2904 | } |
| 2905 | std::pair<ExecutionDomainTy, ExecutionDomainTy> |
| 2906 | getExecutionDomain(const CallBase &CB) const override { |
| 2907 | assert(isValidState() && |
| 2908 | "No request should be made against an invalid state!" ); |
| 2909 | return {CEDMap.lookup(Val: {&CB, PRE}), CEDMap.lookup(Val: {&CB, POST})}; |
| 2910 | } |
| 2911 | ExecutionDomainTy getFunctionExecutionDomain() const override { |
| 2912 | assert(isValidState() && |
| 2913 | "No request should be made against an invalid state!" ); |
| 2914 | return InterProceduralED; |
| 2915 | } |
| 2916 | ///} |
| 2917 | |
| 2918 | // Check if the edge into the successor block contains a condition that only |
| 2919 | // lets the main thread execute it. |
| 2920 | static bool isInitialThreadOnlyEdge(Attributor &A, BranchInst *Edge, |
| 2921 | BasicBlock &SuccessorBB) { |
| 2922 | if (!Edge || !Edge->isConditional()) |
| 2923 | return false; |
| 2924 | if (Edge->getSuccessor(i: 0) != &SuccessorBB) |
| 2925 | return false; |
| 2926 | |
| 2927 | auto *Cmp = dyn_cast<CmpInst>(Val: Edge->getCondition()); |
| 2928 | if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) |
| 2929 | return false; |
| 2930 | |
| 2931 | ConstantInt *C = dyn_cast<ConstantInt>(Val: Cmp->getOperand(i_nocapture: 1)); |
| 2932 | if (!C) |
| 2933 | return false; |
| 2934 | |
| 2935 | // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) |
| 2936 | if (C->isAllOnesValue()) { |
| 2937 | auto *CB = dyn_cast<CallBase>(Val: Cmp->getOperand(i_nocapture: 0)); |
| 2938 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 2939 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
| 2940 | CB = CB ? OpenMPOpt::getCallIfRegularCall(V&: *CB, RFI: &RFI) : nullptr; |
| 2941 | if (!CB) |
| 2942 | return false; |
| 2943 | ConstantStruct *KernelEnvC = |
| 2944 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB: CB); |
| 2945 | ConstantInt *ExecModeC = |
| 2946 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC); |
| 2947 | return ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC; |
| 2948 | } |
| 2949 | |
| 2950 | if (C->isZero()) { |
| 2951 | // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() |
| 2952 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Cmp->getOperand(i_nocapture: 0))) |
| 2953 | if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) |
| 2954 | return true; |
| 2955 | |
| 2956 | // Match: 0 == llvm.amdgcn.workitem.id.x() |
| 2957 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Cmp->getOperand(i_nocapture: 0))) |
| 2958 | if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) |
| 2959 | return true; |
| 2960 | } |
| 2961 | |
| 2962 | return false; |
| 2963 | }; |
| 2964 | |
| 2965 | /// Mapping containing information about the function for other AAs. |
| 2966 | ExecutionDomainTy InterProceduralED; |
| 2967 | |
| 2968 | enum Direction { PRE = 0, POST = 1 }; |
| 2969 | /// Mapping containing information per block. |
| 2970 | DenseMap<const BasicBlock *, ExecutionDomainTy> BEDMap; |
| 2971 | DenseMap<PointerIntPair<const CallBase *, 1, Direction>, ExecutionDomainTy> |
| 2972 | CEDMap; |
| 2973 | SmallSetVector<CallBase *, 16> AlignedBarriers; |
| 2974 | |
| 2975 | ReversePostOrderTraversal<Function *> *RPOT = nullptr; |
| 2976 | |
| 2977 | /// Set \p R to \V and report true if that changed \p R. |
| 2978 | static bool setAndRecord(bool &R, bool V) { |
| 2979 | bool Eq = (R == V); |
| 2980 | R = V; |
| 2981 | return !Eq; |
| 2982 | } |
| 2983 | |
| 2984 | /// Collection of fences known to be non-no-opt. All fences not in this set |
| 2985 | /// can be assumed no-opt. |
| 2986 | SmallPtrSet<const FenceInst *, 8> NonNoOpFences; |
| 2987 | }; |
| 2988 | |
| 2989 | void AAExecutionDomainFunction::mergeInPredecessorBarriersAndAssumptions( |
| 2990 | Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED) { |
| 2991 | for (auto *EA : PredED.EncounteredAssumes) |
| 2992 | ED.addAssumeInst(A, AI&: *EA); |
| 2993 | |
| 2994 | for (auto *AB : PredED.AlignedBarriers) |
| 2995 | ED.addAlignedBarrier(A, CB&: *AB); |
| 2996 | } |
| 2997 | |
| 2998 | bool AAExecutionDomainFunction::mergeInPredecessor( |
| 2999 | Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED, |
| 3000 | bool InitialEdgeOnly) { |
| 3001 | |
| 3002 | bool Changed = false; |
| 3003 | Changed |= |
| 3004 | setAndRecord(R&: ED.IsExecutedByInitialThreadOnly, |
| 3005 | V: InitialEdgeOnly || (PredED.IsExecutedByInitialThreadOnly && |
| 3006 | ED.IsExecutedByInitialThreadOnly)); |
| 3007 | |
| 3008 | Changed |= setAndRecord(R&: ED.IsReachedFromAlignedBarrierOnly, |
| 3009 | V: ED.IsReachedFromAlignedBarrierOnly && |
| 3010 | PredED.IsReachedFromAlignedBarrierOnly); |
| 3011 | Changed |= setAndRecord(R&: ED.EncounteredNonLocalSideEffect, |
| 3012 | V: ED.EncounteredNonLocalSideEffect | |
| 3013 | PredED.EncounteredNonLocalSideEffect); |
| 3014 | // Do not track assumptions and barriers as part of Changed. |
| 3015 | if (ED.IsReachedFromAlignedBarrierOnly) |
| 3016 | mergeInPredecessorBarriersAndAssumptions(A, ED, PredED); |
| 3017 | else |
| 3018 | ED.clearAssumeInstAndAlignedBarriers(); |
| 3019 | return Changed; |
| 3020 | } |
| 3021 | |
| 3022 | bool AAExecutionDomainFunction::handleCallees(Attributor &A, |
| 3023 | ExecutionDomainTy &EntryBBED) { |
| 3024 | SmallVector<std::pair<ExecutionDomainTy, ExecutionDomainTy>, 4> CallSiteEDs; |
| 3025 | auto PredForCallSite = [&](AbstractCallSite ACS) { |
| 3026 | const auto *EDAA = A.getAAFor<AAExecutionDomain>( |
| 3027 | QueryingAA: *this, IRP: IRPosition::function(F: *ACS.getInstruction()->getFunction()), |
| 3028 | DepClass: DepClassTy::OPTIONAL); |
| 3029 | if (!EDAA || !EDAA->getState().isValidState()) |
| 3030 | return false; |
| 3031 | CallSiteEDs.emplace_back( |
| 3032 | Args: EDAA->getExecutionDomain(CB: *cast<CallBase>(Val: ACS.getInstruction()))); |
| 3033 | return true; |
| 3034 | }; |
| 3035 | |
| 3036 | ExecutionDomainTy ExitED; |
| 3037 | bool AllCallSitesKnown; |
| 3038 | if (A.checkForAllCallSites(Pred: PredForCallSite, QueryingAA: *this, |
| 3039 | /* RequiresAllCallSites */ RequireAllCallSites: true, |
| 3040 | UsedAssumedInformation&: AllCallSitesKnown)) { |
| 3041 | for (const auto &[CSInED, CSOutED] : CallSiteEDs) { |
| 3042 | mergeInPredecessor(A, ED&: EntryBBED, PredED: CSInED); |
| 3043 | ExitED.IsReachingAlignedBarrierOnly &= |
| 3044 | CSOutED.IsReachingAlignedBarrierOnly; |
| 3045 | } |
| 3046 | |
| 3047 | } else { |
| 3048 | // We could not find all predecessors, so this is either a kernel or a |
| 3049 | // function with external linkage (or with some other weird uses). |
| 3050 | if (omp::isOpenMPKernel(Fn&: *getAnchorScope())) { |
| 3051 | EntryBBED.IsExecutedByInitialThreadOnly = false; |
| 3052 | EntryBBED.IsReachedFromAlignedBarrierOnly = true; |
| 3053 | EntryBBED.EncounteredNonLocalSideEffect = false; |
| 3054 | ExitED.IsReachingAlignedBarrierOnly = false; |
| 3055 | } else { |
| 3056 | EntryBBED.IsExecutedByInitialThreadOnly = false; |
| 3057 | EntryBBED.IsReachedFromAlignedBarrierOnly = false; |
| 3058 | EntryBBED.EncounteredNonLocalSideEffect = true; |
| 3059 | ExitED.IsReachingAlignedBarrierOnly = false; |
| 3060 | } |
| 3061 | } |
| 3062 | |
| 3063 | bool Changed = false; |
| 3064 | auto &FnED = BEDMap[nullptr]; |
| 3065 | Changed |= setAndRecord(R&: FnED.IsReachedFromAlignedBarrierOnly, |
| 3066 | V: FnED.IsReachedFromAlignedBarrierOnly & |
| 3067 | EntryBBED.IsReachedFromAlignedBarrierOnly); |
| 3068 | Changed |= setAndRecord(R&: FnED.IsReachingAlignedBarrierOnly, |
| 3069 | V: FnED.IsReachingAlignedBarrierOnly & |
| 3070 | ExitED.IsReachingAlignedBarrierOnly); |
| 3071 | Changed |= setAndRecord(R&: FnED.IsExecutedByInitialThreadOnly, |
| 3072 | V: EntryBBED.IsExecutedByInitialThreadOnly); |
| 3073 | return Changed; |
| 3074 | } |
| 3075 | |
| 3076 | ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { |
| 3077 | |
| 3078 | bool Changed = false; |
| 3079 | |
| 3080 | // Helper to deal with an aligned barrier encountered during the forward |
| 3081 | // traversal. \p CB is the aligned barrier, \p ED is the execution domain when |
| 3082 | // it was encountered. |
| 3083 | auto HandleAlignedBarrier = [&](CallBase &CB, ExecutionDomainTy &ED) { |
| 3084 | Changed |= AlignedBarriers.insert(X: &CB); |
| 3085 | // First, update the barrier ED kept in the separate CEDMap. |
| 3086 | auto &CallInED = CEDMap[{&CB, PRE}]; |
| 3087 | Changed |= mergeInPredecessor(A, ED&: CallInED, PredED: ED); |
| 3088 | CallInED.IsReachingAlignedBarrierOnly = true; |
| 3089 | // Next adjust the ED we use for the traversal. |
| 3090 | ED.EncounteredNonLocalSideEffect = false; |
| 3091 | ED.IsReachedFromAlignedBarrierOnly = true; |
| 3092 | // Aligned barrier collection has to come last. |
| 3093 | ED.clearAssumeInstAndAlignedBarriers(); |
| 3094 | ED.addAlignedBarrier(A, CB); |
| 3095 | auto &CallOutED = CEDMap[{&CB, POST}]; |
| 3096 | Changed |= mergeInPredecessor(A, ED&: CallOutED, PredED: ED); |
| 3097 | }; |
| 3098 | |
| 3099 | auto *LivenessAA = |
| 3100 | A.getAAFor<AAIsDead>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
| 3101 | |
| 3102 | Function *F = getAnchorScope(); |
| 3103 | BasicBlock &EntryBB = F->getEntryBlock(); |
| 3104 | bool IsKernel = omp::isOpenMPKernel(Fn&: *F); |
| 3105 | |
| 3106 | SmallVector<Instruction *> SyncInstWorklist; |
| 3107 | for (auto &RIt : *RPOT) { |
| 3108 | BasicBlock &BB = *RIt; |
| 3109 | |
| 3110 | bool IsEntryBB = &BB == &EntryBB; |
| 3111 | // TODO: We use local reasoning since we don't have a divergence analysis |
| 3112 | // running as well. We could basically allow uniform branches here. |
| 3113 | bool AlignedBarrierLastInBlock = IsEntryBB && IsKernel; |
| 3114 | bool IsExplicitlyAligned = IsEntryBB && IsKernel; |
| 3115 | ExecutionDomainTy ED; |
| 3116 | // Propagate "incoming edges" into information about this block. |
| 3117 | if (IsEntryBB) { |
| 3118 | Changed |= handleCallees(A, EntryBBED&: ED); |
| 3119 | } else { |
| 3120 | // For live non-entry blocks we only propagate |
| 3121 | // information via live edges. |
| 3122 | if (LivenessAA && LivenessAA->isAssumedDead(BB: &BB)) |
| 3123 | continue; |
| 3124 | |
| 3125 | for (auto *PredBB : predecessors(BB: &BB)) { |
| 3126 | if (LivenessAA && LivenessAA->isEdgeDead(From: PredBB, To: &BB)) |
| 3127 | continue; |
| 3128 | bool InitialEdgeOnly = isInitialThreadOnlyEdge( |
| 3129 | A, Edge: dyn_cast<BranchInst>(Val: PredBB->getTerminator()), SuccessorBB&: BB); |
| 3130 | mergeInPredecessor(A, ED, PredED: BEDMap[PredBB], InitialEdgeOnly); |
| 3131 | } |
| 3132 | } |
| 3133 | |
| 3134 | // Now we traverse the block, accumulate effects in ED and attach |
| 3135 | // information to calls. |
| 3136 | for (Instruction &I : BB) { |
| 3137 | bool UsedAssumedInformation; |
| 3138 | if (A.isAssumedDead(I, QueryingAA: *this, LivenessAA, UsedAssumedInformation, |
| 3139 | /* CheckBBLivenessOnly */ false, DepClass: DepClassTy::OPTIONAL, |
| 3140 | /* CheckForDeadStore */ true)) |
| 3141 | continue; |
| 3142 | |
| 3143 | // Asummes and "assume-like" (dbg, lifetime, ...) are handled first, the |
| 3144 | // former is collected the latter is ignored. |
| 3145 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
| 3146 | if (auto *AI = dyn_cast_or_null<AssumeInst>(Val: II)) { |
| 3147 | ED.addAssumeInst(A, AI&: *AI); |
| 3148 | continue; |
| 3149 | } |
| 3150 | // TODO: Should we also collect and delete lifetime markers? |
| 3151 | if (II->isAssumeLikeIntrinsic()) |
| 3152 | continue; |
| 3153 | } |
| 3154 | |
| 3155 | if (auto *FI = dyn_cast<FenceInst>(Val: &I)) { |
| 3156 | if (!ED.EncounteredNonLocalSideEffect) { |
| 3157 | // An aligned fence without non-local side-effects is a no-op. |
| 3158 | if (ED.IsReachedFromAlignedBarrierOnly) |
| 3159 | continue; |
| 3160 | // A non-aligned fence without non-local side-effects is a no-op |
| 3161 | // if the ordering only publishes non-local side-effects (or less). |
| 3162 | switch (FI->getOrdering()) { |
| 3163 | case AtomicOrdering::NotAtomic: |
| 3164 | continue; |
| 3165 | case AtomicOrdering::Unordered: |
| 3166 | continue; |
| 3167 | case AtomicOrdering::Monotonic: |
| 3168 | continue; |
| 3169 | case AtomicOrdering::Acquire: |
| 3170 | break; |
| 3171 | case AtomicOrdering::Release: |
| 3172 | continue; |
| 3173 | case AtomicOrdering::AcquireRelease: |
| 3174 | break; |
| 3175 | case AtomicOrdering::SequentiallyConsistent: |
| 3176 | break; |
| 3177 | }; |
| 3178 | } |
| 3179 | NonNoOpFences.insert(Ptr: FI); |
| 3180 | } |
| 3181 | |
| 3182 | auto *CB = dyn_cast<CallBase>(Val: &I); |
| 3183 | bool IsNoSync = AA::isNoSyncInst(A, I, QueryingAA: *this); |
| 3184 | bool IsAlignedBarrier = |
| 3185 | !IsNoSync && CB && |
| 3186 | AANoSync::isAlignedBarrier(CB: *CB, ExecutedAligned: AlignedBarrierLastInBlock); |
| 3187 | |
| 3188 | AlignedBarrierLastInBlock &= IsNoSync; |
| 3189 | IsExplicitlyAligned &= IsNoSync; |
| 3190 | |
| 3191 | // Next we check for calls. Aligned barriers are handled |
| 3192 | // explicitly, everything else is kept for the backward traversal and will |
| 3193 | // also affect our state. |
| 3194 | if (CB) { |
| 3195 | if (IsAlignedBarrier) { |
| 3196 | HandleAlignedBarrier(*CB, ED); |
| 3197 | AlignedBarrierLastInBlock = true; |
| 3198 | IsExplicitlyAligned = true; |
| 3199 | continue; |
| 3200 | } |
| 3201 | |
| 3202 | // Check the pointer(s) of a memory intrinsic explicitly. |
| 3203 | if (isa<MemIntrinsic>(Val: &I)) { |
| 3204 | if (!ED.EncounteredNonLocalSideEffect && |
| 3205 | AA::isPotentiallyAffectedByBarrier(A, I, QueryingAA: *this)) |
| 3206 | ED.EncounteredNonLocalSideEffect = true; |
| 3207 | if (!IsNoSync) { |
| 3208 | ED.IsReachedFromAlignedBarrierOnly = false; |
| 3209 | SyncInstWorklist.push_back(Elt: &I); |
| 3210 | } |
| 3211 | continue; |
| 3212 | } |
| 3213 | |
| 3214 | // Record how we entered the call, then accumulate the effect of the |
| 3215 | // call in ED for potential use by the callee. |
| 3216 | auto &CallInED = CEDMap[{CB, PRE}]; |
| 3217 | Changed |= mergeInPredecessor(A, ED&: CallInED, PredED: ED); |
| 3218 | |
| 3219 | // If we have a sync-definition we can check if it starts/ends in an |
| 3220 | // aligned barrier. If we are unsure we assume any sync breaks |
| 3221 | // alignment. |
| 3222 | Function *Callee = CB->getCalledFunction(); |
| 3223 | if (!IsNoSync && Callee && !Callee->isDeclaration()) { |
| 3224 | const auto *EDAA = A.getAAFor<AAExecutionDomain>( |
| 3225 | QueryingAA: *this, IRP: IRPosition::function(F: *Callee), DepClass: DepClassTy::OPTIONAL); |
| 3226 | if (EDAA && EDAA->getState().isValidState()) { |
| 3227 | const auto &CalleeED = EDAA->getFunctionExecutionDomain(); |
| 3228 | ED.IsReachedFromAlignedBarrierOnly = |
| 3229 | CalleeED.IsReachedFromAlignedBarrierOnly; |
| 3230 | AlignedBarrierLastInBlock = ED.IsReachedFromAlignedBarrierOnly; |
| 3231 | if (IsNoSync || !CalleeED.IsReachedFromAlignedBarrierOnly) |
| 3232 | ED.EncounteredNonLocalSideEffect |= |
| 3233 | CalleeED.EncounteredNonLocalSideEffect; |
| 3234 | else |
| 3235 | ED.EncounteredNonLocalSideEffect = |
| 3236 | CalleeED.EncounteredNonLocalSideEffect; |
| 3237 | if (!CalleeED.IsReachingAlignedBarrierOnly) { |
| 3238 | Changed |= |
| 3239 | setAndRecord(R&: CallInED.IsReachingAlignedBarrierOnly, V: false); |
| 3240 | SyncInstWorklist.push_back(Elt: &I); |
| 3241 | } |
| 3242 | if (CalleeED.IsReachedFromAlignedBarrierOnly) |
| 3243 | mergeInPredecessorBarriersAndAssumptions(A, ED, PredED: CalleeED); |
| 3244 | auto &CallOutED = CEDMap[{CB, POST}]; |
| 3245 | Changed |= mergeInPredecessor(A, ED&: CallOutED, PredED: ED); |
| 3246 | continue; |
| 3247 | } |
| 3248 | } |
| 3249 | if (!IsNoSync) { |
| 3250 | ED.IsReachedFromAlignedBarrierOnly = false; |
| 3251 | Changed |= setAndRecord(R&: CallInED.IsReachingAlignedBarrierOnly, V: false); |
| 3252 | SyncInstWorklist.push_back(Elt: &I); |
| 3253 | } |
| 3254 | AlignedBarrierLastInBlock &= ED.IsReachedFromAlignedBarrierOnly; |
| 3255 | ED.EncounteredNonLocalSideEffect |= !CB->doesNotAccessMemory(); |
| 3256 | auto &CallOutED = CEDMap[{CB, POST}]; |
| 3257 | Changed |= mergeInPredecessor(A, ED&: CallOutED, PredED: ED); |
| 3258 | } |
| 3259 | |
| 3260 | if (!I.mayHaveSideEffects() && !I.mayReadFromMemory()) |
| 3261 | continue; |
| 3262 | |
| 3263 | // If we have a callee we try to use fine-grained information to |
| 3264 | // determine local side-effects. |
| 3265 | if (CB) { |
| 3266 | const auto *MemAA = A.getAAFor<AAMemoryLocation>( |
| 3267 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB: *CB), DepClass: DepClassTy::OPTIONAL); |
| 3268 | |
| 3269 | auto AccessPred = [&](const Instruction *I, const Value *Ptr, |
| 3270 | AAMemoryLocation::AccessKind, |
| 3271 | AAMemoryLocation::MemoryLocationsKind) { |
| 3272 | return !AA::isPotentiallyAffectedByBarrier(A, Ptrs: {Ptr}, QueryingAA: *this, CtxI: I); |
| 3273 | }; |
| 3274 | if (MemAA && MemAA->getState().isValidState() && |
| 3275 | MemAA->checkForAllAccessesToMemoryKind( |
| 3276 | Pred: AccessPred, MLK: AAMemoryLocation::ALL_LOCATIONS)) |
| 3277 | continue; |
| 3278 | } |
| 3279 | |
| 3280 | auto &InfoCache = A.getInfoCache(); |
| 3281 | if (!I.mayHaveSideEffects() && InfoCache.isOnlyUsedByAssume(I)) |
| 3282 | continue; |
| 3283 | |
| 3284 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) |
| 3285 | if (LI->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
| 3286 | continue; |
| 3287 | |
| 3288 | if (!ED.EncounteredNonLocalSideEffect && |
| 3289 | AA::isPotentiallyAffectedByBarrier(A, I, QueryingAA: *this)) |
| 3290 | ED.EncounteredNonLocalSideEffect = true; |
| 3291 | } |
| 3292 | |
| 3293 | bool IsEndAndNotReachingAlignedBarriersOnly = false; |
| 3294 | if (!isa<UnreachableInst>(Val: BB.getTerminator()) && |
| 3295 | !BB.getTerminator()->getNumSuccessors()) { |
| 3296 | |
| 3297 | Changed |= mergeInPredecessor(A, ED&: InterProceduralED, PredED: ED); |
| 3298 | |
| 3299 | auto &FnED = BEDMap[nullptr]; |
| 3300 | if (IsKernel && !IsExplicitlyAligned) |
| 3301 | FnED.IsReachingAlignedBarrierOnly = false; |
| 3302 | Changed |= mergeInPredecessor(A, ED&: FnED, PredED: ED); |
| 3303 | |
| 3304 | if (!FnED.IsReachingAlignedBarrierOnly) { |
| 3305 | IsEndAndNotReachingAlignedBarriersOnly = true; |
| 3306 | SyncInstWorklist.push_back(Elt: BB.getTerminator()); |
| 3307 | auto &BBED = BEDMap[&BB]; |
| 3308 | Changed |= setAndRecord(R&: BBED.IsReachingAlignedBarrierOnly, V: false); |
| 3309 | } |
| 3310 | } |
| 3311 | |
| 3312 | ExecutionDomainTy &StoredED = BEDMap[&BB]; |
| 3313 | ED.IsReachingAlignedBarrierOnly = StoredED.IsReachingAlignedBarrierOnly & |
| 3314 | !IsEndAndNotReachingAlignedBarriersOnly; |
| 3315 | |
| 3316 | // Check if we computed anything different as part of the forward |
| 3317 | // traversal. We do not take assumptions and aligned barriers into account |
| 3318 | // as they do not influence the state we iterate. Backward traversal values |
| 3319 | // are handled later on. |
| 3320 | if (ED.IsExecutedByInitialThreadOnly != |
| 3321 | StoredED.IsExecutedByInitialThreadOnly || |
| 3322 | ED.IsReachedFromAlignedBarrierOnly != |
| 3323 | StoredED.IsReachedFromAlignedBarrierOnly || |
| 3324 | ED.EncounteredNonLocalSideEffect != |
| 3325 | StoredED.EncounteredNonLocalSideEffect) |
| 3326 | Changed = true; |
| 3327 | |
| 3328 | // Update the state with the new value. |
| 3329 | StoredED = std::move(ED); |
| 3330 | } |
| 3331 | |
| 3332 | // Propagate (non-aligned) sync instruction effects backwards until the |
| 3333 | // entry is hit or an aligned barrier. |
| 3334 | SmallSetVector<BasicBlock *, 16> Visited; |
| 3335 | while (!SyncInstWorklist.empty()) { |
| 3336 | Instruction *SyncInst = SyncInstWorklist.pop_back_val(); |
| 3337 | Instruction *CurInst = SyncInst; |
| 3338 | bool HitAlignedBarrierOrKnownEnd = false; |
| 3339 | while ((CurInst = CurInst->getPrevNode())) { |
| 3340 | auto *CB = dyn_cast<CallBase>(Val: CurInst); |
| 3341 | if (!CB) |
| 3342 | continue; |
| 3343 | auto &CallOutED = CEDMap[{CB, POST}]; |
| 3344 | Changed |= setAndRecord(R&: CallOutED.IsReachingAlignedBarrierOnly, V: false); |
| 3345 | auto &CallInED = CEDMap[{CB, PRE}]; |
| 3346 | HitAlignedBarrierOrKnownEnd = |
| 3347 | AlignedBarriers.count(key: CB) || !CallInED.IsReachingAlignedBarrierOnly; |
| 3348 | if (HitAlignedBarrierOrKnownEnd) |
| 3349 | break; |
| 3350 | Changed |= setAndRecord(R&: CallInED.IsReachingAlignedBarrierOnly, V: false); |
| 3351 | } |
| 3352 | if (HitAlignedBarrierOrKnownEnd) |
| 3353 | continue; |
| 3354 | BasicBlock *SyncBB = SyncInst->getParent(); |
| 3355 | for (auto *PredBB : predecessors(BB: SyncBB)) { |
| 3356 | if (LivenessAA && LivenessAA->isEdgeDead(From: PredBB, To: SyncBB)) |
| 3357 | continue; |
| 3358 | if (!Visited.insert(X: PredBB)) |
| 3359 | continue; |
| 3360 | auto &PredED = BEDMap[PredBB]; |
| 3361 | if (setAndRecord(R&: PredED.IsReachingAlignedBarrierOnly, V: false)) { |
| 3362 | Changed = true; |
| 3363 | SyncInstWorklist.push_back(Elt: PredBB->getTerminator()); |
| 3364 | } |
| 3365 | } |
| 3366 | if (SyncBB != &EntryBB) |
| 3367 | continue; |
| 3368 | Changed |= |
| 3369 | setAndRecord(R&: InterProceduralED.IsReachingAlignedBarrierOnly, V: false); |
| 3370 | } |
| 3371 | |
| 3372 | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| 3373 | } |
| 3374 | |
| 3375 | /// Try to replace memory allocation calls called by a single thread with a |
| 3376 | /// static buffer of shared memory. |
| 3377 | struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { |
| 3378 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
| 3379 | AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
| 3380 | |
| 3381 | /// Create an abstract attribute view for the position \p IRP. |
| 3382 | static AAHeapToShared &createForPosition(const IRPosition &IRP, |
| 3383 | Attributor &A); |
| 3384 | |
| 3385 | /// Returns true if HeapToShared conversion is assumed to be possible. |
| 3386 | virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; |
| 3387 | |
| 3388 | /// Returns true if HeapToShared conversion is assumed and the CB is a |
| 3389 | /// callsite to a free operation to be removed. |
| 3390 | virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; |
| 3391 | |
| 3392 | /// See AbstractAttribute::getName(). |
| 3393 | StringRef getName() const override { return "AAHeapToShared" ; } |
| 3394 | |
| 3395 | /// See AbstractAttribute::getIdAddr(). |
| 3396 | const char *getIdAddr() const override { return &ID; } |
| 3397 | |
| 3398 | /// This function should return true if the type of the \p AA is |
| 3399 | /// AAHeapToShared. |
| 3400 | static bool classof(const AbstractAttribute *AA) { |
| 3401 | return (AA->getIdAddr() == &ID); |
| 3402 | } |
| 3403 | |
| 3404 | /// Unique ID (due to the unique address) |
| 3405 | static const char ID; |
| 3406 | }; |
| 3407 | |
| 3408 | struct AAHeapToSharedFunction : public AAHeapToShared { |
| 3409 | AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) |
| 3410 | : AAHeapToShared(IRP, A) {} |
| 3411 | |
| 3412 | const std::string getAsStr(Attributor *) const override { |
| 3413 | return "[AAHeapToShared] " + std::to_string(val: MallocCalls.size()) + |
| 3414 | " malloc calls eligible." ; |
| 3415 | } |
| 3416 | |
| 3417 | /// See AbstractAttribute::trackStatistics(). |
| 3418 | void trackStatistics() const override {} |
| 3419 | |
| 3420 | /// This functions finds free calls that will be removed by the |
| 3421 | /// HeapToShared transformation. |
| 3422 | void findPotentialRemovedFreeCalls(Attributor &A) { |
| 3423 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 3424 | auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; |
| 3425 | |
| 3426 | PotentialRemovedFreeCalls.clear(); |
| 3427 | // Update free call users of found malloc calls. |
| 3428 | for (CallBase *CB : MallocCalls) { |
| 3429 | SmallVector<CallBase *, 4> FreeCalls; |
| 3430 | for (auto *U : CB->users()) { |
| 3431 | CallBase *C = dyn_cast<CallBase>(Val: U); |
| 3432 | if (C && C->getCalledFunction() == FreeRFI.Declaration) |
| 3433 | FreeCalls.push_back(Elt: C); |
| 3434 | } |
| 3435 | |
| 3436 | if (FreeCalls.size() != 1) |
| 3437 | continue; |
| 3438 | |
| 3439 | PotentialRemovedFreeCalls.insert(Ptr: FreeCalls.front()); |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | void initialize(Attributor &A) override { |
| 3444 | if (DisableOpenMPOptDeglobalization) { |
| 3445 | indicatePessimisticFixpoint(); |
| 3446 | return; |
| 3447 | } |
| 3448 | |
| 3449 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 3450 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
| 3451 | if (!RFI.Declaration) |
| 3452 | return; |
| 3453 | |
| 3454 | Attributor::SimplifictionCallbackTy SCB = |
| 3455 | [](const IRPosition &, const AbstractAttribute *, |
| 3456 | bool &) -> std::optional<Value *> { return nullptr; }; |
| 3457 | |
| 3458 | Function *F = getAnchorScope(); |
| 3459 | for (User *U : RFI.Declaration->users()) |
| 3460 | if (CallBase *CB = dyn_cast<CallBase>(Val: U)) { |
| 3461 | if (CB->getFunction() != F) |
| 3462 | continue; |
| 3463 | MallocCalls.insert(X: CB); |
| 3464 | A.registerSimplificationCallback(IRP: IRPosition::callsite_returned(CB: *CB), |
| 3465 | CB: SCB); |
| 3466 | } |
| 3467 | |
| 3468 | findPotentialRemovedFreeCalls(A); |
| 3469 | } |
| 3470 | |
| 3471 | bool isAssumedHeapToShared(CallBase &CB) const override { |
| 3472 | return isValidState() && MallocCalls.count(key: &CB); |
| 3473 | } |
| 3474 | |
| 3475 | bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { |
| 3476 | return isValidState() && PotentialRemovedFreeCalls.count(Ptr: &CB); |
| 3477 | } |
| 3478 | |
| 3479 | ChangeStatus manifest(Attributor &A) override { |
| 3480 | if (MallocCalls.empty()) |
| 3481 | return ChangeStatus::UNCHANGED; |
| 3482 | |
| 3483 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 3484 | auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; |
| 3485 | |
| 3486 | Function *F = getAnchorScope(); |
| 3487 | auto *HS = A.lookupAAFor<AAHeapToStack>(IRP: IRPosition::function(F: *F), QueryingAA: this, |
| 3488 | DepClass: DepClassTy::OPTIONAL); |
| 3489 | |
| 3490 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 3491 | for (CallBase *CB : MallocCalls) { |
| 3492 | // Skip replacing this if HeapToStack has already claimed it. |
| 3493 | if (HS && HS->isAssumedHeapToStack(CB: *CB)) |
| 3494 | continue; |
| 3495 | |
| 3496 | // Find the unique free call to remove it. |
| 3497 | SmallVector<CallBase *, 4> FreeCalls; |
| 3498 | for (auto *U : CB->users()) { |
| 3499 | CallBase *C = dyn_cast<CallBase>(Val: U); |
| 3500 | if (C && C->getCalledFunction() == FreeCall.Declaration) |
| 3501 | FreeCalls.push_back(Elt: C); |
| 3502 | } |
| 3503 | if (FreeCalls.size() != 1) |
| 3504 | continue; |
| 3505 | |
| 3506 | auto *AllocSize = cast<ConstantInt>(Val: CB->getArgOperand(i: 0)); |
| 3507 | |
| 3508 | if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { |
| 3509 | LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB |
| 3510 | << " with shared memory." |
| 3511 | << " Shared memory usage is limited to " |
| 3512 | << SharedMemoryLimit << " bytes\n" ); |
| 3513 | continue; |
| 3514 | } |
| 3515 | |
| 3516 | LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB |
| 3517 | << " with " << AllocSize->getZExtValue() |
| 3518 | << " bytes of shared memory\n" ); |
| 3519 | |
| 3520 | // Create a new shared memory buffer of the same size as the allocation |
| 3521 | // and replace all the uses of the original allocation with it. |
| 3522 | Module *M = CB->getModule(); |
| 3523 | Type *Int8Ty = Type::getInt8Ty(C&: M->getContext()); |
| 3524 | Type *Int8ArrTy = ArrayType::get(ElementType: Int8Ty, NumElements: AllocSize->getZExtValue()); |
| 3525 | auto *SharedMem = new GlobalVariable( |
| 3526 | *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, |
| 3527 | PoisonValue::get(T: Int8ArrTy), CB->getName() + "_shared" , nullptr, |
| 3528 | GlobalValue::NotThreadLocal, |
| 3529 | static_cast<unsigned>(AddressSpace::Shared)); |
| 3530 | auto *NewBuffer = ConstantExpr::getPointerCast( |
| 3531 | C: SharedMem, Ty: PointerType::getUnqual(C&: M->getContext())); |
| 3532 | |
| 3533 | auto = [&](OptimizationRemark OR) { |
| 3534 | return OR << "Replaced globalized variable with " |
| 3535 | << ore::NV("SharedMemory" , AllocSize->getZExtValue()) |
| 3536 | << (AllocSize->isOne() ? " byte " : " bytes " ) |
| 3537 | << "of shared memory." ; |
| 3538 | }; |
| 3539 | A.emitRemark<OptimizationRemark>(I: CB, RemarkName: "OMP111" , RemarkCB&: Remark); |
| 3540 | |
| 3541 | MaybeAlign Alignment = CB->getRetAlign(); |
| 3542 | assert(Alignment && |
| 3543 | "HeapToShared on allocation without alignment attribute" ); |
| 3544 | SharedMem->setAlignment(*Alignment); |
| 3545 | |
| 3546 | A.changeAfterManifest(IRP: IRPosition::callsite_returned(CB: *CB), NV&: *NewBuffer); |
| 3547 | A.deleteAfterManifest(I&: *CB); |
| 3548 | A.deleteAfterManifest(I&: *FreeCalls.front()); |
| 3549 | |
| 3550 | SharedMemoryUsed += AllocSize->getZExtValue(); |
| 3551 | NumBytesMovedToSharedMemory = SharedMemoryUsed; |
| 3552 | Changed = ChangeStatus::CHANGED; |
| 3553 | } |
| 3554 | |
| 3555 | return Changed; |
| 3556 | } |
| 3557 | |
| 3558 | ChangeStatus updateImpl(Attributor &A) override { |
| 3559 | if (MallocCalls.empty()) |
| 3560 | return indicatePessimisticFixpoint(); |
| 3561 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 3562 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
| 3563 | if (!RFI.Declaration) |
| 3564 | return ChangeStatus::UNCHANGED; |
| 3565 | |
| 3566 | Function *F = getAnchorScope(); |
| 3567 | |
| 3568 | auto NumMallocCalls = MallocCalls.size(); |
| 3569 | |
| 3570 | // Only consider malloc calls executed by a single thread with a constant. |
| 3571 | for (User *U : RFI.Declaration->users()) { |
| 3572 | if (CallBase *CB = dyn_cast<CallBase>(Val: U)) { |
| 3573 | if (CB->getCaller() != F) |
| 3574 | continue; |
| 3575 | if (!MallocCalls.count(key: CB)) |
| 3576 | continue; |
| 3577 | if (!isa<ConstantInt>(Val: CB->getArgOperand(i: 0))) { |
| 3578 | MallocCalls.remove(X: CB); |
| 3579 | continue; |
| 3580 | } |
| 3581 | const auto *ED = A.getAAFor<AAExecutionDomain>( |
| 3582 | QueryingAA: *this, IRP: IRPosition::function(F: *F), DepClass: DepClassTy::REQUIRED); |
| 3583 | if (!ED || !ED->isExecutedByInitialThreadOnly(I: *CB)) |
| 3584 | MallocCalls.remove(X: CB); |
| 3585 | } |
| 3586 | } |
| 3587 | |
| 3588 | findPotentialRemovedFreeCalls(A); |
| 3589 | |
| 3590 | if (NumMallocCalls != MallocCalls.size()) |
| 3591 | return ChangeStatus::CHANGED; |
| 3592 | |
| 3593 | return ChangeStatus::UNCHANGED; |
| 3594 | } |
| 3595 | |
| 3596 | /// Collection of all malloc calls in a function. |
| 3597 | SmallSetVector<CallBase *, 4> MallocCalls; |
| 3598 | /// Collection of potentially removed free calls in a function. |
| 3599 | SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; |
| 3600 | /// The total amount of shared memory that has been used for HeapToShared. |
| 3601 | unsigned SharedMemoryUsed = 0; |
| 3602 | }; |
| 3603 | |
| 3604 | struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { |
| 3605 | using Base = StateWrapper<KernelInfoState, AbstractAttribute>; |
| 3606 | AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
| 3607 | |
| 3608 | /// The callee value is tracked beyond a simple stripPointerCasts, so we allow |
| 3609 | /// unknown callees. |
| 3610 | static bool requiresCalleeForCallBase() { return false; } |
| 3611 | |
| 3612 | /// Statistics are tracked as part of manifest for now. |
| 3613 | void trackStatistics() const override {} |
| 3614 | |
| 3615 | /// See AbstractAttribute::getAsStr() |
| 3616 | const std::string getAsStr(Attributor *) const override { |
| 3617 | if (!isValidState()) |
| 3618 | return "<invalid>" ; |
| 3619 | return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" |
| 3620 | : "generic" ) + |
| 3621 | std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" |
| 3622 | : "" ) + |
| 3623 | std::string(" #PRs: " ) + |
| 3624 | (ReachedKnownParallelRegions.isValidState() |
| 3625 | ? std::to_string(val: ReachedKnownParallelRegions.size()) |
| 3626 | : "<invalid>" ) + |
| 3627 | ", #Unknown PRs: " + |
| 3628 | (ReachedUnknownParallelRegions.isValidState() |
| 3629 | ? std::to_string(val: ReachedUnknownParallelRegions.size()) |
| 3630 | : "<invalid>" ) + |
| 3631 | ", #Reaching Kernels: " + |
| 3632 | (ReachingKernelEntries.isValidState() |
| 3633 | ? std::to_string(val: ReachingKernelEntries.size()) |
| 3634 | : "<invalid>" ) + |
| 3635 | ", #ParLevels: " + |
| 3636 | (ParallelLevels.isValidState() |
| 3637 | ? std::to_string(val: ParallelLevels.size()) |
| 3638 | : "<invalid>" ) + |
| 3639 | ", NestedPar: " + (NestedParallelism ? "yes" : "no" ); |
| 3640 | } |
| 3641 | |
| 3642 | /// Create an abstract attribute biew for the position \p IRP. |
| 3643 | static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); |
| 3644 | |
| 3645 | /// See AbstractAttribute::getName() |
| 3646 | StringRef getName() const override { return "AAKernelInfo" ; } |
| 3647 | |
| 3648 | /// See AbstractAttribute::getIdAddr() |
| 3649 | const char *getIdAddr() const override { return &ID; } |
| 3650 | |
| 3651 | /// This function should return true if the type of the \p AA is AAKernelInfo |
| 3652 | static bool classof(const AbstractAttribute *AA) { |
| 3653 | return (AA->getIdAddr() == &ID); |
| 3654 | } |
| 3655 | |
| 3656 | static const char ID; |
| 3657 | }; |
| 3658 | |
| 3659 | /// The function kernel info abstract attribute, basically, what can we say |
| 3660 | /// about a function with regards to the KernelInfoState. |
| 3661 | struct AAKernelInfoFunction : AAKernelInfo { |
| 3662 | AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) |
| 3663 | : AAKernelInfo(IRP, A) {} |
| 3664 | |
| 3665 | SmallPtrSet<Instruction *, 4> GuardedInstructions; |
| 3666 | |
| 3667 | SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { |
| 3668 | return GuardedInstructions; |
| 3669 | } |
| 3670 | |
| 3671 | void setConfigurationOfKernelEnvironment(ConstantStruct *ConfigC) { |
| 3672 | Constant *NewKernelEnvC = ConstantFoldInsertValueInstruction( |
| 3673 | Agg: KernelEnvC, Val: ConfigC, Idxs: {KernelInfo::ConfigurationIdx}); |
| 3674 | assert(NewKernelEnvC && "Failed to create new kernel environment" ); |
| 3675 | KernelEnvC = cast<ConstantStruct>(Val: NewKernelEnvC); |
| 3676 | } |
| 3677 | |
| 3678 | #define KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MEMBER) \ |
| 3679 | void set##MEMBER##OfKernelEnvironment(ConstantInt *NewVal) { \ |
| 3680 | ConstantStruct *ConfigC = \ |
| 3681 | KernelInfo::getConfigurationFromKernelEnvironment(KernelEnvC); \ |
| 3682 | Constant *NewConfigC = ConstantFoldInsertValueInstruction( \ |
| 3683 | ConfigC, NewVal, {KernelInfo::MEMBER##Idx}); \ |
| 3684 | assert(NewConfigC && "Failed to create new configuration environment"); \ |
| 3685 | setConfigurationOfKernelEnvironment(cast<ConstantStruct>(NewConfigC)); \ |
| 3686 | } |
| 3687 | |
| 3688 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(UseGenericStateMachine) |
| 3689 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MayUseNestedParallelism) |
| 3690 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(ExecMode) |
| 3691 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinThreads) |
| 3692 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxThreads) |
| 3693 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinTeams) |
| 3694 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxTeams) |
| 3695 | |
| 3696 | #undef KERNEL_ENVIRONMENT_CONFIGURATION_SETTER |
| 3697 | |
| 3698 | /// See AbstractAttribute::initialize(...). |
| 3699 | void initialize(Attributor &A) override { |
| 3700 | // This is a high-level transform that might change the constant arguments |
| 3701 | // of the init and dinit calls. We need to tell the Attributor about this |
| 3702 | // to avoid other parts using the current constant value for simpliication. |
| 3703 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 3704 | |
| 3705 | Function *Fn = getAnchorScope(); |
| 3706 | |
| 3707 | OMPInformationCache::RuntimeFunctionInfo &InitRFI = |
| 3708 | OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
| 3709 | OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = |
| 3710 | OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; |
| 3711 | |
| 3712 | // For kernels we perform more initialization work, first we find the init |
| 3713 | // and deinit calls. |
| 3714 | auto StoreCallBase = [](Use &U, |
| 3715 | OMPInformationCache::RuntimeFunctionInfo &RFI, |
| 3716 | CallBase *&Storage) { |
| 3717 | CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, RFI: &RFI); |
| 3718 | assert(CB && |
| 3719 | "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!" ); |
| 3720 | assert(!Storage && |
| 3721 | "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!" ); |
| 3722 | Storage = CB; |
| 3723 | return false; |
| 3724 | }; |
| 3725 | InitRFI.foreachUse( |
| 3726 | CB: [&](Use &U, Function &) { |
| 3727 | StoreCallBase(U, InitRFI, KernelInitCB); |
| 3728 | return false; |
| 3729 | }, |
| 3730 | F: Fn); |
| 3731 | DeinitRFI.foreachUse( |
| 3732 | CB: [&](Use &U, Function &) { |
| 3733 | StoreCallBase(U, DeinitRFI, KernelDeinitCB); |
| 3734 | return false; |
| 3735 | }, |
| 3736 | F: Fn); |
| 3737 | |
| 3738 | // Ignore kernels without initializers such as global constructors. |
| 3739 | if (!KernelInitCB || !KernelDeinitCB) |
| 3740 | return; |
| 3741 | |
| 3742 | // Add itself to the reaching kernel and set IsKernelEntry. |
| 3743 | ReachingKernelEntries.insert(Elem: Fn); |
| 3744 | IsKernelEntry = true; |
| 3745 | |
| 3746 | KernelEnvC = |
| 3747 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
| 3748 | GlobalVariable *KernelEnvGV = |
| 3749 | KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB); |
| 3750 | |
| 3751 | Attributor::GlobalVariableSimplifictionCallbackTy |
| 3752 | KernelConfigurationSimplifyCB = |
| 3753 | [&](const GlobalVariable &GV, const AbstractAttribute *AA, |
| 3754 | bool &UsedAssumedInformation) -> std::optional<Constant *> { |
| 3755 | if (!isAtFixpoint()) { |
| 3756 | if (!AA) |
| 3757 | return nullptr; |
| 3758 | UsedAssumedInformation = true; |
| 3759 | A.recordDependence(FromAA: *this, ToAA: *AA, DepClass: DepClassTy::OPTIONAL); |
| 3760 | } |
| 3761 | return KernelEnvC; |
| 3762 | }; |
| 3763 | |
| 3764 | A.registerGlobalVariableSimplificationCallback( |
| 3765 | GV: *KernelEnvGV, CB: KernelConfigurationSimplifyCB); |
| 3766 | |
| 3767 | // We cannot change to SPMD mode if the runtime functions aren't availible. |
| 3768 | bool CanChangeToSPMD = OMPInfoCache.runtimeFnsAvailable( |
| 3769 | Fns: {OMPRTL___kmpc_get_hardware_thread_id_in_block, |
| 3770 | OMPRTL___kmpc_barrier_simple_spmd}); |
| 3771 | |
| 3772 | // Check if we know we are in SPMD-mode already. |
| 3773 | ConstantInt *ExecModeC = |
| 3774 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC); |
| 3775 | ConstantInt *AssumedExecModeC = ConstantInt::get( |
| 3776 | Ty: ExecModeC->getIntegerType(), |
| 3777 | V: ExecModeC->getSExtValue() | OMP_TGT_EXEC_MODE_GENERIC_SPMD); |
| 3778 | if (ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD) |
| 3779 | SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
| 3780 | else if (DisableOpenMPOptSPMDization || !CanChangeToSPMD) |
| 3781 | // This is a generic region but SPMDization is disabled so stop |
| 3782 | // tracking. |
| 3783 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 3784 | else |
| 3785 | setExecModeOfKernelEnvironment(AssumedExecModeC); |
| 3786 | |
| 3787 | const Triple T(Fn->getParent()->getTargetTriple()); |
| 3788 | auto *Int32Ty = Type::getInt32Ty(C&: Fn->getContext()); |
| 3789 | auto [MinThreads, MaxThreads] = |
| 3790 | OpenMPIRBuilder::readThreadBoundsForKernel(T, Kernel&: *Fn); |
| 3791 | if (MinThreads) |
| 3792 | setMinThreadsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MinThreads)); |
| 3793 | if (MaxThreads) |
| 3794 | setMaxThreadsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MaxThreads)); |
| 3795 | auto [MinTeams, MaxTeams] = |
| 3796 | OpenMPIRBuilder::readTeamBoundsForKernel(T, Kernel&: *Fn); |
| 3797 | if (MinTeams) |
| 3798 | setMinTeamsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MinTeams)); |
| 3799 | if (MaxTeams) |
| 3800 | setMaxTeamsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MaxTeams)); |
| 3801 | |
| 3802 | ConstantInt *MayUseNestedParallelismC = |
| 3803 | KernelInfo::getMayUseNestedParallelismFromKernelEnvironment(KernelEnvC); |
| 3804 | ConstantInt *AssumedMayUseNestedParallelismC = ConstantInt::get( |
| 3805 | Ty: MayUseNestedParallelismC->getIntegerType(), V: NestedParallelism); |
| 3806 | setMayUseNestedParallelismOfKernelEnvironment( |
| 3807 | AssumedMayUseNestedParallelismC); |
| 3808 | |
| 3809 | if (!DisableOpenMPOptStateMachineRewrite) { |
| 3810 | ConstantInt *UseGenericStateMachineC = |
| 3811 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
| 3812 | KernelEnvC); |
| 3813 | ConstantInt *AssumedUseGenericStateMachineC = |
| 3814 | ConstantInt::get(Ty: UseGenericStateMachineC->getIntegerType(), V: false); |
| 3815 | setUseGenericStateMachineOfKernelEnvironment( |
| 3816 | AssumedUseGenericStateMachineC); |
| 3817 | } |
| 3818 | |
| 3819 | // Register virtual uses of functions we might need to preserve. |
| 3820 | auto RegisterVirtualUse = [&](RuntimeFunction RFKind, |
| 3821 | Attributor::VirtualUseCallbackTy &CB) { |
| 3822 | if (!OMPInfoCache.RFIs[RFKind].Declaration) |
| 3823 | return; |
| 3824 | A.registerVirtualUseCallback(V: *OMPInfoCache.RFIs[RFKind].Declaration, CB); |
| 3825 | }; |
| 3826 | |
| 3827 | // Add a dependence to ensure updates if the state changes. |
| 3828 | auto AddDependence = [](Attributor &A, const AAKernelInfo *KI, |
| 3829 | const AbstractAttribute *QueryingAA) { |
| 3830 | if (QueryingAA) { |
| 3831 | A.recordDependence(FromAA: *KI, ToAA: *QueryingAA, DepClass: DepClassTy::OPTIONAL); |
| 3832 | } |
| 3833 | return true; |
| 3834 | }; |
| 3835 | |
| 3836 | Attributor::VirtualUseCallbackTy CustomStateMachineUseCB = |
| 3837 | [&](Attributor &A, const AbstractAttribute *QueryingAA) { |
| 3838 | // Whenever we create a custom state machine we will insert calls to |
| 3839 | // __kmpc_get_hardware_num_threads_in_block, |
| 3840 | // __kmpc_get_warp_size, |
| 3841 | // __kmpc_barrier_simple_generic, |
| 3842 | // __kmpc_kernel_parallel, and |
| 3843 | // __kmpc_kernel_end_parallel. |
| 3844 | // Not needed if we are on track for SPMDzation. |
| 3845 | if (SPMDCompatibilityTracker.isValidState()) |
| 3846 | return AddDependence(A, this, QueryingAA); |
| 3847 | // Not needed if we can't rewrite due to an invalid state. |
| 3848 | if (!ReachedKnownParallelRegions.isValidState()) |
| 3849 | return AddDependence(A, this, QueryingAA); |
| 3850 | return false; |
| 3851 | }; |
| 3852 | |
| 3853 | // Not needed if we are pre-runtime merge. |
| 3854 | if (!KernelInitCB->getCalledFunction()->isDeclaration()) { |
| 3855 | RegisterVirtualUse(OMPRTL___kmpc_get_hardware_num_threads_in_block, |
| 3856 | CustomStateMachineUseCB); |
| 3857 | RegisterVirtualUse(OMPRTL___kmpc_get_warp_size, CustomStateMachineUseCB); |
| 3858 | RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_generic, |
| 3859 | CustomStateMachineUseCB); |
| 3860 | RegisterVirtualUse(OMPRTL___kmpc_kernel_parallel, |
| 3861 | CustomStateMachineUseCB); |
| 3862 | RegisterVirtualUse(OMPRTL___kmpc_kernel_end_parallel, |
| 3863 | CustomStateMachineUseCB); |
| 3864 | } |
| 3865 | |
| 3866 | // If we do not perform SPMDzation we do not need the virtual uses below. |
| 3867 | if (SPMDCompatibilityTracker.isAtFixpoint()) |
| 3868 | return; |
| 3869 | |
| 3870 | Attributor::VirtualUseCallbackTy HWThreadIdUseCB = |
| 3871 | [&](Attributor &A, const AbstractAttribute *QueryingAA) { |
| 3872 | // Whenever we perform SPMDzation we will insert |
| 3873 | // __kmpc_get_hardware_thread_id_in_block calls. |
| 3874 | if (!SPMDCompatibilityTracker.isValidState()) |
| 3875 | return AddDependence(A, this, QueryingAA); |
| 3876 | return false; |
| 3877 | }; |
| 3878 | RegisterVirtualUse(OMPRTL___kmpc_get_hardware_thread_id_in_block, |
| 3879 | HWThreadIdUseCB); |
| 3880 | |
| 3881 | Attributor::VirtualUseCallbackTy SPMDBarrierUseCB = |
| 3882 | [&](Attributor &A, const AbstractAttribute *QueryingAA) { |
| 3883 | // Whenever we perform SPMDzation with guarding we will insert |
| 3884 | // __kmpc_simple_barrier_spmd calls. If SPMDzation failed, there is |
| 3885 | // nothing to guard, or there are no parallel regions, we don't need |
| 3886 | // the calls. |
| 3887 | if (!SPMDCompatibilityTracker.isValidState()) |
| 3888 | return AddDependence(A, this, QueryingAA); |
| 3889 | if (SPMDCompatibilityTracker.empty()) |
| 3890 | return AddDependence(A, this, QueryingAA); |
| 3891 | if (!mayContainParallelRegion()) |
| 3892 | return AddDependence(A, this, QueryingAA); |
| 3893 | return false; |
| 3894 | }; |
| 3895 | RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_spmd, SPMDBarrierUseCB); |
| 3896 | } |
| 3897 | |
| 3898 | /// Sanitize the string \p S such that it is a suitable global symbol name. |
| 3899 | static std::string sanitizeForGlobalName(std::string S) { |
| 3900 | std::replace_if( |
| 3901 | first: S.begin(), last: S.end(), |
| 3902 | pred: [](const char C) { |
| 3903 | return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || |
| 3904 | (C >= '0' && C <= '9') || C == '_'); |
| 3905 | }, |
| 3906 | new_value: '.'); |
| 3907 | return S; |
| 3908 | } |
| 3909 | |
| 3910 | /// Modify the IR based on the KernelInfoState as the fixpoint iteration is |
| 3911 | /// finished now. |
| 3912 | ChangeStatus manifest(Attributor &A) override { |
| 3913 | // If we are not looking at a kernel with __kmpc_target_init and |
| 3914 | // __kmpc_target_deinit call we cannot actually manifest the information. |
| 3915 | if (!KernelInitCB || !KernelDeinitCB) |
| 3916 | return ChangeStatus::UNCHANGED; |
| 3917 | |
| 3918 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 3919 | |
| 3920 | bool HasBuiltStateMachine = true; |
| 3921 | if (!changeToSPMDMode(A, Changed)) { |
| 3922 | if (!KernelInitCB->getCalledFunction()->isDeclaration()) |
| 3923 | HasBuiltStateMachine = buildCustomStateMachine(A, Changed); |
| 3924 | else |
| 3925 | HasBuiltStateMachine = false; |
| 3926 | } |
| 3927 | |
| 3928 | // We need to reset KernelEnvC if specific rewriting is not done. |
| 3929 | ConstantStruct *ExistingKernelEnvC = |
| 3930 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
| 3931 | ConstantInt *OldUseGenericStateMachineVal = |
| 3932 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
| 3933 | KernelEnvC: ExistingKernelEnvC); |
| 3934 | if (!HasBuiltStateMachine) |
| 3935 | setUseGenericStateMachineOfKernelEnvironment( |
| 3936 | OldUseGenericStateMachineVal); |
| 3937 | |
| 3938 | // At last, update the KernelEnvc |
| 3939 | GlobalVariable *KernelEnvGV = |
| 3940 | KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB); |
| 3941 | if (KernelEnvGV->getInitializer() != KernelEnvC) { |
| 3942 | KernelEnvGV->setInitializer(KernelEnvC); |
| 3943 | Changed = ChangeStatus::CHANGED; |
| 3944 | } |
| 3945 | |
| 3946 | return Changed; |
| 3947 | } |
| 3948 | |
| 3949 | void insertInstructionGuardsHelper(Attributor &A) { |
| 3950 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 3951 | |
| 3952 | auto CreateGuardedRegion = [&](Instruction *RegionStartI, |
| 3953 | Instruction *RegionEndI) { |
| 3954 | LoopInfo *LI = nullptr; |
| 3955 | DominatorTree *DT = nullptr; |
| 3956 | MemorySSAUpdater *MSU = nullptr; |
| 3957 | using InsertPointTy = OpenMPIRBuilder::InsertPointTy; |
| 3958 | |
| 3959 | BasicBlock *ParentBB = RegionStartI->getParent(); |
| 3960 | Function *Fn = ParentBB->getParent(); |
| 3961 | Module &M = *Fn->getParent(); |
| 3962 | |
| 3963 | // Create all the blocks and logic. |
| 3964 | // ParentBB: |
| 3965 | // goto RegionCheckTidBB |
| 3966 | // RegionCheckTidBB: |
| 3967 | // Tid = __kmpc_hardware_thread_id() |
| 3968 | // if (Tid != 0) |
| 3969 | // goto RegionBarrierBB |
| 3970 | // RegionStartBB: |
| 3971 | // <execute instructions guarded> |
| 3972 | // goto RegionEndBB |
| 3973 | // RegionEndBB: |
| 3974 | // <store escaping values to shared mem> |
| 3975 | // goto RegionBarrierBB |
| 3976 | // RegionBarrierBB: |
| 3977 | // __kmpc_simple_barrier_spmd() |
| 3978 | // // second barrier is omitted if lacking escaping values. |
| 3979 | // <load escaping values from shared mem> |
| 3980 | // __kmpc_simple_barrier_spmd() |
| 3981 | // goto RegionExitBB |
| 3982 | // RegionExitBB: |
| 3983 | // <execute rest of instructions> |
| 3984 | |
| 3985 | BasicBlock *RegionEndBB = SplitBlock(Old: ParentBB, SplitPt: RegionEndI->getNextNode(), |
| 3986 | DT, LI, MSSAU: MSU, BBName: "region.guarded.end" ); |
| 3987 | BasicBlock *RegionBarrierBB = |
| 3988 | SplitBlock(Old: RegionEndBB, SplitPt: &*RegionEndBB->getFirstInsertionPt(), DT, LI, |
| 3989 | MSSAU: MSU, BBName: "region.barrier" ); |
| 3990 | BasicBlock *RegionExitBB = |
| 3991 | SplitBlock(Old: RegionBarrierBB, SplitPt: &*RegionBarrierBB->getFirstInsertionPt(), |
| 3992 | DT, LI, MSSAU: MSU, BBName: "region.exit" ); |
| 3993 | BasicBlock *RegionStartBB = |
| 3994 | SplitBlock(Old: ParentBB, SplitPt: RegionStartI, DT, LI, MSSAU: MSU, BBName: "region.guarded" ); |
| 3995 | |
| 3996 | assert(ParentBB->getUniqueSuccessor() == RegionStartBB && |
| 3997 | "Expected a different CFG" ); |
| 3998 | |
| 3999 | BasicBlock *RegionCheckTidBB = SplitBlock( |
| 4000 | Old: ParentBB, SplitPt: ParentBB->getTerminator(), DT, LI, MSSAU: MSU, BBName: "region.check.tid" ); |
| 4001 | |
| 4002 | // Register basic blocks with the Attributor. |
| 4003 | A.registerManifestAddedBasicBlock(BB&: *RegionEndBB); |
| 4004 | A.registerManifestAddedBasicBlock(BB&: *RegionBarrierBB); |
| 4005 | A.registerManifestAddedBasicBlock(BB&: *RegionExitBB); |
| 4006 | A.registerManifestAddedBasicBlock(BB&: *RegionStartBB); |
| 4007 | A.registerManifestAddedBasicBlock(BB&: *RegionCheckTidBB); |
| 4008 | |
| 4009 | bool HasBroadcastValues = false; |
| 4010 | // Find escaping outputs from the guarded region to outside users and |
| 4011 | // broadcast their values to them. |
| 4012 | for (Instruction &I : *RegionStartBB) { |
| 4013 | SmallVector<Use *, 4> OutsideUses; |
| 4014 | for (Use &U : I.uses()) { |
| 4015 | Instruction &UsrI = *cast<Instruction>(Val: U.getUser()); |
| 4016 | if (UsrI.getParent() != RegionStartBB) |
| 4017 | OutsideUses.push_back(Elt: &U); |
| 4018 | } |
| 4019 | |
| 4020 | if (OutsideUses.empty()) |
| 4021 | continue; |
| 4022 | |
| 4023 | HasBroadcastValues = true; |
| 4024 | |
| 4025 | // Emit a global variable in shared memory to store the broadcasted |
| 4026 | // value. |
| 4027 | auto *SharedMem = new GlobalVariable( |
| 4028 | M, I.getType(), /* IsConstant */ false, |
| 4029 | GlobalValue::InternalLinkage, UndefValue::get(T: I.getType()), |
| 4030 | sanitizeForGlobalName( |
| 4031 | S: (I.getName() + ".guarded.output.alloc" ).str()), |
| 4032 | nullptr, GlobalValue::NotThreadLocal, |
| 4033 | static_cast<unsigned>(AddressSpace::Shared)); |
| 4034 | |
| 4035 | // Emit a store instruction to update the value. |
| 4036 | new StoreInst(&I, SharedMem, |
| 4037 | RegionEndBB->getTerminator()->getIterator()); |
| 4038 | |
| 4039 | LoadInst *LoadI = new LoadInst( |
| 4040 | I.getType(), SharedMem, I.getName() + ".guarded.output.load" , |
| 4041 | RegionBarrierBB->getTerminator()->getIterator()); |
| 4042 | |
| 4043 | // Emit a load instruction and replace uses of the output value. |
| 4044 | for (Use *U : OutsideUses) |
| 4045 | A.changeUseAfterManifest(U&: *U, NV&: *LoadI); |
| 4046 | } |
| 4047 | |
| 4048 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 4049 | |
| 4050 | // Go to tid check BB in ParentBB. |
| 4051 | const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); |
| 4052 | ParentBB->getTerminator()->eraseFromParent(); |
| 4053 | OpenMPIRBuilder::LocationDescription Loc( |
| 4054 | InsertPointTy(ParentBB, ParentBB->end()), DL); |
| 4055 | OMPInfoCache.OMPBuilder.updateToLocation(Loc); |
| 4056 | uint32_t SrcLocStrSize; |
| 4057 | auto *SrcLocStr = |
| 4058 | OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| 4059 | Value *Ident = |
| 4060 | OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| 4061 | BranchInst::Create(IfTrue: RegionCheckTidBB, InsertBefore: ParentBB)->setDebugLoc(DL); |
| 4062 | |
| 4063 | // Add check for Tid in RegionCheckTidBB |
| 4064 | RegionCheckTidBB->getTerminator()->eraseFromParent(); |
| 4065 | OpenMPIRBuilder::LocationDescription LocRegionCheckTid( |
| 4066 | InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); |
| 4067 | OMPInfoCache.OMPBuilder.updateToLocation(Loc: LocRegionCheckTid); |
| 4068 | FunctionCallee HardwareTidFn = |
| 4069 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
| 4070 | M, FnID: OMPRTL___kmpc_get_hardware_thread_id_in_block); |
| 4071 | CallInst *Tid = |
| 4072 | OMPInfoCache.OMPBuilder.Builder.CreateCall(Callee: HardwareTidFn, Args: {}); |
| 4073 | Tid->setDebugLoc(DL); |
| 4074 | OMPInfoCache.setCallingConvention(Callee: HardwareTidFn, CI: Tid); |
| 4075 | Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Arg: Tid); |
| 4076 | OMPInfoCache.OMPBuilder.Builder |
| 4077 | .CreateCondBr(Cond: TidCheck, True: RegionStartBB, False: RegionBarrierBB) |
| 4078 | ->setDebugLoc(DL); |
| 4079 | |
| 4080 | // First barrier for synchronization, ensures main thread has updated |
| 4081 | // values. |
| 4082 | FunctionCallee BarrierFn = |
| 4083 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
| 4084 | M, FnID: OMPRTL___kmpc_barrier_simple_spmd); |
| 4085 | OMPInfoCache.OMPBuilder.updateToLocation(Loc: InsertPointTy( |
| 4086 | RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); |
| 4087 | CallInst *Barrier = |
| 4088 | OMPInfoCache.OMPBuilder.Builder.CreateCall(Callee: BarrierFn, Args: {Ident, Tid}); |
| 4089 | Barrier->setDebugLoc(DL); |
| 4090 | OMPInfoCache.setCallingConvention(Callee: BarrierFn, CI: Barrier); |
| 4091 | |
| 4092 | // Second barrier ensures workers have read broadcast values. |
| 4093 | if (HasBroadcastValues) { |
| 4094 | CallInst *Barrier = |
| 4095 | CallInst::Create(Func: BarrierFn, Args: {Ident, Tid}, NameStr: "" , |
| 4096 | InsertBefore: RegionBarrierBB->getTerminator()->getIterator()); |
| 4097 | Barrier->setDebugLoc(DL); |
| 4098 | OMPInfoCache.setCallingConvention(Callee: BarrierFn, CI: Barrier); |
| 4099 | } |
| 4100 | }; |
| 4101 | |
| 4102 | auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
| 4103 | SmallPtrSet<BasicBlock *, 8> Visited; |
| 4104 | for (Instruction *GuardedI : SPMDCompatibilityTracker) { |
| 4105 | BasicBlock *BB = GuardedI->getParent(); |
| 4106 | if (!Visited.insert(Ptr: BB).second) |
| 4107 | continue; |
| 4108 | |
| 4109 | SmallVector<std::pair<Instruction *, Instruction *>> Reorders; |
| 4110 | Instruction *LastEffect = nullptr; |
| 4111 | BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); |
| 4112 | while (++IP != IPEnd) { |
| 4113 | if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) |
| 4114 | continue; |
| 4115 | Instruction *I = &*IP; |
| 4116 | if (OpenMPOpt::getCallIfRegularCall(V&: *I, RFI: &AllocSharedRFI)) |
| 4117 | continue; |
| 4118 | if (!I->user_empty() || !SPMDCompatibilityTracker.contains(Elem: I)) { |
| 4119 | LastEffect = nullptr; |
| 4120 | continue; |
| 4121 | } |
| 4122 | if (LastEffect) |
| 4123 | Reorders.push_back(Elt: {I, LastEffect}); |
| 4124 | LastEffect = &*IP; |
| 4125 | } |
| 4126 | for (auto &Reorder : Reorders) |
| 4127 | Reorder.first->moveBefore(InsertPos: Reorder.second->getIterator()); |
| 4128 | } |
| 4129 | |
| 4130 | SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; |
| 4131 | |
| 4132 | for (Instruction *GuardedI : SPMDCompatibilityTracker) { |
| 4133 | BasicBlock *BB = GuardedI->getParent(); |
| 4134 | auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( |
| 4135 | IRP: IRPosition::function(F: *GuardedI->getFunction()), QueryingAA: nullptr, |
| 4136 | DepClass: DepClassTy::NONE); |
| 4137 | assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo" ); |
| 4138 | auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(Val: CalleeAA); |
| 4139 | // Continue if instruction is already guarded. |
| 4140 | if (CalleeAAFunction.getGuardedInstructions().contains(Ptr: GuardedI)) |
| 4141 | continue; |
| 4142 | |
| 4143 | Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; |
| 4144 | for (Instruction &I : *BB) { |
| 4145 | // If instruction I needs to be guarded update the guarded region |
| 4146 | // bounds. |
| 4147 | if (SPMDCompatibilityTracker.contains(Elem: &I)) { |
| 4148 | CalleeAAFunction.getGuardedInstructions().insert(Ptr: &I); |
| 4149 | if (GuardedRegionStart) |
| 4150 | GuardedRegionEnd = &I; |
| 4151 | else |
| 4152 | GuardedRegionStart = GuardedRegionEnd = &I; |
| 4153 | |
| 4154 | continue; |
| 4155 | } |
| 4156 | |
| 4157 | // Instruction I does not need guarding, store |
| 4158 | // any region found and reset bounds. |
| 4159 | if (GuardedRegionStart) { |
| 4160 | GuardedRegions.push_back( |
| 4161 | Elt: std::make_pair(x&: GuardedRegionStart, y&: GuardedRegionEnd)); |
| 4162 | GuardedRegionStart = nullptr; |
| 4163 | GuardedRegionEnd = nullptr; |
| 4164 | } |
| 4165 | } |
| 4166 | } |
| 4167 | |
| 4168 | for (auto &GR : GuardedRegions) |
| 4169 | CreateGuardedRegion(GR.first, GR.second); |
| 4170 | } |
| 4171 | |
| 4172 | void forceSingleThreadPerWorkgroupHelper(Attributor &A) { |
| 4173 | // Only allow 1 thread per workgroup to continue executing the user code. |
| 4174 | // |
| 4175 | // InitCB = __kmpc_target_init(...) |
| 4176 | // ThreadIdInBlock = __kmpc_get_hardware_thread_id_in_block(); |
| 4177 | // if (ThreadIdInBlock != 0) return; |
| 4178 | // UserCode: |
| 4179 | // // user code |
| 4180 | // |
| 4181 | auto &Ctx = getAnchorValue().getContext(); |
| 4182 | Function *Kernel = getAssociatedFunction(); |
| 4183 | assert(Kernel && "Expected an associated function!" ); |
| 4184 | |
| 4185 | // Create block for user code to branch to from initial block. |
| 4186 | BasicBlock *InitBB = KernelInitCB->getParent(); |
| 4187 | BasicBlock *UserCodeBB = InitBB->splitBasicBlock( |
| 4188 | I: KernelInitCB->getNextNode(), BBName: "main.thread.user_code" ); |
| 4189 | BasicBlock *ReturnBB = |
| 4190 | BasicBlock::Create(Context&: Ctx, Name: "exit.threads" , Parent: Kernel, InsertBefore: UserCodeBB); |
| 4191 | |
| 4192 | // Register blocks with attributor: |
| 4193 | A.registerManifestAddedBasicBlock(BB&: *InitBB); |
| 4194 | A.registerManifestAddedBasicBlock(BB&: *UserCodeBB); |
| 4195 | A.registerManifestAddedBasicBlock(BB&: *ReturnBB); |
| 4196 | |
| 4197 | // Debug location: |
| 4198 | const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); |
| 4199 | ReturnInst::Create(C&: Ctx, InsertAtEnd: ReturnBB)->setDebugLoc(DLoc); |
| 4200 | InitBB->getTerminator()->eraseFromParent(); |
| 4201 | |
| 4202 | // Prepare call to OMPRTL___kmpc_get_hardware_thread_id_in_block. |
| 4203 | Module &M = *Kernel->getParent(); |
| 4204 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 4205 | FunctionCallee ThreadIdInBlockFn = |
| 4206 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
| 4207 | M, FnID: OMPRTL___kmpc_get_hardware_thread_id_in_block); |
| 4208 | |
| 4209 | // Get thread ID in block. |
| 4210 | CallInst *ThreadIdInBlock = |
| 4211 | CallInst::Create(Func: ThreadIdInBlockFn, NameStr: "thread_id.in.block" , InsertBefore: InitBB); |
| 4212 | OMPInfoCache.setCallingConvention(Callee: ThreadIdInBlockFn, CI: ThreadIdInBlock); |
| 4213 | ThreadIdInBlock->setDebugLoc(DLoc); |
| 4214 | |
| 4215 | // Eliminate all threads in the block with ID not equal to 0: |
| 4216 | Instruction *IsMainThread = |
| 4217 | ICmpInst::Create(Op: ICmpInst::ICmp, Pred: CmpInst::ICMP_NE, S1: ThreadIdInBlock, |
| 4218 | S2: ConstantInt::get(Ty: ThreadIdInBlock->getType(), V: 0), |
| 4219 | Name: "thread.is_main" , InsertBefore: InitBB); |
| 4220 | IsMainThread->setDebugLoc(DLoc); |
| 4221 | BranchInst::Create(IfTrue: ReturnBB, IfFalse: UserCodeBB, Cond: IsMainThread, InsertBefore: InitBB); |
| 4222 | } |
| 4223 | |
| 4224 | bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { |
| 4225 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 4226 | |
| 4227 | if (!SPMDCompatibilityTracker.isAssumed()) { |
| 4228 | for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { |
| 4229 | if (!NonCompatibleI) |
| 4230 | continue; |
| 4231 | |
| 4232 | // Skip diagnostics on calls to known OpenMP runtime functions for now. |
| 4233 | if (auto *CB = dyn_cast<CallBase>(Val: NonCompatibleI)) |
| 4234 | if (OMPInfoCache.RTLFunctions.contains(V: CB->getCalledFunction())) |
| 4235 | continue; |
| 4236 | |
| 4237 | auto = [&](OptimizationRemarkAnalysis ORA) { |
| 4238 | ORA << "Value has potential side effects preventing SPMD-mode " |
| 4239 | "execution" ; |
| 4240 | if (isa<CallBase>(Val: NonCompatibleI)) { |
| 4241 | ORA << ". Add `[[omp::assume(\"ompx_spmd_amenable\")]]` to " |
| 4242 | "the called function to override" ; |
| 4243 | } |
| 4244 | return ORA << "." ; |
| 4245 | }; |
| 4246 | A.emitRemark<OptimizationRemarkAnalysis>(I: NonCompatibleI, RemarkName: "OMP121" , |
| 4247 | RemarkCB&: Remark); |
| 4248 | |
| 4249 | LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " |
| 4250 | << *NonCompatibleI << "\n" ); |
| 4251 | } |
| 4252 | |
| 4253 | return false; |
| 4254 | } |
| 4255 | |
| 4256 | // Get the actual kernel, could be the caller of the anchor scope if we have |
| 4257 | // a debug wrapper. |
| 4258 | Function *Kernel = getAnchorScope(); |
| 4259 | if (Kernel->hasLocalLinkage()) { |
| 4260 | assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper." ); |
| 4261 | auto *CB = cast<CallBase>(Val: Kernel->user_back()); |
| 4262 | Kernel = CB->getCaller(); |
| 4263 | } |
| 4264 | assert(omp::isOpenMPKernel(*Kernel) && "Expected kernel function!" ); |
| 4265 | |
| 4266 | // Check if the kernel is already in SPMD mode, if so, return success. |
| 4267 | ConstantStruct *ExistingKernelEnvC = |
| 4268 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
| 4269 | auto *ExecModeC = |
| 4270 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC: ExistingKernelEnvC); |
| 4271 | const int8_t ExecModeVal = ExecModeC->getSExtValue(); |
| 4272 | if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) |
| 4273 | return true; |
| 4274 | |
| 4275 | // We will now unconditionally modify the IR, indicate a change. |
| 4276 | Changed = ChangeStatus::CHANGED; |
| 4277 | |
| 4278 | // Do not use instruction guards when no parallel is present inside |
| 4279 | // the target region. |
| 4280 | if (mayContainParallelRegion()) |
| 4281 | insertInstructionGuardsHelper(A); |
| 4282 | else |
| 4283 | forceSingleThreadPerWorkgroupHelper(A); |
| 4284 | |
| 4285 | // Adjust the global exec mode flag that tells the runtime what mode this |
| 4286 | // kernel is executed in. |
| 4287 | assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && |
| 4288 | "Initially non-SPMD kernel has SPMD exec mode!" ); |
| 4289 | setExecModeOfKernelEnvironment( |
| 4290 | ConstantInt::get(Ty: ExecModeC->getIntegerType(), |
| 4291 | V: ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); |
| 4292 | |
| 4293 | ++NumOpenMPTargetRegionKernelsSPMD; |
| 4294 | |
| 4295 | auto = [&](OptimizationRemark OR) { |
| 4296 | return OR << "Transformed generic-mode kernel to SPMD-mode." ; |
| 4297 | }; |
| 4298 | A.emitRemark<OptimizationRemark>(I: KernelInitCB, RemarkName: "OMP120" , RemarkCB&: Remark); |
| 4299 | return true; |
| 4300 | }; |
| 4301 | |
| 4302 | bool buildCustomStateMachine(Attributor &A, ChangeStatus &Changed) { |
| 4303 | // If we have disabled state machine rewrites, don't make a custom one |
| 4304 | if (DisableOpenMPOptStateMachineRewrite) |
| 4305 | return false; |
| 4306 | |
| 4307 | // Don't rewrite the state machine if we are not in a valid state. |
| 4308 | if (!ReachedKnownParallelRegions.isValidState()) |
| 4309 | return false; |
| 4310 | |
| 4311 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 4312 | if (!OMPInfoCache.runtimeFnsAvailable( |
| 4313 | Fns: {OMPRTL___kmpc_get_hardware_num_threads_in_block, |
| 4314 | OMPRTL___kmpc_get_warp_size, OMPRTL___kmpc_barrier_simple_generic, |
| 4315 | OMPRTL___kmpc_kernel_parallel, OMPRTL___kmpc_kernel_end_parallel})) |
| 4316 | return false; |
| 4317 | |
| 4318 | ConstantStruct *ExistingKernelEnvC = |
| 4319 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
| 4320 | |
| 4321 | // Check if the current configuration is non-SPMD and generic state machine. |
| 4322 | // If we already have SPMD mode or a custom state machine we do not need to |
| 4323 | // go any further. If it is anything but a constant something is weird and |
| 4324 | // we give up. |
| 4325 | ConstantInt *UseStateMachineC = |
| 4326 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
| 4327 | KernelEnvC: ExistingKernelEnvC); |
| 4328 | ConstantInt *ModeC = |
| 4329 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC: ExistingKernelEnvC); |
| 4330 | |
| 4331 | // If we are stuck with generic mode, try to create a custom device (=GPU) |
| 4332 | // state machine which is specialized for the parallel regions that are |
| 4333 | // reachable by the kernel. |
| 4334 | if (UseStateMachineC->isZero() || |
| 4335 | (ModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) |
| 4336 | return false; |
| 4337 | |
| 4338 | Changed = ChangeStatus::CHANGED; |
| 4339 | |
| 4340 | // If not SPMD mode, indicate we use a custom state machine now. |
| 4341 | setUseGenericStateMachineOfKernelEnvironment( |
| 4342 | ConstantInt::get(Ty: UseStateMachineC->getIntegerType(), V: false)); |
| 4343 | |
| 4344 | // If we don't actually need a state machine we are done here. This can |
| 4345 | // happen if there simply are no parallel regions. In the resulting kernel |
| 4346 | // all worker threads will simply exit right away, leaving the main thread |
| 4347 | // to do the work alone. |
| 4348 | if (!mayContainParallelRegion()) { |
| 4349 | ++NumOpenMPTargetRegionKernelsWithoutStateMachine; |
| 4350 | |
| 4351 | auto = [&](OptimizationRemark OR) { |
| 4352 | return OR << "Removing unused state machine from generic-mode kernel." ; |
| 4353 | }; |
| 4354 | A.emitRemark<OptimizationRemark>(I: KernelInitCB, RemarkName: "OMP130" , RemarkCB&: Remark); |
| 4355 | |
| 4356 | return true; |
| 4357 | } |
| 4358 | |
| 4359 | // Keep track in the statistics of our new shiny custom state machine. |
| 4360 | if (ReachedUnknownParallelRegions.empty()) { |
| 4361 | ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; |
| 4362 | |
| 4363 | auto = [&](OptimizationRemark OR) { |
| 4364 | return OR << "Rewriting generic-mode kernel with a customized state " |
| 4365 | "machine." ; |
| 4366 | }; |
| 4367 | A.emitRemark<OptimizationRemark>(I: KernelInitCB, RemarkName: "OMP131" , RemarkCB&: Remark); |
| 4368 | } else { |
| 4369 | ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; |
| 4370 | |
| 4371 | auto = [&](OptimizationRemarkAnalysis OR) { |
| 4372 | return OR << "Generic-mode kernel is executed with a customized state " |
| 4373 | "machine that requires a fallback." ; |
| 4374 | }; |
| 4375 | A.emitRemark<OptimizationRemarkAnalysis>(I: KernelInitCB, RemarkName: "OMP132" , RemarkCB&: Remark); |
| 4376 | |
| 4377 | // Tell the user why we ended up with a fallback. |
| 4378 | for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { |
| 4379 | if (!UnknownParallelRegionCB) |
| 4380 | continue; |
| 4381 | auto = [&](OptimizationRemarkAnalysis ORA) { |
| 4382 | return ORA << "Call may contain unknown parallel regions. Use " |
| 4383 | << "`[[omp::assume(\"omp_no_parallelism\")]]` to " |
| 4384 | "override." ; |
| 4385 | }; |
| 4386 | A.emitRemark<OptimizationRemarkAnalysis>(I: UnknownParallelRegionCB, |
| 4387 | RemarkName: "OMP133" , RemarkCB&: Remark); |
| 4388 | } |
| 4389 | } |
| 4390 | |
| 4391 | // Create all the blocks: |
| 4392 | // |
| 4393 | // InitCB = __kmpc_target_init(...) |
| 4394 | // BlockHwSize = |
| 4395 | // __kmpc_get_hardware_num_threads_in_block(); |
| 4396 | // WarpSize = __kmpc_get_warp_size(); |
| 4397 | // BlockSize = BlockHwSize - WarpSize; |
| 4398 | // IsWorkerCheckBB: bool IsWorker = InitCB != -1; |
| 4399 | // if (IsWorker) { |
| 4400 | // if (InitCB >= BlockSize) return; |
| 4401 | // SMBeginBB: __kmpc_barrier_simple_generic(...); |
| 4402 | // void *WorkFn; |
| 4403 | // bool Active = __kmpc_kernel_parallel(&WorkFn); |
| 4404 | // if (!WorkFn) return; |
| 4405 | // SMIsActiveCheckBB: if (Active) { |
| 4406 | // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) |
| 4407 | // ParFn0(...); |
| 4408 | // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) |
| 4409 | // ParFn1(...); |
| 4410 | // ... |
| 4411 | // SMIfCascadeCurrentBB: else |
| 4412 | // ((WorkFnTy*)WorkFn)(...); |
| 4413 | // SMEndParallelBB: __kmpc_kernel_end_parallel(...); |
| 4414 | // } |
| 4415 | // SMDoneBB: __kmpc_barrier_simple_generic(...); |
| 4416 | // goto SMBeginBB; |
| 4417 | // } |
| 4418 | // UserCodeEntryBB: // user code |
| 4419 | // __kmpc_target_deinit(...) |
| 4420 | // |
| 4421 | auto &Ctx = getAnchorValue().getContext(); |
| 4422 | Function *Kernel = getAssociatedFunction(); |
| 4423 | assert(Kernel && "Expected an associated function!" ); |
| 4424 | |
| 4425 | BasicBlock *InitBB = KernelInitCB->getParent(); |
| 4426 | BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( |
| 4427 | I: KernelInitCB->getNextNode(), BBName: "thread.user_code.check" ); |
| 4428 | BasicBlock *IsWorkerCheckBB = |
| 4429 | BasicBlock::Create(Context&: Ctx, Name: "is_worker_check" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
| 4430 | BasicBlock *StateMachineBeginBB = BasicBlock::Create( |
| 4431 | Context&: Ctx, Name: "worker_state_machine.begin" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
| 4432 | BasicBlock *StateMachineFinishedBB = BasicBlock::Create( |
| 4433 | Context&: Ctx, Name: "worker_state_machine.finished" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
| 4434 | BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( |
| 4435 | Context&: Ctx, Name: "worker_state_machine.is_active.check" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
| 4436 | BasicBlock *StateMachineIfCascadeCurrentBB = |
| 4437 | BasicBlock::Create(Context&: Ctx, Name: "worker_state_machine.parallel_region.check" , |
| 4438 | Parent: Kernel, InsertBefore: UserCodeEntryBB); |
| 4439 | BasicBlock *StateMachineEndParallelBB = |
| 4440 | BasicBlock::Create(Context&: Ctx, Name: "worker_state_machine.parallel_region.end" , |
| 4441 | Parent: Kernel, InsertBefore: UserCodeEntryBB); |
| 4442 | BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( |
| 4443 | Context&: Ctx, Name: "worker_state_machine.done.barrier" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
| 4444 | A.registerManifestAddedBasicBlock(BB&: *InitBB); |
| 4445 | A.registerManifestAddedBasicBlock(BB&: *UserCodeEntryBB); |
| 4446 | A.registerManifestAddedBasicBlock(BB&: *IsWorkerCheckBB); |
| 4447 | A.registerManifestAddedBasicBlock(BB&: *StateMachineBeginBB); |
| 4448 | A.registerManifestAddedBasicBlock(BB&: *StateMachineFinishedBB); |
| 4449 | A.registerManifestAddedBasicBlock(BB&: *StateMachineIsActiveCheckBB); |
| 4450 | A.registerManifestAddedBasicBlock(BB&: *StateMachineIfCascadeCurrentBB); |
| 4451 | A.registerManifestAddedBasicBlock(BB&: *StateMachineEndParallelBB); |
| 4452 | A.registerManifestAddedBasicBlock(BB&: *StateMachineDoneBarrierBB); |
| 4453 | |
| 4454 | const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); |
| 4455 | ReturnInst::Create(C&: Ctx, InsertAtEnd: StateMachineFinishedBB)->setDebugLoc(DLoc); |
| 4456 | InitBB->getTerminator()->eraseFromParent(); |
| 4457 | |
| 4458 | Instruction *IsWorker = |
| 4459 | ICmpInst::Create(Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_NE, S1: KernelInitCB, |
| 4460 | S2: ConstantInt::get(Ty: KernelInitCB->getType(), V: -1), |
| 4461 | Name: "thread.is_worker" , InsertBefore: InitBB); |
| 4462 | IsWorker->setDebugLoc(DLoc); |
| 4463 | BranchInst::Create(IfTrue: IsWorkerCheckBB, IfFalse: UserCodeEntryBB, Cond: IsWorker, InsertBefore: InitBB); |
| 4464 | |
| 4465 | Module &M = *Kernel->getParent(); |
| 4466 | FunctionCallee BlockHwSizeFn = |
| 4467 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
| 4468 | M, FnID: OMPRTL___kmpc_get_hardware_num_threads_in_block); |
| 4469 | FunctionCallee WarpSizeFn = |
| 4470 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
| 4471 | M, FnID: OMPRTL___kmpc_get_warp_size); |
| 4472 | CallInst *BlockHwSize = |
| 4473 | CallInst::Create(Func: BlockHwSizeFn, NameStr: "block.hw_size" , InsertBefore: IsWorkerCheckBB); |
| 4474 | OMPInfoCache.setCallingConvention(Callee: BlockHwSizeFn, CI: BlockHwSize); |
| 4475 | BlockHwSize->setDebugLoc(DLoc); |
| 4476 | CallInst *WarpSize = |
| 4477 | CallInst::Create(Func: WarpSizeFn, NameStr: "warp.size" , InsertBefore: IsWorkerCheckBB); |
| 4478 | OMPInfoCache.setCallingConvention(Callee: WarpSizeFn, CI: WarpSize); |
| 4479 | WarpSize->setDebugLoc(DLoc); |
| 4480 | Instruction *BlockSize = BinaryOperator::CreateSub( |
| 4481 | V1: BlockHwSize, V2: WarpSize, Name: "block.size" , InsertBefore: IsWorkerCheckBB); |
| 4482 | BlockSize->setDebugLoc(DLoc); |
| 4483 | Instruction *IsMainOrWorker = ICmpInst::Create( |
| 4484 | Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_SLT, S1: KernelInitCB, S2: BlockSize, |
| 4485 | Name: "thread.is_main_or_worker" , InsertBefore: IsWorkerCheckBB); |
| 4486 | IsMainOrWorker->setDebugLoc(DLoc); |
| 4487 | BranchInst::Create(IfTrue: StateMachineBeginBB, IfFalse: StateMachineFinishedBB, |
| 4488 | Cond: IsMainOrWorker, InsertBefore: IsWorkerCheckBB); |
| 4489 | |
| 4490 | // Create local storage for the work function pointer. |
| 4491 | const DataLayout &DL = M.getDataLayout(); |
| 4492 | Type *VoidPtrTy = PointerType::getUnqual(C&: Ctx); |
| 4493 | Instruction *WorkFnAI = |
| 4494 | new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, |
| 4495 | "worker.work_fn.addr" , Kernel->getEntryBlock().begin()); |
| 4496 | WorkFnAI->setDebugLoc(DLoc); |
| 4497 | |
| 4498 | OMPInfoCache.OMPBuilder.updateToLocation( |
| 4499 | Loc: OpenMPIRBuilder::LocationDescription( |
| 4500 | IRBuilder<>::InsertPoint(StateMachineBeginBB, |
| 4501 | StateMachineBeginBB->end()), |
| 4502 | DLoc)); |
| 4503 | |
| 4504 | Value *Ident = KernelInfo::getIdentFromKernelEnvironment(KernelEnvC); |
| 4505 | Value *GTid = KernelInitCB; |
| 4506 | |
| 4507 | FunctionCallee BarrierFn = |
| 4508 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
| 4509 | M, FnID: OMPRTL___kmpc_barrier_simple_generic); |
| 4510 | CallInst *Barrier = |
| 4511 | CallInst::Create(Func: BarrierFn, Args: {Ident, GTid}, NameStr: "" , InsertBefore: StateMachineBeginBB); |
| 4512 | OMPInfoCache.setCallingConvention(Callee: BarrierFn, CI: Barrier); |
| 4513 | Barrier->setDebugLoc(DLoc); |
| 4514 | |
| 4515 | if (WorkFnAI->getType()->getPointerAddressSpace() != |
| 4516 | (unsigned int)AddressSpace::Generic) { |
| 4517 | WorkFnAI = new AddrSpaceCastInst( |
| 4518 | WorkFnAI, PointerType::get(C&: Ctx, AddressSpace: (unsigned int)AddressSpace::Generic), |
| 4519 | WorkFnAI->getName() + ".generic" , StateMachineBeginBB); |
| 4520 | WorkFnAI->setDebugLoc(DLoc); |
| 4521 | } |
| 4522 | |
| 4523 | FunctionCallee KernelParallelFn = |
| 4524 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
| 4525 | M, FnID: OMPRTL___kmpc_kernel_parallel); |
| 4526 | CallInst *IsActiveWorker = CallInst::Create( |
| 4527 | Func: KernelParallelFn, Args: {WorkFnAI}, NameStr: "worker.is_active" , InsertBefore: StateMachineBeginBB); |
| 4528 | OMPInfoCache.setCallingConvention(Callee: KernelParallelFn, CI: IsActiveWorker); |
| 4529 | IsActiveWorker->setDebugLoc(DLoc); |
| 4530 | Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn" , |
| 4531 | StateMachineBeginBB); |
| 4532 | WorkFn->setDebugLoc(DLoc); |
| 4533 | |
| 4534 | FunctionType *ParallelRegionFnTy = FunctionType::get( |
| 4535 | Result: Type::getVoidTy(C&: Ctx), Params: {Type::getInt16Ty(C&: Ctx), Type::getInt32Ty(C&: Ctx)}, |
| 4536 | isVarArg: false); |
| 4537 | |
| 4538 | Instruction *IsDone = |
| 4539 | ICmpInst::Create(Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_EQ, S1: WorkFn, |
| 4540 | S2: Constant::getNullValue(Ty: VoidPtrTy), Name: "worker.is_done" , |
| 4541 | InsertBefore: StateMachineBeginBB); |
| 4542 | IsDone->setDebugLoc(DLoc); |
| 4543 | BranchInst::Create(IfTrue: StateMachineFinishedBB, IfFalse: StateMachineIsActiveCheckBB, |
| 4544 | Cond: IsDone, InsertBefore: StateMachineBeginBB) |
| 4545 | ->setDebugLoc(DLoc); |
| 4546 | |
| 4547 | BranchInst::Create(IfTrue: StateMachineIfCascadeCurrentBB, |
| 4548 | IfFalse: StateMachineDoneBarrierBB, Cond: IsActiveWorker, |
| 4549 | InsertBefore: StateMachineIsActiveCheckBB) |
| 4550 | ->setDebugLoc(DLoc); |
| 4551 | |
| 4552 | Value *ZeroArg = |
| 4553 | Constant::getNullValue(Ty: ParallelRegionFnTy->getParamType(i: 0)); |
| 4554 | |
| 4555 | const unsigned int WrapperFunctionArgNo = 6; |
| 4556 | |
| 4557 | // Now that we have most of the CFG skeleton it is time for the if-cascade |
| 4558 | // that checks the function pointer we got from the runtime against the |
| 4559 | // parallel regions we expect, if there are any. |
| 4560 | for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { |
| 4561 | auto *CB = ReachedKnownParallelRegions[I]; |
| 4562 | auto *ParallelRegion = dyn_cast<Function>( |
| 4563 | Val: CB->getArgOperand(i: WrapperFunctionArgNo)->stripPointerCasts()); |
| 4564 | BasicBlock *PRExecuteBB = BasicBlock::Create( |
| 4565 | Context&: Ctx, Name: "worker_state_machine.parallel_region.execute" , Parent: Kernel, |
| 4566 | InsertBefore: StateMachineEndParallelBB); |
| 4567 | CallInst::Create(Func: ParallelRegion, Args: {ZeroArg, GTid}, NameStr: "" , InsertBefore: PRExecuteBB) |
| 4568 | ->setDebugLoc(DLoc); |
| 4569 | BranchInst::Create(IfTrue: StateMachineEndParallelBB, InsertBefore: PRExecuteBB) |
| 4570 | ->setDebugLoc(DLoc); |
| 4571 | |
| 4572 | BasicBlock *PRNextBB = |
| 4573 | BasicBlock::Create(Context&: Ctx, Name: "worker_state_machine.parallel_region.check" , |
| 4574 | Parent: Kernel, InsertBefore: StateMachineEndParallelBB); |
| 4575 | A.registerManifestAddedBasicBlock(BB&: *PRExecuteBB); |
| 4576 | A.registerManifestAddedBasicBlock(BB&: *PRNextBB); |
| 4577 | |
| 4578 | // Check if we need to compare the pointer at all or if we can just |
| 4579 | // call the parallel region function. |
| 4580 | Value *IsPR; |
| 4581 | if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { |
| 4582 | Instruction *CmpI = ICmpInst::Create( |
| 4583 | Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_EQ, S1: WorkFn, S2: ParallelRegion, |
| 4584 | Name: "worker.check_parallel_region" , InsertBefore: StateMachineIfCascadeCurrentBB); |
| 4585 | CmpI->setDebugLoc(DLoc); |
| 4586 | IsPR = CmpI; |
| 4587 | } else { |
| 4588 | IsPR = ConstantInt::getTrue(Context&: Ctx); |
| 4589 | } |
| 4590 | |
| 4591 | BranchInst::Create(IfTrue: PRExecuteBB, IfFalse: PRNextBB, Cond: IsPR, |
| 4592 | InsertBefore: StateMachineIfCascadeCurrentBB) |
| 4593 | ->setDebugLoc(DLoc); |
| 4594 | StateMachineIfCascadeCurrentBB = PRNextBB; |
| 4595 | } |
| 4596 | |
| 4597 | // At the end of the if-cascade we place the indirect function pointer call |
| 4598 | // in case we might need it, that is if there can be parallel regions we |
| 4599 | // have not handled in the if-cascade above. |
| 4600 | if (!ReachedUnknownParallelRegions.empty()) { |
| 4601 | StateMachineIfCascadeCurrentBB->setName( |
| 4602 | "worker_state_machine.parallel_region.fallback.execute" ); |
| 4603 | CallInst::Create(Ty: ParallelRegionFnTy, Func: WorkFn, Args: {ZeroArg, GTid}, NameStr: "" , |
| 4604 | InsertBefore: StateMachineIfCascadeCurrentBB) |
| 4605 | ->setDebugLoc(DLoc); |
| 4606 | } |
| 4607 | BranchInst::Create(IfTrue: StateMachineEndParallelBB, |
| 4608 | InsertBefore: StateMachineIfCascadeCurrentBB) |
| 4609 | ->setDebugLoc(DLoc); |
| 4610 | |
| 4611 | FunctionCallee EndParallelFn = |
| 4612 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
| 4613 | M, FnID: OMPRTL___kmpc_kernel_end_parallel); |
| 4614 | CallInst *EndParallel = |
| 4615 | CallInst::Create(Func: EndParallelFn, Args: {}, NameStr: "" , InsertBefore: StateMachineEndParallelBB); |
| 4616 | OMPInfoCache.setCallingConvention(Callee: EndParallelFn, CI: EndParallel); |
| 4617 | EndParallel->setDebugLoc(DLoc); |
| 4618 | BranchInst::Create(IfTrue: StateMachineDoneBarrierBB, InsertBefore: StateMachineEndParallelBB) |
| 4619 | ->setDebugLoc(DLoc); |
| 4620 | |
| 4621 | CallInst::Create(Func: BarrierFn, Args: {Ident, GTid}, NameStr: "" , InsertBefore: StateMachineDoneBarrierBB) |
| 4622 | ->setDebugLoc(DLoc); |
| 4623 | BranchInst::Create(IfTrue: StateMachineBeginBB, InsertBefore: StateMachineDoneBarrierBB) |
| 4624 | ->setDebugLoc(DLoc); |
| 4625 | |
| 4626 | return true; |
| 4627 | } |
| 4628 | |
| 4629 | /// Fixpoint iteration update function. Will be called every time a dependence |
| 4630 | /// changed its state (and in the beginning). |
| 4631 | ChangeStatus updateImpl(Attributor &A) override { |
| 4632 | KernelInfoState StateBefore = getState(); |
| 4633 | |
| 4634 | // When we leave this function this RAII will make sure the member |
| 4635 | // KernelEnvC is updated properly depending on the state. That member is |
| 4636 | // used for simplification of values and needs to be up to date at all |
| 4637 | // times. |
| 4638 | struct UpdateKernelEnvCRAII { |
| 4639 | AAKernelInfoFunction &AA; |
| 4640 | |
| 4641 | UpdateKernelEnvCRAII(AAKernelInfoFunction &AA) : AA(AA) {} |
| 4642 | |
| 4643 | ~UpdateKernelEnvCRAII() { |
| 4644 | if (!AA.KernelEnvC) |
| 4645 | return; |
| 4646 | |
| 4647 | ConstantStruct *ExistingKernelEnvC = |
| 4648 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB: AA.KernelInitCB); |
| 4649 | |
| 4650 | if (!AA.isValidState()) { |
| 4651 | AA.KernelEnvC = ExistingKernelEnvC; |
| 4652 | return; |
| 4653 | } |
| 4654 | |
| 4655 | if (!AA.ReachedKnownParallelRegions.isValidState()) |
| 4656 | AA.setUseGenericStateMachineOfKernelEnvironment( |
| 4657 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
| 4658 | KernelEnvC: ExistingKernelEnvC)); |
| 4659 | |
| 4660 | if (!AA.SPMDCompatibilityTracker.isValidState()) |
| 4661 | AA.setExecModeOfKernelEnvironment( |
| 4662 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC: ExistingKernelEnvC)); |
| 4663 | |
| 4664 | ConstantInt *MayUseNestedParallelismC = |
| 4665 | KernelInfo::getMayUseNestedParallelismFromKernelEnvironment( |
| 4666 | KernelEnvC: AA.KernelEnvC); |
| 4667 | ConstantInt *NewMayUseNestedParallelismC = ConstantInt::get( |
| 4668 | Ty: MayUseNestedParallelismC->getIntegerType(), V: AA.NestedParallelism); |
| 4669 | AA.setMayUseNestedParallelismOfKernelEnvironment( |
| 4670 | NewMayUseNestedParallelismC); |
| 4671 | } |
| 4672 | } RAII(*this); |
| 4673 | |
| 4674 | // Callback to check a read/write instruction. |
| 4675 | auto CheckRWInst = [&](Instruction &I) { |
| 4676 | // We handle calls later. |
| 4677 | if (isa<CallBase>(Val: I)) |
| 4678 | return true; |
| 4679 | // We only care about write effects. |
| 4680 | if (!I.mayWriteToMemory()) |
| 4681 | return true; |
| 4682 | if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
| 4683 | const auto *UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>( |
| 4684 | QueryingAA: *this, IRP: IRPosition::value(V: *SI->getPointerOperand()), |
| 4685 | DepClass: DepClassTy::OPTIONAL); |
| 4686 | auto *HS = A.getAAFor<AAHeapToStack>( |
| 4687 | QueryingAA: *this, IRP: IRPosition::function(F: *I.getFunction()), |
| 4688 | DepClass: DepClassTy::OPTIONAL); |
| 4689 | if (UnderlyingObjsAA && |
| 4690 | UnderlyingObjsAA->forallUnderlyingObjects(Pred: [&](Value &Obj) { |
| 4691 | if (AA::isAssumedThreadLocalObject(A, Obj, QueryingAA: *this)) |
| 4692 | return true; |
| 4693 | // Check for AAHeapToStack moved objects which must not be |
| 4694 | // guarded. |
| 4695 | auto *CB = dyn_cast<CallBase>(Val: &Obj); |
| 4696 | return CB && HS && HS->isAssumedHeapToStack(CB: *CB); |
| 4697 | })) |
| 4698 | return true; |
| 4699 | } |
| 4700 | |
| 4701 | // Insert instruction that needs guarding. |
| 4702 | SPMDCompatibilityTracker.insert(Elem: &I); |
| 4703 | return true; |
| 4704 | }; |
| 4705 | |
| 4706 | bool UsedAssumedInformationInCheckRWInst = false; |
| 4707 | if (!SPMDCompatibilityTracker.isAtFixpoint()) |
| 4708 | if (!A.checkForAllReadWriteInstructions( |
| 4709 | Pred: CheckRWInst, QueryingAA&: *this, UsedAssumedInformation&: UsedAssumedInformationInCheckRWInst)) |
| 4710 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 4711 | |
| 4712 | bool UsedAssumedInformationFromReachingKernels = false; |
| 4713 | if (!IsKernelEntry) { |
| 4714 | updateParallelLevels(A); |
| 4715 | |
| 4716 | bool AllReachingKernelsKnown = true; |
| 4717 | updateReachingKernelEntries(A, AllReachingKernelsKnown); |
| 4718 | UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; |
| 4719 | |
| 4720 | if (!SPMDCompatibilityTracker.empty()) { |
| 4721 | if (!ParallelLevels.isValidState()) |
| 4722 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 4723 | else if (!ReachingKernelEntries.isValidState()) |
| 4724 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 4725 | else { |
| 4726 | // Check if all reaching kernels agree on the mode as we can otherwise |
| 4727 | // not guard instructions. We might not be sure about the mode so we |
| 4728 | // we cannot fix the internal spmd-zation state either. |
| 4729 | int SPMD = 0, Generic = 0; |
| 4730 | for (auto *Kernel : ReachingKernelEntries) { |
| 4731 | auto *CBAA = A.getAAFor<AAKernelInfo>( |
| 4732 | QueryingAA: *this, IRP: IRPosition::function(F: *Kernel), DepClass: DepClassTy::OPTIONAL); |
| 4733 | if (CBAA && CBAA->SPMDCompatibilityTracker.isValidState() && |
| 4734 | CBAA->SPMDCompatibilityTracker.isAssumed()) |
| 4735 | ++SPMD; |
| 4736 | else |
| 4737 | ++Generic; |
| 4738 | if (!CBAA || !CBAA->SPMDCompatibilityTracker.isAtFixpoint()) |
| 4739 | UsedAssumedInformationFromReachingKernels = true; |
| 4740 | } |
| 4741 | if (SPMD != 0 && Generic != 0) |
| 4742 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 4743 | } |
| 4744 | } |
| 4745 | } |
| 4746 | |
| 4747 | // Callback to check a call instruction. |
| 4748 | bool AllParallelRegionStatesWereFixed = true; |
| 4749 | bool AllSPMDStatesWereFixed = true; |
| 4750 | auto CheckCallInst = [&](Instruction &I) { |
| 4751 | auto &CB = cast<CallBase>(Val&: I); |
| 4752 | auto *CBAA = A.getAAFor<AAKernelInfo>( |
| 4753 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB), DepClass: DepClassTy::OPTIONAL); |
| 4754 | if (!CBAA) |
| 4755 | return false; |
| 4756 | getState() ^= CBAA->getState(); |
| 4757 | AllSPMDStatesWereFixed &= CBAA->SPMDCompatibilityTracker.isAtFixpoint(); |
| 4758 | AllParallelRegionStatesWereFixed &= |
| 4759 | CBAA->ReachedKnownParallelRegions.isAtFixpoint(); |
| 4760 | AllParallelRegionStatesWereFixed &= |
| 4761 | CBAA->ReachedUnknownParallelRegions.isAtFixpoint(); |
| 4762 | return true; |
| 4763 | }; |
| 4764 | |
| 4765 | bool UsedAssumedInformationInCheckCallInst = false; |
| 4766 | if (!A.checkForAllCallLikeInstructions( |
| 4767 | Pred: CheckCallInst, QueryingAA: *this, UsedAssumedInformation&: UsedAssumedInformationInCheckCallInst)) { |
| 4768 | LLVM_DEBUG(dbgs() << TAG |
| 4769 | << "Failed to visit all call-like instructions!\n" ;); |
| 4770 | return indicatePessimisticFixpoint(); |
| 4771 | } |
| 4772 | |
| 4773 | // If we haven't used any assumed information for the reached parallel |
| 4774 | // region states we can fix it. |
| 4775 | if (!UsedAssumedInformationInCheckCallInst && |
| 4776 | AllParallelRegionStatesWereFixed) { |
| 4777 | ReachedKnownParallelRegions.indicateOptimisticFixpoint(); |
| 4778 | ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); |
| 4779 | } |
| 4780 | |
| 4781 | // If we haven't used any assumed information for the SPMD state we can fix |
| 4782 | // it. |
| 4783 | if (!UsedAssumedInformationInCheckRWInst && |
| 4784 | !UsedAssumedInformationInCheckCallInst && |
| 4785 | !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) |
| 4786 | SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
| 4787 | |
| 4788 | return StateBefore == getState() ? ChangeStatus::UNCHANGED |
| 4789 | : ChangeStatus::CHANGED; |
| 4790 | } |
| 4791 | |
| 4792 | private: |
| 4793 | /// Update info regarding reaching kernels. |
| 4794 | void updateReachingKernelEntries(Attributor &A, |
| 4795 | bool &AllReachingKernelsKnown) { |
| 4796 | auto PredCallSite = [&](AbstractCallSite ACS) { |
| 4797 | Function *Caller = ACS.getInstruction()->getFunction(); |
| 4798 | |
| 4799 | assert(Caller && "Caller is nullptr" ); |
| 4800 | |
| 4801 | auto *CAA = A.getOrCreateAAFor<AAKernelInfo>( |
| 4802 | IRP: IRPosition::function(F: *Caller), QueryingAA: this, DepClass: DepClassTy::REQUIRED); |
| 4803 | if (CAA && CAA->ReachingKernelEntries.isValidState()) { |
| 4804 | ReachingKernelEntries ^= CAA->ReachingKernelEntries; |
| 4805 | return true; |
| 4806 | } |
| 4807 | |
| 4808 | // We lost track of the caller of the associated function, any kernel |
| 4809 | // could reach now. |
| 4810 | ReachingKernelEntries.indicatePessimisticFixpoint(); |
| 4811 | |
| 4812 | return true; |
| 4813 | }; |
| 4814 | |
| 4815 | if (!A.checkForAllCallSites(Pred: PredCallSite, QueryingAA: *this, |
| 4816 | RequireAllCallSites: true /* RequireAllCallSites */, |
| 4817 | UsedAssumedInformation&: AllReachingKernelsKnown)) |
| 4818 | ReachingKernelEntries.indicatePessimisticFixpoint(); |
| 4819 | } |
| 4820 | |
| 4821 | /// Update info regarding parallel levels. |
| 4822 | void updateParallelLevels(Attributor &A) { |
| 4823 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 4824 | OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = |
| 4825 | OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
| 4826 | |
| 4827 | auto PredCallSite = [&](AbstractCallSite ACS) { |
| 4828 | Function *Caller = ACS.getInstruction()->getFunction(); |
| 4829 | |
| 4830 | assert(Caller && "Caller is nullptr" ); |
| 4831 | |
| 4832 | auto *CAA = |
| 4833 | A.getOrCreateAAFor<AAKernelInfo>(IRP: IRPosition::function(F: *Caller)); |
| 4834 | if (CAA && CAA->ParallelLevels.isValidState()) { |
| 4835 | // Any function that is called by `__kmpc_parallel_51` will not be |
| 4836 | // folded as the parallel level in the function is updated. In order to |
| 4837 | // get it right, all the analysis would depend on the implentation. That |
| 4838 | // said, if in the future any change to the implementation, the analysis |
| 4839 | // could be wrong. As a consequence, we are just conservative here. |
| 4840 | if (Caller == Parallel51RFI.Declaration) { |
| 4841 | ParallelLevels.indicatePessimisticFixpoint(); |
| 4842 | return true; |
| 4843 | } |
| 4844 | |
| 4845 | ParallelLevels ^= CAA->ParallelLevels; |
| 4846 | |
| 4847 | return true; |
| 4848 | } |
| 4849 | |
| 4850 | // We lost track of the caller of the associated function, any kernel |
| 4851 | // could reach now. |
| 4852 | ParallelLevels.indicatePessimisticFixpoint(); |
| 4853 | |
| 4854 | return true; |
| 4855 | }; |
| 4856 | |
| 4857 | bool AllCallSitesKnown = true; |
| 4858 | if (!A.checkForAllCallSites(Pred: PredCallSite, QueryingAA: *this, |
| 4859 | RequireAllCallSites: true /* RequireAllCallSites */, |
| 4860 | UsedAssumedInformation&: AllCallSitesKnown)) |
| 4861 | ParallelLevels.indicatePessimisticFixpoint(); |
| 4862 | } |
| 4863 | }; |
| 4864 | |
| 4865 | /// The call site kernel info abstract attribute, basically, what can we say |
| 4866 | /// about a call site with regards to the KernelInfoState. For now this simply |
| 4867 | /// forwards the information from the callee. |
| 4868 | struct AAKernelInfoCallSite : AAKernelInfo { |
| 4869 | AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) |
| 4870 | : AAKernelInfo(IRP, A) {} |
| 4871 | |
| 4872 | /// See AbstractAttribute::initialize(...). |
| 4873 | void initialize(Attributor &A) override { |
| 4874 | AAKernelInfo::initialize(A); |
| 4875 | |
| 4876 | CallBase &CB = cast<CallBase>(Val&: getAssociatedValue()); |
| 4877 | auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>( |
| 4878 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB), DepClass: DepClassTy::OPTIONAL); |
| 4879 | |
| 4880 | // Check for SPMD-mode assumptions. |
| 4881 | if (AssumptionAA && AssumptionAA->hasAssumption(Assumption: "ompx_spmd_amenable" )) { |
| 4882 | indicateOptimisticFixpoint(); |
| 4883 | return; |
| 4884 | } |
| 4885 | |
| 4886 | // First weed out calls we do not care about, that is readonly/readnone |
| 4887 | // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a |
| 4888 | // parallel region or anything else we are looking for. |
| 4889 | if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(Val: CB)) { |
| 4890 | indicateOptimisticFixpoint(); |
| 4891 | return; |
| 4892 | } |
| 4893 | |
| 4894 | // Next we check if we know the callee. If it is a known OpenMP function |
| 4895 | // we will handle them explicitly in the switch below. If it is not, we |
| 4896 | // will use an AAKernelInfo object on the callee to gather information and |
| 4897 | // merge that into the current state. The latter happens in the updateImpl. |
| 4898 | auto CheckCallee = [&](Function *Callee, unsigned NumCallees) { |
| 4899 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 4900 | const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Val: Callee); |
| 4901 | if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { |
| 4902 | // Unknown caller or declarations are not analyzable, we give up. |
| 4903 | if (!Callee || !A.isFunctionIPOAmendable(F: *Callee)) { |
| 4904 | |
| 4905 | // Unknown callees might contain parallel regions, except if they have |
| 4906 | // an appropriate assumption attached. |
| 4907 | if (!AssumptionAA || |
| 4908 | !(AssumptionAA->hasAssumption(Assumption: "omp_no_openmp" ) || |
| 4909 | AssumptionAA->hasAssumption(Assumption: "omp_no_parallelism" ))) |
| 4910 | ReachedUnknownParallelRegions.insert(Elem: &CB); |
| 4911 | |
| 4912 | // If SPMDCompatibilityTracker is not fixed, we need to give up on the |
| 4913 | // idea we can run something unknown in SPMD-mode. |
| 4914 | if (!SPMDCompatibilityTracker.isAtFixpoint()) { |
| 4915 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 4916 | SPMDCompatibilityTracker.insert(Elem: &CB); |
| 4917 | } |
| 4918 | |
| 4919 | // We have updated the state for this unknown call properly, there |
| 4920 | // won't be any change so we indicate a fixpoint. |
| 4921 | indicateOptimisticFixpoint(); |
| 4922 | } |
| 4923 | // If the callee is known and can be used in IPO, we will update the |
| 4924 | // state based on the callee state in updateImpl. |
| 4925 | return; |
| 4926 | } |
| 4927 | if (NumCallees > 1) { |
| 4928 | indicatePessimisticFixpoint(); |
| 4929 | return; |
| 4930 | } |
| 4931 | |
| 4932 | RuntimeFunction RF = It->getSecond(); |
| 4933 | switch (RF) { |
| 4934 | // All the functions we know are compatible with SPMD mode. |
| 4935 | case OMPRTL___kmpc_is_spmd_exec_mode: |
| 4936 | case OMPRTL___kmpc_distribute_static_fini: |
| 4937 | case OMPRTL___kmpc_for_static_fini: |
| 4938 | case OMPRTL___kmpc_global_thread_num: |
| 4939 | case OMPRTL___kmpc_get_hardware_num_threads_in_block: |
| 4940 | case OMPRTL___kmpc_get_hardware_num_blocks: |
| 4941 | case OMPRTL___kmpc_single: |
| 4942 | case OMPRTL___kmpc_end_single: |
| 4943 | case OMPRTL___kmpc_master: |
| 4944 | case OMPRTL___kmpc_end_master: |
| 4945 | case OMPRTL___kmpc_barrier: |
| 4946 | case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: |
| 4947 | case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: |
| 4948 | case OMPRTL___kmpc_error: |
| 4949 | case OMPRTL___kmpc_flush: |
| 4950 | case OMPRTL___kmpc_get_hardware_thread_id_in_block: |
| 4951 | case OMPRTL___kmpc_get_warp_size: |
| 4952 | case OMPRTL_omp_get_thread_num: |
| 4953 | case OMPRTL_omp_get_num_threads: |
| 4954 | case OMPRTL_omp_get_max_threads: |
| 4955 | case OMPRTL_omp_in_parallel: |
| 4956 | case OMPRTL_omp_get_dynamic: |
| 4957 | case OMPRTL_omp_get_cancellation: |
| 4958 | case OMPRTL_omp_get_nested: |
| 4959 | case OMPRTL_omp_get_schedule: |
| 4960 | case OMPRTL_omp_get_thread_limit: |
| 4961 | case OMPRTL_omp_get_supported_active_levels: |
| 4962 | case OMPRTL_omp_get_max_active_levels: |
| 4963 | case OMPRTL_omp_get_level: |
| 4964 | case OMPRTL_omp_get_ancestor_thread_num: |
| 4965 | case OMPRTL_omp_get_team_size: |
| 4966 | case OMPRTL_omp_get_active_level: |
| 4967 | case OMPRTL_omp_in_final: |
| 4968 | case OMPRTL_omp_get_proc_bind: |
| 4969 | case OMPRTL_omp_get_num_places: |
| 4970 | case OMPRTL_omp_get_num_procs: |
| 4971 | case OMPRTL_omp_get_place_proc_ids: |
| 4972 | case OMPRTL_omp_get_place_num: |
| 4973 | case OMPRTL_omp_get_partition_num_places: |
| 4974 | case OMPRTL_omp_get_partition_place_nums: |
| 4975 | case OMPRTL_omp_get_wtime: |
| 4976 | break; |
| 4977 | case OMPRTL___kmpc_distribute_static_init_4: |
| 4978 | case OMPRTL___kmpc_distribute_static_init_4u: |
| 4979 | case OMPRTL___kmpc_distribute_static_init_8: |
| 4980 | case OMPRTL___kmpc_distribute_static_init_8u: |
| 4981 | case OMPRTL___kmpc_for_static_init_4: |
| 4982 | case OMPRTL___kmpc_for_static_init_4u: |
| 4983 | case OMPRTL___kmpc_for_static_init_8: |
| 4984 | case OMPRTL___kmpc_for_static_init_8u: { |
| 4985 | // Check the schedule and allow static schedule in SPMD mode. |
| 4986 | unsigned ScheduleArgOpNo = 2; |
| 4987 | auto *ScheduleTypeCI = |
| 4988 | dyn_cast<ConstantInt>(Val: CB.getArgOperand(i: ScheduleArgOpNo)); |
| 4989 | unsigned ScheduleTypeVal = |
| 4990 | ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; |
| 4991 | switch (OMPScheduleType(ScheduleTypeVal)) { |
| 4992 | case OMPScheduleType::UnorderedStatic: |
| 4993 | case OMPScheduleType::UnorderedStaticChunked: |
| 4994 | case OMPScheduleType::OrderedDistribute: |
| 4995 | case OMPScheduleType::OrderedDistributeChunked: |
| 4996 | break; |
| 4997 | default: |
| 4998 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 4999 | SPMDCompatibilityTracker.insert(Elem: &CB); |
| 5000 | break; |
| 5001 | }; |
| 5002 | } break; |
| 5003 | case OMPRTL___kmpc_target_init: |
| 5004 | KernelInitCB = &CB; |
| 5005 | break; |
| 5006 | case OMPRTL___kmpc_target_deinit: |
| 5007 | KernelDeinitCB = &CB; |
| 5008 | break; |
| 5009 | case OMPRTL___kmpc_parallel_51: |
| 5010 | if (!handleParallel51(A, CB)) |
| 5011 | indicatePessimisticFixpoint(); |
| 5012 | return; |
| 5013 | case OMPRTL___kmpc_omp_task: |
| 5014 | // We do not look into tasks right now, just give up. |
| 5015 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 5016 | SPMDCompatibilityTracker.insert(Elem: &CB); |
| 5017 | ReachedUnknownParallelRegions.insert(Elem: &CB); |
| 5018 | break; |
| 5019 | case OMPRTL___kmpc_alloc_shared: |
| 5020 | case OMPRTL___kmpc_free_shared: |
| 5021 | // Return without setting a fixpoint, to be resolved in updateImpl. |
| 5022 | return; |
| 5023 | default: |
| 5024 | // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, |
| 5025 | // generally. However, they do not hide parallel regions. |
| 5026 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 5027 | SPMDCompatibilityTracker.insert(Elem: &CB); |
| 5028 | break; |
| 5029 | } |
| 5030 | // All other OpenMP runtime calls will not reach parallel regions so they |
| 5031 | // can be safely ignored for now. Since it is a known OpenMP runtime call |
| 5032 | // we have now modeled all effects and there is no need for any update. |
| 5033 | indicateOptimisticFixpoint(); |
| 5034 | }; |
| 5035 | |
| 5036 | const auto *AACE = |
| 5037 | A.getAAFor<AACallEdges>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
| 5038 | if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) { |
| 5039 | CheckCallee(getAssociatedFunction(), 1); |
| 5040 | return; |
| 5041 | } |
| 5042 | const auto &OptimisticEdges = AACE->getOptimisticEdges(); |
| 5043 | for (auto *Callee : OptimisticEdges) { |
| 5044 | CheckCallee(Callee, OptimisticEdges.size()); |
| 5045 | if (isAtFixpoint()) |
| 5046 | break; |
| 5047 | } |
| 5048 | } |
| 5049 | |
| 5050 | ChangeStatus updateImpl(Attributor &A) override { |
| 5051 | // TODO: Once we have call site specific value information we can provide |
| 5052 | // call site specific liveness information and then it makes |
| 5053 | // sense to specialize attributes for call sites arguments instead of |
| 5054 | // redirecting requests to the callee argument. |
| 5055 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 5056 | KernelInfoState StateBefore = getState(); |
| 5057 | |
| 5058 | auto CheckCallee = [&](Function *F, int NumCallees) { |
| 5059 | const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Val: F); |
| 5060 | |
| 5061 | // If F is not a runtime function, propagate the AAKernelInfo of the |
| 5062 | // callee. |
| 5063 | if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { |
| 5064 | const IRPosition &FnPos = IRPosition::function(F: *F); |
| 5065 | auto *FnAA = |
| 5066 | A.getAAFor<AAKernelInfo>(QueryingAA: *this, IRP: FnPos, DepClass: DepClassTy::REQUIRED); |
| 5067 | if (!FnAA) |
| 5068 | return indicatePessimisticFixpoint(); |
| 5069 | if (getState() == FnAA->getState()) |
| 5070 | return ChangeStatus::UNCHANGED; |
| 5071 | getState() = FnAA->getState(); |
| 5072 | return ChangeStatus::CHANGED; |
| 5073 | } |
| 5074 | if (NumCallees > 1) |
| 5075 | return indicatePessimisticFixpoint(); |
| 5076 | |
| 5077 | CallBase &CB = cast<CallBase>(Val&: getAssociatedValue()); |
| 5078 | if (It->getSecond() == OMPRTL___kmpc_parallel_51) { |
| 5079 | if (!handleParallel51(A, CB)) |
| 5080 | return indicatePessimisticFixpoint(); |
| 5081 | return StateBefore == getState() ? ChangeStatus::UNCHANGED |
| 5082 | : ChangeStatus::CHANGED; |
| 5083 | } |
| 5084 | |
| 5085 | // F is a runtime function that allocates or frees memory, check |
| 5086 | // AAHeapToStack and AAHeapToShared. |
| 5087 | assert( |
| 5088 | (It->getSecond() == OMPRTL___kmpc_alloc_shared || |
| 5089 | It->getSecond() == OMPRTL___kmpc_free_shared) && |
| 5090 | "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call" ); |
| 5091 | |
| 5092 | auto *HeapToStackAA = A.getAAFor<AAHeapToStack>( |
| 5093 | QueryingAA: *this, IRP: IRPosition::function(F: *CB.getCaller()), DepClass: DepClassTy::OPTIONAL); |
| 5094 | auto *HeapToSharedAA = A.getAAFor<AAHeapToShared>( |
| 5095 | QueryingAA: *this, IRP: IRPosition::function(F: *CB.getCaller()), DepClass: DepClassTy::OPTIONAL); |
| 5096 | |
| 5097 | RuntimeFunction RF = It->getSecond(); |
| 5098 | |
| 5099 | switch (RF) { |
| 5100 | // If neither HeapToStack nor HeapToShared assume the call is removed, |
| 5101 | // assume SPMD incompatibility. |
| 5102 | case OMPRTL___kmpc_alloc_shared: |
| 5103 | if ((!HeapToStackAA || !HeapToStackAA->isAssumedHeapToStack(CB)) && |
| 5104 | (!HeapToSharedAA || !HeapToSharedAA->isAssumedHeapToShared(CB))) |
| 5105 | SPMDCompatibilityTracker.insert(Elem: &CB); |
| 5106 | break; |
| 5107 | case OMPRTL___kmpc_free_shared: |
| 5108 | if ((!HeapToStackAA || |
| 5109 | !HeapToStackAA->isAssumedHeapToStackRemovedFree(CB)) && |
| 5110 | (!HeapToSharedAA || |
| 5111 | !HeapToSharedAA->isAssumedHeapToSharedRemovedFree(CB))) |
| 5112 | SPMDCompatibilityTracker.insert(Elem: &CB); |
| 5113 | break; |
| 5114 | default: |
| 5115 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
| 5116 | SPMDCompatibilityTracker.insert(Elem: &CB); |
| 5117 | } |
| 5118 | return ChangeStatus::CHANGED; |
| 5119 | }; |
| 5120 | |
| 5121 | const auto *AACE = |
| 5122 | A.getAAFor<AACallEdges>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
| 5123 | if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) { |
| 5124 | if (Function *F = getAssociatedFunction()) |
| 5125 | CheckCallee(F, /*NumCallees=*/1); |
| 5126 | } else { |
| 5127 | const auto &OptimisticEdges = AACE->getOptimisticEdges(); |
| 5128 | for (auto *Callee : OptimisticEdges) { |
| 5129 | CheckCallee(Callee, OptimisticEdges.size()); |
| 5130 | if (isAtFixpoint()) |
| 5131 | break; |
| 5132 | } |
| 5133 | } |
| 5134 | |
| 5135 | return StateBefore == getState() ? ChangeStatus::UNCHANGED |
| 5136 | : ChangeStatus::CHANGED; |
| 5137 | } |
| 5138 | |
| 5139 | /// Deal with a __kmpc_parallel_51 call (\p CB). Returns true if the call was |
| 5140 | /// handled, if a problem occurred, false is returned. |
| 5141 | bool handleParallel51(Attributor &A, CallBase &CB) { |
| 5142 | const unsigned int NonWrapperFunctionArgNo = 5; |
| 5143 | const unsigned int WrapperFunctionArgNo = 6; |
| 5144 | auto ParallelRegionOpArgNo = SPMDCompatibilityTracker.isAssumed() |
| 5145 | ? NonWrapperFunctionArgNo |
| 5146 | : WrapperFunctionArgNo; |
| 5147 | |
| 5148 | auto *ParallelRegion = dyn_cast<Function>( |
| 5149 | Val: CB.getArgOperand(i: ParallelRegionOpArgNo)->stripPointerCasts()); |
| 5150 | if (!ParallelRegion) |
| 5151 | return false; |
| 5152 | |
| 5153 | ReachedKnownParallelRegions.insert(Elem: &CB); |
| 5154 | /// Check nested parallelism |
| 5155 | auto *FnAA = A.getAAFor<AAKernelInfo>( |
| 5156 | QueryingAA: *this, IRP: IRPosition::function(F: *ParallelRegion), DepClass: DepClassTy::OPTIONAL); |
| 5157 | NestedParallelism |= !FnAA || !FnAA->getState().isValidState() || |
| 5158 | !FnAA->ReachedKnownParallelRegions.empty() || |
| 5159 | !FnAA->ReachedKnownParallelRegions.isValidState() || |
| 5160 | !FnAA->ReachedUnknownParallelRegions.isValidState() || |
| 5161 | !FnAA->ReachedUnknownParallelRegions.empty(); |
| 5162 | return true; |
| 5163 | } |
| 5164 | }; |
| 5165 | |
| 5166 | struct AAFoldRuntimeCall |
| 5167 | : public StateWrapper<BooleanState, AbstractAttribute> { |
| 5168 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
| 5169 | |
| 5170 | AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
| 5171 | |
| 5172 | /// Statistics are tracked as part of manifest for now. |
| 5173 | void trackStatistics() const override {} |
| 5174 | |
| 5175 | /// Create an abstract attribute biew for the position \p IRP. |
| 5176 | static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, |
| 5177 | Attributor &A); |
| 5178 | |
| 5179 | /// See AbstractAttribute::getName() |
| 5180 | StringRef getName() const override { return "AAFoldRuntimeCall" ; } |
| 5181 | |
| 5182 | /// See AbstractAttribute::getIdAddr() |
| 5183 | const char *getIdAddr() const override { return &ID; } |
| 5184 | |
| 5185 | /// This function should return true if the type of the \p AA is |
| 5186 | /// AAFoldRuntimeCall |
| 5187 | static bool classof(const AbstractAttribute *AA) { |
| 5188 | return (AA->getIdAddr() == &ID); |
| 5189 | } |
| 5190 | |
| 5191 | static const char ID; |
| 5192 | }; |
| 5193 | |
| 5194 | struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { |
| 5195 | AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 5196 | : AAFoldRuntimeCall(IRP, A) {} |
| 5197 | |
| 5198 | /// See AbstractAttribute::getAsStr() |
| 5199 | const std::string getAsStr(Attributor *) const override { |
| 5200 | if (!isValidState()) |
| 5201 | return "<invalid>" ; |
| 5202 | |
| 5203 | std::string Str("simplified value: " ); |
| 5204 | |
| 5205 | if (!SimplifiedValue) |
| 5206 | return Str + std::string("none" ); |
| 5207 | |
| 5208 | if (!*SimplifiedValue) |
| 5209 | return Str + std::string("nullptr" ); |
| 5210 | |
| 5211 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: *SimplifiedValue)) |
| 5212 | return Str + std::to_string(val: CI->getSExtValue()); |
| 5213 | |
| 5214 | return Str + std::string("unknown" ); |
| 5215 | } |
| 5216 | |
| 5217 | void initialize(Attributor &A) override { |
| 5218 | if (DisableOpenMPOptFolding) |
| 5219 | indicatePessimisticFixpoint(); |
| 5220 | |
| 5221 | Function *Callee = getAssociatedFunction(); |
| 5222 | |
| 5223 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
| 5224 | const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Val: Callee); |
| 5225 | assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && |
| 5226 | "Expected a known OpenMP runtime function" ); |
| 5227 | |
| 5228 | RFKind = It->getSecond(); |
| 5229 | |
| 5230 | CallBase &CB = cast<CallBase>(Val&: getAssociatedValue()); |
| 5231 | A.registerSimplificationCallback( |
| 5232 | IRP: IRPosition::callsite_returned(CB), |
| 5233 | CB: [&](const IRPosition &IRP, const AbstractAttribute *AA, |
| 5234 | bool &UsedAssumedInformation) -> std::optional<Value *> { |
| 5235 | assert((isValidState() || SimplifiedValue == nullptr) && |
| 5236 | "Unexpected invalid state!" ); |
| 5237 | |
| 5238 | if (!isAtFixpoint()) { |
| 5239 | UsedAssumedInformation = true; |
| 5240 | if (AA) |
| 5241 | A.recordDependence(FromAA: *this, ToAA: *AA, DepClass: DepClassTy::OPTIONAL); |
| 5242 | } |
| 5243 | return SimplifiedValue; |
| 5244 | }); |
| 5245 | } |
| 5246 | |
| 5247 | ChangeStatus updateImpl(Attributor &A) override { |
| 5248 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 5249 | switch (RFKind) { |
| 5250 | case OMPRTL___kmpc_is_spmd_exec_mode: |
| 5251 | Changed |= foldIsSPMDExecMode(A); |
| 5252 | break; |
| 5253 | case OMPRTL___kmpc_parallel_level: |
| 5254 | Changed |= foldParallelLevel(A); |
| 5255 | break; |
| 5256 | case OMPRTL___kmpc_get_hardware_num_threads_in_block: |
| 5257 | Changed = Changed | foldKernelFnAttribute(A, Attr: "omp_target_thread_limit" ); |
| 5258 | break; |
| 5259 | case OMPRTL___kmpc_get_hardware_num_blocks: |
| 5260 | Changed = Changed | foldKernelFnAttribute(A, Attr: "omp_target_num_teams" ); |
| 5261 | break; |
| 5262 | default: |
| 5263 | llvm_unreachable("Unhandled OpenMP runtime function!" ); |
| 5264 | } |
| 5265 | |
| 5266 | return Changed; |
| 5267 | } |
| 5268 | |
| 5269 | ChangeStatus manifest(Attributor &A) override { |
| 5270 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 5271 | |
| 5272 | if (SimplifiedValue && *SimplifiedValue) { |
| 5273 | Instruction &I = *getCtxI(); |
| 5274 | A.changeAfterManifest(IRP: IRPosition::inst(I), NV&: **SimplifiedValue); |
| 5275 | A.deleteAfterManifest(I); |
| 5276 | |
| 5277 | CallBase *CB = dyn_cast<CallBase>(Val: &I); |
| 5278 | auto = [&](OptimizationRemark OR) { |
| 5279 | if (auto *C = dyn_cast<ConstantInt>(Val: *SimplifiedValue)) |
| 5280 | return OR << "Replacing OpenMP runtime call " |
| 5281 | << CB->getCalledFunction()->getName() << " with " |
| 5282 | << ore::NV("FoldedValue" , C->getZExtValue()) << "." ; |
| 5283 | return OR << "Replacing OpenMP runtime call " |
| 5284 | << CB->getCalledFunction()->getName() << "." ; |
| 5285 | }; |
| 5286 | |
| 5287 | if (CB && EnableVerboseRemarks) |
| 5288 | A.emitRemark<OptimizationRemark>(I: CB, RemarkName: "OMP180" , RemarkCB&: Remark); |
| 5289 | |
| 5290 | LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " |
| 5291 | << **SimplifiedValue << "\n" ); |
| 5292 | |
| 5293 | Changed = ChangeStatus::CHANGED; |
| 5294 | } |
| 5295 | |
| 5296 | return Changed; |
| 5297 | } |
| 5298 | |
| 5299 | ChangeStatus indicatePessimisticFixpoint() override { |
| 5300 | SimplifiedValue = nullptr; |
| 5301 | return AAFoldRuntimeCall::indicatePessimisticFixpoint(); |
| 5302 | } |
| 5303 | |
| 5304 | private: |
| 5305 | /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. |
| 5306 | ChangeStatus foldIsSPMDExecMode(Attributor &A) { |
| 5307 | std::optional<Value *> SimplifiedValueBefore = SimplifiedValue; |
| 5308 | |
| 5309 | unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; |
| 5310 | unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; |
| 5311 | auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( |
| 5312 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
| 5313 | |
| 5314 | if (!CallerKernelInfoAA || |
| 5315 | !CallerKernelInfoAA->ReachingKernelEntries.isValidState()) |
| 5316 | return indicatePessimisticFixpoint(); |
| 5317 | |
| 5318 | for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { |
| 5319 | auto *AA = A.getAAFor<AAKernelInfo>(QueryingAA: *this, IRP: IRPosition::function(F: *K), |
| 5320 | DepClass: DepClassTy::REQUIRED); |
| 5321 | |
| 5322 | if (!AA || !AA->isValidState()) { |
| 5323 | SimplifiedValue = nullptr; |
| 5324 | return indicatePessimisticFixpoint(); |
| 5325 | } |
| 5326 | |
| 5327 | if (AA->SPMDCompatibilityTracker.isAssumed()) { |
| 5328 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
| 5329 | ++KnownSPMDCount; |
| 5330 | else |
| 5331 | ++AssumedSPMDCount; |
| 5332 | } else { |
| 5333 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
| 5334 | ++KnownNonSPMDCount; |
| 5335 | else |
| 5336 | ++AssumedNonSPMDCount; |
| 5337 | } |
| 5338 | } |
| 5339 | |
| 5340 | if ((AssumedSPMDCount + KnownSPMDCount) && |
| 5341 | (AssumedNonSPMDCount + KnownNonSPMDCount)) |
| 5342 | return indicatePessimisticFixpoint(); |
| 5343 | |
| 5344 | auto &Ctx = getAnchorValue().getContext(); |
| 5345 | if (KnownSPMDCount || AssumedSPMDCount) { |
| 5346 | assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && |
| 5347 | "Expected only SPMD kernels!" ); |
| 5348 | // All reaching kernels are in SPMD mode. Update all function calls to |
| 5349 | // __kmpc_is_spmd_exec_mode to 1. |
| 5350 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: true); |
| 5351 | } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { |
| 5352 | assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && |
| 5353 | "Expected only non-SPMD kernels!" ); |
| 5354 | // All reaching kernels are in non-SPMD mode. Update all function |
| 5355 | // calls to __kmpc_is_spmd_exec_mode to 0. |
| 5356 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: false); |
| 5357 | } else { |
| 5358 | // We have empty reaching kernels, therefore we cannot tell if the |
| 5359 | // associated call site can be folded. At this moment, SimplifiedValue |
| 5360 | // must be none. |
| 5361 | assert(!SimplifiedValue && "SimplifiedValue should be none" ); |
| 5362 | } |
| 5363 | |
| 5364 | return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED |
| 5365 | : ChangeStatus::CHANGED; |
| 5366 | } |
| 5367 | |
| 5368 | /// Fold __kmpc_parallel_level into a constant if possible. |
| 5369 | ChangeStatus foldParallelLevel(Attributor &A) { |
| 5370 | std::optional<Value *> SimplifiedValueBefore = SimplifiedValue; |
| 5371 | |
| 5372 | auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( |
| 5373 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
| 5374 | |
| 5375 | if (!CallerKernelInfoAA || |
| 5376 | !CallerKernelInfoAA->ParallelLevels.isValidState()) |
| 5377 | return indicatePessimisticFixpoint(); |
| 5378 | |
| 5379 | if (!CallerKernelInfoAA->ReachingKernelEntries.isValidState()) |
| 5380 | return indicatePessimisticFixpoint(); |
| 5381 | |
| 5382 | if (CallerKernelInfoAA->ReachingKernelEntries.empty()) { |
| 5383 | assert(!SimplifiedValue && |
| 5384 | "SimplifiedValue should keep none at this point" ); |
| 5385 | return ChangeStatus::UNCHANGED; |
| 5386 | } |
| 5387 | |
| 5388 | unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; |
| 5389 | unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; |
| 5390 | for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { |
| 5391 | auto *AA = A.getAAFor<AAKernelInfo>(QueryingAA: *this, IRP: IRPosition::function(F: *K), |
| 5392 | DepClass: DepClassTy::REQUIRED); |
| 5393 | if (!AA || !AA->SPMDCompatibilityTracker.isValidState()) |
| 5394 | return indicatePessimisticFixpoint(); |
| 5395 | |
| 5396 | if (AA->SPMDCompatibilityTracker.isAssumed()) { |
| 5397 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
| 5398 | ++KnownSPMDCount; |
| 5399 | else |
| 5400 | ++AssumedSPMDCount; |
| 5401 | } else { |
| 5402 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
| 5403 | ++KnownNonSPMDCount; |
| 5404 | else |
| 5405 | ++AssumedNonSPMDCount; |
| 5406 | } |
| 5407 | } |
| 5408 | |
| 5409 | if ((AssumedSPMDCount + KnownSPMDCount) && |
| 5410 | (AssumedNonSPMDCount + KnownNonSPMDCount)) |
| 5411 | return indicatePessimisticFixpoint(); |
| 5412 | |
| 5413 | auto &Ctx = getAnchorValue().getContext(); |
| 5414 | // If the caller can only be reached by SPMD kernel entries, the parallel |
| 5415 | // level is 1. Similarly, if the caller can only be reached by non-SPMD |
| 5416 | // kernel entries, it is 0. |
| 5417 | if (AssumedSPMDCount || KnownSPMDCount) { |
| 5418 | assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && |
| 5419 | "Expected only SPMD kernels!" ); |
| 5420 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: 1); |
| 5421 | } else { |
| 5422 | assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && |
| 5423 | "Expected only non-SPMD kernels!" ); |
| 5424 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: 0); |
| 5425 | } |
| 5426 | return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED |
| 5427 | : ChangeStatus::CHANGED; |
| 5428 | } |
| 5429 | |
| 5430 | ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { |
| 5431 | // Specialize only if all the calls agree with the attribute constant value |
| 5432 | int32_t CurrentAttrValue = -1; |
| 5433 | std::optional<Value *> SimplifiedValueBefore = SimplifiedValue; |
| 5434 | |
| 5435 | auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( |
| 5436 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
| 5437 | |
| 5438 | if (!CallerKernelInfoAA || |
| 5439 | !CallerKernelInfoAA->ReachingKernelEntries.isValidState()) |
| 5440 | return indicatePessimisticFixpoint(); |
| 5441 | |
| 5442 | // Iterate over the kernels that reach this function |
| 5443 | for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { |
| 5444 | int32_t NextAttrVal = K->getFnAttributeAsParsedInteger(Kind: Attr, Default: -1); |
| 5445 | |
| 5446 | if (NextAttrVal == -1 || |
| 5447 | (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) |
| 5448 | return indicatePessimisticFixpoint(); |
| 5449 | CurrentAttrValue = NextAttrVal; |
| 5450 | } |
| 5451 | |
| 5452 | if (CurrentAttrValue != -1) { |
| 5453 | auto &Ctx = getAnchorValue().getContext(); |
| 5454 | SimplifiedValue = |
| 5455 | ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: CurrentAttrValue); |
| 5456 | } |
| 5457 | return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED |
| 5458 | : ChangeStatus::CHANGED; |
| 5459 | } |
| 5460 | |
| 5461 | /// An optional value the associated value is assumed to fold to. That is, we |
| 5462 | /// assume the associated value (which is a call) can be replaced by this |
| 5463 | /// simplified value. |
| 5464 | std::optional<Value *> SimplifiedValue; |
| 5465 | |
| 5466 | /// The runtime function kind of the callee of the associated call site. |
| 5467 | RuntimeFunction RFKind; |
| 5468 | }; |
| 5469 | |
| 5470 | } // namespace |
| 5471 | |
| 5472 | /// Register folding callsite |
| 5473 | void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { |
| 5474 | auto &RFI = OMPInfoCache.RFIs[RF]; |
| 5475 | RFI.foreachUse(SCC, CB: [&](Use &U, Function &F) { |
| 5476 | CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, RFI: &RFI); |
| 5477 | if (!CI) |
| 5478 | return false; |
| 5479 | A.getOrCreateAAFor<AAFoldRuntimeCall>( |
| 5480 | IRP: IRPosition::callsite_returned(CB: *CI), /* QueryingAA */ nullptr, |
| 5481 | DepClass: DepClassTy::NONE, /* ForceUpdate */ false, |
| 5482 | /* UpdateAfterInit */ false); |
| 5483 | return false; |
| 5484 | }); |
| 5485 | } |
| 5486 | |
| 5487 | void OpenMPOpt::registerAAs(bool IsModulePass) { |
| 5488 | if (SCC.empty()) |
| 5489 | return; |
| 5490 | |
| 5491 | if (IsModulePass) { |
| 5492 | // Ensure we create the AAKernelInfo AAs first and without triggering an |
| 5493 | // update. This will make sure we register all value simplification |
| 5494 | // callbacks before any other AA has the chance to create an AAValueSimplify |
| 5495 | // or similar. |
| 5496 | auto CreateKernelInfoCB = [&](Use &, Function &Kernel) { |
| 5497 | A.getOrCreateAAFor<AAKernelInfo>( |
| 5498 | IRP: IRPosition::function(F: Kernel), /* QueryingAA */ nullptr, |
| 5499 | DepClass: DepClassTy::NONE, /* ForceUpdate */ false, |
| 5500 | /* UpdateAfterInit */ false); |
| 5501 | return false; |
| 5502 | }; |
| 5503 | OMPInformationCache::RuntimeFunctionInfo &InitRFI = |
| 5504 | OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
| 5505 | InitRFI.foreachUse(SCC, CB: CreateKernelInfoCB); |
| 5506 | |
| 5507 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_is_spmd_exec_mode); |
| 5508 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_parallel_level); |
| 5509 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_get_hardware_num_threads_in_block); |
| 5510 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_get_hardware_num_blocks); |
| 5511 | } |
| 5512 | |
| 5513 | // Create CallSite AA for all Getters. |
| 5514 | if (DeduceICVValues) { |
| 5515 | for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { |
| 5516 | auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; |
| 5517 | |
| 5518 | auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; |
| 5519 | |
| 5520 | auto CreateAA = [&](Use &U, Function &Caller) { |
| 5521 | CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, RFI: &GetterRFI); |
| 5522 | if (!CI) |
| 5523 | return false; |
| 5524 | |
| 5525 | auto &CB = cast<CallBase>(Val&: *CI); |
| 5526 | |
| 5527 | IRPosition CBPos = IRPosition::callsite_function(CB); |
| 5528 | A.getOrCreateAAFor<AAICVTracker>(IRP: CBPos); |
| 5529 | return false; |
| 5530 | }; |
| 5531 | |
| 5532 | GetterRFI.foreachUse(SCC, CB: CreateAA); |
| 5533 | } |
| 5534 | } |
| 5535 | |
| 5536 | // Create an ExecutionDomain AA for every function and a HeapToStack AA for |
| 5537 | // every function if there is a device kernel. |
| 5538 | if (!isOpenMPDevice(M)) |
| 5539 | return; |
| 5540 | |
| 5541 | for (auto *F : SCC) { |
| 5542 | if (F->isDeclaration()) |
| 5543 | continue; |
| 5544 | |
| 5545 | // We look at internal functions only on-demand but if any use is not a |
| 5546 | // direct call or outside the current set of analyzed functions, we have |
| 5547 | // to do it eagerly. |
| 5548 | if (F->hasLocalLinkage()) { |
| 5549 | if (llvm::all_of(Range: F->uses(), P: [this](const Use &U) { |
| 5550 | const auto *CB = dyn_cast<CallBase>(Val: U.getUser()); |
| 5551 | return CB && CB->isCallee(U: &U) && |
| 5552 | A.isRunOn(Fn: const_cast<Function *>(CB->getCaller())); |
| 5553 | })) |
| 5554 | continue; |
| 5555 | } |
| 5556 | registerAAsForFunction(A, F: *F); |
| 5557 | } |
| 5558 | } |
| 5559 | |
| 5560 | void OpenMPOpt::registerAAsForFunction(Attributor &A, const Function &F) { |
| 5561 | if (!DisableOpenMPOptDeglobalization) |
| 5562 | A.getOrCreateAAFor<AAHeapToShared>(IRP: IRPosition::function(F)); |
| 5563 | A.getOrCreateAAFor<AAExecutionDomain>(IRP: IRPosition::function(F)); |
| 5564 | if (!DisableOpenMPOptDeglobalization) |
| 5565 | A.getOrCreateAAFor<AAHeapToStack>(IRP: IRPosition::function(F)); |
| 5566 | if (F.hasFnAttribute(Kind: Attribute::Convergent)) |
| 5567 | A.getOrCreateAAFor<AANonConvergent>(IRP: IRPosition::function(F)); |
| 5568 | |
| 5569 | for (auto &I : instructions(F)) { |
| 5570 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) { |
| 5571 | bool UsedAssumedInformation = false; |
| 5572 | A.getAssumedSimplified(V: IRPosition::value(V: *LI), /* AA */ nullptr, |
| 5573 | UsedAssumedInformation, S: AA::Interprocedural); |
| 5574 | A.getOrCreateAAFor<AAAddressSpace>( |
| 5575 | IRP: IRPosition::value(V: *LI->getPointerOperand())); |
| 5576 | continue; |
| 5577 | } |
| 5578 | if (auto *CI = dyn_cast<CallBase>(Val: &I)) { |
| 5579 | if (CI->isIndirectCall()) |
| 5580 | A.getOrCreateAAFor<AAIndirectCallInfo>( |
| 5581 | IRP: IRPosition::callsite_function(CB: *CI)); |
| 5582 | } |
| 5583 | if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
| 5584 | A.getOrCreateAAFor<AAIsDead>(IRP: IRPosition::value(V: *SI)); |
| 5585 | A.getOrCreateAAFor<AAAddressSpace>( |
| 5586 | IRP: IRPosition::value(V: *SI->getPointerOperand())); |
| 5587 | continue; |
| 5588 | } |
| 5589 | if (auto *FI = dyn_cast<FenceInst>(Val: &I)) { |
| 5590 | A.getOrCreateAAFor<AAIsDead>(IRP: IRPosition::value(V: *FI)); |
| 5591 | continue; |
| 5592 | } |
| 5593 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
| 5594 | if (II->getIntrinsicID() == Intrinsic::assume) { |
| 5595 | A.getOrCreateAAFor<AAPotentialValues>( |
| 5596 | IRP: IRPosition::value(V: *II->getArgOperand(i: 0))); |
| 5597 | continue; |
| 5598 | } |
| 5599 | } |
| 5600 | } |
| 5601 | } |
| 5602 | |
| 5603 | const char AAICVTracker::ID = 0; |
| 5604 | const char AAKernelInfo::ID = 0; |
| 5605 | const char AAExecutionDomain::ID = 0; |
| 5606 | const char AAHeapToShared::ID = 0; |
| 5607 | const char AAFoldRuntimeCall::ID = 0; |
| 5608 | |
| 5609 | AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, |
| 5610 | Attributor &A) { |
| 5611 | AAICVTracker *AA = nullptr; |
| 5612 | switch (IRP.getPositionKind()) { |
| 5613 | case IRPosition::IRP_INVALID: |
| 5614 | case IRPosition::IRP_FLOAT: |
| 5615 | case IRPosition::IRP_ARGUMENT: |
| 5616 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
| 5617 | llvm_unreachable("ICVTracker can only be created for function position!" ); |
| 5618 | case IRPosition::IRP_RETURNED: |
| 5619 | AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); |
| 5620 | break; |
| 5621 | case IRPosition::IRP_CALL_SITE_RETURNED: |
| 5622 | AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); |
| 5623 | break; |
| 5624 | case IRPosition::IRP_CALL_SITE: |
| 5625 | AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); |
| 5626 | break; |
| 5627 | case IRPosition::IRP_FUNCTION: |
| 5628 | AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); |
| 5629 | break; |
| 5630 | } |
| 5631 | |
| 5632 | return *AA; |
| 5633 | } |
| 5634 | |
| 5635 | AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, |
| 5636 | Attributor &A) { |
| 5637 | AAExecutionDomainFunction *AA = nullptr; |
| 5638 | switch (IRP.getPositionKind()) { |
| 5639 | case IRPosition::IRP_INVALID: |
| 5640 | case IRPosition::IRP_FLOAT: |
| 5641 | case IRPosition::IRP_ARGUMENT: |
| 5642 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
| 5643 | case IRPosition::IRP_RETURNED: |
| 5644 | case IRPosition::IRP_CALL_SITE_RETURNED: |
| 5645 | case IRPosition::IRP_CALL_SITE: |
| 5646 | llvm_unreachable( |
| 5647 | "AAExecutionDomain can only be created for function position!" ); |
| 5648 | case IRPosition::IRP_FUNCTION: |
| 5649 | AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); |
| 5650 | break; |
| 5651 | } |
| 5652 | |
| 5653 | return *AA; |
| 5654 | } |
| 5655 | |
| 5656 | AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, |
| 5657 | Attributor &A) { |
| 5658 | AAHeapToSharedFunction *AA = nullptr; |
| 5659 | switch (IRP.getPositionKind()) { |
| 5660 | case IRPosition::IRP_INVALID: |
| 5661 | case IRPosition::IRP_FLOAT: |
| 5662 | case IRPosition::IRP_ARGUMENT: |
| 5663 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
| 5664 | case IRPosition::IRP_RETURNED: |
| 5665 | case IRPosition::IRP_CALL_SITE_RETURNED: |
| 5666 | case IRPosition::IRP_CALL_SITE: |
| 5667 | llvm_unreachable( |
| 5668 | "AAHeapToShared can only be created for function position!" ); |
| 5669 | case IRPosition::IRP_FUNCTION: |
| 5670 | AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); |
| 5671 | break; |
| 5672 | } |
| 5673 | |
| 5674 | return *AA; |
| 5675 | } |
| 5676 | |
| 5677 | AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, |
| 5678 | Attributor &A) { |
| 5679 | AAKernelInfo *AA = nullptr; |
| 5680 | switch (IRP.getPositionKind()) { |
| 5681 | case IRPosition::IRP_INVALID: |
| 5682 | case IRPosition::IRP_FLOAT: |
| 5683 | case IRPosition::IRP_ARGUMENT: |
| 5684 | case IRPosition::IRP_RETURNED: |
| 5685 | case IRPosition::IRP_CALL_SITE_RETURNED: |
| 5686 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
| 5687 | llvm_unreachable("KernelInfo can only be created for function position!" ); |
| 5688 | case IRPosition::IRP_CALL_SITE: |
| 5689 | AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); |
| 5690 | break; |
| 5691 | case IRPosition::IRP_FUNCTION: |
| 5692 | AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); |
| 5693 | break; |
| 5694 | } |
| 5695 | |
| 5696 | return *AA; |
| 5697 | } |
| 5698 | |
| 5699 | AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, |
| 5700 | Attributor &A) { |
| 5701 | AAFoldRuntimeCall *AA = nullptr; |
| 5702 | switch (IRP.getPositionKind()) { |
| 5703 | case IRPosition::IRP_INVALID: |
| 5704 | case IRPosition::IRP_FLOAT: |
| 5705 | case IRPosition::IRP_ARGUMENT: |
| 5706 | case IRPosition::IRP_RETURNED: |
| 5707 | case IRPosition::IRP_FUNCTION: |
| 5708 | case IRPosition::IRP_CALL_SITE: |
| 5709 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
| 5710 | llvm_unreachable("KernelInfo can only be created for call site position!" ); |
| 5711 | case IRPosition::IRP_CALL_SITE_RETURNED: |
| 5712 | AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); |
| 5713 | break; |
| 5714 | } |
| 5715 | |
| 5716 | return *AA; |
| 5717 | } |
| 5718 | |
| 5719 | PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { |
| 5720 | if (!containsOpenMP(M)) |
| 5721 | return PreservedAnalyses::all(); |
| 5722 | if (DisableOpenMPOptimizations) |
| 5723 | return PreservedAnalyses::all(); |
| 5724 | |
| 5725 | FunctionAnalysisManager &FAM = |
| 5726 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 5727 | KernelSet Kernels = getDeviceKernels(M); |
| 5728 | |
| 5729 | if (PrintModuleBeforeOptimizations) |
| 5730 | LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M); |
| 5731 | |
| 5732 | auto IsCalled = [&](Function &F) { |
| 5733 | if (Kernels.contains(key: &F)) |
| 5734 | return true; |
| 5735 | return !F.use_empty(); |
| 5736 | }; |
| 5737 | |
| 5738 | auto = [&](Function &F) { |
| 5739 | auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
| 5740 | ORE.emit(RemarkBuilder: [&]() { |
| 5741 | OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140" , &F); |
| 5742 | return ORA << "Could not internalize function. " |
| 5743 | << "Some optimizations may not be possible. [OMP140]" ; |
| 5744 | }); |
| 5745 | }; |
| 5746 | |
| 5747 | bool Changed = false; |
| 5748 | |
| 5749 | // Create internal copies of each function if this is a kernel Module. This |
| 5750 | // allows iterprocedural passes to see every call edge. |
| 5751 | DenseMap<Function *, Function *> InternalizedMap; |
| 5752 | if (isOpenMPDevice(M)) { |
| 5753 | SmallPtrSet<Function *, 16> InternalizeFns; |
| 5754 | for (Function &F : M) |
| 5755 | if (!F.isDeclaration() && !Kernels.contains(key: &F) && IsCalled(F) && |
| 5756 | !DisableInternalization) { |
| 5757 | if (Attributor::isInternalizable(F)) { |
| 5758 | InternalizeFns.insert(Ptr: &F); |
| 5759 | } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Kind: Attribute::Cold)) { |
| 5760 | EmitRemark(F); |
| 5761 | } |
| 5762 | } |
| 5763 | |
| 5764 | Changed |= |
| 5765 | Attributor::internalizeFunctions(FnSet&: InternalizeFns, FnMap&: InternalizedMap); |
| 5766 | } |
| 5767 | |
| 5768 | // Look at every function in the Module unless it was internalized. |
| 5769 | SetVector<Function *> Functions; |
| 5770 | SmallVector<Function *, 16> SCC; |
| 5771 | for (Function &F : M) |
| 5772 | if (!F.isDeclaration() && !InternalizedMap.lookup(Val: &F)) { |
| 5773 | SCC.push_back(Elt: &F); |
| 5774 | Functions.insert(X: &F); |
| 5775 | } |
| 5776 | |
| 5777 | if (SCC.empty()) |
| 5778 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
| 5779 | |
| 5780 | AnalysisGetter AG(FAM); |
| 5781 | |
| 5782 | auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { |
| 5783 | return FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: *F); |
| 5784 | }; |
| 5785 | |
| 5786 | BumpPtrAllocator Allocator; |
| 5787 | CallGraphUpdater CGUpdater; |
| 5788 | |
| 5789 | bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink || |
| 5790 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink || |
| 5791 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink; |
| 5792 | OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ nullptr, PostLink); |
| 5793 | |
| 5794 | unsigned MaxFixpointIterations = |
| 5795 | (isOpenMPDevice(M)) ? SetFixpointIterations : 32; |
| 5796 | |
| 5797 | AttributorConfig AC(CGUpdater); |
| 5798 | AC.DefaultInitializeLiveInternals = false; |
| 5799 | AC.IsModulePass = true; |
| 5800 | AC.RewriteSignatures = false; |
| 5801 | AC.MaxFixpointIterations = MaxFixpointIterations; |
| 5802 | AC.OREGetter = OREGetter; |
| 5803 | AC.PassName = DEBUG_TYPE; |
| 5804 | AC.InitializationCallback = OpenMPOpt::registerAAsForFunction; |
| 5805 | AC.IPOAmendableCB = [](const Function &F) { |
| 5806 | return F.hasFnAttribute(Kind: "kernel" ); |
| 5807 | }; |
| 5808 | |
| 5809 | Attributor A(Functions, InfoCache, AC); |
| 5810 | |
| 5811 | OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); |
| 5812 | Changed |= OMPOpt.run(IsModulePass: true); |
| 5813 | |
| 5814 | // Optionally inline device functions for potentially better performance. |
| 5815 | if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) |
| 5816 | for (Function &F : M) |
| 5817 | if (!F.isDeclaration() && !Kernels.contains(key: &F) && |
| 5818 | !F.hasFnAttribute(Kind: Attribute::NoInline)) |
| 5819 | F.addFnAttr(Kind: Attribute::AlwaysInline); |
| 5820 | |
| 5821 | if (PrintModuleAfterOptimizations) |
| 5822 | LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); |
| 5823 | |
| 5824 | if (Changed) |
| 5825 | return PreservedAnalyses::none(); |
| 5826 | |
| 5827 | return PreservedAnalyses::all(); |
| 5828 | } |
| 5829 | |
| 5830 | PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, |
| 5831 | CGSCCAnalysisManager &AM, |
| 5832 | LazyCallGraph &CG, |
| 5833 | CGSCCUpdateResult &UR) { |
| 5834 | if (!containsOpenMP(M&: *C.begin()->getFunction().getParent())) |
| 5835 | return PreservedAnalyses::all(); |
| 5836 | if (DisableOpenMPOptimizations) |
| 5837 | return PreservedAnalyses::all(); |
| 5838 | |
| 5839 | SmallVector<Function *, 16> SCC; |
| 5840 | // If there are kernels in the module, we have to run on all SCC's. |
| 5841 | for (LazyCallGraph::Node &N : C) { |
| 5842 | Function *Fn = &N.getFunction(); |
| 5843 | SCC.push_back(Elt: Fn); |
| 5844 | } |
| 5845 | |
| 5846 | if (SCC.empty()) |
| 5847 | return PreservedAnalyses::all(); |
| 5848 | |
| 5849 | Module &M = *C.begin()->getFunction().getParent(); |
| 5850 | |
| 5851 | if (PrintModuleBeforeOptimizations) |
| 5852 | LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M); |
| 5853 | |
| 5854 | FunctionAnalysisManager &FAM = |
| 5855 | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(IR&: C, ExtraArgs&: CG).getManager(); |
| 5856 | |
| 5857 | AnalysisGetter AG(FAM); |
| 5858 | |
| 5859 | auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { |
| 5860 | return FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: *F); |
| 5861 | }; |
| 5862 | |
| 5863 | BumpPtrAllocator Allocator; |
| 5864 | CallGraphUpdater CGUpdater; |
| 5865 | CGUpdater.initialize(LCG&: CG, SCC&: C, AM, UR); |
| 5866 | |
| 5867 | bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink || |
| 5868 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink || |
| 5869 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink; |
| 5870 | SetVector<Function *> Functions(llvm::from_range, SCC); |
| 5871 | OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, |
| 5872 | /*CGSCC*/ &Functions, PostLink); |
| 5873 | |
| 5874 | unsigned MaxFixpointIterations = |
| 5875 | (isOpenMPDevice(M)) ? SetFixpointIterations : 32; |
| 5876 | |
| 5877 | AttributorConfig AC(CGUpdater); |
| 5878 | AC.DefaultInitializeLiveInternals = false; |
| 5879 | AC.IsModulePass = false; |
| 5880 | AC.RewriteSignatures = false; |
| 5881 | AC.MaxFixpointIterations = MaxFixpointIterations; |
| 5882 | AC.OREGetter = OREGetter; |
| 5883 | AC.PassName = DEBUG_TYPE; |
| 5884 | AC.InitializationCallback = OpenMPOpt::registerAAsForFunction; |
| 5885 | |
| 5886 | Attributor A(Functions, InfoCache, AC); |
| 5887 | |
| 5888 | OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); |
| 5889 | bool Changed = OMPOpt.run(IsModulePass: false); |
| 5890 | |
| 5891 | if (PrintModuleAfterOptimizations) |
| 5892 | LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); |
| 5893 | |
| 5894 | if (Changed) |
| 5895 | return PreservedAnalyses::none(); |
| 5896 | |
| 5897 | return PreservedAnalyses::all(); |
| 5898 | } |
| 5899 | |
| 5900 | bool llvm::omp::isOpenMPKernel(Function &Fn) { |
| 5901 | return Fn.hasFnAttribute(Kind: "kernel" ); |
| 5902 | } |
| 5903 | |
| 5904 | KernelSet llvm::omp::getDeviceKernels(Module &M) { |
| 5905 | KernelSet Kernels; |
| 5906 | |
| 5907 | for (Function &F : M) |
| 5908 | if (F.hasKernelCallingConv()) { |
| 5909 | // We are only interested in OpenMP target regions. Others, such as |
| 5910 | // kernels generated by CUDA but linked together, are not interesting to |
| 5911 | // this pass. |
| 5912 | if (isOpenMPKernel(Fn&: F)) { |
| 5913 | ++NumOpenMPTargetRegionKernels; |
| 5914 | Kernels.insert(X: &F); |
| 5915 | } else |
| 5916 | ++NumNonOpenMPTargetRegionKernels; |
| 5917 | } |
| 5918 | |
| 5919 | return Kernels; |
| 5920 | } |
| 5921 | |
| 5922 | bool llvm::omp::containsOpenMP(Module &M) { |
| 5923 | Metadata *MD = M.getModuleFlag(Key: "openmp" ); |
| 5924 | if (!MD) |
| 5925 | return false; |
| 5926 | |
| 5927 | return true; |
| 5928 | } |
| 5929 | |
| 5930 | bool llvm::omp::isOpenMPDevice(Module &M) { |
| 5931 | Metadata *MD = M.getModuleFlag(Key: "openmp-device" ); |
| 5932 | if (!MD) |
| 5933 | return false; |
| 5934 | |
| 5935 | return true; |
| 5936 | } |
| 5937 | |