1 | //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // OpenMP specific optimizations: |
10 | // |
11 | // - Deduplication of runtime calls, e.g., omp_get_thread_num. |
12 | // - Replacing globalized device memory with stack memory. |
13 | // - Replacing globalized device memory with shared memory. |
14 | // - Parallel region merging. |
15 | // - Transforming generic-mode device kernels to SPMD mode. |
16 | // - Specializing the state machine for generic-mode device kernels. |
17 | // |
18 | //===----------------------------------------------------------------------===// |
19 | |
20 | #include "llvm/Transforms/IPO/OpenMPOpt.h" |
21 | |
22 | #include "llvm/ADT/DenseSet.h" |
23 | #include "llvm/ADT/EnumeratedArray.h" |
24 | #include "llvm/ADT/PostOrderIterator.h" |
25 | #include "llvm/ADT/SetVector.h" |
26 | #include "llvm/ADT/SmallPtrSet.h" |
27 | #include "llvm/ADT/SmallVector.h" |
28 | #include "llvm/ADT/Statistic.h" |
29 | #include "llvm/ADT/StringExtras.h" |
30 | #include "llvm/ADT/StringRef.h" |
31 | #include "llvm/Analysis/CallGraph.h" |
32 | #include "llvm/Analysis/MemoryLocation.h" |
33 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
34 | #include "llvm/Analysis/ValueTracking.h" |
35 | #include "llvm/Frontend/OpenMP/OMPConstants.h" |
36 | #include "llvm/Frontend/OpenMP/OMPDeviceConstants.h" |
37 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
38 | #include "llvm/IR/Assumptions.h" |
39 | #include "llvm/IR/BasicBlock.h" |
40 | #include "llvm/IR/Constants.h" |
41 | #include "llvm/IR/DiagnosticInfo.h" |
42 | #include "llvm/IR/Dominators.h" |
43 | #include "llvm/IR/Function.h" |
44 | #include "llvm/IR/GlobalValue.h" |
45 | #include "llvm/IR/GlobalVariable.h" |
46 | #include "llvm/IR/InstrTypes.h" |
47 | #include "llvm/IR/Instruction.h" |
48 | #include "llvm/IR/Instructions.h" |
49 | #include "llvm/IR/IntrinsicInst.h" |
50 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
51 | #include "llvm/IR/IntrinsicsNVPTX.h" |
52 | #include "llvm/IR/LLVMContext.h" |
53 | #include "llvm/Support/Casting.h" |
54 | #include "llvm/Support/CommandLine.h" |
55 | #include "llvm/Support/Debug.h" |
56 | #include "llvm/Transforms/IPO/Attributor.h" |
57 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
58 | #include "llvm/Transforms/Utils/CallGraphUpdater.h" |
59 | |
60 | #include <algorithm> |
61 | #include <optional> |
62 | #include <string> |
63 | |
64 | using namespace llvm; |
65 | using namespace omp; |
66 | |
67 | #define DEBUG_TYPE "openmp-opt" |
68 | |
69 | static cl::opt<bool> DisableOpenMPOptimizations( |
70 | "openmp-opt-disable" , cl::desc("Disable OpenMP specific optimizations." ), |
71 | cl::Hidden, cl::init(Val: false)); |
72 | |
73 | static cl::opt<bool> EnableParallelRegionMerging( |
74 | "openmp-opt-enable-merging" , |
75 | cl::desc("Enable the OpenMP region merging optimization." ), cl::Hidden, |
76 | cl::init(Val: false)); |
77 | |
78 | static cl::opt<bool> |
79 | DisableInternalization("openmp-opt-disable-internalization" , |
80 | cl::desc("Disable function internalization." ), |
81 | cl::Hidden, cl::init(Val: false)); |
82 | |
83 | static cl::opt<bool> DeduceICVValues("openmp-deduce-icv-values" , |
84 | cl::init(Val: false), cl::Hidden); |
85 | static cl::opt<bool> PrintICVValues("openmp-print-icv-values" , cl::init(Val: false), |
86 | cl::Hidden); |
87 | static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels" , |
88 | cl::init(Val: false), cl::Hidden); |
89 | |
90 | static cl::opt<bool> HideMemoryTransferLatency( |
91 | "openmp-hide-memory-transfer-latency" , |
92 | cl::desc("[WIP] Tries to hide the latency of host to device memory" |
93 | " transfers" ), |
94 | cl::Hidden, cl::init(Val: false)); |
95 | |
96 | static cl::opt<bool> DisableOpenMPOptDeglobalization( |
97 | "openmp-opt-disable-deglobalization" , |
98 | cl::desc("Disable OpenMP optimizations involving deglobalization." ), |
99 | cl::Hidden, cl::init(Val: false)); |
100 | |
101 | static cl::opt<bool> DisableOpenMPOptSPMDization( |
102 | "openmp-opt-disable-spmdization" , |
103 | cl::desc("Disable OpenMP optimizations involving SPMD-ization." ), |
104 | cl::Hidden, cl::init(Val: false)); |
105 | |
106 | static cl::opt<bool> DisableOpenMPOptFolding( |
107 | "openmp-opt-disable-folding" , |
108 | cl::desc("Disable OpenMP optimizations involving folding." ), cl::Hidden, |
109 | cl::init(Val: false)); |
110 | |
111 | static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( |
112 | "openmp-opt-disable-state-machine-rewrite" , |
113 | cl::desc("Disable OpenMP optimizations that replace the state machine." ), |
114 | cl::Hidden, cl::init(Val: false)); |
115 | |
116 | static cl::opt<bool> DisableOpenMPOptBarrierElimination( |
117 | "openmp-opt-disable-barrier-elimination" , |
118 | cl::desc("Disable OpenMP optimizations that eliminate barriers." ), |
119 | cl::Hidden, cl::init(Val: false)); |
120 | |
121 | static cl::opt<bool> PrintModuleAfterOptimizations( |
122 | "openmp-opt-print-module-after" , |
123 | cl::desc("Print the current module after OpenMP optimizations." ), |
124 | cl::Hidden, cl::init(Val: false)); |
125 | |
126 | static cl::opt<bool> PrintModuleBeforeOptimizations( |
127 | "openmp-opt-print-module-before" , |
128 | cl::desc("Print the current module before OpenMP optimizations." ), |
129 | cl::Hidden, cl::init(Val: false)); |
130 | |
131 | static cl::opt<bool> AlwaysInlineDeviceFunctions( |
132 | "openmp-opt-inline-device" , |
133 | cl::desc("Inline all applicable functions on the device." ), cl::Hidden, |
134 | cl::init(Val: false)); |
135 | |
136 | static cl::opt<bool> |
137 | ("openmp-opt-verbose-remarks" , |
138 | cl::desc("Enables more verbose remarks." ), cl::Hidden, |
139 | cl::init(Val: false)); |
140 | |
141 | static cl::opt<unsigned> |
142 | SetFixpointIterations("openmp-opt-max-iterations" , cl::Hidden, |
143 | cl::desc("Maximal number of attributor iterations." ), |
144 | cl::init(Val: 256)); |
145 | |
146 | static cl::opt<unsigned> |
147 | SharedMemoryLimit("openmp-opt-shared-limit" , cl::Hidden, |
148 | cl::desc("Maximum amount of shared memory to use." ), |
149 | cl::init(Val: std::numeric_limits<unsigned>::max())); |
150 | |
151 | STATISTIC(NumOpenMPRuntimeCallsDeduplicated, |
152 | "Number of OpenMP runtime calls deduplicated" ); |
153 | STATISTIC(NumOpenMPParallelRegionsDeleted, |
154 | "Number of OpenMP parallel regions deleted" ); |
155 | STATISTIC(NumOpenMPRuntimeFunctionsIdentified, |
156 | "Number of OpenMP runtime functions identified" ); |
157 | STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, |
158 | "Number of OpenMP runtime function uses identified" ); |
159 | STATISTIC(NumOpenMPTargetRegionKernels, |
160 | "Number of OpenMP target region entry points (=kernels) identified" ); |
161 | STATISTIC(NumNonOpenMPTargetRegionKernels, |
162 | "Number of non-OpenMP target region kernels identified" ); |
163 | STATISTIC(NumOpenMPTargetRegionKernelsSPMD, |
164 | "Number of OpenMP target region entry points (=kernels) executed in " |
165 | "SPMD-mode instead of generic-mode" ); |
166 | STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, |
167 | "Number of OpenMP target region entry points (=kernels) executed in " |
168 | "generic-mode without a state machines" ); |
169 | STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, |
170 | "Number of OpenMP target region entry points (=kernels) executed in " |
171 | "generic-mode with customized state machines with fallback" ); |
172 | STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, |
173 | "Number of OpenMP target region entry points (=kernels) executed in " |
174 | "generic-mode with customized state machines without fallback" ); |
175 | STATISTIC( |
176 | NumOpenMPParallelRegionsReplacedInGPUStateMachine, |
177 | "Number of OpenMP parallel regions replaced with ID in GPU state machines" ); |
178 | STATISTIC(NumOpenMPParallelRegionsMerged, |
179 | "Number of OpenMP parallel regions merged" ); |
180 | STATISTIC(NumBytesMovedToSharedMemory, |
181 | "Amount of memory pushed to shared memory" ); |
182 | STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated" ); |
183 | |
184 | #if !defined(NDEBUG) |
185 | static constexpr auto TAG = "[" DEBUG_TYPE "]" ; |
186 | #endif |
187 | |
188 | namespace KernelInfo { |
189 | |
190 | // struct ConfigurationEnvironmentTy { |
191 | // uint8_t UseGenericStateMachine; |
192 | // uint8_t MayUseNestedParallelism; |
193 | // llvm::omp::OMPTgtExecModeFlags ExecMode; |
194 | // int32_t MinThreads; |
195 | // int32_t MaxThreads; |
196 | // int32_t MinTeams; |
197 | // int32_t MaxTeams; |
198 | // }; |
199 | |
200 | // struct DynamicEnvironmentTy { |
201 | // uint16_t DebugIndentionLevel; |
202 | // }; |
203 | |
204 | // struct KernelEnvironmentTy { |
205 | // ConfigurationEnvironmentTy Configuration; |
206 | // IdentTy *Ident; |
207 | // DynamicEnvironmentTy *DynamicEnv; |
208 | // }; |
209 | |
210 | #define KERNEL_ENVIRONMENT_IDX(MEMBER, IDX) \ |
211 | constexpr const unsigned MEMBER##Idx = IDX; |
212 | |
213 | KERNEL_ENVIRONMENT_IDX(Configuration, 0) |
214 | KERNEL_ENVIRONMENT_IDX(Ident, 1) |
215 | |
216 | #undef KERNEL_ENVIRONMENT_IDX |
217 | |
218 | #define KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MEMBER, IDX) \ |
219 | constexpr const unsigned MEMBER##Idx = IDX; |
220 | |
221 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(UseGenericStateMachine, 0) |
222 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MayUseNestedParallelism, 1) |
223 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(ExecMode, 2) |
224 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinThreads, 3) |
225 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxThreads, 4) |
226 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinTeams, 5) |
227 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxTeams, 6) |
228 | |
229 | #undef KERNEL_ENVIRONMENT_CONFIGURATION_IDX |
230 | |
231 | #define KERNEL_ENVIRONMENT_GETTER(MEMBER, RETURNTYPE) \ |
232 | RETURNTYPE *get##MEMBER##FromKernelEnvironment(ConstantStruct *KernelEnvC) { \ |
233 | return cast<RETURNTYPE>(KernelEnvC->getAggregateElement(MEMBER##Idx)); \ |
234 | } |
235 | |
236 | KERNEL_ENVIRONMENT_GETTER(Ident, Constant) |
237 | KERNEL_ENVIRONMENT_GETTER(Configuration, ConstantStruct) |
238 | |
239 | #undef KERNEL_ENVIRONMENT_GETTER |
240 | |
241 | #define KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MEMBER) \ |
242 | ConstantInt *get##MEMBER##FromKernelEnvironment( \ |
243 | ConstantStruct *KernelEnvC) { \ |
244 | ConstantStruct *ConfigC = \ |
245 | getConfigurationFromKernelEnvironment(KernelEnvC); \ |
246 | return dyn_cast<ConstantInt>(ConfigC->getAggregateElement(MEMBER##Idx)); \ |
247 | } |
248 | |
249 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(UseGenericStateMachine) |
250 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MayUseNestedParallelism) |
251 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(ExecMode) |
252 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinThreads) |
253 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxThreads) |
254 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinTeams) |
255 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxTeams) |
256 | |
257 | #undef KERNEL_ENVIRONMENT_CONFIGURATION_GETTER |
258 | |
259 | GlobalVariable * |
260 | getKernelEnvironementGVFromKernelInitCB(CallBase *KernelInitCB) { |
261 | constexpr const int InitKernelEnvironmentArgNo = 0; |
262 | return cast<GlobalVariable>( |
263 | Val: KernelInitCB->getArgOperand(i: InitKernelEnvironmentArgNo) |
264 | ->stripPointerCasts()); |
265 | } |
266 | |
267 | ConstantStruct *getKernelEnvironementFromKernelInitCB(CallBase *KernelInitCB) { |
268 | GlobalVariable *KernelEnvGV = |
269 | getKernelEnvironementGVFromKernelInitCB(KernelInitCB); |
270 | return cast<ConstantStruct>(Val: KernelEnvGV->getInitializer()); |
271 | } |
272 | } // namespace KernelInfo |
273 | |
274 | namespace { |
275 | |
276 | struct AAHeapToShared; |
277 | |
278 | struct AAICVTracker; |
279 | |
280 | /// OpenMP specific information. For now, stores RFIs and ICVs also needed for |
281 | /// Attributor runs. |
282 | struct OMPInformationCache : public InformationCache { |
283 | OMPInformationCache(Module &M, AnalysisGetter &AG, |
284 | BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC, |
285 | bool OpenMPPostLink) |
286 | : InformationCache(M, AG, Allocator, CGSCC), OMPBuilder(M), |
287 | OpenMPPostLink(OpenMPPostLink) { |
288 | |
289 | OMPBuilder.Config.IsTargetDevice = isOpenMPDevice(M&: OMPBuilder.M); |
290 | const Triple T(OMPBuilder.M.getTargetTriple()); |
291 | switch (T.getArch()) { |
292 | case llvm::Triple::nvptx: |
293 | case llvm::Triple::nvptx64: |
294 | case llvm::Triple::amdgcn: |
295 | assert(OMPBuilder.Config.IsTargetDevice && |
296 | "OpenMP AMDGPU/NVPTX is only prepared to deal with device code." ); |
297 | OMPBuilder.Config.IsGPU = true; |
298 | break; |
299 | default: |
300 | OMPBuilder.Config.IsGPU = false; |
301 | break; |
302 | } |
303 | OMPBuilder.initialize(); |
304 | initializeRuntimeFunctions(M); |
305 | initializeInternalControlVars(); |
306 | } |
307 | |
308 | /// Generic information that describes an internal control variable. |
309 | struct InternalControlVarInfo { |
310 | /// The kind, as described by InternalControlVar enum. |
311 | InternalControlVar Kind; |
312 | |
313 | /// The name of the ICV. |
314 | StringRef Name; |
315 | |
316 | /// Environment variable associated with this ICV. |
317 | StringRef EnvVarName; |
318 | |
319 | /// Initial value kind. |
320 | ICVInitValue InitKind; |
321 | |
322 | /// Initial value. |
323 | ConstantInt *InitValue; |
324 | |
325 | /// Setter RTL function associated with this ICV. |
326 | RuntimeFunction Setter; |
327 | |
328 | /// Getter RTL function associated with this ICV. |
329 | RuntimeFunction Getter; |
330 | |
331 | /// RTL Function corresponding to the override clause of this ICV |
332 | RuntimeFunction Clause; |
333 | }; |
334 | |
335 | /// Generic information that describes a runtime function |
336 | struct RuntimeFunctionInfo { |
337 | |
338 | /// The kind, as described by the RuntimeFunction enum. |
339 | RuntimeFunction Kind; |
340 | |
341 | /// The name of the function. |
342 | StringRef Name; |
343 | |
344 | /// Flag to indicate a variadic function. |
345 | bool IsVarArg; |
346 | |
347 | /// The return type of the function. |
348 | Type *ReturnType; |
349 | |
350 | /// The argument types of the function. |
351 | SmallVector<Type *, 8> ArgumentTypes; |
352 | |
353 | /// The declaration if available. |
354 | Function *Declaration = nullptr; |
355 | |
356 | /// Uses of this runtime function per function containing the use. |
357 | using UseVector = SmallVector<Use *, 16>; |
358 | |
359 | /// Clear UsesMap for runtime function. |
360 | void clearUsesMap() { UsesMap.clear(); } |
361 | |
362 | /// Boolean conversion that is true if the runtime function was found. |
363 | operator bool() const { return Declaration; } |
364 | |
365 | /// Return the vector of uses in function \p F. |
366 | UseVector &getOrCreateUseVector(Function *F) { |
367 | std::shared_ptr<UseVector> &UV = UsesMap[F]; |
368 | if (!UV) |
369 | UV = std::make_shared<UseVector>(); |
370 | return *UV; |
371 | } |
372 | |
373 | /// Return the vector of uses in function \p F or `nullptr` if there are |
374 | /// none. |
375 | const UseVector *getUseVector(Function &F) const { |
376 | auto I = UsesMap.find(Val: &F); |
377 | if (I != UsesMap.end()) |
378 | return I->second.get(); |
379 | return nullptr; |
380 | } |
381 | |
382 | /// Return how many functions contain uses of this runtime function. |
383 | size_t getNumFunctionsWithUses() const { return UsesMap.size(); } |
384 | |
385 | /// Return the number of arguments (or the minimal number for variadic |
386 | /// functions). |
387 | size_t getNumArgs() const { return ArgumentTypes.size(); } |
388 | |
389 | /// Run the callback \p CB on each use and forget the use if the result is |
390 | /// true. The callback will be fed the function in which the use was |
391 | /// encountered as second argument. |
392 | void foreachUse(SmallVectorImpl<Function *> &SCC, |
393 | function_ref<bool(Use &, Function &)> CB) { |
394 | for (Function *F : SCC) |
395 | foreachUse(CB, F); |
396 | } |
397 | |
398 | /// Run the callback \p CB on each use within the function \p F and forget |
399 | /// the use if the result is true. |
400 | void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { |
401 | SmallVector<unsigned, 8> ToBeDeleted; |
402 | ToBeDeleted.clear(); |
403 | |
404 | unsigned Idx = 0; |
405 | UseVector &UV = getOrCreateUseVector(F); |
406 | |
407 | for (Use *U : UV) { |
408 | if (CB(*U, *F)) |
409 | ToBeDeleted.push_back(Elt: Idx); |
410 | ++Idx; |
411 | } |
412 | |
413 | // Remove the to-be-deleted indices in reverse order as prior |
414 | // modifications will not modify the smaller indices. |
415 | while (!ToBeDeleted.empty()) { |
416 | unsigned Idx = ToBeDeleted.pop_back_val(); |
417 | UV[Idx] = UV.back(); |
418 | UV.pop_back(); |
419 | } |
420 | } |
421 | |
422 | private: |
423 | /// Map from functions to all uses of this runtime function contained in |
424 | /// them. |
425 | DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; |
426 | |
427 | public: |
428 | /// Iterators for the uses of this runtime function. |
429 | decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } |
430 | decltype(UsesMap)::iterator end() { return UsesMap.end(); } |
431 | }; |
432 | |
433 | /// An OpenMP-IR-Builder instance |
434 | OpenMPIRBuilder OMPBuilder; |
435 | |
436 | /// Map from runtime function kind to the runtime function description. |
437 | EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, |
438 | RuntimeFunction::OMPRTL___last> |
439 | RFIs; |
440 | |
441 | /// Map from function declarations/definitions to their runtime enum type. |
442 | DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; |
443 | |
444 | /// Map from ICV kind to the ICV description. |
445 | EnumeratedArray<InternalControlVarInfo, InternalControlVar, |
446 | InternalControlVar::ICV___last> |
447 | ICVs; |
448 | |
449 | /// Helper to initialize all internal control variable information for those |
450 | /// defined in OMPKinds.def. |
451 | void initializeInternalControlVars() { |
452 | #define ICV_RT_SET(_Name, RTL) \ |
453 | { \ |
454 | auto &ICV = ICVs[_Name]; \ |
455 | ICV.Setter = RTL; \ |
456 | } |
457 | #define ICV_RT_GET(Name, RTL) \ |
458 | { \ |
459 | auto &ICV = ICVs[Name]; \ |
460 | ICV.Getter = RTL; \ |
461 | } |
462 | #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ |
463 | { \ |
464 | auto &ICV = ICVs[Enum]; \ |
465 | ICV.Name = _Name; \ |
466 | ICV.Kind = Enum; \ |
467 | ICV.InitKind = Init; \ |
468 | ICV.EnvVarName = _EnvVarName; \ |
469 | switch (ICV.InitKind) { \ |
470 | case ICV_IMPLEMENTATION_DEFINED: \ |
471 | ICV.InitValue = nullptr; \ |
472 | break; \ |
473 | case ICV_ZERO: \ |
474 | ICV.InitValue = ConstantInt::get( \ |
475 | Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ |
476 | break; \ |
477 | case ICV_FALSE: \ |
478 | ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ |
479 | break; \ |
480 | case ICV_LAST: \ |
481 | break; \ |
482 | } \ |
483 | } |
484 | #include "llvm/Frontend/OpenMP/OMPKinds.def" |
485 | } |
486 | |
487 | /// Returns true if the function declaration \p F matches the runtime |
488 | /// function types, that is, return type \p RTFRetType, and argument types |
489 | /// \p RTFArgTypes. |
490 | static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, |
491 | SmallVector<Type *, 8> &RTFArgTypes) { |
492 | // TODO: We should output information to the user (under debug output |
493 | // and via remarks). |
494 | |
495 | if (!F) |
496 | return false; |
497 | if (F->getReturnType() != RTFRetType) |
498 | return false; |
499 | if (F->arg_size() != RTFArgTypes.size()) |
500 | return false; |
501 | |
502 | auto *RTFTyIt = RTFArgTypes.begin(); |
503 | for (Argument &Arg : F->args()) { |
504 | if (Arg.getType() != *RTFTyIt) |
505 | return false; |
506 | |
507 | ++RTFTyIt; |
508 | } |
509 | |
510 | return true; |
511 | } |
512 | |
513 | // Helper to collect all uses of the declaration in the UsesMap. |
514 | unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { |
515 | unsigned NumUses = 0; |
516 | if (!RFI.Declaration) |
517 | return NumUses; |
518 | OMPBuilder.addAttributes(FnID: RFI.Kind, Fn&: *RFI.Declaration); |
519 | |
520 | if (CollectStats) { |
521 | NumOpenMPRuntimeFunctionsIdentified += 1; |
522 | NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); |
523 | } |
524 | |
525 | // TODO: We directly convert uses into proper calls and unknown uses. |
526 | for (Use &U : RFI.Declaration->uses()) { |
527 | if (Instruction *UserI = dyn_cast<Instruction>(Val: U.getUser())) { |
528 | if (!CGSCC || CGSCC->empty() || CGSCC->contains(key: UserI->getFunction())) { |
529 | RFI.getOrCreateUseVector(F: UserI->getFunction()).push_back(Elt: &U); |
530 | ++NumUses; |
531 | } |
532 | } else { |
533 | RFI.getOrCreateUseVector(F: nullptr).push_back(Elt: &U); |
534 | ++NumUses; |
535 | } |
536 | } |
537 | return NumUses; |
538 | } |
539 | |
540 | // Helper function to recollect uses of a runtime function. |
541 | void recollectUsesForFunction(RuntimeFunction RTF) { |
542 | auto &RFI = RFIs[RTF]; |
543 | RFI.clearUsesMap(); |
544 | collectUses(RFI, /*CollectStats*/ false); |
545 | } |
546 | |
547 | // Helper function to recollect uses of all runtime functions. |
548 | void recollectUses() { |
549 | for (int Idx = 0; Idx < RFIs.size(); ++Idx) |
550 | recollectUsesForFunction(RTF: static_cast<RuntimeFunction>(Idx)); |
551 | } |
552 | |
553 | // Helper function to inherit the calling convention of the function callee. |
554 | void setCallingConvention(FunctionCallee Callee, CallInst *CI) { |
555 | if (Function *Fn = dyn_cast<Function>(Val: Callee.getCallee())) |
556 | CI->setCallingConv(Fn->getCallingConv()); |
557 | } |
558 | |
559 | // Helper function to determine if it's legal to create a call to the runtime |
560 | // functions. |
561 | bool runtimeFnsAvailable(ArrayRef<RuntimeFunction> Fns) { |
562 | // We can always emit calls if we haven't yet linked in the runtime. |
563 | if (!OpenMPPostLink) |
564 | return true; |
565 | |
566 | // Once the runtime has been already been linked in we cannot emit calls to |
567 | // any undefined functions. |
568 | for (RuntimeFunction Fn : Fns) { |
569 | RuntimeFunctionInfo &RFI = RFIs[Fn]; |
570 | |
571 | if (!RFI.Declaration || RFI.Declaration->isDeclaration()) |
572 | return false; |
573 | } |
574 | return true; |
575 | } |
576 | |
577 | /// Helper to initialize all runtime function information for those defined |
578 | /// in OpenMPKinds.def. |
579 | void initializeRuntimeFunctions(Module &M) { |
580 | |
581 | // Helper macros for handling __VA_ARGS__ in OMP_RTL |
582 | #define OMP_TYPE(VarName, ...) \ |
583 | Type *VarName = OMPBuilder.VarName; \ |
584 | (void)VarName; |
585 | |
586 | #define OMP_ARRAY_TYPE(VarName, ...) \ |
587 | ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ |
588 | (void)VarName##Ty; \ |
589 | PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ |
590 | (void)VarName##PtrTy; |
591 | |
592 | #define OMP_FUNCTION_TYPE(VarName, ...) \ |
593 | FunctionType *VarName = OMPBuilder.VarName; \ |
594 | (void)VarName; \ |
595 | PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ |
596 | (void)VarName##Ptr; |
597 | |
598 | #define OMP_STRUCT_TYPE(VarName, ...) \ |
599 | StructType *VarName = OMPBuilder.VarName; \ |
600 | (void)VarName; \ |
601 | PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ |
602 | (void)VarName##Ptr; |
603 | |
604 | #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ |
605 | { \ |
606 | SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ |
607 | Function *F = M.getFunction(_Name); \ |
608 | RTLFunctions.insert(F); \ |
609 | if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ |
610 | RuntimeFunctionIDMap[F] = _Enum; \ |
611 | auto &RFI = RFIs[_Enum]; \ |
612 | RFI.Kind = _Enum; \ |
613 | RFI.Name = _Name; \ |
614 | RFI.IsVarArg = _IsVarArg; \ |
615 | RFI.ReturnType = OMPBuilder._ReturnType; \ |
616 | RFI.ArgumentTypes = std::move(ArgsTypes); \ |
617 | RFI.Declaration = F; \ |
618 | unsigned NumUses = collectUses(RFI); \ |
619 | (void)NumUses; \ |
620 | LLVM_DEBUG({ \ |
621 | dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ |
622 | << " found\n"; \ |
623 | if (RFI.Declaration) \ |
624 | dbgs() << TAG << "-> got " << NumUses << " uses in " \ |
625 | << RFI.getNumFunctionsWithUses() \ |
626 | << " different functions.\n"; \ |
627 | }); \ |
628 | } \ |
629 | } |
630 | #include "llvm/Frontend/OpenMP/OMPKinds.def" |
631 | |
632 | // Remove the `noinline` attribute from `__kmpc`, `ompx::` and `omp_` |
633 | // functions, except if `optnone` is present. |
634 | if (isOpenMPDevice(M)) { |
635 | for (Function &F : M) { |
636 | for (StringRef Prefix : {"__kmpc" , "_ZN4ompx" , "omp_" }) |
637 | if (F.hasFnAttribute(Kind: Attribute::NoInline) && |
638 | F.getName().starts_with(Prefix) && |
639 | !F.hasFnAttribute(Kind: Attribute::OptimizeNone)) |
640 | F.removeFnAttr(Kind: Attribute::NoInline); |
641 | } |
642 | } |
643 | |
644 | // TODO: We should attach the attributes defined in OMPKinds.def. |
645 | } |
646 | |
647 | /// Collection of known OpenMP runtime functions.. |
648 | DenseSet<const Function *> RTLFunctions; |
649 | |
650 | /// Indicates if we have already linked in the OpenMP device library. |
651 | bool OpenMPPostLink = false; |
652 | }; |
653 | |
654 | template <typename Ty, bool InsertInvalidates = true> |
655 | struct BooleanStateWithSetVector : public BooleanState { |
656 | bool contains(const Ty &Elem) const { return Set.contains(Elem); } |
657 | bool insert(const Ty &Elem) { |
658 | if (InsertInvalidates) |
659 | BooleanState::indicatePessimisticFixpoint(); |
660 | return Set.insert(Elem); |
661 | } |
662 | |
663 | const Ty &operator[](int Idx) const { return Set[Idx]; } |
664 | bool operator==(const BooleanStateWithSetVector &RHS) const { |
665 | return BooleanState::operator==(R: RHS) && Set == RHS.Set; |
666 | } |
667 | bool operator!=(const BooleanStateWithSetVector &RHS) const { |
668 | return !(*this == RHS); |
669 | } |
670 | |
671 | bool empty() const { return Set.empty(); } |
672 | size_t size() const { return Set.size(); } |
673 | |
674 | /// "Clamp" this state with \p RHS. |
675 | BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { |
676 | BooleanState::operator^=(R: RHS); |
677 | Set.insert_range(RHS.Set); |
678 | return *this; |
679 | } |
680 | |
681 | private: |
682 | /// A set to keep track of elements. |
683 | SetVector<Ty> Set; |
684 | |
685 | public: |
686 | typename decltype(Set)::iterator begin() { return Set.begin(); } |
687 | typename decltype(Set)::iterator end() { return Set.end(); } |
688 | typename decltype(Set)::const_iterator begin() const { return Set.begin(); } |
689 | typename decltype(Set)::const_iterator end() const { return Set.end(); } |
690 | }; |
691 | |
692 | template <typename Ty, bool InsertInvalidates = true> |
693 | using BooleanStateWithPtrSetVector = |
694 | BooleanStateWithSetVector<Ty *, InsertInvalidates>; |
695 | |
696 | struct KernelInfoState : AbstractState { |
697 | /// Flag to track if we reached a fixpoint. |
698 | bool IsAtFixpoint = false; |
699 | |
700 | /// The parallel regions (identified by the outlined parallel functions) that |
701 | /// can be reached from the associated function. |
702 | BooleanStateWithPtrSetVector<CallBase, /* InsertInvalidates */ false> |
703 | ReachedKnownParallelRegions; |
704 | |
705 | /// State to track what parallel region we might reach. |
706 | BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; |
707 | |
708 | /// State to track if we are in SPMD-mode, assumed or know, and why we decided |
709 | /// we cannot be. If it is assumed, then RequiresFullRuntime should also be |
710 | /// false. |
711 | BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; |
712 | |
713 | /// The __kmpc_target_init call in this kernel, if any. If we find more than |
714 | /// one we abort as the kernel is malformed. |
715 | CallBase *KernelInitCB = nullptr; |
716 | |
717 | /// The constant kernel environement as taken from and passed to |
718 | /// __kmpc_target_init. |
719 | ConstantStruct *KernelEnvC = nullptr; |
720 | |
721 | /// The __kmpc_target_deinit call in this kernel, if any. If we find more than |
722 | /// one we abort as the kernel is malformed. |
723 | CallBase *KernelDeinitCB = nullptr; |
724 | |
725 | /// Flag to indicate if the associated function is a kernel entry. |
726 | bool IsKernelEntry = false; |
727 | |
728 | /// State to track what kernel entries can reach the associated function. |
729 | BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; |
730 | |
731 | /// State to indicate if we can track parallel level of the associated |
732 | /// function. We will give up tracking if we encounter unknown caller or the |
733 | /// caller is __kmpc_parallel_51. |
734 | BooleanStateWithSetVector<uint8_t> ParallelLevels; |
735 | |
736 | /// Flag that indicates if the kernel has nested Parallelism |
737 | bool NestedParallelism = false; |
738 | |
739 | /// Abstract State interface |
740 | ///{ |
741 | |
742 | KernelInfoState() = default; |
743 | KernelInfoState(bool BestState) { |
744 | if (!BestState) |
745 | indicatePessimisticFixpoint(); |
746 | } |
747 | |
748 | /// See AbstractState::isValidState(...) |
749 | bool isValidState() const override { return true; } |
750 | |
751 | /// See AbstractState::isAtFixpoint(...) |
752 | bool isAtFixpoint() const override { return IsAtFixpoint; } |
753 | |
754 | /// See AbstractState::indicatePessimisticFixpoint(...) |
755 | ChangeStatus indicatePessimisticFixpoint() override { |
756 | IsAtFixpoint = true; |
757 | ParallelLevels.indicatePessimisticFixpoint(); |
758 | ReachingKernelEntries.indicatePessimisticFixpoint(); |
759 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
760 | ReachedKnownParallelRegions.indicatePessimisticFixpoint(); |
761 | ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); |
762 | NestedParallelism = true; |
763 | return ChangeStatus::CHANGED; |
764 | } |
765 | |
766 | /// See AbstractState::indicateOptimisticFixpoint(...) |
767 | ChangeStatus indicateOptimisticFixpoint() override { |
768 | IsAtFixpoint = true; |
769 | ParallelLevels.indicateOptimisticFixpoint(); |
770 | ReachingKernelEntries.indicateOptimisticFixpoint(); |
771 | SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
772 | ReachedKnownParallelRegions.indicateOptimisticFixpoint(); |
773 | ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); |
774 | return ChangeStatus::UNCHANGED; |
775 | } |
776 | |
777 | /// Return the assumed state |
778 | KernelInfoState &getAssumed() { return *this; } |
779 | const KernelInfoState &getAssumed() const { return *this; } |
780 | |
781 | bool operator==(const KernelInfoState &RHS) const { |
782 | if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) |
783 | return false; |
784 | if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) |
785 | return false; |
786 | if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) |
787 | return false; |
788 | if (ReachingKernelEntries != RHS.ReachingKernelEntries) |
789 | return false; |
790 | if (ParallelLevels != RHS.ParallelLevels) |
791 | return false; |
792 | if (NestedParallelism != RHS.NestedParallelism) |
793 | return false; |
794 | return true; |
795 | } |
796 | |
797 | /// Returns true if this kernel contains any OpenMP parallel regions. |
798 | bool mayContainParallelRegion() { |
799 | return !ReachedKnownParallelRegions.empty() || |
800 | !ReachedUnknownParallelRegions.empty(); |
801 | } |
802 | |
803 | /// Return empty set as the best state of potential values. |
804 | static KernelInfoState getBestState() { return KernelInfoState(true); } |
805 | |
806 | static KernelInfoState getBestState(KernelInfoState &KIS) { |
807 | return getBestState(); |
808 | } |
809 | |
810 | /// Return full set as the worst state of potential values. |
811 | static KernelInfoState getWorstState() { return KernelInfoState(false); } |
812 | |
813 | /// "Clamp" this state with \p KIS. |
814 | KernelInfoState operator^=(const KernelInfoState &KIS) { |
815 | // Do not merge two different _init and _deinit call sites. |
816 | if (KIS.KernelInitCB) { |
817 | if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) |
818 | llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
819 | "assumptions." ); |
820 | KernelInitCB = KIS.KernelInitCB; |
821 | } |
822 | if (KIS.KernelDeinitCB) { |
823 | if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) |
824 | llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
825 | "assumptions." ); |
826 | KernelDeinitCB = KIS.KernelDeinitCB; |
827 | } |
828 | if (KIS.KernelEnvC) { |
829 | if (KernelEnvC && KernelEnvC != KIS.KernelEnvC) |
830 | llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
831 | "assumptions." ); |
832 | KernelEnvC = KIS.KernelEnvC; |
833 | } |
834 | SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; |
835 | ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; |
836 | ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; |
837 | NestedParallelism |= KIS.NestedParallelism; |
838 | return *this; |
839 | } |
840 | |
841 | KernelInfoState operator&=(const KernelInfoState &KIS) { |
842 | return (*this ^= KIS); |
843 | } |
844 | |
845 | ///} |
846 | }; |
847 | |
848 | /// Used to map the values physically (in the IR) stored in an offload |
849 | /// array, to a vector in memory. |
850 | struct OffloadArray { |
851 | /// Physical array (in the IR). |
852 | AllocaInst *Array = nullptr; |
853 | /// Mapped values. |
854 | SmallVector<Value *, 8> StoredValues; |
855 | /// Last stores made in the offload array. |
856 | SmallVector<StoreInst *, 8> LastAccesses; |
857 | |
858 | OffloadArray() = default; |
859 | |
860 | /// Initializes the OffloadArray with the values stored in \p Array before |
861 | /// instruction \p Before is reached. Returns false if the initialization |
862 | /// fails. |
863 | /// This MUST be used immediately after the construction of the object. |
864 | bool initialize(AllocaInst &Array, Instruction &Before) { |
865 | if (!Array.getAllocatedType()->isArrayTy()) |
866 | return false; |
867 | |
868 | if (!getValues(Array, Before)) |
869 | return false; |
870 | |
871 | this->Array = &Array; |
872 | return true; |
873 | } |
874 | |
875 | static const unsigned DeviceIDArgNum = 1; |
876 | static const unsigned BasePtrsArgNum = 3; |
877 | static const unsigned PtrsArgNum = 4; |
878 | static const unsigned SizesArgNum = 5; |
879 | |
880 | private: |
881 | /// Traverses the BasicBlock where \p Array is, collecting the stores made to |
882 | /// \p Array, leaving StoredValues with the values stored before the |
883 | /// instruction \p Before is reached. |
884 | bool getValues(AllocaInst &Array, Instruction &Before) { |
885 | // Initialize container. |
886 | const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); |
887 | StoredValues.assign(NumElts: NumValues, Elt: nullptr); |
888 | LastAccesses.assign(NumElts: NumValues, Elt: nullptr); |
889 | |
890 | // TODO: This assumes the instruction \p Before is in the same |
891 | // BasicBlock as Array. Make it general, for any control flow graph. |
892 | BasicBlock *BB = Array.getParent(); |
893 | if (BB != Before.getParent()) |
894 | return false; |
895 | |
896 | const DataLayout &DL = Array.getDataLayout(); |
897 | const unsigned int PointerSize = DL.getPointerSize(); |
898 | |
899 | for (Instruction &I : *BB) { |
900 | if (&I == &Before) |
901 | break; |
902 | |
903 | if (!isa<StoreInst>(Val: &I)) |
904 | continue; |
905 | |
906 | auto *S = cast<StoreInst>(Val: &I); |
907 | int64_t Offset = -1; |
908 | auto *Dst = |
909 | GetPointerBaseWithConstantOffset(Ptr: S->getPointerOperand(), Offset, DL); |
910 | if (Dst == &Array) { |
911 | int64_t Idx = Offset / PointerSize; |
912 | StoredValues[Idx] = getUnderlyingObject(V: S->getValueOperand()); |
913 | LastAccesses[Idx] = S; |
914 | } |
915 | } |
916 | |
917 | return isFilled(); |
918 | } |
919 | |
920 | /// Returns true if all values in StoredValues and |
921 | /// LastAccesses are not nullptrs. |
922 | bool isFilled() { |
923 | const unsigned NumValues = StoredValues.size(); |
924 | for (unsigned I = 0; I < NumValues; ++I) { |
925 | if (!StoredValues[I] || !LastAccesses[I]) |
926 | return false; |
927 | } |
928 | |
929 | return true; |
930 | } |
931 | }; |
932 | |
933 | struct OpenMPOpt { |
934 | |
935 | using = |
936 | function_ref<OptimizationRemarkEmitter &(Function *)>; |
937 | |
938 | (SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, |
939 | OptimizationRemarkGetter OREGetter, |
940 | OMPInformationCache &OMPInfoCache, Attributor &A) |
941 | : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), |
942 | OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} |
943 | |
944 | /// Check if any remarks are enabled for openmp-opt |
945 | bool () { |
946 | auto &Ctx = M.getContext(); |
947 | return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); |
948 | } |
949 | |
950 | /// Run all OpenMP optimizations on the underlying SCC. |
951 | bool run(bool IsModulePass) { |
952 | if (SCC.empty()) |
953 | return false; |
954 | |
955 | bool Changed = false; |
956 | |
957 | LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() |
958 | << " functions\n" ); |
959 | |
960 | if (IsModulePass) { |
961 | Changed |= runAttributor(IsModulePass); |
962 | |
963 | // Recollect uses, in case Attributor deleted any. |
964 | OMPInfoCache.recollectUses(); |
965 | |
966 | // TODO: This should be folded into buildCustomStateMachine. |
967 | Changed |= rewriteDeviceCodeStateMachine(); |
968 | |
969 | if (remarksEnabled()) |
970 | analysisGlobalization(); |
971 | } else { |
972 | if (PrintICVValues) |
973 | printICVs(); |
974 | if (PrintOpenMPKernels) |
975 | printKernels(); |
976 | |
977 | Changed |= runAttributor(IsModulePass); |
978 | |
979 | // Recollect uses, in case Attributor deleted any. |
980 | OMPInfoCache.recollectUses(); |
981 | |
982 | Changed |= deleteParallelRegions(); |
983 | |
984 | if (HideMemoryTransferLatency) |
985 | Changed |= hideMemTransfersLatency(); |
986 | Changed |= deduplicateRuntimeCalls(); |
987 | if (EnableParallelRegionMerging) { |
988 | if (mergeParallelRegions()) { |
989 | deduplicateRuntimeCalls(); |
990 | Changed = true; |
991 | } |
992 | } |
993 | } |
994 | |
995 | if (OMPInfoCache.OpenMPPostLink) |
996 | Changed |= removeRuntimeSymbols(); |
997 | |
998 | return Changed; |
999 | } |
1000 | |
1001 | /// Print initial ICV values for testing. |
1002 | /// FIXME: This should be done from the Attributor once it is added. |
1003 | void printICVs() const { |
1004 | InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, |
1005 | ICV_proc_bind}; |
1006 | |
1007 | for (Function *F : SCC) { |
1008 | for (auto ICV : ICVs) { |
1009 | auto ICVInfo = OMPInfoCache.ICVs[ICV]; |
1010 | auto = [&](OptimizationRemarkAnalysis ORA) { |
1011 | return ORA << "OpenMP ICV " << ore::NV("OpenMPICV" , ICVInfo.Name) |
1012 | << " Value: " |
1013 | << (ICVInfo.InitValue |
1014 | ? toString(I: ICVInfo.InitValue->getValue(), Radix: 10, Signed: true) |
1015 | : "IMPLEMENTATION_DEFINED" ); |
1016 | }; |
1017 | |
1018 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OpenMPICVTracker" , RemarkCB&: Remark); |
1019 | } |
1020 | } |
1021 | } |
1022 | |
1023 | /// Print OpenMP GPU kernels for testing. |
1024 | void printKernels() const { |
1025 | for (Function *F : SCC) { |
1026 | if (!omp::isOpenMPKernel(Fn&: *F)) |
1027 | continue; |
1028 | |
1029 | auto = [&](OptimizationRemarkAnalysis ORA) { |
1030 | return ORA << "OpenMP GPU kernel " |
1031 | << ore::NV("OpenMPGPUKernel" , F->getName()) << "\n" ; |
1032 | }; |
1033 | |
1034 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OpenMPGPU" , RemarkCB&: Remark); |
1035 | } |
1036 | } |
1037 | |
1038 | /// Return the call if \p U is a callee use in a regular call. If \p RFI is |
1039 | /// given it has to be the callee or a nullptr is returned. |
1040 | static CallInst *getCallIfRegularCall( |
1041 | Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { |
1042 | CallInst *CI = dyn_cast<CallInst>(Val: U.getUser()); |
1043 | if (CI && CI->isCallee(U: &U) && !CI->hasOperandBundles() && |
1044 | (!RFI || |
1045 | (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) |
1046 | return CI; |
1047 | return nullptr; |
1048 | } |
1049 | |
1050 | /// Return the call if \p V is a regular call. If \p RFI is given it has to be |
1051 | /// the callee or a nullptr is returned. |
1052 | static CallInst *getCallIfRegularCall( |
1053 | Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { |
1054 | CallInst *CI = dyn_cast<CallInst>(Val: &V); |
1055 | if (CI && !CI->hasOperandBundles() && |
1056 | (!RFI || |
1057 | (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) |
1058 | return CI; |
1059 | return nullptr; |
1060 | } |
1061 | |
1062 | private: |
1063 | /// Merge parallel regions when it is safe. |
1064 | bool mergeParallelRegions() { |
1065 | const unsigned CallbackCalleeOperand = 2; |
1066 | const unsigned CallbackFirstArgOperand = 3; |
1067 | using InsertPointTy = OpenMPIRBuilder::InsertPointTy; |
1068 | |
1069 | // Check if there are any __kmpc_fork_call calls to merge. |
1070 | OMPInformationCache::RuntimeFunctionInfo &RFI = |
1071 | OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; |
1072 | |
1073 | if (!RFI.Declaration) |
1074 | return false; |
1075 | |
1076 | // Unmergable calls that prevent merging a parallel region. |
1077 | OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { |
1078 | OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], |
1079 | OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], |
1080 | }; |
1081 | |
1082 | bool Changed = false; |
1083 | LoopInfo *LI = nullptr; |
1084 | DominatorTree *DT = nullptr; |
1085 | |
1086 | SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; |
1087 | |
1088 | BasicBlock *StartBB = nullptr, *EndBB = nullptr; |
1089 | auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { |
1090 | BasicBlock *CGStartBB = CodeGenIP.getBlock(); |
1091 | BasicBlock *CGEndBB = |
1092 | SplitBlock(Old: CGStartBB, SplitPt: &*CodeGenIP.getPoint(), DT, LI); |
1093 | assert(StartBB != nullptr && "StartBB should not be null" ); |
1094 | CGStartBB->getTerminator()->setSuccessor(Idx: 0, BB: StartBB); |
1095 | assert(EndBB != nullptr && "EndBB should not be null" ); |
1096 | EndBB->getTerminator()->setSuccessor(Idx: 0, BB: CGEndBB); |
1097 | return Error::success(); |
1098 | }; |
1099 | |
1100 | auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, |
1101 | Value &Inner, Value *&ReplacementValue) -> InsertPointTy { |
1102 | ReplacementValue = &Inner; |
1103 | return CodeGenIP; |
1104 | }; |
1105 | |
1106 | auto FiniCB = [&](InsertPointTy CodeGenIP) { return Error::success(); }; |
1107 | |
1108 | /// Create a sequential execution region within a merged parallel region, |
1109 | /// encapsulated in a master construct with a barrier for synchronization. |
1110 | auto CreateSequentialRegion = [&](Function *OuterFn, |
1111 | BasicBlock *OuterPredBB, |
1112 | Instruction *SeqStartI, |
1113 | Instruction *SeqEndI) { |
1114 | // Isolate the instructions of the sequential region to a separate |
1115 | // block. |
1116 | BasicBlock *ParentBB = SeqStartI->getParent(); |
1117 | BasicBlock *SeqEndBB = |
1118 | SplitBlock(Old: ParentBB, SplitPt: SeqEndI->getNextNode(), DT, LI); |
1119 | BasicBlock *SeqAfterBB = |
1120 | SplitBlock(Old: SeqEndBB, SplitPt: &*SeqEndBB->getFirstInsertionPt(), DT, LI); |
1121 | BasicBlock *SeqStartBB = |
1122 | SplitBlock(Old: ParentBB, SplitPt: SeqStartI, DT, LI, MSSAU: nullptr, BBName: "seq.par.merged" ); |
1123 | |
1124 | assert(ParentBB->getUniqueSuccessor() == SeqStartBB && |
1125 | "Expected a different CFG" ); |
1126 | const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); |
1127 | ParentBB->getTerminator()->eraseFromParent(); |
1128 | |
1129 | auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { |
1130 | BasicBlock *CGStartBB = CodeGenIP.getBlock(); |
1131 | BasicBlock *CGEndBB = |
1132 | SplitBlock(Old: CGStartBB, SplitPt: &*CodeGenIP.getPoint(), DT, LI); |
1133 | assert(SeqStartBB != nullptr && "SeqStartBB should not be null" ); |
1134 | CGStartBB->getTerminator()->setSuccessor(Idx: 0, BB: SeqStartBB); |
1135 | assert(SeqEndBB != nullptr && "SeqEndBB should not be null" ); |
1136 | SeqEndBB->getTerminator()->setSuccessor(Idx: 0, BB: CGEndBB); |
1137 | return Error::success(); |
1138 | }; |
1139 | auto FiniCB = [&](InsertPointTy CodeGenIP) { return Error::success(); }; |
1140 | |
1141 | // Find outputs from the sequential region to outside users and |
1142 | // broadcast their values to them. |
1143 | for (Instruction &I : *SeqStartBB) { |
1144 | SmallPtrSet<Instruction *, 4> OutsideUsers; |
1145 | for (User *Usr : I.users()) { |
1146 | Instruction &UsrI = *cast<Instruction>(Val: Usr); |
1147 | // Ignore outputs to LT intrinsics, code extraction for the merged |
1148 | // parallel region will fix them. |
1149 | if (UsrI.isLifetimeStartOrEnd()) |
1150 | continue; |
1151 | |
1152 | if (UsrI.getParent() != SeqStartBB) |
1153 | OutsideUsers.insert(Ptr: &UsrI); |
1154 | } |
1155 | |
1156 | if (OutsideUsers.empty()) |
1157 | continue; |
1158 | |
1159 | // Emit an alloca in the outer region to store the broadcasted |
1160 | // value. |
1161 | const DataLayout &DL = M.getDataLayout(); |
1162 | AllocaInst *AllocaI = new AllocaInst( |
1163 | I.getType(), DL.getAllocaAddrSpace(), nullptr, |
1164 | I.getName() + ".seq.output.alloc" , OuterFn->front().begin()); |
1165 | |
1166 | // Emit a store instruction in the sequential BB to update the |
1167 | // value. |
1168 | new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()->getIterator()); |
1169 | |
1170 | // Emit a load instruction and replace the use of the output value |
1171 | // with it. |
1172 | for (Instruction *UsrI : OutsideUsers) { |
1173 | LoadInst *LoadI = new LoadInst(I.getType(), AllocaI, |
1174 | I.getName() + ".seq.output.load" , |
1175 | UsrI->getIterator()); |
1176 | UsrI->replaceUsesOfWith(From: &I, To: LoadI); |
1177 | } |
1178 | } |
1179 | |
1180 | OpenMPIRBuilder::LocationDescription Loc( |
1181 | InsertPointTy(ParentBB, ParentBB->end()), DL); |
1182 | OpenMPIRBuilder::InsertPointTy SeqAfterIP = cantFail( |
1183 | ValOrErr: OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB)); |
1184 | cantFail( |
1185 | ValOrErr: OMPInfoCache.OMPBuilder.createBarrier(Loc: SeqAfterIP, Kind: OMPD_parallel)); |
1186 | |
1187 | BranchInst::Create(IfTrue: SeqAfterBB, InsertBefore: SeqAfterIP.getBlock()); |
1188 | |
1189 | LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn |
1190 | << "\n" ); |
1191 | }; |
1192 | |
1193 | // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all |
1194 | // contained in BB and only separated by instructions that can be |
1195 | // redundantly executed in parallel. The block BB is split before the first |
1196 | // call (in MergableCIs) and after the last so the entire region we merge |
1197 | // into a single parallel region is contained in a single basic block |
1198 | // without any other instructions. We use the OpenMPIRBuilder to outline |
1199 | // that block and call the resulting function via __kmpc_fork_call. |
1200 | auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, |
1201 | BasicBlock *BB) { |
1202 | // TODO: Change the interface to allow single CIs expanded, e.g, to |
1203 | // include an outer loop. |
1204 | assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs" ); |
1205 | |
1206 | auto = [&](OptimizationRemark OR) { |
1207 | OR << "Parallel region merged with parallel region" |
1208 | << (MergableCIs.size() > 2 ? "s" : "" ) << " at " ; |
1209 | for (auto *CI : llvm::drop_begin(RangeOrContainer: MergableCIs)) { |
1210 | OR << ore::NV("OpenMPParallelMerge" , CI->getDebugLoc()); |
1211 | if (CI != MergableCIs.back()) |
1212 | OR << ", " ; |
1213 | } |
1214 | return OR << "." ; |
1215 | }; |
1216 | |
1217 | emitRemark<OptimizationRemark>(I: MergableCIs.front(), RemarkName: "OMP150" , RemarkCB&: Remark); |
1218 | |
1219 | Function *OriginalFn = BB->getParent(); |
1220 | LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() |
1221 | << " parallel regions in " << OriginalFn->getName() |
1222 | << "\n" ); |
1223 | |
1224 | // Isolate the calls to merge in a separate block. |
1225 | EndBB = SplitBlock(Old: BB, SplitPt: MergableCIs.back()->getNextNode(), DT, LI); |
1226 | BasicBlock *AfterBB = |
1227 | SplitBlock(Old: EndBB, SplitPt: &*EndBB->getFirstInsertionPt(), DT, LI); |
1228 | StartBB = SplitBlock(Old: BB, SplitPt: MergableCIs.front(), DT, LI, MSSAU: nullptr, |
1229 | BBName: "omp.par.merged" ); |
1230 | |
1231 | assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG" ); |
1232 | const DebugLoc DL = BB->getTerminator()->getDebugLoc(); |
1233 | BB->getTerminator()->eraseFromParent(); |
1234 | |
1235 | // Create sequential regions for sequential instructions that are |
1236 | // in-between mergable parallel regions. |
1237 | for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; |
1238 | It != End; ++It) { |
1239 | Instruction *ForkCI = *It; |
1240 | Instruction *NextForkCI = *(It + 1); |
1241 | |
1242 | // Continue if there are not in-between instructions. |
1243 | if (ForkCI->getNextNode() == NextForkCI) |
1244 | continue; |
1245 | |
1246 | CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), |
1247 | NextForkCI->getPrevNode()); |
1248 | } |
1249 | |
1250 | OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), |
1251 | DL); |
1252 | IRBuilder<>::InsertPoint AllocaIP( |
1253 | &OriginalFn->getEntryBlock(), |
1254 | OriginalFn->getEntryBlock().getFirstInsertionPt()); |
1255 | // Create the merged parallel region with default proc binding, to |
1256 | // avoid overriding binding settings, and without explicit cancellation. |
1257 | OpenMPIRBuilder::InsertPointTy AfterIP = |
1258 | cantFail(ValOrErr: OMPInfoCache.OMPBuilder.createParallel( |
1259 | Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, IfCondition: nullptr, NumThreads: nullptr, |
1260 | ProcBind: OMP_PROC_BIND_default, /* IsCancellable */ false)); |
1261 | BranchInst::Create(IfTrue: AfterBB, InsertBefore: AfterIP.getBlock()); |
1262 | |
1263 | // Perform the actual outlining. |
1264 | OMPInfoCache.OMPBuilder.finalize(Fn: OriginalFn); |
1265 | |
1266 | Function *OutlinedFn = MergableCIs.front()->getCaller(); |
1267 | |
1268 | // Replace the __kmpc_fork_call calls with direct calls to the outlined |
1269 | // callbacks. |
1270 | SmallVector<Value *, 8> Args; |
1271 | for (auto *CI : MergableCIs) { |
1272 | Value *Callee = CI->getArgOperand(i: CallbackCalleeOperand); |
1273 | FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask; |
1274 | Args.clear(); |
1275 | Args.push_back(Elt: OutlinedFn->getArg(i: 0)); |
1276 | Args.push_back(Elt: OutlinedFn->getArg(i: 1)); |
1277 | for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; |
1278 | ++U) |
1279 | Args.push_back(Elt: CI->getArgOperand(i: U)); |
1280 | |
1281 | CallInst *NewCI = |
1282 | CallInst::Create(Ty: FT, Func: Callee, Args, NameStr: "" , InsertBefore: CI->getIterator()); |
1283 | if (CI->getDebugLoc()) |
1284 | NewCI->setDebugLoc(CI->getDebugLoc()); |
1285 | |
1286 | // Forward parameter attributes from the callback to the callee. |
1287 | for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; |
1288 | ++U) |
1289 | for (const Attribute &A : CI->getAttributes().getParamAttrs(ArgNo: U)) |
1290 | NewCI->addParamAttr( |
1291 | ArgNo: U - (CallbackFirstArgOperand - CallbackCalleeOperand), Attr: A); |
1292 | |
1293 | // Emit an explicit barrier to replace the implicit fork-join barrier. |
1294 | if (CI != MergableCIs.back()) { |
1295 | // TODO: Remove barrier if the merged parallel region includes the |
1296 | // 'nowait' clause. |
1297 | cantFail(ValOrErr: OMPInfoCache.OMPBuilder.createBarrier( |
1298 | Loc: InsertPointTy(NewCI->getParent(), |
1299 | NewCI->getNextNode()->getIterator()), |
1300 | Kind: OMPD_parallel)); |
1301 | } |
1302 | |
1303 | CI->eraseFromParent(); |
1304 | } |
1305 | |
1306 | assert(OutlinedFn != OriginalFn && "Outlining failed" ); |
1307 | CGUpdater.registerOutlinedFunction(OriginalFn&: *OriginalFn, NewFn&: *OutlinedFn); |
1308 | CGUpdater.reanalyzeFunction(Fn&: *OriginalFn); |
1309 | |
1310 | NumOpenMPParallelRegionsMerged += MergableCIs.size(); |
1311 | |
1312 | return true; |
1313 | }; |
1314 | |
1315 | // Helper function that identifes sequences of |
1316 | // __kmpc_fork_call uses in a basic block. |
1317 | auto DetectPRsCB = [&](Use &U, Function &F) { |
1318 | CallInst *CI = getCallIfRegularCall(U, RFI: &RFI); |
1319 | BB2PRMap[CI->getParent()].insert(Ptr: CI); |
1320 | |
1321 | return false; |
1322 | }; |
1323 | |
1324 | BB2PRMap.clear(); |
1325 | RFI.foreachUse(SCC, CB: DetectPRsCB); |
1326 | SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; |
1327 | // Find mergable parallel regions within a basic block that are |
1328 | // safe to merge, that is any in-between instructions can safely |
1329 | // execute in parallel after merging. |
1330 | // TODO: support merging across basic-blocks. |
1331 | for (auto &It : BB2PRMap) { |
1332 | auto &CIs = It.getSecond(); |
1333 | if (CIs.size() < 2) |
1334 | continue; |
1335 | |
1336 | BasicBlock *BB = It.getFirst(); |
1337 | SmallVector<CallInst *, 4> MergableCIs; |
1338 | |
1339 | /// Returns true if the instruction is mergable, false otherwise. |
1340 | /// A terminator instruction is unmergable by definition since merging |
1341 | /// works within a BB. Instructions before the mergable region are |
1342 | /// mergable if they are not calls to OpenMP runtime functions that may |
1343 | /// set different execution parameters for subsequent parallel regions. |
1344 | /// Instructions in-between parallel regions are mergable if they are not |
1345 | /// calls to any non-intrinsic function since that may call a non-mergable |
1346 | /// OpenMP runtime function. |
1347 | auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { |
1348 | // We do not merge across BBs, hence return false (unmergable) if the |
1349 | // instruction is a terminator. |
1350 | if (I.isTerminator()) |
1351 | return false; |
1352 | |
1353 | if (!isa<CallInst>(Val: &I)) |
1354 | return true; |
1355 | |
1356 | CallInst *CI = cast<CallInst>(Val: &I); |
1357 | if (IsBeforeMergableRegion) { |
1358 | Function *CalledFunction = CI->getCalledFunction(); |
1359 | if (!CalledFunction) |
1360 | return false; |
1361 | // Return false (unmergable) if the call before the parallel |
1362 | // region calls an explicit affinity (proc_bind) or number of |
1363 | // threads (num_threads) compiler-generated function. Those settings |
1364 | // may be incompatible with following parallel regions. |
1365 | // TODO: ICV tracking to detect compatibility. |
1366 | for (const auto &RFI : UnmergableCallsInfo) { |
1367 | if (CalledFunction == RFI.Declaration) |
1368 | return false; |
1369 | } |
1370 | } else { |
1371 | // Return false (unmergable) if there is a call instruction |
1372 | // in-between parallel regions when it is not an intrinsic. It |
1373 | // may call an unmergable OpenMP runtime function in its callpath. |
1374 | // TODO: Keep track of possible OpenMP calls in the callpath. |
1375 | if (!isa<IntrinsicInst>(Val: CI)) |
1376 | return false; |
1377 | } |
1378 | |
1379 | return true; |
1380 | }; |
1381 | // Find maximal number of parallel region CIs that are safe to merge. |
1382 | for (auto It = BB->begin(), End = BB->end(); It != End;) { |
1383 | Instruction &I = *It; |
1384 | ++It; |
1385 | |
1386 | if (CIs.count(Ptr: &I)) { |
1387 | MergableCIs.push_back(Elt: cast<CallInst>(Val: &I)); |
1388 | continue; |
1389 | } |
1390 | |
1391 | // Continue expanding if the instruction is mergable. |
1392 | if (IsMergable(I, MergableCIs.empty())) |
1393 | continue; |
1394 | |
1395 | // Forward the instruction iterator to skip the next parallel region |
1396 | // since there is an unmergable instruction which can affect it. |
1397 | for (; It != End; ++It) { |
1398 | Instruction &SkipI = *It; |
1399 | if (CIs.count(Ptr: &SkipI)) { |
1400 | LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI |
1401 | << " due to " << I << "\n" ); |
1402 | ++It; |
1403 | break; |
1404 | } |
1405 | } |
1406 | |
1407 | // Store mergable regions found. |
1408 | if (MergableCIs.size() > 1) { |
1409 | MergableCIsVector.push_back(Elt: MergableCIs); |
1410 | LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() |
1411 | << " parallel regions in block " << BB->getName() |
1412 | << " of function " << BB->getParent()->getName() |
1413 | << "\n" ;); |
1414 | } |
1415 | |
1416 | MergableCIs.clear(); |
1417 | } |
1418 | |
1419 | if (!MergableCIsVector.empty()) { |
1420 | Changed = true; |
1421 | |
1422 | for (auto &MergableCIs : MergableCIsVector) |
1423 | Merge(MergableCIs, BB); |
1424 | MergableCIsVector.clear(); |
1425 | } |
1426 | } |
1427 | |
1428 | if (Changed) { |
1429 | /// Re-collect use for fork calls, emitted barrier calls, and |
1430 | /// any emitted master/end_master calls. |
1431 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_fork_call); |
1432 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_barrier); |
1433 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_master); |
1434 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_end_master); |
1435 | } |
1436 | |
1437 | return Changed; |
1438 | } |
1439 | |
1440 | /// Try to delete parallel regions if possible. |
1441 | bool deleteParallelRegions() { |
1442 | const unsigned CallbackCalleeOperand = 2; |
1443 | |
1444 | OMPInformationCache::RuntimeFunctionInfo &RFI = |
1445 | OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; |
1446 | |
1447 | if (!RFI.Declaration) |
1448 | return false; |
1449 | |
1450 | bool Changed = false; |
1451 | auto DeleteCallCB = [&](Use &U, Function &) { |
1452 | CallInst *CI = getCallIfRegularCall(U); |
1453 | if (!CI) |
1454 | return false; |
1455 | auto *Fn = dyn_cast<Function>( |
1456 | Val: CI->getArgOperand(i: CallbackCalleeOperand)->stripPointerCasts()); |
1457 | if (!Fn) |
1458 | return false; |
1459 | if (!Fn->onlyReadsMemory()) |
1460 | return false; |
1461 | if (!Fn->hasFnAttribute(Kind: Attribute::WillReturn)) |
1462 | return false; |
1463 | |
1464 | LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " |
1465 | << CI->getCaller()->getName() << "\n" ); |
1466 | |
1467 | auto = [&](OptimizationRemark OR) { |
1468 | return OR << "Removing parallel region with no side-effects." ; |
1469 | }; |
1470 | emitRemark<OptimizationRemark>(I: CI, RemarkName: "OMP160" , RemarkCB&: Remark); |
1471 | |
1472 | CI->eraseFromParent(); |
1473 | Changed = true; |
1474 | ++NumOpenMPParallelRegionsDeleted; |
1475 | return true; |
1476 | }; |
1477 | |
1478 | RFI.foreachUse(SCC, CB: DeleteCallCB); |
1479 | |
1480 | return Changed; |
1481 | } |
1482 | |
1483 | /// Try to eliminate runtime calls by reusing existing ones. |
1484 | bool deduplicateRuntimeCalls() { |
1485 | bool Changed = false; |
1486 | |
1487 | RuntimeFunction DeduplicableRuntimeCallIDs[] = { |
1488 | OMPRTL_omp_get_num_threads, |
1489 | OMPRTL_omp_in_parallel, |
1490 | OMPRTL_omp_get_cancellation, |
1491 | OMPRTL_omp_get_supported_active_levels, |
1492 | OMPRTL_omp_get_level, |
1493 | OMPRTL_omp_get_ancestor_thread_num, |
1494 | OMPRTL_omp_get_team_size, |
1495 | OMPRTL_omp_get_active_level, |
1496 | OMPRTL_omp_in_final, |
1497 | OMPRTL_omp_get_proc_bind, |
1498 | OMPRTL_omp_get_num_places, |
1499 | OMPRTL_omp_get_num_procs, |
1500 | OMPRTL_omp_get_place_num, |
1501 | OMPRTL_omp_get_partition_num_places, |
1502 | OMPRTL_omp_get_partition_place_nums}; |
1503 | |
1504 | // Global-tid is handled separately. |
1505 | SmallSetVector<Value *, 16> GTIdArgs; |
1506 | collectGlobalThreadIdArguments(GTIdArgs); |
1507 | LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() |
1508 | << " global thread ID arguments\n" ); |
1509 | |
1510 | for (Function *F : SCC) { |
1511 | for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) |
1512 | Changed |= deduplicateRuntimeCalls( |
1513 | F&: *F, RFI&: OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); |
1514 | |
1515 | // __kmpc_global_thread_num is special as we can replace it with an |
1516 | // argument in enough cases to make it worth trying. |
1517 | Value *GTIdArg = nullptr; |
1518 | for (Argument &Arg : F->args()) |
1519 | if (GTIdArgs.count(key: &Arg)) { |
1520 | GTIdArg = &Arg; |
1521 | break; |
1522 | } |
1523 | Changed |= deduplicateRuntimeCalls( |
1524 | F&: *F, RFI&: OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], ReplVal: GTIdArg); |
1525 | } |
1526 | |
1527 | return Changed; |
1528 | } |
1529 | |
1530 | /// Tries to remove known runtime symbols that are optional from the module. |
1531 | bool removeRuntimeSymbols() { |
1532 | // The RPC client symbol is defined in `libc` and indicates that something |
1533 | // required an RPC server. If its users were all optimized out then we can |
1534 | // safely remove it. |
1535 | // TODO: This should be somewhere more common in the future. |
1536 | if (GlobalVariable *GV = M.getNamedGlobal(Name: "__llvm_rpc_client" )) { |
1537 | if (GV->hasNUsesOrMore(N: 1)) |
1538 | return false; |
1539 | |
1540 | GV->replaceAllUsesWith(V: PoisonValue::get(T: GV->getType())); |
1541 | GV->eraseFromParent(); |
1542 | return true; |
1543 | } |
1544 | return false; |
1545 | } |
1546 | |
1547 | /// Tries to hide the latency of runtime calls that involve host to |
1548 | /// device memory transfers by splitting them into their "issue" and "wait" |
1549 | /// versions. The "issue" is moved upwards as much as possible. The "wait" is |
1550 | /// moved downards as much as possible. The "issue" issues the memory transfer |
1551 | /// asynchronously, returning a handle. The "wait" waits in the returned |
1552 | /// handle for the memory transfer to finish. |
1553 | bool hideMemTransfersLatency() { |
1554 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; |
1555 | bool Changed = false; |
1556 | auto SplitMemTransfers = [&](Use &U, Function &Decl) { |
1557 | auto *RTCall = getCallIfRegularCall(U, RFI: &RFI); |
1558 | if (!RTCall) |
1559 | return false; |
1560 | |
1561 | OffloadArray OffloadArrays[3]; |
1562 | if (!getValuesInOffloadArrays(RuntimeCall&: *RTCall, OAs: OffloadArrays)) |
1563 | return false; |
1564 | |
1565 | LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); |
1566 | |
1567 | // TODO: Check if can be moved upwards. |
1568 | bool WasSplit = false; |
1569 | Instruction *WaitMovementPoint = canBeMovedDownwards(RuntimeCall&: *RTCall); |
1570 | if (WaitMovementPoint) |
1571 | WasSplit = splitTargetDataBeginRTC(RuntimeCall&: *RTCall, WaitMovementPoint&: *WaitMovementPoint); |
1572 | |
1573 | Changed |= WasSplit; |
1574 | return WasSplit; |
1575 | }; |
1576 | if (OMPInfoCache.runtimeFnsAvailable( |
1577 | Fns: {OMPRTL___tgt_target_data_begin_mapper_issue, |
1578 | OMPRTL___tgt_target_data_begin_mapper_wait})) |
1579 | RFI.foreachUse(SCC, CB: SplitMemTransfers); |
1580 | |
1581 | return Changed; |
1582 | } |
1583 | |
1584 | void analysisGlobalization() { |
1585 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
1586 | |
1587 | auto CheckGlobalization = [&](Use &U, Function &Decl) { |
1588 | if (CallInst *CI = getCallIfRegularCall(U, RFI: &RFI)) { |
1589 | auto = [&](OptimizationRemarkMissed ORM) { |
1590 | return ORM |
1591 | << "Found thread data sharing on the GPU. " |
1592 | << "Expect degraded performance due to data globalization." ; |
1593 | }; |
1594 | emitRemark<OptimizationRemarkMissed>(I: CI, RemarkName: "OMP112" , RemarkCB&: Remark); |
1595 | } |
1596 | |
1597 | return false; |
1598 | }; |
1599 | |
1600 | RFI.foreachUse(SCC, CB: CheckGlobalization); |
1601 | } |
1602 | |
1603 | /// Maps the values stored in the offload arrays passed as arguments to |
1604 | /// \p RuntimeCall into the offload arrays in \p OAs. |
1605 | bool getValuesInOffloadArrays(CallInst &RuntimeCall, |
1606 | MutableArrayRef<OffloadArray> OAs) { |
1607 | assert(OAs.size() == 3 && "Need space for three offload arrays!" ); |
1608 | |
1609 | // A runtime call that involves memory offloading looks something like: |
1610 | // call void @__tgt_target_data_begin_mapper(arg0, arg1, |
1611 | // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, |
1612 | // ...) |
1613 | // So, the idea is to access the allocas that allocate space for these |
1614 | // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. |
1615 | // Therefore: |
1616 | // i8** %offload_baseptrs. |
1617 | Value *BasePtrsArg = |
1618 | RuntimeCall.getArgOperand(i: OffloadArray::BasePtrsArgNum); |
1619 | // i8** %offload_ptrs. |
1620 | Value *PtrsArg = RuntimeCall.getArgOperand(i: OffloadArray::PtrsArgNum); |
1621 | // i8** %offload_sizes. |
1622 | Value *SizesArg = RuntimeCall.getArgOperand(i: OffloadArray::SizesArgNum); |
1623 | |
1624 | // Get values stored in **offload_baseptrs. |
1625 | auto *V = getUnderlyingObject(V: BasePtrsArg); |
1626 | if (!isa<AllocaInst>(Val: V)) |
1627 | return false; |
1628 | auto *BasePtrsArray = cast<AllocaInst>(Val: V); |
1629 | if (!OAs[0].initialize(Array&: *BasePtrsArray, Before&: RuntimeCall)) |
1630 | return false; |
1631 | |
1632 | // Get values stored in **offload_baseptrs. |
1633 | V = getUnderlyingObject(V: PtrsArg); |
1634 | if (!isa<AllocaInst>(Val: V)) |
1635 | return false; |
1636 | auto *PtrsArray = cast<AllocaInst>(Val: V); |
1637 | if (!OAs[1].initialize(Array&: *PtrsArray, Before&: RuntimeCall)) |
1638 | return false; |
1639 | |
1640 | // Get values stored in **offload_sizes. |
1641 | V = getUnderlyingObject(V: SizesArg); |
1642 | // If it's a [constant] global array don't analyze it. |
1643 | if (isa<GlobalValue>(Val: V)) |
1644 | return isa<Constant>(Val: V); |
1645 | if (!isa<AllocaInst>(Val: V)) |
1646 | return false; |
1647 | |
1648 | auto *SizesArray = cast<AllocaInst>(Val: V); |
1649 | if (!OAs[2].initialize(Array&: *SizesArray, Before&: RuntimeCall)) |
1650 | return false; |
1651 | |
1652 | return true; |
1653 | } |
1654 | |
1655 | /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. |
1656 | /// For now this is a way to test that the function getValuesInOffloadArrays |
1657 | /// is working properly. |
1658 | /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. |
1659 | void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { |
1660 | assert(OAs.size() == 3 && "There are three offload arrays to debug!" ); |
1661 | |
1662 | LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n" ); |
1663 | std::string ValuesStr; |
1664 | raw_string_ostream Printer(ValuesStr); |
1665 | std::string Separator = " --- " ; |
1666 | |
1667 | for (auto *BP : OAs[0].StoredValues) { |
1668 | BP->print(O&: Printer); |
1669 | Printer << Separator; |
1670 | } |
1671 | LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << ValuesStr << "\n" ); |
1672 | ValuesStr.clear(); |
1673 | |
1674 | for (auto *P : OAs[1].StoredValues) { |
1675 | P->print(O&: Printer); |
1676 | Printer << Separator; |
1677 | } |
1678 | LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << ValuesStr << "\n" ); |
1679 | ValuesStr.clear(); |
1680 | |
1681 | for (auto *S : OAs[2].StoredValues) { |
1682 | S->print(O&: Printer); |
1683 | Printer << Separator; |
1684 | } |
1685 | LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << ValuesStr << "\n" ); |
1686 | } |
1687 | |
1688 | /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be |
1689 | /// moved. Returns nullptr if the movement is not possible, or not worth it. |
1690 | Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { |
1691 | // FIXME: This traverses only the BasicBlock where RuntimeCall is. |
1692 | // Make it traverse the CFG. |
1693 | |
1694 | Instruction *CurrentI = &RuntimeCall; |
1695 | bool IsWorthIt = false; |
1696 | while ((CurrentI = CurrentI->getNextNode())) { |
1697 | |
1698 | // TODO: Once we detect the regions to be offloaded we should use the |
1699 | // alias analysis manager to check if CurrentI may modify one of |
1700 | // the offloaded regions. |
1701 | if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { |
1702 | if (IsWorthIt) |
1703 | return CurrentI; |
1704 | |
1705 | return nullptr; |
1706 | } |
1707 | |
1708 | // FIXME: For now if we move it over anything without side effect |
1709 | // is worth it. |
1710 | IsWorthIt = true; |
1711 | } |
1712 | |
1713 | // Return end of BasicBlock. |
1714 | return RuntimeCall.getParent()->getTerminator(); |
1715 | } |
1716 | |
1717 | /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. |
1718 | bool splitTargetDataBeginRTC(CallInst &RuntimeCall, |
1719 | Instruction &WaitMovementPoint) { |
1720 | // Create stack allocated handle (__tgt_async_info) at the beginning of the |
1721 | // function. Used for storing information of the async transfer, allowing to |
1722 | // wait on it later. |
1723 | auto &IRBuilder = OMPInfoCache.OMPBuilder; |
1724 | Function *F = RuntimeCall.getCaller(); |
1725 | BasicBlock &Entry = F->getEntryBlock(); |
1726 | IRBuilder.Builder.SetInsertPoint(TheBB: &Entry, |
1727 | IP: Entry.getFirstNonPHIOrDbgOrAlloca()); |
1728 | Value *Handle = IRBuilder.Builder.CreateAlloca( |
1729 | Ty: IRBuilder.AsyncInfo, /*ArraySize=*/nullptr, Name: "handle" ); |
1730 | Handle = |
1731 | IRBuilder.Builder.CreateAddrSpaceCast(V: Handle, DestTy: IRBuilder.AsyncInfoPtr); |
1732 | |
1733 | // Add "issue" runtime call declaration: |
1734 | // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, |
1735 | // i8**, i8**, i64*, i64*) |
1736 | FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( |
1737 | M, FnID: OMPRTL___tgt_target_data_begin_mapper_issue); |
1738 | |
1739 | // Change RuntimeCall call site for its asynchronous version. |
1740 | SmallVector<Value *, 16> Args; |
1741 | for (auto &Arg : RuntimeCall.args()) |
1742 | Args.push_back(Elt: Arg.get()); |
1743 | Args.push_back(Elt: Handle); |
1744 | |
1745 | CallInst *IssueCallsite = CallInst::Create(Func: IssueDecl, Args, /*NameStr=*/"" , |
1746 | InsertBefore: RuntimeCall.getIterator()); |
1747 | OMPInfoCache.setCallingConvention(Callee: IssueDecl, CI: IssueCallsite); |
1748 | RuntimeCall.eraseFromParent(); |
1749 | |
1750 | // Add "wait" runtime call declaration: |
1751 | // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) |
1752 | FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( |
1753 | M, FnID: OMPRTL___tgt_target_data_begin_mapper_wait); |
1754 | |
1755 | Value *WaitParams[2] = { |
1756 | IssueCallsite->getArgOperand( |
1757 | i: OffloadArray::DeviceIDArgNum), // device_id. |
1758 | Handle // handle to wait on. |
1759 | }; |
1760 | CallInst *WaitCallsite = CallInst::Create( |
1761 | Func: WaitDecl, Args: WaitParams, /*NameStr=*/"" , InsertBefore: WaitMovementPoint.getIterator()); |
1762 | OMPInfoCache.setCallingConvention(Callee: WaitDecl, CI: WaitCallsite); |
1763 | |
1764 | return true; |
1765 | } |
1766 | |
1767 | static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, |
1768 | bool GlobalOnly, bool &SingleChoice) { |
1769 | if (CurrentIdent == NextIdent) |
1770 | return CurrentIdent; |
1771 | |
1772 | // TODO: Figure out how to actually combine multiple debug locations. For |
1773 | // now we just keep an existing one if there is a single choice. |
1774 | if (!GlobalOnly || isa<GlobalValue>(Val: NextIdent)) { |
1775 | SingleChoice = !CurrentIdent; |
1776 | return NextIdent; |
1777 | } |
1778 | return nullptr; |
1779 | } |
1780 | |
1781 | /// Return an `struct ident_t*` value that represents the ones used in the |
1782 | /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not |
1783 | /// return a local `struct ident_t*`. For now, if we cannot find a suitable |
1784 | /// return value we create one from scratch. We also do not yet combine |
1785 | /// information, e.g., the source locations, see combinedIdentStruct. |
1786 | Value * |
1787 | getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, |
1788 | Function &F, bool GlobalOnly) { |
1789 | bool SingleChoice = true; |
1790 | Value *Ident = nullptr; |
1791 | auto CombineIdentStruct = [&](Use &U, Function &Caller) { |
1792 | CallInst *CI = getCallIfRegularCall(U, RFI: &RFI); |
1793 | if (!CI || &F != &Caller) |
1794 | return false; |
1795 | Ident = combinedIdentStruct(CurrentIdent: Ident, NextIdent: CI->getArgOperand(i: 0), |
1796 | /* GlobalOnly */ true, SingleChoice); |
1797 | return false; |
1798 | }; |
1799 | RFI.foreachUse(SCC, CB: CombineIdentStruct); |
1800 | |
1801 | if (!Ident || !SingleChoice) { |
1802 | // The IRBuilder uses the insertion block to get to the module, this is |
1803 | // unfortunate but we work around it for now. |
1804 | if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) |
1805 | OMPInfoCache.OMPBuilder.updateToLocation(Loc: OpenMPIRBuilder::InsertPointTy( |
1806 | &F.getEntryBlock(), F.getEntryBlock().begin())); |
1807 | // Create a fallback location if non was found. |
1808 | // TODO: Use the debug locations of the calls instead. |
1809 | uint32_t SrcLocStrSize; |
1810 | Constant *Loc = |
1811 | OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); |
1812 | Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr: Loc, SrcLocStrSize); |
1813 | } |
1814 | return Ident; |
1815 | } |
1816 | |
1817 | /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or |
1818 | /// \p ReplVal if given. |
1819 | bool deduplicateRuntimeCalls(Function &F, |
1820 | OMPInformationCache::RuntimeFunctionInfo &RFI, |
1821 | Value *ReplVal = nullptr) { |
1822 | auto *UV = RFI.getUseVector(F); |
1823 | if (!UV || UV->size() + (ReplVal != nullptr) < 2) |
1824 | return false; |
1825 | |
1826 | LLVM_DEBUG( |
1827 | dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name |
1828 | << (ReplVal ? " with an existing value\n" : "\n" ) << "\n" ); |
1829 | |
1830 | assert((!ReplVal || (isa<Argument>(ReplVal) && |
1831 | cast<Argument>(ReplVal)->getParent() == &F)) && |
1832 | "Unexpected replacement value!" ); |
1833 | |
1834 | // TODO: Use dominance to find a good position instead. |
1835 | auto CanBeMoved = [this](CallBase &CB) { |
1836 | unsigned NumArgs = CB.arg_size(); |
1837 | if (NumArgs == 0) |
1838 | return true; |
1839 | if (CB.getArgOperand(i: 0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) |
1840 | return false; |
1841 | for (unsigned U = 1; U < NumArgs; ++U) |
1842 | if (isa<Instruction>(Val: CB.getArgOperand(i: U))) |
1843 | return false; |
1844 | return true; |
1845 | }; |
1846 | |
1847 | if (!ReplVal) { |
1848 | auto *DT = |
1849 | OMPInfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F); |
1850 | if (!DT) |
1851 | return false; |
1852 | Instruction *IP = nullptr; |
1853 | for (Use *U : *UV) { |
1854 | if (CallInst *CI = getCallIfRegularCall(U&: *U, RFI: &RFI)) { |
1855 | if (IP) |
1856 | IP = DT->findNearestCommonDominator(I1: IP, I2: CI); |
1857 | else |
1858 | IP = CI; |
1859 | if (!CanBeMoved(*CI)) |
1860 | continue; |
1861 | if (!ReplVal) |
1862 | ReplVal = CI; |
1863 | } |
1864 | } |
1865 | if (!ReplVal) |
1866 | return false; |
1867 | assert(IP && "Expected insertion point!" ); |
1868 | cast<Instruction>(Val: ReplVal)->moveBefore(InsertPos: IP->getIterator()); |
1869 | } |
1870 | |
1871 | // If we use a call as a replacement value we need to make sure the ident is |
1872 | // valid at the new location. For now we just pick a global one, either |
1873 | // existing and used by one of the calls, or created from scratch. |
1874 | if (CallBase *CI = dyn_cast<CallBase>(Val: ReplVal)) { |
1875 | if (!CI->arg_empty() && |
1876 | CI->getArgOperand(i: 0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { |
1877 | Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, |
1878 | /* GlobalOnly */ true); |
1879 | CI->setArgOperand(i: 0, v: Ident); |
1880 | } |
1881 | } |
1882 | |
1883 | bool Changed = false; |
1884 | auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { |
1885 | CallInst *CI = getCallIfRegularCall(U, RFI: &RFI); |
1886 | if (!CI || CI == ReplVal || &F != &Caller) |
1887 | return false; |
1888 | assert(CI->getCaller() == &F && "Unexpected call!" ); |
1889 | |
1890 | auto = [&](OptimizationRemark OR) { |
1891 | return OR << "OpenMP runtime call " |
1892 | << ore::NV("OpenMPOptRuntime" , RFI.Name) << " deduplicated." ; |
1893 | }; |
1894 | if (CI->getDebugLoc()) |
1895 | emitRemark<OptimizationRemark>(I: CI, RemarkName: "OMP170" , RemarkCB&: Remark); |
1896 | else |
1897 | emitRemark<OptimizationRemark>(F: &F, RemarkName: "OMP170" , RemarkCB&: Remark); |
1898 | |
1899 | CI->replaceAllUsesWith(V: ReplVal); |
1900 | CI->eraseFromParent(); |
1901 | ++NumOpenMPRuntimeCallsDeduplicated; |
1902 | Changed = true; |
1903 | return true; |
1904 | }; |
1905 | RFI.foreachUse(SCC, CB: ReplaceAndDeleteCB); |
1906 | |
1907 | return Changed; |
1908 | } |
1909 | |
1910 | /// Collect arguments that represent the global thread id in \p GTIdArgs. |
1911 | void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { |
1912 | // TODO: Below we basically perform a fixpoint iteration with a pessimistic |
1913 | // initialization. We could define an AbstractAttribute instead and |
1914 | // run the Attributor here once it can be run as an SCC pass. |
1915 | |
1916 | // Helper to check the argument \p ArgNo at all call sites of \p F for |
1917 | // a GTId. |
1918 | auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { |
1919 | if (!F.hasLocalLinkage()) |
1920 | return false; |
1921 | for (Use &U : F.uses()) { |
1922 | if (CallInst *CI = getCallIfRegularCall(U)) { |
1923 | Value *ArgOp = CI->getArgOperand(i: ArgNo); |
1924 | if (CI == &RefCI || GTIdArgs.count(key: ArgOp) || |
1925 | getCallIfRegularCall( |
1926 | V&: *ArgOp, RFI: &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) |
1927 | continue; |
1928 | } |
1929 | return false; |
1930 | } |
1931 | return true; |
1932 | }; |
1933 | |
1934 | // Helper to identify uses of a GTId as GTId arguments. |
1935 | auto AddUserArgs = [&](Value >Id) { |
1936 | for (Use &U : GTId.uses()) |
1937 | if (CallInst *CI = dyn_cast<CallInst>(Val: U.getUser())) |
1938 | if (CI->isArgOperand(U: &U)) |
1939 | if (Function *Callee = CI->getCalledFunction()) |
1940 | if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) |
1941 | GTIdArgs.insert(X: Callee->getArg(i: U.getOperandNo())); |
1942 | }; |
1943 | |
1944 | // The argument users of __kmpc_global_thread_num calls are GTIds. |
1945 | OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = |
1946 | OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; |
1947 | |
1948 | GlobThreadNumRFI.foreachUse(SCC, CB: [&](Use &U, Function &F) { |
1949 | if (CallInst *CI = getCallIfRegularCall(U, RFI: &GlobThreadNumRFI)) |
1950 | AddUserArgs(*CI); |
1951 | return false; |
1952 | }); |
1953 | |
1954 | // Transitively search for more arguments by looking at the users of the |
1955 | // ones we know already. During the search the GTIdArgs vector is extended |
1956 | // so we cannot cache the size nor can we use a range based for. |
1957 | for (unsigned U = 0; U < GTIdArgs.size(); ++U) |
1958 | AddUserArgs(*GTIdArgs[U]); |
1959 | } |
1960 | |
1961 | /// Kernel (=GPU) optimizations and utility functions |
1962 | /// |
1963 | ///{{ |
1964 | |
1965 | /// Cache to remember the unique kernel for a function. |
1966 | DenseMap<Function *, std::optional<Kernel>> UniqueKernelMap; |
1967 | |
1968 | /// Find the unique kernel that will execute \p F, if any. |
1969 | Kernel getUniqueKernelFor(Function &F); |
1970 | |
1971 | /// Find the unique kernel that will execute \p I, if any. |
1972 | Kernel getUniqueKernelFor(Instruction &I) { |
1973 | return getUniqueKernelFor(F&: *I.getFunction()); |
1974 | } |
1975 | |
1976 | /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in |
1977 | /// the cases we can avoid taking the address of a function. |
1978 | bool rewriteDeviceCodeStateMachine(); |
1979 | |
1980 | /// |
1981 | ///}} |
1982 | |
1983 | /// Emit a remark generically |
1984 | /// |
1985 | /// This template function can be used to generically emit a remark. The |
1986 | /// RemarkKind should be one of the following: |
1987 | /// - OptimizationRemark to indicate a successful optimization attempt |
1988 | /// - OptimizationRemarkMissed to report a failed optimization attempt |
1989 | /// - OptimizationRemarkAnalysis to provide additional information about an |
1990 | /// optimization attempt |
1991 | /// |
1992 | /// The remark is built using a callback function provided by the caller that |
1993 | /// takes a RemarkKind as input and returns a RemarkKind. |
1994 | template <typename RemarkKind, typename RemarkCallBack> |
1995 | void (Instruction *I, StringRef , |
1996 | RemarkCallBack &&) const { |
1997 | Function *F = I->getParent()->getParent(); |
1998 | auto &ORE = OREGetter(F); |
1999 | |
2000 | if (RemarkName.starts_with(Prefix: "OMP" )) |
2001 | ORE.emit([&]() { |
2002 | return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) |
2003 | << " [" << RemarkName << "]" ; |
2004 | }); |
2005 | else |
2006 | ORE.emit( |
2007 | [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); |
2008 | } |
2009 | |
2010 | /// Emit a remark on a function. |
2011 | template <typename RemarkKind, typename RemarkCallBack> |
2012 | void (Function *F, StringRef , |
2013 | RemarkCallBack &&) const { |
2014 | auto &ORE = OREGetter(F); |
2015 | |
2016 | if (RemarkName.starts_with(Prefix: "OMP" )) |
2017 | ORE.emit([&]() { |
2018 | return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) |
2019 | << " [" << RemarkName << "]" ; |
2020 | }); |
2021 | else |
2022 | ORE.emit( |
2023 | [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); |
2024 | } |
2025 | |
2026 | /// The underlying module. |
2027 | Module &M; |
2028 | |
2029 | /// The SCC we are operating on. |
2030 | SmallVectorImpl<Function *> &SCC; |
2031 | |
2032 | /// Callback to update the call graph, the first argument is a removed call, |
2033 | /// the second an optional replacement call. |
2034 | CallGraphUpdater &CGUpdater; |
2035 | |
2036 | /// Callback to get an OptimizationRemarkEmitter from a Function * |
2037 | OptimizationRemarkGetter OREGetter; |
2038 | |
2039 | /// OpenMP-specific information cache. Also Used for Attributor runs. |
2040 | OMPInformationCache &OMPInfoCache; |
2041 | |
2042 | /// Attributor instance. |
2043 | Attributor &A; |
2044 | |
2045 | /// Helper function to run Attributor on SCC. |
2046 | bool runAttributor(bool IsModulePass) { |
2047 | if (SCC.empty()) |
2048 | return false; |
2049 | |
2050 | registerAAs(IsModulePass); |
2051 | |
2052 | ChangeStatus Changed = A.run(); |
2053 | |
2054 | LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() |
2055 | << " functions, result: " << Changed << ".\n" ); |
2056 | |
2057 | if (Changed == ChangeStatus::CHANGED) |
2058 | OMPInfoCache.invalidateAnalyses(); |
2059 | |
2060 | return Changed == ChangeStatus::CHANGED; |
2061 | } |
2062 | |
2063 | void registerFoldRuntimeCall(RuntimeFunction RF); |
2064 | |
2065 | /// Populate the Attributor with abstract attribute opportunities in the |
2066 | /// functions. |
2067 | void registerAAs(bool IsModulePass); |
2068 | |
2069 | public: |
2070 | /// Callback to register AAs for live functions, including internal functions |
2071 | /// marked live during the traversal. |
2072 | static void registerAAsForFunction(Attributor &A, const Function &F); |
2073 | }; |
2074 | |
2075 | Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { |
2076 | if (OMPInfoCache.CGSCC && !OMPInfoCache.CGSCC->empty() && |
2077 | !OMPInfoCache.CGSCC->contains(key: &F)) |
2078 | return nullptr; |
2079 | |
2080 | // Use a scope to keep the lifetime of the CachedKernel short. |
2081 | { |
2082 | std::optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; |
2083 | if (CachedKernel) |
2084 | return *CachedKernel; |
2085 | |
2086 | // TODO: We should use an AA to create an (optimistic and callback |
2087 | // call-aware) call graph. For now we stick to simple patterns that |
2088 | // are less powerful, basically the worst fixpoint. |
2089 | if (isOpenMPKernel(Fn&: F)) { |
2090 | CachedKernel = Kernel(&F); |
2091 | return *CachedKernel; |
2092 | } |
2093 | |
2094 | CachedKernel = nullptr; |
2095 | if (!F.hasLocalLinkage()) { |
2096 | |
2097 | // See https://openmp.llvm.org/remarks/OptimizationRemarks.html |
2098 | auto = [&](OptimizationRemarkAnalysis ORA) { |
2099 | return ORA << "Potentially unknown OpenMP target region caller." ; |
2100 | }; |
2101 | emitRemark<OptimizationRemarkAnalysis>(F: &F, RemarkName: "OMP100" , RemarkCB&: Remark); |
2102 | |
2103 | return nullptr; |
2104 | } |
2105 | } |
2106 | |
2107 | auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { |
2108 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: U.getUser())) { |
2109 | // Allow use in equality comparisons. |
2110 | if (Cmp->isEquality()) |
2111 | return getUniqueKernelFor(I&: *Cmp); |
2112 | return nullptr; |
2113 | } |
2114 | if (auto *CB = dyn_cast<CallBase>(Val: U.getUser())) { |
2115 | // Allow direct calls. |
2116 | if (CB->isCallee(U: &U)) |
2117 | return getUniqueKernelFor(I&: *CB); |
2118 | |
2119 | OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = |
2120 | OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
2121 | // Allow the use in __kmpc_parallel_51 calls. |
2122 | if (OpenMPOpt::getCallIfRegularCall(V&: *U.getUser(), RFI: &KernelParallelRFI)) |
2123 | return getUniqueKernelFor(I&: *CB); |
2124 | return nullptr; |
2125 | } |
2126 | // Disallow every other use. |
2127 | return nullptr; |
2128 | }; |
2129 | |
2130 | // TODO: In the future we want to track more than just a unique kernel. |
2131 | SmallPtrSet<Kernel, 2> PotentialKernels; |
2132 | OMPInformationCache::foreachUse(F, CB: [&](const Use &U) { |
2133 | PotentialKernels.insert(Ptr: GetUniqueKernelForUse(U)); |
2134 | }); |
2135 | |
2136 | Kernel K = nullptr; |
2137 | if (PotentialKernels.size() == 1) |
2138 | K = *PotentialKernels.begin(); |
2139 | |
2140 | // Cache the result. |
2141 | UniqueKernelMap[&F] = K; |
2142 | |
2143 | return K; |
2144 | } |
2145 | |
2146 | bool OpenMPOpt::rewriteDeviceCodeStateMachine() { |
2147 | OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = |
2148 | OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
2149 | |
2150 | bool Changed = false; |
2151 | if (!KernelParallelRFI) |
2152 | return Changed; |
2153 | |
2154 | // If we have disabled state machine changes, exit |
2155 | if (DisableOpenMPOptStateMachineRewrite) |
2156 | return Changed; |
2157 | |
2158 | for (Function *F : SCC) { |
2159 | |
2160 | // Check if the function is a use in a __kmpc_parallel_51 call at |
2161 | // all. |
2162 | bool UnknownUse = false; |
2163 | bool KernelParallelUse = false; |
2164 | unsigned NumDirectCalls = 0; |
2165 | |
2166 | SmallVector<Use *, 2> ToBeReplacedStateMachineUses; |
2167 | OMPInformationCache::foreachUse(F&: *F, CB: [&](Use &U) { |
2168 | if (auto *CB = dyn_cast<CallBase>(Val: U.getUser())) |
2169 | if (CB->isCallee(U: &U)) { |
2170 | ++NumDirectCalls; |
2171 | return; |
2172 | } |
2173 | |
2174 | if (isa<ICmpInst>(Val: U.getUser())) { |
2175 | ToBeReplacedStateMachineUses.push_back(Elt: &U); |
2176 | return; |
2177 | } |
2178 | |
2179 | // Find wrapper functions that represent parallel kernels. |
2180 | CallInst *CI = |
2181 | OpenMPOpt::getCallIfRegularCall(V&: *U.getUser(), RFI: &KernelParallelRFI); |
2182 | const unsigned int WrapperFunctionArgNo = 6; |
2183 | if (!KernelParallelUse && CI && |
2184 | CI->getArgOperandNo(U: &U) == WrapperFunctionArgNo) { |
2185 | KernelParallelUse = true; |
2186 | ToBeReplacedStateMachineUses.push_back(Elt: &U); |
2187 | return; |
2188 | } |
2189 | UnknownUse = true; |
2190 | }); |
2191 | |
2192 | // Do not emit a remark if we haven't seen a __kmpc_parallel_51 |
2193 | // use. |
2194 | if (!KernelParallelUse) |
2195 | continue; |
2196 | |
2197 | // If this ever hits, we should investigate. |
2198 | // TODO: Checking the number of uses is not a necessary restriction and |
2199 | // should be lifted. |
2200 | if (UnknownUse || NumDirectCalls != 1 || |
2201 | ToBeReplacedStateMachineUses.size() > 2) { |
2202 | auto = [&](OptimizationRemarkAnalysis ORA) { |
2203 | return ORA << "Parallel region is used in " |
2204 | << (UnknownUse ? "unknown" : "unexpected" ) |
2205 | << " ways. Will not attempt to rewrite the state machine." ; |
2206 | }; |
2207 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OMP101" , RemarkCB&: Remark); |
2208 | continue; |
2209 | } |
2210 | |
2211 | // Even if we have __kmpc_parallel_51 calls, we (for now) give |
2212 | // up if the function is not called from a unique kernel. |
2213 | Kernel K = getUniqueKernelFor(F&: *F); |
2214 | if (!K) { |
2215 | auto = [&](OptimizationRemarkAnalysis ORA) { |
2216 | return ORA << "Parallel region is not called from a unique kernel. " |
2217 | "Will not attempt to rewrite the state machine." ; |
2218 | }; |
2219 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OMP102" , RemarkCB&: Remark); |
2220 | continue; |
2221 | } |
2222 | |
2223 | // We now know F is a parallel body function called only from the kernel K. |
2224 | // We also identified the state machine uses in which we replace the |
2225 | // function pointer by a new global symbol for identification purposes. This |
2226 | // ensures only direct calls to the function are left. |
2227 | |
2228 | Module &M = *F->getParent(); |
2229 | Type *Int8Ty = Type::getInt8Ty(C&: M.getContext()); |
2230 | |
2231 | auto *ID = new GlobalVariable( |
2232 | M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, |
2233 | UndefValue::get(T: Int8Ty), F->getName() + ".ID" ); |
2234 | |
2235 | for (Use *U : ToBeReplacedStateMachineUses) |
2236 | U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
2237 | C: ID, Ty: U->get()->getType())); |
2238 | |
2239 | ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; |
2240 | |
2241 | Changed = true; |
2242 | } |
2243 | |
2244 | return Changed; |
2245 | } |
2246 | |
2247 | /// Abstract Attribute for tracking ICV values. |
2248 | struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { |
2249 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
2250 | AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
2251 | |
2252 | /// Returns true if value is assumed to be tracked. |
2253 | bool isAssumedTracked() const { return getAssumed(); } |
2254 | |
2255 | /// Returns true if value is known to be tracked. |
2256 | bool isKnownTracked() const { return getAssumed(); } |
2257 | |
2258 | /// Create an abstract attribute biew for the position \p IRP. |
2259 | static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); |
2260 | |
2261 | /// Return the value with which \p I can be replaced for specific \p ICV. |
2262 | virtual std::optional<Value *> getReplacementValue(InternalControlVar ICV, |
2263 | const Instruction *I, |
2264 | Attributor &A) const { |
2265 | return std::nullopt; |
2266 | } |
2267 | |
2268 | /// Return an assumed unique ICV value if a single candidate is found. If |
2269 | /// there cannot be one, return a nullptr. If it is not clear yet, return |
2270 | /// std::nullopt. |
2271 | virtual std::optional<Value *> |
2272 | getUniqueReplacementValue(InternalControlVar ICV) const = 0; |
2273 | |
2274 | // Currently only nthreads is being tracked. |
2275 | // this array will only grow with time. |
2276 | InternalControlVar TrackableICVs[1] = {ICV_nthreads}; |
2277 | |
2278 | /// See AbstractAttribute::getName() |
2279 | StringRef getName() const override { return "AAICVTracker" ; } |
2280 | |
2281 | /// See AbstractAttribute::getIdAddr() |
2282 | const char *getIdAddr() const override { return &ID; } |
2283 | |
2284 | /// This function should return true if the type of the \p AA is AAICVTracker |
2285 | static bool classof(const AbstractAttribute *AA) { |
2286 | return (AA->getIdAddr() == &ID); |
2287 | } |
2288 | |
2289 | static const char ID; |
2290 | }; |
2291 | |
2292 | struct AAICVTrackerFunction : public AAICVTracker { |
2293 | AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) |
2294 | : AAICVTracker(IRP, A) {} |
2295 | |
2296 | // FIXME: come up with better string. |
2297 | const std::string getAsStr(Attributor *) const override { |
2298 | return "ICVTrackerFunction" ; |
2299 | } |
2300 | |
2301 | // FIXME: come up with some stats. |
2302 | void trackStatistics() const override {} |
2303 | |
2304 | /// We don't manifest anything for this AA. |
2305 | ChangeStatus manifest(Attributor &A) override { |
2306 | return ChangeStatus::UNCHANGED; |
2307 | } |
2308 | |
2309 | // Map of ICV to their values at specific program point. |
2310 | EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, |
2311 | InternalControlVar::ICV___last> |
2312 | ICVReplacementValuesMap; |
2313 | |
2314 | ChangeStatus updateImpl(Attributor &A) override { |
2315 | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
2316 | |
2317 | Function *F = getAnchorScope(); |
2318 | |
2319 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
2320 | |
2321 | for (InternalControlVar ICV : TrackableICVs) { |
2322 | auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; |
2323 | |
2324 | auto &ValuesMap = ICVReplacementValuesMap[ICV]; |
2325 | auto TrackValues = [&](Use &U, Function &) { |
2326 | CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); |
2327 | if (!CI) |
2328 | return false; |
2329 | |
2330 | // FIXME: handle setters with more that 1 arguments. |
2331 | /// Track new value. |
2332 | if (ValuesMap.insert(KV: std::make_pair(x&: CI, y: CI->getArgOperand(i: 0))).second) |
2333 | HasChanged = ChangeStatus::CHANGED; |
2334 | |
2335 | return false; |
2336 | }; |
2337 | |
2338 | auto CallCheck = [&](Instruction &I) { |
2339 | std::optional<Value *> ReplVal = getValueForCall(A, I, ICV); |
2340 | if (ReplVal && ValuesMap.insert(KV: std::make_pair(x: &I, y&: *ReplVal)).second) |
2341 | HasChanged = ChangeStatus::CHANGED; |
2342 | |
2343 | return true; |
2344 | }; |
2345 | |
2346 | // Track all changes of an ICV. |
2347 | SetterRFI.foreachUse(CB: TrackValues, F); |
2348 | |
2349 | bool UsedAssumedInformation = false; |
2350 | A.checkForAllInstructions(Pred: CallCheck, QueryingAA: *this, Opcodes: {Instruction::Call}, |
2351 | UsedAssumedInformation, |
2352 | /* CheckBBLivenessOnly */ true); |
2353 | |
2354 | /// TODO: Figure out a way to avoid adding entry in |
2355 | /// ICVReplacementValuesMap |
2356 | Instruction *Entry = &F->getEntryBlock().front(); |
2357 | if (HasChanged == ChangeStatus::CHANGED) |
2358 | ValuesMap.try_emplace(Key: Entry); |
2359 | } |
2360 | |
2361 | return HasChanged; |
2362 | } |
2363 | |
2364 | /// Helper to check if \p I is a call and get the value for it if it is |
2365 | /// unique. |
2366 | std::optional<Value *> getValueForCall(Attributor &A, const Instruction &I, |
2367 | InternalControlVar &ICV) const { |
2368 | |
2369 | const auto *CB = dyn_cast<CallBase>(Val: &I); |
2370 | if (!CB || CB->hasFnAttr(Kind: "no_openmp" ) || |
2371 | CB->hasFnAttr(Kind: "no_openmp_routines" ) || |
2372 | CB->hasFnAttr(Kind: "no_openmp_constructs" )) |
2373 | return std::nullopt; |
2374 | |
2375 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
2376 | auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; |
2377 | auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; |
2378 | Function *CalledFunction = CB->getCalledFunction(); |
2379 | |
2380 | // Indirect call, assume ICV changes. |
2381 | if (CalledFunction == nullptr) |
2382 | return nullptr; |
2383 | if (CalledFunction == GetterRFI.Declaration) |
2384 | return std::nullopt; |
2385 | if (CalledFunction == SetterRFI.Declaration) { |
2386 | if (ICVReplacementValuesMap[ICV].count(Val: &I)) |
2387 | return ICVReplacementValuesMap[ICV].lookup(Val: &I); |
2388 | |
2389 | return nullptr; |
2390 | } |
2391 | |
2392 | // Since we don't know, assume it changes the ICV. |
2393 | if (CalledFunction->isDeclaration()) |
2394 | return nullptr; |
2395 | |
2396 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
2397 | QueryingAA: *this, IRP: IRPosition::callsite_returned(CB: *CB), DepClass: DepClassTy::REQUIRED); |
2398 | |
2399 | if (ICVTrackingAA->isAssumedTracked()) { |
2400 | std::optional<Value *> URV = |
2401 | ICVTrackingAA->getUniqueReplacementValue(ICV); |
2402 | if (!URV || (*URV && AA::isValidAtPosition(VAC: AA::ValueAndContext(**URV, I), |
2403 | InfoCache&: OMPInfoCache))) |
2404 | return URV; |
2405 | } |
2406 | |
2407 | // If we don't know, assume it changes. |
2408 | return nullptr; |
2409 | } |
2410 | |
2411 | // We don't check unique value for a function, so return std::nullopt. |
2412 | std::optional<Value *> |
2413 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
2414 | return std::nullopt; |
2415 | } |
2416 | |
2417 | /// Return the value with which \p I can be replaced for specific \p ICV. |
2418 | std::optional<Value *> getReplacementValue(InternalControlVar ICV, |
2419 | const Instruction *I, |
2420 | Attributor &A) const override { |
2421 | const auto &ValuesMap = ICVReplacementValuesMap[ICV]; |
2422 | if (ValuesMap.count(Val: I)) |
2423 | return ValuesMap.lookup(Val: I); |
2424 | |
2425 | SmallVector<const Instruction *, 16> Worklist; |
2426 | SmallPtrSet<const Instruction *, 16> Visited; |
2427 | Worklist.push_back(Elt: I); |
2428 | |
2429 | std::optional<Value *> ReplVal; |
2430 | |
2431 | while (!Worklist.empty()) { |
2432 | const Instruction *CurrInst = Worklist.pop_back_val(); |
2433 | if (!Visited.insert(Ptr: CurrInst).second) |
2434 | continue; |
2435 | |
2436 | const BasicBlock *CurrBB = CurrInst->getParent(); |
2437 | |
2438 | // Go up and look for all potential setters/calls that might change the |
2439 | // ICV. |
2440 | while ((CurrInst = CurrInst->getPrevNode())) { |
2441 | if (ValuesMap.count(Val: CurrInst)) { |
2442 | std::optional<Value *> NewReplVal = ValuesMap.lookup(Val: CurrInst); |
2443 | // Unknown value, track new. |
2444 | if (!ReplVal) { |
2445 | ReplVal = NewReplVal; |
2446 | break; |
2447 | } |
2448 | |
2449 | // If we found a new value, we can't know the icv value anymore. |
2450 | if (NewReplVal) |
2451 | if (ReplVal != NewReplVal) |
2452 | return nullptr; |
2453 | |
2454 | break; |
2455 | } |
2456 | |
2457 | std::optional<Value *> NewReplVal = getValueForCall(A, I: *CurrInst, ICV); |
2458 | if (!NewReplVal) |
2459 | continue; |
2460 | |
2461 | // Unknown value, track new. |
2462 | if (!ReplVal) { |
2463 | ReplVal = NewReplVal; |
2464 | break; |
2465 | } |
2466 | |
2467 | // if (NewReplVal.hasValue()) |
2468 | // We found a new value, we can't know the icv value anymore. |
2469 | if (ReplVal != NewReplVal) |
2470 | return nullptr; |
2471 | } |
2472 | |
2473 | // If we are in the same BB and we have a value, we are done. |
2474 | if (CurrBB == I->getParent() && ReplVal) |
2475 | return ReplVal; |
2476 | |
2477 | // Go through all predecessors and add terminators for analysis. |
2478 | for (const BasicBlock *Pred : predecessors(BB: CurrBB)) |
2479 | if (const Instruction *Terminator = Pred->getTerminator()) |
2480 | Worklist.push_back(Elt: Terminator); |
2481 | } |
2482 | |
2483 | return ReplVal; |
2484 | } |
2485 | }; |
2486 | |
2487 | struct AAICVTrackerFunctionReturned : AAICVTracker { |
2488 | AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) |
2489 | : AAICVTracker(IRP, A) {} |
2490 | |
2491 | // FIXME: come up with better string. |
2492 | const std::string getAsStr(Attributor *) const override { |
2493 | return "ICVTrackerFunctionReturned" ; |
2494 | } |
2495 | |
2496 | // FIXME: come up with some stats. |
2497 | void trackStatistics() const override {} |
2498 | |
2499 | /// We don't manifest anything for this AA. |
2500 | ChangeStatus manifest(Attributor &A) override { |
2501 | return ChangeStatus::UNCHANGED; |
2502 | } |
2503 | |
2504 | // Map of ICV to their values at specific program point. |
2505 | EnumeratedArray<std::optional<Value *>, InternalControlVar, |
2506 | InternalControlVar::ICV___last> |
2507 | ICVReplacementValuesMap; |
2508 | |
2509 | /// Return the value with which \p I can be replaced for specific \p ICV. |
2510 | std::optional<Value *> |
2511 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
2512 | return ICVReplacementValuesMap[ICV]; |
2513 | } |
2514 | |
2515 | ChangeStatus updateImpl(Attributor &A) override { |
2516 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
2517 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
2518 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
2519 | |
2520 | if (!ICVTrackingAA->isAssumedTracked()) |
2521 | return indicatePessimisticFixpoint(); |
2522 | |
2523 | for (InternalControlVar ICV : TrackableICVs) { |
2524 | std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; |
2525 | std::optional<Value *> UniqueICVValue; |
2526 | |
2527 | auto CheckReturnInst = [&](Instruction &I) { |
2528 | std::optional<Value *> NewReplVal = |
2529 | ICVTrackingAA->getReplacementValue(ICV, I: &I, A); |
2530 | |
2531 | // If we found a second ICV value there is no unique returned value. |
2532 | if (UniqueICVValue && UniqueICVValue != NewReplVal) |
2533 | return false; |
2534 | |
2535 | UniqueICVValue = NewReplVal; |
2536 | |
2537 | return true; |
2538 | }; |
2539 | |
2540 | bool UsedAssumedInformation = false; |
2541 | if (!A.checkForAllInstructions(Pred: CheckReturnInst, QueryingAA: *this, Opcodes: {Instruction::Ret}, |
2542 | UsedAssumedInformation, |
2543 | /* CheckBBLivenessOnly */ true)) |
2544 | UniqueICVValue = nullptr; |
2545 | |
2546 | if (UniqueICVValue == ReplVal) |
2547 | continue; |
2548 | |
2549 | ReplVal = UniqueICVValue; |
2550 | Changed = ChangeStatus::CHANGED; |
2551 | } |
2552 | |
2553 | return Changed; |
2554 | } |
2555 | }; |
2556 | |
2557 | struct AAICVTrackerCallSite : AAICVTracker { |
2558 | AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) |
2559 | : AAICVTracker(IRP, A) {} |
2560 | |
2561 | void initialize(Attributor &A) override { |
2562 | assert(getAnchorScope() && "Expected anchor function" ); |
2563 | |
2564 | // We only initialize this AA for getters, so we need to know which ICV it |
2565 | // gets. |
2566 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
2567 | for (InternalControlVar ICV : TrackableICVs) { |
2568 | auto ICVInfo = OMPInfoCache.ICVs[ICV]; |
2569 | auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; |
2570 | if (Getter.Declaration == getAssociatedFunction()) { |
2571 | AssociatedICV = ICVInfo.Kind; |
2572 | return; |
2573 | } |
2574 | } |
2575 | |
2576 | /// Unknown ICV. |
2577 | indicatePessimisticFixpoint(); |
2578 | } |
2579 | |
2580 | ChangeStatus manifest(Attributor &A) override { |
2581 | if (!ReplVal || !*ReplVal) |
2582 | return ChangeStatus::UNCHANGED; |
2583 | |
2584 | A.changeAfterManifest(IRP: IRPosition::inst(I: *getCtxI()), NV&: **ReplVal); |
2585 | A.deleteAfterManifest(I&: *getCtxI()); |
2586 | |
2587 | return ChangeStatus::CHANGED; |
2588 | } |
2589 | |
2590 | // FIXME: come up with better string. |
2591 | const std::string getAsStr(Attributor *) const override { |
2592 | return "ICVTrackerCallSite" ; |
2593 | } |
2594 | |
2595 | // FIXME: come up with some stats. |
2596 | void trackStatistics() const override {} |
2597 | |
2598 | InternalControlVar AssociatedICV; |
2599 | std::optional<Value *> ReplVal; |
2600 | |
2601 | ChangeStatus updateImpl(Attributor &A) override { |
2602 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
2603 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
2604 | |
2605 | // We don't have any information, so we assume it changes the ICV. |
2606 | if (!ICVTrackingAA->isAssumedTracked()) |
2607 | return indicatePessimisticFixpoint(); |
2608 | |
2609 | std::optional<Value *> NewReplVal = |
2610 | ICVTrackingAA->getReplacementValue(ICV: AssociatedICV, I: getCtxI(), A); |
2611 | |
2612 | if (ReplVal == NewReplVal) |
2613 | return ChangeStatus::UNCHANGED; |
2614 | |
2615 | ReplVal = NewReplVal; |
2616 | return ChangeStatus::CHANGED; |
2617 | } |
2618 | |
2619 | // Return the value with which associated value can be replaced for specific |
2620 | // \p ICV. |
2621 | std::optional<Value *> |
2622 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
2623 | return ReplVal; |
2624 | } |
2625 | }; |
2626 | |
2627 | struct AAICVTrackerCallSiteReturned : AAICVTracker { |
2628 | AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) |
2629 | : AAICVTracker(IRP, A) {} |
2630 | |
2631 | // FIXME: come up with better string. |
2632 | const std::string getAsStr(Attributor *) const override { |
2633 | return "ICVTrackerCallSiteReturned" ; |
2634 | } |
2635 | |
2636 | // FIXME: come up with some stats. |
2637 | void trackStatistics() const override {} |
2638 | |
2639 | /// We don't manifest anything for this AA. |
2640 | ChangeStatus manifest(Attributor &A) override { |
2641 | return ChangeStatus::UNCHANGED; |
2642 | } |
2643 | |
2644 | // Map of ICV to their values at specific program point. |
2645 | EnumeratedArray<std::optional<Value *>, InternalControlVar, |
2646 | InternalControlVar::ICV___last> |
2647 | ICVReplacementValuesMap; |
2648 | |
2649 | /// Return the value with which associated value can be replaced for specific |
2650 | /// \p ICV. |
2651 | std::optional<Value *> |
2652 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
2653 | return ICVReplacementValuesMap[ICV]; |
2654 | } |
2655 | |
2656 | ChangeStatus updateImpl(Attributor &A) override { |
2657 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
2658 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
2659 | QueryingAA: *this, IRP: IRPosition::returned(F: *getAssociatedFunction()), |
2660 | DepClass: DepClassTy::REQUIRED); |
2661 | |
2662 | // We don't have any information, so we assume it changes the ICV. |
2663 | if (!ICVTrackingAA->isAssumedTracked()) |
2664 | return indicatePessimisticFixpoint(); |
2665 | |
2666 | for (InternalControlVar ICV : TrackableICVs) { |
2667 | std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; |
2668 | std::optional<Value *> NewReplVal = |
2669 | ICVTrackingAA->getUniqueReplacementValue(ICV); |
2670 | |
2671 | if (ReplVal == NewReplVal) |
2672 | continue; |
2673 | |
2674 | ReplVal = NewReplVal; |
2675 | Changed = ChangeStatus::CHANGED; |
2676 | } |
2677 | return Changed; |
2678 | } |
2679 | }; |
2680 | |
2681 | /// Determines if \p BB exits the function unconditionally itself or reaches a |
2682 | /// block that does through only unique successors. |
2683 | static bool hasFunctionEndAsUniqueSuccessor(const BasicBlock *BB) { |
2684 | if (succ_empty(BB)) |
2685 | return true; |
2686 | const BasicBlock *const Successor = BB->getUniqueSuccessor(); |
2687 | if (!Successor) |
2688 | return false; |
2689 | return hasFunctionEndAsUniqueSuccessor(BB: Successor); |
2690 | } |
2691 | |
2692 | struct AAExecutionDomainFunction : public AAExecutionDomain { |
2693 | AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) |
2694 | : AAExecutionDomain(IRP, A) {} |
2695 | |
2696 | ~AAExecutionDomainFunction() { delete RPOT; } |
2697 | |
2698 | void initialize(Attributor &A) override { |
2699 | Function *F = getAnchorScope(); |
2700 | assert(F && "Expected anchor function" ); |
2701 | RPOT = new ReversePostOrderTraversal<Function *>(F); |
2702 | } |
2703 | |
2704 | const std::string getAsStr(Attributor *) const override { |
2705 | unsigned TotalBlocks = 0, InitialThreadBlocks = 0, AlignedBlocks = 0; |
2706 | for (auto &It : BEDMap) { |
2707 | if (!It.getFirst()) |
2708 | continue; |
2709 | TotalBlocks++; |
2710 | InitialThreadBlocks += It.getSecond().IsExecutedByInitialThreadOnly; |
2711 | AlignedBlocks += It.getSecond().IsReachedFromAlignedBarrierOnly && |
2712 | It.getSecond().IsReachingAlignedBarrierOnly; |
2713 | } |
2714 | return "[AAExecutionDomain] " + std::to_string(val: InitialThreadBlocks) + "/" + |
2715 | std::to_string(val: AlignedBlocks) + " of " + |
2716 | std::to_string(val: TotalBlocks) + |
2717 | " executed by initial thread / aligned" ; |
2718 | } |
2719 | |
2720 | /// See AbstractAttribute::trackStatistics(). |
2721 | void trackStatistics() const override {} |
2722 | |
2723 | ChangeStatus manifest(Attributor &A) override { |
2724 | LLVM_DEBUG({ |
2725 | for (const BasicBlock &BB : *getAnchorScope()) { |
2726 | if (!isExecutedByInitialThreadOnly(BB)) |
2727 | continue; |
2728 | dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " |
2729 | << BB.getName() << " is executed by a single thread.\n" ; |
2730 | } |
2731 | }); |
2732 | |
2733 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
2734 | |
2735 | if (DisableOpenMPOptBarrierElimination) |
2736 | return Changed; |
2737 | |
2738 | SmallPtrSet<CallBase *, 16> DeletedBarriers; |
2739 | auto HandleAlignedBarrier = [&](CallBase *CB) { |
2740 | const ExecutionDomainTy &ED = CB ? CEDMap[{CB, PRE}] : BEDMap[nullptr]; |
2741 | if (!ED.IsReachedFromAlignedBarrierOnly || |
2742 | ED.EncounteredNonLocalSideEffect) |
2743 | return; |
2744 | if (!ED.EncounteredAssumes.empty() && !A.isModulePass()) |
2745 | return; |
2746 | |
2747 | // We can remove this barrier, if it is one, or aligned barriers reaching |
2748 | // the kernel end (if CB is nullptr). Aligned barriers reaching the kernel |
2749 | // end should only be removed if the kernel end is their unique successor; |
2750 | // otherwise, they may have side-effects that aren't accounted for in the |
2751 | // kernel end in their other successors. If those barriers have other |
2752 | // barriers reaching them, those can be transitively removed as well as |
2753 | // long as the kernel end is also their unique successor. |
2754 | if (CB) { |
2755 | DeletedBarriers.insert(Ptr: CB); |
2756 | A.deleteAfterManifest(I&: *CB); |
2757 | ++NumBarriersEliminated; |
2758 | Changed = ChangeStatus::CHANGED; |
2759 | } else if (!ED.AlignedBarriers.empty()) { |
2760 | Changed = ChangeStatus::CHANGED; |
2761 | SmallVector<CallBase *> Worklist(ED.AlignedBarriers.begin(), |
2762 | ED.AlignedBarriers.end()); |
2763 | SmallSetVector<CallBase *, 16> Visited; |
2764 | while (!Worklist.empty()) { |
2765 | CallBase *LastCB = Worklist.pop_back_val(); |
2766 | if (!Visited.insert(X: LastCB)) |
2767 | continue; |
2768 | if (LastCB->getFunction() != getAnchorScope()) |
2769 | continue; |
2770 | if (!hasFunctionEndAsUniqueSuccessor(BB: LastCB->getParent())) |
2771 | continue; |
2772 | if (!DeletedBarriers.count(Ptr: LastCB)) { |
2773 | ++NumBarriersEliminated; |
2774 | A.deleteAfterManifest(I&: *LastCB); |
2775 | continue; |
2776 | } |
2777 | // The final aligned barrier (LastCB) reaching the kernel end was |
2778 | // removed already. This means we can go one step further and remove |
2779 | // the barriers encoutered last before (LastCB). |
2780 | const ExecutionDomainTy &LastED = CEDMap[{LastCB, PRE}]; |
2781 | Worklist.append(in_start: LastED.AlignedBarriers.begin(), |
2782 | in_end: LastED.AlignedBarriers.end()); |
2783 | } |
2784 | } |
2785 | |
2786 | // If we actually eliminated a barrier we need to eliminate the associated |
2787 | // llvm.assumes as well to avoid creating UB. |
2788 | if (!ED.EncounteredAssumes.empty() && (CB || !ED.AlignedBarriers.empty())) |
2789 | for (auto *AssumeCB : ED.EncounteredAssumes) |
2790 | A.deleteAfterManifest(I&: *AssumeCB); |
2791 | }; |
2792 | |
2793 | for (auto *CB : AlignedBarriers) |
2794 | HandleAlignedBarrier(CB); |
2795 | |
2796 | // Handle the "kernel end barrier" for kernels too. |
2797 | if (omp::isOpenMPKernel(Fn&: *getAnchorScope())) |
2798 | HandleAlignedBarrier(nullptr); |
2799 | |
2800 | return Changed; |
2801 | } |
2802 | |
2803 | bool isNoOpFence(const FenceInst &FI) const override { |
2804 | return getState().isValidState() && !NonNoOpFences.count(Ptr: &FI); |
2805 | } |
2806 | |
2807 | /// Merge barrier and assumption information from \p PredED into the successor |
2808 | /// \p ED. |
2809 | void |
2810 | mergeInPredecessorBarriersAndAssumptions(Attributor &A, ExecutionDomainTy &ED, |
2811 | const ExecutionDomainTy &PredED); |
2812 | |
2813 | /// Merge all information from \p PredED into the successor \p ED. If |
2814 | /// \p InitialEdgeOnly is set, only the initial edge will enter the block |
2815 | /// represented by \p ED from this predecessor. |
2816 | bool mergeInPredecessor(Attributor &A, ExecutionDomainTy &ED, |
2817 | const ExecutionDomainTy &PredED, |
2818 | bool InitialEdgeOnly = false); |
2819 | |
2820 | /// Accumulate information for the entry block in \p EntryBBED. |
2821 | bool handleCallees(Attributor &A, ExecutionDomainTy &EntryBBED); |
2822 | |
2823 | /// See AbstractAttribute::updateImpl. |
2824 | ChangeStatus updateImpl(Attributor &A) override; |
2825 | |
2826 | /// Query interface, see AAExecutionDomain |
2827 | ///{ |
2828 | bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { |
2829 | if (!isValidState()) |
2830 | return false; |
2831 | assert(BB.getParent() == getAnchorScope() && "Block is out of scope!" ); |
2832 | return BEDMap.lookup(Val: &BB).IsExecutedByInitialThreadOnly; |
2833 | } |
2834 | |
2835 | bool isExecutedInAlignedRegion(Attributor &A, |
2836 | const Instruction &I) const override { |
2837 | assert(I.getFunction() == getAnchorScope() && |
2838 | "Instruction is out of scope!" ); |
2839 | if (!isValidState()) |
2840 | return false; |
2841 | |
2842 | bool ForwardIsOk = true; |
2843 | const Instruction *CurI; |
2844 | |
2845 | // Check forward until a call or the block end is reached. |
2846 | CurI = &I; |
2847 | do { |
2848 | auto *CB = dyn_cast<CallBase>(Val: CurI); |
2849 | if (!CB) |
2850 | continue; |
2851 | if (CB != &I && AlignedBarriers.contains(key: const_cast<CallBase *>(CB))) |
2852 | return true; |
2853 | const auto &It = CEDMap.find(Val: {CB, PRE}); |
2854 | if (It == CEDMap.end()) |
2855 | continue; |
2856 | if (!It->getSecond().IsReachingAlignedBarrierOnly) |
2857 | ForwardIsOk = false; |
2858 | break; |
2859 | } while ((CurI = CurI->getNextNonDebugInstruction())); |
2860 | |
2861 | if (!CurI && !BEDMap.lookup(Val: I.getParent()).IsReachingAlignedBarrierOnly) |
2862 | ForwardIsOk = false; |
2863 | |
2864 | // Check backward until a call or the block beginning is reached. |
2865 | CurI = &I; |
2866 | do { |
2867 | auto *CB = dyn_cast<CallBase>(Val: CurI); |
2868 | if (!CB) |
2869 | continue; |
2870 | if (CB != &I && AlignedBarriers.contains(key: const_cast<CallBase *>(CB))) |
2871 | return true; |
2872 | const auto &It = CEDMap.find(Val: {CB, POST}); |
2873 | if (It == CEDMap.end()) |
2874 | continue; |
2875 | if (It->getSecond().IsReachedFromAlignedBarrierOnly) |
2876 | break; |
2877 | return false; |
2878 | } while ((CurI = CurI->getPrevNonDebugInstruction())); |
2879 | |
2880 | // Delayed decision on the forward pass to allow aligned barrier detection |
2881 | // in the backwards traversal. |
2882 | if (!ForwardIsOk) |
2883 | return false; |
2884 | |
2885 | if (!CurI) { |
2886 | const BasicBlock *BB = I.getParent(); |
2887 | if (BB == &BB->getParent()->getEntryBlock()) |
2888 | return BEDMap.lookup(Val: nullptr).IsReachedFromAlignedBarrierOnly; |
2889 | if (!llvm::all_of(Range: predecessors(BB), P: [&](const BasicBlock *PredBB) { |
2890 | return BEDMap.lookup(Val: PredBB).IsReachedFromAlignedBarrierOnly; |
2891 | })) { |
2892 | return false; |
2893 | } |
2894 | } |
2895 | |
2896 | // On neither traversal we found a anything but aligned barriers. |
2897 | return true; |
2898 | } |
2899 | |
2900 | ExecutionDomainTy getExecutionDomain(const BasicBlock &BB) const override { |
2901 | assert(isValidState() && |
2902 | "No request should be made against an invalid state!" ); |
2903 | return BEDMap.lookup(Val: &BB); |
2904 | } |
2905 | std::pair<ExecutionDomainTy, ExecutionDomainTy> |
2906 | getExecutionDomain(const CallBase &CB) const override { |
2907 | assert(isValidState() && |
2908 | "No request should be made against an invalid state!" ); |
2909 | return {CEDMap.lookup(Val: {&CB, PRE}), CEDMap.lookup(Val: {&CB, POST})}; |
2910 | } |
2911 | ExecutionDomainTy getFunctionExecutionDomain() const override { |
2912 | assert(isValidState() && |
2913 | "No request should be made against an invalid state!" ); |
2914 | return InterProceduralED; |
2915 | } |
2916 | ///} |
2917 | |
2918 | // Check if the edge into the successor block contains a condition that only |
2919 | // lets the main thread execute it. |
2920 | static bool isInitialThreadOnlyEdge(Attributor &A, BranchInst *Edge, |
2921 | BasicBlock &SuccessorBB) { |
2922 | if (!Edge || !Edge->isConditional()) |
2923 | return false; |
2924 | if (Edge->getSuccessor(i: 0) != &SuccessorBB) |
2925 | return false; |
2926 | |
2927 | auto *Cmp = dyn_cast<CmpInst>(Val: Edge->getCondition()); |
2928 | if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) |
2929 | return false; |
2930 | |
2931 | ConstantInt *C = dyn_cast<ConstantInt>(Val: Cmp->getOperand(i_nocapture: 1)); |
2932 | if (!C) |
2933 | return false; |
2934 | |
2935 | // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) |
2936 | if (C->isAllOnesValue()) { |
2937 | auto *CB = dyn_cast<CallBase>(Val: Cmp->getOperand(i_nocapture: 0)); |
2938 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
2939 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
2940 | CB = CB ? OpenMPOpt::getCallIfRegularCall(V&: *CB, RFI: &RFI) : nullptr; |
2941 | if (!CB) |
2942 | return false; |
2943 | ConstantStruct *KernelEnvC = |
2944 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB: CB); |
2945 | ConstantInt *ExecModeC = |
2946 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC); |
2947 | return ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC; |
2948 | } |
2949 | |
2950 | if (C->isZero()) { |
2951 | // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() |
2952 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Cmp->getOperand(i_nocapture: 0))) |
2953 | if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) |
2954 | return true; |
2955 | |
2956 | // Match: 0 == llvm.amdgcn.workitem.id.x() |
2957 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Cmp->getOperand(i_nocapture: 0))) |
2958 | if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) |
2959 | return true; |
2960 | } |
2961 | |
2962 | return false; |
2963 | }; |
2964 | |
2965 | /// Mapping containing information about the function for other AAs. |
2966 | ExecutionDomainTy InterProceduralED; |
2967 | |
2968 | enum Direction { PRE = 0, POST = 1 }; |
2969 | /// Mapping containing information per block. |
2970 | DenseMap<const BasicBlock *, ExecutionDomainTy> BEDMap; |
2971 | DenseMap<PointerIntPair<const CallBase *, 1, Direction>, ExecutionDomainTy> |
2972 | CEDMap; |
2973 | SmallSetVector<CallBase *, 16> AlignedBarriers; |
2974 | |
2975 | ReversePostOrderTraversal<Function *> *RPOT = nullptr; |
2976 | |
2977 | /// Set \p R to \V and report true if that changed \p R. |
2978 | static bool setAndRecord(bool &R, bool V) { |
2979 | bool Eq = (R == V); |
2980 | R = V; |
2981 | return !Eq; |
2982 | } |
2983 | |
2984 | /// Collection of fences known to be non-no-opt. All fences not in this set |
2985 | /// can be assumed no-opt. |
2986 | SmallPtrSet<const FenceInst *, 8> NonNoOpFences; |
2987 | }; |
2988 | |
2989 | void AAExecutionDomainFunction::mergeInPredecessorBarriersAndAssumptions( |
2990 | Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED) { |
2991 | for (auto *EA : PredED.EncounteredAssumes) |
2992 | ED.addAssumeInst(A, AI&: *EA); |
2993 | |
2994 | for (auto *AB : PredED.AlignedBarriers) |
2995 | ED.addAlignedBarrier(A, CB&: *AB); |
2996 | } |
2997 | |
2998 | bool AAExecutionDomainFunction::mergeInPredecessor( |
2999 | Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED, |
3000 | bool InitialEdgeOnly) { |
3001 | |
3002 | bool Changed = false; |
3003 | Changed |= |
3004 | setAndRecord(R&: ED.IsExecutedByInitialThreadOnly, |
3005 | V: InitialEdgeOnly || (PredED.IsExecutedByInitialThreadOnly && |
3006 | ED.IsExecutedByInitialThreadOnly)); |
3007 | |
3008 | Changed |= setAndRecord(R&: ED.IsReachedFromAlignedBarrierOnly, |
3009 | V: ED.IsReachedFromAlignedBarrierOnly && |
3010 | PredED.IsReachedFromAlignedBarrierOnly); |
3011 | Changed |= setAndRecord(R&: ED.EncounteredNonLocalSideEffect, |
3012 | V: ED.EncounteredNonLocalSideEffect | |
3013 | PredED.EncounteredNonLocalSideEffect); |
3014 | // Do not track assumptions and barriers as part of Changed. |
3015 | if (ED.IsReachedFromAlignedBarrierOnly) |
3016 | mergeInPredecessorBarriersAndAssumptions(A, ED, PredED); |
3017 | else |
3018 | ED.clearAssumeInstAndAlignedBarriers(); |
3019 | return Changed; |
3020 | } |
3021 | |
3022 | bool AAExecutionDomainFunction::handleCallees(Attributor &A, |
3023 | ExecutionDomainTy &EntryBBED) { |
3024 | SmallVector<std::pair<ExecutionDomainTy, ExecutionDomainTy>, 4> CallSiteEDs; |
3025 | auto PredForCallSite = [&](AbstractCallSite ACS) { |
3026 | const auto *EDAA = A.getAAFor<AAExecutionDomain>( |
3027 | QueryingAA: *this, IRP: IRPosition::function(F: *ACS.getInstruction()->getFunction()), |
3028 | DepClass: DepClassTy::OPTIONAL); |
3029 | if (!EDAA || !EDAA->getState().isValidState()) |
3030 | return false; |
3031 | CallSiteEDs.emplace_back( |
3032 | Args: EDAA->getExecutionDomain(CB: *cast<CallBase>(Val: ACS.getInstruction()))); |
3033 | return true; |
3034 | }; |
3035 | |
3036 | ExecutionDomainTy ExitED; |
3037 | bool AllCallSitesKnown; |
3038 | if (A.checkForAllCallSites(Pred: PredForCallSite, QueryingAA: *this, |
3039 | /* RequiresAllCallSites */ RequireAllCallSites: true, |
3040 | UsedAssumedInformation&: AllCallSitesKnown)) { |
3041 | for (const auto &[CSInED, CSOutED] : CallSiteEDs) { |
3042 | mergeInPredecessor(A, ED&: EntryBBED, PredED: CSInED); |
3043 | ExitED.IsReachingAlignedBarrierOnly &= |
3044 | CSOutED.IsReachingAlignedBarrierOnly; |
3045 | } |
3046 | |
3047 | } else { |
3048 | // We could not find all predecessors, so this is either a kernel or a |
3049 | // function with external linkage (or with some other weird uses). |
3050 | if (omp::isOpenMPKernel(Fn&: *getAnchorScope())) { |
3051 | EntryBBED.IsExecutedByInitialThreadOnly = false; |
3052 | EntryBBED.IsReachedFromAlignedBarrierOnly = true; |
3053 | EntryBBED.EncounteredNonLocalSideEffect = false; |
3054 | ExitED.IsReachingAlignedBarrierOnly = false; |
3055 | } else { |
3056 | EntryBBED.IsExecutedByInitialThreadOnly = false; |
3057 | EntryBBED.IsReachedFromAlignedBarrierOnly = false; |
3058 | EntryBBED.EncounteredNonLocalSideEffect = true; |
3059 | ExitED.IsReachingAlignedBarrierOnly = false; |
3060 | } |
3061 | } |
3062 | |
3063 | bool Changed = false; |
3064 | auto &FnED = BEDMap[nullptr]; |
3065 | Changed |= setAndRecord(R&: FnED.IsReachedFromAlignedBarrierOnly, |
3066 | V: FnED.IsReachedFromAlignedBarrierOnly & |
3067 | EntryBBED.IsReachedFromAlignedBarrierOnly); |
3068 | Changed |= setAndRecord(R&: FnED.IsReachingAlignedBarrierOnly, |
3069 | V: FnED.IsReachingAlignedBarrierOnly & |
3070 | ExitED.IsReachingAlignedBarrierOnly); |
3071 | Changed |= setAndRecord(R&: FnED.IsExecutedByInitialThreadOnly, |
3072 | V: EntryBBED.IsExecutedByInitialThreadOnly); |
3073 | return Changed; |
3074 | } |
3075 | |
3076 | ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { |
3077 | |
3078 | bool Changed = false; |
3079 | |
3080 | // Helper to deal with an aligned barrier encountered during the forward |
3081 | // traversal. \p CB is the aligned barrier, \p ED is the execution domain when |
3082 | // it was encountered. |
3083 | auto HandleAlignedBarrier = [&](CallBase &CB, ExecutionDomainTy &ED) { |
3084 | Changed |= AlignedBarriers.insert(X: &CB); |
3085 | // First, update the barrier ED kept in the separate CEDMap. |
3086 | auto &CallInED = CEDMap[{&CB, PRE}]; |
3087 | Changed |= mergeInPredecessor(A, ED&: CallInED, PredED: ED); |
3088 | CallInED.IsReachingAlignedBarrierOnly = true; |
3089 | // Next adjust the ED we use for the traversal. |
3090 | ED.EncounteredNonLocalSideEffect = false; |
3091 | ED.IsReachedFromAlignedBarrierOnly = true; |
3092 | // Aligned barrier collection has to come last. |
3093 | ED.clearAssumeInstAndAlignedBarriers(); |
3094 | ED.addAlignedBarrier(A, CB); |
3095 | auto &CallOutED = CEDMap[{&CB, POST}]; |
3096 | Changed |= mergeInPredecessor(A, ED&: CallOutED, PredED: ED); |
3097 | }; |
3098 | |
3099 | auto *LivenessAA = |
3100 | A.getAAFor<AAIsDead>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
3101 | |
3102 | Function *F = getAnchorScope(); |
3103 | BasicBlock &EntryBB = F->getEntryBlock(); |
3104 | bool IsKernel = omp::isOpenMPKernel(Fn&: *F); |
3105 | |
3106 | SmallVector<Instruction *> SyncInstWorklist; |
3107 | for (auto &RIt : *RPOT) { |
3108 | BasicBlock &BB = *RIt; |
3109 | |
3110 | bool IsEntryBB = &BB == &EntryBB; |
3111 | // TODO: We use local reasoning since we don't have a divergence analysis |
3112 | // running as well. We could basically allow uniform branches here. |
3113 | bool AlignedBarrierLastInBlock = IsEntryBB && IsKernel; |
3114 | bool IsExplicitlyAligned = IsEntryBB && IsKernel; |
3115 | ExecutionDomainTy ED; |
3116 | // Propagate "incoming edges" into information about this block. |
3117 | if (IsEntryBB) { |
3118 | Changed |= handleCallees(A, EntryBBED&: ED); |
3119 | } else { |
3120 | // For live non-entry blocks we only propagate |
3121 | // information via live edges. |
3122 | if (LivenessAA && LivenessAA->isAssumedDead(BB: &BB)) |
3123 | continue; |
3124 | |
3125 | for (auto *PredBB : predecessors(BB: &BB)) { |
3126 | if (LivenessAA && LivenessAA->isEdgeDead(From: PredBB, To: &BB)) |
3127 | continue; |
3128 | bool InitialEdgeOnly = isInitialThreadOnlyEdge( |
3129 | A, Edge: dyn_cast<BranchInst>(Val: PredBB->getTerminator()), SuccessorBB&: BB); |
3130 | mergeInPredecessor(A, ED, PredED: BEDMap[PredBB], InitialEdgeOnly); |
3131 | } |
3132 | } |
3133 | |
3134 | // Now we traverse the block, accumulate effects in ED and attach |
3135 | // information to calls. |
3136 | for (Instruction &I : BB) { |
3137 | bool UsedAssumedInformation; |
3138 | if (A.isAssumedDead(I, QueryingAA: *this, LivenessAA, UsedAssumedInformation, |
3139 | /* CheckBBLivenessOnly */ false, DepClass: DepClassTy::OPTIONAL, |
3140 | /* CheckForDeadStore */ true)) |
3141 | continue; |
3142 | |
3143 | // Asummes and "assume-like" (dbg, lifetime, ...) are handled first, the |
3144 | // former is collected the latter is ignored. |
3145 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
3146 | if (auto *AI = dyn_cast_or_null<AssumeInst>(Val: II)) { |
3147 | ED.addAssumeInst(A, AI&: *AI); |
3148 | continue; |
3149 | } |
3150 | // TODO: Should we also collect and delete lifetime markers? |
3151 | if (II->isAssumeLikeIntrinsic()) |
3152 | continue; |
3153 | } |
3154 | |
3155 | if (auto *FI = dyn_cast<FenceInst>(Val: &I)) { |
3156 | if (!ED.EncounteredNonLocalSideEffect) { |
3157 | // An aligned fence without non-local side-effects is a no-op. |
3158 | if (ED.IsReachedFromAlignedBarrierOnly) |
3159 | continue; |
3160 | // A non-aligned fence without non-local side-effects is a no-op |
3161 | // if the ordering only publishes non-local side-effects (or less). |
3162 | switch (FI->getOrdering()) { |
3163 | case AtomicOrdering::NotAtomic: |
3164 | continue; |
3165 | case AtomicOrdering::Unordered: |
3166 | continue; |
3167 | case AtomicOrdering::Monotonic: |
3168 | continue; |
3169 | case AtomicOrdering::Acquire: |
3170 | break; |
3171 | case AtomicOrdering::Release: |
3172 | continue; |
3173 | case AtomicOrdering::AcquireRelease: |
3174 | break; |
3175 | case AtomicOrdering::SequentiallyConsistent: |
3176 | break; |
3177 | }; |
3178 | } |
3179 | NonNoOpFences.insert(Ptr: FI); |
3180 | } |
3181 | |
3182 | auto *CB = dyn_cast<CallBase>(Val: &I); |
3183 | bool IsNoSync = AA::isNoSyncInst(A, I, QueryingAA: *this); |
3184 | bool IsAlignedBarrier = |
3185 | !IsNoSync && CB && |
3186 | AANoSync::isAlignedBarrier(CB: *CB, ExecutedAligned: AlignedBarrierLastInBlock); |
3187 | |
3188 | AlignedBarrierLastInBlock &= IsNoSync; |
3189 | IsExplicitlyAligned &= IsNoSync; |
3190 | |
3191 | // Next we check for calls. Aligned barriers are handled |
3192 | // explicitly, everything else is kept for the backward traversal and will |
3193 | // also affect our state. |
3194 | if (CB) { |
3195 | if (IsAlignedBarrier) { |
3196 | HandleAlignedBarrier(*CB, ED); |
3197 | AlignedBarrierLastInBlock = true; |
3198 | IsExplicitlyAligned = true; |
3199 | continue; |
3200 | } |
3201 | |
3202 | // Check the pointer(s) of a memory intrinsic explicitly. |
3203 | if (isa<MemIntrinsic>(Val: &I)) { |
3204 | if (!ED.EncounteredNonLocalSideEffect && |
3205 | AA::isPotentiallyAffectedByBarrier(A, I, QueryingAA: *this)) |
3206 | ED.EncounteredNonLocalSideEffect = true; |
3207 | if (!IsNoSync) { |
3208 | ED.IsReachedFromAlignedBarrierOnly = false; |
3209 | SyncInstWorklist.push_back(Elt: &I); |
3210 | } |
3211 | continue; |
3212 | } |
3213 | |
3214 | // Record how we entered the call, then accumulate the effect of the |
3215 | // call in ED for potential use by the callee. |
3216 | auto &CallInED = CEDMap[{CB, PRE}]; |
3217 | Changed |= mergeInPredecessor(A, ED&: CallInED, PredED: ED); |
3218 | |
3219 | // If we have a sync-definition we can check if it starts/ends in an |
3220 | // aligned barrier. If we are unsure we assume any sync breaks |
3221 | // alignment. |
3222 | Function *Callee = CB->getCalledFunction(); |
3223 | if (!IsNoSync && Callee && !Callee->isDeclaration()) { |
3224 | const auto *EDAA = A.getAAFor<AAExecutionDomain>( |
3225 | QueryingAA: *this, IRP: IRPosition::function(F: *Callee), DepClass: DepClassTy::OPTIONAL); |
3226 | if (EDAA && EDAA->getState().isValidState()) { |
3227 | const auto &CalleeED = EDAA->getFunctionExecutionDomain(); |
3228 | ED.IsReachedFromAlignedBarrierOnly = |
3229 | CalleeED.IsReachedFromAlignedBarrierOnly; |
3230 | AlignedBarrierLastInBlock = ED.IsReachedFromAlignedBarrierOnly; |
3231 | if (IsNoSync || !CalleeED.IsReachedFromAlignedBarrierOnly) |
3232 | ED.EncounteredNonLocalSideEffect |= |
3233 | CalleeED.EncounteredNonLocalSideEffect; |
3234 | else |
3235 | ED.EncounteredNonLocalSideEffect = |
3236 | CalleeED.EncounteredNonLocalSideEffect; |
3237 | if (!CalleeED.IsReachingAlignedBarrierOnly) { |
3238 | Changed |= |
3239 | setAndRecord(R&: CallInED.IsReachingAlignedBarrierOnly, V: false); |
3240 | SyncInstWorklist.push_back(Elt: &I); |
3241 | } |
3242 | if (CalleeED.IsReachedFromAlignedBarrierOnly) |
3243 | mergeInPredecessorBarriersAndAssumptions(A, ED, PredED: CalleeED); |
3244 | auto &CallOutED = CEDMap[{CB, POST}]; |
3245 | Changed |= mergeInPredecessor(A, ED&: CallOutED, PredED: ED); |
3246 | continue; |
3247 | } |
3248 | } |
3249 | if (!IsNoSync) { |
3250 | ED.IsReachedFromAlignedBarrierOnly = false; |
3251 | Changed |= setAndRecord(R&: CallInED.IsReachingAlignedBarrierOnly, V: false); |
3252 | SyncInstWorklist.push_back(Elt: &I); |
3253 | } |
3254 | AlignedBarrierLastInBlock &= ED.IsReachedFromAlignedBarrierOnly; |
3255 | ED.EncounteredNonLocalSideEffect |= !CB->doesNotAccessMemory(); |
3256 | auto &CallOutED = CEDMap[{CB, POST}]; |
3257 | Changed |= mergeInPredecessor(A, ED&: CallOutED, PredED: ED); |
3258 | } |
3259 | |
3260 | if (!I.mayHaveSideEffects() && !I.mayReadFromMemory()) |
3261 | continue; |
3262 | |
3263 | // If we have a callee we try to use fine-grained information to |
3264 | // determine local side-effects. |
3265 | if (CB) { |
3266 | const auto *MemAA = A.getAAFor<AAMemoryLocation>( |
3267 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB: *CB), DepClass: DepClassTy::OPTIONAL); |
3268 | |
3269 | auto AccessPred = [&](const Instruction *I, const Value *Ptr, |
3270 | AAMemoryLocation::AccessKind, |
3271 | AAMemoryLocation::MemoryLocationsKind) { |
3272 | return !AA::isPotentiallyAffectedByBarrier(A, Ptrs: {Ptr}, QueryingAA: *this, CtxI: I); |
3273 | }; |
3274 | if (MemAA && MemAA->getState().isValidState() && |
3275 | MemAA->checkForAllAccessesToMemoryKind( |
3276 | Pred: AccessPred, MLK: AAMemoryLocation::ALL_LOCATIONS)) |
3277 | continue; |
3278 | } |
3279 | |
3280 | auto &InfoCache = A.getInfoCache(); |
3281 | if (!I.mayHaveSideEffects() && InfoCache.isOnlyUsedByAssume(I)) |
3282 | continue; |
3283 | |
3284 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) |
3285 | if (LI->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
3286 | continue; |
3287 | |
3288 | if (!ED.EncounteredNonLocalSideEffect && |
3289 | AA::isPotentiallyAffectedByBarrier(A, I, QueryingAA: *this)) |
3290 | ED.EncounteredNonLocalSideEffect = true; |
3291 | } |
3292 | |
3293 | bool IsEndAndNotReachingAlignedBarriersOnly = false; |
3294 | if (!isa<UnreachableInst>(Val: BB.getTerminator()) && |
3295 | !BB.getTerminator()->getNumSuccessors()) { |
3296 | |
3297 | Changed |= mergeInPredecessor(A, ED&: InterProceduralED, PredED: ED); |
3298 | |
3299 | auto &FnED = BEDMap[nullptr]; |
3300 | if (IsKernel && !IsExplicitlyAligned) |
3301 | FnED.IsReachingAlignedBarrierOnly = false; |
3302 | Changed |= mergeInPredecessor(A, ED&: FnED, PredED: ED); |
3303 | |
3304 | if (!FnED.IsReachingAlignedBarrierOnly) { |
3305 | IsEndAndNotReachingAlignedBarriersOnly = true; |
3306 | SyncInstWorklist.push_back(Elt: BB.getTerminator()); |
3307 | auto &BBED = BEDMap[&BB]; |
3308 | Changed |= setAndRecord(R&: BBED.IsReachingAlignedBarrierOnly, V: false); |
3309 | } |
3310 | } |
3311 | |
3312 | ExecutionDomainTy &StoredED = BEDMap[&BB]; |
3313 | ED.IsReachingAlignedBarrierOnly = StoredED.IsReachingAlignedBarrierOnly & |
3314 | !IsEndAndNotReachingAlignedBarriersOnly; |
3315 | |
3316 | // Check if we computed anything different as part of the forward |
3317 | // traversal. We do not take assumptions and aligned barriers into account |
3318 | // as they do not influence the state we iterate. Backward traversal values |
3319 | // are handled later on. |
3320 | if (ED.IsExecutedByInitialThreadOnly != |
3321 | StoredED.IsExecutedByInitialThreadOnly || |
3322 | ED.IsReachedFromAlignedBarrierOnly != |
3323 | StoredED.IsReachedFromAlignedBarrierOnly || |
3324 | ED.EncounteredNonLocalSideEffect != |
3325 | StoredED.EncounteredNonLocalSideEffect) |
3326 | Changed = true; |
3327 | |
3328 | // Update the state with the new value. |
3329 | StoredED = std::move(ED); |
3330 | } |
3331 | |
3332 | // Propagate (non-aligned) sync instruction effects backwards until the |
3333 | // entry is hit or an aligned barrier. |
3334 | SmallSetVector<BasicBlock *, 16> Visited; |
3335 | while (!SyncInstWorklist.empty()) { |
3336 | Instruction *SyncInst = SyncInstWorklist.pop_back_val(); |
3337 | Instruction *CurInst = SyncInst; |
3338 | bool HitAlignedBarrierOrKnownEnd = false; |
3339 | while ((CurInst = CurInst->getPrevNode())) { |
3340 | auto *CB = dyn_cast<CallBase>(Val: CurInst); |
3341 | if (!CB) |
3342 | continue; |
3343 | auto &CallOutED = CEDMap[{CB, POST}]; |
3344 | Changed |= setAndRecord(R&: CallOutED.IsReachingAlignedBarrierOnly, V: false); |
3345 | auto &CallInED = CEDMap[{CB, PRE}]; |
3346 | HitAlignedBarrierOrKnownEnd = |
3347 | AlignedBarriers.count(key: CB) || !CallInED.IsReachingAlignedBarrierOnly; |
3348 | if (HitAlignedBarrierOrKnownEnd) |
3349 | break; |
3350 | Changed |= setAndRecord(R&: CallInED.IsReachingAlignedBarrierOnly, V: false); |
3351 | } |
3352 | if (HitAlignedBarrierOrKnownEnd) |
3353 | continue; |
3354 | BasicBlock *SyncBB = SyncInst->getParent(); |
3355 | for (auto *PredBB : predecessors(BB: SyncBB)) { |
3356 | if (LivenessAA && LivenessAA->isEdgeDead(From: PredBB, To: SyncBB)) |
3357 | continue; |
3358 | if (!Visited.insert(X: PredBB)) |
3359 | continue; |
3360 | auto &PredED = BEDMap[PredBB]; |
3361 | if (setAndRecord(R&: PredED.IsReachingAlignedBarrierOnly, V: false)) { |
3362 | Changed = true; |
3363 | SyncInstWorklist.push_back(Elt: PredBB->getTerminator()); |
3364 | } |
3365 | } |
3366 | if (SyncBB != &EntryBB) |
3367 | continue; |
3368 | Changed |= |
3369 | setAndRecord(R&: InterProceduralED.IsReachingAlignedBarrierOnly, V: false); |
3370 | } |
3371 | |
3372 | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
3373 | } |
3374 | |
3375 | /// Try to replace memory allocation calls called by a single thread with a |
3376 | /// static buffer of shared memory. |
3377 | struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { |
3378 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
3379 | AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
3380 | |
3381 | /// Create an abstract attribute view for the position \p IRP. |
3382 | static AAHeapToShared &createForPosition(const IRPosition &IRP, |
3383 | Attributor &A); |
3384 | |
3385 | /// Returns true if HeapToShared conversion is assumed to be possible. |
3386 | virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; |
3387 | |
3388 | /// Returns true if HeapToShared conversion is assumed and the CB is a |
3389 | /// callsite to a free operation to be removed. |
3390 | virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; |
3391 | |
3392 | /// See AbstractAttribute::getName(). |
3393 | StringRef getName() const override { return "AAHeapToShared" ; } |
3394 | |
3395 | /// See AbstractAttribute::getIdAddr(). |
3396 | const char *getIdAddr() const override { return &ID; } |
3397 | |
3398 | /// This function should return true if the type of the \p AA is |
3399 | /// AAHeapToShared. |
3400 | static bool classof(const AbstractAttribute *AA) { |
3401 | return (AA->getIdAddr() == &ID); |
3402 | } |
3403 | |
3404 | /// Unique ID (due to the unique address) |
3405 | static const char ID; |
3406 | }; |
3407 | |
3408 | struct AAHeapToSharedFunction : public AAHeapToShared { |
3409 | AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) |
3410 | : AAHeapToShared(IRP, A) {} |
3411 | |
3412 | const std::string getAsStr(Attributor *) const override { |
3413 | return "[AAHeapToShared] " + std::to_string(val: MallocCalls.size()) + |
3414 | " malloc calls eligible." ; |
3415 | } |
3416 | |
3417 | /// See AbstractAttribute::trackStatistics(). |
3418 | void trackStatistics() const override {} |
3419 | |
3420 | /// This functions finds free calls that will be removed by the |
3421 | /// HeapToShared transformation. |
3422 | void findPotentialRemovedFreeCalls(Attributor &A) { |
3423 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3424 | auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; |
3425 | |
3426 | PotentialRemovedFreeCalls.clear(); |
3427 | // Update free call users of found malloc calls. |
3428 | for (CallBase *CB : MallocCalls) { |
3429 | SmallVector<CallBase *, 4> FreeCalls; |
3430 | for (auto *U : CB->users()) { |
3431 | CallBase *C = dyn_cast<CallBase>(Val: U); |
3432 | if (C && C->getCalledFunction() == FreeRFI.Declaration) |
3433 | FreeCalls.push_back(Elt: C); |
3434 | } |
3435 | |
3436 | if (FreeCalls.size() != 1) |
3437 | continue; |
3438 | |
3439 | PotentialRemovedFreeCalls.insert(Ptr: FreeCalls.front()); |
3440 | } |
3441 | } |
3442 | |
3443 | void initialize(Attributor &A) override { |
3444 | if (DisableOpenMPOptDeglobalization) { |
3445 | indicatePessimisticFixpoint(); |
3446 | return; |
3447 | } |
3448 | |
3449 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3450 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
3451 | if (!RFI.Declaration) |
3452 | return; |
3453 | |
3454 | Attributor::SimplifictionCallbackTy SCB = |
3455 | [](const IRPosition &, const AbstractAttribute *, |
3456 | bool &) -> std::optional<Value *> { return nullptr; }; |
3457 | |
3458 | Function *F = getAnchorScope(); |
3459 | for (User *U : RFI.Declaration->users()) |
3460 | if (CallBase *CB = dyn_cast<CallBase>(Val: U)) { |
3461 | if (CB->getFunction() != F) |
3462 | continue; |
3463 | MallocCalls.insert(X: CB); |
3464 | A.registerSimplificationCallback(IRP: IRPosition::callsite_returned(CB: *CB), |
3465 | CB: SCB); |
3466 | } |
3467 | |
3468 | findPotentialRemovedFreeCalls(A); |
3469 | } |
3470 | |
3471 | bool isAssumedHeapToShared(CallBase &CB) const override { |
3472 | return isValidState() && MallocCalls.count(key: &CB); |
3473 | } |
3474 | |
3475 | bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { |
3476 | return isValidState() && PotentialRemovedFreeCalls.count(Ptr: &CB); |
3477 | } |
3478 | |
3479 | ChangeStatus manifest(Attributor &A) override { |
3480 | if (MallocCalls.empty()) |
3481 | return ChangeStatus::UNCHANGED; |
3482 | |
3483 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3484 | auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; |
3485 | |
3486 | Function *F = getAnchorScope(); |
3487 | auto *HS = A.lookupAAFor<AAHeapToStack>(IRP: IRPosition::function(F: *F), QueryingAA: this, |
3488 | DepClass: DepClassTy::OPTIONAL); |
3489 | |
3490 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
3491 | for (CallBase *CB : MallocCalls) { |
3492 | // Skip replacing this if HeapToStack has already claimed it. |
3493 | if (HS && HS->isAssumedHeapToStack(CB: *CB)) |
3494 | continue; |
3495 | |
3496 | // Find the unique free call to remove it. |
3497 | SmallVector<CallBase *, 4> FreeCalls; |
3498 | for (auto *U : CB->users()) { |
3499 | CallBase *C = dyn_cast<CallBase>(Val: U); |
3500 | if (C && C->getCalledFunction() == FreeCall.Declaration) |
3501 | FreeCalls.push_back(Elt: C); |
3502 | } |
3503 | if (FreeCalls.size() != 1) |
3504 | continue; |
3505 | |
3506 | auto *AllocSize = cast<ConstantInt>(Val: CB->getArgOperand(i: 0)); |
3507 | |
3508 | if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { |
3509 | LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB |
3510 | << " with shared memory." |
3511 | << " Shared memory usage is limited to " |
3512 | << SharedMemoryLimit << " bytes\n" ); |
3513 | continue; |
3514 | } |
3515 | |
3516 | LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB |
3517 | << " with " << AllocSize->getZExtValue() |
3518 | << " bytes of shared memory\n" ); |
3519 | |
3520 | // Create a new shared memory buffer of the same size as the allocation |
3521 | // and replace all the uses of the original allocation with it. |
3522 | Module *M = CB->getModule(); |
3523 | Type *Int8Ty = Type::getInt8Ty(C&: M->getContext()); |
3524 | Type *Int8ArrTy = ArrayType::get(ElementType: Int8Ty, NumElements: AllocSize->getZExtValue()); |
3525 | auto *SharedMem = new GlobalVariable( |
3526 | *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, |
3527 | PoisonValue::get(T: Int8ArrTy), CB->getName() + "_shared" , nullptr, |
3528 | GlobalValue::NotThreadLocal, |
3529 | static_cast<unsigned>(AddressSpace::Shared)); |
3530 | auto *NewBuffer = ConstantExpr::getPointerCast( |
3531 | C: SharedMem, Ty: PointerType::getUnqual(C&: M->getContext())); |
3532 | |
3533 | auto = [&](OptimizationRemark OR) { |
3534 | return OR << "Replaced globalized variable with " |
3535 | << ore::NV("SharedMemory" , AllocSize->getZExtValue()) |
3536 | << (AllocSize->isOne() ? " byte " : " bytes " ) |
3537 | << "of shared memory." ; |
3538 | }; |
3539 | A.emitRemark<OptimizationRemark>(I: CB, RemarkName: "OMP111" , RemarkCB&: Remark); |
3540 | |
3541 | MaybeAlign Alignment = CB->getRetAlign(); |
3542 | assert(Alignment && |
3543 | "HeapToShared on allocation without alignment attribute" ); |
3544 | SharedMem->setAlignment(*Alignment); |
3545 | |
3546 | A.changeAfterManifest(IRP: IRPosition::callsite_returned(CB: *CB), NV&: *NewBuffer); |
3547 | A.deleteAfterManifest(I&: *CB); |
3548 | A.deleteAfterManifest(I&: *FreeCalls.front()); |
3549 | |
3550 | SharedMemoryUsed += AllocSize->getZExtValue(); |
3551 | NumBytesMovedToSharedMemory = SharedMemoryUsed; |
3552 | Changed = ChangeStatus::CHANGED; |
3553 | } |
3554 | |
3555 | return Changed; |
3556 | } |
3557 | |
3558 | ChangeStatus updateImpl(Attributor &A) override { |
3559 | if (MallocCalls.empty()) |
3560 | return indicatePessimisticFixpoint(); |
3561 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3562 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
3563 | if (!RFI.Declaration) |
3564 | return ChangeStatus::UNCHANGED; |
3565 | |
3566 | Function *F = getAnchorScope(); |
3567 | |
3568 | auto NumMallocCalls = MallocCalls.size(); |
3569 | |
3570 | // Only consider malloc calls executed by a single thread with a constant. |
3571 | for (User *U : RFI.Declaration->users()) { |
3572 | if (CallBase *CB = dyn_cast<CallBase>(Val: U)) { |
3573 | if (CB->getCaller() != F) |
3574 | continue; |
3575 | if (!MallocCalls.count(key: CB)) |
3576 | continue; |
3577 | if (!isa<ConstantInt>(Val: CB->getArgOperand(i: 0))) { |
3578 | MallocCalls.remove(X: CB); |
3579 | continue; |
3580 | } |
3581 | const auto *ED = A.getAAFor<AAExecutionDomain>( |
3582 | QueryingAA: *this, IRP: IRPosition::function(F: *F), DepClass: DepClassTy::REQUIRED); |
3583 | if (!ED || !ED->isExecutedByInitialThreadOnly(I: *CB)) |
3584 | MallocCalls.remove(X: CB); |
3585 | } |
3586 | } |
3587 | |
3588 | findPotentialRemovedFreeCalls(A); |
3589 | |
3590 | if (NumMallocCalls != MallocCalls.size()) |
3591 | return ChangeStatus::CHANGED; |
3592 | |
3593 | return ChangeStatus::UNCHANGED; |
3594 | } |
3595 | |
3596 | /// Collection of all malloc calls in a function. |
3597 | SmallSetVector<CallBase *, 4> MallocCalls; |
3598 | /// Collection of potentially removed free calls in a function. |
3599 | SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; |
3600 | /// The total amount of shared memory that has been used for HeapToShared. |
3601 | unsigned SharedMemoryUsed = 0; |
3602 | }; |
3603 | |
3604 | struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { |
3605 | using Base = StateWrapper<KernelInfoState, AbstractAttribute>; |
3606 | AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
3607 | |
3608 | /// The callee value is tracked beyond a simple stripPointerCasts, so we allow |
3609 | /// unknown callees. |
3610 | static bool requiresCalleeForCallBase() { return false; } |
3611 | |
3612 | /// Statistics are tracked as part of manifest for now. |
3613 | void trackStatistics() const override {} |
3614 | |
3615 | /// See AbstractAttribute::getAsStr() |
3616 | const std::string getAsStr(Attributor *) const override { |
3617 | if (!isValidState()) |
3618 | return "<invalid>" ; |
3619 | return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" |
3620 | : "generic" ) + |
3621 | std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" |
3622 | : "" ) + |
3623 | std::string(" #PRs: " ) + |
3624 | (ReachedKnownParallelRegions.isValidState() |
3625 | ? std::to_string(val: ReachedKnownParallelRegions.size()) |
3626 | : "<invalid>" ) + |
3627 | ", #Unknown PRs: " + |
3628 | (ReachedUnknownParallelRegions.isValidState() |
3629 | ? std::to_string(val: ReachedUnknownParallelRegions.size()) |
3630 | : "<invalid>" ) + |
3631 | ", #Reaching Kernels: " + |
3632 | (ReachingKernelEntries.isValidState() |
3633 | ? std::to_string(val: ReachingKernelEntries.size()) |
3634 | : "<invalid>" ) + |
3635 | ", #ParLevels: " + |
3636 | (ParallelLevels.isValidState() |
3637 | ? std::to_string(val: ParallelLevels.size()) |
3638 | : "<invalid>" ) + |
3639 | ", NestedPar: " + (NestedParallelism ? "yes" : "no" ); |
3640 | } |
3641 | |
3642 | /// Create an abstract attribute biew for the position \p IRP. |
3643 | static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); |
3644 | |
3645 | /// See AbstractAttribute::getName() |
3646 | StringRef getName() const override { return "AAKernelInfo" ; } |
3647 | |
3648 | /// See AbstractAttribute::getIdAddr() |
3649 | const char *getIdAddr() const override { return &ID; } |
3650 | |
3651 | /// This function should return true if the type of the \p AA is AAKernelInfo |
3652 | static bool classof(const AbstractAttribute *AA) { |
3653 | return (AA->getIdAddr() == &ID); |
3654 | } |
3655 | |
3656 | static const char ID; |
3657 | }; |
3658 | |
3659 | /// The function kernel info abstract attribute, basically, what can we say |
3660 | /// about a function with regards to the KernelInfoState. |
3661 | struct AAKernelInfoFunction : AAKernelInfo { |
3662 | AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) |
3663 | : AAKernelInfo(IRP, A) {} |
3664 | |
3665 | SmallPtrSet<Instruction *, 4> GuardedInstructions; |
3666 | |
3667 | SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { |
3668 | return GuardedInstructions; |
3669 | } |
3670 | |
3671 | void setConfigurationOfKernelEnvironment(ConstantStruct *ConfigC) { |
3672 | Constant *NewKernelEnvC = ConstantFoldInsertValueInstruction( |
3673 | Agg: KernelEnvC, Val: ConfigC, Idxs: {KernelInfo::ConfigurationIdx}); |
3674 | assert(NewKernelEnvC && "Failed to create new kernel environment" ); |
3675 | KernelEnvC = cast<ConstantStruct>(Val: NewKernelEnvC); |
3676 | } |
3677 | |
3678 | #define KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MEMBER) \ |
3679 | void set##MEMBER##OfKernelEnvironment(ConstantInt *NewVal) { \ |
3680 | ConstantStruct *ConfigC = \ |
3681 | KernelInfo::getConfigurationFromKernelEnvironment(KernelEnvC); \ |
3682 | Constant *NewConfigC = ConstantFoldInsertValueInstruction( \ |
3683 | ConfigC, NewVal, {KernelInfo::MEMBER##Idx}); \ |
3684 | assert(NewConfigC && "Failed to create new configuration environment"); \ |
3685 | setConfigurationOfKernelEnvironment(cast<ConstantStruct>(NewConfigC)); \ |
3686 | } |
3687 | |
3688 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(UseGenericStateMachine) |
3689 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MayUseNestedParallelism) |
3690 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(ExecMode) |
3691 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinThreads) |
3692 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxThreads) |
3693 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinTeams) |
3694 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxTeams) |
3695 | |
3696 | #undef KERNEL_ENVIRONMENT_CONFIGURATION_SETTER |
3697 | |
3698 | /// See AbstractAttribute::initialize(...). |
3699 | void initialize(Attributor &A) override { |
3700 | // This is a high-level transform that might change the constant arguments |
3701 | // of the init and dinit calls. We need to tell the Attributor about this |
3702 | // to avoid other parts using the current constant value for simpliication. |
3703 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3704 | |
3705 | Function *Fn = getAnchorScope(); |
3706 | |
3707 | OMPInformationCache::RuntimeFunctionInfo &InitRFI = |
3708 | OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
3709 | OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = |
3710 | OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; |
3711 | |
3712 | // For kernels we perform more initialization work, first we find the init |
3713 | // and deinit calls. |
3714 | auto StoreCallBase = [](Use &U, |
3715 | OMPInformationCache::RuntimeFunctionInfo &RFI, |
3716 | CallBase *&Storage) { |
3717 | CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, RFI: &RFI); |
3718 | assert(CB && |
3719 | "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!" ); |
3720 | assert(!Storage && |
3721 | "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!" ); |
3722 | Storage = CB; |
3723 | return false; |
3724 | }; |
3725 | InitRFI.foreachUse( |
3726 | CB: [&](Use &U, Function &) { |
3727 | StoreCallBase(U, InitRFI, KernelInitCB); |
3728 | return false; |
3729 | }, |
3730 | F: Fn); |
3731 | DeinitRFI.foreachUse( |
3732 | CB: [&](Use &U, Function &) { |
3733 | StoreCallBase(U, DeinitRFI, KernelDeinitCB); |
3734 | return false; |
3735 | }, |
3736 | F: Fn); |
3737 | |
3738 | // Ignore kernels without initializers such as global constructors. |
3739 | if (!KernelInitCB || !KernelDeinitCB) |
3740 | return; |
3741 | |
3742 | // Add itself to the reaching kernel and set IsKernelEntry. |
3743 | ReachingKernelEntries.insert(Elem: Fn); |
3744 | IsKernelEntry = true; |
3745 | |
3746 | KernelEnvC = |
3747 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
3748 | GlobalVariable *KernelEnvGV = |
3749 | KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB); |
3750 | |
3751 | Attributor::GlobalVariableSimplifictionCallbackTy |
3752 | KernelConfigurationSimplifyCB = |
3753 | [&](const GlobalVariable &GV, const AbstractAttribute *AA, |
3754 | bool &UsedAssumedInformation) -> std::optional<Constant *> { |
3755 | if (!isAtFixpoint()) { |
3756 | if (!AA) |
3757 | return nullptr; |
3758 | UsedAssumedInformation = true; |
3759 | A.recordDependence(FromAA: *this, ToAA: *AA, DepClass: DepClassTy::OPTIONAL); |
3760 | } |
3761 | return KernelEnvC; |
3762 | }; |
3763 | |
3764 | A.registerGlobalVariableSimplificationCallback( |
3765 | GV: *KernelEnvGV, CB: KernelConfigurationSimplifyCB); |
3766 | |
3767 | // We cannot change to SPMD mode if the runtime functions aren't availible. |
3768 | bool CanChangeToSPMD = OMPInfoCache.runtimeFnsAvailable( |
3769 | Fns: {OMPRTL___kmpc_get_hardware_thread_id_in_block, |
3770 | OMPRTL___kmpc_barrier_simple_spmd}); |
3771 | |
3772 | // Check if we know we are in SPMD-mode already. |
3773 | ConstantInt *ExecModeC = |
3774 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC); |
3775 | ConstantInt *AssumedExecModeC = ConstantInt::get( |
3776 | Ty: ExecModeC->getIntegerType(), |
3777 | V: ExecModeC->getSExtValue() | OMP_TGT_EXEC_MODE_GENERIC_SPMD); |
3778 | if (ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD) |
3779 | SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
3780 | else if (DisableOpenMPOptSPMDization || !CanChangeToSPMD) |
3781 | // This is a generic region but SPMDization is disabled so stop |
3782 | // tracking. |
3783 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
3784 | else |
3785 | setExecModeOfKernelEnvironment(AssumedExecModeC); |
3786 | |
3787 | const Triple T(Fn->getParent()->getTargetTriple()); |
3788 | auto *Int32Ty = Type::getInt32Ty(C&: Fn->getContext()); |
3789 | auto [MinThreads, MaxThreads] = |
3790 | OpenMPIRBuilder::readThreadBoundsForKernel(T, Kernel&: *Fn); |
3791 | if (MinThreads) |
3792 | setMinThreadsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MinThreads)); |
3793 | if (MaxThreads) |
3794 | setMaxThreadsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MaxThreads)); |
3795 | auto [MinTeams, MaxTeams] = |
3796 | OpenMPIRBuilder::readTeamBoundsForKernel(T, Kernel&: *Fn); |
3797 | if (MinTeams) |
3798 | setMinTeamsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MinTeams)); |
3799 | if (MaxTeams) |
3800 | setMaxTeamsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MaxTeams)); |
3801 | |
3802 | ConstantInt *MayUseNestedParallelismC = |
3803 | KernelInfo::getMayUseNestedParallelismFromKernelEnvironment(KernelEnvC); |
3804 | ConstantInt *AssumedMayUseNestedParallelismC = ConstantInt::get( |
3805 | Ty: MayUseNestedParallelismC->getIntegerType(), V: NestedParallelism); |
3806 | setMayUseNestedParallelismOfKernelEnvironment( |
3807 | AssumedMayUseNestedParallelismC); |
3808 | |
3809 | if (!DisableOpenMPOptStateMachineRewrite) { |
3810 | ConstantInt *UseGenericStateMachineC = |
3811 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
3812 | KernelEnvC); |
3813 | ConstantInt *AssumedUseGenericStateMachineC = |
3814 | ConstantInt::get(Ty: UseGenericStateMachineC->getIntegerType(), V: false); |
3815 | setUseGenericStateMachineOfKernelEnvironment( |
3816 | AssumedUseGenericStateMachineC); |
3817 | } |
3818 | |
3819 | // Register virtual uses of functions we might need to preserve. |
3820 | auto RegisterVirtualUse = [&](RuntimeFunction RFKind, |
3821 | Attributor::VirtualUseCallbackTy &CB) { |
3822 | if (!OMPInfoCache.RFIs[RFKind].Declaration) |
3823 | return; |
3824 | A.registerVirtualUseCallback(V: *OMPInfoCache.RFIs[RFKind].Declaration, CB); |
3825 | }; |
3826 | |
3827 | // Add a dependence to ensure updates if the state changes. |
3828 | auto AddDependence = [](Attributor &A, const AAKernelInfo *KI, |
3829 | const AbstractAttribute *QueryingAA) { |
3830 | if (QueryingAA) { |
3831 | A.recordDependence(FromAA: *KI, ToAA: *QueryingAA, DepClass: DepClassTy::OPTIONAL); |
3832 | } |
3833 | return true; |
3834 | }; |
3835 | |
3836 | Attributor::VirtualUseCallbackTy CustomStateMachineUseCB = |
3837 | [&](Attributor &A, const AbstractAttribute *QueryingAA) { |
3838 | // Whenever we create a custom state machine we will insert calls to |
3839 | // __kmpc_get_hardware_num_threads_in_block, |
3840 | // __kmpc_get_warp_size, |
3841 | // __kmpc_barrier_simple_generic, |
3842 | // __kmpc_kernel_parallel, and |
3843 | // __kmpc_kernel_end_parallel. |
3844 | // Not needed if we are on track for SPMDzation. |
3845 | if (SPMDCompatibilityTracker.isValidState()) |
3846 | return AddDependence(A, this, QueryingAA); |
3847 | // Not needed if we can't rewrite due to an invalid state. |
3848 | if (!ReachedKnownParallelRegions.isValidState()) |
3849 | return AddDependence(A, this, QueryingAA); |
3850 | return false; |
3851 | }; |
3852 | |
3853 | // Not needed if we are pre-runtime merge. |
3854 | if (!KernelInitCB->getCalledFunction()->isDeclaration()) { |
3855 | RegisterVirtualUse(OMPRTL___kmpc_get_hardware_num_threads_in_block, |
3856 | CustomStateMachineUseCB); |
3857 | RegisterVirtualUse(OMPRTL___kmpc_get_warp_size, CustomStateMachineUseCB); |
3858 | RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_generic, |
3859 | CustomStateMachineUseCB); |
3860 | RegisterVirtualUse(OMPRTL___kmpc_kernel_parallel, |
3861 | CustomStateMachineUseCB); |
3862 | RegisterVirtualUse(OMPRTL___kmpc_kernel_end_parallel, |
3863 | CustomStateMachineUseCB); |
3864 | } |
3865 | |
3866 | // If we do not perform SPMDzation we do not need the virtual uses below. |
3867 | if (SPMDCompatibilityTracker.isAtFixpoint()) |
3868 | return; |
3869 | |
3870 | Attributor::VirtualUseCallbackTy HWThreadIdUseCB = |
3871 | [&](Attributor &A, const AbstractAttribute *QueryingAA) { |
3872 | // Whenever we perform SPMDzation we will insert |
3873 | // __kmpc_get_hardware_thread_id_in_block calls. |
3874 | if (!SPMDCompatibilityTracker.isValidState()) |
3875 | return AddDependence(A, this, QueryingAA); |
3876 | return false; |
3877 | }; |
3878 | RegisterVirtualUse(OMPRTL___kmpc_get_hardware_thread_id_in_block, |
3879 | HWThreadIdUseCB); |
3880 | |
3881 | Attributor::VirtualUseCallbackTy SPMDBarrierUseCB = |
3882 | [&](Attributor &A, const AbstractAttribute *QueryingAA) { |
3883 | // Whenever we perform SPMDzation with guarding we will insert |
3884 | // __kmpc_simple_barrier_spmd calls. If SPMDzation failed, there is |
3885 | // nothing to guard, or there are no parallel regions, we don't need |
3886 | // the calls. |
3887 | if (!SPMDCompatibilityTracker.isValidState()) |
3888 | return AddDependence(A, this, QueryingAA); |
3889 | if (SPMDCompatibilityTracker.empty()) |
3890 | return AddDependence(A, this, QueryingAA); |
3891 | if (!mayContainParallelRegion()) |
3892 | return AddDependence(A, this, QueryingAA); |
3893 | return false; |
3894 | }; |
3895 | RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_spmd, SPMDBarrierUseCB); |
3896 | } |
3897 | |
3898 | /// Sanitize the string \p S such that it is a suitable global symbol name. |
3899 | static std::string sanitizeForGlobalName(std::string S) { |
3900 | std::replace_if( |
3901 | first: S.begin(), last: S.end(), |
3902 | pred: [](const char C) { |
3903 | return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || |
3904 | (C >= '0' && C <= '9') || C == '_'); |
3905 | }, |
3906 | new_value: '.'); |
3907 | return S; |
3908 | } |
3909 | |
3910 | /// Modify the IR based on the KernelInfoState as the fixpoint iteration is |
3911 | /// finished now. |
3912 | ChangeStatus manifest(Attributor &A) override { |
3913 | // If we are not looking at a kernel with __kmpc_target_init and |
3914 | // __kmpc_target_deinit call we cannot actually manifest the information. |
3915 | if (!KernelInitCB || !KernelDeinitCB) |
3916 | return ChangeStatus::UNCHANGED; |
3917 | |
3918 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
3919 | |
3920 | bool HasBuiltStateMachine = true; |
3921 | if (!changeToSPMDMode(A, Changed)) { |
3922 | if (!KernelInitCB->getCalledFunction()->isDeclaration()) |
3923 | HasBuiltStateMachine = buildCustomStateMachine(A, Changed); |
3924 | else |
3925 | HasBuiltStateMachine = false; |
3926 | } |
3927 | |
3928 | // We need to reset KernelEnvC if specific rewriting is not done. |
3929 | ConstantStruct *ExistingKernelEnvC = |
3930 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
3931 | ConstantInt *OldUseGenericStateMachineVal = |
3932 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
3933 | KernelEnvC: ExistingKernelEnvC); |
3934 | if (!HasBuiltStateMachine) |
3935 | setUseGenericStateMachineOfKernelEnvironment( |
3936 | OldUseGenericStateMachineVal); |
3937 | |
3938 | // At last, update the KernelEnvc |
3939 | GlobalVariable *KernelEnvGV = |
3940 | KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB); |
3941 | if (KernelEnvGV->getInitializer() != KernelEnvC) { |
3942 | KernelEnvGV->setInitializer(KernelEnvC); |
3943 | Changed = ChangeStatus::CHANGED; |
3944 | } |
3945 | |
3946 | return Changed; |
3947 | } |
3948 | |
3949 | void insertInstructionGuardsHelper(Attributor &A) { |
3950 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3951 | |
3952 | auto CreateGuardedRegion = [&](Instruction *RegionStartI, |
3953 | Instruction *RegionEndI) { |
3954 | LoopInfo *LI = nullptr; |
3955 | DominatorTree *DT = nullptr; |
3956 | MemorySSAUpdater *MSU = nullptr; |
3957 | using InsertPointTy = OpenMPIRBuilder::InsertPointTy; |
3958 | |
3959 | BasicBlock *ParentBB = RegionStartI->getParent(); |
3960 | Function *Fn = ParentBB->getParent(); |
3961 | Module &M = *Fn->getParent(); |
3962 | |
3963 | // Create all the blocks and logic. |
3964 | // ParentBB: |
3965 | // goto RegionCheckTidBB |
3966 | // RegionCheckTidBB: |
3967 | // Tid = __kmpc_hardware_thread_id() |
3968 | // if (Tid != 0) |
3969 | // goto RegionBarrierBB |
3970 | // RegionStartBB: |
3971 | // <execute instructions guarded> |
3972 | // goto RegionEndBB |
3973 | // RegionEndBB: |
3974 | // <store escaping values to shared mem> |
3975 | // goto RegionBarrierBB |
3976 | // RegionBarrierBB: |
3977 | // __kmpc_simple_barrier_spmd() |
3978 | // // second barrier is omitted if lacking escaping values. |
3979 | // <load escaping values from shared mem> |
3980 | // __kmpc_simple_barrier_spmd() |
3981 | // goto RegionExitBB |
3982 | // RegionExitBB: |
3983 | // <execute rest of instructions> |
3984 | |
3985 | BasicBlock *RegionEndBB = SplitBlock(Old: ParentBB, SplitPt: RegionEndI->getNextNode(), |
3986 | DT, LI, MSSAU: MSU, BBName: "region.guarded.end" ); |
3987 | BasicBlock *RegionBarrierBB = |
3988 | SplitBlock(Old: RegionEndBB, SplitPt: &*RegionEndBB->getFirstInsertionPt(), DT, LI, |
3989 | MSSAU: MSU, BBName: "region.barrier" ); |
3990 | BasicBlock *RegionExitBB = |
3991 | SplitBlock(Old: RegionBarrierBB, SplitPt: &*RegionBarrierBB->getFirstInsertionPt(), |
3992 | DT, LI, MSSAU: MSU, BBName: "region.exit" ); |
3993 | BasicBlock *RegionStartBB = |
3994 | SplitBlock(Old: ParentBB, SplitPt: RegionStartI, DT, LI, MSSAU: MSU, BBName: "region.guarded" ); |
3995 | |
3996 | assert(ParentBB->getUniqueSuccessor() == RegionStartBB && |
3997 | "Expected a different CFG" ); |
3998 | |
3999 | BasicBlock *RegionCheckTidBB = SplitBlock( |
4000 | Old: ParentBB, SplitPt: ParentBB->getTerminator(), DT, LI, MSSAU: MSU, BBName: "region.check.tid" ); |
4001 | |
4002 | // Register basic blocks with the Attributor. |
4003 | A.registerManifestAddedBasicBlock(BB&: *RegionEndBB); |
4004 | A.registerManifestAddedBasicBlock(BB&: *RegionBarrierBB); |
4005 | A.registerManifestAddedBasicBlock(BB&: *RegionExitBB); |
4006 | A.registerManifestAddedBasicBlock(BB&: *RegionStartBB); |
4007 | A.registerManifestAddedBasicBlock(BB&: *RegionCheckTidBB); |
4008 | |
4009 | bool HasBroadcastValues = false; |
4010 | // Find escaping outputs from the guarded region to outside users and |
4011 | // broadcast their values to them. |
4012 | for (Instruction &I : *RegionStartBB) { |
4013 | SmallVector<Use *, 4> OutsideUses; |
4014 | for (Use &U : I.uses()) { |
4015 | Instruction &UsrI = *cast<Instruction>(Val: U.getUser()); |
4016 | if (UsrI.getParent() != RegionStartBB) |
4017 | OutsideUses.push_back(Elt: &U); |
4018 | } |
4019 | |
4020 | if (OutsideUses.empty()) |
4021 | continue; |
4022 | |
4023 | HasBroadcastValues = true; |
4024 | |
4025 | // Emit a global variable in shared memory to store the broadcasted |
4026 | // value. |
4027 | auto *SharedMem = new GlobalVariable( |
4028 | M, I.getType(), /* IsConstant */ false, |
4029 | GlobalValue::InternalLinkage, UndefValue::get(T: I.getType()), |
4030 | sanitizeForGlobalName( |
4031 | S: (I.getName() + ".guarded.output.alloc" ).str()), |
4032 | nullptr, GlobalValue::NotThreadLocal, |
4033 | static_cast<unsigned>(AddressSpace::Shared)); |
4034 | |
4035 | // Emit a store instruction to update the value. |
4036 | new StoreInst(&I, SharedMem, |
4037 | RegionEndBB->getTerminator()->getIterator()); |
4038 | |
4039 | LoadInst *LoadI = new LoadInst( |
4040 | I.getType(), SharedMem, I.getName() + ".guarded.output.load" , |
4041 | RegionBarrierBB->getTerminator()->getIterator()); |
4042 | |
4043 | // Emit a load instruction and replace uses of the output value. |
4044 | for (Use *U : OutsideUses) |
4045 | A.changeUseAfterManifest(U&: *U, NV&: *LoadI); |
4046 | } |
4047 | |
4048 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4049 | |
4050 | // Go to tid check BB in ParentBB. |
4051 | const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); |
4052 | ParentBB->getTerminator()->eraseFromParent(); |
4053 | OpenMPIRBuilder::LocationDescription Loc( |
4054 | InsertPointTy(ParentBB, ParentBB->end()), DL); |
4055 | OMPInfoCache.OMPBuilder.updateToLocation(Loc); |
4056 | uint32_t SrcLocStrSize; |
4057 | auto *SrcLocStr = |
4058 | OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
4059 | Value *Ident = |
4060 | OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
4061 | BranchInst::Create(IfTrue: RegionCheckTidBB, InsertBefore: ParentBB)->setDebugLoc(DL); |
4062 | |
4063 | // Add check for Tid in RegionCheckTidBB |
4064 | RegionCheckTidBB->getTerminator()->eraseFromParent(); |
4065 | OpenMPIRBuilder::LocationDescription LocRegionCheckTid( |
4066 | InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); |
4067 | OMPInfoCache.OMPBuilder.updateToLocation(Loc: LocRegionCheckTid); |
4068 | FunctionCallee HardwareTidFn = |
4069 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4070 | M, FnID: OMPRTL___kmpc_get_hardware_thread_id_in_block); |
4071 | CallInst *Tid = |
4072 | OMPInfoCache.OMPBuilder.Builder.CreateCall(Callee: HardwareTidFn, Args: {}); |
4073 | Tid->setDebugLoc(DL); |
4074 | OMPInfoCache.setCallingConvention(Callee: HardwareTidFn, CI: Tid); |
4075 | Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Arg: Tid); |
4076 | OMPInfoCache.OMPBuilder.Builder |
4077 | .CreateCondBr(Cond: TidCheck, True: RegionStartBB, False: RegionBarrierBB) |
4078 | ->setDebugLoc(DL); |
4079 | |
4080 | // First barrier for synchronization, ensures main thread has updated |
4081 | // values. |
4082 | FunctionCallee BarrierFn = |
4083 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4084 | M, FnID: OMPRTL___kmpc_barrier_simple_spmd); |
4085 | OMPInfoCache.OMPBuilder.updateToLocation(Loc: InsertPointTy( |
4086 | RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); |
4087 | CallInst *Barrier = |
4088 | OMPInfoCache.OMPBuilder.Builder.CreateCall(Callee: BarrierFn, Args: {Ident, Tid}); |
4089 | Barrier->setDebugLoc(DL); |
4090 | OMPInfoCache.setCallingConvention(Callee: BarrierFn, CI: Barrier); |
4091 | |
4092 | // Second barrier ensures workers have read broadcast values. |
4093 | if (HasBroadcastValues) { |
4094 | CallInst *Barrier = |
4095 | CallInst::Create(Func: BarrierFn, Args: {Ident, Tid}, NameStr: "" , |
4096 | InsertBefore: RegionBarrierBB->getTerminator()->getIterator()); |
4097 | Barrier->setDebugLoc(DL); |
4098 | OMPInfoCache.setCallingConvention(Callee: BarrierFn, CI: Barrier); |
4099 | } |
4100 | }; |
4101 | |
4102 | auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
4103 | SmallPtrSet<BasicBlock *, 8> Visited; |
4104 | for (Instruction *GuardedI : SPMDCompatibilityTracker) { |
4105 | BasicBlock *BB = GuardedI->getParent(); |
4106 | if (!Visited.insert(Ptr: BB).second) |
4107 | continue; |
4108 | |
4109 | SmallVector<std::pair<Instruction *, Instruction *>> Reorders; |
4110 | Instruction *LastEffect = nullptr; |
4111 | BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); |
4112 | while (++IP != IPEnd) { |
4113 | if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) |
4114 | continue; |
4115 | Instruction *I = &*IP; |
4116 | if (OpenMPOpt::getCallIfRegularCall(V&: *I, RFI: &AllocSharedRFI)) |
4117 | continue; |
4118 | if (!I->user_empty() || !SPMDCompatibilityTracker.contains(Elem: I)) { |
4119 | LastEffect = nullptr; |
4120 | continue; |
4121 | } |
4122 | if (LastEffect) |
4123 | Reorders.push_back(Elt: {I, LastEffect}); |
4124 | LastEffect = &*IP; |
4125 | } |
4126 | for (auto &Reorder : Reorders) |
4127 | Reorder.first->moveBefore(InsertPos: Reorder.second->getIterator()); |
4128 | } |
4129 | |
4130 | SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; |
4131 | |
4132 | for (Instruction *GuardedI : SPMDCompatibilityTracker) { |
4133 | BasicBlock *BB = GuardedI->getParent(); |
4134 | auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( |
4135 | IRP: IRPosition::function(F: *GuardedI->getFunction()), QueryingAA: nullptr, |
4136 | DepClass: DepClassTy::NONE); |
4137 | assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo" ); |
4138 | auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(Val: CalleeAA); |
4139 | // Continue if instruction is already guarded. |
4140 | if (CalleeAAFunction.getGuardedInstructions().contains(Ptr: GuardedI)) |
4141 | continue; |
4142 | |
4143 | Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; |
4144 | for (Instruction &I : *BB) { |
4145 | // If instruction I needs to be guarded update the guarded region |
4146 | // bounds. |
4147 | if (SPMDCompatibilityTracker.contains(Elem: &I)) { |
4148 | CalleeAAFunction.getGuardedInstructions().insert(Ptr: &I); |
4149 | if (GuardedRegionStart) |
4150 | GuardedRegionEnd = &I; |
4151 | else |
4152 | GuardedRegionStart = GuardedRegionEnd = &I; |
4153 | |
4154 | continue; |
4155 | } |
4156 | |
4157 | // Instruction I does not need guarding, store |
4158 | // any region found and reset bounds. |
4159 | if (GuardedRegionStart) { |
4160 | GuardedRegions.push_back( |
4161 | Elt: std::make_pair(x&: GuardedRegionStart, y&: GuardedRegionEnd)); |
4162 | GuardedRegionStart = nullptr; |
4163 | GuardedRegionEnd = nullptr; |
4164 | } |
4165 | } |
4166 | } |
4167 | |
4168 | for (auto &GR : GuardedRegions) |
4169 | CreateGuardedRegion(GR.first, GR.second); |
4170 | } |
4171 | |
4172 | void forceSingleThreadPerWorkgroupHelper(Attributor &A) { |
4173 | // Only allow 1 thread per workgroup to continue executing the user code. |
4174 | // |
4175 | // InitCB = __kmpc_target_init(...) |
4176 | // ThreadIdInBlock = __kmpc_get_hardware_thread_id_in_block(); |
4177 | // if (ThreadIdInBlock != 0) return; |
4178 | // UserCode: |
4179 | // // user code |
4180 | // |
4181 | auto &Ctx = getAnchorValue().getContext(); |
4182 | Function *Kernel = getAssociatedFunction(); |
4183 | assert(Kernel && "Expected an associated function!" ); |
4184 | |
4185 | // Create block for user code to branch to from initial block. |
4186 | BasicBlock *InitBB = KernelInitCB->getParent(); |
4187 | BasicBlock *UserCodeBB = InitBB->splitBasicBlock( |
4188 | I: KernelInitCB->getNextNode(), BBName: "main.thread.user_code" ); |
4189 | BasicBlock *ReturnBB = |
4190 | BasicBlock::Create(Context&: Ctx, Name: "exit.threads" , Parent: Kernel, InsertBefore: UserCodeBB); |
4191 | |
4192 | // Register blocks with attributor: |
4193 | A.registerManifestAddedBasicBlock(BB&: *InitBB); |
4194 | A.registerManifestAddedBasicBlock(BB&: *UserCodeBB); |
4195 | A.registerManifestAddedBasicBlock(BB&: *ReturnBB); |
4196 | |
4197 | // Debug location: |
4198 | const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); |
4199 | ReturnInst::Create(C&: Ctx, InsertAtEnd: ReturnBB)->setDebugLoc(DLoc); |
4200 | InitBB->getTerminator()->eraseFromParent(); |
4201 | |
4202 | // Prepare call to OMPRTL___kmpc_get_hardware_thread_id_in_block. |
4203 | Module &M = *Kernel->getParent(); |
4204 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4205 | FunctionCallee ThreadIdInBlockFn = |
4206 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4207 | M, FnID: OMPRTL___kmpc_get_hardware_thread_id_in_block); |
4208 | |
4209 | // Get thread ID in block. |
4210 | CallInst *ThreadIdInBlock = |
4211 | CallInst::Create(Func: ThreadIdInBlockFn, NameStr: "thread_id.in.block" , InsertBefore: InitBB); |
4212 | OMPInfoCache.setCallingConvention(Callee: ThreadIdInBlockFn, CI: ThreadIdInBlock); |
4213 | ThreadIdInBlock->setDebugLoc(DLoc); |
4214 | |
4215 | // Eliminate all threads in the block with ID not equal to 0: |
4216 | Instruction *IsMainThread = |
4217 | ICmpInst::Create(Op: ICmpInst::ICmp, Pred: CmpInst::ICMP_NE, S1: ThreadIdInBlock, |
4218 | S2: ConstantInt::get(Ty: ThreadIdInBlock->getType(), V: 0), |
4219 | Name: "thread.is_main" , InsertBefore: InitBB); |
4220 | IsMainThread->setDebugLoc(DLoc); |
4221 | BranchInst::Create(IfTrue: ReturnBB, IfFalse: UserCodeBB, Cond: IsMainThread, InsertBefore: InitBB); |
4222 | } |
4223 | |
4224 | bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { |
4225 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4226 | |
4227 | if (!SPMDCompatibilityTracker.isAssumed()) { |
4228 | for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { |
4229 | if (!NonCompatibleI) |
4230 | continue; |
4231 | |
4232 | // Skip diagnostics on calls to known OpenMP runtime functions for now. |
4233 | if (auto *CB = dyn_cast<CallBase>(Val: NonCompatibleI)) |
4234 | if (OMPInfoCache.RTLFunctions.contains(V: CB->getCalledFunction())) |
4235 | continue; |
4236 | |
4237 | auto = [&](OptimizationRemarkAnalysis ORA) { |
4238 | ORA << "Value has potential side effects preventing SPMD-mode " |
4239 | "execution" ; |
4240 | if (isa<CallBase>(Val: NonCompatibleI)) { |
4241 | ORA << ". Add `[[omp::assume(\"ompx_spmd_amenable\")]]` to " |
4242 | "the called function to override" ; |
4243 | } |
4244 | return ORA << "." ; |
4245 | }; |
4246 | A.emitRemark<OptimizationRemarkAnalysis>(I: NonCompatibleI, RemarkName: "OMP121" , |
4247 | RemarkCB&: Remark); |
4248 | |
4249 | LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " |
4250 | << *NonCompatibleI << "\n" ); |
4251 | } |
4252 | |
4253 | return false; |
4254 | } |
4255 | |
4256 | // Get the actual kernel, could be the caller of the anchor scope if we have |
4257 | // a debug wrapper. |
4258 | Function *Kernel = getAnchorScope(); |
4259 | if (Kernel->hasLocalLinkage()) { |
4260 | assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper." ); |
4261 | auto *CB = cast<CallBase>(Val: Kernel->user_back()); |
4262 | Kernel = CB->getCaller(); |
4263 | } |
4264 | assert(omp::isOpenMPKernel(*Kernel) && "Expected kernel function!" ); |
4265 | |
4266 | // Check if the kernel is already in SPMD mode, if so, return success. |
4267 | ConstantStruct *ExistingKernelEnvC = |
4268 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
4269 | auto *ExecModeC = |
4270 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC: ExistingKernelEnvC); |
4271 | const int8_t ExecModeVal = ExecModeC->getSExtValue(); |
4272 | if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) |
4273 | return true; |
4274 | |
4275 | // We will now unconditionally modify the IR, indicate a change. |
4276 | Changed = ChangeStatus::CHANGED; |
4277 | |
4278 | // Do not use instruction guards when no parallel is present inside |
4279 | // the target region. |
4280 | if (mayContainParallelRegion()) |
4281 | insertInstructionGuardsHelper(A); |
4282 | else |
4283 | forceSingleThreadPerWorkgroupHelper(A); |
4284 | |
4285 | // Adjust the global exec mode flag that tells the runtime what mode this |
4286 | // kernel is executed in. |
4287 | assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && |
4288 | "Initially non-SPMD kernel has SPMD exec mode!" ); |
4289 | setExecModeOfKernelEnvironment( |
4290 | ConstantInt::get(Ty: ExecModeC->getIntegerType(), |
4291 | V: ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); |
4292 | |
4293 | ++NumOpenMPTargetRegionKernelsSPMD; |
4294 | |
4295 | auto = [&](OptimizationRemark OR) { |
4296 | return OR << "Transformed generic-mode kernel to SPMD-mode." ; |
4297 | }; |
4298 | A.emitRemark<OptimizationRemark>(I: KernelInitCB, RemarkName: "OMP120" , RemarkCB&: Remark); |
4299 | return true; |
4300 | }; |
4301 | |
4302 | bool buildCustomStateMachine(Attributor &A, ChangeStatus &Changed) { |
4303 | // If we have disabled state machine rewrites, don't make a custom one |
4304 | if (DisableOpenMPOptStateMachineRewrite) |
4305 | return false; |
4306 | |
4307 | // Don't rewrite the state machine if we are not in a valid state. |
4308 | if (!ReachedKnownParallelRegions.isValidState()) |
4309 | return false; |
4310 | |
4311 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4312 | if (!OMPInfoCache.runtimeFnsAvailable( |
4313 | Fns: {OMPRTL___kmpc_get_hardware_num_threads_in_block, |
4314 | OMPRTL___kmpc_get_warp_size, OMPRTL___kmpc_barrier_simple_generic, |
4315 | OMPRTL___kmpc_kernel_parallel, OMPRTL___kmpc_kernel_end_parallel})) |
4316 | return false; |
4317 | |
4318 | ConstantStruct *ExistingKernelEnvC = |
4319 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
4320 | |
4321 | // Check if the current configuration is non-SPMD and generic state machine. |
4322 | // If we already have SPMD mode or a custom state machine we do not need to |
4323 | // go any further. If it is anything but a constant something is weird and |
4324 | // we give up. |
4325 | ConstantInt *UseStateMachineC = |
4326 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
4327 | KernelEnvC: ExistingKernelEnvC); |
4328 | ConstantInt *ModeC = |
4329 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC: ExistingKernelEnvC); |
4330 | |
4331 | // If we are stuck with generic mode, try to create a custom device (=GPU) |
4332 | // state machine which is specialized for the parallel regions that are |
4333 | // reachable by the kernel. |
4334 | if (UseStateMachineC->isZero() || |
4335 | (ModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) |
4336 | return false; |
4337 | |
4338 | Changed = ChangeStatus::CHANGED; |
4339 | |
4340 | // If not SPMD mode, indicate we use a custom state machine now. |
4341 | setUseGenericStateMachineOfKernelEnvironment( |
4342 | ConstantInt::get(Ty: UseStateMachineC->getIntegerType(), V: false)); |
4343 | |
4344 | // If we don't actually need a state machine we are done here. This can |
4345 | // happen if there simply are no parallel regions. In the resulting kernel |
4346 | // all worker threads will simply exit right away, leaving the main thread |
4347 | // to do the work alone. |
4348 | if (!mayContainParallelRegion()) { |
4349 | ++NumOpenMPTargetRegionKernelsWithoutStateMachine; |
4350 | |
4351 | auto = [&](OptimizationRemark OR) { |
4352 | return OR << "Removing unused state machine from generic-mode kernel." ; |
4353 | }; |
4354 | A.emitRemark<OptimizationRemark>(I: KernelInitCB, RemarkName: "OMP130" , RemarkCB&: Remark); |
4355 | |
4356 | return true; |
4357 | } |
4358 | |
4359 | // Keep track in the statistics of our new shiny custom state machine. |
4360 | if (ReachedUnknownParallelRegions.empty()) { |
4361 | ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; |
4362 | |
4363 | auto = [&](OptimizationRemark OR) { |
4364 | return OR << "Rewriting generic-mode kernel with a customized state " |
4365 | "machine." ; |
4366 | }; |
4367 | A.emitRemark<OptimizationRemark>(I: KernelInitCB, RemarkName: "OMP131" , RemarkCB&: Remark); |
4368 | } else { |
4369 | ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; |
4370 | |
4371 | auto = [&](OptimizationRemarkAnalysis OR) { |
4372 | return OR << "Generic-mode kernel is executed with a customized state " |
4373 | "machine that requires a fallback." ; |
4374 | }; |
4375 | A.emitRemark<OptimizationRemarkAnalysis>(I: KernelInitCB, RemarkName: "OMP132" , RemarkCB&: Remark); |
4376 | |
4377 | // Tell the user why we ended up with a fallback. |
4378 | for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { |
4379 | if (!UnknownParallelRegionCB) |
4380 | continue; |
4381 | auto = [&](OptimizationRemarkAnalysis ORA) { |
4382 | return ORA << "Call may contain unknown parallel regions. Use " |
4383 | << "`[[omp::assume(\"omp_no_parallelism\")]]` to " |
4384 | "override." ; |
4385 | }; |
4386 | A.emitRemark<OptimizationRemarkAnalysis>(I: UnknownParallelRegionCB, |
4387 | RemarkName: "OMP133" , RemarkCB&: Remark); |
4388 | } |
4389 | } |
4390 | |
4391 | // Create all the blocks: |
4392 | // |
4393 | // InitCB = __kmpc_target_init(...) |
4394 | // BlockHwSize = |
4395 | // __kmpc_get_hardware_num_threads_in_block(); |
4396 | // WarpSize = __kmpc_get_warp_size(); |
4397 | // BlockSize = BlockHwSize - WarpSize; |
4398 | // IsWorkerCheckBB: bool IsWorker = InitCB != -1; |
4399 | // if (IsWorker) { |
4400 | // if (InitCB >= BlockSize) return; |
4401 | // SMBeginBB: __kmpc_barrier_simple_generic(...); |
4402 | // void *WorkFn; |
4403 | // bool Active = __kmpc_kernel_parallel(&WorkFn); |
4404 | // if (!WorkFn) return; |
4405 | // SMIsActiveCheckBB: if (Active) { |
4406 | // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) |
4407 | // ParFn0(...); |
4408 | // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) |
4409 | // ParFn1(...); |
4410 | // ... |
4411 | // SMIfCascadeCurrentBB: else |
4412 | // ((WorkFnTy*)WorkFn)(...); |
4413 | // SMEndParallelBB: __kmpc_kernel_end_parallel(...); |
4414 | // } |
4415 | // SMDoneBB: __kmpc_barrier_simple_generic(...); |
4416 | // goto SMBeginBB; |
4417 | // } |
4418 | // UserCodeEntryBB: // user code |
4419 | // __kmpc_target_deinit(...) |
4420 | // |
4421 | auto &Ctx = getAnchorValue().getContext(); |
4422 | Function *Kernel = getAssociatedFunction(); |
4423 | assert(Kernel && "Expected an associated function!" ); |
4424 | |
4425 | BasicBlock *InitBB = KernelInitCB->getParent(); |
4426 | BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( |
4427 | I: KernelInitCB->getNextNode(), BBName: "thread.user_code.check" ); |
4428 | BasicBlock *IsWorkerCheckBB = |
4429 | BasicBlock::Create(Context&: Ctx, Name: "is_worker_check" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4430 | BasicBlock *StateMachineBeginBB = BasicBlock::Create( |
4431 | Context&: Ctx, Name: "worker_state_machine.begin" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4432 | BasicBlock *StateMachineFinishedBB = BasicBlock::Create( |
4433 | Context&: Ctx, Name: "worker_state_machine.finished" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4434 | BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( |
4435 | Context&: Ctx, Name: "worker_state_machine.is_active.check" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4436 | BasicBlock *StateMachineIfCascadeCurrentBB = |
4437 | BasicBlock::Create(Context&: Ctx, Name: "worker_state_machine.parallel_region.check" , |
4438 | Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4439 | BasicBlock *StateMachineEndParallelBB = |
4440 | BasicBlock::Create(Context&: Ctx, Name: "worker_state_machine.parallel_region.end" , |
4441 | Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4442 | BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( |
4443 | Context&: Ctx, Name: "worker_state_machine.done.barrier" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4444 | A.registerManifestAddedBasicBlock(BB&: *InitBB); |
4445 | A.registerManifestAddedBasicBlock(BB&: *UserCodeEntryBB); |
4446 | A.registerManifestAddedBasicBlock(BB&: *IsWorkerCheckBB); |
4447 | A.registerManifestAddedBasicBlock(BB&: *StateMachineBeginBB); |
4448 | A.registerManifestAddedBasicBlock(BB&: *StateMachineFinishedBB); |
4449 | A.registerManifestAddedBasicBlock(BB&: *StateMachineIsActiveCheckBB); |
4450 | A.registerManifestAddedBasicBlock(BB&: *StateMachineIfCascadeCurrentBB); |
4451 | A.registerManifestAddedBasicBlock(BB&: *StateMachineEndParallelBB); |
4452 | A.registerManifestAddedBasicBlock(BB&: *StateMachineDoneBarrierBB); |
4453 | |
4454 | const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); |
4455 | ReturnInst::Create(C&: Ctx, InsertAtEnd: StateMachineFinishedBB)->setDebugLoc(DLoc); |
4456 | InitBB->getTerminator()->eraseFromParent(); |
4457 | |
4458 | Instruction *IsWorker = |
4459 | ICmpInst::Create(Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_NE, S1: KernelInitCB, |
4460 | S2: ConstantInt::get(Ty: KernelInitCB->getType(), V: -1), |
4461 | Name: "thread.is_worker" , InsertBefore: InitBB); |
4462 | IsWorker->setDebugLoc(DLoc); |
4463 | BranchInst::Create(IfTrue: IsWorkerCheckBB, IfFalse: UserCodeEntryBB, Cond: IsWorker, InsertBefore: InitBB); |
4464 | |
4465 | Module &M = *Kernel->getParent(); |
4466 | FunctionCallee BlockHwSizeFn = |
4467 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4468 | M, FnID: OMPRTL___kmpc_get_hardware_num_threads_in_block); |
4469 | FunctionCallee WarpSizeFn = |
4470 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4471 | M, FnID: OMPRTL___kmpc_get_warp_size); |
4472 | CallInst *BlockHwSize = |
4473 | CallInst::Create(Func: BlockHwSizeFn, NameStr: "block.hw_size" , InsertBefore: IsWorkerCheckBB); |
4474 | OMPInfoCache.setCallingConvention(Callee: BlockHwSizeFn, CI: BlockHwSize); |
4475 | BlockHwSize->setDebugLoc(DLoc); |
4476 | CallInst *WarpSize = |
4477 | CallInst::Create(Func: WarpSizeFn, NameStr: "warp.size" , InsertBefore: IsWorkerCheckBB); |
4478 | OMPInfoCache.setCallingConvention(Callee: WarpSizeFn, CI: WarpSize); |
4479 | WarpSize->setDebugLoc(DLoc); |
4480 | Instruction *BlockSize = BinaryOperator::CreateSub( |
4481 | V1: BlockHwSize, V2: WarpSize, Name: "block.size" , InsertBefore: IsWorkerCheckBB); |
4482 | BlockSize->setDebugLoc(DLoc); |
4483 | Instruction *IsMainOrWorker = ICmpInst::Create( |
4484 | Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_SLT, S1: KernelInitCB, S2: BlockSize, |
4485 | Name: "thread.is_main_or_worker" , InsertBefore: IsWorkerCheckBB); |
4486 | IsMainOrWorker->setDebugLoc(DLoc); |
4487 | BranchInst::Create(IfTrue: StateMachineBeginBB, IfFalse: StateMachineFinishedBB, |
4488 | Cond: IsMainOrWorker, InsertBefore: IsWorkerCheckBB); |
4489 | |
4490 | // Create local storage for the work function pointer. |
4491 | const DataLayout &DL = M.getDataLayout(); |
4492 | Type *VoidPtrTy = PointerType::getUnqual(C&: Ctx); |
4493 | Instruction *WorkFnAI = |
4494 | new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, |
4495 | "worker.work_fn.addr" , Kernel->getEntryBlock().begin()); |
4496 | WorkFnAI->setDebugLoc(DLoc); |
4497 | |
4498 | OMPInfoCache.OMPBuilder.updateToLocation( |
4499 | Loc: OpenMPIRBuilder::LocationDescription( |
4500 | IRBuilder<>::InsertPoint(StateMachineBeginBB, |
4501 | StateMachineBeginBB->end()), |
4502 | DLoc)); |
4503 | |
4504 | Value *Ident = KernelInfo::getIdentFromKernelEnvironment(KernelEnvC); |
4505 | Value *GTid = KernelInitCB; |
4506 | |
4507 | FunctionCallee BarrierFn = |
4508 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4509 | M, FnID: OMPRTL___kmpc_barrier_simple_generic); |
4510 | CallInst *Barrier = |
4511 | CallInst::Create(Func: BarrierFn, Args: {Ident, GTid}, NameStr: "" , InsertBefore: StateMachineBeginBB); |
4512 | OMPInfoCache.setCallingConvention(Callee: BarrierFn, CI: Barrier); |
4513 | Barrier->setDebugLoc(DLoc); |
4514 | |
4515 | if (WorkFnAI->getType()->getPointerAddressSpace() != |
4516 | (unsigned int)AddressSpace::Generic) { |
4517 | WorkFnAI = new AddrSpaceCastInst( |
4518 | WorkFnAI, PointerType::get(C&: Ctx, AddressSpace: (unsigned int)AddressSpace::Generic), |
4519 | WorkFnAI->getName() + ".generic" , StateMachineBeginBB); |
4520 | WorkFnAI->setDebugLoc(DLoc); |
4521 | } |
4522 | |
4523 | FunctionCallee KernelParallelFn = |
4524 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4525 | M, FnID: OMPRTL___kmpc_kernel_parallel); |
4526 | CallInst *IsActiveWorker = CallInst::Create( |
4527 | Func: KernelParallelFn, Args: {WorkFnAI}, NameStr: "worker.is_active" , InsertBefore: StateMachineBeginBB); |
4528 | OMPInfoCache.setCallingConvention(Callee: KernelParallelFn, CI: IsActiveWorker); |
4529 | IsActiveWorker->setDebugLoc(DLoc); |
4530 | Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn" , |
4531 | StateMachineBeginBB); |
4532 | WorkFn->setDebugLoc(DLoc); |
4533 | |
4534 | FunctionType *ParallelRegionFnTy = FunctionType::get( |
4535 | Result: Type::getVoidTy(C&: Ctx), Params: {Type::getInt16Ty(C&: Ctx), Type::getInt32Ty(C&: Ctx)}, |
4536 | isVarArg: false); |
4537 | |
4538 | Instruction *IsDone = |
4539 | ICmpInst::Create(Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_EQ, S1: WorkFn, |
4540 | S2: Constant::getNullValue(Ty: VoidPtrTy), Name: "worker.is_done" , |
4541 | InsertBefore: StateMachineBeginBB); |
4542 | IsDone->setDebugLoc(DLoc); |
4543 | BranchInst::Create(IfTrue: StateMachineFinishedBB, IfFalse: StateMachineIsActiveCheckBB, |
4544 | Cond: IsDone, InsertBefore: StateMachineBeginBB) |
4545 | ->setDebugLoc(DLoc); |
4546 | |
4547 | BranchInst::Create(IfTrue: StateMachineIfCascadeCurrentBB, |
4548 | IfFalse: StateMachineDoneBarrierBB, Cond: IsActiveWorker, |
4549 | InsertBefore: StateMachineIsActiveCheckBB) |
4550 | ->setDebugLoc(DLoc); |
4551 | |
4552 | Value *ZeroArg = |
4553 | Constant::getNullValue(Ty: ParallelRegionFnTy->getParamType(i: 0)); |
4554 | |
4555 | const unsigned int WrapperFunctionArgNo = 6; |
4556 | |
4557 | // Now that we have most of the CFG skeleton it is time for the if-cascade |
4558 | // that checks the function pointer we got from the runtime against the |
4559 | // parallel regions we expect, if there are any. |
4560 | for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { |
4561 | auto *CB = ReachedKnownParallelRegions[I]; |
4562 | auto *ParallelRegion = dyn_cast<Function>( |
4563 | Val: CB->getArgOperand(i: WrapperFunctionArgNo)->stripPointerCasts()); |
4564 | BasicBlock *PRExecuteBB = BasicBlock::Create( |
4565 | Context&: Ctx, Name: "worker_state_machine.parallel_region.execute" , Parent: Kernel, |
4566 | InsertBefore: StateMachineEndParallelBB); |
4567 | CallInst::Create(Func: ParallelRegion, Args: {ZeroArg, GTid}, NameStr: "" , InsertBefore: PRExecuteBB) |
4568 | ->setDebugLoc(DLoc); |
4569 | BranchInst::Create(IfTrue: StateMachineEndParallelBB, InsertBefore: PRExecuteBB) |
4570 | ->setDebugLoc(DLoc); |
4571 | |
4572 | BasicBlock *PRNextBB = |
4573 | BasicBlock::Create(Context&: Ctx, Name: "worker_state_machine.parallel_region.check" , |
4574 | Parent: Kernel, InsertBefore: StateMachineEndParallelBB); |
4575 | A.registerManifestAddedBasicBlock(BB&: *PRExecuteBB); |
4576 | A.registerManifestAddedBasicBlock(BB&: *PRNextBB); |
4577 | |
4578 | // Check if we need to compare the pointer at all or if we can just |
4579 | // call the parallel region function. |
4580 | Value *IsPR; |
4581 | if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { |
4582 | Instruction *CmpI = ICmpInst::Create( |
4583 | Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_EQ, S1: WorkFn, S2: ParallelRegion, |
4584 | Name: "worker.check_parallel_region" , InsertBefore: StateMachineIfCascadeCurrentBB); |
4585 | CmpI->setDebugLoc(DLoc); |
4586 | IsPR = CmpI; |
4587 | } else { |
4588 | IsPR = ConstantInt::getTrue(Context&: Ctx); |
4589 | } |
4590 | |
4591 | BranchInst::Create(IfTrue: PRExecuteBB, IfFalse: PRNextBB, Cond: IsPR, |
4592 | InsertBefore: StateMachineIfCascadeCurrentBB) |
4593 | ->setDebugLoc(DLoc); |
4594 | StateMachineIfCascadeCurrentBB = PRNextBB; |
4595 | } |
4596 | |
4597 | // At the end of the if-cascade we place the indirect function pointer call |
4598 | // in case we might need it, that is if there can be parallel regions we |
4599 | // have not handled in the if-cascade above. |
4600 | if (!ReachedUnknownParallelRegions.empty()) { |
4601 | StateMachineIfCascadeCurrentBB->setName( |
4602 | "worker_state_machine.parallel_region.fallback.execute" ); |
4603 | CallInst::Create(Ty: ParallelRegionFnTy, Func: WorkFn, Args: {ZeroArg, GTid}, NameStr: "" , |
4604 | InsertBefore: StateMachineIfCascadeCurrentBB) |
4605 | ->setDebugLoc(DLoc); |
4606 | } |
4607 | BranchInst::Create(IfTrue: StateMachineEndParallelBB, |
4608 | InsertBefore: StateMachineIfCascadeCurrentBB) |
4609 | ->setDebugLoc(DLoc); |
4610 | |
4611 | FunctionCallee EndParallelFn = |
4612 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4613 | M, FnID: OMPRTL___kmpc_kernel_end_parallel); |
4614 | CallInst *EndParallel = |
4615 | CallInst::Create(Func: EndParallelFn, Args: {}, NameStr: "" , InsertBefore: StateMachineEndParallelBB); |
4616 | OMPInfoCache.setCallingConvention(Callee: EndParallelFn, CI: EndParallel); |
4617 | EndParallel->setDebugLoc(DLoc); |
4618 | BranchInst::Create(IfTrue: StateMachineDoneBarrierBB, InsertBefore: StateMachineEndParallelBB) |
4619 | ->setDebugLoc(DLoc); |
4620 | |
4621 | CallInst::Create(Func: BarrierFn, Args: {Ident, GTid}, NameStr: "" , InsertBefore: StateMachineDoneBarrierBB) |
4622 | ->setDebugLoc(DLoc); |
4623 | BranchInst::Create(IfTrue: StateMachineBeginBB, InsertBefore: StateMachineDoneBarrierBB) |
4624 | ->setDebugLoc(DLoc); |
4625 | |
4626 | return true; |
4627 | } |
4628 | |
4629 | /// Fixpoint iteration update function. Will be called every time a dependence |
4630 | /// changed its state (and in the beginning). |
4631 | ChangeStatus updateImpl(Attributor &A) override { |
4632 | KernelInfoState StateBefore = getState(); |
4633 | |
4634 | // When we leave this function this RAII will make sure the member |
4635 | // KernelEnvC is updated properly depending on the state. That member is |
4636 | // used for simplification of values and needs to be up to date at all |
4637 | // times. |
4638 | struct UpdateKernelEnvCRAII { |
4639 | AAKernelInfoFunction &AA; |
4640 | |
4641 | UpdateKernelEnvCRAII(AAKernelInfoFunction &AA) : AA(AA) {} |
4642 | |
4643 | ~UpdateKernelEnvCRAII() { |
4644 | if (!AA.KernelEnvC) |
4645 | return; |
4646 | |
4647 | ConstantStruct *ExistingKernelEnvC = |
4648 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB: AA.KernelInitCB); |
4649 | |
4650 | if (!AA.isValidState()) { |
4651 | AA.KernelEnvC = ExistingKernelEnvC; |
4652 | return; |
4653 | } |
4654 | |
4655 | if (!AA.ReachedKnownParallelRegions.isValidState()) |
4656 | AA.setUseGenericStateMachineOfKernelEnvironment( |
4657 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
4658 | KernelEnvC: ExistingKernelEnvC)); |
4659 | |
4660 | if (!AA.SPMDCompatibilityTracker.isValidState()) |
4661 | AA.setExecModeOfKernelEnvironment( |
4662 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC: ExistingKernelEnvC)); |
4663 | |
4664 | ConstantInt *MayUseNestedParallelismC = |
4665 | KernelInfo::getMayUseNestedParallelismFromKernelEnvironment( |
4666 | KernelEnvC: AA.KernelEnvC); |
4667 | ConstantInt *NewMayUseNestedParallelismC = ConstantInt::get( |
4668 | Ty: MayUseNestedParallelismC->getIntegerType(), V: AA.NestedParallelism); |
4669 | AA.setMayUseNestedParallelismOfKernelEnvironment( |
4670 | NewMayUseNestedParallelismC); |
4671 | } |
4672 | } RAII(*this); |
4673 | |
4674 | // Callback to check a read/write instruction. |
4675 | auto CheckRWInst = [&](Instruction &I) { |
4676 | // We handle calls later. |
4677 | if (isa<CallBase>(Val: I)) |
4678 | return true; |
4679 | // We only care about write effects. |
4680 | if (!I.mayWriteToMemory()) |
4681 | return true; |
4682 | if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
4683 | const auto *UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>( |
4684 | QueryingAA: *this, IRP: IRPosition::value(V: *SI->getPointerOperand()), |
4685 | DepClass: DepClassTy::OPTIONAL); |
4686 | auto *HS = A.getAAFor<AAHeapToStack>( |
4687 | QueryingAA: *this, IRP: IRPosition::function(F: *I.getFunction()), |
4688 | DepClass: DepClassTy::OPTIONAL); |
4689 | if (UnderlyingObjsAA && |
4690 | UnderlyingObjsAA->forallUnderlyingObjects(Pred: [&](Value &Obj) { |
4691 | if (AA::isAssumedThreadLocalObject(A, Obj, QueryingAA: *this)) |
4692 | return true; |
4693 | // Check for AAHeapToStack moved objects which must not be |
4694 | // guarded. |
4695 | auto *CB = dyn_cast<CallBase>(Val: &Obj); |
4696 | return CB && HS && HS->isAssumedHeapToStack(CB: *CB); |
4697 | })) |
4698 | return true; |
4699 | } |
4700 | |
4701 | // Insert instruction that needs guarding. |
4702 | SPMDCompatibilityTracker.insert(Elem: &I); |
4703 | return true; |
4704 | }; |
4705 | |
4706 | bool UsedAssumedInformationInCheckRWInst = false; |
4707 | if (!SPMDCompatibilityTracker.isAtFixpoint()) |
4708 | if (!A.checkForAllReadWriteInstructions( |
4709 | Pred: CheckRWInst, QueryingAA&: *this, UsedAssumedInformation&: UsedAssumedInformationInCheckRWInst)) |
4710 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4711 | |
4712 | bool UsedAssumedInformationFromReachingKernels = false; |
4713 | if (!IsKernelEntry) { |
4714 | updateParallelLevels(A); |
4715 | |
4716 | bool AllReachingKernelsKnown = true; |
4717 | updateReachingKernelEntries(A, AllReachingKernelsKnown); |
4718 | UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; |
4719 | |
4720 | if (!SPMDCompatibilityTracker.empty()) { |
4721 | if (!ParallelLevels.isValidState()) |
4722 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4723 | else if (!ReachingKernelEntries.isValidState()) |
4724 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4725 | else { |
4726 | // Check if all reaching kernels agree on the mode as we can otherwise |
4727 | // not guard instructions. We might not be sure about the mode so we |
4728 | // we cannot fix the internal spmd-zation state either. |
4729 | int SPMD = 0, Generic = 0; |
4730 | for (auto *Kernel : ReachingKernelEntries) { |
4731 | auto *CBAA = A.getAAFor<AAKernelInfo>( |
4732 | QueryingAA: *this, IRP: IRPosition::function(F: *Kernel), DepClass: DepClassTy::OPTIONAL); |
4733 | if (CBAA && CBAA->SPMDCompatibilityTracker.isValidState() && |
4734 | CBAA->SPMDCompatibilityTracker.isAssumed()) |
4735 | ++SPMD; |
4736 | else |
4737 | ++Generic; |
4738 | if (!CBAA || !CBAA->SPMDCompatibilityTracker.isAtFixpoint()) |
4739 | UsedAssumedInformationFromReachingKernels = true; |
4740 | } |
4741 | if (SPMD != 0 && Generic != 0) |
4742 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4743 | } |
4744 | } |
4745 | } |
4746 | |
4747 | // Callback to check a call instruction. |
4748 | bool AllParallelRegionStatesWereFixed = true; |
4749 | bool AllSPMDStatesWereFixed = true; |
4750 | auto CheckCallInst = [&](Instruction &I) { |
4751 | auto &CB = cast<CallBase>(Val&: I); |
4752 | auto *CBAA = A.getAAFor<AAKernelInfo>( |
4753 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB), DepClass: DepClassTy::OPTIONAL); |
4754 | if (!CBAA) |
4755 | return false; |
4756 | getState() ^= CBAA->getState(); |
4757 | AllSPMDStatesWereFixed &= CBAA->SPMDCompatibilityTracker.isAtFixpoint(); |
4758 | AllParallelRegionStatesWereFixed &= |
4759 | CBAA->ReachedKnownParallelRegions.isAtFixpoint(); |
4760 | AllParallelRegionStatesWereFixed &= |
4761 | CBAA->ReachedUnknownParallelRegions.isAtFixpoint(); |
4762 | return true; |
4763 | }; |
4764 | |
4765 | bool UsedAssumedInformationInCheckCallInst = false; |
4766 | if (!A.checkForAllCallLikeInstructions( |
4767 | Pred: CheckCallInst, QueryingAA: *this, UsedAssumedInformation&: UsedAssumedInformationInCheckCallInst)) { |
4768 | LLVM_DEBUG(dbgs() << TAG |
4769 | << "Failed to visit all call-like instructions!\n" ;); |
4770 | return indicatePessimisticFixpoint(); |
4771 | } |
4772 | |
4773 | // If we haven't used any assumed information for the reached parallel |
4774 | // region states we can fix it. |
4775 | if (!UsedAssumedInformationInCheckCallInst && |
4776 | AllParallelRegionStatesWereFixed) { |
4777 | ReachedKnownParallelRegions.indicateOptimisticFixpoint(); |
4778 | ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); |
4779 | } |
4780 | |
4781 | // If we haven't used any assumed information for the SPMD state we can fix |
4782 | // it. |
4783 | if (!UsedAssumedInformationInCheckRWInst && |
4784 | !UsedAssumedInformationInCheckCallInst && |
4785 | !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) |
4786 | SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
4787 | |
4788 | return StateBefore == getState() ? ChangeStatus::UNCHANGED |
4789 | : ChangeStatus::CHANGED; |
4790 | } |
4791 | |
4792 | private: |
4793 | /// Update info regarding reaching kernels. |
4794 | void updateReachingKernelEntries(Attributor &A, |
4795 | bool &AllReachingKernelsKnown) { |
4796 | auto PredCallSite = [&](AbstractCallSite ACS) { |
4797 | Function *Caller = ACS.getInstruction()->getFunction(); |
4798 | |
4799 | assert(Caller && "Caller is nullptr" ); |
4800 | |
4801 | auto *CAA = A.getOrCreateAAFor<AAKernelInfo>( |
4802 | IRP: IRPosition::function(F: *Caller), QueryingAA: this, DepClass: DepClassTy::REQUIRED); |
4803 | if (CAA && CAA->ReachingKernelEntries.isValidState()) { |
4804 | ReachingKernelEntries ^= CAA->ReachingKernelEntries; |
4805 | return true; |
4806 | } |
4807 | |
4808 | // We lost track of the caller of the associated function, any kernel |
4809 | // could reach now. |
4810 | ReachingKernelEntries.indicatePessimisticFixpoint(); |
4811 | |
4812 | return true; |
4813 | }; |
4814 | |
4815 | if (!A.checkForAllCallSites(Pred: PredCallSite, QueryingAA: *this, |
4816 | RequireAllCallSites: true /* RequireAllCallSites */, |
4817 | UsedAssumedInformation&: AllReachingKernelsKnown)) |
4818 | ReachingKernelEntries.indicatePessimisticFixpoint(); |
4819 | } |
4820 | |
4821 | /// Update info regarding parallel levels. |
4822 | void updateParallelLevels(Attributor &A) { |
4823 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4824 | OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = |
4825 | OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
4826 | |
4827 | auto PredCallSite = [&](AbstractCallSite ACS) { |
4828 | Function *Caller = ACS.getInstruction()->getFunction(); |
4829 | |
4830 | assert(Caller && "Caller is nullptr" ); |
4831 | |
4832 | auto *CAA = |
4833 | A.getOrCreateAAFor<AAKernelInfo>(IRP: IRPosition::function(F: *Caller)); |
4834 | if (CAA && CAA->ParallelLevels.isValidState()) { |
4835 | // Any function that is called by `__kmpc_parallel_51` will not be |
4836 | // folded as the parallel level in the function is updated. In order to |
4837 | // get it right, all the analysis would depend on the implentation. That |
4838 | // said, if in the future any change to the implementation, the analysis |
4839 | // could be wrong. As a consequence, we are just conservative here. |
4840 | if (Caller == Parallel51RFI.Declaration) { |
4841 | ParallelLevels.indicatePessimisticFixpoint(); |
4842 | return true; |
4843 | } |
4844 | |
4845 | ParallelLevels ^= CAA->ParallelLevels; |
4846 | |
4847 | return true; |
4848 | } |
4849 | |
4850 | // We lost track of the caller of the associated function, any kernel |
4851 | // could reach now. |
4852 | ParallelLevels.indicatePessimisticFixpoint(); |
4853 | |
4854 | return true; |
4855 | }; |
4856 | |
4857 | bool AllCallSitesKnown = true; |
4858 | if (!A.checkForAllCallSites(Pred: PredCallSite, QueryingAA: *this, |
4859 | RequireAllCallSites: true /* RequireAllCallSites */, |
4860 | UsedAssumedInformation&: AllCallSitesKnown)) |
4861 | ParallelLevels.indicatePessimisticFixpoint(); |
4862 | } |
4863 | }; |
4864 | |
4865 | /// The call site kernel info abstract attribute, basically, what can we say |
4866 | /// about a call site with regards to the KernelInfoState. For now this simply |
4867 | /// forwards the information from the callee. |
4868 | struct AAKernelInfoCallSite : AAKernelInfo { |
4869 | AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) |
4870 | : AAKernelInfo(IRP, A) {} |
4871 | |
4872 | /// See AbstractAttribute::initialize(...). |
4873 | void initialize(Attributor &A) override { |
4874 | AAKernelInfo::initialize(A); |
4875 | |
4876 | CallBase &CB = cast<CallBase>(Val&: getAssociatedValue()); |
4877 | auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>( |
4878 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB), DepClass: DepClassTy::OPTIONAL); |
4879 | |
4880 | // Check for SPMD-mode assumptions. |
4881 | if (AssumptionAA && AssumptionAA->hasAssumption(Assumption: "ompx_spmd_amenable" )) { |
4882 | indicateOptimisticFixpoint(); |
4883 | return; |
4884 | } |
4885 | |
4886 | // First weed out calls we do not care about, that is readonly/readnone |
4887 | // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a |
4888 | // parallel region or anything else we are looking for. |
4889 | if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(Val: CB)) { |
4890 | indicateOptimisticFixpoint(); |
4891 | return; |
4892 | } |
4893 | |
4894 | // Next we check if we know the callee. If it is a known OpenMP function |
4895 | // we will handle them explicitly in the switch below. If it is not, we |
4896 | // will use an AAKernelInfo object on the callee to gather information and |
4897 | // merge that into the current state. The latter happens in the updateImpl. |
4898 | auto CheckCallee = [&](Function *Callee, unsigned NumCallees) { |
4899 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4900 | const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Val: Callee); |
4901 | if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { |
4902 | // Unknown caller or declarations are not analyzable, we give up. |
4903 | if (!Callee || !A.isFunctionIPOAmendable(F: *Callee)) { |
4904 | |
4905 | // Unknown callees might contain parallel regions, except if they have |
4906 | // an appropriate assumption attached. |
4907 | if (!AssumptionAA || |
4908 | !(AssumptionAA->hasAssumption(Assumption: "omp_no_openmp" ) || |
4909 | AssumptionAA->hasAssumption(Assumption: "omp_no_parallelism" ))) |
4910 | ReachedUnknownParallelRegions.insert(Elem: &CB); |
4911 | |
4912 | // If SPMDCompatibilityTracker is not fixed, we need to give up on the |
4913 | // idea we can run something unknown in SPMD-mode. |
4914 | if (!SPMDCompatibilityTracker.isAtFixpoint()) { |
4915 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4916 | SPMDCompatibilityTracker.insert(Elem: &CB); |
4917 | } |
4918 | |
4919 | // We have updated the state for this unknown call properly, there |
4920 | // won't be any change so we indicate a fixpoint. |
4921 | indicateOptimisticFixpoint(); |
4922 | } |
4923 | // If the callee is known and can be used in IPO, we will update the |
4924 | // state based on the callee state in updateImpl. |
4925 | return; |
4926 | } |
4927 | if (NumCallees > 1) { |
4928 | indicatePessimisticFixpoint(); |
4929 | return; |
4930 | } |
4931 | |
4932 | RuntimeFunction RF = It->getSecond(); |
4933 | switch (RF) { |
4934 | // All the functions we know are compatible with SPMD mode. |
4935 | case OMPRTL___kmpc_is_spmd_exec_mode: |
4936 | case OMPRTL___kmpc_distribute_static_fini: |
4937 | case OMPRTL___kmpc_for_static_fini: |
4938 | case OMPRTL___kmpc_global_thread_num: |
4939 | case OMPRTL___kmpc_get_hardware_num_threads_in_block: |
4940 | case OMPRTL___kmpc_get_hardware_num_blocks: |
4941 | case OMPRTL___kmpc_single: |
4942 | case OMPRTL___kmpc_end_single: |
4943 | case OMPRTL___kmpc_master: |
4944 | case OMPRTL___kmpc_end_master: |
4945 | case OMPRTL___kmpc_barrier: |
4946 | case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: |
4947 | case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: |
4948 | case OMPRTL___kmpc_error: |
4949 | case OMPRTL___kmpc_flush: |
4950 | case OMPRTL___kmpc_get_hardware_thread_id_in_block: |
4951 | case OMPRTL___kmpc_get_warp_size: |
4952 | case OMPRTL_omp_get_thread_num: |
4953 | case OMPRTL_omp_get_num_threads: |
4954 | case OMPRTL_omp_get_max_threads: |
4955 | case OMPRTL_omp_in_parallel: |
4956 | case OMPRTL_omp_get_dynamic: |
4957 | case OMPRTL_omp_get_cancellation: |
4958 | case OMPRTL_omp_get_nested: |
4959 | case OMPRTL_omp_get_schedule: |
4960 | case OMPRTL_omp_get_thread_limit: |
4961 | case OMPRTL_omp_get_supported_active_levels: |
4962 | case OMPRTL_omp_get_max_active_levels: |
4963 | case OMPRTL_omp_get_level: |
4964 | case OMPRTL_omp_get_ancestor_thread_num: |
4965 | case OMPRTL_omp_get_team_size: |
4966 | case OMPRTL_omp_get_active_level: |
4967 | case OMPRTL_omp_in_final: |
4968 | case OMPRTL_omp_get_proc_bind: |
4969 | case OMPRTL_omp_get_num_places: |
4970 | case OMPRTL_omp_get_num_procs: |
4971 | case OMPRTL_omp_get_place_proc_ids: |
4972 | case OMPRTL_omp_get_place_num: |
4973 | case OMPRTL_omp_get_partition_num_places: |
4974 | case OMPRTL_omp_get_partition_place_nums: |
4975 | case OMPRTL_omp_get_wtime: |
4976 | break; |
4977 | case OMPRTL___kmpc_distribute_static_init_4: |
4978 | case OMPRTL___kmpc_distribute_static_init_4u: |
4979 | case OMPRTL___kmpc_distribute_static_init_8: |
4980 | case OMPRTL___kmpc_distribute_static_init_8u: |
4981 | case OMPRTL___kmpc_for_static_init_4: |
4982 | case OMPRTL___kmpc_for_static_init_4u: |
4983 | case OMPRTL___kmpc_for_static_init_8: |
4984 | case OMPRTL___kmpc_for_static_init_8u: { |
4985 | // Check the schedule and allow static schedule in SPMD mode. |
4986 | unsigned ScheduleArgOpNo = 2; |
4987 | auto *ScheduleTypeCI = |
4988 | dyn_cast<ConstantInt>(Val: CB.getArgOperand(i: ScheduleArgOpNo)); |
4989 | unsigned ScheduleTypeVal = |
4990 | ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; |
4991 | switch (OMPScheduleType(ScheduleTypeVal)) { |
4992 | case OMPScheduleType::UnorderedStatic: |
4993 | case OMPScheduleType::UnorderedStaticChunked: |
4994 | case OMPScheduleType::OrderedDistribute: |
4995 | case OMPScheduleType::OrderedDistributeChunked: |
4996 | break; |
4997 | default: |
4998 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4999 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5000 | break; |
5001 | }; |
5002 | } break; |
5003 | case OMPRTL___kmpc_target_init: |
5004 | KernelInitCB = &CB; |
5005 | break; |
5006 | case OMPRTL___kmpc_target_deinit: |
5007 | KernelDeinitCB = &CB; |
5008 | break; |
5009 | case OMPRTL___kmpc_parallel_51: |
5010 | if (!handleParallel51(A, CB)) |
5011 | indicatePessimisticFixpoint(); |
5012 | return; |
5013 | case OMPRTL___kmpc_omp_task: |
5014 | // We do not look into tasks right now, just give up. |
5015 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
5016 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5017 | ReachedUnknownParallelRegions.insert(Elem: &CB); |
5018 | break; |
5019 | case OMPRTL___kmpc_alloc_shared: |
5020 | case OMPRTL___kmpc_free_shared: |
5021 | // Return without setting a fixpoint, to be resolved in updateImpl. |
5022 | return; |
5023 | default: |
5024 | // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, |
5025 | // generally. However, they do not hide parallel regions. |
5026 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
5027 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5028 | break; |
5029 | } |
5030 | // All other OpenMP runtime calls will not reach parallel regions so they |
5031 | // can be safely ignored for now. Since it is a known OpenMP runtime call |
5032 | // we have now modeled all effects and there is no need for any update. |
5033 | indicateOptimisticFixpoint(); |
5034 | }; |
5035 | |
5036 | const auto *AACE = |
5037 | A.getAAFor<AACallEdges>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
5038 | if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) { |
5039 | CheckCallee(getAssociatedFunction(), 1); |
5040 | return; |
5041 | } |
5042 | const auto &OptimisticEdges = AACE->getOptimisticEdges(); |
5043 | for (auto *Callee : OptimisticEdges) { |
5044 | CheckCallee(Callee, OptimisticEdges.size()); |
5045 | if (isAtFixpoint()) |
5046 | break; |
5047 | } |
5048 | } |
5049 | |
5050 | ChangeStatus updateImpl(Attributor &A) override { |
5051 | // TODO: Once we have call site specific value information we can provide |
5052 | // call site specific liveness information and then it makes |
5053 | // sense to specialize attributes for call sites arguments instead of |
5054 | // redirecting requests to the callee argument. |
5055 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
5056 | KernelInfoState StateBefore = getState(); |
5057 | |
5058 | auto CheckCallee = [&](Function *F, int NumCallees) { |
5059 | const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Val: F); |
5060 | |
5061 | // If F is not a runtime function, propagate the AAKernelInfo of the |
5062 | // callee. |
5063 | if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { |
5064 | const IRPosition &FnPos = IRPosition::function(F: *F); |
5065 | auto *FnAA = |
5066 | A.getAAFor<AAKernelInfo>(QueryingAA: *this, IRP: FnPos, DepClass: DepClassTy::REQUIRED); |
5067 | if (!FnAA) |
5068 | return indicatePessimisticFixpoint(); |
5069 | if (getState() == FnAA->getState()) |
5070 | return ChangeStatus::UNCHANGED; |
5071 | getState() = FnAA->getState(); |
5072 | return ChangeStatus::CHANGED; |
5073 | } |
5074 | if (NumCallees > 1) |
5075 | return indicatePessimisticFixpoint(); |
5076 | |
5077 | CallBase &CB = cast<CallBase>(Val&: getAssociatedValue()); |
5078 | if (It->getSecond() == OMPRTL___kmpc_parallel_51) { |
5079 | if (!handleParallel51(A, CB)) |
5080 | return indicatePessimisticFixpoint(); |
5081 | return StateBefore == getState() ? ChangeStatus::UNCHANGED |
5082 | : ChangeStatus::CHANGED; |
5083 | } |
5084 | |
5085 | // F is a runtime function that allocates or frees memory, check |
5086 | // AAHeapToStack and AAHeapToShared. |
5087 | assert( |
5088 | (It->getSecond() == OMPRTL___kmpc_alloc_shared || |
5089 | It->getSecond() == OMPRTL___kmpc_free_shared) && |
5090 | "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call" ); |
5091 | |
5092 | auto *HeapToStackAA = A.getAAFor<AAHeapToStack>( |
5093 | QueryingAA: *this, IRP: IRPosition::function(F: *CB.getCaller()), DepClass: DepClassTy::OPTIONAL); |
5094 | auto *HeapToSharedAA = A.getAAFor<AAHeapToShared>( |
5095 | QueryingAA: *this, IRP: IRPosition::function(F: *CB.getCaller()), DepClass: DepClassTy::OPTIONAL); |
5096 | |
5097 | RuntimeFunction RF = It->getSecond(); |
5098 | |
5099 | switch (RF) { |
5100 | // If neither HeapToStack nor HeapToShared assume the call is removed, |
5101 | // assume SPMD incompatibility. |
5102 | case OMPRTL___kmpc_alloc_shared: |
5103 | if ((!HeapToStackAA || !HeapToStackAA->isAssumedHeapToStack(CB)) && |
5104 | (!HeapToSharedAA || !HeapToSharedAA->isAssumedHeapToShared(CB))) |
5105 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5106 | break; |
5107 | case OMPRTL___kmpc_free_shared: |
5108 | if ((!HeapToStackAA || |
5109 | !HeapToStackAA->isAssumedHeapToStackRemovedFree(CB)) && |
5110 | (!HeapToSharedAA || |
5111 | !HeapToSharedAA->isAssumedHeapToSharedRemovedFree(CB))) |
5112 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5113 | break; |
5114 | default: |
5115 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
5116 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5117 | } |
5118 | return ChangeStatus::CHANGED; |
5119 | }; |
5120 | |
5121 | const auto *AACE = |
5122 | A.getAAFor<AACallEdges>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
5123 | if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) { |
5124 | if (Function *F = getAssociatedFunction()) |
5125 | CheckCallee(F, /*NumCallees=*/1); |
5126 | } else { |
5127 | const auto &OptimisticEdges = AACE->getOptimisticEdges(); |
5128 | for (auto *Callee : OptimisticEdges) { |
5129 | CheckCallee(Callee, OptimisticEdges.size()); |
5130 | if (isAtFixpoint()) |
5131 | break; |
5132 | } |
5133 | } |
5134 | |
5135 | return StateBefore == getState() ? ChangeStatus::UNCHANGED |
5136 | : ChangeStatus::CHANGED; |
5137 | } |
5138 | |
5139 | /// Deal with a __kmpc_parallel_51 call (\p CB). Returns true if the call was |
5140 | /// handled, if a problem occurred, false is returned. |
5141 | bool handleParallel51(Attributor &A, CallBase &CB) { |
5142 | const unsigned int NonWrapperFunctionArgNo = 5; |
5143 | const unsigned int WrapperFunctionArgNo = 6; |
5144 | auto ParallelRegionOpArgNo = SPMDCompatibilityTracker.isAssumed() |
5145 | ? NonWrapperFunctionArgNo |
5146 | : WrapperFunctionArgNo; |
5147 | |
5148 | auto *ParallelRegion = dyn_cast<Function>( |
5149 | Val: CB.getArgOperand(i: ParallelRegionOpArgNo)->stripPointerCasts()); |
5150 | if (!ParallelRegion) |
5151 | return false; |
5152 | |
5153 | ReachedKnownParallelRegions.insert(Elem: &CB); |
5154 | /// Check nested parallelism |
5155 | auto *FnAA = A.getAAFor<AAKernelInfo>( |
5156 | QueryingAA: *this, IRP: IRPosition::function(F: *ParallelRegion), DepClass: DepClassTy::OPTIONAL); |
5157 | NestedParallelism |= !FnAA || !FnAA->getState().isValidState() || |
5158 | !FnAA->ReachedKnownParallelRegions.empty() || |
5159 | !FnAA->ReachedKnownParallelRegions.isValidState() || |
5160 | !FnAA->ReachedUnknownParallelRegions.isValidState() || |
5161 | !FnAA->ReachedUnknownParallelRegions.empty(); |
5162 | return true; |
5163 | } |
5164 | }; |
5165 | |
5166 | struct AAFoldRuntimeCall |
5167 | : public StateWrapper<BooleanState, AbstractAttribute> { |
5168 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
5169 | |
5170 | AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
5171 | |
5172 | /// Statistics are tracked as part of manifest for now. |
5173 | void trackStatistics() const override {} |
5174 | |
5175 | /// Create an abstract attribute biew for the position \p IRP. |
5176 | static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, |
5177 | Attributor &A); |
5178 | |
5179 | /// See AbstractAttribute::getName() |
5180 | StringRef getName() const override { return "AAFoldRuntimeCall" ; } |
5181 | |
5182 | /// See AbstractAttribute::getIdAddr() |
5183 | const char *getIdAddr() const override { return &ID; } |
5184 | |
5185 | /// This function should return true if the type of the \p AA is |
5186 | /// AAFoldRuntimeCall |
5187 | static bool classof(const AbstractAttribute *AA) { |
5188 | return (AA->getIdAddr() == &ID); |
5189 | } |
5190 | |
5191 | static const char ID; |
5192 | }; |
5193 | |
5194 | struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { |
5195 | AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) |
5196 | : AAFoldRuntimeCall(IRP, A) {} |
5197 | |
5198 | /// See AbstractAttribute::getAsStr() |
5199 | const std::string getAsStr(Attributor *) const override { |
5200 | if (!isValidState()) |
5201 | return "<invalid>" ; |
5202 | |
5203 | std::string Str("simplified value: " ); |
5204 | |
5205 | if (!SimplifiedValue) |
5206 | return Str + std::string("none" ); |
5207 | |
5208 | if (!*SimplifiedValue) |
5209 | return Str + std::string("nullptr" ); |
5210 | |
5211 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: *SimplifiedValue)) |
5212 | return Str + std::to_string(val: CI->getSExtValue()); |
5213 | |
5214 | return Str + std::string("unknown" ); |
5215 | } |
5216 | |
5217 | void initialize(Attributor &A) override { |
5218 | if (DisableOpenMPOptFolding) |
5219 | indicatePessimisticFixpoint(); |
5220 | |
5221 | Function *Callee = getAssociatedFunction(); |
5222 | |
5223 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
5224 | const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Val: Callee); |
5225 | assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && |
5226 | "Expected a known OpenMP runtime function" ); |
5227 | |
5228 | RFKind = It->getSecond(); |
5229 | |
5230 | CallBase &CB = cast<CallBase>(Val&: getAssociatedValue()); |
5231 | A.registerSimplificationCallback( |
5232 | IRP: IRPosition::callsite_returned(CB), |
5233 | CB: [&](const IRPosition &IRP, const AbstractAttribute *AA, |
5234 | bool &UsedAssumedInformation) -> std::optional<Value *> { |
5235 | assert((isValidState() || SimplifiedValue == nullptr) && |
5236 | "Unexpected invalid state!" ); |
5237 | |
5238 | if (!isAtFixpoint()) { |
5239 | UsedAssumedInformation = true; |
5240 | if (AA) |
5241 | A.recordDependence(FromAA: *this, ToAA: *AA, DepClass: DepClassTy::OPTIONAL); |
5242 | } |
5243 | return SimplifiedValue; |
5244 | }); |
5245 | } |
5246 | |
5247 | ChangeStatus updateImpl(Attributor &A) override { |
5248 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
5249 | switch (RFKind) { |
5250 | case OMPRTL___kmpc_is_spmd_exec_mode: |
5251 | Changed |= foldIsSPMDExecMode(A); |
5252 | break; |
5253 | case OMPRTL___kmpc_parallel_level: |
5254 | Changed |= foldParallelLevel(A); |
5255 | break; |
5256 | case OMPRTL___kmpc_get_hardware_num_threads_in_block: |
5257 | Changed = Changed | foldKernelFnAttribute(A, Attr: "omp_target_thread_limit" ); |
5258 | break; |
5259 | case OMPRTL___kmpc_get_hardware_num_blocks: |
5260 | Changed = Changed | foldKernelFnAttribute(A, Attr: "omp_target_num_teams" ); |
5261 | break; |
5262 | default: |
5263 | llvm_unreachable("Unhandled OpenMP runtime function!" ); |
5264 | } |
5265 | |
5266 | return Changed; |
5267 | } |
5268 | |
5269 | ChangeStatus manifest(Attributor &A) override { |
5270 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
5271 | |
5272 | if (SimplifiedValue && *SimplifiedValue) { |
5273 | Instruction &I = *getCtxI(); |
5274 | A.changeAfterManifest(IRP: IRPosition::inst(I), NV&: **SimplifiedValue); |
5275 | A.deleteAfterManifest(I); |
5276 | |
5277 | CallBase *CB = dyn_cast<CallBase>(Val: &I); |
5278 | auto = [&](OptimizationRemark OR) { |
5279 | if (auto *C = dyn_cast<ConstantInt>(Val: *SimplifiedValue)) |
5280 | return OR << "Replacing OpenMP runtime call " |
5281 | << CB->getCalledFunction()->getName() << " with " |
5282 | << ore::NV("FoldedValue" , C->getZExtValue()) << "." ; |
5283 | return OR << "Replacing OpenMP runtime call " |
5284 | << CB->getCalledFunction()->getName() << "." ; |
5285 | }; |
5286 | |
5287 | if (CB && EnableVerboseRemarks) |
5288 | A.emitRemark<OptimizationRemark>(I: CB, RemarkName: "OMP180" , RemarkCB&: Remark); |
5289 | |
5290 | LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " |
5291 | << **SimplifiedValue << "\n" ); |
5292 | |
5293 | Changed = ChangeStatus::CHANGED; |
5294 | } |
5295 | |
5296 | return Changed; |
5297 | } |
5298 | |
5299 | ChangeStatus indicatePessimisticFixpoint() override { |
5300 | SimplifiedValue = nullptr; |
5301 | return AAFoldRuntimeCall::indicatePessimisticFixpoint(); |
5302 | } |
5303 | |
5304 | private: |
5305 | /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. |
5306 | ChangeStatus foldIsSPMDExecMode(Attributor &A) { |
5307 | std::optional<Value *> SimplifiedValueBefore = SimplifiedValue; |
5308 | |
5309 | unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; |
5310 | unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; |
5311 | auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( |
5312 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
5313 | |
5314 | if (!CallerKernelInfoAA || |
5315 | !CallerKernelInfoAA->ReachingKernelEntries.isValidState()) |
5316 | return indicatePessimisticFixpoint(); |
5317 | |
5318 | for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { |
5319 | auto *AA = A.getAAFor<AAKernelInfo>(QueryingAA: *this, IRP: IRPosition::function(F: *K), |
5320 | DepClass: DepClassTy::REQUIRED); |
5321 | |
5322 | if (!AA || !AA->isValidState()) { |
5323 | SimplifiedValue = nullptr; |
5324 | return indicatePessimisticFixpoint(); |
5325 | } |
5326 | |
5327 | if (AA->SPMDCompatibilityTracker.isAssumed()) { |
5328 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
5329 | ++KnownSPMDCount; |
5330 | else |
5331 | ++AssumedSPMDCount; |
5332 | } else { |
5333 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
5334 | ++KnownNonSPMDCount; |
5335 | else |
5336 | ++AssumedNonSPMDCount; |
5337 | } |
5338 | } |
5339 | |
5340 | if ((AssumedSPMDCount + KnownSPMDCount) && |
5341 | (AssumedNonSPMDCount + KnownNonSPMDCount)) |
5342 | return indicatePessimisticFixpoint(); |
5343 | |
5344 | auto &Ctx = getAnchorValue().getContext(); |
5345 | if (KnownSPMDCount || AssumedSPMDCount) { |
5346 | assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && |
5347 | "Expected only SPMD kernels!" ); |
5348 | // All reaching kernels are in SPMD mode. Update all function calls to |
5349 | // __kmpc_is_spmd_exec_mode to 1. |
5350 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: true); |
5351 | } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { |
5352 | assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && |
5353 | "Expected only non-SPMD kernels!" ); |
5354 | // All reaching kernels are in non-SPMD mode. Update all function |
5355 | // calls to __kmpc_is_spmd_exec_mode to 0. |
5356 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: false); |
5357 | } else { |
5358 | // We have empty reaching kernels, therefore we cannot tell if the |
5359 | // associated call site can be folded. At this moment, SimplifiedValue |
5360 | // must be none. |
5361 | assert(!SimplifiedValue && "SimplifiedValue should be none" ); |
5362 | } |
5363 | |
5364 | return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED |
5365 | : ChangeStatus::CHANGED; |
5366 | } |
5367 | |
5368 | /// Fold __kmpc_parallel_level into a constant if possible. |
5369 | ChangeStatus foldParallelLevel(Attributor &A) { |
5370 | std::optional<Value *> SimplifiedValueBefore = SimplifiedValue; |
5371 | |
5372 | auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( |
5373 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
5374 | |
5375 | if (!CallerKernelInfoAA || |
5376 | !CallerKernelInfoAA->ParallelLevels.isValidState()) |
5377 | return indicatePessimisticFixpoint(); |
5378 | |
5379 | if (!CallerKernelInfoAA->ReachingKernelEntries.isValidState()) |
5380 | return indicatePessimisticFixpoint(); |
5381 | |
5382 | if (CallerKernelInfoAA->ReachingKernelEntries.empty()) { |
5383 | assert(!SimplifiedValue && |
5384 | "SimplifiedValue should keep none at this point" ); |
5385 | return ChangeStatus::UNCHANGED; |
5386 | } |
5387 | |
5388 | unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; |
5389 | unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; |
5390 | for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { |
5391 | auto *AA = A.getAAFor<AAKernelInfo>(QueryingAA: *this, IRP: IRPosition::function(F: *K), |
5392 | DepClass: DepClassTy::REQUIRED); |
5393 | if (!AA || !AA->SPMDCompatibilityTracker.isValidState()) |
5394 | return indicatePessimisticFixpoint(); |
5395 | |
5396 | if (AA->SPMDCompatibilityTracker.isAssumed()) { |
5397 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
5398 | ++KnownSPMDCount; |
5399 | else |
5400 | ++AssumedSPMDCount; |
5401 | } else { |
5402 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
5403 | ++KnownNonSPMDCount; |
5404 | else |
5405 | ++AssumedNonSPMDCount; |
5406 | } |
5407 | } |
5408 | |
5409 | if ((AssumedSPMDCount + KnownSPMDCount) && |
5410 | (AssumedNonSPMDCount + KnownNonSPMDCount)) |
5411 | return indicatePessimisticFixpoint(); |
5412 | |
5413 | auto &Ctx = getAnchorValue().getContext(); |
5414 | // If the caller can only be reached by SPMD kernel entries, the parallel |
5415 | // level is 1. Similarly, if the caller can only be reached by non-SPMD |
5416 | // kernel entries, it is 0. |
5417 | if (AssumedSPMDCount || KnownSPMDCount) { |
5418 | assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && |
5419 | "Expected only SPMD kernels!" ); |
5420 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: 1); |
5421 | } else { |
5422 | assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && |
5423 | "Expected only non-SPMD kernels!" ); |
5424 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: 0); |
5425 | } |
5426 | return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED |
5427 | : ChangeStatus::CHANGED; |
5428 | } |
5429 | |
5430 | ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { |
5431 | // Specialize only if all the calls agree with the attribute constant value |
5432 | int32_t CurrentAttrValue = -1; |
5433 | std::optional<Value *> SimplifiedValueBefore = SimplifiedValue; |
5434 | |
5435 | auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( |
5436 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
5437 | |
5438 | if (!CallerKernelInfoAA || |
5439 | !CallerKernelInfoAA->ReachingKernelEntries.isValidState()) |
5440 | return indicatePessimisticFixpoint(); |
5441 | |
5442 | // Iterate over the kernels that reach this function |
5443 | for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { |
5444 | int32_t NextAttrVal = K->getFnAttributeAsParsedInteger(Kind: Attr, Default: -1); |
5445 | |
5446 | if (NextAttrVal == -1 || |
5447 | (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) |
5448 | return indicatePessimisticFixpoint(); |
5449 | CurrentAttrValue = NextAttrVal; |
5450 | } |
5451 | |
5452 | if (CurrentAttrValue != -1) { |
5453 | auto &Ctx = getAnchorValue().getContext(); |
5454 | SimplifiedValue = |
5455 | ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: CurrentAttrValue); |
5456 | } |
5457 | return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED |
5458 | : ChangeStatus::CHANGED; |
5459 | } |
5460 | |
5461 | /// An optional value the associated value is assumed to fold to. That is, we |
5462 | /// assume the associated value (which is a call) can be replaced by this |
5463 | /// simplified value. |
5464 | std::optional<Value *> SimplifiedValue; |
5465 | |
5466 | /// The runtime function kind of the callee of the associated call site. |
5467 | RuntimeFunction RFKind; |
5468 | }; |
5469 | |
5470 | } // namespace |
5471 | |
5472 | /// Register folding callsite |
5473 | void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { |
5474 | auto &RFI = OMPInfoCache.RFIs[RF]; |
5475 | RFI.foreachUse(SCC, CB: [&](Use &U, Function &F) { |
5476 | CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, RFI: &RFI); |
5477 | if (!CI) |
5478 | return false; |
5479 | A.getOrCreateAAFor<AAFoldRuntimeCall>( |
5480 | IRP: IRPosition::callsite_returned(CB: *CI), /* QueryingAA */ nullptr, |
5481 | DepClass: DepClassTy::NONE, /* ForceUpdate */ false, |
5482 | /* UpdateAfterInit */ false); |
5483 | return false; |
5484 | }); |
5485 | } |
5486 | |
5487 | void OpenMPOpt::registerAAs(bool IsModulePass) { |
5488 | if (SCC.empty()) |
5489 | return; |
5490 | |
5491 | if (IsModulePass) { |
5492 | // Ensure we create the AAKernelInfo AAs first and without triggering an |
5493 | // update. This will make sure we register all value simplification |
5494 | // callbacks before any other AA has the chance to create an AAValueSimplify |
5495 | // or similar. |
5496 | auto CreateKernelInfoCB = [&](Use &, Function &Kernel) { |
5497 | A.getOrCreateAAFor<AAKernelInfo>( |
5498 | IRP: IRPosition::function(F: Kernel), /* QueryingAA */ nullptr, |
5499 | DepClass: DepClassTy::NONE, /* ForceUpdate */ false, |
5500 | /* UpdateAfterInit */ false); |
5501 | return false; |
5502 | }; |
5503 | OMPInformationCache::RuntimeFunctionInfo &InitRFI = |
5504 | OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
5505 | InitRFI.foreachUse(SCC, CB: CreateKernelInfoCB); |
5506 | |
5507 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_is_spmd_exec_mode); |
5508 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_parallel_level); |
5509 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_get_hardware_num_threads_in_block); |
5510 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_get_hardware_num_blocks); |
5511 | } |
5512 | |
5513 | // Create CallSite AA for all Getters. |
5514 | if (DeduceICVValues) { |
5515 | for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { |
5516 | auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; |
5517 | |
5518 | auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; |
5519 | |
5520 | auto CreateAA = [&](Use &U, Function &Caller) { |
5521 | CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, RFI: &GetterRFI); |
5522 | if (!CI) |
5523 | return false; |
5524 | |
5525 | auto &CB = cast<CallBase>(Val&: *CI); |
5526 | |
5527 | IRPosition CBPos = IRPosition::callsite_function(CB); |
5528 | A.getOrCreateAAFor<AAICVTracker>(IRP: CBPos); |
5529 | return false; |
5530 | }; |
5531 | |
5532 | GetterRFI.foreachUse(SCC, CB: CreateAA); |
5533 | } |
5534 | } |
5535 | |
5536 | // Create an ExecutionDomain AA for every function and a HeapToStack AA for |
5537 | // every function if there is a device kernel. |
5538 | if (!isOpenMPDevice(M)) |
5539 | return; |
5540 | |
5541 | for (auto *F : SCC) { |
5542 | if (F->isDeclaration()) |
5543 | continue; |
5544 | |
5545 | // We look at internal functions only on-demand but if any use is not a |
5546 | // direct call or outside the current set of analyzed functions, we have |
5547 | // to do it eagerly. |
5548 | if (F->hasLocalLinkage()) { |
5549 | if (llvm::all_of(Range: F->uses(), P: [this](const Use &U) { |
5550 | const auto *CB = dyn_cast<CallBase>(Val: U.getUser()); |
5551 | return CB && CB->isCallee(U: &U) && |
5552 | A.isRunOn(Fn: const_cast<Function *>(CB->getCaller())); |
5553 | })) |
5554 | continue; |
5555 | } |
5556 | registerAAsForFunction(A, F: *F); |
5557 | } |
5558 | } |
5559 | |
5560 | void OpenMPOpt::registerAAsForFunction(Attributor &A, const Function &F) { |
5561 | if (!DisableOpenMPOptDeglobalization) |
5562 | A.getOrCreateAAFor<AAHeapToShared>(IRP: IRPosition::function(F)); |
5563 | A.getOrCreateAAFor<AAExecutionDomain>(IRP: IRPosition::function(F)); |
5564 | if (!DisableOpenMPOptDeglobalization) |
5565 | A.getOrCreateAAFor<AAHeapToStack>(IRP: IRPosition::function(F)); |
5566 | if (F.hasFnAttribute(Kind: Attribute::Convergent)) |
5567 | A.getOrCreateAAFor<AANonConvergent>(IRP: IRPosition::function(F)); |
5568 | |
5569 | for (auto &I : instructions(F)) { |
5570 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) { |
5571 | bool UsedAssumedInformation = false; |
5572 | A.getAssumedSimplified(V: IRPosition::value(V: *LI), /* AA */ nullptr, |
5573 | UsedAssumedInformation, S: AA::Interprocedural); |
5574 | A.getOrCreateAAFor<AAAddressSpace>( |
5575 | IRP: IRPosition::value(V: *LI->getPointerOperand())); |
5576 | continue; |
5577 | } |
5578 | if (auto *CI = dyn_cast<CallBase>(Val: &I)) { |
5579 | if (CI->isIndirectCall()) |
5580 | A.getOrCreateAAFor<AAIndirectCallInfo>( |
5581 | IRP: IRPosition::callsite_function(CB: *CI)); |
5582 | } |
5583 | if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
5584 | A.getOrCreateAAFor<AAIsDead>(IRP: IRPosition::value(V: *SI)); |
5585 | A.getOrCreateAAFor<AAAddressSpace>( |
5586 | IRP: IRPosition::value(V: *SI->getPointerOperand())); |
5587 | continue; |
5588 | } |
5589 | if (auto *FI = dyn_cast<FenceInst>(Val: &I)) { |
5590 | A.getOrCreateAAFor<AAIsDead>(IRP: IRPosition::value(V: *FI)); |
5591 | continue; |
5592 | } |
5593 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
5594 | if (II->getIntrinsicID() == Intrinsic::assume) { |
5595 | A.getOrCreateAAFor<AAPotentialValues>( |
5596 | IRP: IRPosition::value(V: *II->getArgOperand(i: 0))); |
5597 | continue; |
5598 | } |
5599 | } |
5600 | } |
5601 | } |
5602 | |
5603 | const char AAICVTracker::ID = 0; |
5604 | const char AAKernelInfo::ID = 0; |
5605 | const char AAExecutionDomain::ID = 0; |
5606 | const char AAHeapToShared::ID = 0; |
5607 | const char AAFoldRuntimeCall::ID = 0; |
5608 | |
5609 | AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, |
5610 | Attributor &A) { |
5611 | AAICVTracker *AA = nullptr; |
5612 | switch (IRP.getPositionKind()) { |
5613 | case IRPosition::IRP_INVALID: |
5614 | case IRPosition::IRP_FLOAT: |
5615 | case IRPosition::IRP_ARGUMENT: |
5616 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5617 | llvm_unreachable("ICVTracker can only be created for function position!" ); |
5618 | case IRPosition::IRP_RETURNED: |
5619 | AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); |
5620 | break; |
5621 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5622 | AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); |
5623 | break; |
5624 | case IRPosition::IRP_CALL_SITE: |
5625 | AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); |
5626 | break; |
5627 | case IRPosition::IRP_FUNCTION: |
5628 | AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); |
5629 | break; |
5630 | } |
5631 | |
5632 | return *AA; |
5633 | } |
5634 | |
5635 | AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, |
5636 | Attributor &A) { |
5637 | AAExecutionDomainFunction *AA = nullptr; |
5638 | switch (IRP.getPositionKind()) { |
5639 | case IRPosition::IRP_INVALID: |
5640 | case IRPosition::IRP_FLOAT: |
5641 | case IRPosition::IRP_ARGUMENT: |
5642 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5643 | case IRPosition::IRP_RETURNED: |
5644 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5645 | case IRPosition::IRP_CALL_SITE: |
5646 | llvm_unreachable( |
5647 | "AAExecutionDomain can only be created for function position!" ); |
5648 | case IRPosition::IRP_FUNCTION: |
5649 | AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); |
5650 | break; |
5651 | } |
5652 | |
5653 | return *AA; |
5654 | } |
5655 | |
5656 | AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, |
5657 | Attributor &A) { |
5658 | AAHeapToSharedFunction *AA = nullptr; |
5659 | switch (IRP.getPositionKind()) { |
5660 | case IRPosition::IRP_INVALID: |
5661 | case IRPosition::IRP_FLOAT: |
5662 | case IRPosition::IRP_ARGUMENT: |
5663 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5664 | case IRPosition::IRP_RETURNED: |
5665 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5666 | case IRPosition::IRP_CALL_SITE: |
5667 | llvm_unreachable( |
5668 | "AAHeapToShared can only be created for function position!" ); |
5669 | case IRPosition::IRP_FUNCTION: |
5670 | AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); |
5671 | break; |
5672 | } |
5673 | |
5674 | return *AA; |
5675 | } |
5676 | |
5677 | AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, |
5678 | Attributor &A) { |
5679 | AAKernelInfo *AA = nullptr; |
5680 | switch (IRP.getPositionKind()) { |
5681 | case IRPosition::IRP_INVALID: |
5682 | case IRPosition::IRP_FLOAT: |
5683 | case IRPosition::IRP_ARGUMENT: |
5684 | case IRPosition::IRP_RETURNED: |
5685 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5686 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5687 | llvm_unreachable("KernelInfo can only be created for function position!" ); |
5688 | case IRPosition::IRP_CALL_SITE: |
5689 | AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); |
5690 | break; |
5691 | case IRPosition::IRP_FUNCTION: |
5692 | AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); |
5693 | break; |
5694 | } |
5695 | |
5696 | return *AA; |
5697 | } |
5698 | |
5699 | AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, |
5700 | Attributor &A) { |
5701 | AAFoldRuntimeCall *AA = nullptr; |
5702 | switch (IRP.getPositionKind()) { |
5703 | case IRPosition::IRP_INVALID: |
5704 | case IRPosition::IRP_FLOAT: |
5705 | case IRPosition::IRP_ARGUMENT: |
5706 | case IRPosition::IRP_RETURNED: |
5707 | case IRPosition::IRP_FUNCTION: |
5708 | case IRPosition::IRP_CALL_SITE: |
5709 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5710 | llvm_unreachable("KernelInfo can only be created for call site position!" ); |
5711 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5712 | AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); |
5713 | break; |
5714 | } |
5715 | |
5716 | return *AA; |
5717 | } |
5718 | |
5719 | PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { |
5720 | if (!containsOpenMP(M)) |
5721 | return PreservedAnalyses::all(); |
5722 | if (DisableOpenMPOptimizations) |
5723 | return PreservedAnalyses::all(); |
5724 | |
5725 | FunctionAnalysisManager &FAM = |
5726 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
5727 | KernelSet Kernels = getDeviceKernels(M); |
5728 | |
5729 | if (PrintModuleBeforeOptimizations) |
5730 | LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M); |
5731 | |
5732 | auto IsCalled = [&](Function &F) { |
5733 | if (Kernels.contains(key: &F)) |
5734 | return true; |
5735 | return !F.use_empty(); |
5736 | }; |
5737 | |
5738 | auto = [&](Function &F) { |
5739 | auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
5740 | ORE.emit(RemarkBuilder: [&]() { |
5741 | OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140" , &F); |
5742 | return ORA << "Could not internalize function. " |
5743 | << "Some optimizations may not be possible. [OMP140]" ; |
5744 | }); |
5745 | }; |
5746 | |
5747 | bool Changed = false; |
5748 | |
5749 | // Create internal copies of each function if this is a kernel Module. This |
5750 | // allows iterprocedural passes to see every call edge. |
5751 | DenseMap<Function *, Function *> InternalizedMap; |
5752 | if (isOpenMPDevice(M)) { |
5753 | SmallPtrSet<Function *, 16> InternalizeFns; |
5754 | for (Function &F : M) |
5755 | if (!F.isDeclaration() && !Kernels.contains(key: &F) && IsCalled(F) && |
5756 | !DisableInternalization) { |
5757 | if (Attributor::isInternalizable(F)) { |
5758 | InternalizeFns.insert(Ptr: &F); |
5759 | } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Kind: Attribute::Cold)) { |
5760 | EmitRemark(F); |
5761 | } |
5762 | } |
5763 | |
5764 | Changed |= |
5765 | Attributor::internalizeFunctions(FnSet&: InternalizeFns, FnMap&: InternalizedMap); |
5766 | } |
5767 | |
5768 | // Look at every function in the Module unless it was internalized. |
5769 | SetVector<Function *> Functions; |
5770 | SmallVector<Function *, 16> SCC; |
5771 | for (Function &F : M) |
5772 | if (!F.isDeclaration() && !InternalizedMap.lookup(Val: &F)) { |
5773 | SCC.push_back(Elt: &F); |
5774 | Functions.insert(X: &F); |
5775 | } |
5776 | |
5777 | if (SCC.empty()) |
5778 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
5779 | |
5780 | AnalysisGetter AG(FAM); |
5781 | |
5782 | auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { |
5783 | return FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: *F); |
5784 | }; |
5785 | |
5786 | BumpPtrAllocator Allocator; |
5787 | CallGraphUpdater CGUpdater; |
5788 | |
5789 | bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink || |
5790 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink || |
5791 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink; |
5792 | OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ nullptr, PostLink); |
5793 | |
5794 | unsigned MaxFixpointIterations = |
5795 | (isOpenMPDevice(M)) ? SetFixpointIterations : 32; |
5796 | |
5797 | AttributorConfig AC(CGUpdater); |
5798 | AC.DefaultInitializeLiveInternals = false; |
5799 | AC.IsModulePass = true; |
5800 | AC.RewriteSignatures = false; |
5801 | AC.MaxFixpointIterations = MaxFixpointIterations; |
5802 | AC.OREGetter = OREGetter; |
5803 | AC.PassName = DEBUG_TYPE; |
5804 | AC.InitializationCallback = OpenMPOpt::registerAAsForFunction; |
5805 | AC.IPOAmendableCB = [](const Function &F) { |
5806 | return F.hasFnAttribute(Kind: "kernel" ); |
5807 | }; |
5808 | |
5809 | Attributor A(Functions, InfoCache, AC); |
5810 | |
5811 | OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); |
5812 | Changed |= OMPOpt.run(IsModulePass: true); |
5813 | |
5814 | // Optionally inline device functions for potentially better performance. |
5815 | if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) |
5816 | for (Function &F : M) |
5817 | if (!F.isDeclaration() && !Kernels.contains(key: &F) && |
5818 | !F.hasFnAttribute(Kind: Attribute::NoInline)) |
5819 | F.addFnAttr(Kind: Attribute::AlwaysInline); |
5820 | |
5821 | if (PrintModuleAfterOptimizations) |
5822 | LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); |
5823 | |
5824 | if (Changed) |
5825 | return PreservedAnalyses::none(); |
5826 | |
5827 | return PreservedAnalyses::all(); |
5828 | } |
5829 | |
5830 | PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, |
5831 | CGSCCAnalysisManager &AM, |
5832 | LazyCallGraph &CG, |
5833 | CGSCCUpdateResult &UR) { |
5834 | if (!containsOpenMP(M&: *C.begin()->getFunction().getParent())) |
5835 | return PreservedAnalyses::all(); |
5836 | if (DisableOpenMPOptimizations) |
5837 | return PreservedAnalyses::all(); |
5838 | |
5839 | SmallVector<Function *, 16> SCC; |
5840 | // If there are kernels in the module, we have to run on all SCC's. |
5841 | for (LazyCallGraph::Node &N : C) { |
5842 | Function *Fn = &N.getFunction(); |
5843 | SCC.push_back(Elt: Fn); |
5844 | } |
5845 | |
5846 | if (SCC.empty()) |
5847 | return PreservedAnalyses::all(); |
5848 | |
5849 | Module &M = *C.begin()->getFunction().getParent(); |
5850 | |
5851 | if (PrintModuleBeforeOptimizations) |
5852 | LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M); |
5853 | |
5854 | FunctionAnalysisManager &FAM = |
5855 | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(IR&: C, ExtraArgs&: CG).getManager(); |
5856 | |
5857 | AnalysisGetter AG(FAM); |
5858 | |
5859 | auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { |
5860 | return FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: *F); |
5861 | }; |
5862 | |
5863 | BumpPtrAllocator Allocator; |
5864 | CallGraphUpdater CGUpdater; |
5865 | CGUpdater.initialize(LCG&: CG, SCC&: C, AM, UR); |
5866 | |
5867 | bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink || |
5868 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink || |
5869 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink; |
5870 | SetVector<Function *> Functions(llvm::from_range, SCC); |
5871 | OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, |
5872 | /*CGSCC*/ &Functions, PostLink); |
5873 | |
5874 | unsigned MaxFixpointIterations = |
5875 | (isOpenMPDevice(M)) ? SetFixpointIterations : 32; |
5876 | |
5877 | AttributorConfig AC(CGUpdater); |
5878 | AC.DefaultInitializeLiveInternals = false; |
5879 | AC.IsModulePass = false; |
5880 | AC.RewriteSignatures = false; |
5881 | AC.MaxFixpointIterations = MaxFixpointIterations; |
5882 | AC.OREGetter = OREGetter; |
5883 | AC.PassName = DEBUG_TYPE; |
5884 | AC.InitializationCallback = OpenMPOpt::registerAAsForFunction; |
5885 | |
5886 | Attributor A(Functions, InfoCache, AC); |
5887 | |
5888 | OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); |
5889 | bool Changed = OMPOpt.run(IsModulePass: false); |
5890 | |
5891 | if (PrintModuleAfterOptimizations) |
5892 | LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); |
5893 | |
5894 | if (Changed) |
5895 | return PreservedAnalyses::none(); |
5896 | |
5897 | return PreservedAnalyses::all(); |
5898 | } |
5899 | |
5900 | bool llvm::omp::isOpenMPKernel(Function &Fn) { |
5901 | return Fn.hasFnAttribute(Kind: "kernel" ); |
5902 | } |
5903 | |
5904 | KernelSet llvm::omp::getDeviceKernels(Module &M) { |
5905 | KernelSet Kernels; |
5906 | |
5907 | for (Function &F : M) |
5908 | if (F.hasKernelCallingConv()) { |
5909 | // We are only interested in OpenMP target regions. Others, such as |
5910 | // kernels generated by CUDA but linked together, are not interesting to |
5911 | // this pass. |
5912 | if (isOpenMPKernel(Fn&: F)) { |
5913 | ++NumOpenMPTargetRegionKernels; |
5914 | Kernels.insert(X: &F); |
5915 | } else |
5916 | ++NumNonOpenMPTargetRegionKernels; |
5917 | } |
5918 | |
5919 | return Kernels; |
5920 | } |
5921 | |
5922 | bool llvm::omp::containsOpenMP(Module &M) { |
5923 | Metadata *MD = M.getModuleFlag(Key: "openmp" ); |
5924 | if (!MD) |
5925 | return false; |
5926 | |
5927 | return true; |
5928 | } |
5929 | |
5930 | bool llvm::omp::isOpenMPDevice(Module &M) { |
5931 | Metadata *MD = M.getModuleFlag(Key: "openmp-device" ); |
5932 | if (!MD) |
5933 | return false; |
5934 | |
5935 | return true; |
5936 | } |
5937 | |