1 | //===- PartialInlining.cpp - Inline parts of functions --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass performs partial inlining, typically by inlining an if statement |
10 | // that surrounds the body of the function. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/IPO/PartialInlining.h" |
15 | #include "llvm/ADT/DenseMap.h" |
16 | #include "llvm/ADT/DenseSet.h" |
17 | #include "llvm/ADT/DepthFirstIterator.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
22 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
23 | #include "llvm/Analysis/InlineCost.h" |
24 | #include "llvm/Analysis/LoopInfo.h" |
25 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
26 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
27 | #include "llvm/Analysis/TargetLibraryInfo.h" |
28 | #include "llvm/Analysis/TargetTransformInfo.h" |
29 | #include "llvm/IR/Attributes.h" |
30 | #include "llvm/IR/BasicBlock.h" |
31 | #include "llvm/IR/CFG.h" |
32 | #include "llvm/IR/DebugLoc.h" |
33 | #include "llvm/IR/DiagnosticInfo.h" |
34 | #include "llvm/IR/Dominators.h" |
35 | #include "llvm/IR/Function.h" |
36 | #include "llvm/IR/InstrTypes.h" |
37 | #include "llvm/IR/Instruction.h" |
38 | #include "llvm/IR/Instructions.h" |
39 | #include "llvm/IR/IntrinsicInst.h" |
40 | #include "llvm/IR/Intrinsics.h" |
41 | #include "llvm/IR/Module.h" |
42 | #include "llvm/IR/Operator.h" |
43 | #include "llvm/IR/ProfDataUtils.h" |
44 | #include "llvm/IR/User.h" |
45 | #include "llvm/Support/BlockFrequency.h" |
46 | #include "llvm/Support/BranchProbability.h" |
47 | #include "llvm/Support/Casting.h" |
48 | #include "llvm/Support/CommandLine.h" |
49 | #include "llvm/Support/ErrorHandling.h" |
50 | #include "llvm/Transforms/IPO.h" |
51 | #include "llvm/Transforms/Utils/Cloning.h" |
52 | #include "llvm/Transforms/Utils/CodeExtractor.h" |
53 | #include "llvm/Transforms/Utils/ValueMapper.h" |
54 | #include <algorithm> |
55 | #include <cassert> |
56 | #include <cstdint> |
57 | #include <memory> |
58 | #include <tuple> |
59 | #include <vector> |
60 | |
61 | using namespace llvm; |
62 | |
63 | #define DEBUG_TYPE "partial-inlining" |
64 | |
65 | STATISTIC(NumPartialInlined, |
66 | "Number of callsites functions partially inlined into." ); |
67 | STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with " |
68 | "cold outlined regions were partially " |
69 | "inlined into its caller(s)." ); |
70 | STATISTIC(NumColdRegionsFound, |
71 | "Number of cold single entry/exit regions found." ); |
72 | STATISTIC(NumColdRegionsOutlined, |
73 | "Number of cold single entry/exit regions outlined." ); |
74 | |
75 | // Command line option to disable partial-inlining. The default is false: |
76 | static cl::opt<bool> |
77 | DisablePartialInlining("disable-partial-inlining" , cl::init(Val: false), |
78 | cl::Hidden, cl::desc("Disable partial inlining" )); |
79 | // Command line option to disable multi-region partial-inlining. The default is |
80 | // false: |
81 | static cl::opt<bool> DisableMultiRegionPartialInline( |
82 | "disable-mr-partial-inlining" , cl::init(Val: false), cl::Hidden, |
83 | cl::desc("Disable multi-region partial inlining" )); |
84 | |
85 | // Command line option to force outlining in regions with live exit variables. |
86 | // The default is false: |
87 | static cl::opt<bool> |
88 | ForceLiveExit("pi-force-live-exit-outline" , cl::init(Val: false), cl::Hidden, |
89 | cl::desc("Force outline regions with live exits" )); |
90 | |
91 | // Command line option to enable marking outline functions with Cold Calling |
92 | // Convention. The default is false: |
93 | static cl::opt<bool> |
94 | MarkOutlinedColdCC("pi-mark-coldcc" , cl::init(Val: false), cl::Hidden, |
95 | cl::desc("Mark outline function calls with ColdCC" )); |
96 | |
97 | // This is an option used by testing: |
98 | static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis" , |
99 | |
100 | cl::ReallyHidden, |
101 | cl::desc("Skip Cost Analysis" )); |
102 | // Used to determine if a cold region is worth outlining based on |
103 | // its inlining cost compared to the original function. Default is set at 10%. |
104 | // ie. if the cold region reduces the inlining cost of the original function by |
105 | // at least 10%. |
106 | static cl::opt<float> MinRegionSizeRatio( |
107 | "min-region-size-ratio" , cl::init(Val: 0.1), cl::Hidden, |
108 | cl::desc("Minimum ratio comparing relative sizes of each " |
109 | "outline candidate and original function" )); |
110 | // Used to tune the minimum number of execution counts needed in the predecessor |
111 | // block to the cold edge. ie. confidence interval. |
112 | static cl::opt<unsigned> |
113 | MinBlockCounterExecution("min-block-execution" , cl::init(Val: 100), cl::Hidden, |
114 | cl::desc("Minimum block executions to consider " |
115 | "its BranchProbabilityInfo valid" )); |
116 | // Used to determine when an edge is considered cold. Default is set to 10%. ie. |
117 | // if the branch probability is 10% or less, then it is deemed as 'cold'. |
118 | static cl::opt<float> ColdBranchRatio( |
119 | "cold-branch-ratio" , cl::init(Val: 0.1), cl::Hidden, |
120 | cl::desc("Minimum BranchProbability to consider a region cold." )); |
121 | |
122 | static cl::opt<unsigned> MaxNumInlineBlocks( |
123 | "max-num-inline-blocks" , cl::init(Val: 5), cl::Hidden, |
124 | cl::desc("Max number of blocks to be partially inlined" )); |
125 | |
126 | // Command line option to set the maximum number of partial inlining allowed |
127 | // for the module. The default value of -1 means no limit. |
128 | static cl::opt<int> MaxNumPartialInlining( |
129 | "max-partial-inlining" , cl::init(Val: -1), cl::Hidden, |
130 | cl::desc("Max number of partial inlining. The default is unlimited" )); |
131 | |
132 | // Used only when PGO or user annotated branch data is absent. It is |
133 | // the least value that is used to weigh the outline region. If BFI |
134 | // produces larger value, the BFI value will be used. |
135 | static cl::opt<int> |
136 | OutlineRegionFreqPercent("outline-region-freq-percent" , cl::init(Val: 75), |
137 | cl::Hidden, |
138 | cl::desc("Relative frequency of outline region to " |
139 | "the entry block" )); |
140 | |
141 | static cl::opt<unsigned> ( |
142 | "partial-inlining-extra-penalty" , cl::init(Val: 0), cl::Hidden, |
143 | cl::desc("A debug option to add additional penalty to the computed one." )); |
144 | |
145 | namespace { |
146 | |
147 | struct FunctionOutliningInfo { |
148 | FunctionOutliningInfo() = default; |
149 | |
150 | // Returns the number of blocks to be inlined including all blocks |
151 | // in Entries and one return block. |
152 | unsigned getNumInlinedBlocks() const { return Entries.size() + 1; } |
153 | |
154 | // A set of blocks including the function entry that guard |
155 | // the region to be outlined. |
156 | SmallVector<BasicBlock *, 4> Entries; |
157 | |
158 | // The return block that is not included in the outlined region. |
159 | BasicBlock *ReturnBlock = nullptr; |
160 | |
161 | // The dominating block of the region to be outlined. |
162 | BasicBlock *NonReturnBlock = nullptr; |
163 | |
164 | // The set of blocks in Entries that are predecessors to ReturnBlock |
165 | SmallVector<BasicBlock *, 4> ReturnBlockPreds; |
166 | }; |
167 | |
168 | struct FunctionOutliningMultiRegionInfo { |
169 | FunctionOutliningMultiRegionInfo() = default; |
170 | |
171 | // Container for outline regions |
172 | struct OutlineRegionInfo { |
173 | OutlineRegionInfo(ArrayRef<BasicBlock *> Region, BasicBlock *EntryBlock, |
174 | BasicBlock *ExitBlock, BasicBlock *ReturnBlock) |
175 | : Region(Region), EntryBlock(EntryBlock), ExitBlock(ExitBlock), |
176 | ReturnBlock(ReturnBlock) {} |
177 | SmallVector<BasicBlock *, 8> Region; |
178 | BasicBlock *EntryBlock; |
179 | BasicBlock *ExitBlock; |
180 | BasicBlock *ReturnBlock; |
181 | }; |
182 | |
183 | SmallVector<OutlineRegionInfo, 4> ORI; |
184 | }; |
185 | |
186 | struct PartialInlinerImpl { |
187 | |
188 | PartialInlinerImpl( |
189 | function_ref<AssumptionCache &(Function &)> GetAC, |
190 | function_ref<AssumptionCache *(Function &)> LookupAC, |
191 | function_ref<TargetTransformInfo &(Function &)> GTTI, |
192 | function_ref<const TargetLibraryInfo &(Function &)> GTLI, |
193 | ProfileSummaryInfo &ProfSI, |
194 | function_ref<BlockFrequencyInfo &(Function &)> GBFI = nullptr) |
195 | : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC), |
196 | GetTTI(GTTI), GetBFI(GBFI), GetTLI(GTLI), PSI(ProfSI) {} |
197 | |
198 | bool run(Module &M); |
199 | // Main part of the transformation that calls helper functions to find |
200 | // outlining candidates, clone & outline the function, and attempt to |
201 | // partially inline the resulting function. Returns true if |
202 | // inlining was successful, false otherwise. Also returns the outline |
203 | // function (only if we partially inlined early returns) as there is a |
204 | // possibility to further "peel" early return statements that were left in the |
205 | // outline function due to code size. |
206 | std::pair<bool, Function *> unswitchFunction(Function &F); |
207 | |
208 | // This class speculatively clones the function to be partial inlined. |
209 | // At the end of partial inlining, the remaining callsites to the cloned |
210 | // function that are not partially inlined will be fixed up to reference |
211 | // the original function, and the cloned function will be erased. |
212 | struct FunctionCloner { |
213 | // Two constructors, one for single region outlining, the other for |
214 | // multi-region outlining. |
215 | FunctionCloner(Function *F, FunctionOutliningInfo *OI, |
216 | OptimizationRemarkEmitter &ORE, |
217 | function_ref<AssumptionCache *(Function &)> LookupAC, |
218 | function_ref<TargetTransformInfo &(Function &)> GetTTI); |
219 | FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI, |
220 | OptimizationRemarkEmitter &ORE, |
221 | function_ref<AssumptionCache *(Function &)> LookupAC, |
222 | function_ref<TargetTransformInfo &(Function &)> GetTTI); |
223 | |
224 | ~FunctionCloner(); |
225 | |
226 | // Prepare for function outlining: making sure there is only |
227 | // one incoming edge from the extracted/outlined region to |
228 | // the return block. |
229 | void normalizeReturnBlock() const; |
230 | |
231 | // Do function outlining for cold regions. |
232 | bool doMultiRegionFunctionOutlining(); |
233 | // Do function outlining for region after early return block(s). |
234 | // NOTE: For vararg functions that do the vararg handling in the outlined |
235 | // function, we temporarily generate IR that does not properly |
236 | // forward varargs to the outlined function. Calling InlineFunction |
237 | // will update calls to the outlined functions to properly forward |
238 | // the varargs. |
239 | Function *doSingleRegionFunctionOutlining(); |
240 | |
241 | Function *OrigFunc = nullptr; |
242 | Function *ClonedFunc = nullptr; |
243 | |
244 | typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair; |
245 | // Keep track of Outlined Functions and the basic block they're called from. |
246 | SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions; |
247 | |
248 | // ClonedFunc is inlined in one of its callers after function |
249 | // outlining. |
250 | bool IsFunctionInlined = false; |
251 | // The cost of the region to be outlined. |
252 | InstructionCost OutlinedRegionCost = 0; |
253 | // ClonedOI is specific to outlining non-early return blocks. |
254 | std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr; |
255 | // ClonedOMRI is specific to outlining cold regions. |
256 | std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr; |
257 | std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr; |
258 | OptimizationRemarkEmitter &ORE; |
259 | function_ref<AssumptionCache *(Function &)> LookupAC; |
260 | function_ref<TargetTransformInfo &(Function &)> GetTTI; |
261 | }; |
262 | |
263 | private: |
264 | int NumPartialInlining = 0; |
265 | function_ref<AssumptionCache &(Function &)> GetAssumptionCache; |
266 | function_ref<AssumptionCache *(Function &)> LookupAssumptionCache; |
267 | function_ref<TargetTransformInfo &(Function &)> GetTTI; |
268 | function_ref<BlockFrequencyInfo &(Function &)> GetBFI; |
269 | function_ref<const TargetLibraryInfo &(Function &)> GetTLI; |
270 | ProfileSummaryInfo &PSI; |
271 | |
272 | // Return the frequency of the OutlininingBB relative to F's entry point. |
273 | // The result is no larger than 1 and is represented using BP. |
274 | // (Note that the outlined region's 'head' block can only have incoming |
275 | // edges from the guarding entry blocks). |
276 | BranchProbability |
277 | getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) const; |
278 | |
279 | // Return true if the callee of CB should be partially inlined with |
280 | // profit. |
281 | bool shouldPartialInline(CallBase &CB, FunctionCloner &Cloner, |
282 | BlockFrequency WeightedOutliningRcost, |
283 | OptimizationRemarkEmitter &ORE) const; |
284 | |
285 | // Try to inline DuplicateFunction (cloned from F with call to |
286 | // the OutlinedFunction into its callers. Return true |
287 | // if there is any successful inlining. |
288 | bool tryPartialInline(FunctionCloner &Cloner); |
289 | |
290 | // Compute the mapping from use site of DuplicationFunction to the enclosing |
291 | // BB's profile count. |
292 | void |
293 | computeCallsiteToProfCountMap(Function *DuplicateFunction, |
294 | DenseMap<User *, uint64_t> &SiteCountMap) const; |
295 | |
296 | bool isLimitReached() const { |
297 | return (MaxNumPartialInlining != -1 && |
298 | NumPartialInlining >= MaxNumPartialInlining); |
299 | } |
300 | |
301 | static CallBase *getSupportedCallBase(User *U) { |
302 | if (isa<CallInst>(Val: U) || isa<InvokeInst>(Val: U)) |
303 | return cast<CallBase>(Val: U); |
304 | llvm_unreachable("All uses must be calls" ); |
305 | return nullptr; |
306 | } |
307 | |
308 | static CallBase *getOneCallSiteTo(Function &F) { |
309 | User *User = *F.user_begin(); |
310 | return getSupportedCallBase(U: User); |
311 | } |
312 | |
313 | std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function &F) const { |
314 | CallBase *CB = getOneCallSiteTo(F); |
315 | DebugLoc DLoc = CB->getDebugLoc(); |
316 | BasicBlock *Block = CB->getParent(); |
317 | return std::make_tuple(args&: DLoc, args&: Block); |
318 | } |
319 | |
320 | // Returns the costs associated with function outlining: |
321 | // - The first value is the non-weighted runtime cost for making the call |
322 | // to the outlined function, including the addtional setup cost in the |
323 | // outlined function itself; |
324 | // - The second value is the estimated size of the new call sequence in |
325 | // basic block Cloner.OutliningCallBB; |
326 | std::tuple<InstructionCost, InstructionCost> |
327 | computeOutliningCosts(FunctionCloner &Cloner) const; |
328 | |
329 | // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to |
330 | // approximate both the size and runtime cost (Note that in the current |
331 | // inline cost analysis, there is no clear distinction there either). |
332 | static InstructionCost computeBBInlineCost(BasicBlock *BB, |
333 | TargetTransformInfo *TTI); |
334 | |
335 | std::unique_ptr<FunctionOutliningInfo> |
336 | computeOutliningInfo(Function &F) const; |
337 | |
338 | std::unique_ptr<FunctionOutliningMultiRegionInfo> |
339 | computeOutliningColdRegionsInfo(Function &F, |
340 | OptimizationRemarkEmitter &ORE) const; |
341 | }; |
342 | |
343 | } // end anonymous namespace |
344 | |
345 | std::unique_ptr<FunctionOutliningMultiRegionInfo> |
346 | PartialInlinerImpl::( |
347 | Function &F, OptimizationRemarkEmitter &ORE) const { |
348 | BasicBlock *EntryBlock = &F.front(); |
349 | |
350 | DominatorTree DT(F); |
351 | LoopInfo LI(DT); |
352 | BranchProbabilityInfo BPI(F, LI); |
353 | std::unique_ptr<BlockFrequencyInfo> ScopedBFI; |
354 | BlockFrequencyInfo *BFI; |
355 | if (!GetBFI) { |
356 | ScopedBFI.reset(p: new BlockFrequencyInfo(F, BPI, LI)); |
357 | BFI = ScopedBFI.get(); |
358 | } else |
359 | BFI = &(GetBFI(F)); |
360 | |
361 | // Return if we don't have profiling information. |
362 | if (!PSI.hasInstrumentationProfile()) |
363 | return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); |
364 | |
365 | std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo = |
366 | std::make_unique<FunctionOutliningMultiRegionInfo>(); |
367 | |
368 | auto IsSingleExit = |
369 | [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * { |
370 | BasicBlock *ExitBlock = nullptr; |
371 | for (auto *Block : BlockList) { |
372 | for (BasicBlock *Succ : successors(BB: Block)) { |
373 | if (!is_contained(Range&: BlockList, Element: Succ)) { |
374 | if (ExitBlock) { |
375 | ORE.emit(RemarkBuilder: [&]() { |
376 | return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion" , |
377 | &Succ->front()) |
378 | << "Region dominated by " |
379 | << ore::NV("Block" , BlockList.front()->getName()) |
380 | << " has more than one region exit edge." ; |
381 | }); |
382 | return nullptr; |
383 | } |
384 | |
385 | ExitBlock = Block; |
386 | } |
387 | } |
388 | } |
389 | return ExitBlock; |
390 | }; |
391 | |
392 | auto BBProfileCount = [BFI](BasicBlock *BB) { |
393 | return BFI->getBlockProfileCount(BB).value_or(u: 0); |
394 | }; |
395 | |
396 | // Use the same computeBBInlineCost function to compute the cost savings of |
397 | // the outlining the candidate region. |
398 | TargetTransformInfo *FTTI = &GetTTI(F); |
399 | InstructionCost OverallFunctionCost = 0; |
400 | for (auto &BB : F) |
401 | OverallFunctionCost += computeBBInlineCost(BB: &BB, TTI: FTTI); |
402 | |
403 | LLVM_DEBUG(dbgs() << "OverallFunctionCost = " << OverallFunctionCost |
404 | << "\n" ;); |
405 | |
406 | InstructionCost MinOutlineRegionCost = OverallFunctionCost.map( |
407 | F: [&](auto Cost) { return Cost * MinRegionSizeRatio; }); |
408 | |
409 | BranchProbability MinBranchProbability( |
410 | static_cast<int>(ColdBranchRatio * MinBlockCounterExecution), |
411 | MinBlockCounterExecution); |
412 | bool ColdCandidateFound = false; |
413 | BasicBlock *CurrEntry = EntryBlock; |
414 | std::vector<BasicBlock *> DFS; |
415 | SmallPtrSet<BasicBlock *, 8> VisitedSet; |
416 | DFS.push_back(x: CurrEntry); |
417 | VisitedSet.insert(Ptr: CurrEntry); |
418 | |
419 | // Use Depth First Search on the basic blocks to find CFG edges that are |
420 | // considered cold. |
421 | // Cold regions considered must also have its inline cost compared to the |
422 | // overall inline cost of the original function. The region is outlined only |
423 | // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or |
424 | // more. |
425 | while (!DFS.empty()) { |
426 | auto *ThisBB = DFS.back(); |
427 | DFS.pop_back(); |
428 | // Only consider regions with predecessor blocks that are considered |
429 | // not-cold (default: part of the top 99.99% of all block counters) |
430 | // AND greater than our minimum block execution count (default: 100). |
431 | if (PSI.isColdBlock(BB: ThisBB, BFI) || |
432 | BBProfileCount(ThisBB) < MinBlockCounterExecution) |
433 | continue; |
434 | for (auto SI = succ_begin(BB: ThisBB); SI != succ_end(BB: ThisBB); ++SI) { |
435 | if (!VisitedSet.insert(Ptr: *SI).second) |
436 | continue; |
437 | DFS.push_back(x: *SI); |
438 | // If branch isn't cold, we skip to the next one. |
439 | BranchProbability SuccProb = BPI.getEdgeProbability(Src: ThisBB, Dst: *SI); |
440 | if (SuccProb > MinBranchProbability) |
441 | continue; |
442 | |
443 | LLVM_DEBUG(dbgs() << "Found cold edge: " << ThisBB->getName() << "->" |
444 | << SI->getName() |
445 | << "\nBranch Probability = " << SuccProb << "\n" ;); |
446 | |
447 | SmallVector<BasicBlock *, 8> DominateVector; |
448 | DT.getDescendants(R: *SI, Result&: DominateVector); |
449 | assert(!DominateVector.empty() && |
450 | "SI should be reachable and have at least itself as descendant" ); |
451 | |
452 | // We can only outline single entry regions (for now). |
453 | if (!DominateVector.front()->hasNPredecessors(N: 1)) { |
454 | LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() |
455 | << " doesn't have a single predecessor in the " |
456 | "dominator tree\n" ;); |
457 | continue; |
458 | } |
459 | |
460 | BasicBlock *ExitBlock = nullptr; |
461 | // We can only outline single exit regions (for now). |
462 | if (!(ExitBlock = IsSingleExit(DominateVector))) { |
463 | LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() |
464 | << " doesn't have a unique successor\n" ;); |
465 | continue; |
466 | } |
467 | |
468 | InstructionCost OutlineRegionCost = 0; |
469 | for (auto *BB : DominateVector) |
470 | OutlineRegionCost += computeBBInlineCost(BB, TTI: &GetTTI(*BB->getParent())); |
471 | |
472 | LLVM_DEBUG(dbgs() << "OutlineRegionCost = " << OutlineRegionCost |
473 | << "\n" ;); |
474 | |
475 | if (!SkipCostAnalysis && OutlineRegionCost < MinOutlineRegionCost) { |
476 | ORE.emit(RemarkBuilder: [&]() { |
477 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly" , |
478 | &SI->front()) |
479 | << ore::NV("Callee" , &F) |
480 | << " inline cost-savings smaller than " |
481 | << ore::NV("Cost" , MinOutlineRegionCost); |
482 | }); |
483 | |
484 | LLVM_DEBUG(dbgs() << "ABORT: Outline region cost is smaller than " |
485 | << MinOutlineRegionCost << "\n" ;); |
486 | continue; |
487 | } |
488 | |
489 | // For now, ignore blocks that belong to a SISE region that is a |
490 | // candidate for outlining. In the future, we may want to look |
491 | // at inner regions because the outer region may have live-exit |
492 | // variables. |
493 | VisitedSet.insert_range(R&: DominateVector); |
494 | |
495 | // ReturnBlock here means the block after the outline call |
496 | BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor(); |
497 | FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo( |
498 | DominateVector, DominateVector.front(), ExitBlock, ReturnBlock); |
499 | OutliningInfo->ORI.push_back(Elt: RegInfo); |
500 | LLVM_DEBUG(dbgs() << "Found Cold Candidate starting at block: " |
501 | << DominateVector.front()->getName() << "\n" ;); |
502 | ColdCandidateFound = true; |
503 | NumColdRegionsFound++; |
504 | } |
505 | } |
506 | |
507 | if (ColdCandidateFound) |
508 | return OutliningInfo; |
509 | |
510 | return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); |
511 | } |
512 | |
513 | std::unique_ptr<FunctionOutliningInfo> |
514 | PartialInlinerImpl::computeOutliningInfo(Function &F) const { |
515 | BasicBlock *EntryBlock = &F.front(); |
516 | BranchInst *BR = dyn_cast<BranchInst>(Val: EntryBlock->getTerminator()); |
517 | if (!BR || BR->isUnconditional()) |
518 | return std::unique_ptr<FunctionOutliningInfo>(); |
519 | |
520 | // Returns true if Succ is BB's successor |
521 | auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) { |
522 | return is_contained(Range: successors(BB), Element: Succ); |
523 | }; |
524 | |
525 | auto IsReturnBlock = [](BasicBlock *BB) { |
526 | Instruction *TI = BB->getTerminator(); |
527 | return isa<ReturnInst>(Val: TI); |
528 | }; |
529 | |
530 | auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) { |
531 | if (IsReturnBlock(Succ1)) |
532 | return std::make_tuple(args&: Succ1, args&: Succ2); |
533 | if (IsReturnBlock(Succ2)) |
534 | return std::make_tuple(args&: Succ2, args&: Succ1); |
535 | |
536 | return std::make_tuple<BasicBlock *, BasicBlock *>(args: nullptr, args: nullptr); |
537 | }; |
538 | |
539 | // Detect a triangular shape: |
540 | auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) { |
541 | if (IsSuccessor(Succ1, Succ2)) |
542 | return std::make_tuple(args&: Succ1, args&: Succ2); |
543 | if (IsSuccessor(Succ2, Succ1)) |
544 | return std::make_tuple(args&: Succ2, args&: Succ1); |
545 | |
546 | return std::make_tuple<BasicBlock *, BasicBlock *>(args: nullptr, args: nullptr); |
547 | }; |
548 | |
549 | std::unique_ptr<FunctionOutliningInfo> OutliningInfo = |
550 | std::make_unique<FunctionOutliningInfo>(); |
551 | |
552 | BasicBlock *CurrEntry = EntryBlock; |
553 | bool CandidateFound = false; |
554 | do { |
555 | // The number of blocks to be inlined has already reached |
556 | // the limit. When MaxNumInlineBlocks is set to 0 or 1, this |
557 | // disables partial inlining for the function. |
558 | if (OutliningInfo->getNumInlinedBlocks() >= MaxNumInlineBlocks) |
559 | break; |
560 | |
561 | if (succ_size(BB: CurrEntry) != 2) |
562 | break; |
563 | |
564 | BasicBlock *Succ1 = *succ_begin(BB: CurrEntry); |
565 | BasicBlock *Succ2 = *(succ_begin(BB: CurrEntry) + 1); |
566 | |
567 | BasicBlock *ReturnBlock, *NonReturnBlock; |
568 | std::tie(args&: ReturnBlock, args&: NonReturnBlock) = GetReturnBlock(Succ1, Succ2); |
569 | |
570 | if (ReturnBlock) { |
571 | OutliningInfo->Entries.push_back(Elt: CurrEntry); |
572 | OutliningInfo->ReturnBlock = ReturnBlock; |
573 | OutliningInfo->NonReturnBlock = NonReturnBlock; |
574 | CandidateFound = true; |
575 | break; |
576 | } |
577 | |
578 | BasicBlock *CommSucc, *OtherSucc; |
579 | std::tie(args&: CommSucc, args&: OtherSucc) = GetCommonSucc(Succ1, Succ2); |
580 | |
581 | if (!CommSucc) |
582 | break; |
583 | |
584 | OutliningInfo->Entries.push_back(Elt: CurrEntry); |
585 | CurrEntry = OtherSucc; |
586 | } while (true); |
587 | |
588 | if (!CandidateFound) |
589 | return std::unique_ptr<FunctionOutliningInfo>(); |
590 | |
591 | // There should not be any successors (not in the entry set) other than |
592 | // {ReturnBlock, NonReturnBlock} |
593 | assert(OutliningInfo->Entries[0] == &F.front() && |
594 | "Function Entry must be the first in Entries vector" ); |
595 | DenseSet<BasicBlock *> Entries(llvm::from_range, OutliningInfo->Entries); |
596 | |
597 | // Returns true of BB has Predecessor which is not |
598 | // in Entries set. |
599 | auto HasNonEntryPred = [Entries](BasicBlock *BB) { |
600 | for (auto *Pred : predecessors(BB)) { |
601 | if (!Entries.count(V: Pred)) |
602 | return true; |
603 | } |
604 | return false; |
605 | }; |
606 | auto CheckAndNormalizeCandidate = |
607 | [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) { |
608 | for (BasicBlock *E : OutliningInfo->Entries) { |
609 | for (auto *Succ : successors(BB: E)) { |
610 | if (Entries.count(V: Succ)) |
611 | continue; |
612 | if (Succ == OutliningInfo->ReturnBlock) |
613 | OutliningInfo->ReturnBlockPreds.push_back(Elt: E); |
614 | else if (Succ != OutliningInfo->NonReturnBlock) |
615 | return false; |
616 | } |
617 | // There should not be any outside incoming edges either: |
618 | if (HasNonEntryPred(E)) |
619 | return false; |
620 | } |
621 | return true; |
622 | }; |
623 | |
624 | if (!CheckAndNormalizeCandidate(OutliningInfo.get())) |
625 | return std::unique_ptr<FunctionOutliningInfo>(); |
626 | |
627 | // Now further growing the candidate's inlining region by |
628 | // peeling off dominating blocks from the outlining region: |
629 | while (OutliningInfo->getNumInlinedBlocks() < MaxNumInlineBlocks) { |
630 | BasicBlock *Cand = OutliningInfo->NonReturnBlock; |
631 | if (succ_size(BB: Cand) != 2) |
632 | break; |
633 | |
634 | if (HasNonEntryPred(Cand)) |
635 | break; |
636 | |
637 | BasicBlock *Succ1 = *succ_begin(BB: Cand); |
638 | BasicBlock *Succ2 = *(succ_begin(BB: Cand) + 1); |
639 | |
640 | BasicBlock *ReturnBlock, *NonReturnBlock; |
641 | std::tie(args&: ReturnBlock, args&: NonReturnBlock) = GetReturnBlock(Succ1, Succ2); |
642 | if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock) |
643 | break; |
644 | |
645 | if (NonReturnBlock->getSinglePredecessor() != Cand) |
646 | break; |
647 | |
648 | // Now grow and update OutlininigInfo: |
649 | OutliningInfo->Entries.push_back(Elt: Cand); |
650 | OutliningInfo->NonReturnBlock = NonReturnBlock; |
651 | OutliningInfo->ReturnBlockPreds.push_back(Elt: Cand); |
652 | Entries.insert(V: Cand); |
653 | } |
654 | |
655 | return OutliningInfo; |
656 | } |
657 | |
658 | // Check if there is PGO data or user annotated branch data: |
659 | static bool hasProfileData(const Function &F, const FunctionOutliningInfo &OI) { |
660 | if (F.hasProfileData()) |
661 | return true; |
662 | // Now check if any of the entry block has MD_prof data: |
663 | for (auto *E : OI.Entries) { |
664 | BranchInst *BR = dyn_cast<BranchInst>(Val: E->getTerminator()); |
665 | if (!BR || BR->isUnconditional()) |
666 | continue; |
667 | if (hasBranchWeightMD(I: *BR)) |
668 | return true; |
669 | } |
670 | return false; |
671 | } |
672 | |
673 | BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq( |
674 | FunctionCloner &Cloner) const { |
675 | BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second; |
676 | auto EntryFreq = |
677 | Cloner.ClonedFuncBFI->getBlockFreq(BB: &Cloner.ClonedFunc->getEntryBlock()); |
678 | auto OutliningCallFreq = |
679 | Cloner.ClonedFuncBFI->getBlockFreq(BB: OutliningCallBB); |
680 | // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE |
681 | // we outlined any regions, so we may encounter situations where the |
682 | // OutliningCallFreq is *slightly* bigger than the EntryFreq. |
683 | if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) |
684 | OutliningCallFreq = EntryFreq; |
685 | |
686 | auto OutlineRegionRelFreq = BranchProbability::getBranchProbability( |
687 | Numerator: OutliningCallFreq.getFrequency(), Denominator: EntryFreq.getFrequency()); |
688 | |
689 | if (hasProfileData(F: *Cloner.OrigFunc, OI: *Cloner.ClonedOI)) |
690 | return OutlineRegionRelFreq; |
691 | |
692 | // When profile data is not available, we need to be conservative in |
693 | // estimating the overall savings. Static branch prediction can usually |
694 | // guess the branch direction right (taken/non-taken), but the guessed |
695 | // branch probability is usually not biased enough. In case when the |
696 | // outlined region is predicted to be likely, its probability needs |
697 | // to be made higher (more biased) to not under-estimate the cost of |
698 | // function outlining. On the other hand, if the outlined region |
699 | // is predicted to be less likely, the predicted probablity is usually |
700 | // higher than the actual. For instance, the actual probability of the |
701 | // less likely target is only 5%, but the guessed probablity can be |
702 | // 40%. In the latter case, there is no need for further adjustment. |
703 | // FIXME: add an option for this. |
704 | if (OutlineRegionRelFreq < BranchProbability(45, 100)) |
705 | return OutlineRegionRelFreq; |
706 | |
707 | OutlineRegionRelFreq = std::max( |
708 | a: OutlineRegionRelFreq, b: BranchProbability(OutlineRegionFreqPercent, 100)); |
709 | |
710 | return OutlineRegionRelFreq; |
711 | } |
712 | |
713 | bool PartialInlinerImpl::( |
714 | CallBase &CB, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost, |
715 | OptimizationRemarkEmitter &ORE) const { |
716 | using namespace ore; |
717 | |
718 | Function *Callee = CB.getCalledFunction(); |
719 | assert(Callee == Cloner.ClonedFunc); |
720 | |
721 | if (SkipCostAnalysis) |
722 | return isInlineViable(Callee&: *Callee).isSuccess(); |
723 | |
724 | Function *Caller = CB.getCaller(); |
725 | auto &CalleeTTI = GetTTI(*Callee); |
726 | bool = |
727 | Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( |
728 | DEBUG_TYPE); |
729 | InlineCost IC = |
730 | getInlineCost(Call&: CB, Params: getInlineParams(), CalleeTTI, GetAssumptionCache, |
731 | GetTLI, GetBFI, PSI: &PSI, ORE: RemarksEnabled ? &ORE : nullptr); |
732 | |
733 | if (IC.isAlways()) { |
734 | ORE.emit(RemarkBuilder: [&]() { |
735 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline" , &CB) |
736 | << NV("Callee" , Cloner.OrigFunc) |
737 | << " should always be fully inlined, not partially" ; |
738 | }); |
739 | return false; |
740 | } |
741 | |
742 | if (IC.isNever()) { |
743 | ORE.emit(RemarkBuilder: [&]() { |
744 | return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline" , &CB) |
745 | << NV("Callee" , Cloner.OrigFunc) << " not partially inlined into " |
746 | << NV("Caller" , Caller) |
747 | << " because it should never be inlined (cost=never)" ; |
748 | }); |
749 | return false; |
750 | } |
751 | |
752 | if (!IC) { |
753 | ORE.emit(RemarkBuilder: [&]() { |
754 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly" , &CB) |
755 | << NV("Callee" , Cloner.OrigFunc) << " not partially inlined into " |
756 | << NV("Caller" , Caller) << " because too costly to inline (cost=" |
757 | << NV("Cost" , IC.getCost()) << ", threshold=" |
758 | << NV("Threshold" , IC.getCostDelta() + IC.getCost()) << ")" ; |
759 | }); |
760 | return false; |
761 | } |
762 | const DataLayout &DL = Caller->getDataLayout(); |
763 | |
764 | // The savings of eliminating the call: |
765 | int NonWeightedSavings = getCallsiteCost(TTI: CalleeTTI, Call: CB, DL); |
766 | BlockFrequency NormWeightedSavings(NonWeightedSavings); |
767 | |
768 | // Weighted saving is smaller than weighted cost, return false |
769 | if (NormWeightedSavings < WeightedOutliningRcost) { |
770 | ORE.emit(RemarkBuilder: [&]() { |
771 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh" , |
772 | &CB) |
773 | << NV("Callee" , Cloner.OrigFunc) << " not partially inlined into " |
774 | << NV("Caller" , Caller) << " runtime overhead (overhead=" |
775 | << NV("Overhead" , (unsigned)WeightedOutliningRcost.getFrequency()) |
776 | << ", savings=" |
777 | << NV("Savings" , (unsigned)NormWeightedSavings.getFrequency()) |
778 | << ")" |
779 | << " of making the outlined call is too high" ; |
780 | }); |
781 | |
782 | return false; |
783 | } |
784 | |
785 | ORE.emit(RemarkBuilder: [&]() { |
786 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined" , &CB) |
787 | << NV("Callee" , Cloner.OrigFunc) << " can be partially inlined into " |
788 | << NV("Caller" , Caller) << " with cost=" << NV("Cost" , IC.getCost()) |
789 | << " (threshold=" |
790 | << NV("Threshold" , IC.getCostDelta() + IC.getCost()) << ")" ; |
791 | }); |
792 | return true; |
793 | } |
794 | |
795 | // TODO: Ideally we should share Inliner's InlineCost Analysis code. |
796 | // For now use a simplified version. The returned 'InlineCost' will be used |
797 | // to esimate the size cost as well as runtime cost of the BB. |
798 | InstructionCost |
799 | PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB, |
800 | TargetTransformInfo *TTI) { |
801 | InstructionCost InlineCost = 0; |
802 | const DataLayout &DL = BB->getDataLayout(); |
803 | int InstrCost = InlineConstants::getInstrCost(); |
804 | for (Instruction &I : BB->instructionsWithoutDebug()) { |
805 | // Skip free instructions. |
806 | switch (I.getOpcode()) { |
807 | case Instruction::BitCast: |
808 | case Instruction::PtrToInt: |
809 | case Instruction::IntToPtr: |
810 | case Instruction::Alloca: |
811 | case Instruction::PHI: |
812 | continue; |
813 | case Instruction::GetElementPtr: |
814 | if (cast<GetElementPtrInst>(Val: &I)->hasAllZeroIndices()) |
815 | continue; |
816 | break; |
817 | default: |
818 | break; |
819 | } |
820 | |
821 | if (I.isLifetimeStartOrEnd()) |
822 | continue; |
823 | |
824 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
825 | Intrinsic::ID IID = II->getIntrinsicID(); |
826 | SmallVector<Type *, 4> Tys; |
827 | FastMathFlags FMF; |
828 | for (Value *Val : II->args()) |
829 | Tys.push_back(Elt: Val->getType()); |
830 | |
831 | if (auto *FPMO = dyn_cast<FPMathOperator>(Val: II)) |
832 | FMF = FPMO->getFastMathFlags(); |
833 | |
834 | IntrinsicCostAttributes ICA(IID, II->getType(), Tys, FMF); |
835 | InlineCost += TTI->getIntrinsicInstrCost(ICA, CostKind: TTI::TCK_SizeAndLatency); |
836 | continue; |
837 | } |
838 | |
839 | if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) { |
840 | InlineCost += getCallsiteCost(TTI: *TTI, Call: *CI, DL); |
841 | continue; |
842 | } |
843 | |
844 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: &I)) { |
845 | InlineCost += getCallsiteCost(TTI: *TTI, Call: *II, DL); |
846 | continue; |
847 | } |
848 | |
849 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: &I)) { |
850 | InlineCost += (SI->getNumCases() + 1) * InstrCost; |
851 | continue; |
852 | } |
853 | InlineCost += InstrCost; |
854 | } |
855 | |
856 | return InlineCost; |
857 | } |
858 | |
859 | std::tuple<InstructionCost, InstructionCost> |
860 | PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) const { |
861 | InstructionCost OutliningFuncCallCost = 0, OutlinedFunctionCost = 0; |
862 | for (auto FuncBBPair : Cloner.OutlinedFunctions) { |
863 | Function *OutlinedFunc = FuncBBPair.first; |
864 | BasicBlock* OutliningCallBB = FuncBBPair.second; |
865 | // Now compute the cost of the call sequence to the outlined function |
866 | // 'OutlinedFunction' in BB 'OutliningCallBB': |
867 | auto *OutlinedFuncTTI = &GetTTI(*OutlinedFunc); |
868 | OutliningFuncCallCost += |
869 | computeBBInlineCost(BB: OutliningCallBB, TTI: OutlinedFuncTTI); |
870 | |
871 | // Now compute the cost of the extracted/outlined function itself: |
872 | for (BasicBlock &BB : *OutlinedFunc) |
873 | OutlinedFunctionCost += computeBBInlineCost(BB: &BB, TTI: OutlinedFuncTTI); |
874 | } |
875 | assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost && |
876 | "Outlined function cost should be no less than the outlined region" ); |
877 | |
878 | // The code extractor introduces a new root and exit stub blocks with |
879 | // additional unconditional branches. Those branches will be eliminated |
880 | // later with bb layout. The cost should be adjusted accordingly: |
881 | OutlinedFunctionCost -= |
882 | 2 * InlineConstants::getInstrCost() * Cloner.OutlinedFunctions.size(); |
883 | |
884 | InstructionCost OutliningRuntimeOverhead = |
885 | OutliningFuncCallCost + |
886 | (OutlinedFunctionCost - Cloner.OutlinedRegionCost) + |
887 | ExtraOutliningPenalty.getValue(); |
888 | |
889 | return std::make_tuple(args&: OutliningFuncCallCost, args&: OutliningRuntimeOverhead); |
890 | } |
891 | |
892 | // Create the callsite to profile count map which is |
893 | // used to update the original function's entry count, |
894 | // after the function is partially inlined into the callsite. |
895 | void PartialInlinerImpl::computeCallsiteToProfCountMap( |
896 | Function *DuplicateFunction, |
897 | DenseMap<User *, uint64_t> &CallSiteToProfCountMap) const { |
898 | std::vector<User *> Users(DuplicateFunction->user_begin(), |
899 | DuplicateFunction->user_end()); |
900 | Function *CurrentCaller = nullptr; |
901 | std::unique_ptr<BlockFrequencyInfo> TempBFI; |
902 | BlockFrequencyInfo *CurrentCallerBFI = nullptr; |
903 | |
904 | auto ComputeCurrBFI = [&,this](Function *Caller) { |
905 | // For the old pass manager: |
906 | if (!GetBFI) { |
907 | DominatorTree DT(*Caller); |
908 | LoopInfo LI(DT); |
909 | BranchProbabilityInfo BPI(*Caller, LI); |
910 | TempBFI.reset(p: new BlockFrequencyInfo(*Caller, BPI, LI)); |
911 | CurrentCallerBFI = TempBFI.get(); |
912 | } else { |
913 | // New pass manager: |
914 | CurrentCallerBFI = &(GetBFI(*Caller)); |
915 | } |
916 | }; |
917 | |
918 | for (User *User : Users) { |
919 | CallBase *CB = getSupportedCallBase(U: User); |
920 | Function *Caller = CB->getCaller(); |
921 | if (CurrentCaller != Caller) { |
922 | CurrentCaller = Caller; |
923 | ComputeCurrBFI(Caller); |
924 | } else { |
925 | assert(CurrentCallerBFI && "CallerBFI is not set" ); |
926 | } |
927 | BasicBlock *CallBB = CB->getParent(); |
928 | auto Count = CurrentCallerBFI->getBlockProfileCount(BB: CallBB); |
929 | if (Count) |
930 | CallSiteToProfCountMap[User] = *Count; |
931 | else |
932 | CallSiteToProfCountMap[User] = 0; |
933 | } |
934 | } |
935 | |
936 | PartialInlinerImpl::FunctionCloner::( |
937 | Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE, |
938 | function_ref<AssumptionCache *(Function &)> LookupAC, |
939 | function_ref<TargetTransformInfo &(Function &)> GetTTI) |
940 | : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { |
941 | ClonedOI = std::make_unique<FunctionOutliningInfo>(); |
942 | |
943 | // Clone the function, so that we can hack away on it. |
944 | ValueToValueMapTy VMap; |
945 | ClonedFunc = CloneFunction(F, VMap); |
946 | |
947 | ClonedOI->ReturnBlock = cast<BasicBlock>(Val&: VMap[OI->ReturnBlock]); |
948 | ClonedOI->NonReturnBlock = cast<BasicBlock>(Val&: VMap[OI->NonReturnBlock]); |
949 | for (BasicBlock *BB : OI->Entries) |
950 | ClonedOI->Entries.push_back(Elt: cast<BasicBlock>(Val&: VMap[BB])); |
951 | |
952 | for (BasicBlock *E : OI->ReturnBlockPreds) { |
953 | BasicBlock *NewE = cast<BasicBlock>(Val&: VMap[E]); |
954 | ClonedOI->ReturnBlockPreds.push_back(Elt: NewE); |
955 | } |
956 | // Go ahead and update all uses to the duplicate, so that we can just |
957 | // use the inliner functionality when we're done hacking. |
958 | F->replaceAllUsesWith(V: ClonedFunc); |
959 | } |
960 | |
961 | PartialInlinerImpl::FunctionCloner::( |
962 | Function *F, FunctionOutliningMultiRegionInfo *OI, |
963 | OptimizationRemarkEmitter &ORE, |
964 | function_ref<AssumptionCache *(Function &)> LookupAC, |
965 | function_ref<TargetTransformInfo &(Function &)> GetTTI) |
966 | : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { |
967 | ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>(); |
968 | |
969 | // Clone the function, so that we can hack away on it. |
970 | ValueToValueMapTy VMap; |
971 | ClonedFunc = CloneFunction(F, VMap); |
972 | |
973 | // Go through all Outline Candidate Regions and update all BasicBlock |
974 | // information. |
975 | for (const FunctionOutliningMultiRegionInfo::OutlineRegionInfo &RegionInfo : |
976 | OI->ORI) { |
977 | SmallVector<BasicBlock *, 8> Region; |
978 | for (BasicBlock *BB : RegionInfo.Region) |
979 | Region.push_back(Elt: cast<BasicBlock>(Val&: VMap[BB])); |
980 | |
981 | BasicBlock *NewEntryBlock = cast<BasicBlock>(Val&: VMap[RegionInfo.EntryBlock]); |
982 | BasicBlock *NewExitBlock = cast<BasicBlock>(Val&: VMap[RegionInfo.ExitBlock]); |
983 | BasicBlock *NewReturnBlock = nullptr; |
984 | if (RegionInfo.ReturnBlock) |
985 | NewReturnBlock = cast<BasicBlock>(Val&: VMap[RegionInfo.ReturnBlock]); |
986 | FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo( |
987 | Region, NewEntryBlock, NewExitBlock, NewReturnBlock); |
988 | ClonedOMRI->ORI.push_back(Elt: MappedRegionInfo); |
989 | } |
990 | // Go ahead and update all uses to the duplicate, so that we can just |
991 | // use the inliner functionality when we're done hacking. |
992 | F->replaceAllUsesWith(V: ClonedFunc); |
993 | } |
994 | |
995 | void PartialInlinerImpl::FunctionCloner::normalizeReturnBlock() const { |
996 | auto GetFirstPHI = [](BasicBlock *BB) { |
997 | BasicBlock::iterator I = BB->begin(); |
998 | PHINode *FirstPhi = nullptr; |
999 | while (I != BB->end()) { |
1000 | PHINode *Phi = dyn_cast<PHINode>(Val&: I); |
1001 | if (!Phi) |
1002 | break; |
1003 | if (!FirstPhi) { |
1004 | FirstPhi = Phi; |
1005 | break; |
1006 | } |
1007 | } |
1008 | return FirstPhi; |
1009 | }; |
1010 | |
1011 | // Shouldn't need to normalize PHIs if we're not outlining non-early return |
1012 | // blocks. |
1013 | if (!ClonedOI) |
1014 | return; |
1015 | |
1016 | // Special hackery is needed with PHI nodes that have inputs from more than |
1017 | // one extracted block. For simplicity, just split the PHIs into a two-level |
1018 | // sequence of PHIs, some of which will go in the extracted region, and some |
1019 | // of which will go outside. |
1020 | BasicBlock *PreReturn = ClonedOI->ReturnBlock; |
1021 | // only split block when necessary: |
1022 | PHINode *FirstPhi = GetFirstPHI(PreReturn); |
1023 | unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size(); |
1024 | |
1025 | if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1) |
1026 | return; |
1027 | |
1028 | auto IsTrivialPhi = [](PHINode *PN) -> Value * { |
1029 | if (llvm::all_equal(Range: PN->incoming_values())) |
1030 | return PN->getIncomingValue(i: 0); |
1031 | return nullptr; |
1032 | }; |
1033 | |
1034 | ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock( |
1035 | I: ClonedOI->ReturnBlock->getFirstNonPHIIt()); |
1036 | BasicBlock::iterator I = PreReturn->begin(); |
1037 | BasicBlock::iterator Ins = ClonedOI->ReturnBlock->begin(); |
1038 | SmallVector<Instruction *, 4> DeadPhis; |
1039 | while (I != PreReturn->end()) { |
1040 | PHINode *OldPhi = dyn_cast<PHINode>(Val&: I); |
1041 | if (!OldPhi) |
1042 | break; |
1043 | |
1044 | PHINode *RetPhi = |
1045 | PHINode::Create(Ty: OldPhi->getType(), NumReservedValues: NumPredsFromEntries + 1, NameStr: "" ); |
1046 | RetPhi->insertBefore(InsertPos: Ins); |
1047 | OldPhi->replaceAllUsesWith(V: RetPhi); |
1048 | Ins = ClonedOI->ReturnBlock->getFirstNonPHIIt(); |
1049 | |
1050 | RetPhi->addIncoming(V: &*I, BB: PreReturn); |
1051 | for (BasicBlock *E : ClonedOI->ReturnBlockPreds) { |
1052 | RetPhi->addIncoming(V: OldPhi->getIncomingValueForBlock(BB: E), BB: E); |
1053 | OldPhi->removeIncomingValue(BB: E); |
1054 | } |
1055 | |
1056 | // After incoming values splitting, the old phi may become trivial. |
1057 | // Keeping the trivial phi can introduce definition inside the outline |
1058 | // region which is live-out, causing necessary overhead (load, store |
1059 | // arg passing etc). |
1060 | if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) { |
1061 | OldPhi->replaceAllUsesWith(V: OldPhiVal); |
1062 | DeadPhis.push_back(Elt: OldPhi); |
1063 | } |
1064 | ++I; |
1065 | } |
1066 | for (auto *DP : DeadPhis) |
1067 | DP->eraseFromParent(); |
1068 | |
1069 | for (auto *E : ClonedOI->ReturnBlockPreds) |
1070 | E->getTerminator()->replaceUsesOfWith(From: PreReturn, To: ClonedOI->ReturnBlock); |
1071 | } |
1072 | |
1073 | bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() { |
1074 | |
1075 | auto ComputeRegionCost = |
1076 | [&](SmallVectorImpl<BasicBlock *> &Region) -> InstructionCost { |
1077 | InstructionCost Cost = 0; |
1078 | for (BasicBlock* BB : Region) |
1079 | Cost += computeBBInlineCost(BB, TTI: &GetTTI(*BB->getParent())); |
1080 | return Cost; |
1081 | }; |
1082 | |
1083 | assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline" ); |
1084 | |
1085 | if (ClonedOMRI->ORI.empty()) |
1086 | return false; |
1087 | |
1088 | // The CodeExtractor needs a dominator tree. |
1089 | DominatorTree DT; |
1090 | DT.recalculate(Func&: *ClonedFunc); |
1091 | |
1092 | // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. |
1093 | LoopInfo LI(DT); |
1094 | BranchProbabilityInfo BPI(*ClonedFunc, LI); |
1095 | ClonedFuncBFI.reset(p: new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); |
1096 | |
1097 | // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. |
1098 | CodeExtractorAnalysisCache CEAC(*ClonedFunc); |
1099 | |
1100 | SetVector<Value *> Inputs, Outputs, Sinks; |
1101 | for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : |
1102 | ClonedOMRI->ORI) { |
1103 | InstructionCost CurrentOutlinedRegionCost = |
1104 | ComputeRegionCost(RegionInfo.Region); |
1105 | |
1106 | CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false, |
1107 | ClonedFuncBFI.get(), &BPI, |
1108 | LookupAC(*RegionInfo.EntryBlock->getParent()), |
1109 | /* AllowVarargs */ false); |
1110 | |
1111 | CE.findInputsOutputs(Inputs, Outputs, Allocas: Sinks); |
1112 | |
1113 | LLVM_DEBUG({ |
1114 | dbgs() << "inputs: " << Inputs.size() << "\n" ; |
1115 | dbgs() << "outputs: " << Outputs.size() << "\n" ; |
1116 | for (Value *value : Inputs) |
1117 | dbgs() << "value used in func: " << *value << "\n" ; |
1118 | for (Value *output : Outputs) |
1119 | dbgs() << "instr used in func: " << *output << "\n" ; |
1120 | }); |
1121 | |
1122 | // Do not extract regions that have live exit variables. |
1123 | if (Outputs.size() > 0 && !ForceLiveExit) |
1124 | continue; |
1125 | |
1126 | if (Function *OutlinedFunc = CE.extractCodeRegion(CEAC)) { |
1127 | CallBase *OCS = PartialInlinerImpl::getOneCallSiteTo(F&: *OutlinedFunc); |
1128 | BasicBlock *OutliningCallBB = OCS->getParent(); |
1129 | assert(OutliningCallBB->getParent() == ClonedFunc); |
1130 | OutlinedFunctions.push_back(Elt: std::make_pair(x&: OutlinedFunc,y&: OutliningCallBB)); |
1131 | NumColdRegionsOutlined++; |
1132 | OutlinedRegionCost += CurrentOutlinedRegionCost; |
1133 | |
1134 | if (MarkOutlinedColdCC) { |
1135 | OutlinedFunc->setCallingConv(CallingConv::Cold); |
1136 | OCS->setCallingConv(CallingConv::Cold); |
1137 | } |
1138 | } else |
1139 | ORE.emit(RemarkBuilder: [&]() { |
1140 | return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed" , |
1141 | &RegionInfo.Region.front()->front()) |
1142 | << "Failed to extract region at block " |
1143 | << ore::NV("Block" , RegionInfo.Region.front()); |
1144 | }); |
1145 | } |
1146 | |
1147 | return !OutlinedFunctions.empty(); |
1148 | } |
1149 | |
1150 | Function * |
1151 | PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() { |
1152 | // Returns true if the block is to be partial inlined into the caller |
1153 | // (i.e. not to be extracted to the out of line function) |
1154 | auto ToBeInlined = [&, this](BasicBlock *BB) { |
1155 | return BB == ClonedOI->ReturnBlock || |
1156 | llvm::is_contained(Range&: ClonedOI->Entries, Element: BB); |
1157 | }; |
1158 | |
1159 | assert(ClonedOI && "Expecting OutlineInfo for single region outline" ); |
1160 | // The CodeExtractor needs a dominator tree. |
1161 | DominatorTree DT; |
1162 | DT.recalculate(Func&: *ClonedFunc); |
1163 | |
1164 | // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. |
1165 | LoopInfo LI(DT); |
1166 | BranchProbabilityInfo BPI(*ClonedFunc, LI); |
1167 | ClonedFuncBFI.reset(p: new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); |
1168 | |
1169 | // Gather up the blocks that we're going to extract. |
1170 | std::vector<BasicBlock *> ; |
1171 | auto *ClonedFuncTTI = &GetTTI(*ClonedFunc); |
1172 | ToExtract.push_back(x: ClonedOI->NonReturnBlock); |
1173 | OutlinedRegionCost += PartialInlinerImpl::computeBBInlineCost( |
1174 | BB: ClonedOI->NonReturnBlock, TTI: ClonedFuncTTI); |
1175 | for (BasicBlock *BB : depth_first(G: &ClonedFunc->getEntryBlock())) |
1176 | if (!ToBeInlined(BB) && BB != ClonedOI->NonReturnBlock) { |
1177 | ToExtract.push_back(x: BB); |
1178 | // FIXME: the code extractor may hoist/sink more code |
1179 | // into the outlined function which may make the outlining |
1180 | // overhead (the difference of the outlined function cost |
1181 | // and OutliningRegionCost) look larger. |
1182 | OutlinedRegionCost += computeBBInlineCost(BB, TTI: ClonedFuncTTI); |
1183 | } |
1184 | |
1185 | // Extract the body of the if. |
1186 | CodeExtractorAnalysisCache CEAC(*ClonedFunc); |
1187 | Function *OutlinedFunc = |
1188 | CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, |
1189 | ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc), |
1190 | /* AllowVarargs */ true) |
1191 | .extractCodeRegion(CEAC); |
1192 | |
1193 | if (OutlinedFunc) { |
1194 | BasicBlock *OutliningCallBB = |
1195 | PartialInlinerImpl::getOneCallSiteTo(F&: *OutlinedFunc)->getParent(); |
1196 | assert(OutliningCallBB->getParent() == ClonedFunc); |
1197 | OutlinedFunctions.push_back(Elt: std::make_pair(x&: OutlinedFunc, y&: OutliningCallBB)); |
1198 | } else |
1199 | ORE.emit(RemarkBuilder: [&]() { |
1200 | return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed" , |
1201 | &ToExtract.front()->front()) |
1202 | << "Failed to extract region at block " |
1203 | << ore::NV("Block" , ToExtract.front()); |
1204 | }); |
1205 | |
1206 | return OutlinedFunc; |
1207 | } |
1208 | |
1209 | PartialInlinerImpl::FunctionCloner::~FunctionCloner() { |
1210 | // Ditch the duplicate, since we're done with it, and rewrite all remaining |
1211 | // users (function pointers, etc.) back to the original function. |
1212 | ClonedFunc->replaceAllUsesWith(V: OrigFunc); |
1213 | ClonedFunc->eraseFromParent(); |
1214 | if (!IsFunctionInlined) { |
1215 | // Remove each function that was speculatively created if there is no |
1216 | // reference. |
1217 | for (auto FuncBBPair : OutlinedFunctions) { |
1218 | Function *Func = FuncBBPair.first; |
1219 | Func->eraseFromParent(); |
1220 | } |
1221 | } |
1222 | } |
1223 | |
1224 | std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function &F) { |
1225 | if (F.hasAddressTaken()) |
1226 | return {false, nullptr}; |
1227 | |
1228 | // Let inliner handle it |
1229 | if (F.hasFnAttribute(Kind: Attribute::AlwaysInline)) |
1230 | return {false, nullptr}; |
1231 | |
1232 | if (F.hasFnAttribute(Kind: Attribute::NoInline)) |
1233 | return {false, nullptr}; |
1234 | |
1235 | if (PSI.isFunctionEntryCold(F: &F)) |
1236 | return {false, nullptr}; |
1237 | |
1238 | if (F.users().empty()) |
1239 | return {false, nullptr}; |
1240 | |
1241 | OptimizationRemarkEmitter ORE(&F); |
1242 | |
1243 | // Only try to outline cold regions if we have a profile summary, which |
1244 | // implies we have profiling information. |
1245 | if (PSI.hasProfileSummary() && F.hasProfileData() && |
1246 | !DisableMultiRegionPartialInline) { |
1247 | std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI = |
1248 | computeOutliningColdRegionsInfo(F, ORE); |
1249 | if (OMRI) { |
1250 | FunctionCloner Cloner(&F, OMRI.get(), ORE, LookupAssumptionCache, GetTTI); |
1251 | |
1252 | LLVM_DEBUG({ |
1253 | dbgs() << "HotCountThreshold = " << PSI.getHotCountThreshold() << "\n" ; |
1254 | dbgs() << "ColdCountThreshold = " << PSI.getColdCountThreshold() |
1255 | << "\n" ; |
1256 | }); |
1257 | |
1258 | bool DidOutline = Cloner.doMultiRegionFunctionOutlining(); |
1259 | |
1260 | if (DidOutline) { |
1261 | LLVM_DEBUG({ |
1262 | dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n" ; |
1263 | Cloner.ClonedFunc->print(dbgs()); |
1264 | dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n" ; |
1265 | }); |
1266 | |
1267 | if (tryPartialInline(Cloner)) |
1268 | return {true, nullptr}; |
1269 | } |
1270 | } |
1271 | } |
1272 | |
1273 | // Fall-thru to regular partial inlining if we: |
1274 | // i) can't find any cold regions to outline, or |
1275 | // ii) can't inline the outlined function anywhere. |
1276 | std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F); |
1277 | if (!OI) |
1278 | return {false, nullptr}; |
1279 | |
1280 | FunctionCloner Cloner(&F, OI.get(), ORE, LookupAssumptionCache, GetTTI); |
1281 | Cloner.normalizeReturnBlock(); |
1282 | |
1283 | Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining(); |
1284 | |
1285 | if (!OutlinedFunction) |
1286 | return {false, nullptr}; |
1287 | |
1288 | if (tryPartialInline(Cloner)) |
1289 | return {true, OutlinedFunction}; |
1290 | |
1291 | return {false, nullptr}; |
1292 | } |
1293 | |
1294 | bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) { |
1295 | if (Cloner.OutlinedFunctions.empty()) |
1296 | return false; |
1297 | |
1298 | auto OutliningCosts = computeOutliningCosts(Cloner); |
1299 | |
1300 | InstructionCost SizeCost = std::get<0>(t&: OutliningCosts); |
1301 | InstructionCost NonWeightedRcost = std::get<1>(t&: OutliningCosts); |
1302 | |
1303 | assert(SizeCost.isValid() && NonWeightedRcost.isValid() && |
1304 | "Expected valid costs" ); |
1305 | |
1306 | // Only calculate RelativeToEntryFreq when we are doing single region |
1307 | // outlining. |
1308 | BranchProbability RelativeToEntryFreq; |
1309 | if (Cloner.ClonedOI) |
1310 | RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner); |
1311 | else |
1312 | // RelativeToEntryFreq doesn't make sense when we have more than one |
1313 | // outlined call because each call will have a different relative frequency |
1314 | // to the entry block. We can consider using the average, but the |
1315 | // usefulness of that information is questionable. For now, assume we never |
1316 | // execute the calls to outlined functions. |
1317 | RelativeToEntryFreq = BranchProbability(0, 1); |
1318 | |
1319 | BlockFrequency WeightedRcost = |
1320 | BlockFrequency(NonWeightedRcost.getValue()) * RelativeToEntryFreq; |
1321 | |
1322 | // The call sequence(s) to the outlined function(s) are larger than the sum of |
1323 | // the original outlined region size(s), it does not increase the chances of |
1324 | // inlining the function with outlining (The inliner uses the size increase to |
1325 | // model the cost of inlining a callee). |
1326 | if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) { |
1327 | OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); |
1328 | DebugLoc DLoc; |
1329 | BasicBlock *Block; |
1330 | std::tie(args&: DLoc, args&: Block) = getOneDebugLoc(F&: *Cloner.ClonedFunc); |
1331 | OrigFuncORE.emit(RemarkBuilder: [&]() { |
1332 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall" , |
1333 | DLoc, Block) |
1334 | << ore::NV("Function" , Cloner.OrigFunc) |
1335 | << " not partially inlined into callers (Original Size = " |
1336 | << ore::NV("OutlinedRegionOriginalSize" , Cloner.OutlinedRegionCost) |
1337 | << ", Size of call sequence to outlined function = " |
1338 | << ore::NV("NewSize" , SizeCost) << ")" ; |
1339 | }); |
1340 | return false; |
1341 | } |
1342 | |
1343 | assert(Cloner.OrigFunc->users().empty() && |
1344 | "F's users should all be replaced!" ); |
1345 | |
1346 | std::vector<User *> Users(Cloner.ClonedFunc->user_begin(), |
1347 | Cloner.ClonedFunc->user_end()); |
1348 | |
1349 | DenseMap<User *, uint64_t> CallSiteToProfCountMap; |
1350 | auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount(); |
1351 | if (CalleeEntryCount) |
1352 | computeCallsiteToProfCountMap(DuplicateFunction: Cloner.ClonedFunc, CallSiteToProfCountMap); |
1353 | |
1354 | uint64_t CalleeEntryCountV = |
1355 | (CalleeEntryCount ? CalleeEntryCount->getCount() : 0); |
1356 | |
1357 | bool AnyInline = false; |
1358 | for (User *User : Users) { |
1359 | CallBase *CB = getSupportedCallBase(U: User); |
1360 | |
1361 | if (isLimitReached()) |
1362 | continue; |
1363 | |
1364 | OptimizationRemarkEmitter CallerORE(CB->getCaller()); |
1365 | if (!shouldPartialInline(CB&: *CB, Cloner, WeightedOutliningRcost: WeightedRcost, ORE&: CallerORE)) |
1366 | continue; |
1367 | |
1368 | // Construct remark before doing the inlining, as after successful inlining |
1369 | // the callsite is removed. |
1370 | OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined" , CB); |
1371 | OR << ore::NV("Callee" , Cloner.OrigFunc) << " partially inlined into " |
1372 | << ore::NV("Caller" , CB->getCaller()); |
1373 | |
1374 | InlineFunctionInfo IFI(GetAssumptionCache, &PSI); |
1375 | // We can only forward varargs when we outlined a single region, else we |
1376 | // bail on vararg functions. |
1377 | if (!InlineFunction(CB&: *CB, IFI, /*MergeAttributes=*/false, CalleeAAR: nullptr, InsertLifetime: true, |
1378 | ForwardVarArgsTo: (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first |
1379 | : nullptr)) |
1380 | .isSuccess()) |
1381 | continue; |
1382 | |
1383 | CallerORE.emit(OptDiag&: OR); |
1384 | |
1385 | // Now update the entry count: |
1386 | if (CalleeEntryCountV) { |
1387 | if (auto It = CallSiteToProfCountMap.find(Val: User); |
1388 | It != CallSiteToProfCountMap.end()) { |
1389 | uint64_t CallSiteCount = It->second; |
1390 | CalleeEntryCountV -= std::min(a: CalleeEntryCountV, b: CallSiteCount); |
1391 | } |
1392 | } |
1393 | |
1394 | AnyInline = true; |
1395 | NumPartialInlining++; |
1396 | // Update the stats |
1397 | if (Cloner.ClonedOI) |
1398 | NumPartialInlined++; |
1399 | else |
1400 | NumColdOutlinePartialInlined++; |
1401 | } |
1402 | |
1403 | if (AnyInline) { |
1404 | Cloner.IsFunctionInlined = true; |
1405 | if (CalleeEntryCount) |
1406 | Cloner.OrigFunc->setEntryCount(Count: Function::ProfileCount( |
1407 | CalleeEntryCountV, CalleeEntryCount->getType())); |
1408 | OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); |
1409 | OrigFuncORE.emit(RemarkBuilder: [&]() { |
1410 | return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined" , Cloner.OrigFunc) |
1411 | << "Partially inlined into at least one caller" ; |
1412 | }); |
1413 | } |
1414 | |
1415 | return AnyInline; |
1416 | } |
1417 | |
1418 | bool PartialInlinerImpl::run(Module &M) { |
1419 | if (DisablePartialInlining) |
1420 | return false; |
1421 | |
1422 | std::vector<Function *> Worklist; |
1423 | Worklist.reserve(n: M.size()); |
1424 | for (Function &F : M) |
1425 | if (!F.use_empty() && !F.isDeclaration()) |
1426 | Worklist.push_back(x: &F); |
1427 | |
1428 | bool Changed = false; |
1429 | while (!Worklist.empty()) { |
1430 | Function *CurrFunc = Worklist.back(); |
1431 | Worklist.pop_back(); |
1432 | |
1433 | if (CurrFunc->use_empty()) |
1434 | continue; |
1435 | |
1436 | std::pair<bool, Function *> Result = unswitchFunction(F&: *CurrFunc); |
1437 | if (Result.second) |
1438 | Worklist.push_back(x: Result.second); |
1439 | Changed |= Result.first; |
1440 | } |
1441 | |
1442 | return Changed; |
1443 | } |
1444 | |
1445 | PreservedAnalyses PartialInlinerPass::run(Module &M, |
1446 | ModuleAnalysisManager &AM) { |
1447 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
1448 | |
1449 | auto GetAssumptionCache = [&FAM](Function &F) -> AssumptionCache & { |
1450 | return FAM.getResult<AssumptionAnalysis>(IR&: F); |
1451 | }; |
1452 | |
1453 | auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * { |
1454 | return FAM.getCachedResult<AssumptionAnalysis>(IR&: F); |
1455 | }; |
1456 | |
1457 | auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { |
1458 | return FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
1459 | }; |
1460 | |
1461 | auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { |
1462 | return FAM.getResult<TargetIRAnalysis>(IR&: F); |
1463 | }; |
1464 | |
1465 | auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { |
1466 | return FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
1467 | }; |
1468 | |
1469 | ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(IR&: M); |
1470 | |
1471 | if (PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI, |
1472 | GetTLI, PSI, GetBFI) |
1473 | .run(M)) |
1474 | return PreservedAnalyses::none(); |
1475 | return PreservedAnalyses::all(); |
1476 | } |
1477 | |