| 1 | //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" |
| 10 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
| 11 | #include "llvm/Analysis/ModuleSummaryAnalysis.h" |
| 12 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 13 | #include "llvm/Analysis/TypeMetadataUtils.h" |
| 14 | #include "llvm/Bitcode/BitcodeWriter.h" |
| 15 | #include "llvm/IR/Constants.h" |
| 16 | #include "llvm/IR/DebugInfo.h" |
| 17 | #include "llvm/IR/Instructions.h" |
| 18 | #include "llvm/IR/Intrinsics.h" |
| 19 | #include "llvm/IR/Module.h" |
| 20 | #include "llvm/IR/PassManager.h" |
| 21 | #include "llvm/Object/ModuleSymbolTable.h" |
| 22 | #include "llvm/Support/raw_ostream.h" |
| 23 | #include "llvm/Transforms/IPO.h" |
| 24 | #include "llvm/Transforms/IPO/FunctionAttrs.h" |
| 25 | #include "llvm/Transforms/IPO/FunctionImport.h" |
| 26 | #include "llvm/Transforms/IPO/LowerTypeTests.h" |
| 27 | #include "llvm/Transforms/Utils/Cloning.h" |
| 28 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
| 29 | using namespace llvm; |
| 30 | |
| 31 | namespace { |
| 32 | |
| 33 | // Determine if a promotion alias should be created for a symbol name. |
| 34 | static bool allowPromotionAlias(const std::string &Name) { |
| 35 | // Promotion aliases are used only in inline assembly. It's safe to |
| 36 | // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar() |
| 37 | // and MCAsmInfoXCOFF::isAcceptableChar(). |
| 38 | for (const char &C : Name) { |
| 39 | if (isAlnum(C) || C == '_' || C == '.') |
| 40 | continue; |
| 41 | return false; |
| 42 | } |
| 43 | return true; |
| 44 | } |
| 45 | |
| 46 | // Promote each local-linkage entity defined by ExportM and used by ImportM by |
| 47 | // changing visibility and appending the given ModuleId. |
| 48 | void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, |
| 49 | SetVector<GlobalValue *> &) { |
| 50 | DenseMap<const Comdat *, Comdat *> RenamedComdats; |
| 51 | for (auto &ExportGV : ExportM.global_values()) { |
| 52 | if (!ExportGV.hasLocalLinkage()) |
| 53 | continue; |
| 54 | |
| 55 | auto Name = ExportGV.getName(); |
| 56 | GlobalValue *ImportGV = nullptr; |
| 57 | if (!PromoteExtra.count(key: &ExportGV)) { |
| 58 | ImportGV = ImportM.getNamedValue(Name); |
| 59 | if (!ImportGV) |
| 60 | continue; |
| 61 | ImportGV->removeDeadConstantUsers(); |
| 62 | if (ImportGV->use_empty()) { |
| 63 | ImportGV->eraseFromParent(); |
| 64 | continue; |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | std::string OldName = Name.str(); |
| 69 | std::string NewName = (Name + ModuleId).str(); |
| 70 | |
| 71 | if (const auto *C = ExportGV.getComdat()) |
| 72 | if (C->getName() == Name) |
| 73 | RenamedComdats.try_emplace(Key: C, Args: ExportM.getOrInsertComdat(Name: NewName)); |
| 74 | |
| 75 | ExportGV.setName(NewName); |
| 76 | ExportGV.setLinkage(GlobalValue::ExternalLinkage); |
| 77 | ExportGV.setVisibility(GlobalValue::HiddenVisibility); |
| 78 | |
| 79 | if (ImportGV) { |
| 80 | ImportGV->setName(NewName); |
| 81 | ImportGV->setVisibility(GlobalValue::HiddenVisibility); |
| 82 | } |
| 83 | |
| 84 | if (isa<Function>(Val: &ExportGV) && allowPromotionAlias(Name: OldName)) { |
| 85 | // Create a local alias with the original name to avoid breaking |
| 86 | // references from inline assembly. |
| 87 | std::string Alias = |
| 88 | ".lto_set_conditional " + OldName + "," + NewName + "\n" ; |
| 89 | ExportM.appendModuleInlineAsm(Asm: Alias); |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | if (!RenamedComdats.empty()) |
| 94 | for (auto &GO : ExportM.global_objects()) |
| 95 | if (auto *C = GO.getComdat()) { |
| 96 | auto Replacement = RenamedComdats.find(Val: C); |
| 97 | if (Replacement != RenamedComdats.end()) |
| 98 | GO.setComdat(Replacement->second); |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | // Promote all internal (i.e. distinct) type ids used by the module by replacing |
| 103 | // them with external type ids formed using the module id. |
| 104 | // |
| 105 | // Note that this needs to be done before we clone the module because each clone |
| 106 | // will receive its own set of distinct metadata nodes. |
| 107 | void promoteTypeIds(Module &M, StringRef ModuleId) { |
| 108 | DenseMap<Metadata *, Metadata *> LocalToGlobal; |
| 109 | auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { |
| 110 | Metadata *MD = |
| 111 | cast<MetadataAsValue>(Val: CI->getArgOperand(i: ArgNo))->getMetadata(); |
| 112 | |
| 113 | if (isa<MDNode>(Val: MD) && cast<MDNode>(Val: MD)->isDistinct()) { |
| 114 | Metadata *&GlobalMD = LocalToGlobal[MD]; |
| 115 | if (!GlobalMD) { |
| 116 | std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); |
| 117 | GlobalMD = MDString::get(Context&: M.getContext(), Str: NewName); |
| 118 | } |
| 119 | |
| 120 | CI->setArgOperand(i: ArgNo, |
| 121 | v: MetadataAsValue::get(Context&: M.getContext(), MD: GlobalMD)); |
| 122 | } |
| 123 | }; |
| 124 | |
| 125 | if (Function *TypeTestFunc = |
| 126 | Intrinsic::getDeclarationIfExists(M: &M, id: Intrinsic::type_test)) { |
| 127 | for (const Use &U : TypeTestFunc->uses()) { |
| 128 | auto CI = cast<CallInst>(Val: U.getUser()); |
| 129 | ExternalizeTypeId(CI, 1); |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | if (Function *PublicTypeTestFunc = |
| 134 | Intrinsic::getDeclarationIfExists(M: &M, id: Intrinsic::public_type_test)) { |
| 135 | for (const Use &U : PublicTypeTestFunc->uses()) { |
| 136 | auto CI = cast<CallInst>(Val: U.getUser()); |
| 137 | ExternalizeTypeId(CI, 1); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | if (Function *TypeCheckedLoadFunc = |
| 142 | Intrinsic::getDeclarationIfExists(M: &M, id: Intrinsic::type_checked_load)) { |
| 143 | for (const Use &U : TypeCheckedLoadFunc->uses()) { |
| 144 | auto CI = cast<CallInst>(Val: U.getUser()); |
| 145 | ExternalizeTypeId(CI, 2); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | if (Function *TypeCheckedLoadRelativeFunc = Intrinsic::getDeclarationIfExists( |
| 150 | M: &M, id: Intrinsic::type_checked_load_relative)) { |
| 151 | for (const Use &U : TypeCheckedLoadRelativeFunc->uses()) { |
| 152 | auto CI = cast<CallInst>(Val: U.getUser()); |
| 153 | ExternalizeTypeId(CI, 2); |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | for (GlobalObject &GO : M.global_objects()) { |
| 158 | SmallVector<MDNode *, 1> MDs; |
| 159 | GO.getMetadata(KindID: LLVMContext::MD_type, MDs); |
| 160 | |
| 161 | GO.eraseMetadata(KindID: LLVMContext::MD_type); |
| 162 | for (auto *MD : MDs) { |
| 163 | auto I = LocalToGlobal.find(Val: MD->getOperand(I: 1)); |
| 164 | if (I == LocalToGlobal.end()) { |
| 165 | GO.addMetadata(KindID: LLVMContext::MD_type, MD&: *MD); |
| 166 | continue; |
| 167 | } |
| 168 | GO.addMetadata( |
| 169 | KindID: LLVMContext::MD_type, |
| 170 | MD&: *MDNode::get(Context&: M.getContext(), MDs: {MD->getOperand(I: 0), I->second})); |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | // Drop unused globals, and drop type information from function declarations. |
| 176 | // FIXME: If we made functions typeless then there would be no need to do this. |
| 177 | void simplifyExternals(Module &M) { |
| 178 | FunctionType *EmptyFT = |
| 179 | FunctionType::get(Result: Type::getVoidTy(C&: M.getContext()), isVarArg: false); |
| 180 | |
| 181 | for (Function &F : llvm::make_early_inc_range(Range&: M)) { |
| 182 | if (F.isDeclaration() && F.use_empty()) { |
| 183 | F.eraseFromParent(); |
| 184 | continue; |
| 185 | } |
| 186 | |
| 187 | if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || |
| 188 | // Changing the type of an intrinsic may invalidate the IR. |
| 189 | F.getName().starts_with(Prefix: "llvm." )) |
| 190 | continue; |
| 191 | |
| 192 | Function *NewF = |
| 193 | Function::Create(Ty: EmptyFT, Linkage: GlobalValue::ExternalLinkage, |
| 194 | AddrSpace: F.getAddressSpace(), N: "" , M: &M); |
| 195 | NewF->copyAttributesFrom(Src: &F); |
| 196 | // Only copy function attribtues. |
| 197 | NewF->setAttributes(AttributeList::get(C&: M.getContext(), |
| 198 | Index: AttributeList::FunctionIndex, |
| 199 | Attrs: F.getAttributes().getFnAttrs())); |
| 200 | NewF->takeName(V: &F); |
| 201 | F.replaceAllUsesWith(V: NewF); |
| 202 | F.eraseFromParent(); |
| 203 | } |
| 204 | |
| 205 | for (GlobalIFunc &I : llvm::make_early_inc_range(Range: M.ifuncs())) { |
| 206 | if (I.use_empty()) |
| 207 | I.eraseFromParent(); |
| 208 | else |
| 209 | assert(I.getResolverFunction() && "ifunc misses its resolver function" ); |
| 210 | } |
| 211 | |
| 212 | for (GlobalVariable &GV : llvm::make_early_inc_range(Range: M.globals())) { |
| 213 | if (GV.isDeclaration() && GV.use_empty()) { |
| 214 | GV.eraseFromParent(); |
| 215 | continue; |
| 216 | } |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | static void |
| 221 | filterModule(Module *M, |
| 222 | function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { |
| 223 | std::vector<GlobalValue *> V; |
| 224 | for (GlobalValue &GV : M->global_values()) |
| 225 | if (!ShouldKeepDefinition(&GV)) |
| 226 | V.push_back(x: &GV); |
| 227 | |
| 228 | for (GlobalValue *GV : V) |
| 229 | if (!convertToDeclaration(GV&: *GV)) |
| 230 | GV->eraseFromParent(); |
| 231 | } |
| 232 | |
| 233 | void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { |
| 234 | if (auto *F = dyn_cast<Function>(Val: C)) |
| 235 | return Fn(F); |
| 236 | if (isa<GlobalValue>(Val: C)) |
| 237 | return; |
| 238 | for (Value *Op : C->operands()) |
| 239 | forEachVirtualFunction(C: cast<Constant>(Val: Op), Fn); |
| 240 | } |
| 241 | |
| 242 | // Clone any @llvm[.compiler].used over to the new module and append |
| 243 | // values whose defs were cloned into that module. |
| 244 | static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, |
| 245 | bool CompilerUsed) { |
| 246 | SmallVector<GlobalValue *, 4> Used, NewUsed; |
| 247 | // First collect those in the llvm[.compiler].used set. |
| 248 | collectUsedGlobalVariables(M: SrcM, Vec&: Used, CompilerUsed); |
| 249 | // Next build a set of the equivalent values defined in DestM. |
| 250 | for (auto *V : Used) { |
| 251 | auto *GV = DestM.getNamedValue(Name: V->getName()); |
| 252 | if (GV && !GV->isDeclaration()) |
| 253 | NewUsed.push_back(Elt: GV); |
| 254 | } |
| 255 | // Finally, add them to a llvm[.compiler].used variable in DestM. |
| 256 | if (CompilerUsed) |
| 257 | appendToCompilerUsed(M&: DestM, Values: NewUsed); |
| 258 | else |
| 259 | appendToUsed(M&: DestM, Values: NewUsed); |
| 260 | } |
| 261 | |
| 262 | #ifndef NDEBUG |
| 263 | static bool enableUnifiedLTO(Module &M) { |
| 264 | bool UnifiedLTO = false; |
| 265 | if (auto *MD = |
| 266 | mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO" ))) |
| 267 | UnifiedLTO = MD->getZExtValue(); |
| 268 | return UnifiedLTO; |
| 269 | } |
| 270 | #endif |
| 271 | |
| 272 | // If it's possible to split M into regular and thin LTO parts, do so and write |
| 273 | // a multi-module bitcode file with the two parts to OS. Otherwise, write only a |
| 274 | // regular LTO bitcode file to OS. |
| 275 | void splitAndWriteThinLTOBitcode( |
| 276 | raw_ostream &OS, raw_ostream *ThinLinkOS, |
| 277 | function_ref<AAResults &(Function &)> AARGetter, Module &M, |
| 278 | const bool ShouldPreserveUseListOrder) { |
| 279 | std::string ModuleId = getUniqueModuleId(M: &M); |
| 280 | if (ModuleId.empty()) { |
| 281 | assert(!enableUnifiedLTO(M)); |
| 282 | // We couldn't generate a module ID for this module, write it out as a |
| 283 | // regular LTO module with an index for summary-based dead stripping. |
| 284 | ProfileSummaryInfo PSI(M); |
| 285 | M.addModuleFlag(Behavior: Module::Error, Key: "ThinLTO" , Val: uint32_t(0)); |
| 286 | ModuleSummaryIndex Index = buildModuleSummaryIndex(M, GetBFICallback: nullptr, PSI: &PSI); |
| 287 | WriteBitcodeToFile(M, Out&: OS, ShouldPreserveUseListOrder, Index: &Index, |
| 288 | /*UnifiedLTO=*/GenerateHash: false); |
| 289 | |
| 290 | if (ThinLinkOS) |
| 291 | // We don't have a ThinLTO part, but still write the module to the |
| 292 | // ThinLinkOS if requested so that the expected output file is produced. |
| 293 | WriteBitcodeToFile(M, Out&: *ThinLinkOS, ShouldPreserveUseListOrder, Index: &Index, |
| 294 | /*UnifiedLTO=*/GenerateHash: false); |
| 295 | |
| 296 | return; |
| 297 | } |
| 298 | |
| 299 | promoteTypeIds(M, ModuleId); |
| 300 | |
| 301 | // Returns whether a global or its associated global has attached type |
| 302 | // metadata. The former may participate in CFI or whole-program |
| 303 | // devirtualization, so they need to appear in the merged module instead of |
| 304 | // the thin LTO module. Similarly, globals that are associated with globals |
| 305 | // with type metadata need to appear in the merged module because they will |
| 306 | // reference the global's section directly. |
| 307 | auto HasTypeMetadata = [](const GlobalObject *GO) { |
| 308 | if (MDNode *MD = GO->getMetadata(KindID: LLVMContext::MD_associated)) |
| 309 | if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(Val: MD->getOperand(I: 0))) |
| 310 | if (auto *AssocGO = dyn_cast<GlobalObject>(Val: AssocVM->getValue())) |
| 311 | if (AssocGO->hasMetadata(KindID: LLVMContext::MD_type)) |
| 312 | return true; |
| 313 | return GO->hasMetadata(KindID: LLVMContext::MD_type); |
| 314 | }; |
| 315 | |
| 316 | // Collect the set of virtual functions that are eligible for virtual constant |
| 317 | // propagation. Each eligible function must not access memory, must return |
| 318 | // an integer of width <=64 bits, must take at least one argument, must not |
| 319 | // use its first argument (assumed to be "this") and all arguments other than |
| 320 | // the first one must be of <=64 bit integer type. |
| 321 | // |
| 322 | // Note that we test whether this copy of the function is readnone, rather |
| 323 | // than testing function attributes, which must hold for any copy of the |
| 324 | // function, even a less optimized version substituted at link time. This is |
| 325 | // sound because the virtual constant propagation optimizations effectively |
| 326 | // inline all implementations of the virtual function into each call site, |
| 327 | // rather than using function attributes to perform local optimization. |
| 328 | DenseSet<const Function *> EligibleVirtualFns; |
| 329 | // If any member of a comdat lives in MergedM, put all members of that |
| 330 | // comdat in MergedM to keep the comdat together. |
| 331 | DenseSet<const Comdat *> MergedMComdats; |
| 332 | for (GlobalVariable &GV : M.globals()) |
| 333 | if (!GV.isDeclaration() && HasTypeMetadata(&GV)) { |
| 334 | if (const auto *C = GV.getComdat()) |
| 335 | MergedMComdats.insert(V: C); |
| 336 | forEachVirtualFunction(C: GV.getInitializer(), Fn: [&](Function *F) { |
| 337 | auto *RT = dyn_cast<IntegerType>(Val: F->getReturnType()); |
| 338 | if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || |
| 339 | !F->arg_begin()->use_empty()) |
| 340 | return; |
| 341 | for (auto &Arg : drop_begin(RangeOrContainer: F->args())) { |
| 342 | auto *ArgT = dyn_cast<IntegerType>(Val: Arg.getType()); |
| 343 | if (!ArgT || ArgT->getBitWidth() > 64) |
| 344 | return; |
| 345 | } |
| 346 | if (!F->isDeclaration() && |
| 347 | computeFunctionBodyMemoryAccess(F&: *F, AAR&: AARGetter(*F)) |
| 348 | .doesNotAccessMemory()) |
| 349 | EligibleVirtualFns.insert(V: F); |
| 350 | }); |
| 351 | } |
| 352 | |
| 353 | ValueToValueMapTy VMap; |
| 354 | std::unique_ptr<Module> MergedM( |
| 355 | CloneModule(M, VMap, ShouldCloneDefinition: [&](const GlobalValue *GV) -> bool { |
| 356 | if (const auto *C = GV->getComdat()) |
| 357 | if (MergedMComdats.count(V: C)) |
| 358 | return true; |
| 359 | if (auto *F = dyn_cast<Function>(Val: GV)) |
| 360 | return EligibleVirtualFns.count(V: F); |
| 361 | if (auto *GVar = |
| 362 | dyn_cast_or_null<GlobalVariable>(Val: GV->getAliaseeObject())) |
| 363 | return HasTypeMetadata(GVar); |
| 364 | return false; |
| 365 | })); |
| 366 | StripDebugInfo(M&: *MergedM); |
| 367 | MergedM->setModuleInlineAsm("" ); |
| 368 | |
| 369 | // Clone any llvm.*used globals to ensure the included values are |
| 370 | // not deleted. |
| 371 | cloneUsedGlobalVariables(SrcM: M, DestM&: *MergedM, /*CompilerUsed*/ false); |
| 372 | cloneUsedGlobalVariables(SrcM: M, DestM&: *MergedM, /*CompilerUsed*/ true); |
| 373 | |
| 374 | for (Function &F : *MergedM) |
| 375 | if (!F.isDeclaration()) { |
| 376 | // Reset the linkage of all functions eligible for virtual constant |
| 377 | // propagation. The canonical definitions live in the thin LTO module so |
| 378 | // that they can be imported. |
| 379 | F.setLinkage(GlobalValue::AvailableExternallyLinkage); |
| 380 | F.setComdat(nullptr); |
| 381 | } |
| 382 | |
| 383 | SetVector<GlobalValue *> CfiFunctions; |
| 384 | for (auto &F : M) |
| 385 | if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) |
| 386 | CfiFunctions.insert(X: &F); |
| 387 | |
| 388 | // Remove all globals with type metadata, globals with comdats that live in |
| 389 | // MergedM, and aliases pointing to such globals from the thin LTO module. |
| 390 | filterModule(M: &M, ShouldKeepDefinition: [&](const GlobalValue *GV) { |
| 391 | if (auto *GVar = dyn_cast_or_null<GlobalVariable>(Val: GV->getAliaseeObject())) |
| 392 | if (HasTypeMetadata(GVar)) |
| 393 | return false; |
| 394 | if (const auto *C = GV->getComdat()) |
| 395 | if (MergedMComdats.count(V: C)) |
| 396 | return false; |
| 397 | return true; |
| 398 | }); |
| 399 | |
| 400 | promoteInternals(ExportM&: *MergedM, ImportM&: M, ModuleId, PromoteExtra&: CfiFunctions); |
| 401 | promoteInternals(ExportM&: M, ImportM&: *MergedM, ModuleId, PromoteExtra&: CfiFunctions); |
| 402 | |
| 403 | auto &Ctx = MergedM->getContext(); |
| 404 | SmallVector<MDNode *, 8> CfiFunctionMDs; |
| 405 | for (auto *V : CfiFunctions) { |
| 406 | Function &F = *cast<Function>(Val: V); |
| 407 | SmallVector<MDNode *, 2> Types; |
| 408 | F.getMetadata(KindID: LLVMContext::MD_type, MDs&: Types); |
| 409 | |
| 410 | SmallVector<Metadata *, 4> Elts; |
| 411 | Elts.push_back(Elt: MDString::get(Context&: Ctx, Str: F.getName())); |
| 412 | CfiFunctionLinkage Linkage; |
| 413 | if (lowertypetests::isJumpTableCanonical(F: &F)) |
| 414 | Linkage = CFL_Definition; |
| 415 | else if (F.hasExternalWeakLinkage()) |
| 416 | Linkage = CFL_WeakDeclaration; |
| 417 | else |
| 418 | Linkage = CFL_Declaration; |
| 419 | Elts.push_back(Elt: ConstantAsMetadata::get( |
| 420 | C: llvm::ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: Linkage))); |
| 421 | append_range(C&: Elts, R&: Types); |
| 422 | CfiFunctionMDs.push_back(Elt: MDTuple::get(Context&: Ctx, MDs: Elts)); |
| 423 | } |
| 424 | |
| 425 | if(!CfiFunctionMDs.empty()) { |
| 426 | NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata(Name: "cfi.functions" ); |
| 427 | for (auto *MD : CfiFunctionMDs) |
| 428 | NMD->addOperand(M: MD); |
| 429 | } |
| 430 | |
| 431 | SmallVector<MDNode *, 8> FunctionAliases; |
| 432 | for (auto &A : M.aliases()) { |
| 433 | if (!isa<Function>(Val: A.getAliasee())) |
| 434 | continue; |
| 435 | |
| 436 | auto *F = cast<Function>(Val: A.getAliasee()); |
| 437 | |
| 438 | Metadata *Elts[] = { |
| 439 | MDString::get(Context&: Ctx, Str: A.getName()), |
| 440 | MDString::get(Context&: Ctx, Str: F->getName()), |
| 441 | ConstantAsMetadata::get( |
| 442 | C: ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: A.getVisibility())), |
| 443 | ConstantAsMetadata::get( |
| 444 | C: ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: A.isWeakForLinker())), |
| 445 | }; |
| 446 | |
| 447 | FunctionAliases.push_back(Elt: MDTuple::get(Context&: Ctx, MDs: Elts)); |
| 448 | } |
| 449 | |
| 450 | if (!FunctionAliases.empty()) { |
| 451 | NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata(Name: "aliases" ); |
| 452 | for (auto *MD : FunctionAliases) |
| 453 | NMD->addOperand(M: MD); |
| 454 | } |
| 455 | |
| 456 | SmallVector<MDNode *, 8> Symvers; |
| 457 | ModuleSymbolTable::CollectAsmSymvers(M, AsmSymver: [&](StringRef Name, StringRef Alias) { |
| 458 | Function *F = M.getFunction(Name); |
| 459 | if (!F || F->use_empty()) |
| 460 | return; |
| 461 | |
| 462 | Symvers.push_back(Elt: MDTuple::get( |
| 463 | Context&: Ctx, MDs: {MDString::get(Context&: Ctx, Str: Name), MDString::get(Context&: Ctx, Str: Alias)})); |
| 464 | }); |
| 465 | |
| 466 | if (!Symvers.empty()) { |
| 467 | NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata(Name: "symvers" ); |
| 468 | for (auto *MD : Symvers) |
| 469 | NMD->addOperand(M: MD); |
| 470 | } |
| 471 | |
| 472 | simplifyExternals(M&: *MergedM); |
| 473 | |
| 474 | // FIXME: Try to re-use BSI and PFI from the original module here. |
| 475 | ProfileSummaryInfo PSI(M); |
| 476 | ModuleSummaryIndex Index = buildModuleSummaryIndex(M, GetBFICallback: nullptr, PSI: &PSI); |
| 477 | |
| 478 | // Mark the merged module as requiring full LTO. We still want an index for |
| 479 | // it though, so that it can participate in summary-based dead stripping. |
| 480 | MergedM->addModuleFlag(Behavior: Module::Error, Key: "ThinLTO" , Val: uint32_t(0)); |
| 481 | ModuleSummaryIndex MergedMIndex = |
| 482 | buildModuleSummaryIndex(M: *MergedM, GetBFICallback: nullptr, PSI: &PSI); |
| 483 | |
| 484 | SmallVector<char, 0> Buffer; |
| 485 | |
| 486 | BitcodeWriter W(Buffer); |
| 487 | // Save the module hash produced for the full bitcode, which will |
| 488 | // be used in the backends, and use that in the minimized bitcode |
| 489 | // produced for the full link. |
| 490 | ModuleHash ModHash = {._M_elems: {0}}; |
| 491 | W.writeModule(M, ShouldPreserveUseListOrder, Index: &Index, |
| 492 | /*GenerateHash=*/true, ModHash: &ModHash); |
| 493 | W.writeModule(M: *MergedM, ShouldPreserveUseListOrder, Index: &MergedMIndex); |
| 494 | W.writeSymtab(); |
| 495 | W.writeStrtab(); |
| 496 | OS << Buffer; |
| 497 | |
| 498 | // If a minimized bitcode module was requested for the thin link, only |
| 499 | // the information that is needed by thin link will be written in the |
| 500 | // given OS (the merged module will be written as usual). |
| 501 | if (ThinLinkOS) { |
| 502 | Buffer.clear(); |
| 503 | BitcodeWriter W2(Buffer); |
| 504 | StripDebugInfo(M); |
| 505 | W2.writeThinLinkBitcode(M, Index, ModHash); |
| 506 | W2.writeModule(M: *MergedM, /*ShouldPreserveUseListOrder=*/false, |
| 507 | Index: &MergedMIndex); |
| 508 | W2.writeSymtab(); |
| 509 | W2.writeStrtab(); |
| 510 | *ThinLinkOS << Buffer; |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | // Check if the LTO Unit splitting has been enabled. |
| 515 | bool enableSplitLTOUnit(Module &M) { |
| 516 | bool EnableSplitLTOUnit = false; |
| 517 | if (auto *MD = mdconst::extract_or_null<ConstantInt>( |
| 518 | MD: M.getModuleFlag(Key: "EnableSplitLTOUnit" ))) |
| 519 | EnableSplitLTOUnit = MD->getZExtValue(); |
| 520 | return EnableSplitLTOUnit; |
| 521 | } |
| 522 | |
| 523 | // Returns whether this module needs to be split because it uses type metadata. |
| 524 | bool hasTypeMetadata(Module &M) { |
| 525 | for (auto &GO : M.global_objects()) { |
| 526 | if (GO.hasMetadata(KindID: LLVMContext::MD_type)) |
| 527 | return true; |
| 528 | } |
| 529 | return false; |
| 530 | } |
| 531 | |
| 532 | bool writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, |
| 533 | function_ref<AAResults &(Function &)> AARGetter, |
| 534 | Module &M, const ModuleSummaryIndex *Index, |
| 535 | const bool ShouldPreserveUseListOrder) { |
| 536 | std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; |
| 537 | // See if this module has any type metadata. If so, we try to split it |
| 538 | // or at least promote type ids to enable WPD. |
| 539 | if (hasTypeMetadata(M)) { |
| 540 | if (enableSplitLTOUnit(M)) { |
| 541 | splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M, |
| 542 | ShouldPreserveUseListOrder); |
| 543 | return true; |
| 544 | } |
| 545 | // Promote type ids as needed for index-based WPD. |
| 546 | std::string ModuleId = getUniqueModuleId(M: &M); |
| 547 | if (!ModuleId.empty()) { |
| 548 | promoteTypeIds(M, ModuleId); |
| 549 | // Need to rebuild the index so that it contains type metadata |
| 550 | // for the newly promoted type ids. |
| 551 | // FIXME: Probably should not bother building the index at all |
| 552 | // in the caller of writeThinLTOBitcode (which does so via the |
| 553 | // ModuleSummaryIndexAnalysis pass), since we have to rebuild it |
| 554 | // anyway whenever there is type metadata (here or in |
| 555 | // splitAndWriteThinLTOBitcode). Just always build it once via the |
| 556 | // buildModuleSummaryIndex when Module(s) are ready. |
| 557 | ProfileSummaryInfo PSI(M); |
| 558 | NewIndex = std::make_unique<ModuleSummaryIndex>( |
| 559 | args: buildModuleSummaryIndex(M, GetBFICallback: nullptr, PSI: &PSI)); |
| 560 | Index = NewIndex.get(); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | // Write it out as an unsplit ThinLTO module. |
| 565 | |
| 566 | // Save the module hash produced for the full bitcode, which will |
| 567 | // be used in the backends, and use that in the minimized bitcode |
| 568 | // produced for the full link. |
| 569 | ModuleHash ModHash = {._M_elems: {0}}; |
| 570 | WriteBitcodeToFile(M, Out&: OS, ShouldPreserveUseListOrder, Index, |
| 571 | /*GenerateHash=*/true, ModHash: &ModHash); |
| 572 | // If a minimized bitcode module was requested for the thin link, only |
| 573 | // the information that is needed by thin link will be written in the |
| 574 | // given OS. |
| 575 | if (ThinLinkOS && Index) |
| 576 | writeThinLinkBitcodeToFile(M, Out&: *ThinLinkOS, Index: *Index, ModHash); |
| 577 | return false; |
| 578 | } |
| 579 | |
| 580 | } // anonymous namespace |
| 581 | |
| 582 | PreservedAnalyses |
| 583 | llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { |
| 584 | FunctionAnalysisManager &FAM = |
| 585 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 586 | |
| 587 | M.removeDebugIntrinsicDeclarations(); |
| 588 | |
| 589 | bool Changed = writeThinLTOBitcode( |
| 590 | OS, ThinLinkOS, |
| 591 | AARGetter: [&FAM](Function &F) -> AAResults & { |
| 592 | return FAM.getResult<AAManager>(IR&: F); |
| 593 | }, |
| 594 | M, Index: &AM.getResult<ModuleSummaryIndexAnalysis>(IR&: M), |
| 595 | ShouldPreserveUseListOrder); |
| 596 | |
| 597 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
| 598 | } |
| 599 | |