| 1 | //===-- ThreadSanitizer.cpp - race detector -------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of ThreadSanitizer, a race detector. |
| 10 | // |
| 11 | // The tool is under development, for the details about previous versions see |
| 12 | // http://code.google.com/p/data-race-test |
| 13 | // |
| 14 | // The instrumentation phase is quite simple: |
| 15 | // - Insert calls to run-time library before every memory access. |
| 16 | // - Optimizations may apply to avoid instrumenting some of the accesses. |
| 17 | // - Insert calls at function entry/exit. |
| 18 | // The rest is handled by the run-time library. |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | |
| 21 | #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" |
| 22 | #include "llvm/ADT/DenseMap.h" |
| 23 | #include "llvm/ADT/SmallString.h" |
| 24 | #include "llvm/ADT/SmallVector.h" |
| 25 | #include "llvm/ADT/Statistic.h" |
| 26 | #include "llvm/ADT/StringExtras.h" |
| 27 | #include "llvm/Analysis/CaptureTracking.h" |
| 28 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 29 | #include "llvm/Analysis/ValueTracking.h" |
| 30 | #include "llvm/IR/DataLayout.h" |
| 31 | #include "llvm/IR/Function.h" |
| 32 | #include "llvm/IR/IRBuilder.h" |
| 33 | #include "llvm/IR/Instructions.h" |
| 34 | #include "llvm/IR/IntrinsicInst.h" |
| 35 | #include "llvm/IR/Intrinsics.h" |
| 36 | #include "llvm/IR/LLVMContext.h" |
| 37 | #include "llvm/IR/Metadata.h" |
| 38 | #include "llvm/IR/Module.h" |
| 39 | #include "llvm/IR/Type.h" |
| 40 | #include "llvm/ProfileData/InstrProf.h" |
| 41 | #include "llvm/Support/CommandLine.h" |
| 42 | #include "llvm/Support/Debug.h" |
| 43 | #include "llvm/Support/raw_ostream.h" |
| 44 | #include "llvm/Transforms/Utils/EscapeEnumerator.h" |
| 45 | #include "llvm/Transforms/Utils/Instrumentation.h" |
| 46 | #include "llvm/Transforms/Utils/Local.h" |
| 47 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
| 48 | |
| 49 | using namespace llvm; |
| 50 | |
| 51 | #define DEBUG_TYPE "tsan" |
| 52 | |
| 53 | static cl::opt<bool> ClInstrumentMemoryAccesses( |
| 54 | "tsan-instrument-memory-accesses" , cl::init(Val: true), |
| 55 | cl::desc("Instrument memory accesses" ), cl::Hidden); |
| 56 | static cl::opt<bool> |
| 57 | ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit" , cl::init(Val: true), |
| 58 | cl::desc("Instrument function entry and exit" ), |
| 59 | cl::Hidden); |
| 60 | static cl::opt<bool> ClHandleCxxExceptions( |
| 61 | "tsan-handle-cxx-exceptions" , cl::init(Val: true), |
| 62 | cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)" ), |
| 63 | cl::Hidden); |
| 64 | static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics" , |
| 65 | cl::init(Val: true), |
| 66 | cl::desc("Instrument atomics" ), |
| 67 | cl::Hidden); |
| 68 | static cl::opt<bool> ClInstrumentMemIntrinsics( |
| 69 | "tsan-instrument-memintrinsics" , cl::init(Val: true), |
| 70 | cl::desc("Instrument memintrinsics (memset/memcpy/memmove)" ), cl::Hidden); |
| 71 | static cl::opt<bool> ClDistinguishVolatile( |
| 72 | "tsan-distinguish-volatile" , cl::init(Val: false), |
| 73 | cl::desc("Emit special instrumentation for accesses to volatiles" ), |
| 74 | cl::Hidden); |
| 75 | static cl::opt<bool> ClInstrumentReadBeforeWrite( |
| 76 | "tsan-instrument-read-before-write" , cl::init(Val: false), |
| 77 | cl::desc("Do not eliminate read instrumentation for read-before-writes" ), |
| 78 | cl::Hidden); |
| 79 | static cl::opt<bool> ClCompoundReadBeforeWrite( |
| 80 | "tsan-compound-read-before-write" , cl::init(Val: false), |
| 81 | cl::desc("Emit special compound instrumentation for reads-before-writes" ), |
| 82 | cl::Hidden); |
| 83 | |
| 84 | STATISTIC(NumInstrumentedReads, "Number of instrumented reads" ); |
| 85 | STATISTIC(NumInstrumentedWrites, "Number of instrumented writes" ); |
| 86 | STATISTIC(NumOmittedReadsBeforeWrite, |
| 87 | "Number of reads ignored due to following writes" ); |
| 88 | STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size" ); |
| 89 | STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes" ); |
| 90 | STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads" ); |
| 91 | STATISTIC(NumOmittedReadsFromConstantGlobals, |
| 92 | "Number of reads from constant globals" ); |
| 93 | STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads" ); |
| 94 | STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing" ); |
| 95 | |
| 96 | const char kTsanModuleCtorName[] = "tsan.module_ctor" ; |
| 97 | const char kTsanInitName[] = "__tsan_init" ; |
| 98 | |
| 99 | namespace { |
| 100 | |
| 101 | /// ThreadSanitizer: instrument the code in module to find races. |
| 102 | /// |
| 103 | /// Instantiating ThreadSanitizer inserts the tsan runtime library API function |
| 104 | /// declarations into the module if they don't exist already. Instantiating |
| 105 | /// ensures the __tsan_init function is in the list of global constructors for |
| 106 | /// the module. |
| 107 | struct ThreadSanitizer { |
| 108 | ThreadSanitizer() { |
| 109 | // Check options and warn user. |
| 110 | if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) { |
| 111 | errs() |
| 112 | << "warning: Option -tsan-compound-read-before-write has no effect " |
| 113 | "when -tsan-instrument-read-before-write is set.\n" ; |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); |
| 118 | |
| 119 | private: |
| 120 | // Internal Instruction wrapper that contains more information about the |
| 121 | // Instruction from prior analysis. |
| 122 | struct InstructionInfo { |
| 123 | // Instrumentation emitted for this instruction is for a compounded set of |
| 124 | // read and write operations in the same basic block. |
| 125 | static constexpr unsigned kCompoundRW = (1U << 0); |
| 126 | |
| 127 | explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {} |
| 128 | |
| 129 | Instruction *Inst; |
| 130 | unsigned Flags = 0; |
| 131 | }; |
| 132 | |
| 133 | void initialize(Module &M, const TargetLibraryInfo &TLI); |
| 134 | bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL); |
| 135 | bool instrumentAtomic(Instruction *I, const DataLayout &DL); |
| 136 | bool instrumentMemIntrinsic(Instruction *I); |
| 137 | void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, |
| 138 | SmallVectorImpl<InstructionInfo> &All, |
| 139 | const DataLayout &DL); |
| 140 | bool addrPointsToConstantData(Value *Addr); |
| 141 | int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL); |
| 142 | void InsertRuntimeIgnores(Function &F); |
| 143 | |
| 144 | Type *IntptrTy; |
| 145 | FunctionCallee TsanFuncEntry; |
| 146 | FunctionCallee TsanFuncExit; |
| 147 | FunctionCallee TsanIgnoreBegin; |
| 148 | FunctionCallee TsanIgnoreEnd; |
| 149 | // Accesses sizes are powers of two: 1, 2, 4, 8, 16. |
| 150 | static const size_t kNumberOfAccessSizes = 5; |
| 151 | FunctionCallee TsanRead[kNumberOfAccessSizes]; |
| 152 | FunctionCallee TsanWrite[kNumberOfAccessSizes]; |
| 153 | FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes]; |
| 154 | FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes]; |
| 155 | FunctionCallee TsanVolatileRead[kNumberOfAccessSizes]; |
| 156 | FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes]; |
| 157 | FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes]; |
| 158 | FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes]; |
| 159 | FunctionCallee TsanCompoundRW[kNumberOfAccessSizes]; |
| 160 | FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes]; |
| 161 | FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes]; |
| 162 | FunctionCallee TsanAtomicStore[kNumberOfAccessSizes]; |
| 163 | FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1] |
| 164 | [kNumberOfAccessSizes]; |
| 165 | FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes]; |
| 166 | FunctionCallee TsanAtomicThreadFence; |
| 167 | FunctionCallee TsanAtomicSignalFence; |
| 168 | FunctionCallee TsanVptrUpdate; |
| 169 | FunctionCallee TsanVptrLoad; |
| 170 | FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; |
| 171 | }; |
| 172 | |
| 173 | void insertModuleCtor(Module &M) { |
| 174 | getOrCreateSanitizerCtorAndInitFunctions( |
| 175 | M, CtorName: kTsanModuleCtorName, InitName: kTsanInitName, /*InitArgTypes=*/{}, |
| 176 | /*InitArgs=*/{}, |
| 177 | // This callback is invoked when the functions are created the first |
| 178 | // time. Hook them into the global ctors list in that case: |
| 179 | FunctionsCreatedCallback: [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, F: Ctor, Priority: 0); }); |
| 180 | } |
| 181 | } // namespace |
| 182 | |
| 183 | PreservedAnalyses ThreadSanitizerPass::run(Function &F, |
| 184 | FunctionAnalysisManager &FAM) { |
| 185 | ThreadSanitizer TSan; |
| 186 | if (TSan.sanitizeFunction(F, TLI: FAM.getResult<TargetLibraryAnalysis>(IR&: F))) |
| 187 | return PreservedAnalyses::none(); |
| 188 | return PreservedAnalyses::all(); |
| 189 | } |
| 190 | |
| 191 | PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M, |
| 192 | ModuleAnalysisManager &MAM) { |
| 193 | // Return early if nosanitize_thread module flag is present for the module. |
| 194 | if (checkIfAlreadyInstrumented(M, Flag: "nosanitize_thread" )) |
| 195 | return PreservedAnalyses::all(); |
| 196 | insertModuleCtor(M); |
| 197 | return PreservedAnalyses::none(); |
| 198 | } |
| 199 | void ThreadSanitizer::initialize(Module &M, const TargetLibraryInfo &TLI) { |
| 200 | const DataLayout &DL = M.getDataLayout(); |
| 201 | LLVMContext &Ctx = M.getContext(); |
| 202 | IntptrTy = DL.getIntPtrType(C&: Ctx); |
| 203 | |
| 204 | IRBuilder<> IRB(Ctx); |
| 205 | AttributeList Attr; |
| 206 | Attr = Attr.addFnAttribute(C&: Ctx, Kind: Attribute::NoUnwind); |
| 207 | // Initialize the callbacks. |
| 208 | TsanFuncEntry = M.getOrInsertFunction(Name: "__tsan_func_entry" , AttributeList: Attr, |
| 209 | RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 210 | TsanFuncExit = |
| 211 | M.getOrInsertFunction(Name: "__tsan_func_exit" , AttributeList: Attr, RetTy: IRB.getVoidTy()); |
| 212 | TsanIgnoreBegin = M.getOrInsertFunction(Name: "__tsan_ignore_thread_begin" , AttributeList: Attr, |
| 213 | RetTy: IRB.getVoidTy()); |
| 214 | TsanIgnoreEnd = |
| 215 | M.getOrInsertFunction(Name: "__tsan_ignore_thread_end" , AttributeList: Attr, RetTy: IRB.getVoidTy()); |
| 216 | IntegerType *OrdTy = IRB.getInt32Ty(); |
| 217 | for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { |
| 218 | const unsigned ByteSize = 1U << i; |
| 219 | const unsigned BitSize = ByteSize * 8; |
| 220 | std::string ByteSizeStr = utostr(X: ByteSize); |
| 221 | std::string BitSizeStr = utostr(X: BitSize); |
| 222 | SmallString<32> ReadName("__tsan_read" + ByteSizeStr); |
| 223 | TsanRead[i] = M.getOrInsertFunction(Name: ReadName, AttributeList: Attr, RetTy: IRB.getVoidTy(), |
| 224 | Args: IRB.getPtrTy()); |
| 225 | |
| 226 | SmallString<32> WriteName("__tsan_write" + ByteSizeStr); |
| 227 | TsanWrite[i] = M.getOrInsertFunction(Name: WriteName, AttributeList: Attr, RetTy: IRB.getVoidTy(), |
| 228 | Args: IRB.getPtrTy()); |
| 229 | |
| 230 | SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); |
| 231 | TsanUnalignedRead[i] = M.getOrInsertFunction( |
| 232 | Name: UnalignedReadName, AttributeList: Attr, RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 233 | |
| 234 | SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); |
| 235 | TsanUnalignedWrite[i] = M.getOrInsertFunction( |
| 236 | Name: UnalignedWriteName, AttributeList: Attr, RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 237 | |
| 238 | SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr); |
| 239 | TsanVolatileRead[i] = M.getOrInsertFunction( |
| 240 | Name: VolatileReadName, AttributeList: Attr, RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 241 | |
| 242 | SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr); |
| 243 | TsanVolatileWrite[i] = M.getOrInsertFunction( |
| 244 | Name: VolatileWriteName, AttributeList: Attr, RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 245 | |
| 246 | SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" + |
| 247 | ByteSizeStr); |
| 248 | TsanUnalignedVolatileRead[i] = M.getOrInsertFunction( |
| 249 | Name: UnalignedVolatileReadName, AttributeList: Attr, RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 250 | |
| 251 | SmallString<64> UnalignedVolatileWriteName( |
| 252 | "__tsan_unaligned_volatile_write" + ByteSizeStr); |
| 253 | TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction( |
| 254 | Name: UnalignedVolatileWriteName, AttributeList: Attr, RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 255 | |
| 256 | SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr); |
| 257 | TsanCompoundRW[i] = M.getOrInsertFunction( |
| 258 | Name: CompoundRWName, AttributeList: Attr, RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 259 | |
| 260 | SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" + |
| 261 | ByteSizeStr); |
| 262 | TsanUnalignedCompoundRW[i] = M.getOrInsertFunction( |
| 263 | Name: UnalignedCompoundRWName, AttributeList: Attr, RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 264 | |
| 265 | Type *Ty = Type::getIntNTy(C&: Ctx, N: BitSize); |
| 266 | Type *PtrTy = PointerType::get(C&: Ctx, AddressSpace: 0); |
| 267 | SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load" ); |
| 268 | TsanAtomicLoad[i] = |
| 269 | M.getOrInsertFunction(Name: AtomicLoadName, |
| 270 | AttributeList: TLI.getAttrList(C: &Ctx, ArgNos: {1}, /*Signed=*/true, |
| 271 | /*Ret=*/BitSize <= 32, AL: Attr), |
| 272 | RetTy: Ty, Args: PtrTy, Args: OrdTy); |
| 273 | |
| 274 | // Args of type Ty need extension only when BitSize is 32 or less. |
| 275 | using Idxs = std::vector<unsigned>; |
| 276 | Idxs Idxs2Or12 ((BitSize <= 32) ? Idxs({1, 2}) : Idxs({2})); |
| 277 | Idxs Idxs34Or1234((BitSize <= 32) ? Idxs({1, 2, 3, 4}) : Idxs({3, 4})); |
| 278 | SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store" ); |
| 279 | TsanAtomicStore[i] = M.getOrInsertFunction( |
| 280 | Name: AtomicStoreName, |
| 281 | AttributeList: TLI.getAttrList(C: &Ctx, ArgNos: Idxs2Or12, /*Signed=*/true, /*Ret=*/false, AL: Attr), |
| 282 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: Ty, Args: OrdTy); |
| 283 | |
| 284 | for (unsigned Op = AtomicRMWInst::FIRST_BINOP; |
| 285 | Op <= AtomicRMWInst::LAST_BINOP; ++Op) { |
| 286 | TsanAtomicRMW[Op][i] = nullptr; |
| 287 | const char *NamePart = nullptr; |
| 288 | if (Op == AtomicRMWInst::Xchg) |
| 289 | NamePart = "_exchange" ; |
| 290 | else if (Op == AtomicRMWInst::Add) |
| 291 | NamePart = "_fetch_add" ; |
| 292 | else if (Op == AtomicRMWInst::Sub) |
| 293 | NamePart = "_fetch_sub" ; |
| 294 | else if (Op == AtomicRMWInst::And) |
| 295 | NamePart = "_fetch_and" ; |
| 296 | else if (Op == AtomicRMWInst::Or) |
| 297 | NamePart = "_fetch_or" ; |
| 298 | else if (Op == AtomicRMWInst::Xor) |
| 299 | NamePart = "_fetch_xor" ; |
| 300 | else if (Op == AtomicRMWInst::Nand) |
| 301 | NamePart = "_fetch_nand" ; |
| 302 | else |
| 303 | continue; |
| 304 | SmallString<32> RMWName("__tsan_atomic" + itostr(X: BitSize) + NamePart); |
| 305 | TsanAtomicRMW[Op][i] = M.getOrInsertFunction( |
| 306 | Name: RMWName, |
| 307 | AttributeList: TLI.getAttrList(C: &Ctx, ArgNos: Idxs2Or12, /*Signed=*/true, |
| 308 | /*Ret=*/BitSize <= 32, AL: Attr), |
| 309 | RetTy: Ty, Args: PtrTy, Args: Ty, Args: OrdTy); |
| 310 | } |
| 311 | |
| 312 | SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + |
| 313 | "_compare_exchange_val" ); |
| 314 | TsanAtomicCAS[i] = M.getOrInsertFunction( |
| 315 | Name: AtomicCASName, |
| 316 | AttributeList: TLI.getAttrList(C: &Ctx, ArgNos: Idxs34Or1234, /*Signed=*/true, |
| 317 | /*Ret=*/BitSize <= 32, AL: Attr), |
| 318 | RetTy: Ty, Args: PtrTy, Args: Ty, Args: Ty, Args: OrdTy, Args: OrdTy); |
| 319 | } |
| 320 | TsanVptrUpdate = |
| 321 | M.getOrInsertFunction(Name: "__tsan_vptr_update" , AttributeList: Attr, RetTy: IRB.getVoidTy(), |
| 322 | Args: IRB.getPtrTy(), Args: IRB.getPtrTy()); |
| 323 | TsanVptrLoad = M.getOrInsertFunction(Name: "__tsan_vptr_read" , AttributeList: Attr, |
| 324 | RetTy: IRB.getVoidTy(), Args: IRB.getPtrTy()); |
| 325 | TsanAtomicThreadFence = M.getOrInsertFunction( |
| 326 | Name: "__tsan_atomic_thread_fence" , |
| 327 | AttributeList: TLI.getAttrList(C: &Ctx, ArgNos: {0}, /*Signed=*/true, /*Ret=*/false, AL: Attr), |
| 328 | RetTy: IRB.getVoidTy(), Args: OrdTy); |
| 329 | |
| 330 | TsanAtomicSignalFence = M.getOrInsertFunction( |
| 331 | Name: "__tsan_atomic_signal_fence" , |
| 332 | AttributeList: TLI.getAttrList(C: &Ctx, ArgNos: {0}, /*Signed=*/true, /*Ret=*/false, AL: Attr), |
| 333 | RetTy: IRB.getVoidTy(), Args: OrdTy); |
| 334 | |
| 335 | MemmoveFn = |
| 336 | M.getOrInsertFunction(Name: "__tsan_memmove" , AttributeList: Attr, RetTy: IRB.getPtrTy(), |
| 337 | Args: IRB.getPtrTy(), Args: IRB.getPtrTy(), Args: IntptrTy); |
| 338 | MemcpyFn = |
| 339 | M.getOrInsertFunction(Name: "__tsan_memcpy" , AttributeList: Attr, RetTy: IRB.getPtrTy(), |
| 340 | Args: IRB.getPtrTy(), Args: IRB.getPtrTy(), Args: IntptrTy); |
| 341 | MemsetFn = M.getOrInsertFunction( |
| 342 | Name: "__tsan_memset" , |
| 343 | AttributeList: TLI.getAttrList(C: &Ctx, ArgNos: {1}, /*Signed=*/true, /*Ret=*/false, AL: Attr), |
| 344 | RetTy: IRB.getPtrTy(), Args: IRB.getPtrTy(), Args: IRB.getInt32Ty(), Args: IntptrTy); |
| 345 | } |
| 346 | |
| 347 | static bool isVtableAccess(Instruction *I) { |
| 348 | if (MDNode *Tag = I->getMetadata(KindID: LLVMContext::MD_tbaa)) |
| 349 | return Tag->isTBAAVtableAccess(); |
| 350 | return false; |
| 351 | } |
| 352 | |
| 353 | // Do not instrument known races/"benign races" that come from compiler |
| 354 | // instrumentatin. The user has no way of suppressing them. |
| 355 | static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { |
| 356 | // Peel off GEPs and BitCasts. |
| 357 | Addr = Addr->stripInBoundsOffsets(); |
| 358 | |
| 359 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: Addr)) { |
| 360 | if (GV->hasSection()) { |
| 361 | StringRef SectionName = GV->getSection(); |
| 362 | // Check if the global is in the PGO counters section. |
| 363 | auto OF = M->getTargetTriple().getObjectFormat(); |
| 364 | if (SectionName.ends_with( |
| 365 | Suffix: getInstrProfSectionName(IPSK: IPSK_cnts, OF, /*AddSegmentInfo=*/false))) |
| 366 | return false; |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | // Do not instrument accesses from different address spaces; we cannot deal |
| 371 | // with them. |
| 372 | if (Addr) { |
| 373 | Type *PtrTy = cast<PointerType>(Val: Addr->getType()->getScalarType()); |
| 374 | if (PtrTy->getPointerAddressSpace() != 0) |
| 375 | return false; |
| 376 | } |
| 377 | |
| 378 | return true; |
| 379 | } |
| 380 | |
| 381 | bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { |
| 382 | // If this is a GEP, just analyze its pointer operand. |
| 383 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Addr)) |
| 384 | Addr = GEP->getPointerOperand(); |
| 385 | |
| 386 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: Addr)) { |
| 387 | if (GV->isConstant()) { |
| 388 | // Reads from constant globals can not race with any writes. |
| 389 | NumOmittedReadsFromConstantGlobals++; |
| 390 | return true; |
| 391 | } |
| 392 | } else if (LoadInst *L = dyn_cast<LoadInst>(Val: Addr)) { |
| 393 | if (isVtableAccess(I: L)) { |
| 394 | // Reads from a vtable pointer can not race with any writes. |
| 395 | NumOmittedReadsFromVtable++; |
| 396 | return true; |
| 397 | } |
| 398 | } |
| 399 | return false; |
| 400 | } |
| 401 | |
| 402 | // Instrumenting some of the accesses may be proven redundant. |
| 403 | // Currently handled: |
| 404 | // - read-before-write (within same BB, no calls between) |
| 405 | // - not captured variables |
| 406 | // |
| 407 | // We do not handle some of the patterns that should not survive |
| 408 | // after the classic compiler optimizations. |
| 409 | // E.g. two reads from the same temp should be eliminated by CSE, |
| 410 | // two writes should be eliminated by DSE, etc. |
| 411 | // |
| 412 | // 'Local' is a vector of insns within the same BB (no calls between). |
| 413 | // 'All' is a vector of insns that will be instrumented. |
| 414 | void ThreadSanitizer::chooseInstructionsToInstrument( |
| 415 | SmallVectorImpl<Instruction *> &Local, |
| 416 | SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) { |
| 417 | DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All |
| 418 | // Iterate from the end. |
| 419 | for (Instruction *I : reverse(C&: Local)) { |
| 420 | const bool IsWrite = isa<StoreInst>(Val: *I); |
| 421 | Value *Addr = IsWrite ? cast<StoreInst>(Val: I)->getPointerOperand() |
| 422 | : cast<LoadInst>(Val: I)->getPointerOperand(); |
| 423 | |
| 424 | if (!shouldInstrumentReadWriteFromAddress(M: I->getModule(), Addr)) |
| 425 | continue; |
| 426 | |
| 427 | if (!IsWrite) { |
| 428 | const auto WriteEntry = WriteTargets.find(Val: Addr); |
| 429 | if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) { |
| 430 | auto &WI = All[WriteEntry->second]; |
| 431 | // If we distinguish volatile accesses and if either the read or write |
| 432 | // is volatile, do not omit any instrumentation. |
| 433 | const bool AnyVolatile = |
| 434 | ClDistinguishVolatile && (cast<LoadInst>(Val: I)->isVolatile() || |
| 435 | cast<StoreInst>(Val: WI.Inst)->isVolatile()); |
| 436 | if (!AnyVolatile) { |
| 437 | // We will write to this temp, so no reason to analyze the read. |
| 438 | // Mark the write instruction as compound. |
| 439 | WI.Flags |= InstructionInfo::kCompoundRW; |
| 440 | NumOmittedReadsBeforeWrite++; |
| 441 | continue; |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | if (addrPointsToConstantData(Addr)) { |
| 446 | // Addr points to some constant data -- it can not race with any writes. |
| 447 | continue; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | const AllocaInst *AI = findAllocaForValue(V: Addr); |
| 452 | // Instead of Addr, we should check whether its base pointer is captured. |
| 453 | if (AI && !PointerMayBeCaptured(V: AI, /*ReturnCaptures=*/true)) { |
| 454 | // The variable is addressable but not captured, so it cannot be |
| 455 | // referenced from a different thread and participate in a data race |
| 456 | // (see llvm/Analysis/CaptureTracking.h for details). |
| 457 | NumOmittedNonCaptured++; |
| 458 | continue; |
| 459 | } |
| 460 | |
| 461 | // Instrument this instruction. |
| 462 | All.emplace_back(Args&: I); |
| 463 | if (IsWrite) { |
| 464 | // For read-before-write and compound instrumentation we only need one |
| 465 | // write target, and we can override any previous entry if it exists. |
| 466 | WriteTargets[Addr] = All.size() - 1; |
| 467 | } |
| 468 | } |
| 469 | Local.clear(); |
| 470 | } |
| 471 | |
| 472 | static bool isTsanAtomic(const Instruction *I) { |
| 473 | // TODO: Ask TTI whether synchronization scope is between threads. |
| 474 | auto SSID = getAtomicSyncScopeID(I); |
| 475 | if (!SSID) |
| 476 | return false; |
| 477 | if (isa<LoadInst>(Val: I) || isa<StoreInst>(Val: I)) |
| 478 | return *SSID != SyncScope::SingleThread; |
| 479 | return true; |
| 480 | } |
| 481 | |
| 482 | void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { |
| 483 | InstrumentationIRBuilder IRB(&F.getEntryBlock(), |
| 484 | F.getEntryBlock().getFirstNonPHIIt()); |
| 485 | IRB.CreateCall(Callee: TsanIgnoreBegin); |
| 486 | EscapeEnumerator EE(F, "tsan_ignore_cleanup" , ClHandleCxxExceptions); |
| 487 | while (IRBuilder<> *AtExit = EE.Next()) { |
| 488 | InstrumentationIRBuilder::ensureDebugInfo(IRB&: *AtExit, F); |
| 489 | AtExit->CreateCall(Callee: TsanIgnoreEnd); |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | bool ThreadSanitizer::sanitizeFunction(Function &F, |
| 494 | const TargetLibraryInfo &TLI) { |
| 495 | // This is required to prevent instrumenting call to __tsan_init from within |
| 496 | // the module constructor. |
| 497 | if (F.getName() == kTsanModuleCtorName) |
| 498 | return false; |
| 499 | // Naked functions can not have prologue/epilogue |
| 500 | // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at |
| 501 | // all. |
| 502 | if (F.hasFnAttribute(Kind: Attribute::Naked)) |
| 503 | return false; |
| 504 | |
| 505 | // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of |
| 506 | // instrumentation. |
| 507 | if (F.hasFnAttribute(Kind: Attribute::DisableSanitizerInstrumentation)) |
| 508 | return false; |
| 509 | |
| 510 | initialize(M&: *F.getParent(), TLI); |
| 511 | SmallVector<InstructionInfo, 8> AllLoadsAndStores; |
| 512 | SmallVector<Instruction*, 8> LocalLoadsAndStores; |
| 513 | SmallVector<Instruction*, 8> AtomicAccesses; |
| 514 | SmallVector<Instruction*, 8> MemIntrinCalls; |
| 515 | bool Res = false; |
| 516 | bool HasCalls = false; |
| 517 | bool SanitizeFunction = F.hasFnAttribute(Kind: Attribute::SanitizeThread); |
| 518 | const DataLayout &DL = F.getDataLayout(); |
| 519 | |
| 520 | // Traverse all instructions, collect loads/stores/returns, check for calls. |
| 521 | for (auto &BB : F) { |
| 522 | for (auto &Inst : BB) { |
| 523 | // Skip instructions inserted by another instrumentation. |
| 524 | if (Inst.hasMetadata(KindID: LLVMContext::MD_nosanitize)) |
| 525 | continue; |
| 526 | if (isTsanAtomic(I: &Inst)) |
| 527 | AtomicAccesses.push_back(Elt: &Inst); |
| 528 | else if (isa<LoadInst>(Val: Inst) || isa<StoreInst>(Val: Inst)) |
| 529 | LocalLoadsAndStores.push_back(Elt: &Inst); |
| 530 | else if (isa<CallInst>(Val: Inst) || isa<InvokeInst>(Val: Inst)) { |
| 531 | if (CallInst *CI = dyn_cast<CallInst>(Val: &Inst)) |
| 532 | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI: &TLI); |
| 533 | if (isa<MemIntrinsic>(Val: Inst)) |
| 534 | MemIntrinCalls.push_back(Elt: &Inst); |
| 535 | HasCalls = true; |
| 536 | chooseInstructionsToInstrument(Local&: LocalLoadsAndStores, All&: AllLoadsAndStores, |
| 537 | DL); |
| 538 | } |
| 539 | } |
| 540 | chooseInstructionsToInstrument(Local&: LocalLoadsAndStores, All&: AllLoadsAndStores, DL); |
| 541 | } |
| 542 | |
| 543 | // We have collected all loads and stores. |
| 544 | // FIXME: many of these accesses do not need to be checked for races |
| 545 | // (e.g. variables that do not escape, etc). |
| 546 | |
| 547 | // Instrument memory accesses only if we want to report bugs in the function. |
| 548 | if (ClInstrumentMemoryAccesses && SanitizeFunction) |
| 549 | for (const auto &II : AllLoadsAndStores) { |
| 550 | Res |= instrumentLoadOrStore(II, DL); |
| 551 | } |
| 552 | |
| 553 | // Instrument atomic memory accesses in any case (they can be used to |
| 554 | // implement synchronization). |
| 555 | if (ClInstrumentAtomics) |
| 556 | for (auto *Inst : AtomicAccesses) { |
| 557 | Res |= instrumentAtomic(I: Inst, DL); |
| 558 | } |
| 559 | |
| 560 | if (ClInstrumentMemIntrinsics && SanitizeFunction) |
| 561 | for (auto *Inst : MemIntrinCalls) { |
| 562 | Res |= instrumentMemIntrinsic(I: Inst); |
| 563 | } |
| 564 | |
| 565 | if (F.hasFnAttribute(Kind: "sanitize_thread_no_checking_at_run_time" )) { |
| 566 | assert(!F.hasFnAttribute(Attribute::SanitizeThread)); |
| 567 | if (HasCalls) |
| 568 | InsertRuntimeIgnores(F); |
| 569 | } |
| 570 | |
| 571 | // Instrument function entry/exit points if there were instrumented accesses. |
| 572 | if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { |
| 573 | InstrumentationIRBuilder IRB(&F.getEntryBlock(), |
| 574 | F.getEntryBlock().getFirstNonPHIIt()); |
| 575 | Value *ReturnAddress = |
| 576 | IRB.CreateIntrinsic(ID: Intrinsic::returnaddress, Args: IRB.getInt32(C: 0)); |
| 577 | IRB.CreateCall(Callee: TsanFuncEntry, Args: ReturnAddress); |
| 578 | |
| 579 | EscapeEnumerator EE(F, "tsan_cleanup" , ClHandleCxxExceptions); |
| 580 | while (IRBuilder<> *AtExit = EE.Next()) { |
| 581 | InstrumentationIRBuilder::ensureDebugInfo(IRB&: *AtExit, F); |
| 582 | AtExit->CreateCall(Callee: TsanFuncExit, Args: {}); |
| 583 | } |
| 584 | Res = true; |
| 585 | } |
| 586 | return Res; |
| 587 | } |
| 588 | |
| 589 | bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II, |
| 590 | const DataLayout &DL) { |
| 591 | InstrumentationIRBuilder IRB(II.Inst); |
| 592 | const bool IsWrite = isa<StoreInst>(Val: *II.Inst); |
| 593 | Value *Addr = IsWrite ? cast<StoreInst>(Val: II.Inst)->getPointerOperand() |
| 594 | : cast<LoadInst>(Val: II.Inst)->getPointerOperand(); |
| 595 | Type *OrigTy = getLoadStoreType(I: II.Inst); |
| 596 | |
| 597 | // swifterror memory addresses are mem2reg promoted by instruction selection. |
| 598 | // As such they cannot have regular uses like an instrumentation function and |
| 599 | // it makes no sense to track them as memory. |
| 600 | if (Addr->isSwiftError()) |
| 601 | return false; |
| 602 | |
| 603 | int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); |
| 604 | if (Idx < 0) |
| 605 | return false; |
| 606 | if (IsWrite && isVtableAccess(I: II.Inst)) { |
| 607 | LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n" ); |
| 608 | Value *StoredValue = cast<StoreInst>(Val: II.Inst)->getValueOperand(); |
| 609 | // StoredValue may be a vector type if we are storing several vptrs at once. |
| 610 | // In this case, just take the first element of the vector since this is |
| 611 | // enough to find vptr races. |
| 612 | if (isa<VectorType>(Val: StoredValue->getType())) |
| 613 | StoredValue = IRB.CreateExtractElement( |
| 614 | Vec: StoredValue, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0)); |
| 615 | if (StoredValue->getType()->isIntegerTy()) |
| 616 | StoredValue = IRB.CreateIntToPtr(V: StoredValue, DestTy: IRB.getPtrTy()); |
| 617 | // Call TsanVptrUpdate. |
| 618 | IRB.CreateCall(Callee: TsanVptrUpdate, Args: {Addr, StoredValue}); |
| 619 | NumInstrumentedVtableWrites++; |
| 620 | return true; |
| 621 | } |
| 622 | if (!IsWrite && isVtableAccess(I: II.Inst)) { |
| 623 | IRB.CreateCall(Callee: TsanVptrLoad, Args: Addr); |
| 624 | NumInstrumentedVtableReads++; |
| 625 | return true; |
| 626 | } |
| 627 | |
| 628 | const Align Alignment = IsWrite ? cast<StoreInst>(Val: II.Inst)->getAlign() |
| 629 | : cast<LoadInst>(Val: II.Inst)->getAlign(); |
| 630 | const bool IsCompoundRW = |
| 631 | ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW); |
| 632 | const bool IsVolatile = ClDistinguishVolatile && |
| 633 | (IsWrite ? cast<StoreInst>(Val: II.Inst)->isVolatile() |
| 634 | : cast<LoadInst>(Val: II.Inst)->isVolatile()); |
| 635 | assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!" ); |
| 636 | |
| 637 | const uint32_t TypeSize = DL.getTypeStoreSizeInBits(Ty: OrigTy); |
| 638 | FunctionCallee OnAccessFunc = nullptr; |
| 639 | if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) { |
| 640 | if (IsCompoundRW) |
| 641 | OnAccessFunc = TsanCompoundRW[Idx]; |
| 642 | else if (IsVolatile) |
| 643 | OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx]; |
| 644 | else |
| 645 | OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; |
| 646 | } else { |
| 647 | if (IsCompoundRW) |
| 648 | OnAccessFunc = TsanUnalignedCompoundRW[Idx]; |
| 649 | else if (IsVolatile) |
| 650 | OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx] |
| 651 | : TsanUnalignedVolatileRead[Idx]; |
| 652 | else |
| 653 | OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; |
| 654 | } |
| 655 | IRB.CreateCall(Callee: OnAccessFunc, Args: Addr); |
| 656 | if (IsCompoundRW || IsWrite) |
| 657 | NumInstrumentedWrites++; |
| 658 | if (IsCompoundRW || !IsWrite) |
| 659 | NumInstrumentedReads++; |
| 660 | return true; |
| 661 | } |
| 662 | |
| 663 | static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { |
| 664 | uint32_t v = 0; |
| 665 | switch (ord) { |
| 666 | case AtomicOrdering::NotAtomic: |
| 667 | llvm_unreachable("unexpected atomic ordering!" ); |
| 668 | case AtomicOrdering::Unordered: [[fallthrough]]; |
| 669 | case AtomicOrdering::Monotonic: v = 0; break; |
| 670 | // Not specified yet: |
| 671 | // case AtomicOrdering::Consume: v = 1; break; |
| 672 | case AtomicOrdering::Acquire: v = 2; break; |
| 673 | case AtomicOrdering::Release: v = 3; break; |
| 674 | case AtomicOrdering::AcquireRelease: v = 4; break; |
| 675 | case AtomicOrdering::SequentiallyConsistent: v = 5; break; |
| 676 | } |
| 677 | return IRB->getInt32(C: v); |
| 678 | } |
| 679 | |
| 680 | // If a memset intrinsic gets inlined by the code gen, we will miss races on it. |
| 681 | // So, we either need to ensure the intrinsic is not inlined, or instrument it. |
| 682 | // We do not instrument memset/memmove/memcpy intrinsics (too complicated), |
| 683 | // instead we simply replace them with regular function calls, which are then |
| 684 | // intercepted by the run-time. |
| 685 | // Since tsan is running after everyone else, the calls should not be |
| 686 | // replaced back with intrinsics. If that becomes wrong at some point, |
| 687 | // we will need to call e.g. __tsan_memset to avoid the intrinsics. |
| 688 | bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { |
| 689 | InstrumentationIRBuilder IRB(I); |
| 690 | if (MemSetInst *M = dyn_cast<MemSetInst>(Val: I)) { |
| 691 | Value *Cast1 = IRB.CreateIntCast(V: M->getArgOperand(i: 1), DestTy: IRB.getInt32Ty(), isSigned: false); |
| 692 | Value *Cast2 = IRB.CreateIntCast(V: M->getArgOperand(i: 2), DestTy: IntptrTy, isSigned: false); |
| 693 | IRB.CreateCall( |
| 694 | Callee: MemsetFn, |
| 695 | Args: {M->getArgOperand(i: 0), |
| 696 | Cast1, |
| 697 | Cast2}); |
| 698 | I->eraseFromParent(); |
| 699 | } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(Val: I)) { |
| 700 | IRB.CreateCall( |
| 701 | Callee: isa<MemCpyInst>(Val: M) ? MemcpyFn : MemmoveFn, |
| 702 | Args: {M->getArgOperand(i: 0), |
| 703 | M->getArgOperand(i: 1), |
| 704 | IRB.CreateIntCast(V: M->getArgOperand(i: 2), DestTy: IntptrTy, isSigned: false)}); |
| 705 | I->eraseFromParent(); |
| 706 | } |
| 707 | return false; |
| 708 | } |
| 709 | |
| 710 | // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x |
| 711 | // standards. For background see C++11 standard. A slightly older, publicly |
| 712 | // available draft of the standard (not entirely up-to-date, but close enough |
| 713 | // for casual browsing) is available here: |
| 714 | // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf |
| 715 | // The following page contains more background information: |
| 716 | // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ |
| 717 | |
| 718 | bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { |
| 719 | InstrumentationIRBuilder IRB(I); |
| 720 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
| 721 | Value *Addr = LI->getPointerOperand(); |
| 722 | Type *OrigTy = LI->getType(); |
| 723 | int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL); |
| 724 | if (Idx < 0) |
| 725 | return false; |
| 726 | Value *Args[] = {Addr, |
| 727 | createOrdering(IRB: &IRB, ord: LI->getOrdering())}; |
| 728 | Value *C = IRB.CreateCall(Callee: TsanAtomicLoad[Idx], Args); |
| 729 | Value *Cast = IRB.CreateBitOrPointerCast(V: C, DestTy: OrigTy); |
| 730 | I->replaceAllUsesWith(V: Cast); |
| 731 | I->eraseFromParent(); |
| 732 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: I)) { |
| 733 | Value *Addr = SI->getPointerOperand(); |
| 734 | int Idx = |
| 735 | getMemoryAccessFuncIndex(OrigTy: SI->getValueOperand()->getType(), Addr, DL); |
| 736 | if (Idx < 0) |
| 737 | return false; |
| 738 | const unsigned ByteSize = 1U << Idx; |
| 739 | const unsigned BitSize = ByteSize * 8; |
| 740 | Type *Ty = Type::getIntNTy(C&: IRB.getContext(), N: BitSize); |
| 741 | Value *Args[] = {Addr, |
| 742 | IRB.CreateBitOrPointerCast(V: SI->getValueOperand(), DestTy: Ty), |
| 743 | createOrdering(IRB: &IRB, ord: SI->getOrdering())}; |
| 744 | IRB.CreateCall(Callee: TsanAtomicStore[Idx], Args); |
| 745 | SI->eraseFromParent(); |
| 746 | } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(Val: I)) { |
| 747 | Value *Addr = RMWI->getPointerOperand(); |
| 748 | int Idx = |
| 749 | getMemoryAccessFuncIndex(OrigTy: RMWI->getValOperand()->getType(), Addr, DL); |
| 750 | if (Idx < 0) |
| 751 | return false; |
| 752 | FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx]; |
| 753 | if (!F) |
| 754 | return false; |
| 755 | const unsigned ByteSize = 1U << Idx; |
| 756 | const unsigned BitSize = ByteSize * 8; |
| 757 | Type *Ty = Type::getIntNTy(C&: IRB.getContext(), N: BitSize); |
| 758 | Value *Val = RMWI->getValOperand(); |
| 759 | Value *Args[] = {Addr, IRB.CreateBitOrPointerCast(V: Val, DestTy: Ty), |
| 760 | createOrdering(IRB: &IRB, ord: RMWI->getOrdering())}; |
| 761 | Value *C = IRB.CreateCall(Callee: F, Args); |
| 762 | I->replaceAllUsesWith(V: IRB.CreateBitOrPointerCast(V: C, DestTy: Val->getType())); |
| 763 | I->eraseFromParent(); |
| 764 | } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(Val: I)) { |
| 765 | Value *Addr = CASI->getPointerOperand(); |
| 766 | Type *OrigOldValTy = CASI->getNewValOperand()->getType(); |
| 767 | int Idx = getMemoryAccessFuncIndex(OrigTy: OrigOldValTy, Addr, DL); |
| 768 | if (Idx < 0) |
| 769 | return false; |
| 770 | const unsigned ByteSize = 1U << Idx; |
| 771 | const unsigned BitSize = ByteSize * 8; |
| 772 | Type *Ty = Type::getIntNTy(C&: IRB.getContext(), N: BitSize); |
| 773 | Value *CmpOperand = |
| 774 | IRB.CreateBitOrPointerCast(V: CASI->getCompareOperand(), DestTy: Ty); |
| 775 | Value *NewOperand = |
| 776 | IRB.CreateBitOrPointerCast(V: CASI->getNewValOperand(), DestTy: Ty); |
| 777 | Value *Args[] = {Addr, |
| 778 | CmpOperand, |
| 779 | NewOperand, |
| 780 | createOrdering(IRB: &IRB, ord: CASI->getSuccessOrdering()), |
| 781 | createOrdering(IRB: &IRB, ord: CASI->getFailureOrdering())}; |
| 782 | CallInst *C = IRB.CreateCall(Callee: TsanAtomicCAS[Idx], Args); |
| 783 | Value *Success = IRB.CreateICmpEQ(LHS: C, RHS: CmpOperand); |
| 784 | Value *OldVal = C; |
| 785 | if (Ty != OrigOldValTy) { |
| 786 | // The value is a pointer, so we need to cast the return value. |
| 787 | OldVal = IRB.CreateIntToPtr(V: C, DestTy: OrigOldValTy); |
| 788 | } |
| 789 | |
| 790 | Value *Res = |
| 791 | IRB.CreateInsertValue(Agg: PoisonValue::get(T: CASI->getType()), Val: OldVal, Idxs: 0); |
| 792 | Res = IRB.CreateInsertValue(Agg: Res, Val: Success, Idxs: 1); |
| 793 | |
| 794 | I->replaceAllUsesWith(V: Res); |
| 795 | I->eraseFromParent(); |
| 796 | } else if (FenceInst *FI = dyn_cast<FenceInst>(Val: I)) { |
| 797 | Value *Args[] = {createOrdering(IRB: &IRB, ord: FI->getOrdering())}; |
| 798 | FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread |
| 799 | ? TsanAtomicSignalFence |
| 800 | : TsanAtomicThreadFence; |
| 801 | IRB.CreateCall(Callee: F, Args); |
| 802 | FI->eraseFromParent(); |
| 803 | } |
| 804 | return true; |
| 805 | } |
| 806 | |
| 807 | int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, |
| 808 | const DataLayout &DL) { |
| 809 | assert(OrigTy->isSized()); |
| 810 | if (OrigTy->isScalableTy()) { |
| 811 | // FIXME: support vscale. |
| 812 | return -1; |
| 813 | } |
| 814 | uint32_t TypeSize = DL.getTypeStoreSizeInBits(Ty: OrigTy); |
| 815 | if (TypeSize != 8 && TypeSize != 16 && |
| 816 | TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { |
| 817 | NumAccessesWithBadSize++; |
| 818 | // Ignore all unusual sizes. |
| 819 | return -1; |
| 820 | } |
| 821 | size_t Idx = llvm::countr_zero(Val: TypeSize / 8); |
| 822 | assert(Idx < kNumberOfAccessSizes); |
| 823 | return Idx; |
| 824 | } |
| 825 | |