| 1 | //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This file defines ObjC ARC optimizations. ARC stands for Automatic |
| 11 | /// Reference Counting and is a system for managing reference counts for objects |
| 12 | /// in Objective C. |
| 13 | /// |
| 14 | /// The optimizations performed include elimination of redundant, partially |
| 15 | /// redundant, and inconsequential reference count operations, elimination of |
| 16 | /// redundant weak pointer operations, and numerous minor simplifications. |
| 17 | /// |
| 18 | /// WARNING: This file knows about certain library functions. It recognizes them |
| 19 | /// by name, and hardwires knowledge of their semantics. |
| 20 | /// |
| 21 | /// WARNING: This file knows about how certain Objective-C library functions are |
| 22 | /// used. Naive LLVM IR transformations which would otherwise be |
| 23 | /// behavior-preserving may break these assumptions. |
| 24 | // |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | |
| 27 | #include "ARCRuntimeEntryPoints.h" |
| 28 | #include "BlotMapVector.h" |
| 29 | #include "DependencyAnalysis.h" |
| 30 | #include "ObjCARC.h" |
| 31 | #include "ProvenanceAnalysis.h" |
| 32 | #include "PtrState.h" |
| 33 | #include "llvm/ADT/DenseMap.h" |
| 34 | #include "llvm/ADT/STLExtras.h" |
| 35 | #include "llvm/ADT/SmallPtrSet.h" |
| 36 | #include "llvm/ADT/SmallVector.h" |
| 37 | #include "llvm/ADT/Statistic.h" |
| 38 | #include "llvm/Analysis/AliasAnalysis.h" |
| 39 | #include "llvm/Analysis/ObjCARCAnalysisUtils.h" |
| 40 | #include "llvm/Analysis/ObjCARCInstKind.h" |
| 41 | #include "llvm/Analysis/ObjCARCUtil.h" |
| 42 | #include "llvm/IR/BasicBlock.h" |
| 43 | #include "llvm/IR/CFG.h" |
| 44 | #include "llvm/IR/Constant.h" |
| 45 | #include "llvm/IR/Constants.h" |
| 46 | #include "llvm/IR/DerivedTypes.h" |
| 47 | #include "llvm/IR/EHPersonalities.h" |
| 48 | #include "llvm/IR/Function.h" |
| 49 | #include "llvm/IR/GlobalVariable.h" |
| 50 | #include "llvm/IR/InstIterator.h" |
| 51 | #include "llvm/IR/InstrTypes.h" |
| 52 | #include "llvm/IR/Instruction.h" |
| 53 | #include "llvm/IR/Instructions.h" |
| 54 | #include "llvm/IR/LLVMContext.h" |
| 55 | #include "llvm/IR/Metadata.h" |
| 56 | #include "llvm/IR/Type.h" |
| 57 | #include "llvm/IR/User.h" |
| 58 | #include "llvm/IR/Value.h" |
| 59 | #include "llvm/Support/Casting.h" |
| 60 | #include "llvm/Support/CommandLine.h" |
| 61 | #include "llvm/Support/Compiler.h" |
| 62 | #include "llvm/Support/Debug.h" |
| 63 | #include "llvm/Support/ErrorHandling.h" |
| 64 | #include "llvm/Support/raw_ostream.h" |
| 65 | #include "llvm/Transforms/ObjCARC.h" |
| 66 | #include <cassert> |
| 67 | #include <iterator> |
| 68 | #include <utility> |
| 69 | |
| 70 | using namespace llvm; |
| 71 | using namespace llvm::objcarc; |
| 72 | |
| 73 | #define DEBUG_TYPE "objc-arc-opts" |
| 74 | |
| 75 | static cl::opt<unsigned> MaxPtrStates("arc-opt-max-ptr-states" , |
| 76 | cl::Hidden, |
| 77 | cl::desc("Maximum number of ptr states the optimizer keeps track of" ), |
| 78 | cl::init(Val: 4095)); |
| 79 | |
| 80 | /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC. |
| 81 | /// @{ |
| 82 | |
| 83 | /// This is similar to GetRCIdentityRoot but it stops as soon |
| 84 | /// as it finds a value with multiple uses. |
| 85 | static const Value *FindSingleUseIdentifiedObject(const Value *Arg) { |
| 86 | // ConstantData (like ConstantPointerNull and UndefValue) is used across |
| 87 | // modules. It's never a single-use value. |
| 88 | if (isa<ConstantData>(Val: Arg)) |
| 89 | return nullptr; |
| 90 | |
| 91 | if (Arg->hasOneUse()) { |
| 92 | if (const BitCastInst *BC = dyn_cast<BitCastInst>(Val: Arg)) |
| 93 | return FindSingleUseIdentifiedObject(Arg: BC->getOperand(i_nocapture: 0)); |
| 94 | if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Arg)) |
| 95 | if (GEP->hasAllZeroIndices()) |
| 96 | return FindSingleUseIdentifiedObject(Arg: GEP->getPointerOperand()); |
| 97 | if (IsForwarding(Class: GetBasicARCInstKind(V: Arg))) |
| 98 | return FindSingleUseIdentifiedObject( |
| 99 | Arg: cast<CallInst>(Val: Arg)->getArgOperand(i: 0)); |
| 100 | if (!IsObjCIdentifiedObject(V: Arg)) |
| 101 | return nullptr; |
| 102 | return Arg; |
| 103 | } |
| 104 | |
| 105 | // If we found an identifiable object but it has multiple uses, but they are |
| 106 | // trivial uses, we can still consider this to be a single-use value. |
| 107 | if (IsObjCIdentifiedObject(V: Arg)) { |
| 108 | for (const User *U : Arg->users()) |
| 109 | if (!U->use_empty() || GetRCIdentityRoot(V: U) != Arg) |
| 110 | return nullptr; |
| 111 | |
| 112 | return Arg; |
| 113 | } |
| 114 | |
| 115 | return nullptr; |
| 116 | } |
| 117 | |
| 118 | /// @} |
| 119 | /// |
| 120 | /// \defgroup ARCOpt ARC Optimization. |
| 121 | /// @{ |
| 122 | |
| 123 | // TODO: On code like this: |
| 124 | // |
| 125 | // objc_retain(%x) |
| 126 | // stuff_that_cannot_release() |
| 127 | // objc_autorelease(%x) |
| 128 | // stuff_that_cannot_release() |
| 129 | // objc_retain(%x) |
| 130 | // stuff_that_cannot_release() |
| 131 | // objc_autorelease(%x) |
| 132 | // |
| 133 | // The second retain and autorelease can be deleted. |
| 134 | |
| 135 | // TODO: It should be possible to delete |
| 136 | // objc_autoreleasePoolPush and objc_autoreleasePoolPop |
| 137 | // pairs if nothing is actually autoreleased between them. Also, autorelease |
| 138 | // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code |
| 139 | // after inlining) can be turned into plain release calls. |
| 140 | |
| 141 | // TODO: Critical-edge splitting. If the optimial insertion point is |
| 142 | // a critical edge, the current algorithm has to fail, because it doesn't |
| 143 | // know how to split edges. It should be possible to make the optimizer |
| 144 | // think in terms of edges, rather than blocks, and then split critical |
| 145 | // edges on demand. |
| 146 | |
| 147 | // TODO: OptimizeSequences could generalized to be Interprocedural. |
| 148 | |
| 149 | // TODO: Recognize that a bunch of other objc runtime calls have |
| 150 | // non-escaping arguments and non-releasing arguments, and may be |
| 151 | // non-autoreleasing. |
| 152 | |
| 153 | // TODO: Sink autorelease calls as far as possible. Unfortunately we |
| 154 | // usually can't sink them past other calls, which would be the main |
| 155 | // case where it would be useful. |
| 156 | |
| 157 | // TODO: The pointer returned from objc_loadWeakRetained is retained. |
| 158 | |
| 159 | // TODO: Delete release+retain pairs (rare). |
| 160 | |
| 161 | STATISTIC(NumNoops, "Number of no-op objc calls eliminated" ); |
| 162 | STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated" ); |
| 163 | STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases" ); |
| 164 | STATISTIC(NumRets, "Number of return value forwarding " |
| 165 | "retain+autoreleases eliminated" ); |
| 166 | STATISTIC(NumRRs, "Number of retain+release paths eliminated" ); |
| 167 | STATISTIC(NumPeeps, "Number of calls peephole-optimized" ); |
| 168 | #ifndef NDEBUG |
| 169 | STATISTIC(NumRetainsBeforeOpt, |
| 170 | "Number of retains before optimization" ); |
| 171 | STATISTIC(NumReleasesBeforeOpt, |
| 172 | "Number of releases before optimization" ); |
| 173 | STATISTIC(NumRetainsAfterOpt, |
| 174 | "Number of retains after optimization" ); |
| 175 | STATISTIC(NumReleasesAfterOpt, |
| 176 | "Number of releases after optimization" ); |
| 177 | #endif |
| 178 | |
| 179 | namespace { |
| 180 | |
| 181 | /// Per-BasicBlock state. |
| 182 | class BBState { |
| 183 | /// The number of unique control paths from the entry which can reach this |
| 184 | /// block. |
| 185 | unsigned TopDownPathCount = 0; |
| 186 | |
| 187 | /// The number of unique control paths to exits from this block. |
| 188 | unsigned BottomUpPathCount = 0; |
| 189 | |
| 190 | /// The top-down traversal uses this to record information known about a |
| 191 | /// pointer at the bottom of each block. |
| 192 | BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown; |
| 193 | |
| 194 | /// The bottom-up traversal uses this to record information known about a |
| 195 | /// pointer at the top of each block. |
| 196 | BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp; |
| 197 | |
| 198 | /// Effective predecessors of the current block ignoring ignorable edges and |
| 199 | /// ignored backedges. |
| 200 | SmallVector<BasicBlock *, 2> Preds; |
| 201 | |
| 202 | /// Effective successors of the current block ignoring ignorable edges and |
| 203 | /// ignored backedges. |
| 204 | SmallVector<BasicBlock *, 2> Succs; |
| 205 | |
| 206 | public: |
| 207 | static const unsigned OverflowOccurredValue; |
| 208 | |
| 209 | BBState() = default; |
| 210 | |
| 211 | using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator; |
| 212 | using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator; |
| 213 | |
| 214 | top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); } |
| 215 | top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); } |
| 216 | const_top_down_ptr_iterator top_down_ptr_begin() const { |
| 217 | return PerPtrTopDown.begin(); |
| 218 | } |
| 219 | const_top_down_ptr_iterator top_down_ptr_end() const { |
| 220 | return PerPtrTopDown.end(); |
| 221 | } |
| 222 | bool hasTopDownPtrs() const { |
| 223 | return !PerPtrTopDown.empty(); |
| 224 | } |
| 225 | |
| 226 | unsigned top_down_ptr_list_size() const { |
| 227 | return std::distance(first: top_down_ptr_begin(), last: top_down_ptr_end()); |
| 228 | } |
| 229 | |
| 230 | using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator; |
| 231 | using const_bottom_up_ptr_iterator = |
| 232 | decltype(PerPtrBottomUp)::const_iterator; |
| 233 | |
| 234 | bottom_up_ptr_iterator bottom_up_ptr_begin() { |
| 235 | return PerPtrBottomUp.begin(); |
| 236 | } |
| 237 | bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); } |
| 238 | const_bottom_up_ptr_iterator bottom_up_ptr_begin() const { |
| 239 | return PerPtrBottomUp.begin(); |
| 240 | } |
| 241 | const_bottom_up_ptr_iterator bottom_up_ptr_end() const { |
| 242 | return PerPtrBottomUp.end(); |
| 243 | } |
| 244 | bool hasBottomUpPtrs() const { |
| 245 | return !PerPtrBottomUp.empty(); |
| 246 | } |
| 247 | |
| 248 | unsigned bottom_up_ptr_list_size() const { |
| 249 | return std::distance(first: bottom_up_ptr_begin(), last: bottom_up_ptr_end()); |
| 250 | } |
| 251 | |
| 252 | /// Mark this block as being an entry block, which has one path from the |
| 253 | /// entry by definition. |
| 254 | void SetAsEntry() { TopDownPathCount = 1; } |
| 255 | |
| 256 | /// Mark this block as being an exit block, which has one path to an exit by |
| 257 | /// definition. |
| 258 | void SetAsExit() { BottomUpPathCount = 1; } |
| 259 | |
| 260 | /// Attempt to find the PtrState object describing the top down state for |
| 261 | /// pointer Arg. Return a new initialized PtrState describing the top down |
| 262 | /// state for Arg if we do not find one. |
| 263 | TopDownPtrState &getPtrTopDownState(const Value *Arg) { |
| 264 | return PerPtrTopDown[Arg]; |
| 265 | } |
| 266 | |
| 267 | /// Attempt to find the PtrState object describing the bottom up state for |
| 268 | /// pointer Arg. Return a new initialized PtrState describing the bottom up |
| 269 | /// state for Arg if we do not find one. |
| 270 | BottomUpPtrState &getPtrBottomUpState(const Value *Arg) { |
| 271 | return PerPtrBottomUp[Arg]; |
| 272 | } |
| 273 | |
| 274 | /// Attempt to find the PtrState object describing the bottom up state for |
| 275 | /// pointer Arg. |
| 276 | bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) { |
| 277 | return PerPtrBottomUp.find(Key: Arg); |
| 278 | } |
| 279 | |
| 280 | void clearBottomUpPointers() { |
| 281 | PerPtrBottomUp.clear(); |
| 282 | } |
| 283 | |
| 284 | void clearTopDownPointers() { |
| 285 | PerPtrTopDown.clear(); |
| 286 | } |
| 287 | |
| 288 | void InitFromPred(const BBState &Other); |
| 289 | void InitFromSucc(const BBState &Other); |
| 290 | void MergePred(const BBState &Other); |
| 291 | void MergeSucc(const BBState &Other); |
| 292 | |
| 293 | /// Compute the number of possible unique paths from an entry to an exit |
| 294 | /// which pass through this block. This is only valid after both the |
| 295 | /// top-down and bottom-up traversals are complete. |
| 296 | /// |
| 297 | /// Returns true if overflow occurred. Returns false if overflow did not |
| 298 | /// occur. |
| 299 | bool GetAllPathCountWithOverflow(unsigned &PathCount) const { |
| 300 | if (TopDownPathCount == OverflowOccurredValue || |
| 301 | BottomUpPathCount == OverflowOccurredValue) |
| 302 | return true; |
| 303 | unsigned long long Product = |
| 304 | (unsigned long long)TopDownPathCount*BottomUpPathCount; |
| 305 | // Overflow occurred if any of the upper bits of Product are set or if all |
| 306 | // the lower bits of Product are all set. |
| 307 | return (Product >> 32) || |
| 308 | ((PathCount = Product) == OverflowOccurredValue); |
| 309 | } |
| 310 | |
| 311 | // Specialized CFG utilities. |
| 312 | using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator; |
| 313 | |
| 314 | edge_iterator pred_begin() const { return Preds.begin(); } |
| 315 | edge_iterator pred_end() const { return Preds.end(); } |
| 316 | edge_iterator succ_begin() const { return Succs.begin(); } |
| 317 | edge_iterator succ_end() const { return Succs.end(); } |
| 318 | |
| 319 | void addSucc(BasicBlock *Succ) { Succs.push_back(Elt: Succ); } |
| 320 | void addPred(BasicBlock *Pred) { Preds.push_back(Elt: Pred); } |
| 321 | |
| 322 | bool isExit() const { return Succs.empty(); } |
| 323 | }; |
| 324 | |
| 325 | } // end anonymous namespace |
| 326 | |
| 327 | const unsigned BBState::OverflowOccurredValue = 0xffffffff; |
| 328 | |
| 329 | namespace llvm { |
| 330 | |
| 331 | raw_ostream &operator<<(raw_ostream &OS, |
| 332 | BBState &BBState) LLVM_ATTRIBUTE_UNUSED; |
| 333 | |
| 334 | } // end namespace llvm |
| 335 | |
| 336 | void BBState::InitFromPred(const BBState &Other) { |
| 337 | PerPtrTopDown = Other.PerPtrTopDown; |
| 338 | TopDownPathCount = Other.TopDownPathCount; |
| 339 | } |
| 340 | |
| 341 | void BBState::InitFromSucc(const BBState &Other) { |
| 342 | PerPtrBottomUp = Other.PerPtrBottomUp; |
| 343 | BottomUpPathCount = Other.BottomUpPathCount; |
| 344 | } |
| 345 | |
| 346 | /// The top-down traversal uses this to merge information about predecessors to |
| 347 | /// form the initial state for a new block. |
| 348 | void BBState::MergePred(const BBState &Other) { |
| 349 | if (TopDownPathCount == OverflowOccurredValue) |
| 350 | return; |
| 351 | |
| 352 | // Other.TopDownPathCount can be 0, in which case it is either dead or a |
| 353 | // loop backedge. Loop backedges are special. |
| 354 | TopDownPathCount += Other.TopDownPathCount; |
| 355 | |
| 356 | // In order to be consistent, we clear the top down pointers when by adding |
| 357 | // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow |
| 358 | // has not occurred. |
| 359 | if (TopDownPathCount == OverflowOccurredValue) { |
| 360 | clearTopDownPointers(); |
| 361 | return; |
| 362 | } |
| 363 | |
| 364 | // Check for overflow. If we have overflow, fall back to conservative |
| 365 | // behavior. |
| 366 | if (TopDownPathCount < Other.TopDownPathCount) { |
| 367 | TopDownPathCount = OverflowOccurredValue; |
| 368 | clearTopDownPointers(); |
| 369 | return; |
| 370 | } |
| 371 | |
| 372 | // For each entry in the other set, if our set has an entry with the same key, |
| 373 | // merge the entries. Otherwise, copy the entry and merge it with an empty |
| 374 | // entry. |
| 375 | for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end(); |
| 376 | MI != ME; ++MI) { |
| 377 | auto Pair = PerPtrTopDown.insert(InsertPair: *MI); |
| 378 | Pair.first->second.Merge(Other: Pair.second ? TopDownPtrState() : MI->second, |
| 379 | /*TopDown=*/true); |
| 380 | } |
| 381 | |
| 382 | // For each entry in our set, if the other set doesn't have an entry with the |
| 383 | // same key, force it to merge with an empty entry. |
| 384 | for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI) |
| 385 | if (Other.PerPtrTopDown.find(Key: MI->first) == Other.PerPtrTopDown.end()) |
| 386 | MI->second.Merge(Other: TopDownPtrState(), /*TopDown=*/true); |
| 387 | } |
| 388 | |
| 389 | /// The bottom-up traversal uses this to merge information about successors to |
| 390 | /// form the initial state for a new block. |
| 391 | void BBState::MergeSucc(const BBState &Other) { |
| 392 | if (BottomUpPathCount == OverflowOccurredValue) |
| 393 | return; |
| 394 | |
| 395 | // Other.BottomUpPathCount can be 0, in which case it is either dead or a |
| 396 | // loop backedge. Loop backedges are special. |
| 397 | BottomUpPathCount += Other.BottomUpPathCount; |
| 398 | |
| 399 | // In order to be consistent, we clear the top down pointers when by adding |
| 400 | // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow |
| 401 | // has not occurred. |
| 402 | if (BottomUpPathCount == OverflowOccurredValue) { |
| 403 | clearBottomUpPointers(); |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | // Check for overflow. If we have overflow, fall back to conservative |
| 408 | // behavior. |
| 409 | if (BottomUpPathCount < Other.BottomUpPathCount) { |
| 410 | BottomUpPathCount = OverflowOccurredValue; |
| 411 | clearBottomUpPointers(); |
| 412 | return; |
| 413 | } |
| 414 | |
| 415 | // For each entry in the other set, if our set has an entry with the |
| 416 | // same key, merge the entries. Otherwise, copy the entry and merge |
| 417 | // it with an empty entry. |
| 418 | for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end(); |
| 419 | MI != ME; ++MI) { |
| 420 | auto Pair = PerPtrBottomUp.insert(InsertPair: *MI); |
| 421 | Pair.first->second.Merge(Other: Pair.second ? BottomUpPtrState() : MI->second, |
| 422 | /*TopDown=*/false); |
| 423 | } |
| 424 | |
| 425 | // For each entry in our set, if the other set doesn't have an entry |
| 426 | // with the same key, force it to merge with an empty entry. |
| 427 | for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME; |
| 428 | ++MI) |
| 429 | if (Other.PerPtrBottomUp.find(Key: MI->first) == Other.PerPtrBottomUp.end()) |
| 430 | MI->second.Merge(Other: BottomUpPtrState(), /*TopDown=*/false); |
| 431 | } |
| 432 | |
| 433 | raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) { |
| 434 | // Dump the pointers we are tracking. |
| 435 | OS << " TopDown State:\n" ; |
| 436 | if (!BBInfo.hasTopDownPtrs()) { |
| 437 | LLVM_DEBUG(dbgs() << " NONE!\n" ); |
| 438 | } else { |
| 439 | for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end(); |
| 440 | I != E; ++I) { |
| 441 | const PtrState &P = I->second; |
| 442 | OS << " Ptr: " << *I->first |
| 443 | << "\n KnownSafe: " << (P.IsKnownSafe()?"true" :"false" ) |
| 444 | << "\n ImpreciseRelease: " |
| 445 | << (P.IsTrackingImpreciseReleases()?"true" :"false" ) << "\n" |
| 446 | << " HasCFGHazards: " |
| 447 | << (P.IsCFGHazardAfflicted()?"true" :"false" ) << "\n" |
| 448 | << " KnownPositive: " |
| 449 | << (P.HasKnownPositiveRefCount()?"true" :"false" ) << "\n" |
| 450 | << " Seq: " |
| 451 | << P.GetSeq() << "\n" ; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | OS << " BottomUp State:\n" ; |
| 456 | if (!BBInfo.hasBottomUpPtrs()) { |
| 457 | LLVM_DEBUG(dbgs() << " NONE!\n" ); |
| 458 | } else { |
| 459 | for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end(); |
| 460 | I != E; ++I) { |
| 461 | const PtrState &P = I->second; |
| 462 | OS << " Ptr: " << *I->first |
| 463 | << "\n KnownSafe: " << (P.IsKnownSafe()?"true" :"false" ) |
| 464 | << "\n ImpreciseRelease: " |
| 465 | << (P.IsTrackingImpreciseReleases()?"true" :"false" ) << "\n" |
| 466 | << " HasCFGHazards: " |
| 467 | << (P.IsCFGHazardAfflicted()?"true" :"false" ) << "\n" |
| 468 | << " KnownPositive: " |
| 469 | << (P.HasKnownPositiveRefCount()?"true" :"false" ) << "\n" |
| 470 | << " Seq: " |
| 471 | << P.GetSeq() << "\n" ; |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | return OS; |
| 476 | } |
| 477 | |
| 478 | namespace { |
| 479 | |
| 480 | /// The main ARC optimization pass. |
| 481 | class ObjCARCOpt { |
| 482 | bool Changed = false; |
| 483 | bool CFGChanged = false; |
| 484 | ProvenanceAnalysis PA; |
| 485 | |
| 486 | /// A cache of references to runtime entry point constants. |
| 487 | ARCRuntimeEntryPoints EP; |
| 488 | |
| 489 | /// A cache of MDKinds that can be passed into other functions to propagate |
| 490 | /// MDKind identifiers. |
| 491 | ARCMDKindCache MDKindCache; |
| 492 | |
| 493 | BundledRetainClaimRVs *BundledInsts = nullptr; |
| 494 | |
| 495 | /// A flag indicating whether the optimization that removes or moves |
| 496 | /// retain/release pairs should be performed. |
| 497 | bool DisableRetainReleasePairing = false; |
| 498 | |
| 499 | /// Flags which determine whether each of the interesting runtime functions |
| 500 | /// is in fact used in the current function. |
| 501 | unsigned UsedInThisFunction; |
| 502 | |
| 503 | DenseMap<BasicBlock *, ColorVector> BlockEHColors; |
| 504 | |
| 505 | bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); |
| 506 | void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, |
| 507 | ARCInstKind &Class); |
| 508 | void OptimizeIndividualCalls(Function &F); |
| 509 | |
| 510 | /// Optimize an individual call, optionally passing the |
| 511 | /// GetArgRCIdentityRoot if it has already been computed. |
| 512 | void OptimizeIndividualCallImpl(Function &F, Instruction *Inst, |
| 513 | ARCInstKind Class, const Value *Arg); |
| 514 | |
| 515 | /// Try to optimize an AutoreleaseRV with a RetainRV or UnsafeClaimRV. If the |
| 516 | /// optimization occurs, returns true to indicate that the caller should |
| 517 | /// assume the instructions are dead. |
| 518 | bool OptimizeInlinedAutoreleaseRVCall(Function &F, Instruction *Inst, |
| 519 | const Value *&Arg, ARCInstKind Class, |
| 520 | Instruction *AutoreleaseRV, |
| 521 | const Value *&AutoreleaseRVArg); |
| 522 | |
| 523 | void CheckForCFGHazards(const BasicBlock *BB, |
| 524 | DenseMap<const BasicBlock *, BBState> &BBStates, |
| 525 | BBState &MyStates) const; |
| 526 | bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB, |
| 527 | BlotMapVector<Value *, RRInfo> &Retains, |
| 528 | BBState &MyStates); |
| 529 | bool VisitBottomUp(BasicBlock *BB, |
| 530 | DenseMap<const BasicBlock *, BBState> &BBStates, |
| 531 | BlotMapVector<Value *, RRInfo> &Retains); |
| 532 | bool VisitInstructionTopDown( |
| 533 | Instruction *Inst, DenseMap<Value *, RRInfo> &Releases, BBState &MyStates, |
| 534 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
| 535 | &ReleaseInsertPtToRCIdentityRoots); |
| 536 | bool VisitTopDown( |
| 537 | BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, |
| 538 | DenseMap<Value *, RRInfo> &Releases, |
| 539 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
| 540 | &ReleaseInsertPtToRCIdentityRoots); |
| 541 | bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates, |
| 542 | BlotMapVector<Value *, RRInfo> &Retains, |
| 543 | DenseMap<Value *, RRInfo> &Releases); |
| 544 | |
| 545 | void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, |
| 546 | BlotMapVector<Value *, RRInfo> &Retains, |
| 547 | DenseMap<Value *, RRInfo> &Releases, |
| 548 | SmallVectorImpl<Instruction *> &DeadInsts, Module *M); |
| 549 | |
| 550 | bool PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates, |
| 551 | BlotMapVector<Value *, RRInfo> &Retains, |
| 552 | DenseMap<Value *, RRInfo> &Releases, Module *M, |
| 553 | Instruction *Retain, |
| 554 | SmallVectorImpl<Instruction *> &DeadInsts, |
| 555 | RRInfo &RetainsToMove, RRInfo &ReleasesToMove, |
| 556 | Value *Arg, bool KnownSafe, |
| 557 | bool &AnyPairsCompletelyEliminated); |
| 558 | |
| 559 | bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates, |
| 560 | BlotMapVector<Value *, RRInfo> &Retains, |
| 561 | DenseMap<Value *, RRInfo> &Releases, Module *M); |
| 562 | |
| 563 | void OptimizeWeakCalls(Function &F); |
| 564 | |
| 565 | bool OptimizeSequences(Function &F); |
| 566 | |
| 567 | void OptimizeReturns(Function &F); |
| 568 | |
| 569 | template <typename PredicateT> |
| 570 | static void cloneOpBundlesIf(CallBase *CI, |
| 571 | SmallVectorImpl<OperandBundleDef> &OpBundles, |
| 572 | PredicateT Predicate) { |
| 573 | for (unsigned I = 0, E = CI->getNumOperandBundles(); I != E; ++I) { |
| 574 | OperandBundleUse B = CI->getOperandBundleAt(Index: I); |
| 575 | if (Predicate(B)) |
| 576 | OpBundles.emplace_back(Args&: B); |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | void addOpBundleForFunclet(BasicBlock *BB, |
| 581 | SmallVectorImpl<OperandBundleDef> &OpBundles) { |
| 582 | if (!BlockEHColors.empty()) { |
| 583 | const ColorVector &CV = BlockEHColors.find(Val: BB)->second; |
| 584 | assert(CV.size() > 0 && "Uncolored block" ); |
| 585 | for (BasicBlock *EHPadBB : CV) |
| 586 | if (auto *EHPad = |
| 587 | dyn_cast<FuncletPadInst>(Val: EHPadBB->getFirstNonPHIIt())) { |
| 588 | OpBundles.emplace_back(Args: "funclet" , Args&: EHPad); |
| 589 | return; |
| 590 | } |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | #ifndef NDEBUG |
| 595 | void GatherStatistics(Function &F, bool AfterOptimization = false); |
| 596 | #endif |
| 597 | |
| 598 | public: |
| 599 | void init(Function &F); |
| 600 | bool run(Function &F, AAResults &AA); |
| 601 | bool hasCFGChanged() const { return CFGChanged; } |
| 602 | }; |
| 603 | } // end anonymous namespace |
| 604 | |
| 605 | /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is |
| 606 | /// not a return value. |
| 607 | bool |
| 608 | ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { |
| 609 | // Check for the argument being from an immediately preceding call or invoke. |
| 610 | const Value *Arg = GetArgRCIdentityRoot(Inst: RetainRV); |
| 611 | if (const Instruction *Call = dyn_cast<CallBase>(Val: Arg)) { |
| 612 | if (Call->getParent() == RetainRV->getParent()) { |
| 613 | BasicBlock::const_iterator I(Call); |
| 614 | ++I; |
| 615 | while (IsNoopInstruction(I: &*I)) |
| 616 | ++I; |
| 617 | if (&*I == RetainRV) |
| 618 | return false; |
| 619 | } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Val: Call)) { |
| 620 | BasicBlock *RetainRVParent = RetainRV->getParent(); |
| 621 | if (II->getNormalDest() == RetainRVParent) { |
| 622 | BasicBlock::const_iterator I = RetainRVParent->begin(); |
| 623 | while (IsNoopInstruction(I: &*I)) |
| 624 | ++I; |
| 625 | if (&*I == RetainRV) |
| 626 | return false; |
| 627 | } |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | assert(!BundledInsts->contains(RetainRV) && |
| 632 | "a bundled retainRV's argument should be a call" ); |
| 633 | |
| 634 | // Turn it to a plain objc_retain. |
| 635 | Changed = true; |
| 636 | ++NumPeeps; |
| 637 | |
| 638 | LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => " |
| 639 | "objc_retain since the operand is not a return value.\n" |
| 640 | "Old = " |
| 641 | << *RetainRV << "\n" ); |
| 642 | |
| 643 | Function *NewDecl = EP.get(kind: ARCRuntimeEntryPointKind::Retain); |
| 644 | cast<CallInst>(Val: RetainRV)->setCalledFunction(NewDecl); |
| 645 | |
| 646 | LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n" ); |
| 647 | |
| 648 | return false; |
| 649 | } |
| 650 | |
| 651 | bool ObjCARCOpt::OptimizeInlinedAutoreleaseRVCall( |
| 652 | Function &F, Instruction *Inst, const Value *&Arg, ARCInstKind Class, |
| 653 | Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg) { |
| 654 | if (BundledInsts->contains(I: Inst)) |
| 655 | return false; |
| 656 | |
| 657 | // Must be in the same basic block. |
| 658 | assert(Inst->getParent() == AutoreleaseRV->getParent()); |
| 659 | |
| 660 | // Must operate on the same root. |
| 661 | Arg = GetArgRCIdentityRoot(Inst); |
| 662 | AutoreleaseRVArg = GetArgRCIdentityRoot(Inst: AutoreleaseRV); |
| 663 | if (Arg != AutoreleaseRVArg) { |
| 664 | // If there isn't an exact match, check if we have equivalent PHIs. |
| 665 | const PHINode *PN = dyn_cast<PHINode>(Val: Arg); |
| 666 | if (!PN) |
| 667 | return false; |
| 668 | |
| 669 | SmallVector<const Value *, 4> ArgUsers; |
| 670 | getEquivalentPHIs(PN: *PN, PHIList&: ArgUsers); |
| 671 | if (!llvm::is_contained(Range&: ArgUsers, Element: AutoreleaseRVArg)) |
| 672 | return false; |
| 673 | } |
| 674 | |
| 675 | // Okay, this is a match. Merge them. |
| 676 | ++NumPeeps; |
| 677 | LLVM_DEBUG(dbgs() << "Found inlined objc_autoreleaseReturnValue '" |
| 678 | << *AutoreleaseRV << "' paired with '" << *Inst << "'\n" ); |
| 679 | |
| 680 | // Delete the RV pair, starting with the AutoreleaseRV. |
| 681 | AutoreleaseRV->replaceAllUsesWith( |
| 682 | V: cast<CallInst>(Val: AutoreleaseRV)->getArgOperand(i: 0)); |
| 683 | Changed = true; |
| 684 | EraseInstruction(CI: AutoreleaseRV); |
| 685 | if (Class == ARCInstKind::RetainRV) { |
| 686 | // AutoreleaseRV and RetainRV cancel out. Delete the RetainRV. |
| 687 | Inst->replaceAllUsesWith(V: cast<CallInst>(Val: Inst)->getArgOperand(i: 0)); |
| 688 | EraseInstruction(CI: Inst); |
| 689 | return true; |
| 690 | } |
| 691 | |
| 692 | // UnsafeClaimRV is a frontend peephole for RetainRV + Release. Since the |
| 693 | // AutoreleaseRV and RetainRV cancel out, replace UnsafeClaimRV with Release. |
| 694 | assert(Class == ARCInstKind::UnsafeClaimRV); |
| 695 | Value *CallArg = cast<CallInst>(Val: Inst)->getArgOperand(i: 0); |
| 696 | CallInst *Release = |
| 697 | CallInst::Create(Func: EP.get(kind: ARCRuntimeEntryPointKind::Release), Args: CallArg, NameStr: "" , |
| 698 | InsertBefore: Inst->getIterator()); |
| 699 | assert(IsAlwaysTail(ARCInstKind::UnsafeClaimRV) && |
| 700 | "Expected UnsafeClaimRV to be safe to tail call" ); |
| 701 | Release->setTailCall(); |
| 702 | Inst->replaceAllUsesWith(V: CallArg); |
| 703 | EraseInstruction(CI: Inst); |
| 704 | |
| 705 | // Run the normal optimizations on Release. |
| 706 | OptimizeIndividualCallImpl(F, Inst: Release, Class: ARCInstKind::Release, Arg); |
| 707 | return true; |
| 708 | } |
| 709 | |
| 710 | /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not |
| 711 | /// used as a return value. |
| 712 | void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, |
| 713 | Instruction *AutoreleaseRV, |
| 714 | ARCInstKind &Class) { |
| 715 | // Check for a return of the pointer value. |
| 716 | const Value *Ptr = GetArgRCIdentityRoot(Inst: AutoreleaseRV); |
| 717 | |
| 718 | // If the argument is ConstantPointerNull or UndefValue, its other users |
| 719 | // aren't actually interesting to look at. |
| 720 | if (isa<ConstantData>(Val: Ptr)) |
| 721 | return; |
| 722 | |
| 723 | SmallVector<const Value *, 2> Users; |
| 724 | Users.push_back(Elt: Ptr); |
| 725 | |
| 726 | // Add PHIs that are equivalent to Ptr to Users. |
| 727 | if (const PHINode *PN = dyn_cast<PHINode>(Val: Ptr)) |
| 728 | getEquivalentPHIs(PN: *PN, PHIList&: Users); |
| 729 | |
| 730 | do { |
| 731 | Ptr = Users.pop_back_val(); |
| 732 | for (const User *U : Ptr->users()) { |
| 733 | if (isa<ReturnInst>(Val: U) || GetBasicARCInstKind(V: U) == ARCInstKind::RetainRV) |
| 734 | return; |
| 735 | if (isa<BitCastInst>(Val: U)) |
| 736 | Users.push_back(Elt: U); |
| 737 | } |
| 738 | } while (!Users.empty()); |
| 739 | |
| 740 | Changed = true; |
| 741 | ++NumPeeps; |
| 742 | |
| 743 | LLVM_DEBUG( |
| 744 | dbgs() << "Transforming objc_autoreleaseReturnValue => " |
| 745 | "objc_autorelease since its operand is not used as a return " |
| 746 | "value.\n" |
| 747 | "Old = " |
| 748 | << *AutoreleaseRV << "\n" ); |
| 749 | |
| 750 | CallInst *AutoreleaseRVCI = cast<CallInst>(Val: AutoreleaseRV); |
| 751 | Function *NewDecl = EP.get(kind: ARCRuntimeEntryPointKind::Autorelease); |
| 752 | AutoreleaseRVCI->setCalledFunction(NewDecl); |
| 753 | AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease. |
| 754 | Class = ARCInstKind::Autorelease; |
| 755 | |
| 756 | LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n" ); |
| 757 | } |
| 758 | |
| 759 | /// Visit each call, one at a time, and make simplifications without doing any |
| 760 | /// additional analysis. |
| 761 | void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { |
| 762 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n" ); |
| 763 | // Reset all the flags in preparation for recomputing them. |
| 764 | UsedInThisFunction = 0; |
| 765 | |
| 766 | // Store any delayed AutoreleaseRV intrinsics, so they can be easily paired |
| 767 | // with RetainRV and UnsafeClaimRV. |
| 768 | Instruction *DelayedAutoreleaseRV = nullptr; |
| 769 | const Value *DelayedAutoreleaseRVArg = nullptr; |
| 770 | auto setDelayedAutoreleaseRV = [&](Instruction *AutoreleaseRV) { |
| 771 | assert(!DelayedAutoreleaseRV || !AutoreleaseRV); |
| 772 | DelayedAutoreleaseRV = AutoreleaseRV; |
| 773 | DelayedAutoreleaseRVArg = nullptr; |
| 774 | }; |
| 775 | auto optimizeDelayedAutoreleaseRV = [&]() { |
| 776 | if (!DelayedAutoreleaseRV) |
| 777 | return; |
| 778 | OptimizeIndividualCallImpl(F, Inst: DelayedAutoreleaseRV, |
| 779 | Class: ARCInstKind::AutoreleaseRV, |
| 780 | Arg: DelayedAutoreleaseRVArg); |
| 781 | setDelayedAutoreleaseRV(nullptr); |
| 782 | }; |
| 783 | auto shouldDelayAutoreleaseRV = [&](Instruction *NonARCInst) { |
| 784 | // Nothing to delay, but we may as well skip the logic below. |
| 785 | if (!DelayedAutoreleaseRV) |
| 786 | return true; |
| 787 | |
| 788 | // If we hit the end of the basic block we're not going to find an RV-pair. |
| 789 | // Stop delaying. |
| 790 | if (NonARCInst->isTerminator()) |
| 791 | return false; |
| 792 | |
| 793 | // Given the frontend rules for emitting AutoreleaseRV, RetainRV, and |
| 794 | // UnsafeClaimRV, it's probably safe to skip over even opaque function calls |
| 795 | // here since OptimizeInlinedAutoreleaseRVCall will confirm that they |
| 796 | // have the same RCIdentityRoot. However, what really matters is |
| 797 | // skipping instructions or intrinsics that the inliner could leave behind; |
| 798 | // be conservative for now and don't skip over opaque calls, which could |
| 799 | // potentially include other ARC calls. |
| 800 | auto *CB = dyn_cast<CallBase>(Val: NonARCInst); |
| 801 | if (!CB) |
| 802 | return true; |
| 803 | return CB->getIntrinsicID() != Intrinsic::not_intrinsic; |
| 804 | }; |
| 805 | |
| 806 | // Visit all objc_* calls in F. |
| 807 | for (inst_iterator I = inst_begin(F: &F), E = inst_end(F: &F); I != E; ) { |
| 808 | Instruction *Inst = &*I++; |
| 809 | |
| 810 | if (auto *CI = dyn_cast<CallInst>(Val: Inst)) |
| 811 | if (objcarc::hasAttachedCallOpBundle(CB: CI)) { |
| 812 | BundledInsts->insertRVCall(InsertPt: I->getIterator(), AnnotatedCall: CI); |
| 813 | Changed = true; |
| 814 | } |
| 815 | |
| 816 | ARCInstKind Class = GetBasicARCInstKind(V: Inst); |
| 817 | |
| 818 | // Skip this loop if this instruction isn't itself an ARC intrinsic. |
| 819 | const Value *Arg = nullptr; |
| 820 | switch (Class) { |
| 821 | default: |
| 822 | optimizeDelayedAutoreleaseRV(); |
| 823 | break; |
| 824 | case ARCInstKind::CallOrUser: |
| 825 | case ARCInstKind::User: |
| 826 | case ARCInstKind::None: |
| 827 | // This is a non-ARC instruction. If we're delaying an AutoreleaseRV, |
| 828 | // check if it's safe to skip over it; if not, optimize the AutoreleaseRV |
| 829 | // now. |
| 830 | if (!shouldDelayAutoreleaseRV(Inst)) |
| 831 | optimizeDelayedAutoreleaseRV(); |
| 832 | continue; |
| 833 | case ARCInstKind::AutoreleaseRV: |
| 834 | optimizeDelayedAutoreleaseRV(); |
| 835 | setDelayedAutoreleaseRV(Inst); |
| 836 | continue; |
| 837 | case ARCInstKind::RetainRV: |
| 838 | case ARCInstKind::UnsafeClaimRV: |
| 839 | if (DelayedAutoreleaseRV) { |
| 840 | // We have a potential RV pair. Check if they cancel out. |
| 841 | if (OptimizeInlinedAutoreleaseRVCall(F, Inst, Arg, Class, |
| 842 | AutoreleaseRV: DelayedAutoreleaseRV, |
| 843 | AutoreleaseRVArg&: DelayedAutoreleaseRVArg)) { |
| 844 | setDelayedAutoreleaseRV(nullptr); |
| 845 | continue; |
| 846 | } |
| 847 | optimizeDelayedAutoreleaseRV(); |
| 848 | } |
| 849 | break; |
| 850 | } |
| 851 | |
| 852 | OptimizeIndividualCallImpl(F, Inst, Class, Arg); |
| 853 | } |
| 854 | |
| 855 | // Catch the final delayed AutoreleaseRV. |
| 856 | optimizeDelayedAutoreleaseRV(); |
| 857 | } |
| 858 | |
| 859 | /// This function returns true if the value is inert. An ObjC ARC runtime call |
| 860 | /// taking an inert operand can be safely deleted. |
| 861 | static bool isInertARCValue(Value *V, SmallPtrSet<Value *, 1> &VisitedPhis) { |
| 862 | V = V->stripPointerCasts(); |
| 863 | |
| 864 | if (IsNullOrUndef(V)) |
| 865 | return true; |
| 866 | |
| 867 | // See if this is a global attribute annotated with an 'objc_arc_inert'. |
| 868 | if (auto *GV = dyn_cast<GlobalVariable>(Val: V)) |
| 869 | if (GV->hasAttribute(Kind: "objc_arc_inert" )) |
| 870 | return true; |
| 871 | |
| 872 | if (auto PN = dyn_cast<PHINode>(Val: V)) { |
| 873 | // Ignore this phi if it has already been discovered. |
| 874 | if (!VisitedPhis.insert(Ptr: PN).second) |
| 875 | return true; |
| 876 | // Look through phis's operands. |
| 877 | for (Value *Opnd : PN->incoming_values()) |
| 878 | if (!isInertARCValue(V: Opnd, VisitedPhis)) |
| 879 | return false; |
| 880 | return true; |
| 881 | } |
| 882 | |
| 883 | return false; |
| 884 | } |
| 885 | |
| 886 | void ObjCARCOpt::OptimizeIndividualCallImpl(Function &F, Instruction *Inst, |
| 887 | ARCInstKind Class, |
| 888 | const Value *Arg) { |
| 889 | LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n" ); |
| 890 | |
| 891 | // We can delete this call if it takes an inert value. |
| 892 | SmallPtrSet<Value *, 1> VisitedPhis; |
| 893 | |
| 894 | if (BundledInsts->contains(I: Inst)) { |
| 895 | UsedInThisFunction |= 1 << unsigned(Class); |
| 896 | return; |
| 897 | } |
| 898 | |
| 899 | if (IsNoopOnGlobal(Class)) |
| 900 | if (isInertARCValue(V: Inst->getOperand(i: 0), VisitedPhis)) { |
| 901 | if (!Inst->getType()->isVoidTy()) |
| 902 | Inst->replaceAllUsesWith(V: Inst->getOperand(i: 0)); |
| 903 | Inst->eraseFromParent(); |
| 904 | Changed = true; |
| 905 | return; |
| 906 | } |
| 907 | |
| 908 | switch (Class) { |
| 909 | default: |
| 910 | break; |
| 911 | |
| 912 | // Delete no-op casts. These function calls have special semantics, but |
| 913 | // the semantics are entirely implemented via lowering in the front-end, |
| 914 | // so by the time they reach the optimizer, they are just no-op calls |
| 915 | // which return their argument. |
| 916 | // |
| 917 | // There are gray areas here, as the ability to cast reference-counted |
| 918 | // pointers to raw void* and back allows code to break ARC assumptions, |
| 919 | // however these are currently considered to be unimportant. |
| 920 | case ARCInstKind::NoopCast: |
| 921 | Changed = true; |
| 922 | ++NumNoops; |
| 923 | LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n" ); |
| 924 | EraseInstruction(CI: Inst); |
| 925 | return; |
| 926 | |
| 927 | // If the pointer-to-weak-pointer is null, it's undefined behavior. |
| 928 | case ARCInstKind::StoreWeak: |
| 929 | case ARCInstKind::LoadWeak: |
| 930 | case ARCInstKind::LoadWeakRetained: |
| 931 | case ARCInstKind::InitWeak: |
| 932 | case ARCInstKind::DestroyWeak: { |
| 933 | CallInst *CI = cast<CallInst>(Val: Inst); |
| 934 | if (IsNullOrUndef(V: CI->getArgOperand(i: 0))) { |
| 935 | Changed = true; |
| 936 | new StoreInst(ConstantInt::getTrue(Context&: CI->getContext()), |
| 937 | PoisonValue::get(T: PointerType::getUnqual(C&: CI->getContext())), |
| 938 | CI->getIterator()); |
| 939 | Value *NewValue = PoisonValue::get(T: CI->getType()); |
| 940 | LLVM_DEBUG( |
| 941 | dbgs() << "A null pointer-to-weak-pointer is undefined behavior." |
| 942 | "\nOld = " |
| 943 | << *CI << "\nNew = " << *NewValue << "\n" ); |
| 944 | CI->replaceAllUsesWith(V: NewValue); |
| 945 | CI->eraseFromParent(); |
| 946 | return; |
| 947 | } |
| 948 | break; |
| 949 | } |
| 950 | case ARCInstKind::CopyWeak: |
| 951 | case ARCInstKind::MoveWeak: { |
| 952 | CallInst *CI = cast<CallInst>(Val: Inst); |
| 953 | if (IsNullOrUndef(V: CI->getArgOperand(i: 0)) || |
| 954 | IsNullOrUndef(V: CI->getArgOperand(i: 1))) { |
| 955 | Changed = true; |
| 956 | new StoreInst(ConstantInt::getTrue(Context&: CI->getContext()), |
| 957 | PoisonValue::get(T: PointerType::getUnqual(C&: CI->getContext())), |
| 958 | CI->getIterator()); |
| 959 | |
| 960 | Value *NewValue = PoisonValue::get(T: CI->getType()); |
| 961 | LLVM_DEBUG( |
| 962 | dbgs() << "A null pointer-to-weak-pointer is undefined behavior." |
| 963 | "\nOld = " |
| 964 | << *CI << "\nNew = " << *NewValue << "\n" ); |
| 965 | |
| 966 | CI->replaceAllUsesWith(V: NewValue); |
| 967 | CI->eraseFromParent(); |
| 968 | return; |
| 969 | } |
| 970 | break; |
| 971 | } |
| 972 | case ARCInstKind::RetainRV: |
| 973 | if (OptimizeRetainRVCall(F, RetainRV: Inst)) |
| 974 | return; |
| 975 | break; |
| 976 | case ARCInstKind::AutoreleaseRV: |
| 977 | OptimizeAutoreleaseRVCall(F, AutoreleaseRV: Inst, Class); |
| 978 | break; |
| 979 | } |
| 980 | |
| 981 | // objc_autorelease(x) -> objc_release(x) if x is otherwise unused. |
| 982 | if (IsAutorelease(Class) && Inst->use_empty()) { |
| 983 | CallInst *Call = cast<CallInst>(Val: Inst); |
| 984 | const Value *Arg = Call->getArgOperand(i: 0); |
| 985 | Arg = FindSingleUseIdentifiedObject(Arg); |
| 986 | if (Arg) { |
| 987 | Changed = true; |
| 988 | ++NumAutoreleases; |
| 989 | |
| 990 | // Create the declaration lazily. |
| 991 | LLVMContext &C = Inst->getContext(); |
| 992 | |
| 993 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Release); |
| 994 | CallInst *NewCall = CallInst::Create(Func: Decl, Args: Call->getArgOperand(i: 0), NameStr: "" , |
| 995 | InsertBefore: Call->getIterator()); |
| 996 | NewCall->setMetadata(KindID: MDKindCache.get(ID: ARCMDKindID::ImpreciseRelease), |
| 997 | Node: MDNode::get(Context&: C, MDs: {})); |
| 998 | |
| 999 | LLVM_DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) " |
| 1000 | "since x is otherwise unused.\nOld: " |
| 1001 | << *Call << "\nNew: " << *NewCall << "\n" ); |
| 1002 | |
| 1003 | EraseInstruction(CI: Call); |
| 1004 | Inst = NewCall; |
| 1005 | Class = ARCInstKind::Release; |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | // For functions which can never be passed stack arguments, add |
| 1010 | // a tail keyword. |
| 1011 | if (IsAlwaysTail(Class) && !cast<CallInst>(Val: Inst)->isNoTailCall()) { |
| 1012 | Changed = true; |
| 1013 | LLVM_DEBUG( |
| 1014 | dbgs() << "Adding tail keyword to function since it can never be " |
| 1015 | "passed stack args: " |
| 1016 | << *Inst << "\n" ); |
| 1017 | cast<CallInst>(Val: Inst)->setTailCall(); |
| 1018 | } |
| 1019 | |
| 1020 | // Ensure that functions that can never have a "tail" keyword due to the |
| 1021 | // semantics of ARC truly do not do so. |
| 1022 | if (IsNeverTail(Class)) { |
| 1023 | Changed = true; |
| 1024 | LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst |
| 1025 | << "\n" ); |
| 1026 | cast<CallInst>(Val: Inst)->setTailCall(false); |
| 1027 | } |
| 1028 | |
| 1029 | // Set nounwind as needed. |
| 1030 | if (IsNoThrow(Class)) { |
| 1031 | Changed = true; |
| 1032 | LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst |
| 1033 | << "\n" ); |
| 1034 | cast<CallInst>(Val: Inst)->setDoesNotThrow(); |
| 1035 | } |
| 1036 | |
| 1037 | // Note: This catches instructions unrelated to ARC. |
| 1038 | if (!IsNoopOnNull(Class)) { |
| 1039 | UsedInThisFunction |= 1 << unsigned(Class); |
| 1040 | return; |
| 1041 | } |
| 1042 | |
| 1043 | // If we haven't already looked up the root, look it up now. |
| 1044 | if (!Arg) |
| 1045 | Arg = GetArgRCIdentityRoot(Inst); |
| 1046 | |
| 1047 | // ARC calls with null are no-ops. Delete them. |
| 1048 | if (IsNullOrUndef(V: Arg)) { |
| 1049 | Changed = true; |
| 1050 | ++NumNoops; |
| 1051 | LLVM_DEBUG(dbgs() << "ARC calls with null are no-ops. Erasing: " << *Inst |
| 1052 | << "\n" ); |
| 1053 | EraseInstruction(CI: Inst); |
| 1054 | return; |
| 1055 | } |
| 1056 | |
| 1057 | // Keep track of which of retain, release, autorelease, and retain_block |
| 1058 | // are actually present in this function. |
| 1059 | UsedInThisFunction |= 1 << unsigned(Class); |
| 1060 | |
| 1061 | // If Arg is a PHI, and one or more incoming values to the |
| 1062 | // PHI are null, and the call is control-equivalent to the PHI, and there |
| 1063 | // are no relevant side effects between the PHI and the call, and the call |
| 1064 | // is not a release that doesn't have the clang.imprecise_release tag, the |
| 1065 | // call could be pushed up to just those paths with non-null incoming |
| 1066 | // values. For now, don't bother splitting critical edges for this. |
| 1067 | if (Class == ARCInstKind::Release && |
| 1068 | !Inst->getMetadata(KindID: MDKindCache.get(ID: ARCMDKindID::ImpreciseRelease))) |
| 1069 | return; |
| 1070 | |
| 1071 | SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist; |
| 1072 | Worklist.push_back(Elt: std::make_pair(x&: Inst, y&: Arg)); |
| 1073 | do { |
| 1074 | std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val(); |
| 1075 | Inst = Pair.first; |
| 1076 | Arg = Pair.second; |
| 1077 | |
| 1078 | const PHINode *PN = dyn_cast<PHINode>(Val: Arg); |
| 1079 | if (!PN) |
| 1080 | continue; |
| 1081 | |
| 1082 | // Determine if the PHI has any null operands, or any incoming |
| 1083 | // critical edges. |
| 1084 | bool HasNull = false; |
| 1085 | bool HasCriticalEdges = false; |
| 1086 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 1087 | Value *Incoming = GetRCIdentityRoot(V: PN->getIncomingValue(i)); |
| 1088 | if (IsNullOrUndef(V: Incoming)) |
| 1089 | HasNull = true; |
| 1090 | else if (PN->getIncomingBlock(i)->getTerminator()->getNumSuccessors() != |
| 1091 | 1) { |
| 1092 | HasCriticalEdges = true; |
| 1093 | break; |
| 1094 | } |
| 1095 | } |
| 1096 | // If we have null operands and no critical edges, optimize. |
| 1097 | if (HasCriticalEdges) |
| 1098 | continue; |
| 1099 | if (!HasNull) |
| 1100 | continue; |
| 1101 | |
| 1102 | Instruction *DepInst = nullptr; |
| 1103 | |
| 1104 | // Check that there is nothing that cares about the reference |
| 1105 | // count between the call and the phi. |
| 1106 | switch (Class) { |
| 1107 | case ARCInstKind::Retain: |
| 1108 | case ARCInstKind::RetainBlock: |
| 1109 | // These can always be moved up. |
| 1110 | break; |
| 1111 | case ARCInstKind::Release: |
| 1112 | // These can't be moved across things that care about the retain |
| 1113 | // count. |
| 1114 | DepInst = findSingleDependency(Flavor: NeedsPositiveRetainCount, Arg, |
| 1115 | StartBB: Inst->getParent(), StartInst: Inst, PA); |
| 1116 | break; |
| 1117 | case ARCInstKind::Autorelease: |
| 1118 | // These can't be moved across autorelease pool scope boundaries. |
| 1119 | DepInst = findSingleDependency(Flavor: AutoreleasePoolBoundary, Arg, |
| 1120 | StartBB: Inst->getParent(), StartInst: Inst, PA); |
| 1121 | break; |
| 1122 | case ARCInstKind::UnsafeClaimRV: |
| 1123 | case ARCInstKind::RetainRV: |
| 1124 | case ARCInstKind::AutoreleaseRV: |
| 1125 | // Don't move these; the RV optimization depends on the autoreleaseRV |
| 1126 | // being tail called, and the retainRV being immediately after a call |
| 1127 | // (which might still happen if we get lucky with codegen layout, but |
| 1128 | // it's not worth taking the chance). |
| 1129 | continue; |
| 1130 | default: |
| 1131 | llvm_unreachable("Invalid dependence flavor" ); |
| 1132 | } |
| 1133 | |
| 1134 | if (DepInst != PN) |
| 1135 | continue; |
| 1136 | |
| 1137 | Changed = true; |
| 1138 | ++NumPartialNoops; |
| 1139 | // Clone the call into each predecessor that has a non-null value. |
| 1140 | CallInst *CInst = cast<CallInst>(Val: Inst); |
| 1141 | Type *ParamTy = CInst->getArgOperand(i: 0)->getType(); |
| 1142 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 1143 | Value *Incoming = GetRCIdentityRoot(V: PN->getIncomingValue(i)); |
| 1144 | if (IsNullOrUndef(V: Incoming)) |
| 1145 | continue; |
| 1146 | Value *Op = PN->getIncomingValue(i); |
| 1147 | BasicBlock::iterator InsertPos = |
| 1148 | PN->getIncomingBlock(i)->back().getIterator(); |
| 1149 | SmallVector<OperandBundleDef, 1> OpBundles; |
| 1150 | cloneOpBundlesIf(CI: CInst, OpBundles, Predicate: [](const OperandBundleUse &B) { |
| 1151 | return B.getTagID() != LLVMContext::OB_funclet; |
| 1152 | }); |
| 1153 | addOpBundleForFunclet(BB: InsertPos->getParent(), OpBundles); |
| 1154 | CallInst *Clone = CallInst::Create(CI: CInst, Bundles: OpBundles); |
| 1155 | if (Op->getType() != ParamTy) |
| 1156 | Op = new BitCastInst(Op, ParamTy, "" , InsertPos); |
| 1157 | Clone->setArgOperand(i: 0, v: Op); |
| 1158 | Clone->insertBefore(BB&: *InsertPos->getParent(), InsertPos); |
| 1159 | |
| 1160 | LLVM_DEBUG(dbgs() << "Cloning " << *CInst << "\n" |
| 1161 | "And inserting clone at " |
| 1162 | << *InsertPos << "\n" ); |
| 1163 | Worklist.push_back(Elt: std::make_pair(x&: Clone, y&: Incoming)); |
| 1164 | } |
| 1165 | // Erase the original call. |
| 1166 | LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n" ); |
| 1167 | EraseInstruction(CI: CInst); |
| 1168 | } while (!Worklist.empty()); |
| 1169 | } |
| 1170 | |
| 1171 | /// If we have a top down pointer in the S_Use state, make sure that there are |
| 1172 | /// no CFG hazards by checking the states of various bottom up pointers. |
| 1173 | static void CheckForUseCFGHazard(const Sequence SuccSSeq, |
| 1174 | const bool SuccSRRIKnownSafe, |
| 1175 | TopDownPtrState &S, |
| 1176 | bool &SomeSuccHasSame, |
| 1177 | bool &AllSuccsHaveSame, |
| 1178 | bool &NotAllSeqEqualButKnownSafe, |
| 1179 | bool &ShouldContinue) { |
| 1180 | switch (SuccSSeq) { |
| 1181 | case S_CanRelease: { |
| 1182 | if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) { |
| 1183 | S.ClearSequenceProgress(); |
| 1184 | break; |
| 1185 | } |
| 1186 | S.SetCFGHazardAfflicted(true); |
| 1187 | ShouldContinue = true; |
| 1188 | break; |
| 1189 | } |
| 1190 | case S_Use: |
| 1191 | SomeSuccHasSame = true; |
| 1192 | break; |
| 1193 | case S_Stop: |
| 1194 | case S_MovableRelease: |
| 1195 | if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) |
| 1196 | AllSuccsHaveSame = false; |
| 1197 | else |
| 1198 | NotAllSeqEqualButKnownSafe = true; |
| 1199 | break; |
| 1200 | case S_Retain: |
| 1201 | llvm_unreachable("bottom-up pointer in retain state!" ); |
| 1202 | case S_None: |
| 1203 | llvm_unreachable("This should have been handled earlier." ); |
| 1204 | } |
| 1205 | } |
| 1206 | |
| 1207 | /// If we have a Top Down pointer in the S_CanRelease state, make sure that |
| 1208 | /// there are no CFG hazards by checking the states of various bottom up |
| 1209 | /// pointers. |
| 1210 | static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq, |
| 1211 | const bool SuccSRRIKnownSafe, |
| 1212 | TopDownPtrState &S, |
| 1213 | bool &SomeSuccHasSame, |
| 1214 | bool &AllSuccsHaveSame, |
| 1215 | bool &NotAllSeqEqualButKnownSafe) { |
| 1216 | switch (SuccSSeq) { |
| 1217 | case S_CanRelease: |
| 1218 | SomeSuccHasSame = true; |
| 1219 | break; |
| 1220 | case S_Stop: |
| 1221 | case S_MovableRelease: |
| 1222 | case S_Use: |
| 1223 | if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) |
| 1224 | AllSuccsHaveSame = false; |
| 1225 | else |
| 1226 | NotAllSeqEqualButKnownSafe = true; |
| 1227 | break; |
| 1228 | case S_Retain: |
| 1229 | llvm_unreachable("bottom-up pointer in retain state!" ); |
| 1230 | case S_None: |
| 1231 | llvm_unreachable("This should have been handled earlier." ); |
| 1232 | } |
| 1233 | } |
| 1234 | |
| 1235 | /// Check for critical edges, loop boundaries, irreducible control flow, or |
| 1236 | /// other CFG structures where moving code across the edge would result in it |
| 1237 | /// being executed more. |
| 1238 | void |
| 1239 | ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, |
| 1240 | DenseMap<const BasicBlock *, BBState> &BBStates, |
| 1241 | BBState &MyStates) const { |
| 1242 | // If any top-down local-use or possible-dec has a succ which is earlier in |
| 1243 | // the sequence, forget it. |
| 1244 | for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end(); |
| 1245 | I != E; ++I) { |
| 1246 | TopDownPtrState &S = I->second; |
| 1247 | const Sequence Seq = I->second.GetSeq(); |
| 1248 | |
| 1249 | // We only care about S_Retain, S_CanRelease, and S_Use. |
| 1250 | if (Seq == S_None) |
| 1251 | continue; |
| 1252 | |
| 1253 | // Make sure that if extra top down states are added in the future that this |
| 1254 | // code is updated to handle it. |
| 1255 | assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) && |
| 1256 | "Unknown top down sequence state." ); |
| 1257 | |
| 1258 | const Value *Arg = I->first; |
| 1259 | bool SomeSuccHasSame = false; |
| 1260 | bool AllSuccsHaveSame = true; |
| 1261 | bool NotAllSeqEqualButKnownSafe = false; |
| 1262 | |
| 1263 | for (const BasicBlock *Succ : successors(BB)) { |
| 1264 | // If VisitBottomUp has pointer information for this successor, take |
| 1265 | // what we know about it. |
| 1266 | const DenseMap<const BasicBlock *, BBState>::iterator BBI = |
| 1267 | BBStates.find(Val: Succ); |
| 1268 | assert(BBI != BBStates.end()); |
| 1269 | const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); |
| 1270 | const Sequence SuccSSeq = SuccS.GetSeq(); |
| 1271 | |
| 1272 | // If bottom up, the pointer is in an S_None state, clear the sequence |
| 1273 | // progress since the sequence in the bottom up state finished |
| 1274 | // suggesting a mismatch in between retains/releases. This is true for |
| 1275 | // all three cases that we are handling here: S_Retain, S_Use, and |
| 1276 | // S_CanRelease. |
| 1277 | if (SuccSSeq == S_None) { |
| 1278 | S.ClearSequenceProgress(); |
| 1279 | continue; |
| 1280 | } |
| 1281 | |
| 1282 | // If we have S_Use or S_CanRelease, perform our check for cfg hazard |
| 1283 | // checks. |
| 1284 | const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe(); |
| 1285 | |
| 1286 | // *NOTE* We do not use Seq from above here since we are allowing for |
| 1287 | // S.GetSeq() to change while we are visiting basic blocks. |
| 1288 | switch(S.GetSeq()) { |
| 1289 | case S_Use: { |
| 1290 | bool ShouldContinue = false; |
| 1291 | CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame, |
| 1292 | AllSuccsHaveSame, NotAllSeqEqualButKnownSafe, |
| 1293 | ShouldContinue); |
| 1294 | if (ShouldContinue) |
| 1295 | continue; |
| 1296 | break; |
| 1297 | } |
| 1298 | case S_CanRelease: |
| 1299 | CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, |
| 1300 | SomeSuccHasSame, AllSuccsHaveSame, |
| 1301 | NotAllSeqEqualButKnownSafe); |
| 1302 | break; |
| 1303 | case S_Retain: |
| 1304 | case S_None: |
| 1305 | case S_Stop: |
| 1306 | case S_MovableRelease: |
| 1307 | break; |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | // If the state at the other end of any of the successor edges |
| 1312 | // matches the current state, require all edges to match. This |
| 1313 | // guards against loops in the middle of a sequence. |
| 1314 | if (SomeSuccHasSame && !AllSuccsHaveSame) { |
| 1315 | S.ClearSequenceProgress(); |
| 1316 | } else if (NotAllSeqEqualButKnownSafe) { |
| 1317 | // If we would have cleared the state foregoing the fact that we are known |
| 1318 | // safe, stop code motion. This is because whether or not it is safe to |
| 1319 | // remove RR pairs via KnownSafe is an orthogonal concept to whether we |
| 1320 | // are allowed to perform code motion. |
| 1321 | S.SetCFGHazardAfflicted(true); |
| 1322 | } |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | bool ObjCARCOpt::VisitInstructionBottomUp( |
| 1327 | Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains, |
| 1328 | BBState &MyStates) { |
| 1329 | bool NestingDetected = false; |
| 1330 | ARCInstKind Class = GetARCInstKind(V: Inst); |
| 1331 | const Value *Arg = nullptr; |
| 1332 | |
| 1333 | LLVM_DEBUG(dbgs() << " Class: " << Class << "\n" ); |
| 1334 | |
| 1335 | switch (Class) { |
| 1336 | case ARCInstKind::Release: { |
| 1337 | Arg = GetArgRCIdentityRoot(Inst); |
| 1338 | |
| 1339 | BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); |
| 1340 | NestingDetected |= S.InitBottomUp(Cache&: MDKindCache, I: Inst); |
| 1341 | break; |
| 1342 | } |
| 1343 | case ARCInstKind::RetainBlock: |
| 1344 | // In OptimizeIndividualCalls, we have strength reduced all optimizable |
| 1345 | // objc_retainBlocks to objc_retains. Thus at this point any |
| 1346 | // objc_retainBlocks that we see are not optimizable. |
| 1347 | break; |
| 1348 | case ARCInstKind::Retain: |
| 1349 | case ARCInstKind::RetainRV: { |
| 1350 | Arg = GetArgRCIdentityRoot(Inst); |
| 1351 | BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); |
| 1352 | if (S.MatchWithRetain()) { |
| 1353 | // Don't do retain+release tracking for ARCInstKind::RetainRV, because |
| 1354 | // it's better to let it remain as the first instruction after a call. |
| 1355 | if (Class != ARCInstKind::RetainRV) { |
| 1356 | LLVM_DEBUG(dbgs() << " Matching with: " << *Inst << "\n" ); |
| 1357 | Retains[Inst] = S.GetRRInfo(); |
| 1358 | } |
| 1359 | S.ClearSequenceProgress(); |
| 1360 | } |
| 1361 | // A retain moving bottom up can be a use. |
| 1362 | break; |
| 1363 | } |
| 1364 | case ARCInstKind::AutoreleasepoolPop: |
| 1365 | // Conservatively, clear MyStates for all known pointers. |
| 1366 | MyStates.clearBottomUpPointers(); |
| 1367 | return NestingDetected; |
| 1368 | case ARCInstKind::AutoreleasepoolPush: |
| 1369 | case ARCInstKind::None: |
| 1370 | // These are irrelevant. |
| 1371 | return NestingDetected; |
| 1372 | default: |
| 1373 | break; |
| 1374 | } |
| 1375 | |
| 1376 | // Consider any other possible effects of this instruction on each |
| 1377 | // pointer being tracked. |
| 1378 | for (auto MI = MyStates.bottom_up_ptr_begin(), |
| 1379 | ME = MyStates.bottom_up_ptr_end(); |
| 1380 | MI != ME; ++MI) { |
| 1381 | const Value *Ptr = MI->first; |
| 1382 | if (Ptr == Arg) |
| 1383 | continue; // Handled above. |
| 1384 | BottomUpPtrState &S = MI->second; |
| 1385 | |
| 1386 | if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class)) |
| 1387 | continue; |
| 1388 | |
| 1389 | S.HandlePotentialUse(BB, Inst, Ptr, PA, Class); |
| 1390 | } |
| 1391 | |
| 1392 | return NestingDetected; |
| 1393 | } |
| 1394 | |
| 1395 | bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB, |
| 1396 | DenseMap<const BasicBlock *, BBState> &BBStates, |
| 1397 | BlotMapVector<Value *, RRInfo> &Retains) { |
| 1398 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n" ); |
| 1399 | |
| 1400 | bool NestingDetected = false; |
| 1401 | BBState &MyStates = BBStates[BB]; |
| 1402 | |
| 1403 | // Merge the states from each successor to compute the initial state |
| 1404 | // for the current block. |
| 1405 | BBState::edge_iterator SI(MyStates.succ_begin()), |
| 1406 | SE(MyStates.succ_end()); |
| 1407 | if (SI != SE) { |
| 1408 | const BasicBlock *Succ = *SI; |
| 1409 | DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Val: Succ); |
| 1410 | assert(I != BBStates.end()); |
| 1411 | MyStates.InitFromSucc(Other: I->second); |
| 1412 | ++SI; |
| 1413 | for (; SI != SE; ++SI) { |
| 1414 | Succ = *SI; |
| 1415 | I = BBStates.find(Val: Succ); |
| 1416 | assert(I != BBStates.end()); |
| 1417 | MyStates.MergeSucc(Other: I->second); |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | LLVM_DEBUG(dbgs() << "Before:\n" |
| 1422 | << BBStates[BB] << "\n" |
| 1423 | << "Performing Dataflow:\n" ); |
| 1424 | |
| 1425 | // Visit all the instructions, bottom-up. |
| 1426 | for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { |
| 1427 | Instruction *Inst = &*std::prev(x: I); |
| 1428 | |
| 1429 | // Invoke instructions are visited as part of their successors (below). |
| 1430 | if (isa<InvokeInst>(Val: Inst)) |
| 1431 | continue; |
| 1432 | |
| 1433 | LLVM_DEBUG(dbgs() << " Visiting " << *Inst << "\n" ); |
| 1434 | |
| 1435 | NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); |
| 1436 | |
| 1437 | // Bail out if the number of pointers being tracked becomes too large so |
| 1438 | // that this pass can complete in a reasonable amount of time. |
| 1439 | if (MyStates.bottom_up_ptr_list_size() > MaxPtrStates) { |
| 1440 | DisableRetainReleasePairing = true; |
| 1441 | return false; |
| 1442 | } |
| 1443 | } |
| 1444 | |
| 1445 | // If there's a predecessor with an invoke, visit the invoke as if it were |
| 1446 | // part of this block, since we can't insert code after an invoke in its own |
| 1447 | // block, and we don't want to split critical edges. |
| 1448 | for (BBState::edge_iterator PI(MyStates.pred_begin()), |
| 1449 | PE(MyStates.pred_end()); PI != PE; ++PI) { |
| 1450 | BasicBlock *Pred = *PI; |
| 1451 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: &Pred->back())) |
| 1452 | NestingDetected |= VisitInstructionBottomUp(Inst: II, BB, Retains, MyStates); |
| 1453 | } |
| 1454 | |
| 1455 | LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n" ); |
| 1456 | |
| 1457 | return NestingDetected; |
| 1458 | } |
| 1459 | |
| 1460 | // Fill ReleaseInsertPtToRCIdentityRoots, which is a map from insertion points |
| 1461 | // to the set of RC identity roots that would be released by the release calls |
| 1462 | // moved to the insertion points. |
| 1463 | static void collectReleaseInsertPts( |
| 1464 | const BlotMapVector<Value *, RRInfo> &Retains, |
| 1465 | DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
| 1466 | &ReleaseInsertPtToRCIdentityRoots) { |
| 1467 | for (const auto &P : Retains) { |
| 1468 | // Retains is a map from an objc_retain call to a RRInfo of the RC identity |
| 1469 | // root of the call. Get the RC identity root of the objc_retain call. |
| 1470 | Instruction *Retain = cast<Instruction>(Val: P.first); |
| 1471 | Value *Root = GetRCIdentityRoot(V: Retain->getOperand(i: 0)); |
| 1472 | // Collect all the insertion points of the objc_release calls that release |
| 1473 | // the RC identity root of the objc_retain call. |
| 1474 | for (const Instruction *InsertPt : P.second.ReverseInsertPts) |
| 1475 | ReleaseInsertPtToRCIdentityRoots[InsertPt].insert(Ptr: Root); |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | // Get the RC identity roots from an insertion point of an objc_release call. |
| 1480 | // Return nullptr if the passed instruction isn't an insertion point. |
| 1481 | static const SmallPtrSet<const Value *, 2> * |
| 1482 | getRCIdentityRootsFromReleaseInsertPt( |
| 1483 | const Instruction *InsertPt, |
| 1484 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
| 1485 | &ReleaseInsertPtToRCIdentityRoots) { |
| 1486 | auto I = ReleaseInsertPtToRCIdentityRoots.find(Val: InsertPt); |
| 1487 | if (I == ReleaseInsertPtToRCIdentityRoots.end()) |
| 1488 | return nullptr; |
| 1489 | return &I->second; |
| 1490 | } |
| 1491 | |
| 1492 | bool ObjCARCOpt::VisitInstructionTopDown( |
| 1493 | Instruction *Inst, DenseMap<Value *, RRInfo> &Releases, BBState &MyStates, |
| 1494 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
| 1495 | &ReleaseInsertPtToRCIdentityRoots) { |
| 1496 | bool NestingDetected = false; |
| 1497 | ARCInstKind Class = GetARCInstKind(V: Inst); |
| 1498 | const Value *Arg = nullptr; |
| 1499 | |
| 1500 | // Make sure a call to objc_retain isn't moved past insertion points of calls |
| 1501 | // to objc_release. |
| 1502 | if (const SmallPtrSet<const Value *, 2> *Roots = |
| 1503 | getRCIdentityRootsFromReleaseInsertPt( |
| 1504 | InsertPt: Inst, ReleaseInsertPtToRCIdentityRoots)) |
| 1505 | for (const auto *Root : *Roots) { |
| 1506 | TopDownPtrState &S = MyStates.getPtrTopDownState(Arg: Root); |
| 1507 | // Disable code motion if the current position is S_Retain to prevent |
| 1508 | // moving the objc_retain call past objc_release calls. If it's |
| 1509 | // S_CanRelease or larger, it's not necessary to disable code motion as |
| 1510 | // the insertion points that prevent the objc_retain call from moving down |
| 1511 | // should have been set already. |
| 1512 | if (S.GetSeq() == S_Retain) |
| 1513 | S.SetCFGHazardAfflicted(true); |
| 1514 | } |
| 1515 | |
| 1516 | LLVM_DEBUG(dbgs() << " Class: " << Class << "\n" ); |
| 1517 | |
| 1518 | switch (Class) { |
| 1519 | case ARCInstKind::RetainBlock: |
| 1520 | // In OptimizeIndividualCalls, we have strength reduced all optimizable |
| 1521 | // objc_retainBlocks to objc_retains. Thus at this point any |
| 1522 | // objc_retainBlocks that we see are not optimizable. We need to break since |
| 1523 | // a retain can be a potential use. |
| 1524 | break; |
| 1525 | case ARCInstKind::Retain: |
| 1526 | case ARCInstKind::RetainRV: { |
| 1527 | Arg = GetArgRCIdentityRoot(Inst); |
| 1528 | TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); |
| 1529 | NestingDetected |= S.InitTopDown(Kind: Class, I: Inst); |
| 1530 | // A retain can be a potential use; proceed to the generic checking |
| 1531 | // code below. |
| 1532 | break; |
| 1533 | } |
| 1534 | case ARCInstKind::Release: { |
| 1535 | Arg = GetArgRCIdentityRoot(Inst); |
| 1536 | TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); |
| 1537 | // Try to form a tentative pair in between this release instruction and the |
| 1538 | // top down pointers that we are tracking. |
| 1539 | if (S.MatchWithRelease(Cache&: MDKindCache, Release: Inst)) { |
| 1540 | // If we succeed, copy S's RRInfo into the Release -> {Retain Set |
| 1541 | // Map}. Then we clear S. |
| 1542 | LLVM_DEBUG(dbgs() << " Matching with: " << *Inst << "\n" ); |
| 1543 | Releases[Inst] = S.GetRRInfo(); |
| 1544 | S.ClearSequenceProgress(); |
| 1545 | } |
| 1546 | break; |
| 1547 | } |
| 1548 | case ARCInstKind::AutoreleasepoolPop: |
| 1549 | // Conservatively, clear MyStates for all known pointers. |
| 1550 | MyStates.clearTopDownPointers(); |
| 1551 | return false; |
| 1552 | case ARCInstKind::AutoreleasepoolPush: |
| 1553 | case ARCInstKind::None: |
| 1554 | // These can not be uses of |
| 1555 | return false; |
| 1556 | default: |
| 1557 | break; |
| 1558 | } |
| 1559 | |
| 1560 | // Consider any other possible effects of this instruction on each |
| 1561 | // pointer being tracked. |
| 1562 | for (auto MI = MyStates.top_down_ptr_begin(), |
| 1563 | ME = MyStates.top_down_ptr_end(); |
| 1564 | MI != ME; ++MI) { |
| 1565 | const Value *Ptr = MI->first; |
| 1566 | if (Ptr == Arg) |
| 1567 | continue; // Handled above. |
| 1568 | TopDownPtrState &S = MI->second; |
| 1569 | if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class, BundledRVs: *BundledInsts)) |
| 1570 | continue; |
| 1571 | |
| 1572 | S.HandlePotentialUse(Inst, Ptr, PA, Class); |
| 1573 | } |
| 1574 | |
| 1575 | return NestingDetected; |
| 1576 | } |
| 1577 | |
| 1578 | bool ObjCARCOpt::VisitTopDown( |
| 1579 | BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, |
| 1580 | DenseMap<Value *, RRInfo> &Releases, |
| 1581 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
| 1582 | &ReleaseInsertPtToRCIdentityRoots) { |
| 1583 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n" ); |
| 1584 | bool NestingDetected = false; |
| 1585 | BBState &MyStates = BBStates[BB]; |
| 1586 | |
| 1587 | // Merge the states from each predecessor to compute the initial state |
| 1588 | // for the current block. |
| 1589 | BBState::edge_iterator PI(MyStates.pred_begin()), |
| 1590 | PE(MyStates.pred_end()); |
| 1591 | if (PI != PE) { |
| 1592 | const BasicBlock *Pred = *PI; |
| 1593 | DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Val: Pred); |
| 1594 | assert(I != BBStates.end()); |
| 1595 | MyStates.InitFromPred(Other: I->second); |
| 1596 | ++PI; |
| 1597 | for (; PI != PE; ++PI) { |
| 1598 | Pred = *PI; |
| 1599 | I = BBStates.find(Val: Pred); |
| 1600 | assert(I != BBStates.end()); |
| 1601 | MyStates.MergePred(Other: I->second); |
| 1602 | } |
| 1603 | } |
| 1604 | |
| 1605 | // Check that BB and MyStates have the same number of predecessors. This |
| 1606 | // prevents retain calls that live outside a loop from being moved into the |
| 1607 | // loop. |
| 1608 | if (!BB->hasNPredecessors(N: MyStates.pred_end() - MyStates.pred_begin())) |
| 1609 | for (auto I = MyStates.top_down_ptr_begin(), |
| 1610 | E = MyStates.top_down_ptr_end(); |
| 1611 | I != E; ++I) |
| 1612 | I->second.SetCFGHazardAfflicted(true); |
| 1613 | |
| 1614 | LLVM_DEBUG(dbgs() << "Before:\n" |
| 1615 | << BBStates[BB] << "\n" |
| 1616 | << "Performing Dataflow:\n" ); |
| 1617 | |
| 1618 | // Visit all the instructions, top-down. |
| 1619 | for (Instruction &Inst : *BB) { |
| 1620 | LLVM_DEBUG(dbgs() << " Visiting " << Inst << "\n" ); |
| 1621 | |
| 1622 | NestingDetected |= VisitInstructionTopDown( |
| 1623 | Inst: &Inst, Releases, MyStates, ReleaseInsertPtToRCIdentityRoots); |
| 1624 | |
| 1625 | // Bail out if the number of pointers being tracked becomes too large so |
| 1626 | // that this pass can complete in a reasonable amount of time. |
| 1627 | if (MyStates.top_down_ptr_list_size() > MaxPtrStates) { |
| 1628 | DisableRetainReleasePairing = true; |
| 1629 | return false; |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n" |
| 1634 | << BBStates[BB] << "\n\n" ); |
| 1635 | CheckForCFGHazards(BB, BBStates, MyStates); |
| 1636 | LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n" ); |
| 1637 | return NestingDetected; |
| 1638 | } |
| 1639 | |
| 1640 | static void |
| 1641 | ComputePostOrders(Function &F, |
| 1642 | SmallVectorImpl<BasicBlock *> &PostOrder, |
| 1643 | SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder, |
| 1644 | unsigned NoObjCARCExceptionsMDKind, |
| 1645 | DenseMap<const BasicBlock *, BBState> &BBStates) { |
| 1646 | /// The visited set, for doing DFS walks. |
| 1647 | SmallPtrSet<BasicBlock *, 16> Visited; |
| 1648 | |
| 1649 | // Do DFS, computing the PostOrder. |
| 1650 | SmallPtrSet<BasicBlock *, 16> OnStack; |
| 1651 | SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack; |
| 1652 | |
| 1653 | // Functions always have exactly one entry block, and we don't have |
| 1654 | // any other block that we treat like an entry block. |
| 1655 | BasicBlock *EntryBB = &F.getEntryBlock(); |
| 1656 | BBState &MyStates = BBStates[EntryBB]; |
| 1657 | MyStates.SetAsEntry(); |
| 1658 | Instruction *EntryTI = EntryBB->getTerminator(); |
| 1659 | SuccStack.push_back(Elt: std::make_pair(x&: EntryBB, y: succ_iterator(EntryTI))); |
| 1660 | Visited.insert(Ptr: EntryBB); |
| 1661 | OnStack.insert(Ptr: EntryBB); |
| 1662 | do { |
| 1663 | dfs_next_succ: |
| 1664 | BasicBlock *CurrBB = SuccStack.back().first; |
| 1665 | succ_iterator SE(CurrBB->getTerminator(), false); |
| 1666 | |
| 1667 | while (SuccStack.back().second != SE) { |
| 1668 | BasicBlock *SuccBB = *SuccStack.back().second++; |
| 1669 | if (Visited.insert(Ptr: SuccBB).second) { |
| 1670 | SuccStack.push_back( |
| 1671 | Elt: std::make_pair(x&: SuccBB, y: succ_iterator(SuccBB->getTerminator()))); |
| 1672 | BBStates[CurrBB].addSucc(Succ: SuccBB); |
| 1673 | BBState &SuccStates = BBStates[SuccBB]; |
| 1674 | SuccStates.addPred(Pred: CurrBB); |
| 1675 | OnStack.insert(Ptr: SuccBB); |
| 1676 | goto dfs_next_succ; |
| 1677 | } |
| 1678 | |
| 1679 | if (!OnStack.count(Ptr: SuccBB)) { |
| 1680 | BBStates[CurrBB].addSucc(Succ: SuccBB); |
| 1681 | BBStates[SuccBB].addPred(Pred: CurrBB); |
| 1682 | } |
| 1683 | } |
| 1684 | OnStack.erase(Ptr: CurrBB); |
| 1685 | PostOrder.push_back(Elt: CurrBB); |
| 1686 | SuccStack.pop_back(); |
| 1687 | } while (!SuccStack.empty()); |
| 1688 | |
| 1689 | Visited.clear(); |
| 1690 | |
| 1691 | // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. |
| 1692 | // Functions may have many exits, and there also blocks which we treat |
| 1693 | // as exits due to ignored edges. |
| 1694 | SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack; |
| 1695 | for (BasicBlock &ExitBB : F) { |
| 1696 | BBState &MyStates = BBStates[&ExitBB]; |
| 1697 | if (!MyStates.isExit()) |
| 1698 | continue; |
| 1699 | |
| 1700 | MyStates.SetAsExit(); |
| 1701 | |
| 1702 | PredStack.push_back(Elt: std::make_pair(x: &ExitBB, y: MyStates.pred_begin())); |
| 1703 | Visited.insert(Ptr: &ExitBB); |
| 1704 | while (!PredStack.empty()) { |
| 1705 | reverse_dfs_next_succ: |
| 1706 | BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end(); |
| 1707 | while (PredStack.back().second != PE) { |
| 1708 | BasicBlock *BB = *PredStack.back().second++; |
| 1709 | if (Visited.insert(Ptr: BB).second) { |
| 1710 | PredStack.push_back(Elt: std::make_pair(x&: BB, y: BBStates[BB].pred_begin())); |
| 1711 | goto reverse_dfs_next_succ; |
| 1712 | } |
| 1713 | } |
| 1714 | ReverseCFGPostOrder.push_back(Elt: PredStack.pop_back_val().first); |
| 1715 | } |
| 1716 | } |
| 1717 | } |
| 1718 | |
| 1719 | // Visit the function both top-down and bottom-up. |
| 1720 | bool ObjCARCOpt::Visit(Function &F, |
| 1721 | DenseMap<const BasicBlock *, BBState> &BBStates, |
| 1722 | BlotMapVector<Value *, RRInfo> &Retains, |
| 1723 | DenseMap<Value *, RRInfo> &Releases) { |
| 1724 | // Use reverse-postorder traversals, because we magically know that loops |
| 1725 | // will be well behaved, i.e. they won't repeatedly call retain on a single |
| 1726 | // pointer without doing a release. We can't use the ReversePostOrderTraversal |
| 1727 | // class here because we want the reverse-CFG postorder to consider each |
| 1728 | // function exit point, and we want to ignore selected cycle edges. |
| 1729 | SmallVector<BasicBlock *, 16> PostOrder; |
| 1730 | SmallVector<BasicBlock *, 16> ReverseCFGPostOrder; |
| 1731 | ComputePostOrders(F, PostOrder, ReverseCFGPostOrder, |
| 1732 | NoObjCARCExceptionsMDKind: MDKindCache.get(ID: ARCMDKindID::NoObjCARCExceptions), |
| 1733 | BBStates); |
| 1734 | |
| 1735 | // Use reverse-postorder on the reverse CFG for bottom-up. |
| 1736 | bool BottomUpNestingDetected = false; |
| 1737 | for (BasicBlock *BB : llvm::reverse(C&: ReverseCFGPostOrder)) { |
| 1738 | BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains); |
| 1739 | if (DisableRetainReleasePairing) |
| 1740 | return false; |
| 1741 | } |
| 1742 | |
| 1743 | DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
| 1744 | ReleaseInsertPtToRCIdentityRoots; |
| 1745 | collectReleaseInsertPts(Retains, ReleaseInsertPtToRCIdentityRoots); |
| 1746 | |
| 1747 | // Use reverse-postorder for top-down. |
| 1748 | bool TopDownNestingDetected = false; |
| 1749 | for (BasicBlock *BB : llvm::reverse(C&: PostOrder)) { |
| 1750 | TopDownNestingDetected |= |
| 1751 | VisitTopDown(BB, BBStates, Releases, ReleaseInsertPtToRCIdentityRoots); |
| 1752 | if (DisableRetainReleasePairing) |
| 1753 | return false; |
| 1754 | } |
| 1755 | |
| 1756 | return TopDownNestingDetected && BottomUpNestingDetected; |
| 1757 | } |
| 1758 | |
| 1759 | /// Move the calls in RetainsToMove and ReleasesToMove. |
| 1760 | void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove, |
| 1761 | RRInfo &ReleasesToMove, |
| 1762 | BlotMapVector<Value *, RRInfo> &Retains, |
| 1763 | DenseMap<Value *, RRInfo> &Releases, |
| 1764 | SmallVectorImpl<Instruction *> &DeadInsts, |
| 1765 | Module *M) { |
| 1766 | LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n" ); |
| 1767 | |
| 1768 | // Insert the new retain and release calls. |
| 1769 | for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) { |
| 1770 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Retain); |
| 1771 | SmallVector<OperandBundleDef, 1> BundleList; |
| 1772 | addOpBundleForFunclet(BB: InsertPt->getParent(), OpBundles&: BundleList); |
| 1773 | CallInst *Call = |
| 1774 | CallInst::Create(Func: Decl, Args: Arg, Bundles: BundleList, NameStr: "" , InsertBefore: InsertPt->getIterator()); |
| 1775 | Call->setDoesNotThrow(); |
| 1776 | Call->setTailCall(); |
| 1777 | |
| 1778 | LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call |
| 1779 | << "\n" |
| 1780 | "At insertion point: " |
| 1781 | << *InsertPt << "\n" ); |
| 1782 | } |
| 1783 | for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) { |
| 1784 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Release); |
| 1785 | SmallVector<OperandBundleDef, 1> BundleList; |
| 1786 | addOpBundleForFunclet(BB: InsertPt->getParent(), OpBundles&: BundleList); |
| 1787 | CallInst *Call = |
| 1788 | CallInst::Create(Func: Decl, Args: Arg, Bundles: BundleList, NameStr: "" , InsertBefore: InsertPt->getIterator()); |
| 1789 | // Attach a clang.imprecise_release metadata tag, if appropriate. |
| 1790 | if (MDNode *M = ReleasesToMove.ReleaseMetadata) |
| 1791 | Call->setMetadata(KindID: MDKindCache.get(ID: ARCMDKindID::ImpreciseRelease), Node: M); |
| 1792 | Call->setDoesNotThrow(); |
| 1793 | if (ReleasesToMove.IsTailCallRelease) |
| 1794 | Call->setTailCall(); |
| 1795 | |
| 1796 | LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call |
| 1797 | << "\n" |
| 1798 | "At insertion point: " |
| 1799 | << *InsertPt << "\n" ); |
| 1800 | } |
| 1801 | |
| 1802 | // Delete the original retain and release calls. |
| 1803 | for (Instruction *OrigRetain : RetainsToMove.Calls) { |
| 1804 | Retains.blot(Key: OrigRetain); |
| 1805 | DeadInsts.push_back(Elt: OrigRetain); |
| 1806 | LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n" ); |
| 1807 | } |
| 1808 | for (Instruction *OrigRelease : ReleasesToMove.Calls) { |
| 1809 | Releases.erase(Val: OrigRelease); |
| 1810 | DeadInsts.push_back(Elt: OrigRelease); |
| 1811 | LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n" ); |
| 1812 | } |
| 1813 | } |
| 1814 | |
| 1815 | bool ObjCARCOpt::PairUpRetainsAndReleases( |
| 1816 | DenseMap<const BasicBlock *, BBState> &BBStates, |
| 1817 | BlotMapVector<Value *, RRInfo> &Retains, |
| 1818 | DenseMap<Value *, RRInfo> &Releases, Module *M, |
| 1819 | Instruction *Retain, |
| 1820 | SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove, |
| 1821 | RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe, |
| 1822 | bool &AnyPairsCompletelyEliminated) { |
| 1823 | // If a pair happens in a region where it is known that the reference count |
| 1824 | // is already incremented, we can similarly ignore possible decrements unless |
| 1825 | // we are dealing with a retainable object with multiple provenance sources. |
| 1826 | bool KnownSafeTD = true, KnownSafeBU = true; |
| 1827 | bool CFGHazardAfflicted = false; |
| 1828 | |
| 1829 | // Connect the dots between the top-down-collected RetainsToMove and |
| 1830 | // bottom-up-collected ReleasesToMove to form sets of related calls. |
| 1831 | // This is an iterative process so that we connect multiple releases |
| 1832 | // to multiple retains if needed. |
| 1833 | unsigned OldDelta = 0; |
| 1834 | unsigned NewDelta = 0; |
| 1835 | unsigned OldCount = 0; |
| 1836 | unsigned NewCount = 0; |
| 1837 | bool FirstRelease = true; |
| 1838 | for (SmallVector<Instruction *, 4> NewRetains{Retain};;) { |
| 1839 | SmallVector<Instruction *, 4> NewReleases; |
| 1840 | for (Instruction *NewRetain : NewRetains) { |
| 1841 | auto It = Retains.find(Key: NewRetain); |
| 1842 | assert(It != Retains.end()); |
| 1843 | const RRInfo &NewRetainRRI = It->second; |
| 1844 | KnownSafeTD &= NewRetainRRI.KnownSafe; |
| 1845 | CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted; |
| 1846 | for (Instruction *NewRetainRelease : NewRetainRRI.Calls) { |
| 1847 | auto Jt = Releases.find(Val: NewRetainRelease); |
| 1848 | if (Jt == Releases.end()) |
| 1849 | return false; |
| 1850 | const RRInfo &NewRetainReleaseRRI = Jt->second; |
| 1851 | |
| 1852 | // If the release does not have a reference to the retain as well, |
| 1853 | // something happened which is unaccounted for. Do not do anything. |
| 1854 | // |
| 1855 | // This can happen if we catch an additive overflow during path count |
| 1856 | // merging. |
| 1857 | if (!NewRetainReleaseRRI.Calls.count(Ptr: NewRetain)) |
| 1858 | return false; |
| 1859 | |
| 1860 | if (ReleasesToMove.Calls.insert(Ptr: NewRetainRelease).second) { |
| 1861 | // If we overflow when we compute the path count, don't remove/move |
| 1862 | // anything. |
| 1863 | const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()]; |
| 1864 | unsigned PathCount = BBState::OverflowOccurredValue; |
| 1865 | if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) |
| 1866 | return false; |
| 1867 | assert(PathCount != BBState::OverflowOccurredValue && |
| 1868 | "PathCount at this point can not be " |
| 1869 | "OverflowOccurredValue." ); |
| 1870 | OldDelta -= PathCount; |
| 1871 | |
| 1872 | // Merge the ReleaseMetadata and IsTailCallRelease values. |
| 1873 | if (FirstRelease) { |
| 1874 | ReleasesToMove.ReleaseMetadata = |
| 1875 | NewRetainReleaseRRI.ReleaseMetadata; |
| 1876 | ReleasesToMove.IsTailCallRelease = |
| 1877 | NewRetainReleaseRRI.IsTailCallRelease; |
| 1878 | FirstRelease = false; |
| 1879 | } else { |
| 1880 | if (ReleasesToMove.ReleaseMetadata != |
| 1881 | NewRetainReleaseRRI.ReleaseMetadata) |
| 1882 | ReleasesToMove.ReleaseMetadata = nullptr; |
| 1883 | if (ReleasesToMove.IsTailCallRelease != |
| 1884 | NewRetainReleaseRRI.IsTailCallRelease) |
| 1885 | ReleasesToMove.IsTailCallRelease = false; |
| 1886 | } |
| 1887 | |
| 1888 | // Collect the optimal insertion points. |
| 1889 | if (!KnownSafe) |
| 1890 | for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) { |
| 1891 | if (ReleasesToMove.ReverseInsertPts.insert(Ptr: RIP).second) { |
| 1892 | // If we overflow when we compute the path count, don't |
| 1893 | // remove/move anything. |
| 1894 | const BBState &RIPBBState = BBStates[RIP->getParent()]; |
| 1895 | PathCount = BBState::OverflowOccurredValue; |
| 1896 | if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) |
| 1897 | return false; |
| 1898 | assert(PathCount != BBState::OverflowOccurredValue && |
| 1899 | "PathCount at this point can not be " |
| 1900 | "OverflowOccurredValue." ); |
| 1901 | NewDelta -= PathCount; |
| 1902 | } |
| 1903 | } |
| 1904 | NewReleases.push_back(Elt: NewRetainRelease); |
| 1905 | } |
| 1906 | } |
| 1907 | } |
| 1908 | NewRetains.clear(); |
| 1909 | if (NewReleases.empty()) break; |
| 1910 | |
| 1911 | // Back the other way. |
| 1912 | for (Instruction *NewRelease : NewReleases) { |
| 1913 | auto It = Releases.find(Val: NewRelease); |
| 1914 | assert(It != Releases.end()); |
| 1915 | const RRInfo &NewReleaseRRI = It->second; |
| 1916 | KnownSafeBU &= NewReleaseRRI.KnownSafe; |
| 1917 | CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted; |
| 1918 | for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) { |
| 1919 | auto Jt = Retains.find(Key: NewReleaseRetain); |
| 1920 | if (Jt == Retains.end()) |
| 1921 | return false; |
| 1922 | const RRInfo &NewReleaseRetainRRI = Jt->second; |
| 1923 | |
| 1924 | // If the retain does not have a reference to the release as well, |
| 1925 | // something happened which is unaccounted for. Do not do anything. |
| 1926 | // |
| 1927 | // This can happen if we catch an additive overflow during path count |
| 1928 | // merging. |
| 1929 | if (!NewReleaseRetainRRI.Calls.count(Ptr: NewRelease)) |
| 1930 | return false; |
| 1931 | |
| 1932 | if (RetainsToMove.Calls.insert(Ptr: NewReleaseRetain).second) { |
| 1933 | // If we overflow when we compute the path count, don't remove/move |
| 1934 | // anything. |
| 1935 | const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()]; |
| 1936 | unsigned PathCount = BBState::OverflowOccurredValue; |
| 1937 | if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) |
| 1938 | return false; |
| 1939 | assert(PathCount != BBState::OverflowOccurredValue && |
| 1940 | "PathCount at this point can not be " |
| 1941 | "OverflowOccurredValue." ); |
| 1942 | OldDelta += PathCount; |
| 1943 | OldCount += PathCount; |
| 1944 | |
| 1945 | // Collect the optimal insertion points. |
| 1946 | if (!KnownSafe) |
| 1947 | for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) { |
| 1948 | if (RetainsToMove.ReverseInsertPts.insert(Ptr: RIP).second) { |
| 1949 | // If we overflow when we compute the path count, don't |
| 1950 | // remove/move anything. |
| 1951 | const BBState &RIPBBState = BBStates[RIP->getParent()]; |
| 1952 | |
| 1953 | PathCount = BBState::OverflowOccurredValue; |
| 1954 | if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) |
| 1955 | return false; |
| 1956 | assert(PathCount != BBState::OverflowOccurredValue && |
| 1957 | "PathCount at this point can not be " |
| 1958 | "OverflowOccurredValue." ); |
| 1959 | NewDelta += PathCount; |
| 1960 | NewCount += PathCount; |
| 1961 | } |
| 1962 | } |
| 1963 | NewRetains.push_back(Elt: NewReleaseRetain); |
| 1964 | } |
| 1965 | } |
| 1966 | } |
| 1967 | if (NewRetains.empty()) break; |
| 1968 | } |
| 1969 | |
| 1970 | // We can only remove pointers if we are known safe in both directions. |
| 1971 | bool UnconditionallySafe = KnownSafeTD && KnownSafeBU; |
| 1972 | if (UnconditionallySafe) { |
| 1973 | RetainsToMove.ReverseInsertPts.clear(); |
| 1974 | ReleasesToMove.ReverseInsertPts.clear(); |
| 1975 | NewCount = 0; |
| 1976 | } else { |
| 1977 | // Determine whether the new insertion points we computed preserve the |
| 1978 | // balance of retain and release calls through the program. |
| 1979 | // TODO: If the fully aggressive solution isn't valid, try to find a |
| 1980 | // less aggressive solution which is. |
| 1981 | if (NewDelta != 0) |
| 1982 | return false; |
| 1983 | |
| 1984 | // At this point, we are not going to remove any RR pairs, but we still are |
| 1985 | // able to move RR pairs. If one of our pointers is afflicted with |
| 1986 | // CFGHazards, we cannot perform such code motion so exit early. |
| 1987 | const bool WillPerformCodeMotion = |
| 1988 | !RetainsToMove.ReverseInsertPts.empty() || |
| 1989 | !ReleasesToMove.ReverseInsertPts.empty(); |
| 1990 | if (CFGHazardAfflicted && WillPerformCodeMotion) |
| 1991 | return false; |
| 1992 | } |
| 1993 | |
| 1994 | // Determine whether the original call points are balanced in the retain and |
| 1995 | // release calls through the program. If not, conservatively don't touch |
| 1996 | // them. |
| 1997 | // TODO: It's theoretically possible to do code motion in this case, as |
| 1998 | // long as the existing imbalances are maintained. |
| 1999 | if (OldDelta != 0) |
| 2000 | return false; |
| 2001 | |
| 2002 | Changed = true; |
| 2003 | assert(OldCount != 0 && "Unreachable code?" ); |
| 2004 | NumRRs += OldCount - NewCount; |
| 2005 | // Set to true if we completely removed any RR pairs. |
| 2006 | AnyPairsCompletelyEliminated = NewCount == 0; |
| 2007 | |
| 2008 | // We can move calls! |
| 2009 | return true; |
| 2010 | } |
| 2011 | |
| 2012 | /// Identify pairings between the retains and releases, and delete and/or move |
| 2013 | /// them. |
| 2014 | bool ObjCARCOpt::PerformCodePlacement( |
| 2015 | DenseMap<const BasicBlock *, BBState> &BBStates, |
| 2016 | BlotMapVector<Value *, RRInfo> &Retains, |
| 2017 | DenseMap<Value *, RRInfo> &Releases, Module *M) { |
| 2018 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n" ); |
| 2019 | |
| 2020 | bool AnyPairsCompletelyEliminated = false; |
| 2021 | SmallVector<Instruction *, 8> DeadInsts; |
| 2022 | |
| 2023 | // Visit each retain. |
| 2024 | for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(), |
| 2025 | E = Retains.end(); |
| 2026 | I != E; ++I) { |
| 2027 | Value *V = I->first; |
| 2028 | if (!V) continue; // blotted |
| 2029 | |
| 2030 | Instruction *Retain = cast<Instruction>(Val: V); |
| 2031 | |
| 2032 | LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n" ); |
| 2033 | |
| 2034 | Value *Arg = GetArgRCIdentityRoot(Inst: Retain); |
| 2035 | |
| 2036 | // If the object being released is in static or stack storage, we know it's |
| 2037 | // not being managed by ObjC reference counting, so we can delete pairs |
| 2038 | // regardless of what possible decrements or uses lie between them. |
| 2039 | bool KnownSafe = isa<Constant>(Val: Arg) || isa<AllocaInst>(Val: Arg); |
| 2040 | |
| 2041 | // A constant pointer can't be pointing to an object on the heap. It may |
| 2042 | // be reference-counted, but it won't be deleted. |
| 2043 | if (const LoadInst *LI = dyn_cast<LoadInst>(Val: Arg)) |
| 2044 | if (const GlobalVariable *GV = |
| 2045 | dyn_cast<GlobalVariable>( |
| 2046 | Val: GetRCIdentityRoot(V: LI->getPointerOperand()))) |
| 2047 | if (GV->isConstant()) |
| 2048 | KnownSafe = true; |
| 2049 | |
| 2050 | // Connect the dots between the top-down-collected RetainsToMove and |
| 2051 | // bottom-up-collected ReleasesToMove to form sets of related calls. |
| 2052 | RRInfo RetainsToMove, ReleasesToMove; |
| 2053 | |
| 2054 | bool PerformMoveCalls = PairUpRetainsAndReleases( |
| 2055 | BBStates, Retains, Releases, M, Retain, DeadInsts, |
| 2056 | RetainsToMove, ReleasesToMove, Arg, KnownSafe, |
| 2057 | AnyPairsCompletelyEliminated); |
| 2058 | |
| 2059 | if (PerformMoveCalls) { |
| 2060 | // Ok, everything checks out and we're all set. Let's move/delete some |
| 2061 | // code! |
| 2062 | MoveCalls(Arg, RetainsToMove, ReleasesToMove, |
| 2063 | Retains, Releases, DeadInsts, M); |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | // Now that we're done moving everything, we can delete the newly dead |
| 2068 | // instructions, as we no longer need them as insert points. |
| 2069 | while (!DeadInsts.empty()) |
| 2070 | EraseInstruction(CI: DeadInsts.pop_back_val()); |
| 2071 | |
| 2072 | return AnyPairsCompletelyEliminated; |
| 2073 | } |
| 2074 | |
| 2075 | /// Weak pointer optimizations. |
| 2076 | void ObjCARCOpt::OptimizeWeakCalls(Function &F) { |
| 2077 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n" ); |
| 2078 | |
| 2079 | // First, do memdep-style RLE and S2L optimizations. We can't use memdep |
| 2080 | // itself because it uses AliasAnalysis and we need to do provenance |
| 2081 | // queries instead. |
| 2082 | for (inst_iterator I = inst_begin(F: &F), E = inst_end(F: &F); I != E; ) { |
| 2083 | Instruction *Inst = &*I++; |
| 2084 | |
| 2085 | LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n" ); |
| 2086 | |
| 2087 | ARCInstKind Class = GetBasicARCInstKind(V: Inst); |
| 2088 | if (Class != ARCInstKind::LoadWeak && |
| 2089 | Class != ARCInstKind::LoadWeakRetained) |
| 2090 | continue; |
| 2091 | |
| 2092 | // Delete objc_loadWeak calls with no users. |
| 2093 | if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) { |
| 2094 | Inst->eraseFromParent(); |
| 2095 | Changed = true; |
| 2096 | continue; |
| 2097 | } |
| 2098 | |
| 2099 | // TODO: For now, just look for an earlier available version of this value |
| 2100 | // within the same block. Theoretically, we could do memdep-style non-local |
| 2101 | // analysis too, but that would want caching. A better approach would be to |
| 2102 | // use the technique that EarlyCSE uses. |
| 2103 | inst_iterator Current = std::prev(x: I); |
| 2104 | BasicBlock *CurrentBB = &*Current.getBasicBlockIterator(); |
| 2105 | for (BasicBlock::iterator B = CurrentBB->begin(), |
| 2106 | J = Current.getInstructionIterator(); |
| 2107 | J != B; --J) { |
| 2108 | Instruction *EarlierInst = &*std::prev(x: J); |
| 2109 | ARCInstKind EarlierClass = GetARCInstKind(V: EarlierInst); |
| 2110 | switch (EarlierClass) { |
| 2111 | case ARCInstKind::LoadWeak: |
| 2112 | case ARCInstKind::LoadWeakRetained: { |
| 2113 | // If this is loading from the same pointer, replace this load's value |
| 2114 | // with that one. |
| 2115 | CallInst *Call = cast<CallInst>(Val: Inst); |
| 2116 | CallInst *EarlierCall = cast<CallInst>(Val: EarlierInst); |
| 2117 | Value *Arg = Call->getArgOperand(i: 0); |
| 2118 | Value *EarlierArg = EarlierCall->getArgOperand(i: 0); |
| 2119 | switch (PA.getAA()->alias(V1: Arg, V2: EarlierArg)) { |
| 2120 | case AliasResult::MustAlias: |
| 2121 | Changed = true; |
| 2122 | // If the load has a builtin retain, insert a plain retain for it. |
| 2123 | if (Class == ARCInstKind::LoadWeakRetained) { |
| 2124 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Retain); |
| 2125 | CallInst *CI = |
| 2126 | CallInst::Create(Func: Decl, Args: EarlierCall, NameStr: "" , InsertBefore: Call->getIterator()); |
| 2127 | CI->setTailCall(); |
| 2128 | } |
| 2129 | // Zap the fully redundant load. |
| 2130 | Call->replaceAllUsesWith(V: EarlierCall); |
| 2131 | Call->eraseFromParent(); |
| 2132 | goto clobbered; |
| 2133 | case AliasResult::MayAlias: |
| 2134 | case AliasResult::PartialAlias: |
| 2135 | goto clobbered; |
| 2136 | case AliasResult::NoAlias: |
| 2137 | break; |
| 2138 | } |
| 2139 | break; |
| 2140 | } |
| 2141 | case ARCInstKind::StoreWeak: |
| 2142 | case ARCInstKind::InitWeak: { |
| 2143 | // If this is storing to the same pointer and has the same size etc. |
| 2144 | // replace this load's value with the stored value. |
| 2145 | CallInst *Call = cast<CallInst>(Val: Inst); |
| 2146 | CallInst *EarlierCall = cast<CallInst>(Val: EarlierInst); |
| 2147 | Value *Arg = Call->getArgOperand(i: 0); |
| 2148 | Value *EarlierArg = EarlierCall->getArgOperand(i: 0); |
| 2149 | switch (PA.getAA()->alias(V1: Arg, V2: EarlierArg)) { |
| 2150 | case AliasResult::MustAlias: |
| 2151 | Changed = true; |
| 2152 | // If the load has a builtin retain, insert a plain retain for it. |
| 2153 | if (Class == ARCInstKind::LoadWeakRetained) { |
| 2154 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Retain); |
| 2155 | CallInst *CI = |
| 2156 | CallInst::Create(Func: Decl, Args: EarlierCall, NameStr: "" , InsertBefore: Call->getIterator()); |
| 2157 | CI->setTailCall(); |
| 2158 | } |
| 2159 | // Zap the fully redundant load. |
| 2160 | Call->replaceAllUsesWith(V: EarlierCall->getArgOperand(i: 1)); |
| 2161 | Call->eraseFromParent(); |
| 2162 | goto clobbered; |
| 2163 | case AliasResult::MayAlias: |
| 2164 | case AliasResult::PartialAlias: |
| 2165 | goto clobbered; |
| 2166 | case AliasResult::NoAlias: |
| 2167 | break; |
| 2168 | } |
| 2169 | break; |
| 2170 | } |
| 2171 | case ARCInstKind::MoveWeak: |
| 2172 | case ARCInstKind::CopyWeak: |
| 2173 | // TOOD: Grab the copied value. |
| 2174 | goto clobbered; |
| 2175 | case ARCInstKind::AutoreleasepoolPush: |
| 2176 | case ARCInstKind::None: |
| 2177 | case ARCInstKind::IntrinsicUser: |
| 2178 | case ARCInstKind::User: |
| 2179 | // Weak pointers are only modified through the weak entry points |
| 2180 | // (and arbitrary calls, which could call the weak entry points). |
| 2181 | break; |
| 2182 | default: |
| 2183 | // Anything else could modify the weak pointer. |
| 2184 | goto clobbered; |
| 2185 | } |
| 2186 | } |
| 2187 | clobbered:; |
| 2188 | } |
| 2189 | |
| 2190 | // Then, for each destroyWeak with an alloca operand, check to see if |
| 2191 | // the alloca and all its users can be zapped. |
| 2192 | for (Instruction &Inst : llvm::make_early_inc_range(Range: instructions(F))) { |
| 2193 | ARCInstKind Class = GetBasicARCInstKind(V: &Inst); |
| 2194 | if (Class != ARCInstKind::DestroyWeak) |
| 2195 | continue; |
| 2196 | |
| 2197 | CallInst *Call = cast<CallInst>(Val: &Inst); |
| 2198 | Value *Arg = Call->getArgOperand(i: 0); |
| 2199 | if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Val: Arg)) { |
| 2200 | for (User *U : Alloca->users()) { |
| 2201 | const Instruction *UserInst = cast<Instruction>(Val: U); |
| 2202 | switch (GetBasicARCInstKind(V: UserInst)) { |
| 2203 | case ARCInstKind::InitWeak: |
| 2204 | case ARCInstKind::StoreWeak: |
| 2205 | case ARCInstKind::DestroyWeak: |
| 2206 | continue; |
| 2207 | default: |
| 2208 | goto done; |
| 2209 | } |
| 2210 | } |
| 2211 | Changed = true; |
| 2212 | for (User *U : llvm::make_early_inc_range(Range: Alloca->users())) { |
| 2213 | CallInst *UserInst = cast<CallInst>(Val: U); |
| 2214 | switch (GetBasicARCInstKind(V: UserInst)) { |
| 2215 | case ARCInstKind::InitWeak: |
| 2216 | case ARCInstKind::StoreWeak: |
| 2217 | // These functions return their second argument. |
| 2218 | UserInst->replaceAllUsesWith(V: UserInst->getArgOperand(i: 1)); |
| 2219 | break; |
| 2220 | case ARCInstKind::DestroyWeak: |
| 2221 | // No return value. |
| 2222 | break; |
| 2223 | default: |
| 2224 | llvm_unreachable("alloca really is used!" ); |
| 2225 | } |
| 2226 | UserInst->eraseFromParent(); |
| 2227 | } |
| 2228 | Alloca->eraseFromParent(); |
| 2229 | done:; |
| 2230 | } |
| 2231 | } |
| 2232 | } |
| 2233 | |
| 2234 | /// Identify program paths which execute sequences of retains and releases which |
| 2235 | /// can be eliminated. |
| 2236 | bool ObjCARCOpt::OptimizeSequences(Function &F) { |
| 2237 | // Releases, Retains - These are used to store the results of the main flow |
| 2238 | // analysis. These use Value* as the key instead of Instruction* so that the |
| 2239 | // map stays valid when we get around to rewriting code and calls get |
| 2240 | // replaced by arguments. |
| 2241 | DenseMap<Value *, RRInfo> Releases; |
| 2242 | BlotMapVector<Value *, RRInfo> Retains; |
| 2243 | |
| 2244 | // This is used during the traversal of the function to track the |
| 2245 | // states for each identified object at each block. |
| 2246 | DenseMap<const BasicBlock *, BBState> BBStates; |
| 2247 | |
| 2248 | // Analyze the CFG of the function, and all instructions. |
| 2249 | bool NestingDetected = Visit(F, BBStates, Retains, Releases); |
| 2250 | |
| 2251 | if (DisableRetainReleasePairing) |
| 2252 | return false; |
| 2253 | |
| 2254 | // Transform. |
| 2255 | bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains, |
| 2256 | Releases, |
| 2257 | M: F.getParent()); |
| 2258 | |
| 2259 | return AnyPairsCompletelyEliminated && NestingDetected; |
| 2260 | } |
| 2261 | |
| 2262 | /// Check if there is a dependent call earlier that does not have anything in |
| 2263 | /// between the Retain and the call that can affect the reference count of their |
| 2264 | /// shared pointer argument. Note that Retain need not be in BB. |
| 2265 | static CallInst *HasSafePathToPredecessorCall(const Value *Arg, |
| 2266 | Instruction *Retain, |
| 2267 | ProvenanceAnalysis &PA) { |
| 2268 | auto *Call = dyn_cast_or_null<CallInst>(Val: findSingleDependency( |
| 2269 | Flavor: CanChangeRetainCount, Arg, StartBB: Retain->getParent(), StartInst: Retain, PA)); |
| 2270 | |
| 2271 | // Check that the pointer is the return value of the call. |
| 2272 | if (!Call || Arg != Call) |
| 2273 | return nullptr; |
| 2274 | |
| 2275 | // Check that the call is a regular call. |
| 2276 | ARCInstKind Class = GetBasicARCInstKind(V: Call); |
| 2277 | return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call |
| 2278 | ? Call |
| 2279 | : nullptr; |
| 2280 | } |
| 2281 | |
| 2282 | /// Find a dependent retain that precedes the given autorelease for which there |
| 2283 | /// is nothing in between the two instructions that can affect the ref count of |
| 2284 | /// Arg. |
| 2285 | static CallInst * |
| 2286 | FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB, |
| 2287 | Instruction *Autorelease, |
| 2288 | ProvenanceAnalysis &PA) { |
| 2289 | auto *Retain = dyn_cast_or_null<CallInst>( |
| 2290 | Val: findSingleDependency(Flavor: CanChangeRetainCount, Arg, StartBB: BB, StartInst: Autorelease, PA)); |
| 2291 | |
| 2292 | // Check that we found a retain with the same argument. |
| 2293 | if (!Retain || !IsRetain(Class: GetBasicARCInstKind(V: Retain)) || |
| 2294 | GetArgRCIdentityRoot(Inst: Retain) != Arg) { |
| 2295 | return nullptr; |
| 2296 | } |
| 2297 | |
| 2298 | return Retain; |
| 2299 | } |
| 2300 | |
| 2301 | /// Look for an ``autorelease'' instruction dependent on Arg such that there are |
| 2302 | /// no instructions dependent on Arg that need a positive ref count in between |
| 2303 | /// the autorelease and the ret. |
| 2304 | static CallInst *FindPredecessorAutoreleaseWithSafePath( |
| 2305 | const Value *Arg, BasicBlock *BB, ReturnInst *Ret, ProvenanceAnalysis &PA) { |
| 2306 | auto *Autorelease = dyn_cast_or_null<CallInst>( |
| 2307 | Val: findSingleDependency(Flavor: NeedsPositiveRetainCount, Arg, StartBB: BB, StartInst: Ret, PA)); |
| 2308 | |
| 2309 | if (!Autorelease) |
| 2310 | return nullptr; |
| 2311 | ARCInstKind AutoreleaseClass = GetBasicARCInstKind(V: Autorelease); |
| 2312 | if (!IsAutorelease(Class: AutoreleaseClass)) |
| 2313 | return nullptr; |
| 2314 | if (GetArgRCIdentityRoot(Inst: Autorelease) != Arg) |
| 2315 | return nullptr; |
| 2316 | |
| 2317 | return Autorelease; |
| 2318 | } |
| 2319 | |
| 2320 | /// Look for this pattern: |
| 2321 | /// \code |
| 2322 | /// %call = call i8* @something(...) |
| 2323 | /// %2 = call i8* @objc_retain(i8* %call) |
| 2324 | /// %3 = call i8* @objc_autorelease(i8* %2) |
| 2325 | /// ret i8* %3 |
| 2326 | /// \endcode |
| 2327 | /// And delete the retain and autorelease. |
| 2328 | void ObjCARCOpt::OptimizeReturns(Function &F) { |
| 2329 | if (!F.getReturnType()->isPointerTy()) |
| 2330 | return; |
| 2331 | |
| 2332 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n" ); |
| 2333 | |
| 2334 | for (BasicBlock &BB: F) { |
| 2335 | ReturnInst *Ret = dyn_cast<ReturnInst>(Val: &BB.back()); |
| 2336 | if (!Ret) |
| 2337 | continue; |
| 2338 | |
| 2339 | LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n" ); |
| 2340 | |
| 2341 | const Value *Arg = GetRCIdentityRoot(V: Ret->getOperand(i_nocapture: 0)); |
| 2342 | |
| 2343 | // Look for an ``autorelease'' instruction that is a predecessor of Ret and |
| 2344 | // dependent on Arg such that there are no instructions dependent on Arg |
| 2345 | // that need a positive ref count in between the autorelease and Ret. |
| 2346 | CallInst *Autorelease = |
| 2347 | FindPredecessorAutoreleaseWithSafePath(Arg, BB: &BB, Ret, PA); |
| 2348 | |
| 2349 | if (!Autorelease) |
| 2350 | continue; |
| 2351 | |
| 2352 | CallInst *Retain = FindPredecessorRetainWithSafePath( |
| 2353 | Arg, BB: Autorelease->getParent(), Autorelease, PA); |
| 2354 | |
| 2355 | if (!Retain) |
| 2356 | continue; |
| 2357 | |
| 2358 | // Check that there is nothing that can affect the reference count |
| 2359 | // between the retain and the call. Note that Retain need not be in BB. |
| 2360 | CallInst *Call = HasSafePathToPredecessorCall(Arg, Retain, PA); |
| 2361 | |
| 2362 | // Don't remove retainRV/autoreleaseRV pairs if the call isn't a tail call. |
| 2363 | if (!Call || |
| 2364 | (!Call->isTailCall() && |
| 2365 | GetBasicARCInstKind(V: Retain) == ARCInstKind::RetainRV && |
| 2366 | GetBasicARCInstKind(V: Autorelease) == ARCInstKind::AutoreleaseRV)) |
| 2367 | continue; |
| 2368 | |
| 2369 | // If so, we can zap the retain and autorelease. |
| 2370 | Changed = true; |
| 2371 | ++NumRets; |
| 2372 | LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease |
| 2373 | << "\n" ); |
| 2374 | BundledInsts->eraseInst(CI: Retain); |
| 2375 | EraseInstruction(CI: Autorelease); |
| 2376 | } |
| 2377 | } |
| 2378 | |
| 2379 | #ifndef NDEBUG |
| 2380 | void |
| 2381 | ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) { |
| 2382 | Statistic &NumRetains = |
| 2383 | AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt; |
| 2384 | Statistic &NumReleases = |
| 2385 | AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt; |
| 2386 | |
| 2387 | for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { |
| 2388 | Instruction *Inst = &*I++; |
| 2389 | switch (GetBasicARCInstKind(Inst)) { |
| 2390 | default: |
| 2391 | break; |
| 2392 | case ARCInstKind::Retain: |
| 2393 | ++NumRetains; |
| 2394 | break; |
| 2395 | case ARCInstKind::Release: |
| 2396 | ++NumReleases; |
| 2397 | break; |
| 2398 | } |
| 2399 | } |
| 2400 | } |
| 2401 | #endif |
| 2402 | |
| 2403 | void ObjCARCOpt::init(Function &F) { |
| 2404 | if (!EnableARCOpts) |
| 2405 | return; |
| 2406 | |
| 2407 | // Intuitively, objc_retain and others are nocapture, however in practice |
| 2408 | // they are not, because they return their argument value. And objc_release |
| 2409 | // calls finalizers which can have arbitrary side effects. |
| 2410 | MDKindCache.init(Mod: F.getParent()); |
| 2411 | |
| 2412 | // Initialize our runtime entry point cache. |
| 2413 | EP.init(M: F.getParent()); |
| 2414 | |
| 2415 | // Compute which blocks are in which funclet. |
| 2416 | if (F.hasPersonalityFn() && |
| 2417 | isScopedEHPersonality(Pers: classifyEHPersonality(Pers: F.getPersonalityFn()))) |
| 2418 | BlockEHColors = colorEHFunclets(F); |
| 2419 | } |
| 2420 | |
| 2421 | bool ObjCARCOpt::run(Function &F, AAResults &AA) { |
| 2422 | if (!EnableARCOpts) |
| 2423 | return false; |
| 2424 | |
| 2425 | Changed = CFGChanged = false; |
| 2426 | BundledRetainClaimRVs BRV(EP, /*ContractPass=*/false, /*UseClaimRV=*/false); |
| 2427 | BundledInsts = &BRV; |
| 2428 | |
| 2429 | LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() |
| 2430 | << " >>>" |
| 2431 | "\n" ); |
| 2432 | |
| 2433 | std::pair<bool, bool> R = BundledInsts->insertAfterInvokes(F, DT: nullptr); |
| 2434 | Changed |= R.first; |
| 2435 | CFGChanged |= R.second; |
| 2436 | |
| 2437 | PA.setAA(&AA); |
| 2438 | |
| 2439 | #ifndef NDEBUG |
| 2440 | if (AreStatisticsEnabled()) { |
| 2441 | GatherStatistics(F, false); |
| 2442 | } |
| 2443 | #endif |
| 2444 | |
| 2445 | // This pass performs several distinct transformations. As a compile-time aid |
| 2446 | // when compiling code that isn't ObjC, skip these if the relevant ObjC |
| 2447 | // library functions aren't declared. |
| 2448 | |
| 2449 | // Preliminary optimizations. This also computes UsedInThisFunction. |
| 2450 | OptimizeIndividualCalls(F); |
| 2451 | |
| 2452 | // Optimizations for weak pointers. |
| 2453 | if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) | |
| 2454 | (1 << unsigned(ARCInstKind::LoadWeakRetained)) | |
| 2455 | (1 << unsigned(ARCInstKind::StoreWeak)) | |
| 2456 | (1 << unsigned(ARCInstKind::InitWeak)) | |
| 2457 | (1 << unsigned(ARCInstKind::CopyWeak)) | |
| 2458 | (1 << unsigned(ARCInstKind::MoveWeak)) | |
| 2459 | (1 << unsigned(ARCInstKind::DestroyWeak)))) |
| 2460 | OptimizeWeakCalls(F); |
| 2461 | |
| 2462 | // Optimizations for retain+release pairs. |
| 2463 | if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) | |
| 2464 | (1 << unsigned(ARCInstKind::RetainRV)) | |
| 2465 | (1 << unsigned(ARCInstKind::RetainBlock)))) |
| 2466 | if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release))) |
| 2467 | // Run OptimizeSequences until it either stops making changes or |
| 2468 | // no retain+release pair nesting is detected. |
| 2469 | while (OptimizeSequences(F)) {} |
| 2470 | |
| 2471 | // Optimizations if objc_autorelease is used. |
| 2472 | if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) | |
| 2473 | (1 << unsigned(ARCInstKind::AutoreleaseRV)))) |
| 2474 | OptimizeReturns(F); |
| 2475 | |
| 2476 | // Gather statistics after optimization. |
| 2477 | #ifndef NDEBUG |
| 2478 | if (AreStatisticsEnabled()) { |
| 2479 | GatherStatistics(F, true); |
| 2480 | } |
| 2481 | #endif |
| 2482 | |
| 2483 | LLVM_DEBUG(dbgs() << "\n" ); |
| 2484 | |
| 2485 | return Changed; |
| 2486 | } |
| 2487 | |
| 2488 | /// @} |
| 2489 | /// |
| 2490 | |
| 2491 | PreservedAnalyses ObjCARCOptPass::run(Function &F, |
| 2492 | FunctionAnalysisManager &AM) { |
| 2493 | ObjCARCOpt OCAO; |
| 2494 | OCAO.init(F); |
| 2495 | |
| 2496 | bool Changed = OCAO.run(F, AA&: AM.getResult<AAManager>(IR&: F)); |
| 2497 | bool CFGChanged = OCAO.hasCFGChanged(); |
| 2498 | if (Changed) { |
| 2499 | PreservedAnalyses PA; |
| 2500 | if (!CFGChanged) |
| 2501 | PA.preserveSet<CFGAnalyses>(); |
| 2502 | return PA; |
| 2503 | } |
| 2504 | return PreservedAnalyses::all(); |
| 2505 | } |
| 2506 | |