| 1 | //===- ProvenanceAnalysis.cpp - ObjC ARC Optimization ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// |
| 11 | /// This file defines a special form of Alias Analysis called ``Provenance |
| 12 | /// Analysis''. The word ``provenance'' refers to the history of the ownership |
| 13 | /// of an object. Thus ``Provenance Analysis'' is an analysis which attempts to |
| 14 | /// use various techniques to determine if locally |
| 15 | /// |
| 16 | /// WARNING: This file knows about certain library functions. It recognizes them |
| 17 | /// by name, and hardwires knowledge of their semantics. |
| 18 | /// |
| 19 | /// WARNING: This file knows about how certain Objective-C library functions are |
| 20 | /// used. Naive LLVM IR transformations which would otherwise be |
| 21 | /// behavior-preserving may break these assumptions. |
| 22 | // |
| 23 | //===----------------------------------------------------------------------===// |
| 24 | |
| 25 | #include "ProvenanceAnalysis.h" |
| 26 | #include "llvm/ADT/SmallPtrSet.h" |
| 27 | #include "llvm/ADT/SmallVector.h" |
| 28 | #include "llvm/Analysis/AliasAnalysis.h" |
| 29 | #include "llvm/Analysis/ObjCARCAnalysisUtils.h" |
| 30 | #include "llvm/IR/Instructions.h" |
| 31 | #include "llvm/IR/Use.h" |
| 32 | #include "llvm/IR/User.h" |
| 33 | #include "llvm/IR/Value.h" |
| 34 | #include "llvm/Support/Casting.h" |
| 35 | #include <utility> |
| 36 | |
| 37 | using namespace llvm; |
| 38 | using namespace llvm::objcarc; |
| 39 | |
| 40 | bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, |
| 41 | const Value *B) { |
| 42 | // If the values are Selects with the same condition, we can do a more precise |
| 43 | // check: just check for relations between the values on corresponding arms. |
| 44 | if (const SelectInst *SB = dyn_cast<SelectInst>(Val: B)) |
| 45 | if (A->getCondition() == SB->getCondition()) |
| 46 | return related(A: A->getTrueValue(), B: SB->getTrueValue()) || |
| 47 | related(A: A->getFalseValue(), B: SB->getFalseValue()); |
| 48 | |
| 49 | // Check both arms of the Select node individually. |
| 50 | return related(A: A->getTrueValue(), B) || related(A: A->getFalseValue(), B); |
| 51 | } |
| 52 | |
| 53 | bool ProvenanceAnalysis::relatedPHI(const PHINode *A, |
| 54 | const Value *B) { |
| 55 | // If the values are PHIs in the same block, we can do a more precise as well |
| 56 | // as efficient check: just check for relations between the values on |
| 57 | // corresponding edges. |
| 58 | if (const PHINode *PNB = dyn_cast<PHINode>(Val: B)) |
| 59 | if (PNB->getParent() == A->getParent()) { |
| 60 | for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) |
| 61 | if (related(A: A->getIncomingValue(i), |
| 62 | B: PNB->getIncomingValueForBlock(BB: A->getIncomingBlock(i)))) |
| 63 | return true; |
| 64 | return false; |
| 65 | } |
| 66 | |
| 67 | // Check each unique source of the PHI node against B. |
| 68 | SmallPtrSet<const Value *, 4> UniqueSrc; |
| 69 | for (Value *PV1 : A->incoming_values()) { |
| 70 | if (UniqueSrc.insert(Ptr: PV1).second && related(A: PV1, B)) |
| 71 | return true; |
| 72 | } |
| 73 | |
| 74 | // All of the arms checked out. |
| 75 | return false; |
| 76 | } |
| 77 | |
| 78 | /// Test if the value of P, or any value covered by its provenance, is ever |
| 79 | /// stored within the function (not counting callees). |
| 80 | static bool IsStoredObjCPointer(const Value *P) { |
| 81 | if (!P->hasUseList()) |
| 82 | return true; // Assume the worst for a constant pointer. |
| 83 | |
| 84 | SmallPtrSet<const Value *, 8> Visited; |
| 85 | SmallVector<const Value *, 8> Worklist; |
| 86 | Worklist.push_back(Elt: P); |
| 87 | Visited.insert(Ptr: P); |
| 88 | do { |
| 89 | P = Worklist.pop_back_val(); |
| 90 | for (const Use &U : P->uses()) { |
| 91 | const User *Ur = U.getUser(); |
| 92 | if (isa<StoreInst>(Val: Ur)) { |
| 93 | if (U.getOperandNo() == 0) |
| 94 | // The pointer is stored. |
| 95 | return true; |
| 96 | // The pointed is stored through. |
| 97 | continue; |
| 98 | } |
| 99 | if (isa<CallInst>(Val: Ur)) |
| 100 | // The pointer is passed as an argument, ignore this. |
| 101 | continue; |
| 102 | if (isa<PtrToIntInst>(Val: P)) |
| 103 | // Assume the worst. |
| 104 | return true; |
| 105 | if (Visited.insert(Ptr: Ur).second) |
| 106 | Worklist.push_back(Elt: Ur); |
| 107 | } |
| 108 | } while (!Worklist.empty()); |
| 109 | |
| 110 | // Everything checked out. |
| 111 | return false; |
| 112 | } |
| 113 | |
| 114 | bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) { |
| 115 | // Ask regular AliasAnalysis, for a first approximation. |
| 116 | switch (AA->alias(V1: A, V2: B)) { |
| 117 | case AliasResult::NoAlias: |
| 118 | return false; |
| 119 | case AliasResult::MustAlias: |
| 120 | case AliasResult::PartialAlias: |
| 121 | return true; |
| 122 | case AliasResult::MayAlias: |
| 123 | break; |
| 124 | } |
| 125 | |
| 126 | bool AIsIdentified = IsObjCIdentifiedObject(V: A); |
| 127 | bool BIsIdentified = IsObjCIdentifiedObject(V: B); |
| 128 | |
| 129 | // An ObjC-Identified object can't alias a load if it is never locally stored. |
| 130 | if (AIsIdentified) { |
| 131 | // Check for an obvious escape. |
| 132 | if (isa<LoadInst>(Val: B)) |
| 133 | return IsStoredObjCPointer(P: A); |
| 134 | if (BIsIdentified) { |
| 135 | // Check for an obvious escape. |
| 136 | if (isa<LoadInst>(Val: A)) |
| 137 | return IsStoredObjCPointer(P: B); |
| 138 | // Both pointers are identified and escapes aren't an evident problem. |
| 139 | return false; |
| 140 | } |
| 141 | } else if (BIsIdentified) { |
| 142 | // Check for an obvious escape. |
| 143 | if (isa<LoadInst>(Val: A)) |
| 144 | return IsStoredObjCPointer(P: B); |
| 145 | } |
| 146 | |
| 147 | // Special handling for PHI and Select. |
| 148 | if (const PHINode *PN = dyn_cast<PHINode>(Val: A)) |
| 149 | return relatedPHI(A: PN, B); |
| 150 | if (const PHINode *PN = dyn_cast<PHINode>(Val: B)) |
| 151 | return relatedPHI(A: PN, B: A); |
| 152 | if (const SelectInst *S = dyn_cast<SelectInst>(Val: A)) |
| 153 | return relatedSelect(A: S, B); |
| 154 | if (const SelectInst *S = dyn_cast<SelectInst>(Val: B)) |
| 155 | return relatedSelect(A: S, B: A); |
| 156 | |
| 157 | // Conservative. |
| 158 | return true; |
| 159 | } |
| 160 | |
| 161 | bool ProvenanceAnalysis::related(const Value *A, const Value *B) { |
| 162 | A = GetUnderlyingObjCPtrCached(V: A, Cache&: UnderlyingObjCPtrCache); |
| 163 | B = GetUnderlyingObjCPtrCached(V: B, Cache&: UnderlyingObjCPtrCache); |
| 164 | |
| 165 | // Quick check. |
| 166 | if (A == B) |
| 167 | return true; |
| 168 | |
| 169 | // Begin by inserting a conservative value into the map. If the insertion |
| 170 | // fails, we have the answer already. If it succeeds, leave it there until we |
| 171 | // compute the real answer to guard against recursive queries. |
| 172 | std::pair<CachedResultsTy::iterator, bool> Pair = |
| 173 | CachedResults.insert(KV: std::make_pair(x: ValuePairTy(A, B), y: true)); |
| 174 | if (!Pair.second) |
| 175 | return Pair.first->second; |
| 176 | |
| 177 | bool Result = relatedCheck(A, B); |
| 178 | CachedResults[ValuePairTy(A, B)] = Result; |
| 179 | return Result; |
| 180 | } |
| 181 | |